Fix infinite loop in expander
[bpt/guile.git] / module / ice-9 / psyntax.scm
1 ;;;; -*-scheme-*-
2 ;;;;
3 ;;;; Copyright (C) 2001, 2003, 2006, 2009, 2010, 2011,
4 ;;;; 2012, 2013, 2015 Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20 \f
21
22 ;;; Portable implementation of syntax-case
23 ;;; Originally extracted from Chez Scheme Version 5.9f
24 ;;; Authors: R. Kent Dybvig, Oscar Waddell, Bob Hieb, Carl Bruggeman
25
26 ;;; Copyright (c) 1992-1997 Cadence Research Systems
27 ;;; Permission to copy this software, in whole or in part, to use this
28 ;;; software for any lawful purpose, and to redistribute this software
29 ;;; is granted subject to the restriction that all copies made of this
30 ;;; software must include this copyright notice in full. This software
31 ;;; is provided AS IS, with NO WARRANTY, EITHER EXPRESS OR IMPLIED,
32 ;;; INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
33 ;;; OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE
34 ;;; AUTHORS BE LIABLE FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY
35 ;;; NATURE WHATSOEVER.
36
37 ;;; Modified by Mikael Djurfeldt <djurfeldt@nada.kth.se> according
38 ;;; to the ChangeLog distributed in the same directory as this file:
39 ;;; 1997-08-19, 1997-09-03, 1997-09-10, 2000-08-13, 2000-08-24,
40 ;;; 2000-09-12, 2001-03-08
41
42 ;;; Modified by Andy Wingo <wingo@pobox.com> according to the Git
43 ;;; revision control logs corresponding to this file: 2009, 2010.
44
45 ;;; Modified by Mark H Weaver <mhw@netris.org> according to the Git
46 ;;; revision control logs corresponding to this file: 2012, 2013.
47
48
49 ;;; This code is based on "Syntax Abstraction in Scheme"
50 ;;; by R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
51 ;;; Lisp and Symbolic Computation 5:4, 295-326, 1992.
52 ;;; <http://www.cs.indiana.edu/~dyb/pubs/LaSC-5-4-pp295-326.pdf>
53
54
55 ;;; This file defines the syntax-case expander, macroexpand, and a set
56 ;;; of associated syntactic forms and procedures. Of these, the
57 ;;; following are documented in The Scheme Programming Language,
58 ;;; Fourth Edition (R. Kent Dybvig, MIT Press, 2009), and in the
59 ;;; R6RS:
60 ;;;
61 ;;; bound-identifier=?
62 ;;; datum->syntax
63 ;;; define-syntax
64 ;;; syntax-parameterize
65 ;;; free-identifier=?
66 ;;; generate-temporaries
67 ;;; identifier?
68 ;;; identifier-syntax
69 ;;; let-syntax
70 ;;; letrec-syntax
71 ;;; syntax
72 ;;; syntax-case
73 ;;; syntax->datum
74 ;;; syntax-rules
75 ;;; with-syntax
76 ;;;
77 ;;; Additionally, the expander provides definitions for a number of core
78 ;;; Scheme syntactic bindings, such as `let', `lambda', and the like.
79
80 ;;; The remaining exports are listed below:
81 ;;;
82 ;;; (macroexpand datum)
83 ;;; if datum represents a valid expression, macroexpand returns an
84 ;;; expanded version of datum in a core language that includes no
85 ;;; syntactic abstractions. The core language includes begin,
86 ;;; define, if, lambda, letrec, quote, and set!.
87 ;;; (eval-when situations expr ...)
88 ;;; conditionally evaluates expr ... at compile-time or run-time
89 ;;; depending upon situations (see the Chez Scheme System Manual,
90 ;;; Revision 3, for a complete description)
91 ;;; (syntax-violation who message form [subform])
92 ;;; used to report errors found during expansion
93 ;;; ($sc-dispatch e p)
94 ;;; used by expanded code to handle syntax-case matching
95
96 ;;; This file is shipped along with an expanded version of itself,
97 ;;; psyntax-pp.scm, which is loaded when psyntax.scm has not yet been
98 ;;; compiled. In this way, psyntax bootstraps off of an expanded
99 ;;; version of itself.
100
101 ;;; This implementation of the expander sometimes uses syntactic
102 ;;; abstractions when procedural abstractions would suffice. For
103 ;;; example, we define top-wrap and top-marked? as
104 ;;;
105 ;;; (define-syntax top-wrap (identifier-syntax '((top))))
106 ;;; (define-syntax top-marked?
107 ;;; (syntax-rules ()
108 ;;; ((_ w) (memq 'top (wrap-marks w)))))
109 ;;;
110 ;;; rather than
111 ;;;
112 ;;; (define top-wrap '((top)))
113 ;;; (define top-marked?
114 ;;; (lambda (w) (memq 'top (wrap-marks w))))
115 ;;;
116 ;;; On the other hand, we don't do this consistently; we define
117 ;;; make-wrap, wrap-marks, and wrap-subst simply as
118 ;;;
119 ;;; (define make-wrap cons)
120 ;;; (define wrap-marks car)
121 ;;; (define wrap-subst cdr)
122 ;;;
123 ;;; In Chez Scheme, the syntactic and procedural forms of these
124 ;;; abstractions are equivalent, since the optimizer consistently
125 ;;; integrates constants and small procedures. This will be true of
126 ;;; Guile as well, once we implement a proper inliner.
127
128
129 ;;; Implementation notes:
130
131 ;;; Objects with no standard print syntax, including objects containing
132 ;;; cycles and syntax object, are allowed in quoted data as long as they
133 ;;; are contained within a syntax form or produced by datum->syntax.
134 ;;; Such objects are never copied.
135
136 ;;; All identifiers that don't have macro definitions and are not bound
137 ;;; lexically are assumed to be global variables.
138
139 ;;; Top-level definitions of macro-introduced identifiers are allowed.
140 ;;; This may not be appropriate for implementations in which the
141 ;;; model is that bindings are created by definitions, as opposed to
142 ;;; one in which initial values are assigned by definitions.
143
144 ;;; Identifiers and syntax objects are implemented as vectors for
145 ;;; portability. As a result, it is possible to "forge" syntax objects.
146
147 ;;; The implementation of generate-temporaries assumes that it is
148 ;;; possible to generate globally unique symbols (gensyms).
149
150 ;;; The source location associated with incoming expressions is tracked
151 ;;; via the source-properties mechanism, a weak map from expression to
152 ;;; source information. At times the source is separated from the
153 ;;; expression; see the note below about "efficiency and confusion".
154
155
156 ;;; Bootstrapping:
157
158 ;;; When changing syntax-object representations, it is necessary to support
159 ;;; both old and new syntax-object representations in id-var-name. It
160 ;;; should be sufficient to recognize old representations and treat
161 ;;; them as not lexically bound.
162
163
164
165 (eval-when (compile)
166 (set-current-module (resolve-module '(guile))))
167
168 (let ()
169 (define-syntax define-expansion-constructors
170 (lambda (x)
171 (syntax-case x ()
172 ((_)
173 (let lp ((n 0) (out '()))
174 (if (< n (vector-length %expanded-vtables))
175 (lp (1+ n)
176 (let* ((vtable (vector-ref %expanded-vtables n))
177 (stem (struct-ref vtable (+ vtable-offset-user 0)))
178 (fields (struct-ref vtable (+ vtable-offset-user 2)))
179 (sfields (map (lambda (f) (datum->syntax x f)) fields))
180 (ctor (datum->syntax x (symbol-append 'make- stem))))
181 (cons #`(define (#,ctor #,@sfields)
182 (make-struct (vector-ref %expanded-vtables #,n) 0
183 #,@sfields))
184 out)))
185 #`(begin #,@(reverse out))))))))
186
187 (define-syntax define-expansion-accessors
188 (lambda (x)
189 (syntax-case x ()
190 ((_ stem field ...)
191 (let lp ((n 0))
192 (let ((vtable (vector-ref %expanded-vtables n))
193 (stem (syntax->datum #'stem)))
194 (if (eq? (struct-ref vtable (+ vtable-offset-user 0)) stem)
195 #`(begin
196 (define (#,(datum->syntax x (symbol-append stem '?)) x)
197 (and (struct? x)
198 (eq? (struct-vtable x)
199 (vector-ref %expanded-vtables #,n))))
200 #,@(map
201 (lambda (f)
202 (let ((get (datum->syntax x (symbol-append stem '- f)))
203 (set (datum->syntax x (symbol-append 'set- stem '- f '!)))
204 (idx (list-index (struct-ref vtable
205 (+ vtable-offset-user 2))
206 f)))
207 #`(begin
208 (define (#,get x)
209 (struct-ref x #,idx))
210 (define (#,set x v)
211 (struct-set! x #,idx v)))))
212 (syntax->datum #'(field ...))))
213 (lp (1+ n)))))))))
214
215 (define-syntax define-structure
216 (lambda (x)
217 (define construct-name
218 (lambda (template-identifier . args)
219 (datum->syntax
220 template-identifier
221 (string->symbol
222 (apply string-append
223 (map (lambda (x)
224 (if (string? x)
225 x
226 (symbol->string (syntax->datum x))))
227 args))))))
228 (syntax-case x ()
229 ((_ (name id1 ...))
230 (and-map identifier? #'(name id1 ...))
231 (with-syntax
232 ((constructor (construct-name #'name "make-" #'name))
233 (predicate (construct-name #'name #'name "?"))
234 ((access ...)
235 (map (lambda (x) (construct-name x #'name "-" x))
236 #'(id1 ...)))
237 ((assign ...)
238 (map (lambda (x)
239 (construct-name x "set-" #'name "-" x "!"))
240 #'(id1 ...)))
241 (structure-length
242 (+ (length #'(id1 ...)) 1))
243 ((index ...)
244 (let f ((i 1) (ids #'(id1 ...)))
245 (if (null? ids)
246 '()
247 (cons i (f (+ i 1) (cdr ids)))))))
248 #'(begin
249 (define constructor
250 (lambda (id1 ...)
251 (vector 'name id1 ... )))
252 (define predicate
253 (lambda (x)
254 (and (vector? x)
255 (= (vector-length x) structure-length)
256 (eq? (vector-ref x 0) 'name))))
257 (define access
258 (lambda (x)
259 (vector-ref x index)))
260 ...
261 (define assign
262 (lambda (x update)
263 (vector-set! x index update)))
264 ...))))))
265
266 (let ()
267 (define-expansion-constructors)
268 (define-expansion-accessors lambda meta)
269
270 ;; hooks to nonportable run-time helpers
271 (begin
272 (define-syntax fx+ (identifier-syntax +))
273 (define-syntax fx- (identifier-syntax -))
274 (define-syntax fx= (identifier-syntax =))
275 (define-syntax fx< (identifier-syntax <))
276
277 (define top-level-eval-hook
278 (lambda (x mod)
279 (primitive-eval x)))
280
281 (define local-eval-hook
282 (lambda (x mod)
283 (primitive-eval x)))
284
285 ;; Capture syntax-session-id before we shove it off into a module.
286 (define session-id
287 (let ((v (module-variable (current-module) 'syntax-session-id)))
288 (lambda ()
289 ((variable-ref v)))))
290
291 (define put-global-definition-hook
292 (lambda (symbol type val)
293 (module-define! (current-module)
294 symbol
295 (make-syntax-transformer symbol type val))))
296
297 (define get-global-definition-hook
298 (lambda (symbol module)
299 (if (and (not module) (current-module))
300 (warn "module system is booted, we should have a module" symbol))
301 (and (not (equal? module '(primitive)))
302 (let ((v (module-variable (if module
303 (resolve-module (cdr module))
304 (current-module))
305 symbol)))
306 (and v (variable-bound? v)
307 (let ((val (variable-ref v)))
308 (and (macro? val) (macro-type val)
309 (cons (macro-type val)
310 (macro-binding val))))))))))
311
312
313 (define (decorate-source e s)
314 (if (and s (supports-source-properties? e))
315 (set-source-properties! e s))
316 e)
317
318 (define (maybe-name-value! name val)
319 (if (lambda? val)
320 (let ((meta (lambda-meta val)))
321 (if (not (assq 'name meta))
322 (set-lambda-meta! val (acons 'name name meta))))))
323
324 ;; output constructors
325 (define build-void
326 (lambda (source)
327 (make-void source)))
328
329 (define build-call
330 (lambda (source fun-exp arg-exps)
331 (make-call source fun-exp arg-exps)))
332
333 (define build-conditional
334 (lambda (source test-exp then-exp else-exp)
335 (make-conditional source test-exp then-exp else-exp)))
336
337 (define build-lexical-reference
338 (lambda (type source name var)
339 (make-lexical-ref source name var)))
340
341 (define build-lexical-assignment
342 (lambda (source name var exp)
343 (maybe-name-value! name exp)
344 (make-lexical-set source name var exp)))
345
346 (define (analyze-variable mod var modref-cont bare-cont)
347 (if (not mod)
348 (bare-cont var)
349 (let ((kind (car mod))
350 (mod (cdr mod)))
351 (case kind
352 ((public) (modref-cont mod var #t))
353 ((private) (if (not (equal? mod (module-name (current-module))))
354 (modref-cont mod var #f)
355 (bare-cont var)))
356 ((bare) (bare-cont var))
357 ((hygiene) (if (and (not (equal? mod (module-name (current-module))))
358 (module-variable (resolve-module mod) var))
359 (modref-cont mod var #f)
360 (bare-cont var)))
361 ((primitive)
362 (syntax-violation #f "primitive not in operator position" var))
363 (else (syntax-violation #f "bad module kind" var mod))))))
364
365 (define build-global-reference
366 (lambda (source var mod)
367 (analyze-variable
368 mod var
369 (lambda (mod var public?)
370 (make-module-ref source mod var public?))
371 (lambda (var)
372 (make-toplevel-ref source var)))))
373
374 (define build-global-assignment
375 (lambda (source var exp mod)
376 (maybe-name-value! var exp)
377 (analyze-variable
378 mod var
379 (lambda (mod var public?)
380 (make-module-set source mod var public? exp))
381 (lambda (var)
382 (make-toplevel-set source var exp)))))
383
384 (define build-global-definition
385 (lambda (source var exp)
386 (maybe-name-value! var exp)
387 (make-toplevel-define source var exp)))
388
389 (define build-simple-lambda
390 (lambda (src req rest vars meta exp)
391 (make-lambda src
392 meta
393 ;; hah, a case in which kwargs would be nice.
394 (make-lambda-case
395 ;; src req opt rest kw inits vars body else
396 src req #f rest #f '() vars exp #f))))
397
398 (define build-case-lambda
399 (lambda (src meta body)
400 (make-lambda src meta body)))
401
402 (define build-lambda-case
403 ;; req := (name ...)
404 ;; opt := (name ...) | #f
405 ;; rest := name | #f
406 ;; kw := (allow-other-keys? (keyword name var) ...) | #f
407 ;; inits: (init ...)
408 ;; vars: (sym ...)
409 ;; vars map to named arguments in the following order:
410 ;; required, optional (positional), rest, keyword.
411 ;; the body of a lambda: anything, already expanded
412 ;; else: lambda-case | #f
413 (lambda (src req opt rest kw inits vars body else-case)
414 (make-lambda-case src req opt rest kw inits vars body else-case)))
415
416 (define build-primcall
417 (lambda (src name args)
418 (make-primcall src name args)))
419
420 (define build-primref
421 (lambda (src name)
422 (make-primitive-ref src name)))
423
424 (define (build-data src exp)
425 (make-const src exp))
426
427 (define build-sequence
428 (lambda (src exps)
429 (if (null? (cdr exps))
430 (car exps)
431 (make-seq src (car exps) (build-sequence #f (cdr exps))))))
432
433 (define build-let
434 (lambda (src ids vars val-exps body-exp)
435 (for-each maybe-name-value! ids val-exps)
436 (if (null? vars)
437 body-exp
438 (make-let src ids vars val-exps body-exp))))
439
440 (define build-named-let
441 (lambda (src ids vars val-exps body-exp)
442 (let ((f (car vars))
443 (f-name (car ids))
444 (vars (cdr vars))
445 (ids (cdr ids)))
446 (let ((proc (build-simple-lambda src ids #f vars '() body-exp)))
447 (maybe-name-value! f-name proc)
448 (for-each maybe-name-value! ids val-exps)
449 (make-letrec
450 src #f
451 (list f-name) (list f) (list proc)
452 (build-call src (build-lexical-reference 'fun src f-name f)
453 val-exps))))))
454
455 (define build-letrec
456 (lambda (src in-order? ids vars val-exps body-exp)
457 (if (null? vars)
458 body-exp
459 (begin
460 (for-each maybe-name-value! ids val-exps)
461 (make-letrec src in-order? ids vars val-exps body-exp)))))
462
463
464 ;; FIXME: use a faster gensym
465 (define-syntax-rule (build-lexical-var src id)
466 (gensym (string-append (symbol->string id) "-")))
467
468 (define-structure (syntax-object expression wrap module))
469
470 (define-syntax no-source (identifier-syntax #f))
471
472 (define source-annotation
473 (lambda (x)
474 (let ((props (source-properties
475 (if (syntax-object? x)
476 (syntax-object-expression x)
477 x))))
478 (and (pair? props) props))))
479
480 (define-syntax-rule (arg-check pred? e who)
481 (let ((x e))
482 (if (not (pred? x)) (syntax-violation who "invalid argument" x))))
483
484 ;; compile-time environments
485
486 ;; wrap and environment comprise two level mapping.
487 ;; wrap : id --> label
488 ;; env : label --> <element>
489
490 ;; environments are represented in two parts: a lexical part and a global
491 ;; part. The lexical part is a simple list of associations from labels
492 ;; to bindings. The global part is implemented by
493 ;; {put,get}-global-definition-hook and associates symbols with
494 ;; bindings.
495
496 ;; global (assumed global variable) and displaced-lexical (see below)
497 ;; do not show up in any environment; instead, they are fabricated by
498 ;; resolve-identifier when it finds no other bindings.
499
500 ;; <environment> ::= ((<label> . <binding>)*)
501
502 ;; identifier bindings include a type and a value
503
504 ;; <binding> ::= (macro . <procedure>) macros
505 ;; (syntax-parameter . (<procedure>)) syntax parameters
506 ;; (core . <procedure>) core forms
507 ;; (module-ref . <procedure>) @ or @@
508 ;; (begin) begin
509 ;; (define) define
510 ;; (define-syntax) define-syntax
511 ;; (define-syntax-parameter) define-syntax-parameter
512 ;; (local-syntax . rec?) let-syntax/letrec-syntax
513 ;; (eval-when) eval-when
514 ;; (syntax . (<var> . <level>)) pattern variables
515 ;; (global) assumed global variable
516 ;; (lexical . <var>) lexical variables
517 ;; (ellipsis . <identifier>) custom ellipsis
518 ;; (displaced-lexical) displaced lexicals
519 ;; <level> ::= <nonnegative integer>
520 ;; <var> ::= variable returned by build-lexical-var
521
522 ;; a macro is a user-defined syntactic-form. a core is a
523 ;; system-defined syntactic form. begin, define, define-syntax,
524 ;; define-syntax-parameter, and eval-when are treated specially
525 ;; since they are sensitive to whether the form is at top-level and
526 ;; (except for eval-when) can denote valid internal definitions.
527
528 ;; a pattern variable is a variable introduced by syntax-case and can
529 ;; be referenced only within a syntax form.
530
531 ;; any identifier for which no top-level syntax definition or local
532 ;; binding of any kind has been seen is assumed to be a global
533 ;; variable.
534
535 ;; a lexical variable is a lambda- or letrec-bound variable.
536
537 ;; an ellipsis binding is introduced by the 'with-ellipsis' special
538 ;; form.
539
540 ;; a displaced-lexical identifier is a lexical identifier removed from
541 ;; it's scope by the return of a syntax object containing the identifier.
542 ;; a displaced lexical can also appear when a letrec-syntax-bound
543 ;; keyword is referenced on the rhs of one of the letrec-syntax clauses.
544 ;; a displaced lexical should never occur with properly written macros.
545
546 (define-syntax make-binding
547 (syntax-rules (quote)
548 ((_ type value) (cons type value))
549 ((_ 'type) '(type))
550 ((_ type) (cons type '()))))
551 (define-syntax-rule (binding-type x)
552 (car x))
553 (define-syntax-rule (binding-value x)
554 (cdr x))
555
556 (define-syntax null-env (identifier-syntax '()))
557
558 (define extend-env
559 (lambda (labels bindings r)
560 (if (null? labels)
561 r
562 (extend-env (cdr labels) (cdr bindings)
563 (cons (cons (car labels) (car bindings)) r)))))
564
565 (define extend-var-env
566 ;; variant of extend-env that forms "lexical" binding
567 (lambda (labels vars r)
568 (if (null? labels)
569 r
570 (extend-var-env (cdr labels) (cdr vars)
571 (cons (cons (car labels) (make-binding 'lexical (car vars))) r)))))
572
573 ;; we use a "macros only" environment in expansion of local macro
574 ;; definitions so that their definitions can use local macros without
575 ;; attempting to use other lexical identifiers.
576 (define macros-only-env
577 (lambda (r)
578 (if (null? r)
579 '()
580 (let ((a (car r)))
581 (if (memq (cadr a) '(macro syntax-parameter ellipsis))
582 (cons a (macros-only-env (cdr r)))
583 (macros-only-env (cdr r)))))))
584
585 (define global-extend
586 (lambda (type sym val)
587 (put-global-definition-hook sym type val)))
588
589
590 ;; Conceptually, identifiers are always syntax objects. Internally,
591 ;; however, the wrap is sometimes maintained separately (a source of
592 ;; efficiency and confusion), so that symbols are also considered
593 ;; identifiers by id?. Externally, they are always wrapped.
594
595 (define nonsymbol-id?
596 (lambda (x)
597 (and (syntax-object? x)
598 (symbol? (syntax-object-expression x)))))
599
600 (define id?
601 (lambda (x)
602 (cond
603 ((symbol? x) #t)
604 ((syntax-object? x) (symbol? (syntax-object-expression x)))
605 (else #f))))
606
607 (define-syntax-rule (id-sym-name e)
608 (let ((x e))
609 (if (syntax-object? x)
610 (syntax-object-expression x)
611 x)))
612
613 (define id-sym-name&marks
614 (lambda (x w)
615 (if (syntax-object? x)
616 (values
617 (syntax-object-expression x)
618 (join-marks (wrap-marks w) (wrap-marks (syntax-object-wrap x))))
619 (values x (wrap-marks w)))))
620
621 ;; syntax object wraps
622
623 ;; <wrap> ::= ((<mark> ...) . (<subst> ...))
624 ;; <subst> ::= shift | <subs>
625 ;; <subs> ::= #(ribcage #(<sym> ...) #(<mark> ...) #(<label> ...))
626 ;; | #(ribcage (<sym> ...) (<mark> ...) (<label> ...))
627
628 (define-syntax make-wrap (identifier-syntax cons))
629 (define-syntax wrap-marks (identifier-syntax car))
630 (define-syntax wrap-subst (identifier-syntax cdr))
631
632 ;; labels must be comparable with "eq?", have read-write invariance,
633 ;; and distinct from symbols.
634 (define (gen-label)
635 (string-append "l-" (session-id) (symbol->string (gensym "-"))))
636
637 (define gen-labels
638 (lambda (ls)
639 (if (null? ls)
640 '()
641 (cons (gen-label) (gen-labels (cdr ls))))))
642
643 (define-structure (ribcage symnames marks labels))
644
645 (define-syntax empty-wrap (identifier-syntax '(())))
646
647 (define-syntax top-wrap (identifier-syntax '((top))))
648
649 (define-syntax-rule (top-marked? w)
650 (memq 'top (wrap-marks w)))
651
652 ;; Marks must be comparable with "eq?" and distinct from pairs and
653 ;; the symbol top. We do not use integers so that marks will remain
654 ;; unique even across file compiles.
655
656 (define-syntax the-anti-mark (identifier-syntax #f))
657
658 (define anti-mark
659 (lambda (w)
660 (make-wrap (cons the-anti-mark (wrap-marks w))
661 (cons 'shift (wrap-subst w)))))
662
663 (define-syntax-rule (new-mark)
664 (gensym (string-append "m-" (session-id) "-")))
665
666 ;; make-empty-ribcage and extend-ribcage maintain list-based ribcages for
667 ;; internal definitions, in which the ribcages are built incrementally
668 (define-syntax-rule (make-empty-ribcage)
669 (make-ribcage '() '() '()))
670
671 (define extend-ribcage!
672 ;; must receive ids with complete wraps
673 (lambda (ribcage id label)
674 (set-ribcage-symnames! ribcage
675 (cons (syntax-object-expression id)
676 (ribcage-symnames ribcage)))
677 (set-ribcage-marks! ribcage
678 (cons (wrap-marks (syntax-object-wrap id))
679 (ribcage-marks ribcage)))
680 (set-ribcage-labels! ribcage
681 (cons label (ribcage-labels ribcage)))))
682
683 ;; make-binding-wrap creates vector-based ribcages
684 (define make-binding-wrap
685 (lambda (ids labels w)
686 (if (null? ids)
687 w
688 (make-wrap
689 (wrap-marks w)
690 (cons
691 (let ((labelvec (list->vector labels)))
692 (let ((n (vector-length labelvec)))
693 (let ((symnamevec (make-vector n)) (marksvec (make-vector n)))
694 (let f ((ids ids) (i 0))
695 (if (not (null? ids))
696 (call-with-values
697 (lambda () (id-sym-name&marks (car ids) w))
698 (lambda (symname marks)
699 (vector-set! symnamevec i symname)
700 (vector-set! marksvec i marks)
701 (f (cdr ids) (fx+ i 1))))))
702 (make-ribcage symnamevec marksvec labelvec))))
703 (wrap-subst w))))))
704
705 (define smart-append
706 (lambda (m1 m2)
707 (if (null? m2)
708 m1
709 (append m1 m2))))
710
711 (define join-wraps
712 (lambda (w1 w2)
713 (let ((m1 (wrap-marks w1)) (s1 (wrap-subst w1)))
714 (if (null? m1)
715 (if (null? s1)
716 w2
717 (make-wrap
718 (wrap-marks w2)
719 (smart-append s1 (wrap-subst w2))))
720 (make-wrap
721 (smart-append m1 (wrap-marks w2))
722 (smart-append s1 (wrap-subst w2)))))))
723
724 (define join-marks
725 (lambda (m1 m2)
726 (smart-append m1 m2)))
727
728 (define same-marks?
729 (lambda (x y)
730 (or (eq? x y)
731 (and (not (null? x))
732 (not (null? y))
733 (eq? (car x) (car y))
734 (same-marks? (cdr x) (cdr y))))))
735
736 (define id-var-name
737 ;; Syntax objects use wraps to associate names with marked
738 ;; identifiers. This function returns the name corresponding to
739 ;; the given identifier and wrap, or the original identifier if no
740 ;; corresponding name was found.
741 ;;
742 ;; The name may be a string created by gen-label, indicating a
743 ;; lexical binding, or another syntax object, indicating a
744 ;; reference to a top-level definition created during a previous
745 ;; macroexpansion.
746 ;;
747 ;; For lexical variables, finding a label simply amounts to
748 ;; looking for an entry with the same symbolic name and the same
749 ;; marks. Finding a toplevel definition is the same, except we
750 ;; also have to compare modules, hence the `mod' parameter.
751 ;; Instead of adding a separate entry in the ribcage for modules,
752 ;; which wouldn't be used for lexicals, we arrange for the entry
753 ;; for the name entry to be a pair with the module in its car, and
754 ;; the name itself in the cdr. So if the name that we find is a
755 ;; pair, we have to check modules.
756 ;;
757 ;; The identifer may be passed in wrapped or unwrapped. In any
758 ;; case, this routine returns either a symbol, a syntax object, or
759 ;; a string label.
760 ;;
761 (lambda (id w mod)
762 (define-syntax-rule (first e)
763 ;; Rely on Guile's multiple-values truncation.
764 e)
765 (define search
766 (lambda (sym subst marks mod)
767 (if (null? subst)
768 (values #f marks)
769 (let ((fst (car subst)))
770 (if (eq? fst 'shift)
771 (search sym (cdr subst) (cdr marks) mod)
772 (let ((symnames (ribcage-symnames fst)))
773 (if (vector? symnames)
774 (search-vector-rib sym subst marks symnames fst mod)
775 (search-list-rib sym subst marks symnames fst mod))))))))
776 (define search-list-rib
777 (lambda (sym subst marks symnames ribcage mod)
778 (let f ((symnames symnames) (i 0))
779 (cond
780 ((null? symnames) (search sym (cdr subst) marks mod))
781 ((and (eq? (car symnames) sym)
782 (same-marks? marks (list-ref (ribcage-marks ribcage) i)))
783 (let ((n (list-ref (ribcage-labels ribcage) i)))
784 (if (pair? n)
785 (if (equal? mod (car n))
786 (values (cdr n) marks)
787 (f (cdr symnames) (fx+ i 1)))
788 (values n marks))))
789 (else (f (cdr symnames) (fx+ i 1)))))))
790 (define search-vector-rib
791 (lambda (sym subst marks symnames ribcage mod)
792 (let ((n (vector-length symnames)))
793 (let f ((i 0))
794 (cond
795 ((fx= i n) (search sym (cdr subst) marks mod))
796 ((and (eq? (vector-ref symnames i) sym)
797 (same-marks? marks (vector-ref (ribcage-marks ribcage) i)))
798 (let ((n (vector-ref (ribcage-labels ribcage) i)))
799 (if (pair? n)
800 (if (equal? mod (car n))
801 (values (cdr n) marks)
802 (f (fx+ i 1)))
803 (values n marks))))
804 (else (f (fx+ i 1))))))))
805 (cond
806 ((symbol? id)
807 (or (first (search id (wrap-subst w) (wrap-marks w) mod)) id))
808 ((syntax-object? id)
809 (let ((id (syntax-object-expression id))
810 (w1 (syntax-object-wrap id))
811 (mod (syntax-object-module id)))
812 (let ((marks (join-marks (wrap-marks w) (wrap-marks w1))))
813 (call-with-values (lambda () (search id (wrap-subst w) marks mod))
814 (lambda (new-id marks)
815 (or new-id
816 (first (search id (wrap-subst w1) marks mod))
817 id))))))
818 (else (syntax-violation 'id-var-name "invalid id" id)))))
819
820 ;; A helper procedure for syntax-locally-bound-identifiers, which
821 ;; itself is a helper for transformer procedures.
822 ;; `locally-bound-identifiers' returns a list of all bindings
823 ;; visible to a syntax object with the given wrap. They are in
824 ;; order from outer to inner.
825 ;;
826 ;; The purpose of this procedure is to give a transformer procedure
827 ;; references on bound identifiers, that the transformer can then
828 ;; introduce some of them in its output. As such, the identifiers
829 ;; are anti-marked, so that rebuild-macro-output doesn't apply new
830 ;; marks to them.
831 ;;
832 (define locally-bound-identifiers
833 (lambda (w mod)
834 (define scan
835 (lambda (subst results)
836 (if (null? subst)
837 results
838 (let ((fst (car subst)))
839 (if (eq? fst 'shift)
840 (scan (cdr subst) results)
841 (let ((symnames (ribcage-symnames fst))
842 (marks (ribcage-marks fst)))
843 (if (vector? symnames)
844 (scan-vector-rib subst symnames marks results)
845 (scan-list-rib subst symnames marks results))))))))
846 (define scan-list-rib
847 (lambda (subst symnames marks results)
848 (let f ((symnames symnames) (marks marks) (results results))
849 (if (null? symnames)
850 (scan (cdr subst) results)
851 (f (cdr symnames) (cdr marks)
852 (cons (wrap (car symnames)
853 (anti-mark (make-wrap (car marks) subst))
854 mod)
855 results))))))
856 (define scan-vector-rib
857 (lambda (subst symnames marks results)
858 (let ((n (vector-length symnames)))
859 (let f ((i 0) (results results))
860 (if (fx= i n)
861 (scan (cdr subst) results)
862 (f (fx+ i 1)
863 (cons (wrap (vector-ref symnames i)
864 (anti-mark (make-wrap (vector-ref marks i) subst))
865 mod)
866 results)))))))
867 (scan (wrap-subst w) '())))
868
869 ;; Returns three values: binding type, binding value, the module (for
870 ;; resolving toplevel vars).
871 (define (resolve-identifier id w r mod resolve-syntax-parameters?)
872 (define (resolve-syntax-parameters b)
873 (if (and resolve-syntax-parameters?
874 (eq? (binding-type b) 'syntax-parameter))
875 (or (assq-ref r (binding-value b))
876 (make-binding 'macro (car (binding-value b))))
877 b))
878 (define (resolve-global var mod)
879 (let ((b (resolve-syntax-parameters
880 (or (get-global-definition-hook var mod)
881 (make-binding 'global)))))
882 (if (eq? (binding-type b) 'global)
883 (values 'global var mod)
884 (values (binding-type b) (binding-value b) mod))))
885 (define (resolve-lexical label mod)
886 (let ((b (resolve-syntax-parameters
887 (or (assq-ref r label)
888 (make-binding 'displaced-lexical)))))
889 (values (binding-type b) (binding-value b) mod)))
890 (let ((n (id-var-name id w mod)))
891 (cond
892 ((syntax-object? n)
893 (cond
894 ((not (eq? n id))
895 ;; This identifier aliased another; recurse to allow
896 ;; syntax-parameterize to override macro-introduced syntax
897 ;; parameters.
898 (resolve-identifier n w r mod resolve-syntax-parameters?))
899 (else
900 ;; Resolved to a free variable that was introduced by this
901 ;; macro; continue to resolve this global by name.
902 (resolve-identifier (syntax-object-expression n)
903 (syntax-object-wrap n)
904 r
905 (syntax-object-module n)
906 resolve-syntax-parameters?))))
907 ((symbol? n)
908 (resolve-global n (if (syntax-object? id)
909 (syntax-object-module id)
910 mod)))
911 ((string? n)
912 (resolve-lexical n (if (syntax-object? id)
913 (syntax-object-module id)
914 mod)))
915 (else
916 (error "unexpected id-var-name" id w n)))))
917
918 (define transformer-environment
919 (make-fluid
920 (lambda (k)
921 (error "called outside the dynamic extent of a syntax transformer"))))
922
923 (define (with-transformer-environment k)
924 ((fluid-ref transformer-environment) k))
925
926 ;; free-id=? must be passed fully wrapped ids since (free-id=? x y)
927 ;; may be true even if (free-id=? (wrap x w) (wrap y w)) is not.
928
929 (define free-id=?
930 (lambda (i j)
931 (let* ((mi (and (syntax-object? i) (syntax-object-module i)))
932 (mj (and (syntax-object? j) (syntax-object-module j)))
933 (ni (id-var-name i empty-wrap mi))
934 (nj (id-var-name j empty-wrap mj)))
935 (define (id-module-binding id mod)
936 (module-variable
937 (if mod
938 ;; The normal case.
939 (resolve-module (cdr mod))
940 ;; Either modules have not been booted, or we have a
941 ;; raw symbol coming in, which is possible.
942 (current-module))
943 (id-sym-name id)))
944 (cond
945 ((syntax-object? ni) (free-id=? ni j))
946 ((syntax-object? nj) (free-id=? i nj))
947 ((symbol? ni)
948 ;; `i' is not lexically bound. Assert that `j' is free,
949 ;; and if so, compare their bindings, that they are either
950 ;; bound to the same variable, or both unbound and have
951 ;; the same name.
952 (and (eq? nj (id-sym-name j))
953 (let ((bi (id-module-binding i mi)))
954 (if bi
955 (eq? bi (id-module-binding j mj))
956 (and (not (id-module-binding j mj))
957 (eq? ni nj))))
958 (eq? (id-module-binding i mi) (id-module-binding j mj))))
959 (else
960 ;; Otherwise `i' is bound, so check that `j' is bound, and
961 ;; bound to the same thing.
962 (equal? ni nj))))))
963
964 ;; bound-id=? may be passed unwrapped (or partially wrapped) ids as
965 ;; long as the missing portion of the wrap is common to both of the ids
966 ;; since (bound-id=? x y) iff (bound-id=? (wrap x w) (wrap y w))
967
968 (define bound-id=?
969 (lambda (i j)
970 (if (and (syntax-object? i) (syntax-object? j))
971 (and (eq? (syntax-object-expression i)
972 (syntax-object-expression j))
973 (same-marks? (wrap-marks (syntax-object-wrap i))
974 (wrap-marks (syntax-object-wrap j))))
975 (eq? i j))))
976
977 ;; "valid-bound-ids?" returns #t if it receives a list of distinct ids.
978 ;; valid-bound-ids? may be passed unwrapped (or partially wrapped) ids
979 ;; as long as the missing portion of the wrap is common to all of the
980 ;; ids.
981
982 (define valid-bound-ids?
983 (lambda (ids)
984 (and (let all-ids? ((ids ids))
985 (or (null? ids)
986 (and (id? (car ids))
987 (all-ids? (cdr ids)))))
988 (distinct-bound-ids? ids))))
989
990 ;; distinct-bound-ids? expects a list of ids and returns #t if there are
991 ;; no duplicates. It is quadratic on the length of the id list; long
992 ;; lists could be sorted to make it more efficient. distinct-bound-ids?
993 ;; may be passed unwrapped (or partially wrapped) ids as long as the
994 ;; missing portion of the wrap is common to all of the ids.
995
996 (define distinct-bound-ids?
997 (lambda (ids)
998 (let distinct? ((ids ids))
999 (or (null? ids)
1000 (and (not (bound-id-member? (car ids) (cdr ids)))
1001 (distinct? (cdr ids)))))))
1002
1003 (define bound-id-member?
1004 (lambda (x list)
1005 (and (not (null? list))
1006 (or (bound-id=? x (car list))
1007 (bound-id-member? x (cdr list))))))
1008
1009 ;; wrapping expressions and identifiers
1010
1011 (define wrap
1012 (lambda (x w defmod)
1013 (cond
1014 ((and (null? (wrap-marks w)) (null? (wrap-subst w))) x)
1015 ((syntax-object? x)
1016 (make-syntax-object
1017 (syntax-object-expression x)
1018 (join-wraps w (syntax-object-wrap x))
1019 (syntax-object-module x)))
1020 ((null? x) x)
1021 (else (make-syntax-object x w defmod)))))
1022
1023 (define source-wrap
1024 (lambda (x w s defmod)
1025 (wrap (decorate-source x s) w defmod)))
1026
1027 ;; expanding
1028
1029 (define expand-sequence
1030 (lambda (body r w s mod)
1031 (build-sequence s
1032 (let dobody ((body body) (r r) (w w) (mod mod))
1033 (if (null? body)
1034 '()
1035 (let ((first (expand (car body) r w mod)))
1036 (cons first (dobody (cdr body) r w mod))))))))
1037
1038 ;; At top-level, we allow mixed definitions and expressions. Like
1039 ;; expand-body we expand in two passes.
1040 ;;
1041 ;; First, from left to right, we expand just enough to know what
1042 ;; expressions are definitions, syntax definitions, and splicing
1043 ;; statements (`begin'). If we anything needs evaluating at
1044 ;; expansion-time, it is expanded directly.
1045 ;;
1046 ;; Otherwise we collect expressions to expand, in thunks, and then
1047 ;; expand them all at the end. This allows all syntax expanders
1048 ;; visible in a toplevel sequence to be visible during the
1049 ;; expansions of all normal definitions and expressions in the
1050 ;; sequence.
1051 ;;
1052 (define expand-top-sequence
1053 (lambda (body r w s m esew mod)
1054 (let* ((r (cons '("placeholder" . (placeholder)) r))
1055 (ribcage (make-empty-ribcage))
1056 (w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
1057 (define (record-definition! id var)
1058 (let ((mod (cons 'hygiene (module-name (current-module)))))
1059 ;; Ribcages map symbol+marks to names, mostly for
1060 ;; resolving lexicals. Here to add a mapping for toplevel
1061 ;; definitions we also need to match the module. So, we
1062 ;; put it in the name instead, and make id-var-name handle
1063 ;; the special case of names that are pairs. See the
1064 ;; comments in id-var-name for more.
1065 (extend-ribcage! ribcage id
1066 (cons (syntax-object-module id)
1067 (wrap var top-wrap mod)))))
1068 (define (macro-introduced-identifier? id)
1069 (not (equal? (wrap-marks (syntax-object-wrap id)) '(top))))
1070 (define (fresh-derived-name id orig-form)
1071 (symbol-append
1072 (syntax-object-expression id)
1073 '-
1074 (string->symbol
1075 ;; FIXME: `hash' currently stops descending into nested
1076 ;; data at some point, so it's less unique than we would
1077 ;; like. Also this encodes hash values into the ABI of
1078 ;; compiled modules; a problem?
1079 (number->string
1080 (hash (syntax->datum orig-form) most-positive-fixnum)
1081 16))))
1082 (define (parse body r w s m esew mod)
1083 (let lp ((body body) (exps '()))
1084 (if (null? body)
1085 exps
1086 (lp (cdr body)
1087 (append (parse1 (car body) r w s m esew mod)
1088 exps)))))
1089 (define (parse1 x r w s m esew mod)
1090 (call-with-values
1091 (lambda ()
1092 (syntax-type x r w (source-annotation x) ribcage mod #f))
1093 (lambda (type value form e w s mod)
1094 (case type
1095 ((define-form)
1096 (let* ((id (wrap value w mod))
1097 (label (gen-label))
1098 (var (if (macro-introduced-identifier? id)
1099 (fresh-derived-name id x)
1100 (syntax-object-expression id))))
1101 (record-definition! id var)
1102 (list
1103 (if (eq? m 'c&e)
1104 (let ((x (build-global-definition s var (expand e r w mod))))
1105 (top-level-eval-hook x mod)
1106 (lambda () x))
1107 (call-with-values
1108 (lambda () (resolve-identifier id empty-wrap r mod #t))
1109 (lambda (type* value* mod*)
1110 ;; If the identifier to be bound is currently bound to a
1111 ;; macro, then immediately discard that binding.
1112 (if (eq? type* 'macro)
1113 (top-level-eval-hook (build-global-definition
1114 s var (build-void s))
1115 mod))
1116 (lambda ()
1117 (build-global-definition s var (expand e r w mod)))))))))
1118 ((define-syntax-form define-syntax-parameter-form)
1119 (let* ((id (wrap value w mod))
1120 (label (gen-label))
1121 (var (if (macro-introduced-identifier? id)
1122 (fresh-derived-name id x)
1123 (syntax-object-expression id))))
1124 (record-definition! id var)
1125 (case m
1126 ((c)
1127 (cond
1128 ((memq 'compile esew)
1129 (let ((e (expand-install-global var type (expand e r w mod))))
1130 (top-level-eval-hook e mod)
1131 (if (memq 'load esew)
1132 (list (lambda () e))
1133 '())))
1134 ((memq 'load esew)
1135 (list (lambda ()
1136 (expand-install-global var type (expand e r w mod)))))
1137 (else '())))
1138 ((c&e)
1139 (let ((e (expand-install-global var type (expand e r w mod))))
1140 (top-level-eval-hook e mod)
1141 (list (lambda () e))))
1142 (else
1143 (if (memq 'eval esew)
1144 (top-level-eval-hook
1145 (expand-install-global var type (expand e r w mod))
1146 mod))
1147 '()))))
1148 ((begin-form)
1149 (syntax-case e ()
1150 ((_ e1 ...)
1151 (parse #'(e1 ...) r w s m esew mod))))
1152 ((local-syntax-form)
1153 (expand-local-syntax value e r w s mod
1154 (lambda (forms r w s mod)
1155 (parse forms r w s m esew mod))))
1156 ((eval-when-form)
1157 (syntax-case e ()
1158 ((_ (x ...) e1 e2 ...)
1159 (let ((when-list (parse-when-list e #'(x ...)))
1160 (body #'(e1 e2 ...)))
1161 (define (recurse m esew)
1162 (parse body r w s m esew mod))
1163 (cond
1164 ((eq? m 'e)
1165 (if (memq 'eval when-list)
1166 (recurse (if (memq 'expand when-list) 'c&e 'e)
1167 '(eval))
1168 (begin
1169 (if (memq 'expand when-list)
1170 (top-level-eval-hook
1171 (expand-top-sequence body r w s 'e '(eval) mod)
1172 mod))
1173 '())))
1174 ((memq 'load when-list)
1175 (if (or (memq 'compile when-list)
1176 (memq 'expand when-list)
1177 (and (eq? m 'c&e) (memq 'eval when-list)))
1178 (recurse 'c&e '(compile load))
1179 (if (memq m '(c c&e))
1180 (recurse 'c '(load))
1181 '())))
1182 ((or (memq 'compile when-list)
1183 (memq 'expand when-list)
1184 (and (eq? m 'c&e) (memq 'eval when-list)))
1185 (top-level-eval-hook
1186 (expand-top-sequence body r w s 'e '(eval) mod)
1187 mod)
1188 '())
1189 (else
1190 '()))))))
1191 (else
1192 (list
1193 (if (eq? m 'c&e)
1194 (let ((x (expand-expr type value form e r w s mod)))
1195 (top-level-eval-hook x mod)
1196 (lambda () x))
1197 (lambda ()
1198 (expand-expr type value form e r w s mod)))))))))
1199 (let ((exps (map (lambda (x) (x))
1200 (reverse (parse body r w s m esew mod)))))
1201 (if (null? exps)
1202 (build-void s)
1203 (build-sequence s exps))))))
1204
1205 (define expand-install-global
1206 (lambda (name type e)
1207 (build-global-definition
1208 no-source
1209 name
1210 (build-primcall
1211 no-source
1212 'make-syntax-transformer
1213 (if (eq? type 'define-syntax-parameter-form)
1214 (list (build-data no-source name)
1215 (build-data no-source 'syntax-parameter)
1216 (build-primcall no-source 'list (list e)))
1217 (list (build-data no-source name)
1218 (build-data no-source 'macro)
1219 e))))))
1220
1221 (define parse-when-list
1222 (lambda (e when-list)
1223 ;; `when-list' is syntax'd version of list of situations. We
1224 ;; could match these keywords lexically, via free-id=?, but then
1225 ;; we twingle the definition of eval-when to the bindings of
1226 ;; eval, load, expand, and compile, which is totally unintended.
1227 ;; So do a symbolic match instead.
1228 (let ((result (strip when-list empty-wrap)))
1229 (let lp ((l result))
1230 (if (null? l)
1231 result
1232 (if (memq (car l) '(compile load eval expand))
1233 (lp (cdr l))
1234 (syntax-violation 'eval-when "invalid situation" e
1235 (car l))))))))
1236
1237 ;; syntax-type returns seven values: type, value, form, e, w, s, and
1238 ;; mod. The first two are described in the table below.
1239 ;;
1240 ;; type value explanation
1241 ;; -------------------------------------------------------------------
1242 ;; core procedure core singleton
1243 ;; core-form procedure core form
1244 ;; module-ref procedure @ or @@ singleton
1245 ;; lexical name lexical variable reference
1246 ;; global name global variable reference
1247 ;; begin none begin keyword
1248 ;; define none define keyword
1249 ;; define-syntax none define-syntax keyword
1250 ;; define-syntax-parameter none define-syntax-parameter keyword
1251 ;; local-syntax rec? letrec-syntax/let-syntax keyword
1252 ;; eval-when none eval-when keyword
1253 ;; syntax level pattern variable
1254 ;; displaced-lexical none displaced lexical identifier
1255 ;; lexical-call name call to lexical variable
1256 ;; global-call name call to global variable
1257 ;; primitive-call name call to primitive
1258 ;; call none any other call
1259 ;; begin-form none begin expression
1260 ;; define-form id variable definition
1261 ;; define-syntax-form id syntax definition
1262 ;; define-syntax-parameter-form id syntax parameter definition
1263 ;; local-syntax-form rec? syntax definition
1264 ;; eval-when-form none eval-when form
1265 ;; constant none self-evaluating datum
1266 ;; other none anything else
1267 ;;
1268 ;; form is the entire form. For definition forms (define-form,
1269 ;; define-syntax-form, and define-syntax-parameter-form), e is the
1270 ;; rhs expression. For all others, e is the entire form. w is the
1271 ;; wrap for both form and e. s is the source for the entire form.
1272 ;; mod is the module for both form and e.
1273 ;;
1274 ;; syntax-type expands macros and unwraps as necessary to get to one
1275 ;; of the forms above. It also parses definition forms, although
1276 ;; perhaps this should be done by the consumer.
1277
1278 (define syntax-type
1279 (lambda (e r w s rib mod for-car?)
1280 (cond
1281 ((symbol? e)
1282 (call-with-values (lambda () (resolve-identifier e w r mod #t))
1283 (lambda (type value mod*)
1284 (case type
1285 ((macro)
1286 (if for-car?
1287 (values type value e e w s mod)
1288 (syntax-type (expand-macro value e r w s rib mod)
1289 r empty-wrap s rib mod #f)))
1290 ((global)
1291 ;; Toplevel definitions may resolve to bindings with
1292 ;; different names or in different modules.
1293 (values type value e value w s mod*))
1294 (else (values type value e e w s mod))))))
1295 ((pair? e)
1296 (let ((first (car e)))
1297 (call-with-values
1298 (lambda () (syntax-type first r w s rib mod #t))
1299 (lambda (ftype fval fform fe fw fs fmod)
1300 (case ftype
1301 ((lexical)
1302 (values 'lexical-call fval e e w s mod))
1303 ((global)
1304 (if (equal? fmod '(primitive))
1305 (values 'primitive-call fval e e w s mod)
1306 ;; If we got here via an (@@ ...) expansion, we
1307 ;; need to make sure the fmod information is
1308 ;; propagated back correctly -- hence this
1309 ;; consing.
1310 (values 'global-call (make-syntax-object fval w fmod)
1311 e e w s mod)))
1312 ((macro)
1313 (syntax-type (expand-macro fval e r w s rib mod)
1314 r empty-wrap s rib mod for-car?))
1315 ((module-ref)
1316 (call-with-values (lambda () (fval e r w mod))
1317 (lambda (e r w s mod)
1318 (syntax-type e r w s rib mod for-car?))))
1319 ((core)
1320 (values 'core-form fval e e w s mod))
1321 ((local-syntax)
1322 (values 'local-syntax-form fval e e w s mod))
1323 ((begin)
1324 (values 'begin-form #f e e w s mod))
1325 ((eval-when)
1326 (values 'eval-when-form #f e e w s mod))
1327 ((define)
1328 (syntax-case e ()
1329 ((_ name val)
1330 (id? #'name)
1331 (values 'define-form #'name e #'val w s mod))
1332 ((_ (name . args) e1 e2 ...)
1333 (and (id? #'name)
1334 (valid-bound-ids? (lambda-var-list #'args)))
1335 ;; need lambda here...
1336 (values 'define-form (wrap #'name w mod)
1337 (wrap e w mod)
1338 (decorate-source
1339 (cons #'lambda (wrap #'(args e1 e2 ...) w mod))
1340 s)
1341 empty-wrap s mod))
1342 ((_ name)
1343 (id? #'name)
1344 (values 'define-form (wrap #'name w mod)
1345 (wrap e w mod)
1346 #'(if #f #f)
1347 empty-wrap s mod))))
1348 ((define-syntax)
1349 (syntax-case e ()
1350 ((_ name val)
1351 (id? #'name)
1352 (values 'define-syntax-form #'name e #'val w s mod))))
1353 ((define-syntax-parameter)
1354 (syntax-case e ()
1355 ((_ name val)
1356 (id? #'name)
1357 (values 'define-syntax-parameter-form #'name e #'val w s mod))))
1358 (else
1359 (values 'call #f e e w s mod)))))))
1360 ((syntax-object? e)
1361 (syntax-type (syntax-object-expression e)
1362 r
1363 (join-wraps w (syntax-object-wrap e))
1364 (or (source-annotation e) s) rib
1365 (or (syntax-object-module e) mod) for-car?))
1366 ((self-evaluating? e) (values 'constant #f e e w s mod))
1367 (else (values 'other #f e e w s mod)))))
1368
1369 (define expand
1370 (lambda (e r w mod)
1371 (call-with-values
1372 (lambda () (syntax-type e r w (source-annotation e) #f mod #f))
1373 (lambda (type value form e w s mod)
1374 (expand-expr type value form e r w s mod)))))
1375
1376 (define expand-expr
1377 (lambda (type value form e r w s mod)
1378 (case type
1379 ((lexical)
1380 (build-lexical-reference 'value s e value))
1381 ((core core-form)
1382 ;; apply transformer
1383 (value e r w s mod))
1384 ((module-ref)
1385 (call-with-values (lambda () (value e r w mod))
1386 (lambda (e r w s mod)
1387 (expand e r w mod))))
1388 ((lexical-call)
1389 (expand-call
1390 (let ((id (car e)))
1391 (build-lexical-reference 'fun (source-annotation id)
1392 (if (syntax-object? id)
1393 (syntax->datum id)
1394 id)
1395 value))
1396 e r w s mod))
1397 ((global-call)
1398 (expand-call
1399 (build-global-reference (source-annotation (car e))
1400 (if (syntax-object? value)
1401 (syntax-object-expression value)
1402 value)
1403 (if (syntax-object? value)
1404 (syntax-object-module value)
1405 mod))
1406 e r w s mod))
1407 ((primitive-call)
1408 (syntax-case e ()
1409 ((_ e ...)
1410 (build-primcall s
1411 value
1412 (map (lambda (e) (expand e r w mod))
1413 #'(e ...))))))
1414 ((constant) (build-data s (strip (source-wrap e w s mod) empty-wrap)))
1415 ((global) (build-global-reference s value mod))
1416 ((call) (expand-call (expand (car e) r w mod) e r w s mod))
1417 ((begin-form)
1418 (syntax-case e ()
1419 ((_ e1 e2 ...) (expand-sequence #'(e1 e2 ...) r w s mod))
1420 ((_)
1421 (syntax-violation #f "sequence of zero expressions"
1422 (source-wrap e w s mod)))))
1423 ((local-syntax-form)
1424 (expand-local-syntax value e r w s mod expand-sequence))
1425 ((eval-when-form)
1426 (syntax-case e ()
1427 ((_ (x ...) e1 e2 ...)
1428 (let ((when-list (parse-when-list e #'(x ...))))
1429 (if (memq 'eval when-list)
1430 (expand-sequence #'(e1 e2 ...) r w s mod)
1431 (expand-void))))))
1432 ((define-form define-syntax-form define-syntax-parameter-form)
1433 (syntax-violation #f "definition in expression context, where definitions are not allowed,"
1434 (source-wrap form w s mod)))
1435 ((syntax)
1436 (syntax-violation #f "reference to pattern variable outside syntax form"
1437 (source-wrap e w s mod)))
1438 ((displaced-lexical)
1439 (syntax-violation #f "reference to identifier outside its scope"
1440 (source-wrap e w s mod)))
1441 (else (syntax-violation #f "unexpected syntax"
1442 (source-wrap e w s mod))))))
1443
1444 (define expand-call
1445 (lambda (x e r w s mod)
1446 (syntax-case e ()
1447 ((e0 e1 ...)
1448 (build-call s x
1449 (map (lambda (e) (expand e r w mod)) #'(e1 ...)))))))
1450
1451 ;; (What follows is my interpretation of what's going on here -- Andy)
1452 ;;
1453 ;; A macro takes an expression, a tree, the leaves of which are identifiers
1454 ;; and datums. Identifiers are symbols along with a wrap and a module. For
1455 ;; efficiency, subtrees that share wraps and modules may be grouped as one
1456 ;; syntax object.
1457 ;;
1458 ;; Going into the expansion, the expression is given an anti-mark, which
1459 ;; logically propagates to all leaves. Then, in the new expression returned
1460 ;; from the transfomer, if we see an expression with an anti-mark, we know it
1461 ;; pertains to the original expression; conversely, expressions without the
1462 ;; anti-mark are known to be introduced by the transformer.
1463 ;;
1464 ;; OK, good until now. We know this algorithm does lexical scoping
1465 ;; appropriately because it's widely known in the literature, and psyntax is
1466 ;; widely used. But what about modules? Here we're on our own. What we do is
1467 ;; to mark the module of expressions produced by a macro as pertaining to the
1468 ;; module that was current when the macro was defined -- that is, free
1469 ;; identifiers introduced by a macro are scoped in the macro's module, not in
1470 ;; the expansion's module. Seems to work well.
1471 ;;
1472 ;; The only wrinkle is when we want a macro to expand to code in another
1473 ;; module, as is the case for the r6rs `library' form -- the body expressions
1474 ;; should be scoped relative the the new module, the one defined by the macro.
1475 ;; For that, use `(@@ mod-name body)'.
1476 ;;
1477 ;; Part of the macro output will be from the site of the macro use and part
1478 ;; from the macro definition. We allow source information from the macro use
1479 ;; to pass through, but we annotate the parts coming from the macro with the
1480 ;; source location information corresponding to the macro use. It would be
1481 ;; really nice if we could also annotate introduced expressions with the
1482 ;; locations corresponding to the macro definition, but that is not yet
1483 ;; possible.
1484 (define expand-macro
1485 (lambda (p e r w s rib mod)
1486 (define rebuild-macro-output
1487 (lambda (x m)
1488 (cond ((pair? x)
1489 (decorate-source
1490 (cons (rebuild-macro-output (car x) m)
1491 (rebuild-macro-output (cdr x) m))
1492 s))
1493 ((syntax-object? x)
1494 (let ((w (syntax-object-wrap x)))
1495 (let ((ms (wrap-marks w)) (ss (wrap-subst w)))
1496 (if (and (pair? ms) (eq? (car ms) the-anti-mark))
1497 ;; output is from original text
1498 (make-syntax-object
1499 (syntax-object-expression x)
1500 (make-wrap (cdr ms) (if rib (cons rib (cdr ss)) (cdr ss)))
1501 (syntax-object-module x))
1502 ;; output introduced by macro
1503 (make-syntax-object
1504 (decorate-source (syntax-object-expression x) s)
1505 (make-wrap (cons m ms)
1506 (if rib
1507 (cons rib (cons 'shift ss))
1508 (cons 'shift ss)))
1509 (syntax-object-module x))))))
1510
1511 ((vector? x)
1512 (let* ((n (vector-length x))
1513 (v (decorate-source (make-vector n) s)))
1514 (do ((i 0 (fx+ i 1)))
1515 ((fx= i n) v)
1516 (vector-set! v i
1517 (rebuild-macro-output (vector-ref x i) m)))))
1518 ((symbol? x)
1519 (syntax-violation #f "encountered raw symbol in macro output"
1520 (source-wrap e w (wrap-subst w) mod) x))
1521 (else (decorate-source x s)))))
1522 (with-fluids ((transformer-environment
1523 (lambda (k) (k e r w s rib mod))))
1524 (rebuild-macro-output (p (source-wrap e (anti-mark w) s mod))
1525 (new-mark)))))
1526
1527 (define expand-body
1528 ;; In processing the forms of the body, we create a new, empty wrap.
1529 ;; This wrap is augmented (destructively) each time we discover that
1530 ;; the next form is a definition. This is done:
1531 ;;
1532 ;; (1) to allow the first nondefinition form to be a call to
1533 ;; one of the defined ids even if the id previously denoted a
1534 ;; definition keyword or keyword for a macro expanding into a
1535 ;; definition;
1536 ;; (2) to prevent subsequent definition forms (but unfortunately
1537 ;; not earlier ones) and the first nondefinition form from
1538 ;; confusing one of the bound identifiers for an auxiliary
1539 ;; keyword; and
1540 ;; (3) so that we do not need to restart the expansion of the
1541 ;; first nondefinition form, which is problematic anyway
1542 ;; since it might be the first element of a begin that we
1543 ;; have just spliced into the body (meaning if we restarted,
1544 ;; we'd really need to restart with the begin or the macro
1545 ;; call that expanded into the begin, and we'd have to give
1546 ;; up allowing (begin <defn>+ <expr>+), which is itself
1547 ;; problematic since we don't know if a begin contains only
1548 ;; definitions until we've expanded it).
1549 ;;
1550 ;; Before processing the body, we also create a new environment
1551 ;; containing a placeholder for the bindings we will add later and
1552 ;; associate this environment with each form. In processing a
1553 ;; let-syntax or letrec-syntax, the associated environment may be
1554 ;; augmented with local keyword bindings, so the environment may
1555 ;; be different for different forms in the body. Once we have
1556 ;; gathered up all of the definitions, we evaluate the transformer
1557 ;; expressions and splice into r at the placeholder the new variable
1558 ;; and keyword bindings. This allows let-syntax or letrec-syntax
1559 ;; forms local to a portion or all of the body to shadow the
1560 ;; definition bindings.
1561 ;;
1562 ;; Subforms of a begin, let-syntax, or letrec-syntax are spliced
1563 ;; into the body.
1564 ;;
1565 ;; outer-form is fully wrapped w/source
1566 (lambda (body outer-form r w mod)
1567 (let* ((r (cons '("placeholder" . (placeholder)) r))
1568 (ribcage (make-empty-ribcage))
1569 (w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
1570 (let parse ((body (map (lambda (x) (cons r (wrap x w mod))) body))
1571 (ids '()) (labels '())
1572 (var-ids '()) (vars '()) (vals '()) (bindings '()))
1573 (if (null? body)
1574 (syntax-violation #f "no expressions in body" outer-form)
1575 (let ((e (cdar body)) (er (caar body)))
1576 (call-with-values
1577 (lambda () (syntax-type e er empty-wrap (source-annotation e) ribcage mod #f))
1578 (lambda (type value form e w s mod)
1579 (case type
1580 ((define-form)
1581 (let ((id (wrap value w mod)) (label (gen-label)))
1582 (let ((var (gen-var id)))
1583 (extend-ribcage! ribcage id label)
1584 (parse (cdr body)
1585 (cons id ids) (cons label labels)
1586 (cons id var-ids)
1587 (cons var vars) (cons (cons er (wrap e w mod)) vals)
1588 (cons (make-binding 'lexical var) bindings)))))
1589 ((define-syntax-form)
1590 (let ((id (wrap value w mod))
1591 (label (gen-label))
1592 (trans-r (macros-only-env er)))
1593 (extend-ribcage! ribcage id label)
1594 ;; As required by R6RS, evaluate the right-hand-sides of internal
1595 ;; syntax definition forms and add their transformers to the
1596 ;; compile-time environment immediately, so that the newly-defined
1597 ;; keywords may be used in definition context within the same
1598 ;; lexical contour.
1599 (set-cdr! r (extend-env
1600 (list label)
1601 (list (make-binding
1602 'macro
1603 (eval-local-transformer
1604 (expand e trans-r w mod)
1605 mod)))
1606 (cdr r)))
1607 (parse (cdr body) (cons id ids) labels var-ids vars vals bindings)))
1608 ((define-syntax-parameter-form)
1609 ;; Same as define-syntax-form, but different format of the binding.
1610 (let ((id (wrap value w mod))
1611 (label (gen-label))
1612 (trans-r (macros-only-env er)))
1613 (extend-ribcage! ribcage id label)
1614 (set-cdr! r (extend-env
1615 (list label)
1616 (list (make-binding
1617 'syntax-parameter
1618 (list (eval-local-transformer
1619 (expand e trans-r w mod)
1620 mod))))
1621 (cdr r)))
1622 (parse (cdr body) (cons id ids) labels var-ids vars vals bindings)))
1623 ((begin-form)
1624 (syntax-case e ()
1625 ((_ e1 ...)
1626 (parse (let f ((forms #'(e1 ...)))
1627 (if (null? forms)
1628 (cdr body)
1629 (cons (cons er (wrap (car forms) w mod))
1630 (f (cdr forms)))))
1631 ids labels var-ids vars vals bindings))))
1632 ((local-syntax-form)
1633 (expand-local-syntax value e er w s mod
1634 (lambda (forms er w s mod)
1635 (parse (let f ((forms forms))
1636 (if (null? forms)
1637 (cdr body)
1638 (cons (cons er (wrap (car forms) w mod))
1639 (f (cdr forms)))))
1640 ids labels var-ids vars vals bindings))))
1641 (else ; found a non-definition
1642 (if (null? ids)
1643 (build-sequence no-source
1644 (map (lambda (x)
1645 (expand (cdr x) (car x) empty-wrap mod))
1646 (cons (cons er (source-wrap e w s mod))
1647 (cdr body))))
1648 (begin
1649 (if (not (valid-bound-ids? ids))
1650 (syntax-violation
1651 #f "invalid or duplicate identifier in definition"
1652 outer-form))
1653 (set-cdr! r (extend-env labels bindings (cdr r)))
1654 (build-letrec no-source #t
1655 (reverse (map syntax->datum var-ids))
1656 (reverse vars)
1657 (map (lambda (x)
1658 (expand (cdr x) (car x) empty-wrap mod))
1659 (reverse vals))
1660 (build-sequence no-source
1661 (map (lambda (x)
1662 (expand (cdr x) (car x) empty-wrap mod))
1663 (cons (cons er (source-wrap e w s mod))
1664 (cdr body)))))))))))))))))
1665
1666 (define expand-local-syntax
1667 (lambda (rec? e r w s mod k)
1668 (syntax-case e ()
1669 ((_ ((id val) ...) e1 e2 ...)
1670 (let ((ids #'(id ...)))
1671 (if (not (valid-bound-ids? ids))
1672 (syntax-violation #f "duplicate bound keyword" e)
1673 (let ((labels (gen-labels ids)))
1674 (let ((new-w (make-binding-wrap ids labels w)))
1675 (k #'(e1 e2 ...)
1676 (extend-env
1677 labels
1678 (let ((w (if rec? new-w w))
1679 (trans-r (macros-only-env r)))
1680 (map (lambda (x)
1681 (make-binding 'macro
1682 (eval-local-transformer
1683 (expand x trans-r w mod)
1684 mod)))
1685 #'(val ...)))
1686 r)
1687 new-w
1688 s
1689 mod))))))
1690 (_ (syntax-violation #f "bad local syntax definition"
1691 (source-wrap e w s mod))))))
1692
1693 (define eval-local-transformer
1694 (lambda (expanded mod)
1695 (let ((p (local-eval-hook expanded mod)))
1696 (if (procedure? p)
1697 p
1698 (syntax-violation #f "nonprocedure transformer" p)))))
1699
1700 (define expand-void
1701 (lambda ()
1702 (build-void no-source)))
1703
1704 (define ellipsis?
1705 (lambda (e r mod)
1706 (and (nonsymbol-id? e)
1707 ;; If there is a binding for the special identifier
1708 ;; #{ $sc-ellipsis }# in the lexical environment of E,
1709 ;; and if the associated binding type is 'ellipsis',
1710 ;; then the binding's value specifies the custom ellipsis
1711 ;; identifier within that lexical environment, and the
1712 ;; comparison is done using 'bound-id=?'.
1713 (call-with-values
1714 (lambda () (resolve-identifier
1715 (make-syntax-object '#{ $sc-ellipsis }#
1716 (syntax-object-wrap e)
1717 (syntax-object-module e))
1718 empty-wrap r mod #f))
1719 (lambda (type value mod)
1720 (if (eq? type 'ellipsis)
1721 (bound-id=? e value)
1722 (free-id=? e #'(... ...))))))))
1723
1724 (define lambda-formals
1725 (lambda (orig-args)
1726 (define (req args rreq)
1727 (syntax-case args ()
1728 (()
1729 (check (reverse rreq) #f))
1730 ((a . b) (id? #'a)
1731 (req #'b (cons #'a rreq)))
1732 (r (id? #'r)
1733 (check (reverse rreq) #'r))
1734 (else
1735 (syntax-violation 'lambda "invalid argument list" orig-args args))))
1736 (define (check req rest)
1737 (cond
1738 ((distinct-bound-ids? (if rest (cons rest req) req))
1739 (values req #f rest #f))
1740 (else
1741 (syntax-violation 'lambda "duplicate identifier in argument list"
1742 orig-args))))
1743 (req orig-args '())))
1744
1745 (define expand-simple-lambda
1746 (lambda (e r w s mod req rest meta body)
1747 (let* ((ids (if rest (append req (list rest)) req))
1748 (vars (map gen-var ids))
1749 (labels (gen-labels ids)))
1750 (build-simple-lambda
1751 s
1752 (map syntax->datum req) (and rest (syntax->datum rest)) vars
1753 meta
1754 (expand-body body (source-wrap e w s mod)
1755 (extend-var-env labels vars r)
1756 (make-binding-wrap ids labels w)
1757 mod)))))
1758
1759 (define lambda*-formals
1760 (lambda (orig-args)
1761 (define (req args rreq)
1762 (syntax-case args ()
1763 (()
1764 (check (reverse rreq) '() #f '()))
1765 ((a . b) (id? #'a)
1766 (req #'b (cons #'a rreq)))
1767 ((a . b) (eq? (syntax->datum #'a) #:optional)
1768 (opt #'b (reverse rreq) '()))
1769 ((a . b) (eq? (syntax->datum #'a) #:key)
1770 (key #'b (reverse rreq) '() '()))
1771 ((a b) (eq? (syntax->datum #'a) #:rest)
1772 (rest #'b (reverse rreq) '() '()))
1773 (r (id? #'r)
1774 (rest #'r (reverse rreq) '() '()))
1775 (else
1776 (syntax-violation 'lambda* "invalid argument list" orig-args args))))
1777 (define (opt args req ropt)
1778 (syntax-case args ()
1779 (()
1780 (check req (reverse ropt) #f '()))
1781 ((a . b) (id? #'a)
1782 (opt #'b req (cons #'(a #f) ropt)))
1783 (((a init) . b) (id? #'a)
1784 (opt #'b req (cons #'(a init) ropt)))
1785 ((a . b) (eq? (syntax->datum #'a) #:key)
1786 (key #'b req (reverse ropt) '()))
1787 ((a b) (eq? (syntax->datum #'a) #:rest)
1788 (rest #'b req (reverse ropt) '()))
1789 (r (id? #'r)
1790 (rest #'r req (reverse ropt) '()))
1791 (else
1792 (syntax-violation 'lambda* "invalid optional argument list"
1793 orig-args args))))
1794 (define (key args req opt rkey)
1795 (syntax-case args ()
1796 (()
1797 (check req opt #f (cons #f (reverse rkey))))
1798 ((a . b) (id? #'a)
1799 (with-syntax ((k (symbol->keyword (syntax->datum #'a))))
1800 (key #'b req opt (cons #'(k a #f) rkey))))
1801 (((a init) . b) (id? #'a)
1802 (with-syntax ((k (symbol->keyword (syntax->datum #'a))))
1803 (key #'b req opt (cons #'(k a init) rkey))))
1804 (((a init k) . b) (and (id? #'a)
1805 (keyword? (syntax->datum #'k)))
1806 (key #'b req opt (cons #'(k a init) rkey)))
1807 ((aok) (eq? (syntax->datum #'aok) #:allow-other-keys)
1808 (check req opt #f (cons #t (reverse rkey))))
1809 ((aok a b) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
1810 (eq? (syntax->datum #'a) #:rest))
1811 (rest #'b req opt (cons #t (reverse rkey))))
1812 ((aok . r) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
1813 (id? #'r))
1814 (rest #'r req opt (cons #t (reverse rkey))))
1815 ((a b) (eq? (syntax->datum #'a) #:rest)
1816 (rest #'b req opt (cons #f (reverse rkey))))
1817 (r (id? #'r)
1818 (rest #'r req opt (cons #f (reverse rkey))))
1819 (else
1820 (syntax-violation 'lambda* "invalid keyword argument list"
1821 orig-args args))))
1822 (define (rest args req opt kw)
1823 (syntax-case args ()
1824 (r (id? #'r)
1825 (check req opt #'r kw))
1826 (else
1827 (syntax-violation 'lambda* "invalid rest argument"
1828 orig-args args))))
1829 (define (check req opt rest kw)
1830 (cond
1831 ((distinct-bound-ids?
1832 (append req (map car opt) (if rest (list rest) '())
1833 (if (pair? kw) (map cadr (cdr kw)) '())))
1834 (values req opt rest kw))
1835 (else
1836 (syntax-violation 'lambda* "duplicate identifier in argument list"
1837 orig-args))))
1838 (req orig-args '())))
1839
1840 (define expand-lambda-case
1841 (lambda (e r w s mod get-formals clauses)
1842 (define (parse-req req opt rest kw body)
1843 (let ((vars (map gen-var req))
1844 (labels (gen-labels req)))
1845 (let ((r* (extend-var-env labels vars r))
1846 (w* (make-binding-wrap req labels w)))
1847 (parse-opt (map syntax->datum req)
1848 opt rest kw body (reverse vars) r* w* '() '()))))
1849 (define (parse-opt req opt rest kw body vars r* w* out inits)
1850 (cond
1851 ((pair? opt)
1852 (syntax-case (car opt) ()
1853 ((id i)
1854 (let* ((v (gen-var #'id))
1855 (l (gen-labels (list v)))
1856 (r** (extend-var-env l (list v) r*))
1857 (w** (make-binding-wrap (list #'id) l w*)))
1858 (parse-opt req (cdr opt) rest kw body (cons v vars)
1859 r** w** (cons (syntax->datum #'id) out)
1860 (cons (expand #'i r* w* mod) inits))))))
1861 (rest
1862 (let* ((v (gen-var rest))
1863 (l (gen-labels (list v)))
1864 (r* (extend-var-env l (list v) r*))
1865 (w* (make-binding-wrap (list rest) l w*)))
1866 (parse-kw req (if (pair? out) (reverse out) #f)
1867 (syntax->datum rest)
1868 (if (pair? kw) (cdr kw) kw)
1869 body (cons v vars) r* w*
1870 (if (pair? kw) (car kw) #f)
1871 '() inits)))
1872 (else
1873 (parse-kw req (if (pair? out) (reverse out) #f) #f
1874 (if (pair? kw) (cdr kw) kw)
1875 body vars r* w*
1876 (if (pair? kw) (car kw) #f)
1877 '() inits))))
1878 (define (parse-kw req opt rest kw body vars r* w* aok out inits)
1879 (cond
1880 ((pair? kw)
1881 (syntax-case (car kw) ()
1882 ((k id i)
1883 (let* ((v (gen-var #'id))
1884 (l (gen-labels (list v)))
1885 (r** (extend-var-env l (list v) r*))
1886 (w** (make-binding-wrap (list #'id) l w*)))
1887 (parse-kw req opt rest (cdr kw) body (cons v vars)
1888 r** w** aok
1889 (cons (list (syntax->datum #'k)
1890 (syntax->datum #'id)
1891 v)
1892 out)
1893 (cons (expand #'i r* w* mod) inits))))))
1894 (else
1895 (parse-body req opt rest
1896 (if (or aok (pair? out)) (cons aok (reverse out)) #f)
1897 body (reverse vars) r* w* (reverse inits) '()))))
1898 (define (parse-body req opt rest kw body vars r* w* inits meta)
1899 (syntax-case body ()
1900 ((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
1901 (parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
1902 (append meta
1903 `((documentation
1904 . ,(syntax->datum #'docstring))))))
1905 ((#((k . v) ...) e1 e2 ...)
1906 (parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
1907 (append meta (syntax->datum #'((k . v) ...)))))
1908 ((e1 e2 ...)
1909 (values meta req opt rest kw inits vars
1910 (expand-body #'(e1 e2 ...) (source-wrap e w s mod)
1911 r* w* mod)))))
1912
1913 (syntax-case clauses ()
1914 (() (values '() #f))
1915 (((args e1 e2 ...) (args* e1* e2* ...) ...)
1916 (call-with-values (lambda () (get-formals #'args))
1917 (lambda (req opt rest kw)
1918 (call-with-values (lambda ()
1919 (parse-req req opt rest kw #'(e1 e2 ...)))
1920 (lambda (meta req opt rest kw inits vars body)
1921 (call-with-values
1922 (lambda ()
1923 (expand-lambda-case e r w s mod get-formals
1924 #'((args* e1* e2* ...) ...)))
1925 (lambda (meta* else*)
1926 (values
1927 (append meta meta*)
1928 (build-lambda-case s req opt rest kw inits vars
1929 body else*))))))))))))
1930
1931 ;; data
1932
1933 ;; strips syntax-objects down to top-wrap
1934 ;;
1935 ;; since only the head of a list is annotated by the reader, not each pair
1936 ;; in the spine, we also check for pairs whose cars are annotated in case
1937 ;; we've been passed the cdr of an annotated list
1938
1939 (define strip
1940 (lambda (x w)
1941 (if (top-marked? w)
1942 x
1943 (let f ((x x))
1944 (cond
1945 ((syntax-object? x)
1946 (strip (syntax-object-expression x) (syntax-object-wrap x)))
1947 ((pair? x)
1948 (let ((a (f (car x))) (d (f (cdr x))))
1949 (if (and (eq? a (car x)) (eq? d (cdr x)))
1950 x
1951 (cons a d))))
1952 ((vector? x)
1953 (let ((old (vector->list x)))
1954 (let ((new (map f old)))
1955 ;; inlined and-map with two args
1956 (let lp ((l1 old) (l2 new))
1957 (if (null? l1)
1958 x
1959 (if (eq? (car l1) (car l2))
1960 (lp (cdr l1) (cdr l2))
1961 (list->vector new)))))))
1962 (else x))))))
1963
1964 ;; lexical variables
1965
1966 (define gen-var
1967 (lambda (id)
1968 (let ((id (if (syntax-object? id) (syntax-object-expression id) id)))
1969 (build-lexical-var no-source id))))
1970
1971 ;; appears to return a reversed list
1972 (define lambda-var-list
1973 (lambda (vars)
1974 (let lvl ((vars vars) (ls '()) (w empty-wrap))
1975 (cond
1976 ((pair? vars) (lvl (cdr vars) (cons (wrap (car vars) w #f) ls) w))
1977 ((id? vars) (cons (wrap vars w #f) ls))
1978 ((null? vars) ls)
1979 ((syntax-object? vars)
1980 (lvl (syntax-object-expression vars)
1981 ls
1982 (join-wraps w (syntax-object-wrap vars))))
1983 ;; include anything else to be caught by subsequent error
1984 ;; checking
1985 (else (cons vars ls))))))
1986
1987 ;; core transformers
1988
1989 (global-extend 'local-syntax 'letrec-syntax #t)
1990 (global-extend 'local-syntax 'let-syntax #f)
1991
1992 (global-extend
1993 'core 'syntax-parameterize
1994 (lambda (e r w s mod)
1995 (syntax-case e ()
1996 ((_ ((var val) ...) e1 e2 ...)
1997 (valid-bound-ids? #'(var ...))
1998 (let ((names
1999 (map (lambda (x)
2000 (call-with-values
2001 (lambda () (resolve-identifier x w r mod #f))
2002 (lambda (type value mod)
2003 (case type
2004 ((displaced-lexical)
2005 (syntax-violation 'syntax-parameterize
2006 "identifier out of context"
2007 e
2008 (source-wrap x w s mod)))
2009 ((syntax-parameter)
2010 value)
2011 (else
2012 (syntax-violation 'syntax-parameterize
2013 "invalid syntax parameter"
2014 e
2015 (source-wrap x w s mod)))))))
2016 #'(var ...)))
2017 (bindings
2018 (let ((trans-r (macros-only-env r)))
2019 (map (lambda (x)
2020 (make-binding
2021 'macro
2022 (eval-local-transformer (expand x trans-r w mod) mod)))
2023 #'(val ...)))))
2024 (expand-body #'(e1 e2 ...)
2025 (source-wrap e w s mod)
2026 (extend-env names bindings r)
2027 w
2028 mod)))
2029 (_ (syntax-violation 'syntax-parameterize "bad syntax"
2030 (source-wrap e w s mod))))))
2031
2032 (global-extend 'core 'quote
2033 (lambda (e r w s mod)
2034 (syntax-case e ()
2035 ((_ e) (build-data s (strip #'e w)))
2036 (_ (syntax-violation 'quote "bad syntax"
2037 (source-wrap e w s mod))))))
2038
2039 (global-extend
2040 'core 'syntax
2041 (let ()
2042 (define gen-syntax
2043 (lambda (src e r maps ellipsis? mod)
2044 (if (id? e)
2045 (call-with-values (lambda ()
2046 (resolve-identifier e empty-wrap r mod #f))
2047 (lambda (type value mod)
2048 (case type
2049 ((syntax)
2050 (call-with-values
2051 (lambda () (gen-ref src (car value) (cdr value) maps))
2052 (lambda (var maps)
2053 (values `(ref ,var) maps))))
2054 (else
2055 (if (ellipsis? e r mod)
2056 (syntax-violation 'syntax "misplaced ellipsis" src)
2057 (values `(quote ,e) maps))))))
2058 (syntax-case e ()
2059 ((dots e)
2060 (ellipsis? #'dots r mod)
2061 (gen-syntax src #'e r maps (lambda (e r mod) #f) mod))
2062 ((x dots . y)
2063 ;; this could be about a dozen lines of code, except that we
2064 ;; choose to handle #'(x ... ...) forms
2065 (ellipsis? #'dots r mod)
2066 (let f ((y #'y)
2067 (k (lambda (maps)
2068 (call-with-values
2069 (lambda ()
2070 (gen-syntax src #'x r
2071 (cons '() maps) ellipsis? mod))
2072 (lambda (x maps)
2073 (if (null? (car maps))
2074 (syntax-violation 'syntax "extra ellipsis"
2075 src)
2076 (values (gen-map x (car maps))
2077 (cdr maps))))))))
2078 (syntax-case y ()
2079 ((dots . y)
2080 (ellipsis? #'dots r mod)
2081 (f #'y
2082 (lambda (maps)
2083 (call-with-values
2084 (lambda () (k (cons '() maps)))
2085 (lambda (x maps)
2086 (if (null? (car maps))
2087 (syntax-violation 'syntax "extra ellipsis" src)
2088 (values (gen-mappend x (car maps))
2089 (cdr maps))))))))
2090 (_ (call-with-values
2091 (lambda () (gen-syntax src y r maps ellipsis? mod))
2092 (lambda (y maps)
2093 (call-with-values
2094 (lambda () (k maps))
2095 (lambda (x maps)
2096 (values (gen-append x y) maps)))))))))
2097 ((x . y)
2098 (call-with-values
2099 (lambda () (gen-syntax src #'x r maps ellipsis? mod))
2100 (lambda (x maps)
2101 (call-with-values
2102 (lambda () (gen-syntax src #'y r maps ellipsis? mod))
2103 (lambda (y maps) (values (gen-cons x y) maps))))))
2104 (#(e1 e2 ...)
2105 (call-with-values
2106 (lambda ()
2107 (gen-syntax src #'(e1 e2 ...) r maps ellipsis? mod))
2108 (lambda (e maps) (values (gen-vector e) maps))))
2109 (_ (values `(quote ,e) maps))))))
2110
2111 (define gen-ref
2112 (lambda (src var level maps)
2113 (if (fx= level 0)
2114 (values var maps)
2115 (if (null? maps)
2116 (syntax-violation 'syntax "missing ellipsis" src)
2117 (call-with-values
2118 (lambda () (gen-ref src var (fx- level 1) (cdr maps)))
2119 (lambda (outer-var outer-maps)
2120 (let ((b (assq outer-var (car maps))))
2121 (if b
2122 (values (cdr b) maps)
2123 (let ((inner-var (gen-var 'tmp)))
2124 (values inner-var
2125 (cons (cons (cons outer-var inner-var)
2126 (car maps))
2127 outer-maps)))))))))))
2128
2129 (define gen-mappend
2130 (lambda (e map-env)
2131 `(apply (primitive append) ,(gen-map e map-env))))
2132
2133 (define gen-map
2134 (lambda (e map-env)
2135 (let ((formals (map cdr map-env))
2136 (actuals (map (lambda (x) `(ref ,(car x))) map-env)))
2137 (cond
2138 ((eq? (car e) 'ref)
2139 ;; identity map equivalence:
2140 ;; (map (lambda (x) x) y) == y
2141 (car actuals))
2142 ((and-map
2143 (lambda (x) (and (eq? (car x) 'ref) (memq (cadr x) formals)))
2144 (cdr e))
2145 ;; eta map equivalence:
2146 ;; (map (lambda (x ...) (f x ...)) y ...) == (map f y ...)
2147 `(map (primitive ,(car e))
2148 ,@(map (let ((r (map cons formals actuals)))
2149 (lambda (x) (cdr (assq (cadr x) r))))
2150 (cdr e))))
2151 (else `(map (lambda ,formals ,e) ,@actuals))))))
2152
2153 (define gen-cons
2154 (lambda (x y)
2155 (case (car y)
2156 ((quote)
2157 (if (eq? (car x) 'quote)
2158 `(quote (,(cadr x) . ,(cadr y)))
2159 (if (eq? (cadr y) '())
2160 `(list ,x)
2161 `(cons ,x ,y))))
2162 ((list) `(list ,x ,@(cdr y)))
2163 (else `(cons ,x ,y)))))
2164
2165 (define gen-append
2166 (lambda (x y)
2167 (if (equal? y '(quote ()))
2168 x
2169 `(append ,x ,y))))
2170
2171 (define gen-vector
2172 (lambda (x)
2173 (cond
2174 ((eq? (car x) 'list) `(vector ,@(cdr x)))
2175 ((eq? (car x) 'quote) `(quote #(,@(cadr x))))
2176 (else `(list->vector ,x)))))
2177
2178
2179 (define regen
2180 (lambda (x)
2181 (case (car x)
2182 ((ref) (build-lexical-reference 'value no-source (cadr x) (cadr x)))
2183 ((primitive) (build-primref no-source (cadr x)))
2184 ((quote) (build-data no-source (cadr x)))
2185 ((lambda)
2186 (if (list? (cadr x))
2187 (build-simple-lambda no-source (cadr x) #f (cadr x) '() (regen (caddr x)))
2188 (error "how did we get here" x)))
2189 (else (build-primcall no-source (car x) (map regen (cdr x)))))))
2190
2191 (lambda (e r w s mod)
2192 (let ((e (source-wrap e w s mod)))
2193 (syntax-case e ()
2194 ((_ x)
2195 (call-with-values
2196 (lambda () (gen-syntax e #'x r '() ellipsis? mod))
2197 (lambda (e maps) (regen e))))
2198 (_ (syntax-violation 'syntax "bad `syntax' form" e)))))))
2199
2200 (global-extend 'core 'lambda
2201 (lambda (e r w s mod)
2202 (syntax-case e ()
2203 ((_ args e1 e2 ...)
2204 (call-with-values (lambda () (lambda-formals #'args))
2205 (lambda (req opt rest kw)
2206 (let lp ((body #'(e1 e2 ...)) (meta '()))
2207 (syntax-case body ()
2208 ((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
2209 (lp #'(e1 e2 ...)
2210 (append meta
2211 `((documentation
2212 . ,(syntax->datum #'docstring))))))
2213 ((#((k . v) ...) e1 e2 ...)
2214 (lp #'(e1 e2 ...)
2215 (append meta (syntax->datum #'((k . v) ...)))))
2216 (_ (expand-simple-lambda e r w s mod req rest meta body)))))))
2217 (_ (syntax-violation 'lambda "bad lambda" e)))))
2218
2219 (global-extend 'core 'lambda*
2220 (lambda (e r w s mod)
2221 (syntax-case e ()
2222 ((_ args e1 e2 ...)
2223 (call-with-values
2224 (lambda ()
2225 (expand-lambda-case e r w s mod
2226 lambda*-formals #'((args e1 e2 ...))))
2227 (lambda (meta lcase)
2228 (build-case-lambda s meta lcase))))
2229 (_ (syntax-violation 'lambda "bad lambda*" e)))))
2230
2231 (global-extend 'core 'case-lambda
2232 (lambda (e r w s mod)
2233 (define (build-it meta clauses)
2234 (call-with-values
2235 (lambda ()
2236 (expand-lambda-case e r w s mod
2237 lambda-formals
2238 clauses))
2239 (lambda (meta* lcase)
2240 (build-case-lambda s (append meta meta*) lcase))))
2241 (syntax-case e ()
2242 ((_ (args e1 e2 ...) ...)
2243 (build-it '() #'((args e1 e2 ...) ...)))
2244 ((_ docstring (args e1 e2 ...) ...)
2245 (string? (syntax->datum #'docstring))
2246 (build-it `((documentation
2247 . ,(syntax->datum #'docstring)))
2248 #'((args e1 e2 ...) ...)))
2249 (_ (syntax-violation 'case-lambda "bad case-lambda" e)))))
2250
2251 (global-extend 'core 'case-lambda*
2252 (lambda (e r w s mod)
2253 (define (build-it meta clauses)
2254 (call-with-values
2255 (lambda ()
2256 (expand-lambda-case e r w s mod
2257 lambda*-formals
2258 clauses))
2259 (lambda (meta* lcase)
2260 (build-case-lambda s (append meta meta*) lcase))))
2261 (syntax-case e ()
2262 ((_ (args e1 e2 ...) ...)
2263 (build-it '() #'((args e1 e2 ...) ...)))
2264 ((_ docstring (args e1 e2 ...) ...)
2265 (string? (syntax->datum #'docstring))
2266 (build-it `((documentation
2267 . ,(syntax->datum #'docstring)))
2268 #'((args e1 e2 ...) ...)))
2269 (_ (syntax-violation 'case-lambda "bad case-lambda*" e)))))
2270
2271 (global-extend 'core 'with-ellipsis
2272 (lambda (e r w s mod)
2273 (syntax-case e ()
2274 ((_ dots e1 e2 ...)
2275 (id? #'dots)
2276 (let ((id (if (symbol? #'dots)
2277 '#{ $sc-ellipsis }#
2278 (make-syntax-object '#{ $sc-ellipsis }#
2279 (syntax-object-wrap #'dots)
2280 (syntax-object-module #'dots)))))
2281 (let ((ids (list id))
2282 (labels (list (gen-label)))
2283 (bindings (list (make-binding 'ellipsis (source-wrap #'dots w s mod)))))
2284 (let ((nw (make-binding-wrap ids labels w))
2285 (nr (extend-env labels bindings r)))
2286 (expand-body #'(e1 e2 ...) (source-wrap e nw s mod) nr nw mod)))))
2287 (_ (syntax-violation 'with-ellipsis "bad syntax"
2288 (source-wrap e w s mod))))))
2289
2290 (global-extend 'core 'let
2291 (let ()
2292 (define (expand-let e r w s mod constructor ids vals exps)
2293 (if (not (valid-bound-ids? ids))
2294 (syntax-violation 'let "duplicate bound variable" e)
2295 (let ((labels (gen-labels ids))
2296 (new-vars (map gen-var ids)))
2297 (let ((nw (make-binding-wrap ids labels w))
2298 (nr (extend-var-env labels new-vars r)))
2299 (constructor s
2300 (map syntax->datum ids)
2301 new-vars
2302 (map (lambda (x) (expand x r w mod)) vals)
2303 (expand-body exps (source-wrap e nw s mod)
2304 nr nw mod))))))
2305 (lambda (e r w s mod)
2306 (syntax-case e ()
2307 ((_ ((id val) ...) e1 e2 ...)
2308 (and-map id? #'(id ...))
2309 (expand-let e r w s mod
2310 build-let
2311 #'(id ...)
2312 #'(val ...)
2313 #'(e1 e2 ...)))
2314 ((_ f ((id val) ...) e1 e2 ...)
2315 (and (id? #'f) (and-map id? #'(id ...)))
2316 (expand-let e r w s mod
2317 build-named-let
2318 #'(f id ...)
2319 #'(val ...)
2320 #'(e1 e2 ...)))
2321 (_ (syntax-violation 'let "bad let" (source-wrap e w s mod)))))))
2322
2323
2324 (global-extend 'core 'letrec
2325 (lambda (e r w s mod)
2326 (syntax-case e ()
2327 ((_ ((id val) ...) e1 e2 ...)
2328 (and-map id? #'(id ...))
2329 (let ((ids #'(id ...)))
2330 (if (not (valid-bound-ids? ids))
2331 (syntax-violation 'letrec "duplicate bound variable" e)
2332 (let ((labels (gen-labels ids))
2333 (new-vars (map gen-var ids)))
2334 (let ((w (make-binding-wrap ids labels w))
2335 (r (extend-var-env labels new-vars r)))
2336 (build-letrec s #f
2337 (map syntax->datum ids)
2338 new-vars
2339 (map (lambda (x) (expand x r w mod)) #'(val ...))
2340 (expand-body #'(e1 e2 ...)
2341 (source-wrap e w s mod) r w mod)))))))
2342 (_ (syntax-violation 'letrec "bad letrec" (source-wrap e w s mod))))))
2343
2344
2345 (global-extend 'core 'letrec*
2346 (lambda (e r w s mod)
2347 (syntax-case e ()
2348 ((_ ((id val) ...) e1 e2 ...)
2349 (and-map id? #'(id ...))
2350 (let ((ids #'(id ...)))
2351 (if (not (valid-bound-ids? ids))
2352 (syntax-violation 'letrec* "duplicate bound variable" e)
2353 (let ((labels (gen-labels ids))
2354 (new-vars (map gen-var ids)))
2355 (let ((w (make-binding-wrap ids labels w))
2356 (r (extend-var-env labels new-vars r)))
2357 (build-letrec s #t
2358 (map syntax->datum ids)
2359 new-vars
2360 (map (lambda (x) (expand x r w mod)) #'(val ...))
2361 (expand-body #'(e1 e2 ...)
2362 (source-wrap e w s mod) r w mod)))))))
2363 (_ (syntax-violation 'letrec* "bad letrec*" (source-wrap e w s mod))))))
2364
2365
2366 (global-extend
2367 'core 'set!
2368 (lambda (e r w s mod)
2369 (syntax-case e ()
2370 ((_ id val)
2371 (id? #'id)
2372 (call-with-values
2373 (lambda () (resolve-identifier #'id w r mod #t))
2374 (lambda (type value id-mod)
2375 (case type
2376 ((lexical)
2377 (build-lexical-assignment s (syntax->datum #'id) value
2378 (expand #'val r w mod)))
2379 ((global)
2380 (build-global-assignment s value (expand #'val r w mod) id-mod))
2381 ((macro)
2382 (if (procedure-property value 'variable-transformer)
2383 ;; As syntax-type does, call expand-macro with
2384 ;; the mod of the expression. Hmm.
2385 (expand (expand-macro value e r w s #f mod) r empty-wrap mod)
2386 (syntax-violation 'set! "not a variable transformer"
2387 (wrap e w mod)
2388 (wrap #'id w id-mod))))
2389 ((displaced-lexical)
2390 (syntax-violation 'set! "identifier out of context"
2391 (wrap #'id w mod)))
2392 (else
2393 (syntax-violation 'set! "bad set!" (source-wrap e w s mod)))))))
2394 ((_ (head tail ...) val)
2395 (call-with-values
2396 (lambda () (syntax-type #'head r empty-wrap no-source #f mod #t))
2397 (lambda (type value ee* ee ww ss modmod)
2398 (case type
2399 ((module-ref)
2400 (let ((val (expand #'val r w mod)))
2401 (call-with-values (lambda () (value #'(head tail ...) r w mod))
2402 (lambda (e r w s* mod)
2403 (syntax-case e ()
2404 (e (id? #'e)
2405 (build-global-assignment s (syntax->datum #'e)
2406 val mod)))))))
2407 (else
2408 (build-call s
2409 (expand #'(setter head) r w mod)
2410 (map (lambda (e) (expand e r w mod))
2411 #'(tail ... val))))))))
2412 (_ (syntax-violation 'set! "bad set!" (source-wrap e w s mod))))))
2413
2414 (global-extend 'module-ref '@
2415 (lambda (e r w mod)
2416 (syntax-case e ()
2417 ((_ (mod ...) id)
2418 (and (and-map id? #'(mod ...)) (id? #'id))
2419 ;; Strip the wrap from the identifier and return top-wrap
2420 ;; so that the identifier will not be captured by lexicals.
2421 (values (syntax->datum #'id) r top-wrap #f
2422 (syntax->datum
2423 #'(public mod ...)))))))
2424
2425 (global-extend 'module-ref '@@
2426 (lambda (e r w mod)
2427 (define remodulate
2428 (lambda (x mod)
2429 (cond ((pair? x)
2430 (cons (remodulate (car x) mod)
2431 (remodulate (cdr x) mod)))
2432 ((syntax-object? x)
2433 (make-syntax-object
2434 (remodulate (syntax-object-expression x) mod)
2435 (syntax-object-wrap x)
2436 ;; hither the remodulation
2437 mod))
2438 ((vector? x)
2439 (let* ((n (vector-length x)) (v (make-vector n)))
2440 (do ((i 0 (fx+ i 1)))
2441 ((fx= i n) v)
2442 (vector-set! v i (remodulate (vector-ref x i) mod)))))
2443 (else x))))
2444 (syntax-case e (@@ primitive)
2445 ((_ primitive id)
2446 (and (id? #'id)
2447 (equal? (cdr (if (syntax-object? #'id)
2448 (syntax-object-module #'id)
2449 mod))
2450 '(guile)))
2451 ;; Strip the wrap from the identifier and return top-wrap
2452 ;; so that the identifier will not be captured by lexicals.
2453 (values (syntax->datum #'id) r top-wrap #f '(primitive)))
2454 ((_ (mod ...) id)
2455 (and (and-map id? #'(mod ...)) (id? #'id))
2456 ;; Strip the wrap from the identifier and return top-wrap
2457 ;; so that the identifier will not be captured by lexicals.
2458 (values (syntax->datum #'id) r top-wrap #f
2459 (syntax->datum
2460 #'(private mod ...))))
2461 ((_ @@ (mod ...) exp)
2462 (and-map id? #'(mod ...))
2463 ;; This is a special syntax used to support R6RS library forms.
2464 ;; Unlike the syntax above, the last item is not restricted to
2465 ;; be a single identifier, and the syntax objects are kept
2466 ;; intact, with only their module changed.
2467 (let ((mod (syntax->datum #'(private mod ...))))
2468 (values (remodulate #'exp mod)
2469 r w (source-annotation #'exp)
2470 mod))))))
2471
2472 (global-extend 'core 'if
2473 (lambda (e r w s mod)
2474 (syntax-case e ()
2475 ((_ test then)
2476 (build-conditional
2477 s
2478 (expand #'test r w mod)
2479 (expand #'then r w mod)
2480 (build-void no-source)))
2481 ((_ test then else)
2482 (build-conditional
2483 s
2484 (expand #'test r w mod)
2485 (expand #'then r w mod)
2486 (expand #'else r w mod))))))
2487
2488 (global-extend 'begin 'begin '())
2489
2490 (global-extend 'define 'define '())
2491
2492 (global-extend 'define-syntax 'define-syntax '())
2493 (global-extend 'define-syntax-parameter 'define-syntax-parameter '())
2494
2495 (global-extend 'eval-when 'eval-when '())
2496
2497 (global-extend 'core 'syntax-case
2498 (let ()
2499 (define convert-pattern
2500 ;; accepts pattern & keys
2501 ;; returns $sc-dispatch pattern & ids
2502 (lambda (pattern keys ellipsis?)
2503 (define cvt*
2504 (lambda (p* n ids)
2505 (syntax-case p* ()
2506 ((x . y)
2507 (call-with-values
2508 (lambda () (cvt* #'y n ids))
2509 (lambda (y ids)
2510 (call-with-values
2511 (lambda () (cvt #'x n ids))
2512 (lambda (x ids)
2513 (values (cons x y) ids))))))
2514 (_ (cvt p* n ids)))))
2515
2516 (define (v-reverse x)
2517 (let loop ((r '()) (x x))
2518 (if (not (pair? x))
2519 (values r x)
2520 (loop (cons (car x) r) (cdr x)))))
2521
2522 (define cvt
2523 (lambda (p n ids)
2524 (if (id? p)
2525 (cond
2526 ((bound-id-member? p keys)
2527 (values (vector 'free-id p) ids))
2528 ((free-id=? p #'_)
2529 (values '_ ids))
2530 (else
2531 (values 'any (cons (cons p n) ids))))
2532 (syntax-case p ()
2533 ((x dots)
2534 (ellipsis? (syntax dots))
2535 (call-with-values
2536 (lambda () (cvt (syntax x) (fx+ n 1) ids))
2537 (lambda (p ids)
2538 (values (if (eq? p 'any) 'each-any (vector 'each p))
2539 ids))))
2540 ((x dots . ys)
2541 (ellipsis? (syntax dots))
2542 (call-with-values
2543 (lambda () (cvt* (syntax ys) n ids))
2544 (lambda (ys ids)
2545 (call-with-values
2546 (lambda () (cvt (syntax x) (+ n 1) ids))
2547 (lambda (x ids)
2548 (call-with-values
2549 (lambda () (v-reverse ys))
2550 (lambda (ys e)
2551 (values `#(each+ ,x ,ys ,e)
2552 ids))))))))
2553 ((x . y)
2554 (call-with-values
2555 (lambda () (cvt (syntax y) n ids))
2556 (lambda (y ids)
2557 (call-with-values
2558 (lambda () (cvt (syntax x) n ids))
2559 (lambda (x ids)
2560 (values (cons x y) ids))))))
2561 (() (values '() ids))
2562 (#(x ...)
2563 (call-with-values
2564 (lambda () (cvt (syntax (x ...)) n ids))
2565 (lambda (p ids) (values (vector 'vector p) ids))))
2566 (x (values (vector 'atom (strip p empty-wrap)) ids))))))
2567 (cvt pattern 0 '())))
2568
2569 (define build-dispatch-call
2570 (lambda (pvars exp y r mod)
2571 (let ((ids (map car pvars)) (levels (map cdr pvars)))
2572 (let ((labels (gen-labels ids)) (new-vars (map gen-var ids)))
2573 (build-primcall
2574 no-source
2575 'apply
2576 (list (build-simple-lambda no-source (map syntax->datum ids) #f new-vars '()
2577 (expand exp
2578 (extend-env
2579 labels
2580 (map (lambda (var level)
2581 (make-binding 'syntax `(,var . ,level)))
2582 new-vars
2583 (map cdr pvars))
2584 r)
2585 (make-binding-wrap ids labels empty-wrap)
2586 mod))
2587 y))))))
2588
2589 (define gen-clause
2590 (lambda (x keys clauses r pat fender exp mod)
2591 (call-with-values
2592 (lambda () (convert-pattern pat keys (lambda (e) (ellipsis? e r mod))))
2593 (lambda (p pvars)
2594 (cond
2595 ((not (and-map (lambda (x) (not (ellipsis? (car x) r mod))) pvars))
2596 (syntax-violation 'syntax-case "misplaced ellipsis" pat))
2597 ((not (distinct-bound-ids? (map car pvars)))
2598 (syntax-violation 'syntax-case "duplicate pattern variable" pat))
2599 (else
2600 (let ((y (gen-var 'tmp)))
2601 ;; fat finger binding and references to temp variable y
2602 (build-call no-source
2603 (build-simple-lambda no-source (list 'tmp) #f (list y) '()
2604 (let ((y (build-lexical-reference 'value no-source
2605 'tmp y)))
2606 (build-conditional no-source
2607 (syntax-case fender ()
2608 (#t y)
2609 (_ (build-conditional no-source
2610 y
2611 (build-dispatch-call pvars fender y r mod)
2612 (build-data no-source #f))))
2613 (build-dispatch-call pvars exp y r mod)
2614 (gen-syntax-case x keys clauses r mod))))
2615 (list (if (eq? p 'any)
2616 (build-primcall no-source 'list (list x))
2617 (build-primcall no-source '$sc-dispatch
2618 (list x (build-data no-source p)))))))))))))
2619
2620 (define gen-syntax-case
2621 (lambda (x keys clauses r mod)
2622 (if (null? clauses)
2623 (build-primcall no-source 'syntax-violation
2624 (list (build-data no-source #f)
2625 (build-data no-source
2626 "source expression failed to match any pattern")
2627 x))
2628 (syntax-case (car clauses) ()
2629 ((pat exp)
2630 (if (and (id? #'pat)
2631 (and-map (lambda (x) (not (free-id=? #'pat x)))
2632 (cons #'(... ...) keys)))
2633 (if (free-id=? #'pat #'_)
2634 (expand #'exp r empty-wrap mod)
2635 (let ((labels (list (gen-label)))
2636 (var (gen-var #'pat)))
2637 (build-call no-source
2638 (build-simple-lambda
2639 no-source (list (syntax->datum #'pat)) #f (list var)
2640 '()
2641 (expand #'exp
2642 (extend-env labels
2643 (list (make-binding 'syntax `(,var . 0)))
2644 r)
2645 (make-binding-wrap #'(pat)
2646 labels empty-wrap)
2647 mod))
2648 (list x))))
2649 (gen-clause x keys (cdr clauses) r
2650 #'pat #t #'exp mod)))
2651 ((pat fender exp)
2652 (gen-clause x keys (cdr clauses) r
2653 #'pat #'fender #'exp mod))
2654 (_ (syntax-violation 'syntax-case "invalid clause"
2655 (car clauses)))))))
2656
2657 (lambda (e r w s mod)
2658 (let ((e (source-wrap e w s mod)))
2659 (syntax-case e ()
2660 ((_ val (key ...) m ...)
2661 (if (and-map (lambda (x) (and (id? x) (not (ellipsis? x r mod))))
2662 #'(key ...))
2663 (let ((x (gen-var 'tmp)))
2664 ;; fat finger binding and references to temp variable x
2665 (build-call s
2666 (build-simple-lambda no-source (list 'tmp) #f (list x) '()
2667 (gen-syntax-case (build-lexical-reference 'value no-source
2668 'tmp x)
2669 #'(key ...) #'(m ...)
2670 r
2671 mod))
2672 (list (expand #'val r empty-wrap mod))))
2673 (syntax-violation 'syntax-case "invalid literals list" e))))))))
2674
2675 ;; The portable macroexpand seeds expand-top's mode m with 'e (for
2676 ;; evaluating) and esew (which stands for "eval syntax expanders
2677 ;; when") with '(eval). In Chez Scheme, m is set to 'c instead of e
2678 ;; if we are compiling a file, and esew is set to
2679 ;; (eval-syntactic-expanders-when), which defaults to the list
2680 ;; '(compile load eval). This means that, by default, top-level
2681 ;; syntactic definitions are evaluated immediately after they are
2682 ;; expanded, and the expanded definitions are also residualized into
2683 ;; the object file if we are compiling a file.
2684 (set! macroexpand
2685 (lambda* (x #:optional (m 'e) (esew '(eval)))
2686 (expand-top-sequence (list x) null-env top-wrap #f m esew
2687 (cons 'hygiene (module-name (current-module))))))
2688
2689 (set! identifier?
2690 (lambda (x)
2691 (nonsymbol-id? x)))
2692
2693 (set! datum->syntax
2694 (lambda (id datum)
2695 (make-syntax-object datum (syntax-object-wrap id)
2696 (syntax-object-module id))))
2697
2698 (set! syntax->datum
2699 ;; accepts any object, since syntax objects may consist partially
2700 ;; or entirely of unwrapped, nonsymbolic data
2701 (lambda (x)
2702 (strip x empty-wrap)))
2703
2704 (set! syntax-source
2705 (lambda (x) (source-annotation x)))
2706
2707 (set! generate-temporaries
2708 (lambda (ls)
2709 (arg-check list? ls 'generate-temporaries)
2710 (let ((mod (cons 'hygiene (module-name (current-module)))))
2711 (map (lambda (x) (wrap (gensym "t-") top-wrap mod)) ls))))
2712
2713 (set! free-identifier=?
2714 (lambda (x y)
2715 (arg-check nonsymbol-id? x 'free-identifier=?)
2716 (arg-check nonsymbol-id? y 'free-identifier=?)
2717 (free-id=? x y)))
2718
2719 (set! bound-identifier=?
2720 (lambda (x y)
2721 (arg-check nonsymbol-id? x 'bound-identifier=?)
2722 (arg-check nonsymbol-id? y 'bound-identifier=?)
2723 (bound-id=? x y)))
2724
2725 (set! syntax-violation
2726 (lambda* (who message form #:optional subform)
2727 (arg-check (lambda (x) (or (not x) (string? x) (symbol? x)))
2728 who 'syntax-violation)
2729 (arg-check string? message 'syntax-violation)
2730 (throw 'syntax-error who message
2731 (or (source-annotation subform)
2732 (source-annotation form))
2733 (strip form empty-wrap)
2734 (and subform (strip subform empty-wrap)))))
2735
2736 (let ()
2737 (define (syntax-module id)
2738 (arg-check nonsymbol-id? id 'syntax-module)
2739 (let ((mod (syntax-object-module id)))
2740 (and (not (equal? mod '(primitive)))
2741 (cdr mod))))
2742
2743 (define* (syntax-local-binding id #:key (resolve-syntax-parameters? #t))
2744 (arg-check nonsymbol-id? id 'syntax-local-binding)
2745 (with-transformer-environment
2746 (lambda (e r w s rib mod)
2747 (define (strip-anti-mark w)
2748 (let ((ms (wrap-marks w)) (s (wrap-subst w)))
2749 (if (and (pair? ms) (eq? (car ms) the-anti-mark))
2750 ;; output is from original text
2751 (make-wrap (cdr ms) (if rib (cons rib (cdr s)) (cdr s)))
2752 ;; output introduced by macro
2753 (make-wrap ms (if rib (cons rib s) s)))))
2754 (call-with-values (lambda ()
2755 (resolve-identifier
2756 (syntax-object-expression id)
2757 (strip-anti-mark (syntax-object-wrap id))
2758 r
2759 (syntax-object-module id)
2760 resolve-syntax-parameters?))
2761 (lambda (type value mod)
2762 (case type
2763 ((lexical) (values 'lexical value))
2764 ((macro) (values 'macro value))
2765 ((syntax-parameter) (values 'syntax-parameter (car value)))
2766 ((syntax) (values 'pattern-variable value))
2767 ((displaced-lexical) (values 'displaced-lexical #f))
2768 ((global)
2769 (if (equal? mod '(primitive))
2770 (values 'primitive value)
2771 (values 'global (cons value (cdr mod)))))
2772 ((ellipsis)
2773 (values 'ellipsis
2774 (make-syntax-object (syntax-object-expression value)
2775 (anti-mark (syntax-object-wrap value))
2776 (syntax-object-module value))))
2777 (else (values 'other #f))))))))
2778
2779 (define (syntax-locally-bound-identifiers id)
2780 (arg-check nonsymbol-id? id 'syntax-locally-bound-identifiers)
2781 (locally-bound-identifiers (syntax-object-wrap id)
2782 (syntax-object-module id)))
2783
2784 ;; Using define! instead of set! to avoid warnings at
2785 ;; compile-time, after the variables are stolen away into (system
2786 ;; syntax). See the end of boot-9.scm.
2787 ;;
2788 (define! 'syntax-module syntax-module)
2789 (define! 'syntax-local-binding syntax-local-binding)
2790 (define! 'syntax-locally-bound-identifiers syntax-locally-bound-identifiers))
2791
2792 ;; $sc-dispatch expects an expression and a pattern. If the expression
2793 ;; matches the pattern a list of the matching expressions for each
2794 ;; "any" is returned. Otherwise, #f is returned. (This use of #f will
2795 ;; not work on r4rs implementations that violate the ieee requirement
2796 ;; that #f and () be distinct.)
2797
2798 ;; The expression is matched with the pattern as follows:
2799
2800 ;; pattern: matches:
2801 ;; () empty list
2802 ;; any anything
2803 ;; (<pattern>1 . <pattern>2) (<pattern>1 . <pattern>2)
2804 ;; each-any (any*)
2805 ;; #(free-id <key>) <key> with free-identifier=?
2806 ;; #(each <pattern>) (<pattern>*)
2807 ;; #(each+ p1 (p2_1 ... p2_n) p3) (p1* (p2_n ... p2_1) . p3)
2808 ;; #(vector <pattern>) (list->vector <pattern>)
2809 ;; #(atom <object>) <object> with "equal?"
2810
2811 ;; Vector cops out to pair under assumption that vectors are rare. If
2812 ;; not, should convert to:
2813 ;; #(vector <pattern>*) #(<pattern>*)
2814
2815 (let ()
2816
2817 (define match-each
2818 (lambda (e p w mod)
2819 (cond
2820 ((pair? e)
2821 (let ((first (match (car e) p w '() mod)))
2822 (and first
2823 (let ((rest (match-each (cdr e) p w mod)))
2824 (and rest (cons first rest))))))
2825 ((null? e) '())
2826 ((syntax-object? e)
2827 (match-each (syntax-object-expression e)
2828 p
2829 (join-wraps w (syntax-object-wrap e))
2830 (syntax-object-module e)))
2831 (else #f))))
2832
2833 (define match-each+
2834 (lambda (e x-pat y-pat z-pat w r mod)
2835 (let f ((e e) (w w))
2836 (cond
2837 ((pair? e)
2838 (call-with-values (lambda () (f (cdr e) w))
2839 (lambda (xr* y-pat r)
2840 (if r
2841 (if (null? y-pat)
2842 (let ((xr (match (car e) x-pat w '() mod)))
2843 (if xr
2844 (values (cons xr xr*) y-pat r)
2845 (values #f #f #f)))
2846 (values
2847 '()
2848 (cdr y-pat)
2849 (match (car e) (car y-pat) w r mod)))
2850 (values #f #f #f)))))
2851 ((syntax-object? e)
2852 (f (syntax-object-expression e) (join-wraps w e)))
2853 (else
2854 (values '() y-pat (match e z-pat w r mod)))))))
2855
2856 (define match-each-any
2857 (lambda (e w mod)
2858 (cond
2859 ((pair? e)
2860 (let ((l (match-each-any (cdr e) w mod)))
2861 (and l (cons (wrap (car e) w mod) l))))
2862 ((null? e) '())
2863 ((syntax-object? e)
2864 (match-each-any (syntax-object-expression e)
2865 (join-wraps w (syntax-object-wrap e))
2866 mod))
2867 (else #f))))
2868
2869 (define match-empty
2870 (lambda (p r)
2871 (cond
2872 ((null? p) r)
2873 ((eq? p '_) r)
2874 ((eq? p 'any) (cons '() r))
2875 ((pair? p) (match-empty (car p) (match-empty (cdr p) r)))
2876 ((eq? p 'each-any) (cons '() r))
2877 (else
2878 (case (vector-ref p 0)
2879 ((each) (match-empty (vector-ref p 1) r))
2880 ((each+) (match-empty (vector-ref p 1)
2881 (match-empty
2882 (reverse (vector-ref p 2))
2883 (match-empty (vector-ref p 3) r))))
2884 ((free-id atom) r)
2885 ((vector) (match-empty (vector-ref p 1) r)))))))
2886
2887 (define combine
2888 (lambda (r* r)
2889 (if (null? (car r*))
2890 r
2891 (cons (map car r*) (combine (map cdr r*) r)))))
2892
2893 (define match*
2894 (lambda (e p w r mod)
2895 (cond
2896 ((null? p) (and (null? e) r))
2897 ((pair? p)
2898 (and (pair? e) (match (car e) (car p) w
2899 (match (cdr e) (cdr p) w r mod)
2900 mod)))
2901 ((eq? p 'each-any)
2902 (let ((l (match-each-any e w mod))) (and l (cons l r))))
2903 (else
2904 (case (vector-ref p 0)
2905 ((each)
2906 (if (null? e)
2907 (match-empty (vector-ref p 1) r)
2908 (let ((l (match-each e (vector-ref p 1) w mod)))
2909 (and l
2910 (let collect ((l l))
2911 (if (null? (car l))
2912 r
2913 (cons (map car l) (collect (map cdr l)))))))))
2914 ((each+)
2915 (call-with-values
2916 (lambda ()
2917 (match-each+ e (vector-ref p 1) (vector-ref p 2) (vector-ref p 3) w r mod))
2918 (lambda (xr* y-pat r)
2919 (and r
2920 (null? y-pat)
2921 (if (null? xr*)
2922 (match-empty (vector-ref p 1) r)
2923 (combine xr* r))))))
2924 ((free-id) (and (id? e) (free-id=? (wrap e w mod) (vector-ref p 1)) r))
2925 ((atom) (and (equal? (vector-ref p 1) (strip e w)) r))
2926 ((vector)
2927 (and (vector? e)
2928 (match (vector->list e) (vector-ref p 1) w r mod))))))))
2929
2930 (define match
2931 (lambda (e p w r mod)
2932 (cond
2933 ((not r) #f)
2934 ((eq? p '_) r)
2935 ((eq? p 'any) (cons (wrap e w mod) r))
2936 ((syntax-object? e)
2937 (match*
2938 (syntax-object-expression e)
2939 p
2940 (join-wraps w (syntax-object-wrap e))
2941 r
2942 (syntax-object-module e)))
2943 (else (match* e p w r mod)))))
2944
2945 (set! $sc-dispatch
2946 (lambda (e p)
2947 (cond
2948 ((eq? p 'any) (list e))
2949 ((eq? p '_) '())
2950 ((syntax-object? e)
2951 (match* (syntax-object-expression e)
2952 p (syntax-object-wrap e) '() (syntax-object-module e)))
2953 (else (match* e p empty-wrap '() #f))))))))
2954
2955
2956 (define-syntax with-syntax
2957 (lambda (x)
2958 (syntax-case x ()
2959 ((_ () e1 e2 ...)
2960 #'(let () e1 e2 ...))
2961 ((_ ((out in)) e1 e2 ...)
2962 #'(syntax-case in ()
2963 (out (let () e1 e2 ...))))
2964 ((_ ((out in) ...) e1 e2 ...)
2965 #'(syntax-case (list in ...) ()
2966 ((out ...) (let () e1 e2 ...)))))))
2967
2968 (define-syntax syntax-error
2969 (lambda (x)
2970 (syntax-case x ()
2971 ;; Extended internal syntax which provides the original form
2972 ;; as the first operand, for improved error reporting.
2973 ((_ (keyword . operands) message arg ...)
2974 (string? (syntax->datum #'message))
2975 (syntax-violation (syntax->datum #'keyword)
2976 (string-join (cons (syntax->datum #'message)
2977 (map (lambda (x)
2978 (object->string
2979 (syntax->datum x)))
2980 #'(arg ...))))
2981 (and (syntax->datum #'keyword)
2982 #'(keyword . operands))))
2983 ;; Standard R7RS syntax
2984 ((_ message arg ...)
2985 (string? (syntax->datum #'message))
2986 #'(syntax-error (#f) message arg ...)))))
2987
2988 (define-syntax syntax-rules
2989 (lambda (xx)
2990 (define (expand-clause clause)
2991 ;; Convert a 'syntax-rules' clause into a 'syntax-case' clause.
2992 (syntax-case clause (syntax-error)
2993 ;; If the template is a 'syntax-error' form, use the extended
2994 ;; internal syntax, which adds the original form as the first
2995 ;; operand for improved error reporting.
2996 (((keyword . pattern) (syntax-error message arg ...))
2997 (string? (syntax->datum #'message))
2998 #'((dummy . pattern) #'(syntax-error (dummy . pattern) message arg ...)))
2999 ;; Normal case
3000 (((keyword . pattern) template)
3001 #'((dummy . pattern) #'template))))
3002 (define (expand-syntax-rules dots keys docstrings clauses)
3003 (with-syntax
3004 (((k ...) keys)
3005 ((docstring ...) docstrings)
3006 ((((keyword . pattern) template) ...) clauses)
3007 ((clause ...) (map expand-clause clauses)))
3008 (with-syntax
3009 ((form #'(lambda (x)
3010 docstring ... ; optional docstring
3011 #((macro-type . syntax-rules)
3012 (patterns pattern ...)) ; embed patterns as procedure metadata
3013 (syntax-case x (k ...)
3014 clause ...))))
3015 (if dots
3016 (with-syntax ((dots dots))
3017 #'(with-ellipsis dots form))
3018 #'form))))
3019 (syntax-case xx ()
3020 ((_ (k ...) ((keyword . pattern) template) ...)
3021 (expand-syntax-rules #f #'(k ...) #'() #'(((keyword . pattern) template) ...)))
3022 ((_ (k ...) docstring ((keyword . pattern) template) ...)
3023 (string? (syntax->datum #'docstring))
3024 (expand-syntax-rules #f #'(k ...) #'(docstring) #'(((keyword . pattern) template) ...)))
3025 ((_ dots (k ...) ((keyword . pattern) template) ...)
3026 (identifier? #'dots)
3027 (expand-syntax-rules #'dots #'(k ...) #'() #'(((keyword . pattern) template) ...)))
3028 ((_ dots (k ...) docstring ((keyword . pattern) template) ...)
3029 (and (identifier? #'dots) (string? (syntax->datum #'docstring)))
3030 (expand-syntax-rules #'dots #'(k ...) #'(docstring) #'(((keyword . pattern) template) ...))))))
3031
3032 (define-syntax define-syntax-rule
3033 (lambda (x)
3034 (syntax-case x ()
3035 ((_ (name . pattern) template)
3036 #'(define-syntax name
3037 (syntax-rules ()
3038 ((_ . pattern) template))))
3039 ((_ (name . pattern) docstring template)
3040 (string? (syntax->datum #'docstring))
3041 #'(define-syntax name
3042 (syntax-rules ()
3043 docstring
3044 ((_ . pattern) template)))))))
3045
3046 (define-syntax let*
3047 (lambda (x)
3048 (syntax-case x ()
3049 ((let* ((x v) ...) e1 e2 ...)
3050 (and-map identifier? #'(x ...))
3051 (let f ((bindings #'((x v) ...)))
3052 (if (null? bindings)
3053 #'(let () e1 e2 ...)
3054 (with-syntax ((body (f (cdr bindings)))
3055 (binding (car bindings)))
3056 #'(let (binding) body))))))))
3057
3058 (define-syntax quasiquote
3059 (let ()
3060 (define (quasi p lev)
3061 (syntax-case p (unquote quasiquote)
3062 ((unquote p)
3063 (if (= lev 0)
3064 #'("value" p)
3065 (quasicons #'("quote" unquote) (quasi #'(p) (- lev 1)))))
3066 ((quasiquote p) (quasicons #'("quote" quasiquote) (quasi #'(p) (+ lev 1))))
3067 ((p . q)
3068 (syntax-case #'p (unquote unquote-splicing)
3069 ((unquote p ...)
3070 (if (= lev 0)
3071 (quasilist* #'(("value" p) ...) (quasi #'q lev))
3072 (quasicons
3073 (quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
3074 (quasi #'q lev))))
3075 ((unquote-splicing p ...)
3076 (if (= lev 0)
3077 (quasiappend #'(("value" p) ...) (quasi #'q lev))
3078 (quasicons
3079 (quasicons #'("quote" unquote-splicing) (quasi #'(p ...) (- lev 1)))
3080 (quasi #'q lev))))
3081 (_ (quasicons (quasi #'p lev) (quasi #'q lev)))))
3082 (#(x ...) (quasivector (vquasi #'(x ...) lev)))
3083 (p #'("quote" p))))
3084 (define (vquasi p lev)
3085 (syntax-case p ()
3086 ((p . q)
3087 (syntax-case #'p (unquote unquote-splicing)
3088 ((unquote p ...)
3089 (if (= lev 0)
3090 (quasilist* #'(("value" p) ...) (vquasi #'q lev))
3091 (quasicons
3092 (quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
3093 (vquasi #'q lev))))
3094 ((unquote-splicing p ...)
3095 (if (= lev 0)
3096 (quasiappend #'(("value" p) ...) (vquasi #'q lev))
3097 (quasicons
3098 (quasicons
3099 #'("quote" unquote-splicing)
3100 (quasi #'(p ...) (- lev 1)))
3101 (vquasi #'q lev))))
3102 (_ (quasicons (quasi #'p lev) (vquasi #'q lev)))))
3103 (() #'("quote" ()))))
3104 (define (quasicons x y)
3105 (with-syntax ((x x) (y y))
3106 (syntax-case #'y ()
3107 (("quote" dy)
3108 (syntax-case #'x ()
3109 (("quote" dx) #'("quote" (dx . dy)))
3110 (_ (if (null? #'dy) #'("list" x) #'("list*" x y)))))
3111 (("list" . stuff) #'("list" x . stuff))
3112 (("list*" . stuff) #'("list*" x . stuff))
3113 (_ #'("list*" x y)))))
3114 (define (quasiappend x y)
3115 (syntax-case y ()
3116 (("quote" ())
3117 (cond
3118 ((null? x) #'("quote" ()))
3119 ((null? (cdr x)) (car x))
3120 (else (with-syntax (((p ...) x)) #'("append" p ...)))))
3121 (_
3122 (cond
3123 ((null? x) y)
3124 (else (with-syntax (((p ...) x) (y y)) #'("append" p ... y)))))))
3125 (define (quasilist* x y)
3126 (let f ((x x))
3127 (if (null? x)
3128 y
3129 (quasicons (car x) (f (cdr x))))))
3130 (define (quasivector x)
3131 (syntax-case x ()
3132 (("quote" (x ...)) #'("quote" #(x ...)))
3133 (_
3134 (let f ((y x) (k (lambda (ls) #`("vector" #,@ls))))
3135 (syntax-case y ()
3136 (("quote" (y ...)) (k #'(("quote" y) ...)))
3137 (("list" y ...) (k #'(y ...)))
3138 (("list*" y ... z) (f #'z (lambda (ls) (k (append #'(y ...) ls)))))
3139 (else #`("list->vector" #,x)))))))
3140 (define (emit x)
3141 (syntax-case x ()
3142 (("quote" x) #''x)
3143 (("list" x ...) #`(list #,@(map emit #'(x ...))))
3144 ;; could emit list* for 3+ arguments if implementation supports
3145 ;; list*
3146 (("list*" x ... y)
3147 (let f ((x* #'(x ...)))
3148 (if (null? x*)
3149 (emit #'y)
3150 #`(cons #,(emit (car x*)) #,(f (cdr x*))))))
3151 (("append" x ...) #`(append #,@(map emit #'(x ...))))
3152 (("vector" x ...) #`(vector #,@(map emit #'(x ...))))
3153 (("list->vector" x) #`(list->vector #,(emit #'x)))
3154 (("value" x) #'x)))
3155 (lambda (x)
3156 (syntax-case x ()
3157 ;; convert to intermediate language, combining introduced (but
3158 ;; not unquoted source) quote expressions where possible and
3159 ;; choosing optimal construction code otherwise, then emit
3160 ;; Scheme code corresponding to the intermediate language forms.
3161 ((_ e) (emit (quasi #'e 0)))))))
3162
3163 (define-syntax include
3164 (lambda (x)
3165 (define read-file
3166 (lambda (fn dir k)
3167 (let* ((p (open-input-file
3168 (cond ((absolute-file-name? fn)
3169 fn)
3170 (dir
3171 (in-vicinity dir fn))
3172 (else
3173 (syntax-violation
3174 'include
3175 "relative file name only allowed when the include form is in a file"
3176 x)))))
3177 (enc (file-encoding p)))
3178
3179 ;; Choose the input encoding deterministically.
3180 (set-port-encoding! p (or enc "UTF-8"))
3181
3182 (let f ((x (read p))
3183 (result '()))
3184 (if (eof-object? x)
3185 (begin
3186 (close-input-port p)
3187 (reverse result))
3188 (f (read p)
3189 (cons (datum->syntax k x) result)))))))
3190 (let* ((src (syntax-source x))
3191 (file (and src (assq-ref src 'filename)))
3192 (dir (and (string? file) (dirname file))))
3193 (syntax-case x ()
3194 ((k filename)
3195 (let ((fn (syntax->datum #'filename)))
3196 (with-syntax (((exp ...) (read-file fn dir #'filename)))
3197 #'(begin exp ...))))))))
3198
3199 (define-syntax include-from-path
3200 (lambda (x)
3201 (syntax-case x ()
3202 ((k filename)
3203 (let ((fn (syntax->datum #'filename)))
3204 (with-syntax ((fn (datum->syntax
3205 #'filename
3206 (or (%search-load-path fn)
3207 (syntax-violation 'include-from-path
3208 "file not found in path"
3209 x #'filename)))))
3210 #'(include fn)))))))
3211
3212 (define-syntax unquote
3213 (lambda (x)
3214 (syntax-violation 'unquote
3215 "expression not valid outside of quasiquote"
3216 x)))
3217
3218 (define-syntax unquote-splicing
3219 (lambda (x)
3220 (syntax-violation 'unquote-splicing
3221 "expression not valid outside of quasiquote"
3222 x)))
3223
3224 (define (make-variable-transformer proc)
3225 (if (procedure? proc)
3226 (let ((trans (lambda (x)
3227 #((macro-type . variable-transformer))
3228 (proc x))))
3229 (set-procedure-property! trans 'variable-transformer #t)
3230 trans)
3231 (error "variable transformer not a procedure" proc)))
3232
3233 (define-syntax identifier-syntax
3234 (lambda (xx)
3235 (syntax-case xx (set!)
3236 ((_ e)
3237 #'(lambda (x)
3238 #((macro-type . identifier-syntax))
3239 (syntax-case x ()
3240 (id
3241 (identifier? #'id)
3242 #'e)
3243 ((_ x (... ...))
3244 #'(e x (... ...))))))
3245 ((_ (id exp1) ((set! var val) exp2))
3246 (and (identifier? #'id) (identifier? #'var))
3247 #'(make-variable-transformer
3248 (lambda (x)
3249 #((macro-type . variable-transformer))
3250 (syntax-case x (set!)
3251 ((set! var val) #'exp2)
3252 ((id x (... ...)) #'(exp1 x (... ...)))
3253 (id (identifier? #'id) #'exp1))))))))
3254
3255 (define-syntax define*
3256 (lambda (x)
3257 (syntax-case x ()
3258 ((_ (id . args) b0 b1 ...)
3259 #'(define id (lambda* args b0 b1 ...)))
3260 ((_ id val) (identifier? #'id)
3261 #'(define id val)))))