Revert "eval is actually compile"
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2009
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 ;;; {R4RS compliance}
44 ;;;
45
46 (primitive-load-path "ice-9/r4rs")
47
48 \f
49
50 ;;; {Simple Debugging Tools}
51 ;;;
52
53 ;; peek takes any number of arguments, writes them to the
54 ;; current ouput port, and returns the last argument.
55 ;; It is handy to wrap around an expression to look at
56 ;; a value each time is evaluated, e.g.:
57 ;;
58 ;; (+ 10 (troublesome-fn))
59 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
60 ;;
61
62 (define (peek . stuff)
63 (newline)
64 (display ";;; ")
65 (write stuff)
66 (newline)
67 (car (last-pair stuff)))
68
69 (define pk peek)
70
71 (define (warn . stuff)
72 (with-output-to-port (current-error-port)
73 (lambda ()
74 (newline)
75 (display ";;; WARNING ")
76 (display stuff)
77 (newline)
78 (car (last-pair stuff)))))
79
80 \f
81
82 ;;; {Features}
83 ;;;
84
85 (define (provide sym)
86 (if (not (memq sym *features*))
87 (set! *features* (cons sym *features*))))
88
89 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
90 ;; provided? also checks to see if the module is available. We should do that
91 ;; too, but don't.
92
93 (define (provided? feature)
94 (and (memq feature *features*) #t))
95
96 \f
97
98 ;;; {and-map and or-map}
99 ;;;
100 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
101 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
102 ;;;
103
104 ;; and-map f l
105 ;;
106 ;; Apply f to successive elements of l until exhaustion or f returns #f.
107 ;; If returning early, return #f. Otherwise, return the last value returned
108 ;; by f. If f has never been called because l is empty, return #t.
109 ;;
110 (define (and-map f lst)
111 (let loop ((result #t)
112 (l lst))
113 (and result
114 (or (and (null? l)
115 result)
116 (loop (f (car l)) (cdr l))))))
117
118 ;; or-map f l
119 ;;
120 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
121 ;; If returning early, return the return value of f.
122 ;;
123 (define (or-map f lst)
124 (let loop ((result #f)
125 (l lst))
126 (or result
127 (and (not (null? l))
128 (loop (f (car l)) (cdr l))))))
129
130 \f
131
132 ;; let format alias simple-format until the more complete version is loaded
133
134 (define format simple-format)
135
136 ;; this is scheme wrapping the C code so the final pred call is a tail call,
137 ;; per SRFI-13 spec
138 (define (string-any char_pred s . rest)
139 (let ((start (if (null? rest)
140 0 (car rest)))
141 (end (if (or (null? rest) (null? (cdr rest)))
142 (string-length s) (cadr rest))))
143 (if (and (procedure? char_pred)
144 (> end start)
145 (<= end (string-length s))) ;; let c-code handle range error
146 (or (string-any-c-code char_pred s start (1- end))
147 (char_pred (string-ref s (1- end))))
148 (string-any-c-code char_pred s start end))))
149
150 ;; this is scheme wrapping the C code so the final pred call is a tail call,
151 ;; per SRFI-13 spec
152 (define (string-every char_pred s . rest)
153 (let ((start (if (null? rest)
154 0 (car rest)))
155 (end (if (or (null? rest) (null? (cdr rest)))
156 (string-length s) (cadr rest))))
157 (if (and (procedure? char_pred)
158 (> end start)
159 (<= end (string-length s))) ;; let c-code handle range error
160 (and (string-every-c-code char_pred s start (1- end))
161 (char_pred (string-ref s (1- end))))
162 (string-every-c-code char_pred s start end))))
163
164 ;; A variant of string-fill! that we keep for compatability
165 ;;
166 (define (substring-fill! str start end fill)
167 (string-fill! str fill start end))
168
169 \f
170
171 ;; Define a minimal stub of the module API for psyntax, before modules
172 ;; have booted.
173 (define (module-name x)
174 '(guile))
175 (define (module-define! module sym val)
176 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
177 (if v
178 (variable-set! v val)
179 (hashq-set! (%get-pre-modules-obarray) sym
180 (make-variable val)))))
181 (define (module-ref module sym)
182 (let ((v (module-variable module sym)))
183 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
184 (define (resolve-module . args)
185 #f)
186
187 ;; Input hook to syncase -- so that we might be able to pass annotated
188 ;; expressions in. Currently disabled. Maybe we should just use
189 ;; source-properties directly.
190 (define (annotation? x) #f)
191
192 ;; API provided by psyntax
193 (define syntax-violation #f)
194 (define datum->syntax #f)
195 (define syntax->datum #f)
196 (define identifier? #f)
197 (define generate-temporaries #f)
198 (define bound-identifier=? #f)
199 (define free-identifier=? #f)
200 (define sc-expand #f)
201
202 ;; $sc-expand is an implementation detail of psyntax. It is used by
203 ;; expanded macros, to dispatch an input against a set of patterns.
204 (define $sc-dispatch #f)
205
206 ;; Load it up!
207 (primitive-load-path "ice-9/psyntax-pp")
208
209 ;; %pre-modules-transformer is the Scheme expander from now until the
210 ;; module system has booted up.
211 (define %pre-modules-transformer sc-expand)
212
213 (define-syntax and
214 (syntax-rules ()
215 ((_) #t)
216 ((_ x) x)
217 ((_ x y ...) (if x (and y ...) #f))))
218
219 (define-syntax or
220 (syntax-rules ()
221 ((_) #f)
222 ((_ x) x)
223 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
224
225 ;; The "maybe-more" bits are something of a hack, so that we can support
226 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
227 ;; appreciated.
228 (define-syntax cond
229 (syntax-rules (=> else)
230 ((_ "maybe-more" test consequent)
231 (if test consequent))
232
233 ((_ "maybe-more" test consequent clause ...)
234 (if test consequent (cond clause ...)))
235
236 ((_ (else else1 else2 ...))
237 (begin else1 else2 ...))
238
239 ((_ (test => receiver) more-clause ...)
240 (let ((t test))
241 (cond "maybe-more" t (receiver t) more-clause ...)))
242
243 ((_ (generator guard => receiver) more-clause ...)
244 (call-with-values (lambda () generator)
245 (lambda t
246 (cond "maybe-more"
247 (apply guard t) (apply receiver t) more-clause ...))))
248
249 ((_ (test => receiver ...) more-clause ...)
250 (syntax-violation 'cond "wrong number of receiver expressions"
251 '(test => receiver ...)))
252 ((_ (generator guard => receiver ...) more-clause ...)
253 (syntax-violation 'cond "wrong number of receiver expressions"
254 '(generator guard => receiver ...)))
255
256 ((_ (test) more-clause ...)
257 (let ((t test))
258 (cond "maybe-more" t t more-clause ...)))
259
260 ((_ (test body1 body2 ...) more-clause ...)
261 (cond "maybe-more"
262 test (begin body1 body2 ...) more-clause ...))))
263
264 (define-syntax case
265 (syntax-rules (else)
266 ((case (key ...)
267 clauses ...)
268 (let ((atom-key (key ...)))
269 (case atom-key clauses ...)))
270 ((case key
271 (else result1 result2 ...))
272 (begin result1 result2 ...))
273 ((case key
274 ((atoms ...) result1 result2 ...))
275 (if (memv key '(atoms ...))
276 (begin result1 result2 ...)))
277 ((case key
278 ((atoms ...) result1 result2 ...)
279 clause clauses ...)
280 (if (memv key '(atoms ...))
281 (begin result1 result2 ...)
282 (case key clause clauses ...)))))
283
284 (define-syntax do
285 (syntax-rules ()
286 ((do ((var init step ...) ...)
287 (test expr ...)
288 command ...)
289 (letrec
290 ((loop
291 (lambda (var ...)
292 (if test
293 (begin
294 (if #f #f)
295 expr ...)
296 (begin
297 command
298 ...
299 (loop (do "step" var step ...)
300 ...))))))
301 (loop init ...)))
302 ((do "step" x)
303 x)
304 ((do "step" x y)
305 y)))
306
307 (define-syntax delay
308 (syntax-rules ()
309 ((_ exp) (make-promise (lambda () exp)))))
310
311 ;;; @bind is used by the old elisp code as a dynamic scoping mechanism.
312 ;;; Please let the Guile developers know if you are using this macro.
313 ;;;
314 (define-syntax @bind
315 (lambda (x)
316 (define (bound-member id ids)
317 (cond ((null? ids) #f)
318 ((bound-identifier=? id (car ids)) #t)
319 ((bound-member (car ids) (cdr ids)))))
320
321 (syntax-case x ()
322 ((_ () b0 b1 ...)
323 #'(let () b0 b1 ...))
324 ((_ ((id val) ...) b0 b1 ...)
325 (and-map identifier? #'(id ...))
326 (if (let lp ((ids #'(id ...)))
327 (cond ((null? ids) #f)
328 ((bound-member (car ids) (cdr ids)) #t)
329 (else (lp (cdr ids)))))
330 (syntax-violation '@bind "duplicate bound identifier" x)
331 (with-syntax (((old-v ...) (generate-temporaries #'(id ...)))
332 ((v ...) (generate-temporaries #'(id ...))))
333 #'(let ((old-v id) ...
334 (v val) ...)
335 (dynamic-wind
336 (lambda ()
337 (set! id v) ...)
338 (lambda () b0 b1 ...)
339 (lambda ()
340 (set! id old-v) ...)))))))))
341
342
343 \f
344
345 ;;; {Defmacros}
346 ;;;
347
348 (define-syntax define-macro
349 (lambda (x)
350 "Define a defmacro."
351 (syntax-case x ()
352 ((_ (macro . args) doc body1 body ...)
353 (string? (syntax->datum (syntax doc)))
354 (syntax (define-macro macro doc (lambda args body1 body ...))))
355 ((_ (macro . args) body ...)
356 (syntax (define-macro macro #f (lambda args body ...))))
357 ((_ macro doc transformer)
358 (or (string? (syntax->datum (syntax doc)))
359 (not (syntax->datum (syntax doc))))
360 (syntax
361 (define-syntax macro
362 (lambda (y)
363 doc
364 (syntax-case y ()
365 ((_ . args)
366 (let ((v (syntax->datum (syntax args))))
367 (datum->syntax y (apply transformer v))))))))))))
368
369 (define-syntax defmacro
370 (lambda (x)
371 "Define a defmacro, with the old lispy defun syntax."
372 (syntax-case x ()
373 ((_ macro args doc body1 body ...)
374 (string? (syntax->datum (syntax doc)))
375 (syntax (define-macro macro doc (lambda args body1 body ...))))
376 ((_ macro args body ...)
377 (syntax (define-macro macro #f (lambda args body ...)))))))
378
379 (provide 'defmacro)
380
381 \f
382
383 ;;; {Deprecation}
384 ;;;
385 ;;; Depends on: defmacro
386 ;;;
387
388 (defmacro begin-deprecated forms
389 (if (include-deprecated-features)
390 `(begin ,@forms)
391 `(begin)))
392
393 \f
394
395 ;;; {Trivial Functions}
396 ;;;
397
398 (define (identity x) x)
399 (define (and=> value procedure) (and value (procedure value)))
400 (define call/cc call-with-current-continuation)
401
402 ;;; apply-to-args is functionally redundant with apply and, worse,
403 ;;; is less general than apply since it only takes two arguments.
404 ;;;
405 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
406 ;;; perform binding in many circumstances when the "let" family of
407 ;;; of forms don't cut it. E.g.:
408 ;;;
409 ;;; (apply-to-args (return-3d-mouse-coords)
410 ;;; (lambda (x y z)
411 ;;; ...))
412 ;;;
413
414 (define (apply-to-args args fn) (apply fn args))
415
416 (defmacro false-if-exception (expr)
417 `(catch #t
418 (lambda ()
419 ;; avoid saving backtraces inside false-if-exception
420 (with-fluid* the-last-stack (fluid-ref the-last-stack)
421 (lambda () ,expr)))
422 (lambda args #f)))
423
424 \f
425
426 ;;; {General Properties}
427 ;;;
428
429 ;; This is a more modern interface to properties. It will replace all
430 ;; other property-like things eventually.
431
432 (define (make-object-property)
433 (let ((prop (primitive-make-property #f)))
434 (make-procedure-with-setter
435 (lambda (obj) (primitive-property-ref prop obj))
436 (lambda (obj val) (primitive-property-set! prop obj val)))))
437
438 \f
439
440 ;;; {Symbol Properties}
441 ;;;
442
443 (define (symbol-property sym prop)
444 (let ((pair (assoc prop (symbol-pref sym))))
445 (and pair (cdr pair))))
446
447 (define (set-symbol-property! sym prop val)
448 (let ((pair (assoc prop (symbol-pref sym))))
449 (if pair
450 (set-cdr! pair val)
451 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
452
453 (define (symbol-property-remove! sym prop)
454 (let ((pair (assoc prop (symbol-pref sym))))
455 (if pair
456 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
457
458 \f
459
460 ;;; {Arrays}
461 ;;;
462
463 (define (array-shape a)
464 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
465 (array-dimensions a)))
466
467 \f
468
469 ;;; {Keywords}
470 ;;;
471
472 (define (kw-arg-ref args kw)
473 (let ((rem (member kw args)))
474 (and rem (pair? (cdr rem)) (cadr rem))))
475
476 \f
477
478 ;;; {Structs}
479 ;;;
480
481 (define (struct-layout s)
482 (struct-ref (struct-vtable s) vtable-index-layout))
483
484 \f
485
486 ;;; {Records}
487 ;;;
488
489 ;; Printing records: by default, records are printed as
490 ;;
491 ;; #<type-name field1: val1 field2: val2 ...>
492 ;;
493 ;; You can change that by giving a custom printing function to
494 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
495 ;; will be called like
496 ;;
497 ;; (<printer> object port)
498 ;;
499 ;; It should print OBJECT to PORT.
500
501 (define (inherit-print-state old-port new-port)
502 (if (get-print-state old-port)
503 (port-with-print-state new-port (get-print-state old-port))
504 new-port))
505
506 ;; 0: type-name, 1: fields
507 (define record-type-vtable
508 (make-vtable-vtable "prpr" 0
509 (lambda (s p)
510 (cond ((eq? s record-type-vtable)
511 (display "#<record-type-vtable>" p))
512 (else
513 (display "#<record-type " p)
514 (display (record-type-name s) p)
515 (display ">" p))))))
516
517 (define (record-type? obj)
518 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
519
520 (define (make-record-type type-name fields . opt)
521 (let ((printer-fn (and (pair? opt) (car opt))))
522 (let ((struct (make-struct record-type-vtable 0
523 (make-struct-layout
524 (apply string-append
525 (map (lambda (f) "pw") fields)))
526 (or printer-fn
527 (lambda (s p)
528 (display "#<" p)
529 (display type-name p)
530 (let loop ((fields fields)
531 (off 0))
532 (cond
533 ((not (null? fields))
534 (display " " p)
535 (display (car fields) p)
536 (display ": " p)
537 (display (struct-ref s off) p)
538 (loop (cdr fields) (+ 1 off)))))
539 (display ">" p)))
540 type-name
541 (copy-tree fields))))
542 ;; Temporary solution: Associate a name to the record type descriptor
543 ;; so that the object system can create a wrapper class for it.
544 (set-struct-vtable-name! struct (if (symbol? type-name)
545 type-name
546 (string->symbol type-name)))
547 struct)))
548
549 (define (record-type-name obj)
550 (if (record-type? obj)
551 (struct-ref obj vtable-offset-user)
552 (error 'not-a-record-type obj)))
553
554 (define (record-type-fields obj)
555 (if (record-type? obj)
556 (struct-ref obj (+ 1 vtable-offset-user))
557 (error 'not-a-record-type obj)))
558
559 (define (record-constructor rtd . opt)
560 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
561 (primitive-eval
562 `(lambda ,field-names
563 (make-struct ',rtd 0 ,@(map (lambda (f)
564 (if (memq f field-names)
565 f
566 #f))
567 (record-type-fields rtd)))))))
568
569 (define (record-predicate rtd)
570 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
571
572 (define (%record-type-error rtd obj) ;; private helper
573 (or (eq? rtd (record-type-descriptor obj))
574 (scm-error 'wrong-type-arg "%record-type-check"
575 "Wrong type record (want `~S'): ~S"
576 (list (record-type-name rtd) obj)
577 #f)))
578
579 (define (record-accessor rtd field-name)
580 (let ((pos (list-index (record-type-fields rtd) field-name)))
581 (if (not pos)
582 (error 'no-such-field field-name))
583 (lambda (obj)
584 (if (eq? (struct-vtable obj) rtd)
585 (struct-ref obj pos)
586 (%record-type-error rtd obj)))))
587
588 (define (record-modifier rtd field-name)
589 (let ((pos (list-index (record-type-fields rtd) field-name)))
590 (if (not pos)
591 (error 'no-such-field field-name))
592 (lambda (obj val)
593 (if (eq? (struct-vtable obj) rtd)
594 (struct-set! obj pos val)
595 (%record-type-error rtd obj)))))
596
597 (define (record? obj)
598 (and (struct? obj) (record-type? (struct-vtable obj))))
599
600 (define (record-type-descriptor obj)
601 (if (struct? obj)
602 (struct-vtable obj)
603 (error 'not-a-record obj)))
604
605 (provide 'record)
606
607 \f
608
609 ;;; {Booleans}
610 ;;;
611
612 (define (->bool x) (not (not x)))
613
614 \f
615
616 ;;; {Symbols}
617 ;;;
618
619 (define (symbol-append . args)
620 (string->symbol (apply string-append (map symbol->string args))))
621
622 (define (list->symbol . args)
623 (string->symbol (apply list->string args)))
624
625 (define (symbol . args)
626 (string->symbol (apply string args)))
627
628 \f
629
630 ;;; {Lists}
631 ;;;
632
633 (define (list-index l k)
634 (let loop ((n 0)
635 (l l))
636 (and (not (null? l))
637 (if (eq? (car l) k)
638 n
639 (loop (+ n 1) (cdr l))))))
640
641 \f
642
643 (if (provided? 'posix)
644 (primitive-load-path "ice-9/posix"))
645
646 (if (provided? 'socket)
647 (primitive-load-path "ice-9/networking"))
648
649 ;; For reference, Emacs file-exists-p uses stat in this same way.
650 (define file-exists?
651 (if (provided? 'posix)
652 (lambda (str)
653 (->bool (stat str #f)))
654 (lambda (str)
655 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
656 (lambda args #f))))
657 (if port (begin (close-port port) #t)
658 #f)))))
659
660 (define file-is-directory?
661 (if (provided? 'posix)
662 (lambda (str)
663 (eq? (stat:type (stat str)) 'directory))
664 (lambda (str)
665 (let ((port (catch 'system-error
666 (lambda () (open-file (string-append str "/.")
667 OPEN_READ))
668 (lambda args #f))))
669 (if port (begin (close-port port) #t)
670 #f)))))
671
672 (define (has-suffix? str suffix)
673 (string-suffix? suffix str))
674
675 (define (system-error-errno args)
676 (if (eq? (car args) 'system-error)
677 (car (list-ref args 4))
678 #f))
679
680 \f
681
682 ;;; {Error Handling}
683 ;;;
684
685 (define (error . args)
686 (save-stack)
687 (if (null? args)
688 (scm-error 'misc-error #f "?" #f #f)
689 (let loop ((msg "~A")
690 (rest (cdr args)))
691 (if (not (null? rest))
692 (loop (string-append msg " ~S")
693 (cdr rest))
694 (scm-error 'misc-error #f msg args #f)))))
695
696 ;; bad-throw is the hook that is called upon a throw to a an unhandled
697 ;; key (unless the throw has four arguments, in which case
698 ;; it's usually interpreted as an error throw.)
699 ;; If the key has a default handler (a throw-handler-default property),
700 ;; it is applied to the throw.
701 ;;
702 (define (bad-throw key . args)
703 (let ((default (symbol-property key 'throw-handler-default)))
704 (or (and default (apply default key args))
705 (apply error "unhandled-exception:" key args))))
706
707 \f
708
709 (define (tm:sec obj) (vector-ref obj 0))
710 (define (tm:min obj) (vector-ref obj 1))
711 (define (tm:hour obj) (vector-ref obj 2))
712 (define (tm:mday obj) (vector-ref obj 3))
713 (define (tm:mon obj) (vector-ref obj 4))
714 (define (tm:year obj) (vector-ref obj 5))
715 (define (tm:wday obj) (vector-ref obj 6))
716 (define (tm:yday obj) (vector-ref obj 7))
717 (define (tm:isdst obj) (vector-ref obj 8))
718 (define (tm:gmtoff obj) (vector-ref obj 9))
719 (define (tm:zone obj) (vector-ref obj 10))
720
721 (define (set-tm:sec obj val) (vector-set! obj 0 val))
722 (define (set-tm:min obj val) (vector-set! obj 1 val))
723 (define (set-tm:hour obj val) (vector-set! obj 2 val))
724 (define (set-tm:mday obj val) (vector-set! obj 3 val))
725 (define (set-tm:mon obj val) (vector-set! obj 4 val))
726 (define (set-tm:year obj val) (vector-set! obj 5 val))
727 (define (set-tm:wday obj val) (vector-set! obj 6 val))
728 (define (set-tm:yday obj val) (vector-set! obj 7 val))
729 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
730 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
731 (define (set-tm:zone obj val) (vector-set! obj 10 val))
732
733 (define (tms:clock obj) (vector-ref obj 0))
734 (define (tms:utime obj) (vector-ref obj 1))
735 (define (tms:stime obj) (vector-ref obj 2))
736 (define (tms:cutime obj) (vector-ref obj 3))
737 (define (tms:cstime obj) (vector-ref obj 4))
738
739 (define file-position ftell)
740 (define (file-set-position port offset . whence)
741 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
742 (seek port offset whence)))
743
744 (define (move->fdes fd/port fd)
745 (cond ((integer? fd/port)
746 (dup->fdes fd/port fd)
747 (close fd/port)
748 fd)
749 (else
750 (primitive-move->fdes fd/port fd)
751 (set-port-revealed! fd/port 1)
752 fd/port)))
753
754 (define (release-port-handle port)
755 (let ((revealed (port-revealed port)))
756 (if (> revealed 0)
757 (set-port-revealed! port (- revealed 1)))))
758
759 (define (dup->port port/fd mode . maybe-fd)
760 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
761 mode)))
762 (if (pair? maybe-fd)
763 (set-port-revealed! port 1))
764 port))
765
766 (define (dup->inport port/fd . maybe-fd)
767 (apply dup->port port/fd "r" maybe-fd))
768
769 (define (dup->outport port/fd . maybe-fd)
770 (apply dup->port port/fd "w" maybe-fd))
771
772 (define (dup port/fd . maybe-fd)
773 (if (integer? port/fd)
774 (apply dup->fdes port/fd maybe-fd)
775 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
776
777 (define (duplicate-port port modes)
778 (dup->port port modes))
779
780 (define (fdes->inport fdes)
781 (let loop ((rest-ports (fdes->ports fdes)))
782 (cond ((null? rest-ports)
783 (let ((result (fdopen fdes "r")))
784 (set-port-revealed! result 1)
785 result))
786 ((input-port? (car rest-ports))
787 (set-port-revealed! (car rest-ports)
788 (+ (port-revealed (car rest-ports)) 1))
789 (car rest-ports))
790 (else
791 (loop (cdr rest-ports))))))
792
793 (define (fdes->outport fdes)
794 (let loop ((rest-ports (fdes->ports fdes)))
795 (cond ((null? rest-ports)
796 (let ((result (fdopen fdes "w")))
797 (set-port-revealed! result 1)
798 result))
799 ((output-port? (car rest-ports))
800 (set-port-revealed! (car rest-ports)
801 (+ (port-revealed (car rest-ports)) 1))
802 (car rest-ports))
803 (else
804 (loop (cdr rest-ports))))))
805
806 (define (port->fdes port)
807 (set-port-revealed! port (+ (port-revealed port) 1))
808 (fileno port))
809
810 (define (setenv name value)
811 (if value
812 (putenv (string-append name "=" value))
813 (putenv name)))
814
815 (define (unsetenv name)
816 "Remove the entry for NAME from the environment."
817 (putenv name))
818
819 \f
820
821 ;;; {Load Paths}
822 ;;;
823
824 ;;; Here for backward compatability
825 ;;
826 (define scheme-file-suffix (lambda () ".scm"))
827
828 (define (in-vicinity vicinity file)
829 (let ((tail (let ((len (string-length vicinity)))
830 (if (zero? len)
831 #f
832 (string-ref vicinity (- len 1))))))
833 (string-append vicinity
834 (if (or (not tail)
835 (eq? tail #\/))
836 ""
837 "/")
838 file)))
839
840 \f
841
842 ;;; {Help for scm_shell}
843 ;;;
844 ;;; The argument-processing code used by Guile-based shells generates
845 ;;; Scheme code based on the argument list. This page contains help
846 ;;; functions for the code it generates.
847 ;;;
848
849 (define (command-line) (program-arguments))
850
851 ;; This is mostly for the internal use of the code generated by
852 ;; scm_compile_shell_switches.
853
854 (define (turn-on-debugging)
855 (debug-enable 'debug)
856 (debug-enable 'backtrace)
857 (read-enable 'positions))
858
859 (define (load-user-init)
860 (let* ((home (or (getenv "HOME")
861 (false-if-exception (passwd:dir (getpwuid (getuid))))
862 "/")) ;; fallback for cygwin etc.
863 (init-file (in-vicinity home ".guile")))
864 (if (file-exists? init-file)
865 (primitive-load init-file))))
866
867 \f
868
869 ;;; {The interpreter stack}
870 ;;;
871
872 (defmacro start-stack (tag exp)
873 `(%start-stack ,tag (lambda () ,exp)))
874
875 \f
876
877 ;;; {Loading by paths}
878 ;;;
879
880 ;;; Load a Scheme source file named NAME, searching for it in the
881 ;;; directories listed in %load-path, and applying each of the file
882 ;;; name extensions listed in %load-extensions.
883 (define (load-from-path name)
884 (start-stack 'load-stack
885 (primitive-load-path name)))
886
887 (define %load-verbosely #f)
888 (define (assert-load-verbosity v) (set! %load-verbosely v))
889
890 (define (%load-announce file)
891 (if %load-verbosely
892 (with-output-to-port (current-error-port)
893 (lambda ()
894 (display ";;; ")
895 (display "loading ")
896 (display file)
897 (newline)
898 (force-output)))))
899
900 (set! %load-hook %load-announce)
901
902 ;;; Returns the .go file corresponding to `name'. Does not search load
903 ;;; paths, only the fallback path. If the .go file is missing or out of
904 ;;; date, and autocompilation is enabled, will try autocompilation, just
905 ;;; as primitive-load-path does internally. primitive-load is
906 ;;; unaffected. Returns #f if autocompilation failed or was disabled.
907 (define (autocompiled-file-name name)
908 (catch #t
909 (lambda ()
910 (let* ((cfn ((@ (system base compile) compiled-file-name) name))
911 (scmstat (stat name))
912 (gostat (stat cfn #f)))
913 (if (and gostat (= (stat:mtime gostat) (stat:mtime scmstat)))
914 cfn
915 (begin
916 (if gostat
917 (format (current-error-port)
918 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
919 name cfn))
920 (cond
921 (%load-should-autocompile
922 (%warn-autocompilation-enabled)
923 (format (current-error-port) ";;; compiling ~a\n" name)
924 (let ((cfn ((@ (system base compile) compile-file) name)))
925 (format (current-error-port) ";;; compiled ~a\n" cfn)
926 cfn))
927 (else #f))))))
928 (lambda (k . args)
929 (format (current-error-port)
930 ";;; WARNING: compilation of ~a failed:\n;;; key ~a, throw_args ~s\n"
931 name k args)
932 #f)))
933
934 (define (load name . reader)
935 (with-fluid* current-reader (and (pair? reader) (car reader))
936 (lambda ()
937 (let ((cfn (autocompiled-file-name name)))
938 (if cfn
939 (load-compiled cfn)
940 (start-stack 'load-stack
941 (primitive-load name)))))))
942
943 \f
944
945 ;;; {Transcendental Functions}
946 ;;;
947 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
948 ;;; Written by Jerry D. Hedden, (C) FSF.
949 ;;; See the file `COPYING' for terms applying to this program.
950 ;;;
951
952 (define expt
953 (let ((integer-expt integer-expt))
954 (lambda (z1 z2)
955 (cond ((and (exact? z2) (integer? z2))
956 (integer-expt z1 z2))
957 ((and (real? z2) (real? z1) (>= z1 0))
958 ($expt z1 z2))
959 (else
960 (exp (* z2 (log z1))))))))
961
962 (define (sinh z)
963 (if (real? z) ($sinh z)
964 (let ((x (real-part z)) (y (imag-part z)))
965 (make-rectangular (* ($sinh x) ($cos y))
966 (* ($cosh x) ($sin y))))))
967 (define (cosh z)
968 (if (real? z) ($cosh z)
969 (let ((x (real-part z)) (y (imag-part z)))
970 (make-rectangular (* ($cosh x) ($cos y))
971 (* ($sinh x) ($sin y))))))
972 (define (tanh z)
973 (if (real? z) ($tanh z)
974 (let* ((x (* 2 (real-part z)))
975 (y (* 2 (imag-part z)))
976 (w (+ ($cosh x) ($cos y))))
977 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
978
979 (define (asinh z)
980 (if (real? z) ($asinh z)
981 (log (+ z (sqrt (+ (* z z) 1))))))
982
983 (define (acosh z)
984 (if (and (real? z) (>= z 1))
985 ($acosh z)
986 (log (+ z (sqrt (- (* z z) 1))))))
987
988 (define (atanh z)
989 (if (and (real? z) (> z -1) (< z 1))
990 ($atanh z)
991 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
992
993 (define (sin z)
994 (if (real? z) ($sin z)
995 (let ((x (real-part z)) (y (imag-part z)))
996 (make-rectangular (* ($sin x) ($cosh y))
997 (* ($cos x) ($sinh y))))))
998 (define (cos z)
999 (if (real? z) ($cos z)
1000 (let ((x (real-part z)) (y (imag-part z)))
1001 (make-rectangular (* ($cos x) ($cosh y))
1002 (- (* ($sin x) ($sinh y)))))))
1003 (define (tan z)
1004 (if (real? z) ($tan z)
1005 (let* ((x (* 2 (real-part z)))
1006 (y (* 2 (imag-part z)))
1007 (w (+ ($cos x) ($cosh y))))
1008 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
1009
1010 (define (asin z)
1011 (if (and (real? z) (>= z -1) (<= z 1))
1012 ($asin z)
1013 (* -i (asinh (* +i z)))))
1014
1015 (define (acos z)
1016 (if (and (real? z) (>= z -1) (<= z 1))
1017 ($acos z)
1018 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
1019
1020 (define (atan z . y)
1021 (if (null? y)
1022 (if (real? z) ($atan z)
1023 (/ (log (/ (- +i z) (+ +i z))) +2i))
1024 ($atan2 z (car y))))
1025
1026 \f
1027
1028 ;;; {Reader Extensions}
1029 ;;;
1030 ;;; Reader code for various "#c" forms.
1031 ;;;
1032
1033 (define read-eval? (make-fluid))
1034 (fluid-set! read-eval? #f)
1035 (read-hash-extend #\.
1036 (lambda (c port)
1037 (if (fluid-ref read-eval?)
1038 (eval (read port) (interaction-environment))
1039 (error
1040 "#. read expansion found and read-eval? is #f."))))
1041
1042 \f
1043
1044 ;;; {Command Line Options}
1045 ;;;
1046
1047 (define (get-option argv kw-opts kw-args return)
1048 (cond
1049 ((null? argv)
1050 (return #f #f argv))
1051
1052 ((or (not (eq? #\- (string-ref (car argv) 0)))
1053 (eq? (string-length (car argv)) 1))
1054 (return 'normal-arg (car argv) (cdr argv)))
1055
1056 ((eq? #\- (string-ref (car argv) 1))
1057 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
1058 (string-length (car argv))))
1059 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
1060 (kw-opt? (member kw kw-opts))
1061 (kw-arg? (member kw kw-args))
1062 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
1063 (substring (car argv)
1064 (+ kw-arg-pos 1)
1065 (string-length (car argv))))
1066 (and kw-arg?
1067 (begin (set! argv (cdr argv)) (car argv))))))
1068 (if (or kw-opt? kw-arg?)
1069 (return kw arg (cdr argv))
1070 (return 'usage-error kw (cdr argv)))))
1071
1072 (else
1073 (let* ((char (substring (car argv) 1 2))
1074 (kw (symbol->keyword char)))
1075 (cond
1076
1077 ((member kw kw-opts)
1078 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1079 (new-argv (if (= 0 (string-length rest-car))
1080 (cdr argv)
1081 (cons (string-append "-" rest-car) (cdr argv)))))
1082 (return kw #f new-argv)))
1083
1084 ((member kw kw-args)
1085 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1086 (arg (if (= 0 (string-length rest-car))
1087 (cadr argv)
1088 rest-car))
1089 (new-argv (if (= 0 (string-length rest-car))
1090 (cddr argv)
1091 (cdr argv))))
1092 (return kw arg new-argv)))
1093
1094 (else (return 'usage-error kw argv)))))))
1095
1096 (define (for-next-option proc argv kw-opts kw-args)
1097 (let loop ((argv argv))
1098 (get-option argv kw-opts kw-args
1099 (lambda (opt opt-arg argv)
1100 (and opt (proc opt opt-arg argv loop))))))
1101
1102 (define (display-usage-report kw-desc)
1103 (for-each
1104 (lambda (kw)
1105 (or (eq? (car kw) #t)
1106 (eq? (car kw) 'else)
1107 (let* ((opt-desc kw)
1108 (help (cadr opt-desc))
1109 (opts (car opt-desc))
1110 (opts-proper (if (string? (car opts)) (cdr opts) opts))
1111 (arg-name (if (string? (car opts))
1112 (string-append "<" (car opts) ">")
1113 ""))
1114 (left-part (string-append
1115 (with-output-to-string
1116 (lambda ()
1117 (map (lambda (x) (display (keyword->symbol x)) (display " "))
1118 opts-proper)))
1119 arg-name))
1120 (middle-part (if (and (< (string-length left-part) 30)
1121 (< (string-length help) 40))
1122 (make-string (- 30 (string-length left-part)) #\ )
1123 "\n\t")))
1124 (display left-part)
1125 (display middle-part)
1126 (display help)
1127 (newline))))
1128 kw-desc))
1129
1130
1131
1132 (define (transform-usage-lambda cases)
1133 (let* ((raw-usage (delq! 'else (map car cases)))
1134 (usage-sans-specials (map (lambda (x)
1135 (or (and (not (list? x)) x)
1136 (and (symbol? (car x)) #t)
1137 (and (boolean? (car x)) #t)
1138 x))
1139 raw-usage))
1140 (usage-desc (delq! #t usage-sans-specials))
1141 (kw-desc (map car usage-desc))
1142 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
1143 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1144 (transmogrified-cases (map (lambda (case)
1145 (cons (let ((opts (car case)))
1146 (if (or (boolean? opts) (eq? 'else opts))
1147 opts
1148 (cond
1149 ((symbol? (car opts)) opts)
1150 ((boolean? (car opts)) opts)
1151 ((string? (caar opts)) (cdar opts))
1152 (else (car opts)))))
1153 (cdr case)))
1154 cases)))
1155 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1156 (lambda (%argv)
1157 (let %next-arg ((%argv %argv))
1158 (get-option %argv
1159 ',kw-opts
1160 ',kw-args
1161 (lambda (%opt %arg %new-argv)
1162 (case %opt
1163 ,@ transmogrified-cases))))))))
1164
1165
1166 \f
1167
1168 ;;; {Low Level Modules}
1169 ;;;
1170 ;;; These are the low level data structures for modules.
1171 ;;;
1172 ;;; Every module object is of the type 'module-type', which is a record
1173 ;;; consisting of the following members:
1174 ;;;
1175 ;;; - eval-closure: the function that defines for its module the strategy that
1176 ;;; shall be followed when looking up symbols in the module.
1177 ;;;
1178 ;;; An eval-closure is a function taking two arguments: the symbol to be
1179 ;;; looked up and a boolean value telling whether a binding for the symbol
1180 ;;; should be created if it does not exist yet. If the symbol lookup
1181 ;;; succeeded (either because an existing binding was found or because a new
1182 ;;; binding was created), a variable object representing the binding is
1183 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1184 ;;; closure does not take the module to be searched as an argument: During
1185 ;;; construction of the eval-closure, the eval-closure has to store the
1186 ;;; module it belongs to in its environment. This means, that any
1187 ;;; eval-closure can belong to only one module.
1188 ;;;
1189 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1190 ;;; special cases of eval-closures are to be distinguished: During startup
1191 ;;; the module system is not yet activated. In this phase, no modules are
1192 ;;; defined and all bindings are automatically stored by the system in the
1193 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1194 ;;; functions which require an eval-closure as their argument need to be
1195 ;;; passed the value #f.
1196 ;;;
1197 ;;; The other two special cases of eval-closures are the
1198 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1199 ;;; behave equally for the case that no new binding is to be created. The
1200 ;;; difference between the two comes in, when the boolean argument to the
1201 ;;; eval-closure indicates that a new binding shall be created if it is not
1202 ;;; found.
1203 ;;;
1204 ;;; Given that no new binding shall be created, both standard eval-closures
1205 ;;; define the following standard strategy of searching bindings in the
1206 ;;; module: First, the module's obarray is searched for the symbol. Second,
1207 ;;; if no binding for the symbol was found in the module's obarray, the
1208 ;;; module's binder procedure is exececuted. If this procedure did not
1209 ;;; return a binding for the symbol, the modules referenced in the module's
1210 ;;; uses list are recursively searched for a binding of the symbol. If the
1211 ;;; binding can not be found in these modules also, the symbol lookup has
1212 ;;; failed.
1213 ;;;
1214 ;;; If a new binding shall be created, the standard-interface-eval-closure
1215 ;;; immediately returns indicating failure. That is, it does not even try
1216 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1217 ;;; first search the obarray, and if no binding was found there, would
1218 ;;; create a new binding in the obarray, therefore not calling the binder
1219 ;;; procedure or searching the modules in the uses list.
1220 ;;;
1221 ;;; The explanation of the following members obarray, binder and uses
1222 ;;; assumes that the symbol lookup follows the strategy that is defined in
1223 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1224 ;;;
1225 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1226 ;;; hash table, the definitions are found that are local to the module (that
1227 ;;; is, not imported from other modules). When looking up bindings in the
1228 ;;; module, this hash table is searched first.
1229 ;;;
1230 ;;; - binder: either #f or a function taking a module and a symbol argument.
1231 ;;; If it is a function it is called after the obarray has been
1232 ;;; unsuccessfully searched for a binding. It then can provide bindings
1233 ;;; that would otherwise not be found locally in the module.
1234 ;;;
1235 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1236 ;;; These modules are the third place queried for bindings after the obarray
1237 ;;; has been unsuccessfully searched and the binder function did not deliver
1238 ;;; a result either.
1239 ;;;
1240 ;;; - transformer: either #f or a function taking a scheme expression as
1241 ;;; delivered by read. If it is a function, it will be called to perform
1242 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1243 ;;; expression. The output of the transformer function will then be passed
1244 ;;; to Guile's internal memoizer. This means that the output must be valid
1245 ;;; scheme code. The only exception is, that the output may make use of the
1246 ;;; syntax extensions provided to identify the modules that a binding
1247 ;;; belongs to.
1248 ;;;
1249 ;;; - name: the name of the module. This is used for all kinds of printing
1250 ;;; outputs. In certain places the module name also serves as a way of
1251 ;;; identification. When adding a module to the uses list of another
1252 ;;; module, it is made sure that the new uses list will not contain two
1253 ;;; modules of the same name.
1254 ;;;
1255 ;;; - kind: classification of the kind of module. The value is (currently?)
1256 ;;; only used for printing. It has no influence on how a module is treated.
1257 ;;; Currently the following values are used when setting the module kind:
1258 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1259 ;;; is set, it defaults to 'module.
1260 ;;;
1261 ;;; - duplicates-handlers: a list of procedures that get called to make a
1262 ;;; choice between two duplicate bindings when name clashes occur. See the
1263 ;;; `duplicate-handlers' global variable below.
1264 ;;;
1265 ;;; - observers: a list of procedures that get called when the module is
1266 ;;; modified.
1267 ;;;
1268 ;;; - weak-observers: a weak-key hash table of procedures that get called
1269 ;;; when the module is modified. See `module-observe-weak' for details.
1270 ;;;
1271 ;;; In addition, the module may (must?) contain a binding for
1272 ;;; `%module-public-interface'. This variable should be bound to a module
1273 ;;; representing the exported interface of a module. See the
1274 ;;; `module-public-interface' and `module-export!' procedures.
1275 ;;;
1276 ;;; !!! warning: The interface to lazy binder procedures is going
1277 ;;; to be changed in an incompatible way to permit all the basic
1278 ;;; module ops to be virtualized.
1279 ;;;
1280 ;;; (make-module size use-list lazy-binding-proc) => module
1281 ;;; module-{obarray,uses,binder}[|-set!]
1282 ;;; (module? obj) => [#t|#f]
1283 ;;; (module-locally-bound? module symbol) => [#t|#f]
1284 ;;; (module-bound? module symbol) => [#t|#f]
1285 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1286 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1287 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1288 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1289 ;;; (module-symbol-binding module symbol opt-value)
1290 ;;; => [ <obj> | opt-value | an error occurs ]
1291 ;;; (module-make-local-var! module symbol) => #<variable...>
1292 ;;; (module-add! module symbol var) => unspecified
1293 ;;; (module-remove! module symbol) => unspecified
1294 ;;; (module-for-each proc module) => unspecified
1295 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1296 ;;; (set-current-module module) => unspecified
1297 ;;; (current-module) => #<module...>
1298 ;;;
1299 ;;;
1300
1301 \f
1302
1303 ;;; {Printing Modules}
1304 ;;;
1305
1306 ;; This is how modules are printed. You can re-define it.
1307 ;; (Redefining is actually more complicated than simply redefining
1308 ;; %print-module because that would only change the binding and not
1309 ;; the value stored in the vtable that determines how record are
1310 ;; printed. Sigh.)
1311
1312 (define (%print-module mod port) ; unused args: depth length style table)
1313 (display "#<" port)
1314 (display (or (module-kind mod) "module") port)
1315 (display " " port)
1316 (display (module-name mod) port)
1317 (display " " port)
1318 (display (number->string (object-address mod) 16) port)
1319 (display ">" port))
1320
1321 ;; module-type
1322 ;;
1323 ;; A module is characterized by an obarray in which local symbols
1324 ;; are interned, a list of modules, "uses", from which non-local
1325 ;; bindings can be inherited, and an optional lazy-binder which
1326 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1327 ;; bindings that would otherwise not be found locally in the module.
1328 ;;
1329 ;; NOTE: If you change anything here, you also need to change
1330 ;; libguile/modules.h.
1331 ;;
1332 (define module-type
1333 (make-record-type 'module
1334 '(obarray uses binder eval-closure transformer name kind
1335 duplicates-handlers import-obarray
1336 observers weak-observers)
1337 %print-module))
1338
1339 ;; make-module &opt size uses binder
1340 ;;
1341 ;; Create a new module, perhaps with a particular size of obarray,
1342 ;; initial uses list, or binding procedure.
1343 ;;
1344 (define make-module
1345 (lambda args
1346
1347 (define (parse-arg index default)
1348 (if (> (length args) index)
1349 (list-ref args index)
1350 default))
1351
1352 (define %default-import-size
1353 ;; Typical number of imported bindings actually used by a module.
1354 600)
1355
1356 (if (> (length args) 3)
1357 (error "Too many args to make-module." args))
1358
1359 (let ((size (parse-arg 0 31))
1360 (uses (parse-arg 1 '()))
1361 (binder (parse-arg 2 #f)))
1362
1363 (if (not (integer? size))
1364 (error "Illegal size to make-module." size))
1365 (if (not (and (list? uses)
1366 (and-map module? uses)))
1367 (error "Incorrect use list." uses))
1368 (if (and binder (not (procedure? binder)))
1369 (error
1370 "Lazy-binder expected to be a procedure or #f." binder))
1371
1372 (let ((module (module-constructor (make-hash-table size)
1373 uses binder #f %pre-modules-transformer
1374 #f #f #f
1375 (make-hash-table %default-import-size)
1376 '()
1377 (make-weak-key-hash-table 31))))
1378
1379 ;; We can't pass this as an argument to module-constructor,
1380 ;; because we need it to close over a pointer to the module
1381 ;; itself.
1382 (set-module-eval-closure! module (standard-eval-closure module))
1383
1384 module))))
1385
1386 (define module-constructor (record-constructor module-type))
1387 (define module-obarray (record-accessor module-type 'obarray))
1388 (define set-module-obarray! (record-modifier module-type 'obarray))
1389 (define module-uses (record-accessor module-type 'uses))
1390 (define set-module-uses! (record-modifier module-type 'uses))
1391 (define module-binder (record-accessor module-type 'binder))
1392 (define set-module-binder! (record-modifier module-type 'binder))
1393
1394 ;; NOTE: This binding is used in libguile/modules.c.
1395 (define module-eval-closure (record-accessor module-type 'eval-closure))
1396
1397 (define module-transformer (record-accessor module-type 'transformer))
1398 (define set-module-transformer! (record-modifier module-type 'transformer))
1399 ;; (define module-name (record-accessor module-type 'name)) wait until mods are booted
1400 (define set-module-name! (record-modifier module-type 'name))
1401 (define module-kind (record-accessor module-type 'kind))
1402 (define set-module-kind! (record-modifier module-type 'kind))
1403 (define module-duplicates-handlers
1404 (record-accessor module-type 'duplicates-handlers))
1405 (define set-module-duplicates-handlers!
1406 (record-modifier module-type 'duplicates-handlers))
1407 (define module-observers (record-accessor module-type 'observers))
1408 (define set-module-observers! (record-modifier module-type 'observers))
1409 (define module-weak-observers (record-accessor module-type 'weak-observers))
1410 (define module? (record-predicate module-type))
1411
1412 (define module-import-obarray (record-accessor module-type 'import-obarray))
1413
1414 (define set-module-eval-closure!
1415 (let ((setter (record-modifier module-type 'eval-closure)))
1416 (lambda (module closure)
1417 (setter module closure)
1418 ;; Make it possible to lookup the module from the environment.
1419 ;; This implementation is correct since an eval closure can belong
1420 ;; to maximally one module.
1421 (set-procedure-property! closure 'module module))))
1422
1423 \f
1424
1425 ;;; {Observer protocol}
1426 ;;;
1427
1428 (define (module-observe module proc)
1429 (set-module-observers! module (cons proc (module-observers module)))
1430 (cons module proc))
1431
1432 (define (module-observe-weak module observer-id . proc)
1433 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1434 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1435 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1436 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1437 ;; for instance).
1438
1439 ;; The two-argument version is kept for backward compatibility: when called
1440 ;; with two arguments, the observer gets unregistered when closure PROC
1441 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1442
1443 (let ((proc (if (null? proc) observer-id (car proc))))
1444 (hashq-set! (module-weak-observers module) observer-id proc)))
1445
1446 (define (module-unobserve token)
1447 (let ((module (car token))
1448 (id (cdr token)))
1449 (if (integer? id)
1450 (hash-remove! (module-weak-observers module) id)
1451 (set-module-observers! module (delq1! id (module-observers module)))))
1452 *unspecified*)
1453
1454 (define module-defer-observers #f)
1455 (define module-defer-observers-mutex (make-mutex 'recursive))
1456 (define module-defer-observers-table (make-hash-table))
1457
1458 (define (module-modified m)
1459 (if module-defer-observers
1460 (hash-set! module-defer-observers-table m #t)
1461 (module-call-observers m)))
1462
1463 ;;; This function can be used to delay calls to observers so that they
1464 ;;; can be called once only in the face of massive updating of modules.
1465 ;;;
1466 (define (call-with-deferred-observers thunk)
1467 (dynamic-wind
1468 (lambda ()
1469 (lock-mutex module-defer-observers-mutex)
1470 (set! module-defer-observers #t))
1471 thunk
1472 (lambda ()
1473 (set! module-defer-observers #f)
1474 (hash-for-each (lambda (m dummy)
1475 (module-call-observers m))
1476 module-defer-observers-table)
1477 (hash-clear! module-defer-observers-table)
1478 (unlock-mutex module-defer-observers-mutex))))
1479
1480 (define (module-call-observers m)
1481 (for-each (lambda (proc) (proc m)) (module-observers m))
1482
1483 ;; We assume that weak observers don't (un)register themselves as they are
1484 ;; called since this would preclude proper iteration over the hash table
1485 ;; elements.
1486 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1487
1488 \f
1489
1490 ;;; {Module Searching in General}
1491 ;;;
1492 ;;; We sometimes want to look for properties of a symbol
1493 ;;; just within the obarray of one module. If the property
1494 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1495 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1496 ;;;
1497 ;;;
1498 ;;; Other times, we want to test for a symbol property in the obarray
1499 ;;; of M and, if it is not found there, try each of the modules in the
1500 ;;; uses list of M. This is the normal way of testing for some
1501 ;;; property, so we state these properties without qualification as
1502 ;;; in: ``The symbol 'fnord is interned in module M because it is
1503 ;;; interned locally in module M2 which is a member of the uses list
1504 ;;; of M.''
1505 ;;;
1506
1507 ;; module-search fn m
1508 ;;
1509 ;; return the first non-#f result of FN applied to M and then to
1510 ;; the modules in the uses of m, and so on recursively. If all applications
1511 ;; return #f, then so does this function.
1512 ;;
1513 (define (module-search fn m v)
1514 (define (loop pos)
1515 (and (pair? pos)
1516 (or (module-search fn (car pos) v)
1517 (loop (cdr pos)))))
1518 (or (fn m v)
1519 (loop (module-uses m))))
1520
1521
1522 ;;; {Is a symbol bound in a module?}
1523 ;;;
1524 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1525 ;;; of S in M has been set to some well-defined value.
1526 ;;;
1527
1528 ;; module-locally-bound? module symbol
1529 ;;
1530 ;; Is a symbol bound (interned and defined) locally in a given module?
1531 ;;
1532 (define (module-locally-bound? m v)
1533 (let ((var (module-local-variable m v)))
1534 (and var
1535 (variable-bound? var))))
1536
1537 ;; module-bound? module symbol
1538 ;;
1539 ;; Is a symbol bound (interned and defined) anywhere in a given module
1540 ;; or its uses?
1541 ;;
1542 (define (module-bound? m v)
1543 (let ((var (module-variable m v)))
1544 (and var
1545 (variable-bound? var))))
1546
1547 ;;; {Is a symbol interned in a module?}
1548 ;;;
1549 ;;; Symbol S in Module M is interned if S occurs in
1550 ;;; of S in M has been set to some well-defined value.
1551 ;;;
1552 ;;; It is possible to intern a symbol in a module without providing
1553 ;;; an initial binding for the corresponding variable. This is done
1554 ;;; with:
1555 ;;; (module-add! module symbol (make-undefined-variable))
1556 ;;;
1557 ;;; In that case, the symbol is interned in the module, but not
1558 ;;; bound there. The unbound symbol shadows any binding for that
1559 ;;; symbol that might otherwise be inherited from a member of the uses list.
1560 ;;;
1561
1562 (define (module-obarray-get-handle ob key)
1563 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1564
1565 (define (module-obarray-ref ob key)
1566 ((if (symbol? key) hashq-ref hash-ref) ob key))
1567
1568 (define (module-obarray-set! ob key val)
1569 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1570
1571 (define (module-obarray-remove! ob key)
1572 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1573
1574 ;; module-symbol-locally-interned? module symbol
1575 ;;
1576 ;; is a symbol interned (not neccessarily defined) locally in a given module
1577 ;; or its uses? Interned symbols shadow inherited bindings even if
1578 ;; they are not themselves bound to a defined value.
1579 ;;
1580 (define (module-symbol-locally-interned? m v)
1581 (not (not (module-obarray-get-handle (module-obarray m) v))))
1582
1583 ;; module-symbol-interned? module symbol
1584 ;;
1585 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1586 ;; or its uses? Interned symbols shadow inherited bindings even if
1587 ;; they are not themselves bound to a defined value.
1588 ;;
1589 (define (module-symbol-interned? m v)
1590 (module-search module-symbol-locally-interned? m v))
1591
1592
1593 ;;; {Mapping modules x symbols --> variables}
1594 ;;;
1595
1596 ;; module-local-variable module symbol
1597 ;; return the local variable associated with a MODULE and SYMBOL.
1598 ;;
1599 ;;; This function is very important. It is the only function that can
1600 ;;; return a variable from a module other than the mutators that store
1601 ;;; new variables in modules. Therefore, this function is the location
1602 ;;; of the "lazy binder" hack.
1603 ;;;
1604 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1605 ;;; to a variable, return that variable object.
1606 ;;;
1607 ;;; If the symbols is not found at first, but the module has a lazy binder,
1608 ;;; then try the binder.
1609 ;;;
1610 ;;; If the symbol is not found at all, return #f.
1611 ;;;
1612 ;;; (This is now written in C, see `modules.c'.)
1613 ;;;
1614
1615 ;;; {Mapping modules x symbols --> bindings}
1616 ;;;
1617 ;;; These are similar to the mapping to variables, except that the
1618 ;;; variable is dereferenced.
1619 ;;;
1620
1621 ;; module-symbol-binding module symbol opt-value
1622 ;;
1623 ;; return the binding of a variable specified by name within
1624 ;; a given module, signalling an error if the variable is unbound.
1625 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1626 ;; return OPT-VALUE.
1627 ;;
1628 (define (module-symbol-local-binding m v . opt-val)
1629 (let ((var (module-local-variable m v)))
1630 (if (and var (variable-bound? var))
1631 (variable-ref var)
1632 (if (not (null? opt-val))
1633 (car opt-val)
1634 (error "Locally unbound variable." v)))))
1635
1636 ;; module-symbol-binding module symbol opt-value
1637 ;;
1638 ;; return the binding of a variable specified by name within
1639 ;; a given module, signalling an error if the variable is unbound.
1640 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1641 ;; return OPT-VALUE.
1642 ;;
1643 (define (module-symbol-binding m v . opt-val)
1644 (let ((var (module-variable m v)))
1645 (if (and var (variable-bound? var))
1646 (variable-ref var)
1647 (if (not (null? opt-val))
1648 (car opt-val)
1649 (error "Unbound variable." v)))))
1650
1651
1652 \f
1653
1654 ;;; {Adding Variables to Modules}
1655 ;;;
1656
1657 ;; module-make-local-var! module symbol
1658 ;;
1659 ;; ensure a variable for V in the local namespace of M.
1660 ;; If no variable was already there, then create a new and uninitialzied
1661 ;; variable.
1662 ;;
1663 ;; This function is used in modules.c.
1664 ;;
1665 (define (module-make-local-var! m v)
1666 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1667 (and (variable? b)
1668 (begin
1669 ;; Mark as modified since this function is called when
1670 ;; the standard eval closure defines a binding
1671 (module-modified m)
1672 b)))
1673
1674 ;; Create a new local variable.
1675 (let ((local-var (make-undefined-variable)))
1676 (module-add! m v local-var)
1677 local-var)))
1678
1679 ;; module-ensure-local-variable! module symbol
1680 ;;
1681 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1682 ;; there is no binding for SYMBOL, create a new uninitialized
1683 ;; variable. Return the local variable.
1684 ;;
1685 (define (module-ensure-local-variable! module symbol)
1686 (or (module-local-variable module symbol)
1687 (let ((var (make-undefined-variable)))
1688 (module-add! module symbol var)
1689 var)))
1690
1691 ;; module-add! module symbol var
1692 ;;
1693 ;; ensure a particular variable for V in the local namespace of M.
1694 ;;
1695 (define (module-add! m v var)
1696 (if (not (variable? var))
1697 (error "Bad variable to module-add!" var))
1698 (module-obarray-set! (module-obarray m) v var)
1699 (module-modified m))
1700
1701 ;; module-remove!
1702 ;;
1703 ;; make sure that a symbol is undefined in the local namespace of M.
1704 ;;
1705 (define (module-remove! m v)
1706 (module-obarray-remove! (module-obarray m) v)
1707 (module-modified m))
1708
1709 (define (module-clear! m)
1710 (hash-clear! (module-obarray m))
1711 (module-modified m))
1712
1713 ;; MODULE-FOR-EACH -- exported
1714 ;;
1715 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1716 ;;
1717 (define (module-for-each proc module)
1718 (hash-for-each proc (module-obarray module)))
1719
1720 (define (module-map proc module)
1721 (hash-map->list proc (module-obarray module)))
1722
1723 \f
1724
1725 ;;; {Low Level Bootstrapping}
1726 ;;;
1727
1728 ;; make-root-module
1729
1730 ;; A root module uses the pre-modules-obarray as its obarray. This
1731 ;; special obarray accumulates all bindings that have been established
1732 ;; before the module system is fully booted.
1733 ;;
1734 ;; (The obarray continues to be used by code that has been closed over
1735 ;; before the module system has been booted.)
1736
1737 (define (make-root-module)
1738 (let ((m (make-module 0)))
1739 (set-module-obarray! m (%get-pre-modules-obarray))
1740 m))
1741
1742 ;; make-scm-module
1743
1744 ;; The root interface is a module that uses the same obarray as the
1745 ;; root module. It does not allow new definitions, tho.
1746
1747 (define (make-scm-module)
1748 (let ((m (make-module 0)))
1749 (set-module-obarray! m (%get-pre-modules-obarray))
1750 (set-module-eval-closure! m (standard-interface-eval-closure m))
1751 m))
1752
1753
1754 \f
1755
1756 ;;; {Module-based Loading}
1757 ;;;
1758
1759 (define (save-module-excursion thunk)
1760 (let ((inner-module (current-module))
1761 (outer-module #f))
1762 (dynamic-wind (lambda ()
1763 (set! outer-module (current-module))
1764 (set-current-module inner-module)
1765 (set! inner-module #f))
1766 thunk
1767 (lambda ()
1768 (set! inner-module (current-module))
1769 (set-current-module outer-module)
1770 (set! outer-module #f)))))
1771
1772 (define basic-load load)
1773
1774 (define (load-module filename . reader)
1775 (save-module-excursion
1776 (lambda ()
1777 (let ((oldname (and (current-load-port)
1778 (port-filename (current-load-port)))))
1779 (apply basic-load
1780 (if (and oldname
1781 (> (string-length filename) 0)
1782 (not (char=? (string-ref filename 0) #\/))
1783 (not (string=? (dirname oldname) ".")))
1784 (string-append (dirname oldname) "/" filename)
1785 filename)
1786 reader)))))
1787
1788
1789 \f
1790
1791 ;;; {MODULE-REF -- exported}
1792 ;;;
1793
1794 ;; Returns the value of a variable called NAME in MODULE or any of its
1795 ;; used modules. If there is no such variable, then if the optional third
1796 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1797 ;;
1798 (define (module-ref module name . rest)
1799 (let ((variable (module-variable module name)))
1800 (if (and variable (variable-bound? variable))
1801 (variable-ref variable)
1802 (if (null? rest)
1803 (error "No variable named" name 'in module)
1804 (car rest) ; default value
1805 ))))
1806
1807 ;; MODULE-SET! -- exported
1808 ;;
1809 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1810 ;; to VALUE; if there is no such variable, an error is signaled.
1811 ;;
1812 (define (module-set! module name value)
1813 (let ((variable (module-variable module name)))
1814 (if variable
1815 (variable-set! variable value)
1816 (error "No variable named" name 'in module))))
1817
1818 ;; MODULE-DEFINE! -- exported
1819 ;;
1820 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1821 ;; variable, it is added first.
1822 ;;
1823 (define (module-define! module name value)
1824 (let ((variable (module-local-variable module name)))
1825 (if variable
1826 (begin
1827 (variable-set! variable value)
1828 (module-modified module))
1829 (let ((variable (make-variable value)))
1830 (module-add! module name variable)))))
1831
1832 ;; MODULE-DEFINED? -- exported
1833 ;;
1834 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1835 ;; uses)
1836 ;;
1837 (define (module-defined? module name)
1838 (let ((variable (module-variable module name)))
1839 (and variable (variable-bound? variable))))
1840
1841 ;; MODULE-USE! module interface
1842 ;;
1843 ;; Add INTERFACE to the list of interfaces used by MODULE.
1844 ;;
1845 (define (module-use! module interface)
1846 (if (not (or (eq? module interface)
1847 (memq interface (module-uses module))))
1848 (begin
1849 ;; Newly used modules must be appended rather than consed, so that
1850 ;; `module-variable' traverses the use list starting from the first
1851 ;; used module.
1852 (set-module-uses! module
1853 (append (filter (lambda (m)
1854 (not
1855 (equal? (module-name m)
1856 (module-name interface))))
1857 (module-uses module))
1858 (list interface)))
1859
1860 (module-modified module))))
1861
1862 ;; MODULE-USE-INTERFACES! module interfaces
1863 ;;
1864 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1865 ;;
1866 (define (module-use-interfaces! module interfaces)
1867 (set-module-uses! module
1868 (append (module-uses module) interfaces))
1869 (module-modified module))
1870
1871 \f
1872
1873 ;;; {Recursive Namespaces}
1874 ;;;
1875 ;;; A hierarchical namespace emerges if we consider some module to be
1876 ;;; root, and variables bound to modules as nested namespaces.
1877 ;;;
1878 ;;; The routines in this file manage variable names in hierarchical namespace.
1879 ;;; Each variable name is a list of elements, looked up in successively nested
1880 ;;; modules.
1881 ;;;
1882 ;;; (nested-ref some-root-module '(foo bar baz))
1883 ;;; => <value of a variable named baz in the module bound to bar in
1884 ;;; the module bound to foo in some-root-module>
1885 ;;;
1886 ;;;
1887 ;;; There are:
1888 ;;;
1889 ;;; ;; a-root is a module
1890 ;;; ;; name is a list of symbols
1891 ;;;
1892 ;;; nested-ref a-root name
1893 ;;; nested-set! a-root name val
1894 ;;; nested-define! a-root name val
1895 ;;; nested-remove! a-root name
1896 ;;;
1897 ;;;
1898 ;;; (current-module) is a natural choice for a-root so for convenience there are
1899 ;;; also:
1900 ;;;
1901 ;;; local-ref name == nested-ref (current-module) name
1902 ;;; local-set! name val == nested-set! (current-module) name val
1903 ;;; local-define! name val == nested-define! (current-module) name val
1904 ;;; local-remove! name == nested-remove! (current-module) name
1905 ;;;
1906
1907
1908 (define (nested-ref root names)
1909 (let loop ((cur root)
1910 (elts names))
1911 (cond
1912 ((null? elts) cur)
1913 ((not (module? cur)) #f)
1914 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1915
1916 (define (nested-set! root names val)
1917 (let loop ((cur root)
1918 (elts names))
1919 (if (null? (cdr elts))
1920 (module-set! cur (car elts) val)
1921 (loop (module-ref cur (car elts)) (cdr elts)))))
1922
1923 (define (nested-define! root names val)
1924 (let loop ((cur root)
1925 (elts names))
1926 (if (null? (cdr elts))
1927 (module-define! cur (car elts) val)
1928 (loop (module-ref cur (car elts)) (cdr elts)))))
1929
1930 (define (nested-remove! root names)
1931 (let loop ((cur root)
1932 (elts names))
1933 (if (null? (cdr elts))
1934 (module-remove! cur (car elts))
1935 (loop (module-ref cur (car elts)) (cdr elts)))))
1936
1937 (define (local-ref names) (nested-ref (current-module) names))
1938 (define (local-set! names val) (nested-set! (current-module) names val))
1939 (define (local-define names val) (nested-define! (current-module) names val))
1940 (define (local-remove names) (nested-remove! (current-module) names))
1941
1942
1943 \f
1944
1945 ;;; {The (%app) module}
1946 ;;;
1947 ;;; The root of conventionally named objects not directly in the top level.
1948 ;;;
1949 ;;; (%app modules)
1950 ;;; (%app modules guile)
1951 ;;;
1952 ;;; The directory of all modules and the standard root module.
1953 ;;;
1954
1955 ;; module-public-interface is defined in C.
1956 (define (set-module-public-interface! m i)
1957 (module-define! m '%module-public-interface i))
1958 (define (set-system-module! m s)
1959 (set-procedure-property! (module-eval-closure m) 'system-module s))
1960 (define the-root-module (make-root-module))
1961 (define the-scm-module (make-scm-module))
1962 (set-module-public-interface! the-root-module the-scm-module)
1963 (set-module-name! the-root-module '(guile))
1964 (set-module-name! the-scm-module '(guile))
1965 (set-module-kind! the-scm-module 'interface)
1966 (set-system-module! the-root-module #t)
1967 (set-system-module! the-scm-module #t)
1968
1969 ;; NOTE: This binding is used in libguile/modules.c.
1970 ;;
1971 (define (make-modules-in module name)
1972 (if (null? name)
1973 module
1974 (make-modules-in
1975 (let* ((var (module-local-variable module (car name)))
1976 (val (and var (variable-bound? var) (variable-ref var))))
1977 (if (module? val)
1978 val
1979 (let ((m (make-module 31)))
1980 (set-module-kind! m 'directory)
1981 (set-module-name! m (append (module-name module)
1982 (list (car name))))
1983 (module-define! module (car name) m)
1984 m)))
1985 (cdr name))))
1986
1987 (define (beautify-user-module! module)
1988 (let ((interface (module-public-interface module)))
1989 (if (or (not interface)
1990 (eq? interface module))
1991 (let ((interface (make-module 31)))
1992 (set-module-name! interface (module-name module))
1993 (set-module-kind! interface 'interface)
1994 (set-module-public-interface! module interface))))
1995 (if (and (not (memq the-scm-module (module-uses module)))
1996 (not (eq? module the-root-module)))
1997 ;; Import the default set of bindings (from the SCM module) in MODULE.
1998 (module-use! module the-scm-module)))
1999
2000 ;; NOTE: This binding is used in libguile/modules.c.
2001 ;;
2002 (define resolve-module
2003 (let ((the-root-module the-root-module))
2004 (lambda (name . maybe-autoload)
2005 (if (equal? name '(guile))
2006 the-root-module
2007 (let ((full-name (append '(%app modules) name)))
2008 (let ((already (nested-ref the-root-module full-name))
2009 (autoload (or (null? maybe-autoload) (car maybe-autoload))))
2010 (cond
2011 ((and already (module? already)
2012 (or (not autoload) (module-public-interface already)))
2013 ;; A hit, a palpable hit.
2014 already)
2015 (autoload
2016 ;; Try to autoload the module, and recurse.
2017 (try-load-module name)
2018 (resolve-module name #f))
2019 (else
2020 ;; A module is not bound (but maybe something else is),
2021 ;; we're not autoloading -- here's the weird semantics,
2022 ;; we create an empty module.
2023 (make-modules-in the-root-module full-name)))))))))
2024
2025 ;; Cheat. These bindings are needed by modules.c, but we don't want
2026 ;; to move their real definition here because that would be unnatural.
2027 ;;
2028 (define try-module-autoload #f)
2029 (define process-define-module #f)
2030 (define process-use-modules #f)
2031 (define module-export! #f)
2032 (define default-duplicate-binding-procedures #f)
2033
2034 (define %app (make-module 31))
2035 (set-module-name! %app '(%app))
2036 (define app %app) ;; for backwards compatability
2037
2038 (let ((m (make-module 31)))
2039 (set-module-name! m '())
2040 (local-define '(%app modules) m))
2041 (local-define '(%app modules guile) the-root-module)
2042
2043 ;; This boots the module system. All bindings needed by modules.c
2044 ;; must have been defined by now.
2045 ;;
2046 (set-current-module the-root-module)
2047 ;; definition deferred for syncase's benefit.
2048 (define module-name
2049 (let ((accessor (record-accessor module-type 'name)))
2050 (lambda (mod)
2051 (or (accessor mod)
2052 (let ((name (list (gensym))))
2053 ;; Name MOD and bind it in THE-ROOT-MODULE so that it's visible
2054 ;; to `resolve-module'. This is important as `psyntax' stores
2055 ;; module names and relies on being able to `resolve-module'
2056 ;; them.
2057 (set-module-name! mod name)
2058 (nested-define! the-root-module `(%app modules ,@name) mod)
2059 (accessor mod))))))
2060
2061 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
2062
2063 (define (try-load-module name)
2064 (try-module-autoload name))
2065
2066 (define (purify-module! module)
2067 "Removes bindings in MODULE which are inherited from the (guile) module."
2068 (let ((use-list (module-uses module)))
2069 (if (and (pair? use-list)
2070 (eq? (car (last-pair use-list)) the-scm-module))
2071 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2072
2073 ;; Return a module that is an interface to the module designated by
2074 ;; NAME.
2075 ;;
2076 ;; `resolve-interface' takes four keyword arguments:
2077 ;;
2078 ;; #:select SELECTION
2079 ;;
2080 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2081 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2082 ;; is the name in the used module and SEEN is the name in the using
2083 ;; module. Note that SEEN is also passed through RENAMER, below. The
2084 ;; default is to select all bindings. If you specify no selection but
2085 ;; a renamer, only the bindings that already exist in the used module
2086 ;; are made available in the interface. Bindings that are added later
2087 ;; are not picked up.
2088 ;;
2089 ;; #:hide BINDINGS
2090 ;;
2091 ;; BINDINGS is a list of bindings which should not be imported.
2092 ;;
2093 ;; #:prefix PREFIX
2094 ;;
2095 ;; PREFIX is a symbol that will be appended to each exported name.
2096 ;; The default is to not perform any renaming.
2097 ;;
2098 ;; #:renamer RENAMER
2099 ;;
2100 ;; RENAMER is a procedure that takes a symbol and returns its new
2101 ;; name. The default is not perform any renaming.
2102 ;;
2103 ;; Signal "no code for module" error if module name is not resolvable
2104 ;; or its public interface is not available. Signal "no binding"
2105 ;; error if selected binding does not exist in the used module.
2106 ;;
2107 (define (resolve-interface name . args)
2108
2109 (define (get-keyword-arg args kw def)
2110 (cond ((memq kw args)
2111 => (lambda (kw-arg)
2112 (if (null? (cdr kw-arg))
2113 (error "keyword without value: " kw))
2114 (cadr kw-arg)))
2115 (else
2116 def)))
2117
2118 (let* ((select (get-keyword-arg args #:select #f))
2119 (hide (get-keyword-arg args #:hide '()))
2120 (renamer (or (get-keyword-arg args #:renamer #f)
2121 (let ((prefix (get-keyword-arg args #:prefix #f)))
2122 (and prefix (symbol-prefix-proc prefix)))
2123 identity))
2124 (module (resolve-module name))
2125 (public-i (and module (module-public-interface module))))
2126 (and (or (not module) (not public-i))
2127 (error "no code for module" name))
2128 (if (and (not select) (null? hide) (eq? renamer identity))
2129 public-i
2130 (let ((selection (or select (module-map (lambda (sym var) sym)
2131 public-i)))
2132 (custom-i (make-module 31)))
2133 (set-module-kind! custom-i 'custom-interface)
2134 (set-module-name! custom-i name)
2135 ;; XXX - should use a lazy binder so that changes to the
2136 ;; used module are picked up automatically.
2137 (for-each (lambda (bspec)
2138 (let* ((direct? (symbol? bspec))
2139 (orig (if direct? bspec (car bspec)))
2140 (seen (if direct? bspec (cdr bspec)))
2141 (var (or (module-local-variable public-i orig)
2142 (module-local-variable module orig)
2143 (error
2144 ;; fixme: format manually for now
2145 (simple-format
2146 #f "no binding `~A' in module ~A"
2147 orig name)))))
2148 (if (memq orig hide)
2149 (set! hide (delq! orig hide))
2150 (module-add! custom-i
2151 (renamer seen)
2152 var))))
2153 selection)
2154 ;; Check that we are not hiding bindings which don't exist
2155 (for-each (lambda (binding)
2156 (if (not (module-local-variable public-i binding))
2157 (error
2158 (simple-format
2159 #f "no binding `~A' to hide in module ~A"
2160 binding name))))
2161 hide)
2162 custom-i))))
2163
2164 (define (symbol-prefix-proc prefix)
2165 (lambda (symbol)
2166 (symbol-append prefix symbol)))
2167
2168 ;; This function is called from "modules.c". If you change it, be
2169 ;; sure to update "modules.c" as well.
2170
2171 (define (process-define-module args)
2172 (let* ((module-id (car args))
2173 (module (resolve-module module-id #f))
2174 (kws (cdr args))
2175 (unrecognized (lambda (arg)
2176 (error "unrecognized define-module argument" arg))))
2177 (beautify-user-module! module)
2178 (let loop ((kws kws)
2179 (reversed-interfaces '())
2180 (exports '())
2181 (re-exports '())
2182 (replacements '())
2183 (autoloads '()))
2184
2185 (if (null? kws)
2186 (call-with-deferred-observers
2187 (lambda ()
2188 (module-use-interfaces! module (reverse reversed-interfaces))
2189 (module-export! module exports)
2190 (module-replace! module replacements)
2191 (module-re-export! module re-exports)
2192 (if (not (null? autoloads))
2193 (apply module-autoload! module autoloads))))
2194 (case (car kws)
2195 ((#:use-module #:use-syntax)
2196 (or (pair? (cdr kws))
2197 (unrecognized kws))
2198 (cond
2199 ((equal? (caadr kws) '(ice-9 syncase))
2200 (issue-deprecation-warning
2201 "(ice-9 syncase) is deprecated. Support for syntax-case is now in Guile core.")
2202 (loop (cddr kws)
2203 reversed-interfaces
2204 exports
2205 re-exports
2206 replacements
2207 autoloads))
2208 (else
2209 (let* ((interface-args (cadr kws))
2210 (interface (apply resolve-interface interface-args)))
2211 (and (eq? (car kws) #:use-syntax)
2212 (or (symbol? (caar interface-args))
2213 (error "invalid module name for use-syntax"
2214 (car interface-args)))
2215 (set-module-transformer!
2216 module
2217 (module-ref interface
2218 (car (last-pair (car interface-args)))
2219 #f)))
2220 (loop (cddr kws)
2221 (cons interface reversed-interfaces)
2222 exports
2223 re-exports
2224 replacements
2225 autoloads)))))
2226 ((#:autoload)
2227 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2228 (unrecognized kws))
2229 (loop (cdddr kws)
2230 reversed-interfaces
2231 exports
2232 re-exports
2233 replacements
2234 (let ((name (cadr kws))
2235 (bindings (caddr kws)))
2236 (cons* name bindings autoloads))))
2237 ((#:no-backtrace)
2238 (set-system-module! module #t)
2239 (loop (cdr kws) reversed-interfaces exports re-exports
2240 replacements autoloads))
2241 ((#:pure)
2242 (purify-module! module)
2243 (loop (cdr kws) reversed-interfaces exports re-exports
2244 replacements autoloads))
2245 ((#:duplicates)
2246 (if (not (pair? (cdr kws)))
2247 (unrecognized kws))
2248 (set-module-duplicates-handlers!
2249 module
2250 (lookup-duplicates-handlers (cadr kws)))
2251 (loop (cddr kws) reversed-interfaces exports re-exports
2252 replacements autoloads))
2253 ((#:export #:export-syntax)
2254 (or (pair? (cdr kws))
2255 (unrecognized kws))
2256 (loop (cddr kws)
2257 reversed-interfaces
2258 (append (cadr kws) exports)
2259 re-exports
2260 replacements
2261 autoloads))
2262 ((#:re-export #:re-export-syntax)
2263 (or (pair? (cdr kws))
2264 (unrecognized kws))
2265 (loop (cddr kws)
2266 reversed-interfaces
2267 exports
2268 (append (cadr kws) re-exports)
2269 replacements
2270 autoloads))
2271 ((#:replace #:replace-syntax)
2272 (or (pair? (cdr kws))
2273 (unrecognized kws))
2274 (loop (cddr kws)
2275 reversed-interfaces
2276 exports
2277 re-exports
2278 (append (cadr kws) replacements)
2279 autoloads))
2280 (else
2281 (unrecognized kws)))))
2282 (run-hook module-defined-hook module)
2283 module))
2284
2285 ;; `module-defined-hook' is a hook that is run whenever a new module
2286 ;; is defined. Its members are called with one argument, the new
2287 ;; module.
2288 (define module-defined-hook (make-hook 1))
2289
2290 \f
2291
2292 ;;; {Autoload}
2293 ;;;
2294
2295 (define (make-autoload-interface module name bindings)
2296 (let ((b (lambda (a sym definep)
2297 (and (memq sym bindings)
2298 (let ((i (module-public-interface (resolve-module name))))
2299 (if (not i)
2300 (error "missing interface for module" name))
2301 (let ((autoload (memq a (module-uses module))))
2302 ;; Replace autoload-interface with actual interface if
2303 ;; that has not happened yet.
2304 (if (pair? autoload)
2305 (set-car! autoload i)))
2306 (module-local-variable i sym))))))
2307 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2308 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2309
2310 (define (module-autoload! module . args)
2311 "Have @var{module} automatically load the module named @var{name} when one
2312 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2313 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2314 module '(ice-9 q) '(make-q q-length))}."
2315 (let loop ((args args))
2316 (cond ((null? args)
2317 #t)
2318 ((null? (cdr args))
2319 (error "invalid name+binding autoload list" args))
2320 (else
2321 (let ((name (car args))
2322 (bindings (cadr args)))
2323 (module-use! module (make-autoload-interface module
2324 name bindings))
2325 (loop (cddr args)))))))
2326
2327
2328 \f
2329
2330 ;;; {Autoloading modules}
2331 ;;;
2332
2333 (define autoloads-in-progress '())
2334
2335 ;; This function is called from "modules.c". If you change it, be
2336 ;; sure to update "modules.c" as well.
2337
2338 (define (try-module-autoload module-name)
2339 (let* ((reverse-name (reverse module-name))
2340 (name (symbol->string (car reverse-name)))
2341 (dir-hint-module-name (reverse (cdr reverse-name)))
2342 (dir-hint (apply string-append
2343 (map (lambda (elt)
2344 (string-append (symbol->string elt) "/"))
2345 dir-hint-module-name))))
2346 (resolve-module dir-hint-module-name #f)
2347 (and (not (autoload-done-or-in-progress? dir-hint name))
2348 (let ((didit #f))
2349 (dynamic-wind
2350 (lambda () (autoload-in-progress! dir-hint name))
2351 (lambda ()
2352 (with-fluid* current-reader #f
2353 (lambda ()
2354 (save-module-excursion
2355 (lambda ()
2356 (primitive-load-path (in-vicinity dir-hint name) #f)
2357 (set! didit #t))))))
2358 (lambda () (set-autoloaded! dir-hint name didit)))
2359 didit))))
2360
2361 \f
2362
2363 ;;; {Dynamic linking of modules}
2364 ;;;
2365
2366 (define autoloads-done '((guile . guile)))
2367
2368 (define (autoload-done-or-in-progress? p m)
2369 (let ((n (cons p m)))
2370 (->bool (or (member n autoloads-done)
2371 (member n autoloads-in-progress)))))
2372
2373 (define (autoload-done! p m)
2374 (let ((n (cons p m)))
2375 (set! autoloads-in-progress
2376 (delete! n autoloads-in-progress))
2377 (or (member n autoloads-done)
2378 (set! autoloads-done (cons n autoloads-done)))))
2379
2380 (define (autoload-in-progress! p m)
2381 (let ((n (cons p m)))
2382 (set! autoloads-done
2383 (delete! n autoloads-done))
2384 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2385
2386 (define (set-autoloaded! p m done?)
2387 (if done?
2388 (autoload-done! p m)
2389 (let ((n (cons p m)))
2390 (set! autoloads-done (delete! n autoloads-done))
2391 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2392
2393 \f
2394
2395 ;;; {Run-time options}
2396 ;;;
2397
2398 (defmacro define-option-interface (option-group)
2399 (let* ((option-name 'car)
2400 (option-value 'cadr)
2401 (option-documentation 'caddr)
2402
2403 ;; Below follow the macros defining the run-time option interfaces.
2404
2405 (make-options (lambda (interface)
2406 `(lambda args
2407 (cond ((null? args) (,interface))
2408 ((list? (car args))
2409 (,interface (car args)) (,interface))
2410 (else (for-each
2411 (lambda (option)
2412 (display (,option-name option))
2413 (if (< (string-length
2414 (symbol->string (,option-name option)))
2415 8)
2416 (display #\tab))
2417 (display #\tab)
2418 (display (,option-value option))
2419 (display #\tab)
2420 (display (,option-documentation option))
2421 (newline))
2422 (,interface #t)))))))
2423
2424 (make-enable (lambda (interface)
2425 `(lambda flags
2426 (,interface (append flags (,interface)))
2427 (,interface))))
2428
2429 (make-disable (lambda (interface)
2430 `(lambda flags
2431 (let ((options (,interface)))
2432 (for-each (lambda (flag)
2433 (set! options (delq! flag options)))
2434 flags)
2435 (,interface options)
2436 (,interface))))))
2437 (let* ((interface (car option-group))
2438 (options/enable/disable (cadr option-group)))
2439 `(begin
2440 (define ,(car options/enable/disable)
2441 ,(make-options interface))
2442 (define ,(cadr options/enable/disable)
2443 ,(make-enable interface))
2444 (define ,(caddr options/enable/disable)
2445 ,(make-disable interface))
2446 (defmacro ,(caaddr option-group) (opt val)
2447 `(,',(car options/enable/disable)
2448 (append (,',(car options/enable/disable))
2449 (list ',opt ,val))))))))
2450
2451 (define-option-interface
2452 (eval-options-interface
2453 (eval-options eval-enable eval-disable)
2454 (eval-set!)))
2455
2456 (define-option-interface
2457 (debug-options-interface
2458 (debug-options debug-enable debug-disable)
2459 (debug-set!)))
2460
2461 (define-option-interface
2462 (evaluator-traps-interface
2463 (traps trap-enable trap-disable)
2464 (trap-set!)))
2465
2466 (define-option-interface
2467 (read-options-interface
2468 (read-options read-enable read-disable)
2469 (read-set!)))
2470
2471 (define-option-interface
2472 (print-options-interface
2473 (print-options print-enable print-disable)
2474 (print-set!)))
2475
2476 \f
2477
2478 ;;; {Running Repls}
2479 ;;;
2480
2481 (define (repl read evaler print)
2482 (let loop ((source (read (current-input-port))))
2483 (print (evaler source))
2484 (loop (read (current-input-port)))))
2485
2486 ;; A provisional repl that acts like the SCM repl:
2487 ;;
2488 (define scm-repl-silent #f)
2489 (define (assert-repl-silence v) (set! scm-repl-silent v))
2490
2491 (define *unspecified* (if #f #f))
2492 (define (unspecified? v) (eq? v *unspecified*))
2493
2494 (define scm-repl-print-unspecified #f)
2495 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2496
2497 (define scm-repl-verbose #f)
2498 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2499
2500 (define scm-repl-prompt "guile> ")
2501
2502 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2503
2504 (define (default-pre-unwind-handler key . args)
2505 (save-stack 1)
2506 (apply throw key args))
2507
2508 (begin-deprecated
2509 (define (pre-unwind-handler-dispatch key . args)
2510 (apply default-pre-unwind-handler key args)))
2511
2512 (define abort-hook (make-hook))
2513
2514 ;; these definitions are used if running a script.
2515 ;; otherwise redefined in error-catching-loop.
2516 (define (set-batch-mode?! arg) #t)
2517 (define (batch-mode?) #t)
2518
2519 (define (error-catching-loop thunk)
2520 (let ((status #f)
2521 (interactive #t))
2522 (define (loop first)
2523 (let ((next
2524 (catch #t
2525
2526 (lambda ()
2527 (call-with-unblocked-asyncs
2528 (lambda ()
2529 (with-traps
2530 (lambda ()
2531 (first)
2532
2533 ;; This line is needed because mark
2534 ;; doesn't do closures quite right.
2535 ;; Unreferenced locals should be
2536 ;; collected.
2537 (set! first #f)
2538 (let loop ((v (thunk)))
2539 (loop (thunk)))
2540 #f)))))
2541
2542 (lambda (key . args)
2543 (case key
2544 ((quit)
2545 (set! status args)
2546 #f)
2547
2548 ((switch-repl)
2549 (apply throw 'switch-repl args))
2550
2551 ((abort)
2552 ;; This is one of the closures that require
2553 ;; (set! first #f) above
2554 ;;
2555 (lambda ()
2556 (run-hook abort-hook)
2557 (force-output (current-output-port))
2558 (display "ABORT: " (current-error-port))
2559 (write args (current-error-port))
2560 (newline (current-error-port))
2561 (if interactive
2562 (begin
2563 (if (and
2564 (not has-shown-debugger-hint?)
2565 (not (memq 'backtrace
2566 (debug-options-interface)))
2567 (stack? (fluid-ref the-last-stack)))
2568 (begin
2569 (newline (current-error-port))
2570 (display
2571 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2572 (current-error-port))
2573 (set! has-shown-debugger-hint? #t)))
2574 (force-output (current-error-port)))
2575 (begin
2576 (primitive-exit 1)))
2577 (set! stack-saved? #f)))
2578
2579 (else
2580 ;; This is the other cons-leak closure...
2581 (lambda ()
2582 (cond ((= (length args) 4)
2583 (apply handle-system-error key args))
2584 (else
2585 (apply bad-throw key args)))))))
2586
2587 default-pre-unwind-handler)))
2588
2589 (if next (loop next) status)))
2590 (set! set-batch-mode?! (lambda (arg)
2591 (cond (arg
2592 (set! interactive #f)
2593 (restore-signals))
2594 (#t
2595 (error "sorry, not implemented")))))
2596 (set! batch-mode? (lambda () (not interactive)))
2597 (call-with-blocked-asyncs
2598 (lambda () (loop (lambda () #t))))))
2599
2600 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2601 (define before-signal-stack (make-fluid))
2602 (define stack-saved? #f)
2603
2604 (define (save-stack . narrowing)
2605 (or stack-saved?
2606 (cond ((not (memq 'debug (debug-options-interface)))
2607 (fluid-set! the-last-stack #f)
2608 (set! stack-saved? #t))
2609 (else
2610 (fluid-set!
2611 the-last-stack
2612 (case (stack-id #t)
2613 ((repl-stack)
2614 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2615 ((load-stack)
2616 (apply make-stack #t save-stack 0 #t 0 narrowing))
2617 ((tk-stack)
2618 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2619 ((#t)
2620 (apply make-stack #t save-stack 0 1 narrowing))
2621 (else
2622 (let ((id (stack-id #t)))
2623 (and (procedure? id)
2624 (apply make-stack #t save-stack id #t 0 narrowing))))))
2625 (set! stack-saved? #t)))))
2626
2627 (define before-error-hook (make-hook))
2628 (define after-error-hook (make-hook))
2629 (define before-backtrace-hook (make-hook))
2630 (define after-backtrace-hook (make-hook))
2631
2632 (define has-shown-debugger-hint? #f)
2633
2634 (define (handle-system-error key . args)
2635 (let ((cep (current-error-port)))
2636 (cond ((not (stack? (fluid-ref the-last-stack))))
2637 ((memq 'backtrace (debug-options-interface))
2638 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2639 (eq? key 'out-of-range))
2640 (list-ref args 3)
2641 '())))
2642 (run-hook before-backtrace-hook)
2643 (newline cep)
2644 (display "Backtrace:\n")
2645 (display-backtrace (fluid-ref the-last-stack) cep
2646 #f #f highlights)
2647 (newline cep)
2648 (run-hook after-backtrace-hook))))
2649 (run-hook before-error-hook)
2650 (apply display-error (fluid-ref the-last-stack) cep args)
2651 (run-hook after-error-hook)
2652 (force-output cep)
2653 (throw 'abort key)))
2654
2655 (define (quit . args)
2656 (apply throw 'quit args))
2657
2658 (define exit quit)
2659
2660 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2661
2662 ;; Replaced by C code:
2663 ;;(define (backtrace)
2664 ;; (if (fluid-ref the-last-stack)
2665 ;; (begin
2666 ;; (newline)
2667 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2668 ;; (newline)
2669 ;; (if (and (not has-shown-backtrace-hint?)
2670 ;; (not (memq 'backtrace (debug-options-interface))))
2671 ;; (begin
2672 ;; (display
2673 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2674 ;;automatically if an error occurs in the future.\n")
2675 ;; (set! has-shown-backtrace-hint? #t))))
2676 ;; (display "No backtrace available.\n")))
2677
2678 (define (error-catching-repl r e p)
2679 (error-catching-loop
2680 (lambda ()
2681 (call-with-values (lambda () (e (r)))
2682 (lambda the-values (for-each p the-values))))))
2683
2684 (define (gc-run-time)
2685 (cdr (assq 'gc-time-taken (gc-stats))))
2686
2687 (define before-read-hook (make-hook))
2688 (define after-read-hook (make-hook))
2689 (define before-eval-hook (make-hook 1))
2690 (define after-eval-hook (make-hook 1))
2691 (define before-print-hook (make-hook 1))
2692 (define after-print-hook (make-hook 1))
2693
2694 ;;; The default repl-reader function. We may override this if we've
2695 ;;; the readline library.
2696 (define repl-reader
2697 (lambda (prompt)
2698 (display (if (string? prompt) prompt (prompt)))
2699 (force-output)
2700 (run-hook before-read-hook)
2701 ((or (fluid-ref current-reader) read) (current-input-port))))
2702
2703 (define (scm-style-repl)
2704
2705 (letrec (
2706 (start-gc-rt #f)
2707 (start-rt #f)
2708 (repl-report-start-timing (lambda ()
2709 (set! start-gc-rt (gc-run-time))
2710 (set! start-rt (get-internal-run-time))))
2711 (repl-report (lambda ()
2712 (display ";;; ")
2713 (display (inexact->exact
2714 (* 1000 (/ (- (get-internal-run-time) start-rt)
2715 internal-time-units-per-second))))
2716 (display " msec (")
2717 (display (inexact->exact
2718 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2719 internal-time-units-per-second))))
2720 (display " msec in gc)\n")))
2721
2722 (consume-trailing-whitespace
2723 (lambda ()
2724 (let ((ch (peek-char)))
2725 (cond
2726 ((eof-object? ch))
2727 ((or (char=? ch #\space) (char=? ch #\tab))
2728 (read-char)
2729 (consume-trailing-whitespace))
2730 ((char=? ch #\newline)
2731 (read-char))))))
2732 (-read (lambda ()
2733 (let ((val
2734 (let ((prompt (cond ((string? scm-repl-prompt)
2735 scm-repl-prompt)
2736 ((thunk? scm-repl-prompt)
2737 (scm-repl-prompt))
2738 (scm-repl-prompt "> ")
2739 (else ""))))
2740 (repl-reader prompt))))
2741
2742 ;; As described in R4RS, the READ procedure updates the
2743 ;; port to point to the first character past the end of
2744 ;; the external representation of the object. This
2745 ;; means that it doesn't consume the newline typically
2746 ;; found after an expression. This means that, when
2747 ;; debugging Guile with GDB, GDB gets the newline, which
2748 ;; it often interprets as a "continue" command, making
2749 ;; breakpoints kind of useless. So, consume any
2750 ;; trailing newline here, as well as any whitespace
2751 ;; before it.
2752 ;; But not if EOF, for control-D.
2753 (if (not (eof-object? val))
2754 (consume-trailing-whitespace))
2755 (run-hook after-read-hook)
2756 (if (eof-object? val)
2757 (begin
2758 (repl-report-start-timing)
2759 (if scm-repl-verbose
2760 (begin
2761 (newline)
2762 (display ";;; EOF -- quitting")
2763 (newline)))
2764 (quit 0)))
2765 val)))
2766
2767 (-eval (lambda (sourc)
2768 (repl-report-start-timing)
2769 (run-hook before-eval-hook sourc)
2770 (let ((val (start-stack 'repl-stack
2771 ;; If you change this procedure
2772 ;; (primitive-eval), please also
2773 ;; modify the repl-stack case in
2774 ;; save-stack so that stack cutting
2775 ;; continues to work.
2776 (primitive-eval sourc))))
2777 (run-hook after-eval-hook sourc)
2778 val)))
2779
2780
2781 (-print (let ((maybe-print (lambda (result)
2782 (if (or scm-repl-print-unspecified
2783 (not (unspecified? result)))
2784 (begin
2785 (write result)
2786 (newline))))))
2787 (lambda (result)
2788 (if (not scm-repl-silent)
2789 (begin
2790 (run-hook before-print-hook result)
2791 (maybe-print result)
2792 (run-hook after-print-hook result)
2793 (if scm-repl-verbose
2794 (repl-report))
2795 (force-output))))))
2796
2797 (-quit (lambda (args)
2798 (if scm-repl-verbose
2799 (begin
2800 (display ";;; QUIT executed, repl exitting")
2801 (newline)
2802 (repl-report)))
2803 args))
2804
2805 (-abort (lambda ()
2806 (if scm-repl-verbose
2807 (begin
2808 (display ";;; ABORT executed.")
2809 (newline)
2810 (repl-report)))
2811 (repl -read -eval -print))))
2812
2813 (let ((status (error-catching-repl -read
2814 -eval
2815 -print)))
2816 (-quit status))))
2817
2818
2819 \f
2820
2821 ;;; {IOTA functions: generating lists of numbers}
2822 ;;;
2823
2824 (define (iota n)
2825 (let loop ((count (1- n)) (result '()))
2826 (if (< count 0) result
2827 (loop (1- count) (cons count result)))))
2828
2829 \f
2830
2831 ;;; {collect}
2832 ;;;
2833 ;;; Similar to `begin' but returns a list of the results of all constituent
2834 ;;; forms instead of the result of the last form.
2835 ;;; (The definition relies on the current left-to-right
2836 ;;; order of evaluation of operands in applications.)
2837 ;;;
2838
2839 (defmacro collect forms
2840 (cons 'list forms))
2841
2842 \f
2843
2844 ;;; {with-fluids}
2845 ;;;
2846
2847 ;; with-fluids is a convenience wrapper for the builtin procedure
2848 ;; `with-fluids*'. The syntax is just like `let':
2849 ;;
2850 ;; (with-fluids ((fluid val)
2851 ;; ...)
2852 ;; body)
2853
2854 (defmacro with-fluids (bindings . body)
2855 (let ((fluids (map car bindings))
2856 (values (map cadr bindings)))
2857 (if (and (= (length fluids) 1) (= (length values) 1))
2858 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2859 `(with-fluids* (list ,@fluids) (list ,@values)
2860 (lambda () ,@body)))))
2861
2862 ;;; {While}
2863 ;;;
2864 ;;; with `continue' and `break'.
2865 ;;;
2866
2867 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2868 ;; that's only necessary if continue is actually used. A new key is
2869 ;; generated every time, so break and continue apply to their originating
2870 ;; `while' even when recursing.
2871 ;;
2872 ;; FIXME: This macro is unintentionally unhygienic with respect to let,
2873 ;; make-symbol, do, throw, catch, lambda, and not.
2874 ;;
2875 (define-macro (while cond . body)
2876 (let ((keyvar (make-symbol "while-keyvar")))
2877 `(let ((,keyvar (make-symbol "while-key")))
2878 (do ()
2879 ((catch ,keyvar
2880 (lambda ()
2881 (let ((break (lambda () (throw ,keyvar #t)))
2882 (continue (lambda () (throw ,keyvar #f))))
2883 (do ()
2884 ((not ,cond))
2885 ,@body)
2886 #t))
2887 (lambda (key arg)
2888 arg)))))))
2889
2890
2891 \f
2892
2893 ;;; {Module System Macros}
2894 ;;;
2895
2896 ;; Return a list of expressions that evaluate to the appropriate
2897 ;; arguments for resolve-interface according to SPEC.
2898
2899 (eval-when
2900 (compile)
2901 (if (memq 'prefix (read-options))
2902 (error "boot-9 must be compiled with #:kw, not :kw")))
2903
2904 (define (compile-interface-spec spec)
2905 (define (make-keyarg sym key quote?)
2906 (cond ((or (memq sym spec)
2907 (memq key spec))
2908 => (lambda (rest)
2909 (if quote?
2910 (list key (list 'quote (cadr rest)))
2911 (list key (cadr rest)))))
2912 (else
2913 '())))
2914 (define (map-apply func list)
2915 (map (lambda (args) (apply func args)) list))
2916 (define keys
2917 ;; sym key quote?
2918 '((:select #:select #t)
2919 (:hide #:hide #t)
2920 (:prefix #:prefix #t)
2921 (:renamer #:renamer #f)))
2922 (if (not (pair? (car spec)))
2923 `(',spec)
2924 `(',(car spec)
2925 ,@(apply append (map-apply make-keyarg keys)))))
2926
2927 (define (keyword-like-symbol->keyword sym)
2928 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2929
2930 (define (compile-define-module-args args)
2931 ;; Just quote everything except #:use-module and #:use-syntax. We
2932 ;; need to know about all arguments regardless since we want to turn
2933 ;; symbols that look like keywords into real keywords, and the
2934 ;; keyword args in a define-module form are not regular
2935 ;; (i.e. no-backtrace doesn't take a value).
2936 (let loop ((compiled-args `((quote ,(car args))))
2937 (args (cdr args)))
2938 (cond ((null? args)
2939 (reverse! compiled-args))
2940 ;; symbol in keyword position
2941 ((symbol? (car args))
2942 (loop compiled-args
2943 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2944 ((memq (car args) '(#:no-backtrace #:pure))
2945 (loop (cons (car args) compiled-args)
2946 (cdr args)))
2947 ((null? (cdr args))
2948 (error "keyword without value:" (car args)))
2949 ((memq (car args) '(#:use-module #:use-syntax))
2950 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2951 (car args)
2952 compiled-args)
2953 (cddr args)))
2954 ((eq? (car args) #:autoload)
2955 (loop (cons* `(quote ,(caddr args))
2956 `(quote ,(cadr args))
2957 (car args)
2958 compiled-args)
2959 (cdddr args)))
2960 (else
2961 (loop (cons* `(quote ,(cadr args))
2962 (car args)
2963 compiled-args)
2964 (cddr args))))))
2965
2966 (defmacro define-module args
2967 `(eval-when
2968 (eval load compile)
2969 (let ((m (process-define-module
2970 (list ,@(compile-define-module-args args)))))
2971 (set-current-module m)
2972 m)))
2973
2974 ;; The guts of the use-modules macro. Add the interfaces of the named
2975 ;; modules to the use-list of the current module, in order.
2976
2977 ;; This function is called by "modules.c". If you change it, be sure
2978 ;; to change scm_c_use_module as well.
2979
2980 (define (process-use-modules module-interface-args)
2981 (let ((interfaces (map (lambda (mif-args)
2982 (or (apply resolve-interface mif-args)
2983 (error "no such module" mif-args)))
2984 module-interface-args)))
2985 (call-with-deferred-observers
2986 (lambda ()
2987 (module-use-interfaces! (current-module) interfaces)))))
2988
2989 (defmacro use-modules modules
2990 `(eval-when
2991 (eval load compile)
2992 (process-use-modules
2993 (list ,@(map (lambda (m)
2994 `(list ,@(compile-interface-spec m)))
2995 modules)))
2996 *unspecified*))
2997
2998 (defmacro use-syntax (spec)
2999 `(eval-when
3000 (eval load compile)
3001 (issue-deprecation-warning
3002 "`use-syntax' is deprecated. Please contact guile-devel for more info.")
3003 (process-use-modules (list (list ,@(compile-interface-spec spec))))
3004 *unspecified*))
3005
3006 (define-syntax define-private
3007 (syntax-rules ()
3008 ((_ foo bar)
3009 (define foo bar))))
3010
3011 (define-syntax define-public
3012 (syntax-rules ()
3013 ((_ (name . args) . body)
3014 (define-public name (lambda args . body)))
3015 ((_ name val)
3016 (begin
3017 (define name val)
3018 (export name)))))
3019
3020 (define-syntax defmacro-public
3021 (syntax-rules ()
3022 ((_ name args . body)
3023 (begin
3024 (defmacro name args . body)
3025 (export-syntax name)))))
3026
3027 ;; Export a local variable
3028
3029 ;; This function is called from "modules.c". If you change it, be
3030 ;; sure to update "modules.c" as well.
3031
3032 (define (module-export! m names)
3033 (let ((public-i (module-public-interface m)))
3034 (for-each (lambda (name)
3035 (let ((var (module-ensure-local-variable! m name)))
3036 (module-add! public-i name var)))
3037 names)))
3038
3039 (define (module-replace! m names)
3040 (let ((public-i (module-public-interface m)))
3041 (for-each (lambda (name)
3042 (let ((var (module-ensure-local-variable! m name)))
3043 (set-object-property! var 'replace #t)
3044 (module-add! public-i name var)))
3045 names)))
3046
3047 ;; Re-export a imported variable
3048 ;;
3049 (define (module-re-export! m names)
3050 (let ((public-i (module-public-interface m)))
3051 (for-each (lambda (name)
3052 (let ((var (module-variable m name)))
3053 (cond ((not var)
3054 (error "Undefined variable:" name))
3055 ((eq? var (module-local-variable m name))
3056 (error "re-exporting local variable:" name))
3057 (else
3058 (module-add! public-i name var)))))
3059 names)))
3060
3061 (defmacro export names
3062 `(call-with-deferred-observers
3063 (lambda ()
3064 (module-export! (current-module) ',names))))
3065
3066 (defmacro re-export names
3067 `(call-with-deferred-observers
3068 (lambda ()
3069 (module-re-export! (current-module) ',names))))
3070
3071 (defmacro export-syntax names
3072 `(export ,@names))
3073
3074 (defmacro re-export-syntax names
3075 `(re-export ,@names))
3076
3077 (define load load-module)
3078
3079 \f
3080
3081 ;;; {Parameters}
3082 ;;;
3083
3084 (define make-mutable-parameter
3085 (let ((make (lambda (fluid converter)
3086 (lambda args
3087 (if (null? args)
3088 (fluid-ref fluid)
3089 (fluid-set! fluid (converter (car args))))))))
3090 (lambda (init . converter)
3091 (let ((fluid (make-fluid))
3092 (converter (if (null? converter)
3093 identity
3094 (car converter))))
3095 (fluid-set! fluid (converter init))
3096 (make fluid converter)))))
3097
3098 \f
3099
3100 ;;; {Handling of duplicate imported bindings}
3101 ;;;
3102
3103 ;; Duplicate handlers take the following arguments:
3104 ;;
3105 ;; module importing module
3106 ;; name conflicting name
3107 ;; int1 old interface where name occurs
3108 ;; val1 value of binding in old interface
3109 ;; int2 new interface where name occurs
3110 ;; val2 value of binding in new interface
3111 ;; var previous resolution or #f
3112 ;; val value of previous resolution
3113 ;;
3114 ;; A duplicate handler can take three alternative actions:
3115 ;;
3116 ;; 1. return #f => leave responsibility to next handler
3117 ;; 2. exit with an error
3118 ;; 3. return a variable resolving the conflict
3119 ;;
3120
3121 (define duplicate-handlers
3122 (let ((m (make-module 7)))
3123
3124 (define (check module name int1 val1 int2 val2 var val)
3125 (scm-error 'misc-error
3126 #f
3127 "~A: `~A' imported from both ~A and ~A"
3128 (list (module-name module)
3129 name
3130 (module-name int1)
3131 (module-name int2))
3132 #f))
3133
3134 (define (warn module name int1 val1 int2 val2 var val)
3135 (format (current-error-port)
3136 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3137 (module-name module)
3138 name
3139 (module-name int1)
3140 (module-name int2))
3141 #f)
3142
3143 (define (replace module name int1 val1 int2 val2 var val)
3144 (let ((old (or (and var (object-property var 'replace) var)
3145 (module-variable int1 name)))
3146 (new (module-variable int2 name)))
3147 (if (object-property old 'replace)
3148 (and (or (eq? old new)
3149 (not (object-property new 'replace)))
3150 old)
3151 (and (object-property new 'replace)
3152 new))))
3153
3154 (define (warn-override-core module name int1 val1 int2 val2 var val)
3155 (and (eq? int1 the-scm-module)
3156 (begin
3157 (format (current-error-port)
3158 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3159 (module-name module)
3160 (module-name int2)
3161 name)
3162 (module-local-variable int2 name))))
3163
3164 (define (first module name int1 val1 int2 val2 var val)
3165 (or var (module-local-variable int1 name)))
3166
3167 (define (last module name int1 val1 int2 val2 var val)
3168 (module-local-variable int2 name))
3169
3170 (define (noop module name int1 val1 int2 val2 var val)
3171 #f)
3172
3173 (set-module-name! m 'duplicate-handlers)
3174 (set-module-kind! m 'interface)
3175 (module-define! m 'check check)
3176 (module-define! m 'warn warn)
3177 (module-define! m 'replace replace)
3178 (module-define! m 'warn-override-core warn-override-core)
3179 (module-define! m 'first first)
3180 (module-define! m 'last last)
3181 (module-define! m 'merge-generics noop)
3182 (module-define! m 'merge-accessors noop)
3183 m))
3184
3185 (define (lookup-duplicates-handlers handler-names)
3186 (and handler-names
3187 (map (lambda (handler-name)
3188 (or (module-symbol-local-binding
3189 duplicate-handlers handler-name #f)
3190 (error "invalid duplicate handler name:"
3191 handler-name)))
3192 (if (list? handler-names)
3193 handler-names
3194 (list handler-names)))))
3195
3196 (define default-duplicate-binding-procedures
3197 (make-mutable-parameter #f))
3198
3199 (define default-duplicate-binding-handler
3200 (make-mutable-parameter '(replace warn-override-core warn last)
3201 (lambda (handler-names)
3202 (default-duplicate-binding-procedures
3203 (lookup-duplicates-handlers handler-names))
3204 handler-names)))
3205
3206 \f
3207
3208 ;;; {`cond-expand' for SRFI-0 support.}
3209 ;;;
3210 ;;; This syntactic form expands into different commands or
3211 ;;; definitions, depending on the features provided by the Scheme
3212 ;;; implementation.
3213 ;;;
3214 ;;; Syntax:
3215 ;;;
3216 ;;; <cond-expand>
3217 ;;; --> (cond-expand <cond-expand-clause>+)
3218 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3219 ;;; <cond-expand-clause>
3220 ;;; --> (<feature-requirement> <command-or-definition>*)
3221 ;;; <feature-requirement>
3222 ;;; --> <feature-identifier>
3223 ;;; | (and <feature-requirement>*)
3224 ;;; | (or <feature-requirement>*)
3225 ;;; | (not <feature-requirement>)
3226 ;;; <feature-identifier>
3227 ;;; --> <a symbol which is the name or alias of a SRFI>
3228 ;;;
3229 ;;; Additionally, this implementation provides the
3230 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3231 ;;; determine the implementation type and the supported standard.
3232 ;;;
3233 ;;; Currently, the following feature identifiers are supported:
3234 ;;;
3235 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3236 ;;;
3237 ;;; Remember to update the features list when adding more SRFIs.
3238 ;;;
3239
3240 (define %cond-expand-features
3241 ;; Adjust the above comment when changing this.
3242 '(guile
3243 r5rs
3244 srfi-0 ;; cond-expand itself
3245 srfi-4 ;; homogenous numeric vectors
3246 srfi-6 ;; open-input-string etc, in the guile core
3247 srfi-13 ;; string library
3248 srfi-14 ;; character sets
3249 srfi-55 ;; require-extension
3250 srfi-61 ;; general cond clause
3251 ))
3252
3253 ;; This table maps module public interfaces to the list of features.
3254 ;;
3255 (define %cond-expand-table (make-hash-table 31))
3256
3257 ;; Add one or more features to the `cond-expand' feature list of the
3258 ;; module `module'.
3259 ;;
3260 (define (cond-expand-provide module features)
3261 (let ((mod (module-public-interface module)))
3262 (and mod
3263 (hashq-set! %cond-expand-table mod
3264 (append (hashq-ref %cond-expand-table mod '())
3265 features)))))
3266
3267 (define-macro (cond-expand . clauses)
3268 (let ((syntax-error (lambda (cl)
3269 (error "invalid clause in `cond-expand'" cl))))
3270 (letrec
3271 ((test-clause
3272 (lambda (clause)
3273 (cond
3274 ((symbol? clause)
3275 (or (memq clause %cond-expand-features)
3276 (let lp ((uses (module-uses (current-module))))
3277 (if (pair? uses)
3278 (or (memq clause
3279 (hashq-ref %cond-expand-table
3280 (car uses) '()))
3281 (lp (cdr uses)))
3282 #f))))
3283 ((pair? clause)
3284 (cond
3285 ((eq? 'and (car clause))
3286 (let lp ((l (cdr clause)))
3287 (cond ((null? l)
3288 #t)
3289 ((pair? l)
3290 (and (test-clause (car l)) (lp (cdr l))))
3291 (else
3292 (syntax-error clause)))))
3293 ((eq? 'or (car clause))
3294 (let lp ((l (cdr clause)))
3295 (cond ((null? l)
3296 #f)
3297 ((pair? l)
3298 (or (test-clause (car l)) (lp (cdr l))))
3299 (else
3300 (syntax-error clause)))))
3301 ((eq? 'not (car clause))
3302 (cond ((not (pair? (cdr clause)))
3303 (syntax-error clause))
3304 ((pair? (cddr clause))
3305 ((syntax-error clause))))
3306 (not (test-clause (cadr clause))))
3307 (else
3308 (syntax-error clause))))
3309 (else
3310 (syntax-error clause))))))
3311 (let lp ((c clauses))
3312 (cond
3313 ((null? c)
3314 (error "Unfulfilled `cond-expand'"))
3315 ((not (pair? c))
3316 (syntax-error c))
3317 ((not (pair? (car c)))
3318 (syntax-error (car c)))
3319 ((test-clause (caar c))
3320 `(begin ,@(cdar c)))
3321 ((eq? (caar c) 'else)
3322 (if (pair? (cdr c))
3323 (syntax-error c))
3324 `(begin ,@(cdar c)))
3325 (else
3326 (lp (cdr c))))))))
3327
3328 ;; This procedure gets called from the startup code with a list of
3329 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3330 ;;
3331 (define (use-srfis srfis)
3332 (process-use-modules
3333 (map (lambda (num)
3334 (list (list 'srfi (string->symbol
3335 (string-append "srfi-" (number->string num))))))
3336 srfis)))
3337
3338 \f
3339
3340 ;;; srfi-55: require-extension
3341 ;;;
3342
3343 (define-macro (require-extension extension-spec)
3344 ;; This macro only handles the srfi extension, which, at present, is
3345 ;; the only one defined by the standard.
3346 (if (not (pair? extension-spec))
3347 (scm-error 'wrong-type-arg "require-extension"
3348 "Not an extension: ~S" (list extension-spec) #f))
3349 (let ((extension (car extension-spec))
3350 (extension-args (cdr extension-spec)))
3351 (case extension
3352 ((srfi)
3353 (let ((use-list '()))
3354 (for-each
3355 (lambda (i)
3356 (if (not (integer? i))
3357 (scm-error 'wrong-type-arg "require-extension"
3358 "Invalid srfi name: ~S" (list i) #f))
3359 (let ((srfi-sym (string->symbol
3360 (string-append "srfi-" (number->string i)))))
3361 (if (not (memq srfi-sym %cond-expand-features))
3362 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3363 use-list)))))
3364 extension-args)
3365 (if (pair? use-list)
3366 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3367 `(begin ,@(reverse! use-list)))))
3368 (else
3369 (scm-error
3370 'wrong-type-arg "require-extension"
3371 "Not a recognized extension type: ~S" (list extension) #f)))))
3372
3373 \f
3374
3375 ;;; {Load emacs interface support if emacs option is given.}
3376 ;;;
3377
3378 (define (named-module-use! user usee)
3379 (module-use! (resolve-module user) (resolve-interface usee)))
3380
3381 (define (load-emacs-interface)
3382 (and (provided? 'debug-extensions)
3383 (debug-enable 'backtrace))
3384 (named-module-use! '(guile-user) '(ice-9 emacs)))
3385
3386 \f
3387
3388 (define using-readline?
3389 (let ((using-readline? (make-fluid)))
3390 (make-procedure-with-setter
3391 (lambda () (fluid-ref using-readline?))
3392 (lambda (v) (fluid-set! using-readline? v)))))
3393
3394 (define (top-repl)
3395 (let ((guile-user-module (resolve-module '(guile-user))))
3396
3397 ;; Load emacs interface support if emacs option is given.
3398 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3399 (module-ref guile-user-module 'use-emacs-interface))
3400 (load-emacs-interface))
3401
3402 ;; Use some convenient modules (in reverse order)
3403
3404 (set-current-module guile-user-module)
3405 (process-use-modules
3406 (append
3407 '(((ice-9 r5rs))
3408 ((ice-9 session))
3409 ((ice-9 debug)))
3410 (if (provided? 'regex)
3411 '(((ice-9 regex)))
3412 '())
3413 (if (provided? 'threads)
3414 '(((ice-9 threads)))
3415 '())))
3416 ;; load debugger on demand
3417 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3418
3419 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3420 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3421 ;; no effect.
3422 (let ((old-handlers #f)
3423 (start-repl (module-ref (resolve-interface '(system repl repl))
3424 'start-repl))
3425 (signals (if (provided? 'posix)
3426 `((,SIGINT . "User interrupt")
3427 (,SIGFPE . "Arithmetic error")
3428 (,SIGSEGV
3429 . "Bad memory access (Segmentation violation)"))
3430 '())))
3431 ;; no SIGBUS on mingw
3432 (if (defined? 'SIGBUS)
3433 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3434 signals)))
3435
3436 (dynamic-wind
3437
3438 ;; call at entry
3439 (lambda ()
3440 (let ((make-handler (lambda (msg)
3441 (lambda (sig)
3442 ;; Make a backup copy of the stack
3443 (fluid-set! before-signal-stack
3444 (fluid-ref the-last-stack))
3445 (save-stack 2)
3446 (scm-error 'signal
3447 #f
3448 msg
3449 #f
3450 (list sig))))))
3451 (set! old-handlers
3452 (map (lambda (sig-msg)
3453 (sigaction (car sig-msg)
3454 (make-handler (cdr sig-msg))))
3455 signals))))
3456
3457 ;; the protected thunk.
3458 (lambda ()
3459 (let ((status (start-repl 'scheme)))
3460 (run-hook exit-hook)
3461 status))
3462
3463 ;; call at exit.
3464 (lambda ()
3465 (map (lambda (sig-msg old-handler)
3466 (if (not (car old-handler))
3467 ;; restore original C handler.
3468 (sigaction (car sig-msg) #f)
3469 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3470 (sigaction (car sig-msg)
3471 (car old-handler)
3472 (cdr old-handler))))
3473 signals old-handlers))))))
3474
3475 ;;; This hook is run at the very end of an interactive session.
3476 ;;;
3477 (define exit-hook (make-hook))
3478
3479 \f
3480
3481 ;;; {Deprecated stuff}
3482 ;;;
3483
3484 (begin-deprecated
3485 (define (feature? sym)
3486 (issue-deprecation-warning
3487 "`feature?' is deprecated. Use `provided?' instead.")
3488 (provided? sym)))
3489
3490 (begin-deprecated
3491 (primitive-load-path "ice-9/deprecated"))
3492
3493 \f
3494
3495 ;;; Place the user in the guile-user module.
3496 ;;;
3497
3498 ;;; FIXME: annotate ?
3499 ;; (define (syncase exp)
3500 ;; (with-fluids ((expansion-eval-closure
3501 ;; (module-eval-closure (current-module))))
3502 ;; (deannotate/source-properties (sc-expand (annotate exp)))))
3503
3504 (define-module (guile-user)
3505 #:autoload (system base compile) (compile))
3506
3507 ;;; boot-9.scm ends here