Implement SRFI-64 - A Scheme API for test suites.
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007,
4 @c 2008, 2009, 2010, 2011, 2012, 2013, 2014 Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @node Simple Data Types
8 @section Simple Generic Data Types
9
10 This chapter describes those of Guile's simple data types which are
11 primarily used for their role as items of generic data. By
12 @dfn{simple} we mean data types that are not primarily used as
13 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14 For the documentation of such @dfn{compound} data types, see
15 @ref{Compound Data Types}.
16
17 @c One of the great strengths of Scheme is that there is no straightforward
18 @c distinction between ``data'' and ``functionality''. For example,
19 @c Guile's support for dynamic linking could be described:
20
21 @c @itemize @bullet
22 @c @item
23 @c either in a ``data-centric'' way, as the behaviour and properties of the
24 @c ``dynamically linked object'' data type, and the operations that may be
25 @c applied to instances of this type
26
27 @c @item
28 @c or in a ``functionality-centric'' way, as the set of procedures that
29 @c constitute Guile's support for dynamic linking, in the context of the
30 @c module system.
31 @c @end itemize
32
33 @c The contents of this chapter are, therefore, a matter of judgment. By
34 @c @dfn{generic}, we mean to select those data types whose typical use as
35 @c @emph{data} in a wide variety of programming contexts is more important
36 @c than their use in the implementation of a particular piece of
37 @c @emph{functionality}. The last section of this chapter provides
38 @c references for all the data types that are documented not here but in a
39 @c ``functionality-centric'' way elsewhere in the manual.
40
41 @menu
42 * Booleans:: True/false values.
43 * Numbers:: Numerical data types.
44 * Characters:: Single characters.
45 * Character Sets:: Sets of characters.
46 * Strings:: Sequences of characters.
47 * Bytevectors:: Sequences of bytes.
48 * Symbols:: Symbols.
49 * Keywords:: Self-quoting, customizable display keywords.
50 * Other Types:: "Functionality-centric" data types.
51 @end menu
52
53
54 @node Booleans
55 @subsection Booleans
56 @tpindex Booleans
57
58 The two boolean values are @code{#t} for true and @code{#f} for false.
59 They can also be written as @code{#true} and @code{#false}, as per R7RS.
60
61 Boolean values are returned by predicate procedures, such as the general
62 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63 (@pxref{Equality}) and numerical and string comparison operators like
64 @code{string=?} (@pxref{String Comparison}) and @code{<=}
65 (@pxref{Comparison}).
66
67 @lisp
68 (<= 3 8)
69 @result{} #t
70
71 (<= 3 -3)
72 @result{} #f
73
74 (equal? "house" "houses")
75 @result{} #f
76
77 (eq? #f #f)
78 @result{}
79 #t
80 @end lisp
81
82 In test condition contexts like @code{if} and @code{cond}
83 (@pxref{Conditionals}), where a group of subexpressions will be
84 evaluated only if a @var{condition} expression evaluates to ``true'',
85 ``true'' means any value at all except @code{#f}.
86
87 @lisp
88 (if #t "yes" "no")
89 @result{} "yes"
90
91 (if 0 "yes" "no")
92 @result{} "yes"
93
94 (if #f "yes" "no")
95 @result{} "no"
96 @end lisp
97
98 A result of this asymmetry is that typical Scheme source code more often
99 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101 not necessary to represent an @code{if} or @code{cond} true value.
102
103 It is important to note that @code{#f} is @strong{not} equivalent to any
104 other Scheme value. In particular, @code{#f} is not the same as the
105 number 0 (like in C and C++), and not the same as the ``empty list''
106 (like in some Lisp dialects).
107
108 In C, the two Scheme boolean values are available as the two constants
109 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111 false when used in C conditionals. In order to test for it, use
112 @code{scm_is_false} or @code{scm_is_true}.
113
114 @rnindex not
115 @deffn {Scheme Procedure} not x
116 @deffnx {C Function} scm_not (x)
117 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118 @end deffn
119
120 @rnindex boolean?
121 @deffn {Scheme Procedure} boolean? obj
122 @deffnx {C Function} scm_boolean_p (obj)
123 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124 return @code{#f}.
125 @end deffn
126
127 @deftypevr {C Macro} SCM SCM_BOOL_T
128 The @code{SCM} representation of the Scheme object @code{#t}.
129 @end deftypevr
130
131 @deftypevr {C Macro} SCM SCM_BOOL_F
132 The @code{SCM} representation of the Scheme object @code{#f}.
133 @end deftypevr
134
135 @deftypefn {C Function} int scm_is_true (SCM obj)
136 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137 @end deftypefn
138
139 @deftypefn {C Function} int scm_is_false (SCM obj)
140 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141 @end deftypefn
142
143 @deftypefn {C Function} int scm_is_bool (SCM obj)
144 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145 return @code{0}.
146 @end deftypefn
147
148 @deftypefn {C Function} SCM scm_from_bool (int val)
149 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150 @end deftypefn
151
152 @deftypefn {C Function} int scm_to_bool (SCM val)
153 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156 You should probably use @code{scm_is_true} instead of this function
157 when you just want to test a @code{SCM} value for trueness.
158 @end deftypefn
159
160 @node Numbers
161 @subsection Numerical data types
162 @tpindex Numbers
163
164 Guile supports a rich ``tower'' of numerical types --- integer,
165 rational, real and complex --- and provides an extensive set of
166 mathematical and scientific functions for operating on numerical
167 data. This section of the manual documents those types and functions.
168
169 You may also find it illuminating to read R5RS's presentation of numbers
170 in Scheme, which is particularly clear and accessible: see
171 @ref{Numbers,,,r5rs,R5RS}.
172
173 @menu
174 * Numerical Tower:: Scheme's numerical "tower".
175 * Integers:: Whole numbers.
176 * Reals and Rationals:: Real and rational numbers.
177 * Complex Numbers:: Complex numbers.
178 * Exactness:: Exactness and inexactness.
179 * Number Syntax:: Read syntax for numerical data.
180 * Integer Operations:: Operations on integer values.
181 * Comparison:: Comparison predicates.
182 * Conversion:: Converting numbers to and from strings.
183 * Complex:: Complex number operations.
184 * Arithmetic:: Arithmetic functions.
185 * Scientific:: Scientific functions.
186 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
187 * Random:: Random number generation.
188 @end menu
189
190
191 @node Numerical Tower
192 @subsubsection Scheme's Numerical ``Tower''
193 @rnindex number?
194
195 Scheme's numerical ``tower'' consists of the following categories of
196 numbers:
197
198 @table @dfn
199 @item integers
200 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
201
202 @item rationals
203 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
204 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
205 pi (an irrational number) doesn't. These include integers
206 (@math{@var{n}/1}).
207
208 @item real numbers
209 The set of numbers that describes all possible positions along a
210 one-dimensional line. This includes rationals as well as irrational
211 numbers.
212
213 @item complex numbers
214 The set of numbers that describes all possible positions in a two
215 dimensional space. This includes real as well as imaginary numbers
216 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
217 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
218 @minus{}1.)
219 @end table
220
221 It is called a tower because each category ``sits on'' the one that
222 follows it, in the sense that every integer is also a rational, every
223 rational is also real, and every real number is also a complex number
224 (but with zero imaginary part).
225
226 In addition to the classification into integers, rationals, reals and
227 complex numbers, Scheme also distinguishes between whether a number is
228 represented exactly or not. For example, the result of
229 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
230 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
231 Instead, it stores an inexact approximation, using the C type
232 @code{double}.
233
234 Guile can represent exact rationals of any magnitude, inexact
235 rationals that fit into a C @code{double}, and inexact complex numbers
236 with @code{double} real and imaginary parts.
237
238 The @code{number?} predicate may be applied to any Scheme value to
239 discover whether the value is any of the supported numerical types.
240
241 @deffn {Scheme Procedure} number? obj
242 @deffnx {C Function} scm_number_p (obj)
243 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
244 @end deffn
245
246 For example:
247
248 @lisp
249 (number? 3)
250 @result{} #t
251
252 (number? "hello there!")
253 @result{} #f
254
255 (define pi 3.141592654)
256 (number? pi)
257 @result{} #t
258 @end lisp
259
260 @deftypefn {C Function} int scm_is_number (SCM obj)
261 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
262 @end deftypefn
263
264 The next few subsections document each of Guile's numerical data types
265 in detail.
266
267 @node Integers
268 @subsubsection Integers
269
270 @tpindex Integer numbers
271
272 @rnindex integer?
273
274 Integers are whole numbers, that is numbers with no fractional part,
275 such as 2, 83, and @minus{}3789.
276
277 Integers in Guile can be arbitrarily big, as shown by the following
278 example.
279
280 @lisp
281 (define (factorial n)
282 (let loop ((n n) (product 1))
283 (if (= n 0)
284 product
285 (loop (- n 1) (* product n)))))
286
287 (factorial 3)
288 @result{} 6
289
290 (factorial 20)
291 @result{} 2432902008176640000
292
293 (- (factorial 45))
294 @result{} -119622220865480194561963161495657715064383733760000000000
295 @end lisp
296
297 Readers whose background is in programming languages where integers are
298 limited by the need to fit into just 4 or 8 bytes of memory may find
299 this surprising, or suspect that Guile's representation of integers is
300 inefficient. In fact, Guile achieves a near optimal balance of
301 convenience and efficiency by using the host computer's native
302 representation of integers where possible, and a more general
303 representation where the required number does not fit in the native
304 form. Conversion between these two representations is automatic and
305 completely invisible to the Scheme level programmer.
306
307 C has a host of different integer types, and Guile offers a host of
308 functions to convert between them and the @code{SCM} representation.
309 For example, a C @code{int} can be handled with @code{scm_to_int} and
310 @code{scm_from_int}. Guile also defines a few C integer types of its
311 own, to help with differences between systems.
312
313 C integer types that are not covered can be handled with the generic
314 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
315 signed types, or with @code{scm_to_unsigned_integer} and
316 @code{scm_from_unsigned_integer} for unsigned types.
317
318 Scheme integers can be exact and inexact. For example, a number
319 written as @code{3.0} with an explicit decimal-point is inexact, but
320 it is also an integer. The functions @code{integer?} and
321 @code{scm_is_integer} report true for such a number, but the functions
322 @code{exact-integer?}, @code{scm_is_exact_integer},
323 @code{scm_is_signed_integer}, and @code{scm_is_unsigned_integer} only
324 allow exact integers and thus report false. Likewise, the conversion
325 functions like @code{scm_to_signed_integer} only accept exact
326 integers.
327
328 The motivation for this behavior is that the inexactness of a number
329 should not be lost silently. If you want to allow inexact integers,
330 you can explicitly insert a call to @code{inexact->exact} or to its C
331 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
332 be converted by this call into exact integers; inexact non-integers
333 will become exact fractions.)
334
335 @deffn {Scheme Procedure} integer? x
336 @deffnx {C Function} scm_integer_p (x)
337 Return @code{#t} if @var{x} is an exact or inexact integer number, else
338 return @code{#f}.
339
340 @lisp
341 (integer? 487)
342 @result{} #t
343
344 (integer? 3.0)
345 @result{} #t
346
347 (integer? -3.4)
348 @result{} #f
349
350 (integer? +inf.0)
351 @result{} #f
352 @end lisp
353 @end deffn
354
355 @deftypefn {C Function} int scm_is_integer (SCM x)
356 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
357 @end deftypefn
358
359 @deffn {Scheme Procedure} exact-integer? x
360 @deffnx {C Function} scm_exact_integer_p (x)
361 Return @code{#t} if @var{x} is an exact integer number, else
362 return @code{#f}.
363
364 @lisp
365 (exact-integer? 37)
366 @result{} #t
367
368 (exact-integer? 3.0)
369 @result{} #f
370 @end lisp
371 @end deffn
372
373 @deftypefn {C Function} int scm_is_exact_integer (SCM x)
374 This is equivalent to @code{scm_is_true (scm_exact_integer_p (x))}.
375 @end deftypefn
376
377 @defvr {C Type} scm_t_int8
378 @defvrx {C Type} scm_t_uint8
379 @defvrx {C Type} scm_t_int16
380 @defvrx {C Type} scm_t_uint16
381 @defvrx {C Type} scm_t_int32
382 @defvrx {C Type} scm_t_uint32
383 @defvrx {C Type} scm_t_int64
384 @defvrx {C Type} scm_t_uint64
385 @defvrx {C Type} scm_t_intmax
386 @defvrx {C Type} scm_t_uintmax
387 The C types are equivalent to the corresponding ISO C types but are
388 defined on all platforms, with the exception of @code{scm_t_int64} and
389 @code{scm_t_uint64}, which are only defined when a 64-bit type is
390 available. For example, @code{scm_t_int8} is equivalent to
391 @code{int8_t}.
392
393 You can regard these definitions as a stop-gap measure until all
394 platforms provide these types. If you know that all the platforms
395 that you are interested in already provide these types, it is better
396 to use them directly instead of the types provided by Guile.
397 @end defvr
398
399 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
400 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
401 Return @code{1} when @var{x} represents an exact integer that is
402 between @var{min} and @var{max}, inclusive.
403
404 These functions can be used to check whether a @code{SCM} value will
405 fit into a given range, such as the range of a given C integer type.
406 If you just want to convert a @code{SCM} value to a given C integer
407 type, use one of the conversion functions directly.
408 @end deftypefn
409
410 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
411 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
412 When @var{x} represents an exact integer that is between @var{min} and
413 @var{max} inclusive, return that integer. Else signal an error,
414 either a `wrong-type' error when @var{x} is not an exact integer, or
415 an `out-of-range' error when it doesn't fit the given range.
416 @end deftypefn
417
418 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
419 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
420 Return the @code{SCM} value that represents the integer @var{x}. This
421 function will always succeed and will always return an exact number.
422 @end deftypefn
423
424 @deftypefn {C Function} char scm_to_char (SCM x)
425 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
426 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
427 @deftypefnx {C Function} short scm_to_short (SCM x)
428 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
429 @deftypefnx {C Function} int scm_to_int (SCM x)
430 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
431 @deftypefnx {C Function} long scm_to_long (SCM x)
432 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
433 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
434 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
435 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
436 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
437 @deftypefnx {C Function} scm_t_ptrdiff scm_to_ptrdiff_t (SCM x)
438 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
439 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
440 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
441 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
442 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
443 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
444 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
445 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
446 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
447 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
448 When @var{x} represents an exact integer that fits into the indicated
449 C type, return that integer. Else signal an error, either a
450 `wrong-type' error when @var{x} is not an exact integer, or an
451 `out-of-range' error when it doesn't fit the given range.
452
453 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
454 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
455 the corresponding types are.
456 @end deftypefn
457
458 @deftypefn {C Function} SCM scm_from_char (char x)
459 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
460 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
461 @deftypefnx {C Function} SCM scm_from_short (short x)
462 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
463 @deftypefnx {C Function} SCM scm_from_int (int x)
464 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
465 @deftypefnx {C Function} SCM scm_from_long (long x)
466 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
467 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
468 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
469 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
470 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
471 @deftypefnx {C Function} SCM scm_from_ptrdiff_t (scm_t_ptrdiff x)
472 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
473 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
474 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
475 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
476 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
477 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
478 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
479 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
480 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
481 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
482 Return the @code{SCM} value that represents the integer @var{x}.
483 These functions will always succeed and will always return an exact
484 number.
485 @end deftypefn
486
487 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
488 Assign @var{val} to the multiple precision integer @var{rop}.
489 @var{val} must be an exact integer, otherwise an error will be
490 signalled. @var{rop} must have been initialized with @code{mpz_init}
491 before this function is called. When @var{rop} is no longer needed
492 the occupied space must be freed with @code{mpz_clear}.
493 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
494 @end deftypefn
495
496 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
497 Return the @code{SCM} value that represents @var{val}.
498 @end deftypefn
499
500 @node Reals and Rationals
501 @subsubsection Real and Rational Numbers
502 @tpindex Real numbers
503 @tpindex Rational numbers
504
505 @rnindex real?
506 @rnindex rational?
507
508 Mathematically, the real numbers are the set of numbers that describe
509 all possible points along a continuous, infinite, one-dimensional line.
510 The rational numbers are the set of all numbers that can be written as
511 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
512 All rational numbers are also real, but there are real numbers that
513 are not rational, for example @m{\sqrt{2}, the square root of 2}, and
514 @m{\pi,pi}.
515
516 Guile can represent both exact and inexact rational numbers, but it
517 cannot represent precise finite irrational numbers. Exact rationals are
518 represented by storing the numerator and denominator as two exact
519 integers. Inexact rationals are stored as floating point numbers using
520 the C type @code{double}.
521
522 Exact rationals are written as a fraction of integers. There must be
523 no whitespace around the slash:
524
525 @lisp
526 1/2
527 -22/7
528 @end lisp
529
530 Even though the actual encoding of inexact rationals is in binary, it
531 may be helpful to think of it as a decimal number with a limited
532 number of significant figures and a decimal point somewhere, since
533 this corresponds to the standard notation for non-whole numbers. For
534 example:
535
536 @lisp
537 0.34
538 -0.00000142857931198
539 -5648394822220000000000.0
540 4.0
541 @end lisp
542
543 The limited precision of Guile's encoding means that any finite ``real''
544 number in Guile can be written in a rational form, by multiplying and
545 then dividing by sufficient powers of 10 (or in fact, 2). For example,
546 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
547 by 100000000000000000. In Guile's current incarnation, therefore, the
548 @code{rational?} and @code{real?} predicates are equivalent for finite
549 numbers.
550
551
552 Dividing by an exact zero leads to a error message, as one might expect.
553 However, dividing by an inexact zero does not produce an error.
554 Instead, the result of the division is either plus or minus infinity,
555 depending on the sign of the divided number and the sign of the zero
556 divisor (some platforms support signed zeroes @samp{-0.0} and
557 @samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
558
559 Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
560 value, although they are actually considered numbers by Scheme.
561 Attempts to compare a @acronym{NaN} value with any number (including
562 itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
563 always returns @code{#f}. Although a @acronym{NaN} value is not
564 @code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
565 and other @acronym{NaN} values. However, the preferred way to test for
566 them is by using @code{nan?}.
567
568 The real @acronym{NaN} values and infinities are written @samp{+nan.0},
569 @samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
570 @code{read} as an extension to the usual Scheme syntax. These special
571 values are considered by Scheme to be inexact real numbers but not
572 rational. Note that non-real complex numbers may also contain
573 infinities or @acronym{NaN} values in their real or imaginary parts. To
574 test a real number to see if it is infinite, a @acronym{NaN} value, or
575 neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
576 Every real number in Scheme belongs to precisely one of those three
577 classes.
578
579 On platforms that follow @acronym{IEEE} 754 for their floating point
580 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
581 are implemented using the corresponding @acronym{IEEE} 754 values.
582 They behave in arithmetic operations like @acronym{IEEE} 754 describes
583 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
584
585 @deffn {Scheme Procedure} real? obj
586 @deffnx {C Function} scm_real_p (obj)
587 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
588 that the sets of integer and rational values form subsets of the set
589 of real numbers, so the predicate will also be fulfilled if @var{obj}
590 is an integer number or a rational number.
591 @end deffn
592
593 @deffn {Scheme Procedure} rational? x
594 @deffnx {C Function} scm_rational_p (x)
595 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
596 Note that the set of integer values forms a subset of the set of
597 rational numbers, i.e.@: the predicate will also be fulfilled if
598 @var{x} is an integer number.
599 @end deffn
600
601 @deffn {Scheme Procedure} rationalize x eps
602 @deffnx {C Function} scm_rationalize (x, eps)
603 Returns the @emph{simplest} rational number differing
604 from @var{x} by no more than @var{eps}.
605
606 As required by @acronym{R5RS}, @code{rationalize} only returns an
607 exact result when both its arguments are exact. Thus, you might need
608 to use @code{inexact->exact} on the arguments.
609
610 @lisp
611 (rationalize (inexact->exact 1.2) 1/100)
612 @result{} 6/5
613 @end lisp
614
615 @end deffn
616
617 @deffn {Scheme Procedure} inf? x
618 @deffnx {C Function} scm_inf_p (x)
619 Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
620 @samp{-inf.0}. Otherwise return @code{#f}.
621 @end deffn
622
623 @deffn {Scheme Procedure} nan? x
624 @deffnx {C Function} scm_nan_p (x)
625 Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
626 @code{#f} otherwise.
627 @end deffn
628
629 @deffn {Scheme Procedure} finite? x
630 @deffnx {C Function} scm_finite_p (x)
631 Return @code{#t} if the real number @var{x} is neither infinite nor a
632 NaN, @code{#f} otherwise.
633 @end deffn
634
635 @deffn {Scheme Procedure} nan
636 @deffnx {C Function} scm_nan ()
637 Return @samp{+nan.0}, a @acronym{NaN} value.
638 @end deffn
639
640 @deffn {Scheme Procedure} inf
641 @deffnx {C Function} scm_inf ()
642 Return @samp{+inf.0}, positive infinity.
643 @end deffn
644
645 @deffn {Scheme Procedure} numerator x
646 @deffnx {C Function} scm_numerator (x)
647 Return the numerator of the rational number @var{x}.
648 @end deffn
649
650 @deffn {Scheme Procedure} denominator x
651 @deffnx {C Function} scm_denominator (x)
652 Return the denominator of the rational number @var{x}.
653 @end deffn
654
655 @deftypefn {C Function} int scm_is_real (SCM val)
656 @deftypefnx {C Function} int scm_is_rational (SCM val)
657 Equivalent to @code{scm_is_true (scm_real_p (val))} and
658 @code{scm_is_true (scm_rational_p (val))}, respectively.
659 @end deftypefn
660
661 @deftypefn {C Function} double scm_to_double (SCM val)
662 Returns the number closest to @var{val} that is representable as a
663 @code{double}. Returns infinity for a @var{val} that is too large in
664 magnitude. The argument @var{val} must be a real number.
665 @end deftypefn
666
667 @deftypefn {C Function} SCM scm_from_double (double val)
668 Return the @code{SCM} value that represents @var{val}. The returned
669 value is inexact according to the predicate @code{inexact?}, but it
670 will be exactly equal to @var{val}.
671 @end deftypefn
672
673 @node Complex Numbers
674 @subsubsection Complex Numbers
675 @tpindex Complex numbers
676
677 @rnindex complex?
678
679 Complex numbers are the set of numbers that describe all possible points
680 in a two-dimensional space. The two coordinates of a particular point
681 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
682 the complex number that describes that point.
683
684 In Guile, complex numbers are written in rectangular form as the sum of
685 their real and imaginary parts, using the symbol @code{i} to indicate
686 the imaginary part.
687
688 @lisp
689 3+4i
690 @result{}
691 3.0+4.0i
692
693 (* 3-8i 2.3+0.3i)
694 @result{}
695 9.3-17.5i
696 @end lisp
697
698 @cindex polar form
699 @noindent
700 Polar form can also be used, with an @samp{@@} between magnitude and
701 angle,
702
703 @lisp
704 1@@3.141592 @result{} -1.0 (approx)
705 -1@@1.57079 @result{} 0.0-1.0i (approx)
706 @end lisp
707
708 Guile represents a complex number as a pair of inexact reals, so the
709 real and imaginary parts of a complex number have the same properties of
710 inexactness and limited precision as single inexact real numbers.
711
712 Note that each part of a complex number may contain any inexact real
713 value, including the special values @samp{+nan.0}, @samp{+inf.0} and
714 @samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
715 @samp{-0.0}.
716
717
718 @deffn {Scheme Procedure} complex? z
719 @deffnx {C Function} scm_complex_p (z)
720 Return @code{#t} if @var{z} is a complex number, @code{#f}
721 otherwise. Note that the sets of real, rational and integer
722 values form subsets of the set of complex numbers, i.e.@: the
723 predicate will also be fulfilled if @var{z} is a real,
724 rational or integer number.
725 @end deffn
726
727 @deftypefn {C Function} int scm_is_complex (SCM val)
728 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
729 @end deftypefn
730
731 @node Exactness
732 @subsubsection Exact and Inexact Numbers
733 @tpindex Exact numbers
734 @tpindex Inexact numbers
735
736 @rnindex exact?
737 @rnindex inexact?
738 @rnindex exact->inexact
739 @rnindex inexact->exact
740
741 R5RS requires that, with few exceptions, a calculation involving inexact
742 numbers always produces an inexact result. To meet this requirement,
743 Guile distinguishes between an exact integer value such as @samp{5} and
744 the corresponding inexact integer value which, to the limited precision
745 available, has no fractional part, and is printed as @samp{5.0}. Guile
746 will only convert the latter value to the former when forced to do so by
747 an invocation of the @code{inexact->exact} procedure.
748
749 The only exception to the above requirement is when the values of the
750 inexact numbers do not affect the result. For example @code{(expt n 0)}
751 is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
752 permitted to return an exact @samp{1}.
753
754 @deffn {Scheme Procedure} exact? z
755 @deffnx {C Function} scm_exact_p (z)
756 Return @code{#t} if the number @var{z} is exact, @code{#f}
757 otherwise.
758
759 @lisp
760 (exact? 2)
761 @result{} #t
762
763 (exact? 0.5)
764 @result{} #f
765
766 (exact? (/ 2))
767 @result{} #t
768 @end lisp
769
770 @end deffn
771
772 @deftypefn {C Function} int scm_is_exact (SCM z)
773 Return a @code{1} if the number @var{z} is exact, and @code{0}
774 otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
775
776 An alternate approch to testing the exactness of a number is to
777 use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
778 @end deftypefn
779
780 @deffn {Scheme Procedure} inexact? z
781 @deffnx {C Function} scm_inexact_p (z)
782 Return @code{#t} if the number @var{z} is inexact, @code{#f}
783 else.
784 @end deffn
785
786 @deftypefn {C Function} int scm_is_inexact (SCM z)
787 Return a @code{1} if the number @var{z} is inexact, and @code{0}
788 otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
789 @end deftypefn
790
791 @deffn {Scheme Procedure} inexact->exact z
792 @deffnx {C Function} scm_inexact_to_exact (z)
793 Return an exact number that is numerically closest to @var{z}, when
794 there is one. For inexact rationals, Guile returns the exact rational
795 that is numerically equal to the inexact rational. Inexact complex
796 numbers with a non-zero imaginary part can not be made exact.
797
798 @lisp
799 (inexact->exact 0.5)
800 @result{} 1/2
801 @end lisp
802
803 The following happens because 12/10 is not exactly representable as a
804 @code{double} (on most platforms). However, when reading a decimal
805 number that has been marked exact with the ``#e'' prefix, Guile is
806 able to represent it correctly.
807
808 @lisp
809 (inexact->exact 1.2)
810 @result{} 5404319552844595/4503599627370496
811
812 #e1.2
813 @result{} 6/5
814 @end lisp
815
816 @end deffn
817
818 @c begin (texi-doc-string "guile" "exact->inexact")
819 @deffn {Scheme Procedure} exact->inexact z
820 @deffnx {C Function} scm_exact_to_inexact (z)
821 Convert the number @var{z} to its inexact representation.
822 @end deffn
823
824
825 @node Number Syntax
826 @subsubsection Read Syntax for Numerical Data
827
828 The read syntax for integers is a string of digits, optionally
829 preceded by a minus or plus character, a code indicating the
830 base in which the integer is encoded, and a code indicating whether
831 the number is exact or inexact. The supported base codes are:
832
833 @table @code
834 @item #b
835 @itemx #B
836 the integer is written in binary (base 2)
837
838 @item #o
839 @itemx #O
840 the integer is written in octal (base 8)
841
842 @item #d
843 @itemx #D
844 the integer is written in decimal (base 10)
845
846 @item #x
847 @itemx #X
848 the integer is written in hexadecimal (base 16)
849 @end table
850
851 If the base code is omitted, the integer is assumed to be decimal. The
852 following examples show how these base codes are used.
853
854 @lisp
855 -13
856 @result{} -13
857
858 #d-13
859 @result{} -13
860
861 #x-13
862 @result{} -19
863
864 #b+1101
865 @result{} 13
866
867 #o377
868 @result{} 255
869 @end lisp
870
871 The codes for indicating exactness (which can, incidentally, be applied
872 to all numerical values) are:
873
874 @table @code
875 @item #e
876 @itemx #E
877 the number is exact
878
879 @item #i
880 @itemx #I
881 the number is inexact.
882 @end table
883
884 If the exactness indicator is omitted, the number is exact unless it
885 contains a radix point. Since Guile can not represent exact complex
886 numbers, an error is signalled when asking for them.
887
888 @lisp
889 (exact? 1.2)
890 @result{} #f
891
892 (exact? #e1.2)
893 @result{} #t
894
895 (exact? #e+1i)
896 ERROR: Wrong type argument
897 @end lisp
898
899 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
900 plus and minus infinity, respectively. The value must be written
901 exactly as shown, that is, they always must have a sign and exactly
902 one zero digit after the decimal point. It also understands
903 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
904 The sign is ignored for `not-a-number' and the value is always printed
905 as @samp{+nan.0}.
906
907 @node Integer Operations
908 @subsubsection Operations on Integer Values
909 @rnindex odd?
910 @rnindex even?
911 @rnindex quotient
912 @rnindex remainder
913 @rnindex modulo
914 @rnindex gcd
915 @rnindex lcm
916
917 @deffn {Scheme Procedure} odd? n
918 @deffnx {C Function} scm_odd_p (n)
919 Return @code{#t} if @var{n} is an odd number, @code{#f}
920 otherwise.
921 @end deffn
922
923 @deffn {Scheme Procedure} even? n
924 @deffnx {C Function} scm_even_p (n)
925 Return @code{#t} if @var{n} is an even number, @code{#f}
926 otherwise.
927 @end deffn
928
929 @c begin (texi-doc-string "guile" "quotient")
930 @c begin (texi-doc-string "guile" "remainder")
931 @deffn {Scheme Procedure} quotient n d
932 @deffnx {Scheme Procedure} remainder n d
933 @deffnx {C Function} scm_quotient (n, d)
934 @deffnx {C Function} scm_remainder (n, d)
935 Return the quotient or remainder from @var{n} divided by @var{d}. The
936 quotient is rounded towards zero, and the remainder will have the same
937 sign as @var{n}. In all cases quotient and remainder satisfy
938 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
939
940 @lisp
941 (remainder 13 4) @result{} 1
942 (remainder -13 4) @result{} -1
943 @end lisp
944
945 See also @code{truncate-quotient}, @code{truncate-remainder} and
946 related operations in @ref{Arithmetic}.
947 @end deffn
948
949 @c begin (texi-doc-string "guile" "modulo")
950 @deffn {Scheme Procedure} modulo n d
951 @deffnx {C Function} scm_modulo (n, d)
952 Return the remainder from @var{n} divided by @var{d}, with the same
953 sign as @var{d}.
954
955 @lisp
956 (modulo 13 4) @result{} 1
957 (modulo -13 4) @result{} 3
958 (modulo 13 -4) @result{} -3
959 (modulo -13 -4) @result{} -1
960 @end lisp
961
962 See also @code{floor-quotient}, @code{floor-remainder} and
963 related operations in @ref{Arithmetic}.
964 @end deffn
965
966 @c begin (texi-doc-string "guile" "gcd")
967 @deffn {Scheme Procedure} gcd x@dots{}
968 @deffnx {C Function} scm_gcd (x, y)
969 Return the greatest common divisor of all arguments.
970 If called without arguments, 0 is returned.
971
972 The C function @code{scm_gcd} always takes two arguments, while the
973 Scheme function can take an arbitrary number.
974 @end deffn
975
976 @c begin (texi-doc-string "guile" "lcm")
977 @deffn {Scheme Procedure} lcm x@dots{}
978 @deffnx {C Function} scm_lcm (x, y)
979 Return the least common multiple of the arguments.
980 If called without arguments, 1 is returned.
981
982 The C function @code{scm_lcm} always takes two arguments, while the
983 Scheme function can take an arbitrary number.
984 @end deffn
985
986 @deffn {Scheme Procedure} modulo-expt n k m
987 @deffnx {C Function} scm_modulo_expt (n, k, m)
988 Return @var{n} raised to the integer exponent
989 @var{k}, modulo @var{m}.
990
991 @lisp
992 (modulo-expt 2 3 5)
993 @result{} 3
994 @end lisp
995 @end deffn
996
997 @deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
998 @deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
999 Return two exact non-negative integers @var{s} and @var{r}
1000 such that @math{@var{k} = @var{s}^2 + @var{r}} and
1001 @math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
1002 An error is raised if @var{k} is not an exact non-negative integer.
1003
1004 @lisp
1005 (exact-integer-sqrt 10) @result{} 3 and 1
1006 @end lisp
1007 @end deftypefn
1008
1009 @node Comparison
1010 @subsubsection Comparison Predicates
1011 @rnindex zero?
1012 @rnindex positive?
1013 @rnindex negative?
1014
1015 The C comparison functions below always takes two arguments, while the
1016 Scheme functions can take an arbitrary number. Also keep in mind that
1017 the C functions return one of the Scheme boolean values
1018 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
1019 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
1020 y))} when testing the two Scheme numbers @code{x} and @code{y} for
1021 equality, for example.
1022
1023 @c begin (texi-doc-string "guile" "=")
1024 @deffn {Scheme Procedure} =
1025 @deffnx {C Function} scm_num_eq_p (x, y)
1026 Return @code{#t} if all parameters are numerically equal.
1027 @end deffn
1028
1029 @c begin (texi-doc-string "guile" "<")
1030 @deffn {Scheme Procedure} <
1031 @deffnx {C Function} scm_less_p (x, y)
1032 Return @code{#t} if the list of parameters is monotonically
1033 increasing.
1034 @end deffn
1035
1036 @c begin (texi-doc-string "guile" ">")
1037 @deffn {Scheme Procedure} >
1038 @deffnx {C Function} scm_gr_p (x, y)
1039 Return @code{#t} if the list of parameters is monotonically
1040 decreasing.
1041 @end deffn
1042
1043 @c begin (texi-doc-string "guile" "<=")
1044 @deffn {Scheme Procedure} <=
1045 @deffnx {C Function} scm_leq_p (x, y)
1046 Return @code{#t} if the list of parameters is monotonically
1047 non-decreasing.
1048 @end deffn
1049
1050 @c begin (texi-doc-string "guile" ">=")
1051 @deffn {Scheme Procedure} >=
1052 @deffnx {C Function} scm_geq_p (x, y)
1053 Return @code{#t} if the list of parameters is monotonically
1054 non-increasing.
1055 @end deffn
1056
1057 @c begin (texi-doc-string "guile" "zero?")
1058 @deffn {Scheme Procedure} zero? z
1059 @deffnx {C Function} scm_zero_p (z)
1060 Return @code{#t} if @var{z} is an exact or inexact number equal to
1061 zero.
1062 @end deffn
1063
1064 @c begin (texi-doc-string "guile" "positive?")
1065 @deffn {Scheme Procedure} positive? x
1066 @deffnx {C Function} scm_positive_p (x)
1067 Return @code{#t} if @var{x} is an exact or inexact number greater than
1068 zero.
1069 @end deffn
1070
1071 @c begin (texi-doc-string "guile" "negative?")
1072 @deffn {Scheme Procedure} negative? x
1073 @deffnx {C Function} scm_negative_p (x)
1074 Return @code{#t} if @var{x} is an exact or inexact number less than
1075 zero.
1076 @end deffn
1077
1078
1079 @node Conversion
1080 @subsubsection Converting Numbers To and From Strings
1081 @rnindex number->string
1082 @rnindex string->number
1083
1084 The following procedures read and write numbers according to their
1085 external representation as defined by R5RS (@pxref{Lexical structure,
1086 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1087 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1088 i18n)} module}, for locale-dependent number parsing.
1089
1090 @deffn {Scheme Procedure} number->string n [radix]
1091 @deffnx {C Function} scm_number_to_string (n, radix)
1092 Return a string holding the external representation of the
1093 number @var{n} in the given @var{radix}. If @var{n} is
1094 inexact, a radix of 10 will be used.
1095 @end deffn
1096
1097 @deffn {Scheme Procedure} string->number string [radix]
1098 @deffnx {C Function} scm_string_to_number (string, radix)
1099 Return a number of the maximally precise representation
1100 expressed by the given @var{string}. @var{radix} must be an
1101 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1102 is a default radix that may be overridden by an explicit radix
1103 prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
1104 supplied, then the default radix is 10. If string is not a
1105 syntactically valid notation for a number, then
1106 @code{string->number} returns @code{#f}.
1107 @end deffn
1108
1109 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1110 As per @code{string->number} above, but taking a C string, as pointer
1111 and length. The string characters should be in the current locale
1112 encoding (@code{locale} in the name refers only to that, there's no
1113 locale-dependent parsing).
1114 @end deftypefn
1115
1116
1117 @node Complex
1118 @subsubsection Complex Number Operations
1119 @rnindex make-rectangular
1120 @rnindex make-polar
1121 @rnindex real-part
1122 @rnindex imag-part
1123 @rnindex magnitude
1124 @rnindex angle
1125
1126 @deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1127 @deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1128 Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
1129 @end deffn
1130
1131 @deffn {Scheme Procedure} make-polar mag ang
1132 @deffnx {C Function} scm_make_polar (mag, ang)
1133 @cindex polar form
1134 Return the complex number @var{mag} * e^(i * @var{ang}).
1135 @end deffn
1136
1137 @c begin (texi-doc-string "guile" "real-part")
1138 @deffn {Scheme Procedure} real-part z
1139 @deffnx {C Function} scm_real_part (z)
1140 Return the real part of the number @var{z}.
1141 @end deffn
1142
1143 @c begin (texi-doc-string "guile" "imag-part")
1144 @deffn {Scheme Procedure} imag-part z
1145 @deffnx {C Function} scm_imag_part (z)
1146 Return the imaginary part of the number @var{z}.
1147 @end deffn
1148
1149 @c begin (texi-doc-string "guile" "magnitude")
1150 @deffn {Scheme Procedure} magnitude z
1151 @deffnx {C Function} scm_magnitude (z)
1152 Return the magnitude of the number @var{z}. This is the same as
1153 @code{abs} for real arguments, but also allows complex numbers.
1154 @end deffn
1155
1156 @c begin (texi-doc-string "guile" "angle")
1157 @deffn {Scheme Procedure} angle z
1158 @deffnx {C Function} scm_angle (z)
1159 Return the angle of the complex number @var{z}.
1160 @end deffn
1161
1162 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1163 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1164 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1165 respectively, but these functions take @code{double}s as their
1166 arguments.
1167 @end deftypefn
1168
1169 @deftypefn {C Function} double scm_c_real_part (z)
1170 @deftypefnx {C Function} double scm_c_imag_part (z)
1171 Returns the real or imaginary part of @var{z} as a @code{double}.
1172 @end deftypefn
1173
1174 @deftypefn {C Function} double scm_c_magnitude (z)
1175 @deftypefnx {C Function} double scm_c_angle (z)
1176 Returns the magnitude or angle of @var{z} as a @code{double}.
1177 @end deftypefn
1178
1179
1180 @node Arithmetic
1181 @subsubsection Arithmetic Functions
1182 @rnindex max
1183 @rnindex min
1184 @rnindex +
1185 @rnindex *
1186 @rnindex -
1187 @rnindex /
1188 @findex 1+
1189 @findex 1-
1190 @rnindex abs
1191 @rnindex floor
1192 @rnindex ceiling
1193 @rnindex truncate
1194 @rnindex round
1195 @rnindex euclidean/
1196 @rnindex euclidean-quotient
1197 @rnindex euclidean-remainder
1198 @rnindex floor/
1199 @rnindex floor-quotient
1200 @rnindex floor-remainder
1201 @rnindex ceiling/
1202 @rnindex ceiling-quotient
1203 @rnindex ceiling-remainder
1204 @rnindex truncate/
1205 @rnindex truncate-quotient
1206 @rnindex truncate-remainder
1207 @rnindex centered/
1208 @rnindex centered-quotient
1209 @rnindex centered-remainder
1210 @rnindex round/
1211 @rnindex round-quotient
1212 @rnindex round-remainder
1213
1214 The C arithmetic functions below always takes two arguments, while the
1215 Scheme functions can take an arbitrary number. When you need to
1216 invoke them with just one argument, for example to compute the
1217 equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1218 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1219
1220 @c begin (texi-doc-string "guile" "+")
1221 @deffn {Scheme Procedure} + z1 @dots{}
1222 @deffnx {C Function} scm_sum (z1, z2)
1223 Return the sum of all parameter values. Return 0 if called without any
1224 parameters.
1225 @end deffn
1226
1227 @c begin (texi-doc-string "guile" "-")
1228 @deffn {Scheme Procedure} - z1 z2 @dots{}
1229 @deffnx {C Function} scm_difference (z1, z2)
1230 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1231 the sum of all but the first argument are subtracted from the first
1232 argument.
1233 @end deffn
1234
1235 @c begin (texi-doc-string "guile" "*")
1236 @deffn {Scheme Procedure} * z1 @dots{}
1237 @deffnx {C Function} scm_product (z1, z2)
1238 Return the product of all arguments. If called without arguments, 1 is
1239 returned.
1240 @end deffn
1241
1242 @c begin (texi-doc-string "guile" "/")
1243 @deffn {Scheme Procedure} / z1 z2 @dots{}
1244 @deffnx {C Function} scm_divide (z1, z2)
1245 Divide the first argument by the product of the remaining arguments. If
1246 called with one argument @var{z1}, 1/@var{z1} is returned.
1247 @end deffn
1248
1249 @deffn {Scheme Procedure} 1+ z
1250 @deffnx {C Function} scm_oneplus (z)
1251 Return @math{@var{z} + 1}.
1252 @end deffn
1253
1254 @deffn {Scheme Procedure} 1- z
1255 @deffnx {C function} scm_oneminus (z)
1256 Return @math{@var{z} - 1}.
1257 @end deffn
1258
1259 @c begin (texi-doc-string "guile" "abs")
1260 @deffn {Scheme Procedure} abs x
1261 @deffnx {C Function} scm_abs (x)
1262 Return the absolute value of @var{x}.
1263
1264 @var{x} must be a number with zero imaginary part. To calculate the
1265 magnitude of a complex number, use @code{magnitude} instead.
1266 @end deffn
1267
1268 @c begin (texi-doc-string "guile" "max")
1269 @deffn {Scheme Procedure} max x1 x2 @dots{}
1270 @deffnx {C Function} scm_max (x1, x2)
1271 Return the maximum of all parameter values.
1272 @end deffn
1273
1274 @c begin (texi-doc-string "guile" "min")
1275 @deffn {Scheme Procedure} min x1 x2 @dots{}
1276 @deffnx {C Function} scm_min (x1, x2)
1277 Return the minimum of all parameter values.
1278 @end deffn
1279
1280 @c begin (texi-doc-string "guile" "truncate")
1281 @deffn {Scheme Procedure} truncate x
1282 @deffnx {C Function} scm_truncate_number (x)
1283 Round the inexact number @var{x} towards zero.
1284 @end deffn
1285
1286 @c begin (texi-doc-string "guile" "round")
1287 @deffn {Scheme Procedure} round x
1288 @deffnx {C Function} scm_round_number (x)
1289 Round the inexact number @var{x} to the nearest integer. When exactly
1290 halfway between two integers, round to the even one.
1291 @end deffn
1292
1293 @c begin (texi-doc-string "guile" "floor")
1294 @deffn {Scheme Procedure} floor x
1295 @deffnx {C Function} scm_floor (x)
1296 Round the number @var{x} towards minus infinity.
1297 @end deffn
1298
1299 @c begin (texi-doc-string "guile" "ceiling")
1300 @deffn {Scheme Procedure} ceiling x
1301 @deffnx {C Function} scm_ceiling (x)
1302 Round the number @var{x} towards infinity.
1303 @end deffn
1304
1305 @deftypefn {C Function} double scm_c_truncate (double x)
1306 @deftypefnx {C Function} double scm_c_round (double x)
1307 Like @code{scm_truncate_number} or @code{scm_round_number},
1308 respectively, but these functions take and return @code{double}
1309 values.
1310 @end deftypefn
1311
1312 @deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1313 @deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1314 @deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1315 @deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1316 @deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1317 @deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
1318 These procedures accept two real numbers @var{x} and @var{y}, where the
1319 divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1320 integer @var{q} and @code{euclidean-remainder} returns the real number
1321 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1322 @math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
1323 @var{r}, and is more efficient than computing each separately. Note
1324 that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1325 @math{floor(@var{x}/@var{y})}, otherwise it returns
1326 @math{ceiling(@var{x}/@var{y})}.
1327
1328 Note that these operators are equivalent to the R6RS operators
1329 @code{div}, @code{mod}, and @code{div-and-mod}.
1330
1331 @lisp
1332 (euclidean-quotient 123 10) @result{} 12
1333 (euclidean-remainder 123 10) @result{} 3
1334 (euclidean/ 123 10) @result{} 12 and 3
1335 (euclidean/ 123 -10) @result{} -12 and 3
1336 (euclidean/ -123 10) @result{} -13 and 7
1337 (euclidean/ -123 -10) @result{} 13 and 7
1338 (euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1339 (euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1340 @end lisp
1341 @end deftypefn
1342
1343 @deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1344 @deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1345 @deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1346 @deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1347 @deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1348 @deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1349 These procedures accept two real numbers @var{x} and @var{y}, where the
1350 divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1351 integer @var{q} and @code{floor-remainder} returns the real number
1352 @var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1353 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1354 both @var{q} and @var{r}, and is more efficient than computing each
1355 separately. Note that @var{r}, if non-zero, will have the same sign
1356 as @var{y}.
1357
1358 When @var{x} and @var{y} are integers, @code{floor-remainder} is
1359 equivalent to the R5RS integer-only operator @code{modulo}.
1360
1361 @lisp
1362 (floor-quotient 123 10) @result{} 12
1363 (floor-remainder 123 10) @result{} 3
1364 (floor/ 123 10) @result{} 12 and 3
1365 (floor/ 123 -10) @result{} -13 and -7
1366 (floor/ -123 10) @result{} -13 and 7
1367 (floor/ -123 -10) @result{} 12 and -3
1368 (floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1369 (floor/ 16/3 -10/7) @result{} -4 and -8/21
1370 @end lisp
1371 @end deftypefn
1372
1373 @deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1374 @deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1375 @deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1376 @deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1377 @deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1378 @deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1379 These procedures accept two real numbers @var{x} and @var{y}, where the
1380 divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1381 integer @var{q} and @code{ceiling-remainder} returns the real number
1382 @var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1383 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1384 both @var{q} and @var{r}, and is more efficient than computing each
1385 separately. Note that @var{r}, if non-zero, will have the opposite sign
1386 of @var{y}.
1387
1388 @lisp
1389 (ceiling-quotient 123 10) @result{} 13
1390 (ceiling-remainder 123 10) @result{} -7
1391 (ceiling/ 123 10) @result{} 13 and -7
1392 (ceiling/ 123 -10) @result{} -12 and 3
1393 (ceiling/ -123 10) @result{} -12 and -3
1394 (ceiling/ -123 -10) @result{} 13 and 7
1395 (ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1396 (ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1397 @end lisp
1398 @end deftypefn
1399
1400 @deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1401 @deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1402 @deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1403 @deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1404 @deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1405 @deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1406 These procedures accept two real numbers @var{x} and @var{y}, where the
1407 divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1408 integer @var{q} and @code{truncate-remainder} returns the real number
1409 @var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1410 and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1411 both @var{q} and @var{r}, and is more efficient than computing each
1412 separately. Note that @var{r}, if non-zero, will have the same sign
1413 as @var{x}.
1414
1415 When @var{x} and @var{y} are integers, these operators are
1416 equivalent to the R5RS integer-only operators @code{quotient} and
1417 @code{remainder}.
1418
1419 @lisp
1420 (truncate-quotient 123 10) @result{} 12
1421 (truncate-remainder 123 10) @result{} 3
1422 (truncate/ 123 10) @result{} 12 and 3
1423 (truncate/ 123 -10) @result{} -12 and 3
1424 (truncate/ -123 10) @result{} -12 and -3
1425 (truncate/ -123 -10) @result{} 12 and -3
1426 (truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1427 (truncate/ 16/3 -10/7) @result{} -3 and 22/21
1428 @end lisp
1429 @end deftypefn
1430
1431 @deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1432 @deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1433 @deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1434 @deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1435 @deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1436 @deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
1437 These procedures accept two real numbers @var{x} and @var{y}, where the
1438 divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1439 integer @var{q} and @code{centered-remainder} returns the real number
1440 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1441 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
1442 returns both @var{q} and @var{r}, and is more efficient than computing
1443 each separately.
1444
1445 Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1446 rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1447 exactly half-way between two integers, the tie is broken according to
1448 the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1449 positive infinity, otherwise they are rounded toward negative infinity.
1450 This is a consequence of the requirement that
1451 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
1452
1453 Note that these operators are equivalent to the R6RS operators
1454 @code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1455
1456 @lisp
1457 (centered-quotient 123 10) @result{} 12
1458 (centered-remainder 123 10) @result{} 3
1459 (centered/ 123 10) @result{} 12 and 3
1460 (centered/ 123 -10) @result{} -12 and 3
1461 (centered/ -123 10) @result{} -12 and -3
1462 (centered/ -123 -10) @result{} 12 and -3
1463 (centered/ 125 10) @result{} 13 and -5
1464 (centered/ 127 10) @result{} 13 and -3
1465 (centered/ 135 10) @result{} 14 and -5
1466 (centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1467 (centered/ 16/3 -10/7) @result{} -4 and -8/21
1468 @end lisp
1469 @end deftypefn
1470
1471 @deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1472 @deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1473 @deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1474 @deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1475 @deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1476 @deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1477 These procedures accept two real numbers @var{x} and @var{y}, where the
1478 divisor @var{y} must be non-zero. @code{round-quotient} returns the
1479 integer @var{q} and @code{round-remainder} returns the real number
1480 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1481 @var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1482 with ties going to the nearest even integer. @code{round/}
1483 returns both @var{q} and @var{r}, and is more efficient than computing
1484 each separately.
1485
1486 Note that @code{round/} and @code{centered/} are almost equivalent, but
1487 their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1488 between two integers. In this case, @code{round/} chooses the nearest
1489 even integer, whereas @code{centered/} chooses in such a way to satisfy
1490 the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1491 is stronger than the corresponding constraint for @code{round/},
1492 @math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1493 when @var{x} and @var{y} are integers, the number of possible remainders
1494 returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1495 possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1496 @var{y} is even.
1497
1498 @lisp
1499 (round-quotient 123 10) @result{} 12
1500 (round-remainder 123 10) @result{} 3
1501 (round/ 123 10) @result{} 12 and 3
1502 (round/ 123 -10) @result{} -12 and 3
1503 (round/ -123 10) @result{} -12 and -3
1504 (round/ -123 -10) @result{} 12 and -3
1505 (round/ 125 10) @result{} 12 and 5
1506 (round/ 127 10) @result{} 13 and -3
1507 (round/ 135 10) @result{} 14 and -5
1508 (round/ -123.2 -63.5) @result{} 2.0 and 3.8
1509 (round/ 16/3 -10/7) @result{} -4 and -8/21
1510 @end lisp
1511 @end deftypefn
1512
1513 @node Scientific
1514 @subsubsection Scientific Functions
1515
1516 The following procedures accept any kind of number as arguments,
1517 including complex numbers.
1518
1519 @rnindex sqrt
1520 @c begin (texi-doc-string "guile" "sqrt")
1521 @deffn {Scheme Procedure} sqrt z
1522 Return the square root of @var{z}. Of the two possible roots
1523 (positive and negative), the one with a positive real part is
1524 returned, or if that's zero then a positive imaginary part. Thus,
1525
1526 @example
1527 (sqrt 9.0) @result{} 3.0
1528 (sqrt -9.0) @result{} 0.0+3.0i
1529 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1530 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1531 @end example
1532 @end deffn
1533
1534 @rnindex expt
1535 @c begin (texi-doc-string "guile" "expt")
1536 @deffn {Scheme Procedure} expt z1 z2
1537 Return @var{z1} raised to the power of @var{z2}.
1538 @end deffn
1539
1540 @rnindex sin
1541 @c begin (texi-doc-string "guile" "sin")
1542 @deffn {Scheme Procedure} sin z
1543 Return the sine of @var{z}.
1544 @end deffn
1545
1546 @rnindex cos
1547 @c begin (texi-doc-string "guile" "cos")
1548 @deffn {Scheme Procedure} cos z
1549 Return the cosine of @var{z}.
1550 @end deffn
1551
1552 @rnindex tan
1553 @c begin (texi-doc-string "guile" "tan")
1554 @deffn {Scheme Procedure} tan z
1555 Return the tangent of @var{z}.
1556 @end deffn
1557
1558 @rnindex asin
1559 @c begin (texi-doc-string "guile" "asin")
1560 @deffn {Scheme Procedure} asin z
1561 Return the arcsine of @var{z}.
1562 @end deffn
1563
1564 @rnindex acos
1565 @c begin (texi-doc-string "guile" "acos")
1566 @deffn {Scheme Procedure} acos z
1567 Return the arccosine of @var{z}.
1568 @end deffn
1569
1570 @rnindex atan
1571 @c begin (texi-doc-string "guile" "atan")
1572 @deffn {Scheme Procedure} atan z
1573 @deffnx {Scheme Procedure} atan y x
1574 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1575 @end deffn
1576
1577 @rnindex exp
1578 @c begin (texi-doc-string "guile" "exp")
1579 @deffn {Scheme Procedure} exp z
1580 Return e to the power of @var{z}, where e is the base of natural
1581 logarithms (2.71828@dots{}).
1582 @end deffn
1583
1584 @rnindex log
1585 @c begin (texi-doc-string "guile" "log")
1586 @deffn {Scheme Procedure} log z
1587 Return the natural logarithm of @var{z}.
1588 @end deffn
1589
1590 @c begin (texi-doc-string "guile" "log10")
1591 @deffn {Scheme Procedure} log10 z
1592 Return the base 10 logarithm of @var{z}.
1593 @end deffn
1594
1595 @c begin (texi-doc-string "guile" "sinh")
1596 @deffn {Scheme Procedure} sinh z
1597 Return the hyperbolic sine of @var{z}.
1598 @end deffn
1599
1600 @c begin (texi-doc-string "guile" "cosh")
1601 @deffn {Scheme Procedure} cosh z
1602 Return the hyperbolic cosine of @var{z}.
1603 @end deffn
1604
1605 @c begin (texi-doc-string "guile" "tanh")
1606 @deffn {Scheme Procedure} tanh z
1607 Return the hyperbolic tangent of @var{z}.
1608 @end deffn
1609
1610 @c begin (texi-doc-string "guile" "asinh")
1611 @deffn {Scheme Procedure} asinh z
1612 Return the hyperbolic arcsine of @var{z}.
1613 @end deffn
1614
1615 @c begin (texi-doc-string "guile" "acosh")
1616 @deffn {Scheme Procedure} acosh z
1617 Return the hyperbolic arccosine of @var{z}.
1618 @end deffn
1619
1620 @c begin (texi-doc-string "guile" "atanh")
1621 @deffn {Scheme Procedure} atanh z
1622 Return the hyperbolic arctangent of @var{z}.
1623 @end deffn
1624
1625
1626 @node Bitwise Operations
1627 @subsubsection Bitwise Operations
1628
1629 For the following bitwise functions, negative numbers are treated as
1630 infinite precision twos-complements. For instance @math{-6} is bits
1631 @math{@dots{}111010}, with infinitely many ones on the left. It can
1632 be seen that adding 6 (binary 110) to such a bit pattern gives all
1633 zeros.
1634
1635 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1636 @deffnx {C Function} scm_logand (n1, n2)
1637 Return the bitwise @sc{and} of the integer arguments.
1638
1639 @lisp
1640 (logand) @result{} -1
1641 (logand 7) @result{} 7
1642 (logand #b111 #b011 #b001) @result{} 1
1643 @end lisp
1644 @end deffn
1645
1646 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1647 @deffnx {C Function} scm_logior (n1, n2)
1648 Return the bitwise @sc{or} of the integer arguments.
1649
1650 @lisp
1651 (logior) @result{} 0
1652 (logior 7) @result{} 7
1653 (logior #b000 #b001 #b011) @result{} 3
1654 @end lisp
1655 @end deffn
1656
1657 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1658 @deffnx {C Function} scm_loxor (n1, n2)
1659 Return the bitwise @sc{xor} of the integer arguments. A bit is
1660 set in the result if it is set in an odd number of arguments.
1661
1662 @lisp
1663 (logxor) @result{} 0
1664 (logxor 7) @result{} 7
1665 (logxor #b000 #b001 #b011) @result{} 2
1666 (logxor #b000 #b001 #b011 #b011) @result{} 1
1667 @end lisp
1668 @end deffn
1669
1670 @deffn {Scheme Procedure} lognot n
1671 @deffnx {C Function} scm_lognot (n)
1672 Return the integer which is the ones-complement of the integer
1673 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1674
1675 @lisp
1676 (number->string (lognot #b10000000) 2)
1677 @result{} "-10000001"
1678 (number->string (lognot #b0) 2)
1679 @result{} "-1"
1680 @end lisp
1681 @end deffn
1682
1683 @deffn {Scheme Procedure} logtest j k
1684 @deffnx {C Function} scm_logtest (j, k)
1685 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1686 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1687 calculating the @code{logand}, just testing for non-zero.
1688
1689 @lisp
1690 (logtest #b0100 #b1011) @result{} #f
1691 (logtest #b0100 #b0111) @result{} #t
1692 @end lisp
1693 @end deffn
1694
1695 @deffn {Scheme Procedure} logbit? index j
1696 @deffnx {C Function} scm_logbit_p (index, j)
1697 Test whether bit number @var{index} in @var{j} is set. @var{index}
1698 starts from 0 for the least significant bit.
1699
1700 @lisp
1701 (logbit? 0 #b1101) @result{} #t
1702 (logbit? 1 #b1101) @result{} #f
1703 (logbit? 2 #b1101) @result{} #t
1704 (logbit? 3 #b1101) @result{} #t
1705 (logbit? 4 #b1101) @result{} #f
1706 @end lisp
1707 @end deffn
1708
1709 @deffn {Scheme Procedure} ash n count
1710 @deffnx {C Function} scm_ash (n, count)
1711 Return @math{floor(n * 2^count)}.
1712 @var{n} and @var{count} must be exact integers.
1713
1714 With @var{n} viewed as an infinite-precision twos-complement
1715 integer, @code{ash} means a left shift introducing zero bits
1716 when @var{count} is positive, or a right shift dropping bits
1717 when @var{count} is negative. This is an ``arithmetic'' shift.
1718
1719 @lisp
1720 (number->string (ash #b1 3) 2) @result{} "1000"
1721 (number->string (ash #b1010 -1) 2) @result{} "101"
1722
1723 ;; -23 is bits ...11101001, -6 is bits ...111010
1724 (ash -23 -2) @result{} -6
1725 @end lisp
1726 @end deffn
1727
1728 @deffn {Scheme Procedure} round-ash n count
1729 @deffnx {C Function} scm_round_ash (n, count)
1730 Return @math{round(n * 2^count)}.
1731 @var{n} and @var{count} must be exact integers.
1732
1733 With @var{n} viewed as an infinite-precision twos-complement
1734 integer, @code{round-ash} means a left shift introducing zero
1735 bits when @var{count} is positive, or a right shift rounding
1736 to the nearest integer (with ties going to the nearest even
1737 integer) when @var{count} is negative. This is a rounded
1738 ``arithmetic'' shift.
1739
1740 @lisp
1741 (number->string (round-ash #b1 3) 2) @result{} \"1000\"
1742 (number->string (round-ash #b1010 -1) 2) @result{} \"101\"
1743 (number->string (round-ash #b1010 -2) 2) @result{} \"10\"
1744 (number->string (round-ash #b1011 -2) 2) @result{} \"11\"
1745 (number->string (round-ash #b1101 -2) 2) @result{} \"11\"
1746 (number->string (round-ash #b1110 -2) 2) @result{} \"100\"
1747 @end lisp
1748 @end deffn
1749
1750 @deffn {Scheme Procedure} logcount n
1751 @deffnx {C Function} scm_logcount (n)
1752 Return the number of bits in integer @var{n}. If @var{n} is
1753 positive, the 1-bits in its binary representation are counted.
1754 If negative, the 0-bits in its two's-complement binary
1755 representation are counted. If zero, 0 is returned.
1756
1757 @lisp
1758 (logcount #b10101010)
1759 @result{} 4
1760 (logcount 0)
1761 @result{} 0
1762 (logcount -2)
1763 @result{} 1
1764 @end lisp
1765 @end deffn
1766
1767 @deffn {Scheme Procedure} integer-length n
1768 @deffnx {C Function} scm_integer_length (n)
1769 Return the number of bits necessary to represent @var{n}.
1770
1771 For positive @var{n} this is how many bits to the most significant one
1772 bit. For negative @var{n} it's how many bits to the most significant
1773 zero bit in twos complement form.
1774
1775 @lisp
1776 (integer-length #b10101010) @result{} 8
1777 (integer-length #b1111) @result{} 4
1778 (integer-length 0) @result{} 0
1779 (integer-length -1) @result{} 0
1780 (integer-length -256) @result{} 8
1781 (integer-length -257) @result{} 9
1782 @end lisp
1783 @end deffn
1784
1785 @deffn {Scheme Procedure} integer-expt n k
1786 @deffnx {C Function} scm_integer_expt (n, k)
1787 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1788 integer, @var{n} can be any number.
1789
1790 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1791 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1792 @math{0^0} is 1.
1793
1794 @lisp
1795 (integer-expt 2 5) @result{} 32
1796 (integer-expt -3 3) @result{} -27
1797 (integer-expt 5 -3) @result{} 1/125
1798 (integer-expt 0 0) @result{} 1
1799 @end lisp
1800 @end deffn
1801
1802 @deffn {Scheme Procedure} bit-extract n start end
1803 @deffnx {C Function} scm_bit_extract (n, start, end)
1804 Return the integer composed of the @var{start} (inclusive)
1805 through @var{end} (exclusive) bits of @var{n}. The
1806 @var{start}th bit becomes the 0-th bit in the result.
1807
1808 @lisp
1809 (number->string (bit-extract #b1101101010 0 4) 2)
1810 @result{} "1010"
1811 (number->string (bit-extract #b1101101010 4 9) 2)
1812 @result{} "10110"
1813 @end lisp
1814 @end deffn
1815
1816
1817 @node Random
1818 @subsubsection Random Number Generation
1819
1820 Pseudo-random numbers are generated from a random state object, which
1821 can be created with @code{seed->random-state} or
1822 @code{datum->random-state}. An external representation (i.e.@: one
1823 which can written with @code{write} and read with @code{read}) of a
1824 random state object can be obtained via
1825 @code{random-state->datum}. The @var{state} parameter to the
1826 various functions below is optional, it defaults to the state object
1827 in the @code{*random-state*} variable.
1828
1829 @deffn {Scheme Procedure} copy-random-state [state]
1830 @deffnx {C Function} scm_copy_random_state (state)
1831 Return a copy of the random state @var{state}.
1832 @end deffn
1833
1834 @deffn {Scheme Procedure} random n [state]
1835 @deffnx {C Function} scm_random (n, state)
1836 Return a number in [0, @var{n}).
1837
1838 Accepts a positive integer or real n and returns a
1839 number of the same type between zero (inclusive) and
1840 @var{n} (exclusive). The values returned have a uniform
1841 distribution.
1842 @end deffn
1843
1844 @deffn {Scheme Procedure} random:exp [state]
1845 @deffnx {C Function} scm_random_exp (state)
1846 Return an inexact real in an exponential distribution with mean
1847 1. For an exponential distribution with mean @var{u} use @code{(*
1848 @var{u} (random:exp))}.
1849 @end deffn
1850
1851 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1852 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1853 Fills @var{vect} with inexact real random numbers the sum of whose
1854 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1855 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1856 the coordinates are uniformly distributed over the surface of the unit
1857 n-sphere.
1858 @end deffn
1859
1860 @deffn {Scheme Procedure} random:normal [state]
1861 @deffnx {C Function} scm_random_normal (state)
1862 Return an inexact real in a normal distribution. The distribution
1863 used has mean 0 and standard deviation 1. For a normal distribution
1864 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1865 (* @var{d} (random:normal)))}.
1866 @end deffn
1867
1868 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1869 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1870 Fills @var{vect} with inexact real random numbers that are
1871 independent and standard normally distributed
1872 (i.e., with mean 0 and variance 1).
1873 @end deffn
1874
1875 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1876 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1877 Fills @var{vect} with inexact real random numbers the sum of whose
1878 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1879 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1880 the coordinates are uniformly distributed within the unit
1881 @var{n}-sphere.
1882 @c FIXME: What does this mean, particularly the n-sphere part?
1883 @end deffn
1884
1885 @deffn {Scheme Procedure} random:uniform [state]
1886 @deffnx {C Function} scm_random_uniform (state)
1887 Return a uniformly distributed inexact real random number in
1888 [0,1).
1889 @end deffn
1890
1891 @deffn {Scheme Procedure} seed->random-state seed
1892 @deffnx {C Function} scm_seed_to_random_state (seed)
1893 Return a new random state using @var{seed}.
1894 @end deffn
1895
1896 @deffn {Scheme Procedure} datum->random-state datum
1897 @deffnx {C Function} scm_datum_to_random_state (datum)
1898 Return a new random state from @var{datum}, which should have been
1899 obtained by @code{random-state->datum}.
1900 @end deffn
1901
1902 @deffn {Scheme Procedure} random-state->datum state
1903 @deffnx {C Function} scm_random_state_to_datum (state)
1904 Return a datum representation of @var{state} that may be written out and
1905 read back with the Scheme reader.
1906 @end deffn
1907
1908 @deffn {Scheme Procedure} random-state-from-platform
1909 @deffnx {C Function} scm_random_state_from_platform ()
1910 Construct a new random state seeded from a platform-specific source of
1911 entropy, appropriate for use in non-security-critical applications.
1912 Currently @file{/dev/urandom} is tried first, or else the seed is based
1913 on the time, date, process ID, an address from a freshly allocated heap
1914 cell, an address from the local stack frame, and a high-resolution timer
1915 if available.
1916 @end deffn
1917
1918 @defvar *random-state*
1919 The global random state used by the above functions when the
1920 @var{state} parameter is not given.
1921 @end defvar
1922
1923 Note that the initial value of @code{*random-state*} is the same every
1924 time Guile starts up. Therefore, if you don't pass a @var{state}
1925 parameter to the above procedures, and you don't set
1926 @code{*random-state*} to @code{(seed->random-state your-seed)}, where
1927 @code{your-seed} is something that @emph{isn't} the same every time,
1928 you'll get the same sequence of ``random'' numbers on every run.
1929
1930 For example, unless the relevant source code has changed, @code{(map
1931 random (cdr (iota 30)))}, if the first use of random numbers since
1932 Guile started up, will always give:
1933
1934 @lisp
1935 (map random (cdr (iota 19)))
1936 @result{}
1937 (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1938 @end lisp
1939
1940 To seed the random state in a sensible way for non-security-critical
1941 applications, do this during initialization of your program:
1942
1943 @lisp
1944 (set! *random-state* (random-state-from-platform))
1945 @end lisp
1946
1947
1948 @node Characters
1949 @subsection Characters
1950 @tpindex Characters
1951
1952 In Scheme, there is a data type to describe a single character.
1953
1954 Defining what exactly a character @emph{is} can be more complicated
1955 than it seems. Guile follows the advice of R6RS and uses The Unicode
1956 Standard to help define what a character is. So, for Guile, a
1957 character is anything in the Unicode Character Database.
1958
1959 @cindex code point
1960 @cindex Unicode code point
1961
1962 The Unicode Character Database is basically a table of characters
1963 indexed using integers called 'code points'. Valid code points are in
1964 the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1965 @code{#x10FFFF} inclusive, which is about 1.1 million code points.
1966
1967 @cindex designated code point
1968 @cindex code point, designated
1969
1970 Any code point that has been assigned to a character or that has
1971 otherwise been given a meaning by Unicode is called a 'designated code
1972 point'. Most of the designated code points, about 200,000 of them,
1973 indicate characters, accents or other combining marks that modify
1974 other characters, symbols, whitespace, and control characters. Some
1975 are not characters but indicators that suggest how to format or
1976 display neighboring characters.
1977
1978 @cindex reserved code point
1979 @cindex code point, reserved
1980
1981 If a code point is not a designated code point -- if it has not been
1982 assigned to a character by The Unicode Standard -- it is a 'reserved
1983 code point', meaning that they are reserved for future use. Most of
1984 the code points, about 800,000, are 'reserved code points'.
1985
1986 By convention, a Unicode code point is written as
1987 ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1988 this convenient notation is not valid code. Guile does not interpret
1989 ``U+XXXX'' as a character.
1990
1991 In Scheme, a character literal is written as @code{#\@var{name}} where
1992 @var{name} is the name of the character that you want. Printable
1993 characters have their usual single character name; for example,
1994 @code{#\a} is a lower case @code{a}.
1995
1996 Some of the code points are 'combining characters' that are not meant
1997 to be printed by themselves but are instead meant to modify the
1998 appearance of the previous character. For combining characters, an
1999 alternate form of the character literal is @code{#\} followed by
2000 U+25CC (a small, dotted circle), followed by the combining character.
2001 This allows the combining character to be drawn on the circle, not on
2002 the backslash of @code{#\}.
2003
2004 Many of the non-printing characters, such as whitespace characters and
2005 control characters, also have names.
2006
2007 The most commonly used non-printing characters have long character
2008 names, described in the table below.
2009
2010 @multitable {@code{#\backspace}} {Preferred}
2011 @item Character Name @tab Codepoint
2012 @item @code{#\nul} @tab U+0000
2013 @item @code{#\alarm} @tab u+0007
2014 @item @code{#\backspace} @tab U+0008
2015 @item @code{#\tab} @tab U+0009
2016 @item @code{#\linefeed} @tab U+000A
2017 @item @code{#\newline} @tab U+000A
2018 @item @code{#\vtab} @tab U+000B
2019 @item @code{#\page} @tab U+000C
2020 @item @code{#\return} @tab U+000D
2021 @item @code{#\esc} @tab U+001B
2022 @item @code{#\space} @tab U+0020
2023 @item @code{#\delete} @tab U+007F
2024 @end multitable
2025
2026 There are also short names for all of the ``C0 control characters''
2027 (those with code points below 32). The following table lists the short
2028 name for each character.
2029
2030 @multitable @columnfractions .25 .25 .25 .25
2031 @item 0 = @code{#\nul}
2032 @tab 1 = @code{#\soh}
2033 @tab 2 = @code{#\stx}
2034 @tab 3 = @code{#\etx}
2035 @item 4 = @code{#\eot}
2036 @tab 5 = @code{#\enq}
2037 @tab 6 = @code{#\ack}
2038 @tab 7 = @code{#\bel}
2039 @item 8 = @code{#\bs}
2040 @tab 9 = @code{#\ht}
2041 @tab 10 = @code{#\lf}
2042 @tab 11 = @code{#\vt}
2043 @item 12 = @code{#\ff}
2044 @tab 13 = @code{#\cr}
2045 @tab 14 = @code{#\so}
2046 @tab 15 = @code{#\si}
2047 @item 16 = @code{#\dle}
2048 @tab 17 = @code{#\dc1}
2049 @tab 18 = @code{#\dc2}
2050 @tab 19 = @code{#\dc3}
2051 @item 20 = @code{#\dc4}
2052 @tab 21 = @code{#\nak}
2053 @tab 22 = @code{#\syn}
2054 @tab 23 = @code{#\etb}
2055 @item 24 = @code{#\can}
2056 @tab 25 = @code{#\em}
2057 @tab 26 = @code{#\sub}
2058 @tab 27 = @code{#\esc}
2059 @item 28 = @code{#\fs}
2060 @tab 29 = @code{#\gs}
2061 @tab 30 = @code{#\rs}
2062 @tab 31 = @code{#\us}
2063 @item 32 = @code{#\sp}
2064 @end multitable
2065
2066 The short name for the ``delete'' character (code point U+007F) is
2067 @code{#\del}.
2068
2069 The R7RS name for the ``escape'' character (code point U+001B) is
2070 @code{#\escape}.
2071
2072 There are also a few alternative names left over for compatibility with
2073 previous versions of Guile.
2074
2075 @multitable {@code{#\backspace}} {Preferred}
2076 @item Alternate @tab Standard
2077 @item @code{#\nl} @tab @code{#\newline}
2078 @item @code{#\np} @tab @code{#\page}
2079 @item @code{#\null} @tab @code{#\nul}
2080 @end multitable
2081
2082 Characters may also be written using their code point values. They can
2083 be written with as an octal number, such as @code{#\10} for
2084 @code{#\bs} or @code{#\177} for @code{#\del}.
2085
2086 If one prefers hex to octal, there is an additional syntax for character
2087 escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2088 number of one to eight digits.
2089
2090 @rnindex char?
2091 @deffn {Scheme Procedure} char? x
2092 @deffnx {C Function} scm_char_p (x)
2093 Return @code{#t} if @var{x} is a character, else @code{#f}.
2094 @end deffn
2095
2096 Fundamentally, the character comparison operations below are
2097 numeric comparisons of the character's code points.
2098
2099 @rnindex char=?
2100 @deffn {Scheme Procedure} char=? x y
2101 Return @code{#t} if code point of @var{x} is equal to the code point
2102 of @var{y}, else @code{#f}.
2103 @end deffn
2104
2105 @rnindex char<?
2106 @deffn {Scheme Procedure} char<? x y
2107 Return @code{#t} if the code point of @var{x} is less than the code
2108 point of @var{y}, else @code{#f}.
2109 @end deffn
2110
2111 @rnindex char<=?
2112 @deffn {Scheme Procedure} char<=? x y
2113 Return @code{#t} if the code point of @var{x} is less than or equal
2114 to the code point of @var{y}, else @code{#f}.
2115 @end deffn
2116
2117 @rnindex char>?
2118 @deffn {Scheme Procedure} char>? x y
2119 Return @code{#t} if the code point of @var{x} is greater than the
2120 code point of @var{y}, else @code{#f}.
2121 @end deffn
2122
2123 @rnindex char>=?
2124 @deffn {Scheme Procedure} char>=? x y
2125 Return @code{#t} if the code point of @var{x} is greater than or
2126 equal to the code point of @var{y}, else @code{#f}.
2127 @end deffn
2128
2129 @cindex case folding
2130
2131 Case-insensitive character comparisons use @emph{Unicode case
2132 folding}. In case folding comparisons, if a character is lowercase
2133 and has an uppercase form that can be expressed as a single character,
2134 it is converted to uppercase before comparison. All other characters
2135 undergo no conversion before the comparison occurs. This includes the
2136 German sharp S (Eszett) which is not uppercased before conversion
2137 because its uppercase form has two characters. Unicode case folding
2138 is language independent: it uses rules that are generally true, but,
2139 it cannot cover all cases for all languages.
2140
2141 @rnindex char-ci=?
2142 @deffn {Scheme Procedure} char-ci=? x y
2143 Return @code{#t} if the case-folded code point of @var{x} is the same
2144 as the case-folded code point of @var{y}, else @code{#f}.
2145 @end deffn
2146
2147 @rnindex char-ci<?
2148 @deffn {Scheme Procedure} char-ci<? x y
2149 Return @code{#t} if the case-folded code point of @var{x} is less
2150 than the case-folded code point of @var{y}, else @code{#f}.
2151 @end deffn
2152
2153 @rnindex char-ci<=?
2154 @deffn {Scheme Procedure} char-ci<=? x y
2155 Return @code{#t} if the case-folded code point of @var{x} is less
2156 than or equal to the case-folded code point of @var{y}, else
2157 @code{#f}.
2158 @end deffn
2159
2160 @rnindex char-ci>?
2161 @deffn {Scheme Procedure} char-ci>? x y
2162 Return @code{#t} if the case-folded code point of @var{x} is greater
2163 than the case-folded code point of @var{y}, else @code{#f}.
2164 @end deffn
2165
2166 @rnindex char-ci>=?
2167 @deffn {Scheme Procedure} char-ci>=? x y
2168 Return @code{#t} if the case-folded code point of @var{x} is greater
2169 than or equal to the case-folded code point of @var{y}, else
2170 @code{#f}.
2171 @end deffn
2172
2173 @rnindex char-alphabetic?
2174 @deffn {Scheme Procedure} char-alphabetic? chr
2175 @deffnx {C Function} scm_char_alphabetic_p (chr)
2176 Return @code{#t} if @var{chr} is alphabetic, else @code{#f}.
2177 @end deffn
2178
2179 @rnindex char-numeric?
2180 @deffn {Scheme Procedure} char-numeric? chr
2181 @deffnx {C Function} scm_char_numeric_p (chr)
2182 Return @code{#t} if @var{chr} is numeric, else @code{#f}.
2183 @end deffn
2184
2185 @rnindex char-whitespace?
2186 @deffn {Scheme Procedure} char-whitespace? chr
2187 @deffnx {C Function} scm_char_whitespace_p (chr)
2188 Return @code{#t} if @var{chr} is whitespace, else @code{#f}.
2189 @end deffn
2190
2191 @rnindex char-upper-case?
2192 @deffn {Scheme Procedure} char-upper-case? chr
2193 @deffnx {C Function} scm_char_upper_case_p (chr)
2194 Return @code{#t} if @var{chr} is uppercase, else @code{#f}.
2195 @end deffn
2196
2197 @rnindex char-lower-case?
2198 @deffn {Scheme Procedure} char-lower-case? chr
2199 @deffnx {C Function} scm_char_lower_case_p (chr)
2200 Return @code{#t} if @var{chr} is lowercase, else @code{#f}.
2201 @end deffn
2202
2203 @deffn {Scheme Procedure} char-is-both? chr
2204 @deffnx {C Function} scm_char_is_both_p (chr)
2205 Return @code{#t} if @var{chr} is either uppercase or lowercase, else
2206 @code{#f}.
2207 @end deffn
2208
2209 @deffn {Scheme Procedure} char-general-category chr
2210 @deffnx {C Function} scm_char_general_category (chr)
2211 Return a symbol giving the two-letter name of the Unicode general
2212 category assigned to @var{chr} or @code{#f} if no named category is
2213 assigned. The following table provides a list of category names along
2214 with their meanings.
2215
2216 @multitable @columnfractions .1 .4 .1 .4
2217 @item Lu
2218 @tab Uppercase letter
2219 @tab Pf
2220 @tab Final quote punctuation
2221 @item Ll
2222 @tab Lowercase letter
2223 @tab Po
2224 @tab Other punctuation
2225 @item Lt
2226 @tab Titlecase letter
2227 @tab Sm
2228 @tab Math symbol
2229 @item Lm
2230 @tab Modifier letter
2231 @tab Sc
2232 @tab Currency symbol
2233 @item Lo
2234 @tab Other letter
2235 @tab Sk
2236 @tab Modifier symbol
2237 @item Mn
2238 @tab Non-spacing mark
2239 @tab So
2240 @tab Other symbol
2241 @item Mc
2242 @tab Combining spacing mark
2243 @tab Zs
2244 @tab Space separator
2245 @item Me
2246 @tab Enclosing mark
2247 @tab Zl
2248 @tab Line separator
2249 @item Nd
2250 @tab Decimal digit number
2251 @tab Zp
2252 @tab Paragraph separator
2253 @item Nl
2254 @tab Letter number
2255 @tab Cc
2256 @tab Control
2257 @item No
2258 @tab Other number
2259 @tab Cf
2260 @tab Format
2261 @item Pc
2262 @tab Connector punctuation
2263 @tab Cs
2264 @tab Surrogate
2265 @item Pd
2266 @tab Dash punctuation
2267 @tab Co
2268 @tab Private use
2269 @item Ps
2270 @tab Open punctuation
2271 @tab Cn
2272 @tab Unassigned
2273 @item Pe
2274 @tab Close punctuation
2275 @tab
2276 @tab
2277 @item Pi
2278 @tab Initial quote punctuation
2279 @tab
2280 @tab
2281 @end multitable
2282 @end deffn
2283
2284 @rnindex char->integer
2285 @deffn {Scheme Procedure} char->integer chr
2286 @deffnx {C Function} scm_char_to_integer (chr)
2287 Return the code point of @var{chr}.
2288 @end deffn
2289
2290 @rnindex integer->char
2291 @deffn {Scheme Procedure} integer->char n
2292 @deffnx {C Function} scm_integer_to_char (n)
2293 Return the character that has code point @var{n}. The integer @var{n}
2294 must be a valid code point. Valid code points are in the ranges 0 to
2295 @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
2296 @end deffn
2297
2298 @rnindex char-upcase
2299 @deffn {Scheme Procedure} char-upcase chr
2300 @deffnx {C Function} scm_char_upcase (chr)
2301 Return the uppercase character version of @var{chr}.
2302 @end deffn
2303
2304 @rnindex char-downcase
2305 @deffn {Scheme Procedure} char-downcase chr
2306 @deffnx {C Function} scm_char_downcase (chr)
2307 Return the lowercase character version of @var{chr}.
2308 @end deffn
2309
2310 @rnindex char-titlecase
2311 @deffn {Scheme Procedure} char-titlecase chr
2312 @deffnx {C Function} scm_char_titlecase (chr)
2313 Return the titlecase character version of @var{chr} if one exists;
2314 otherwise return the uppercase version.
2315
2316 For most characters these will be the same, but the Unicode Standard
2317 includes certain digraph compatibility characters, such as @code{U+01F3}
2318 ``dz'', for which the uppercase and titlecase characters are different
2319 (@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2320 respectively).
2321 @end deffn
2322
2323 @tindex scm_t_wchar
2324 @deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2325 @deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2326 @deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2327
2328 These C functions take an integer representation of a Unicode
2329 codepoint and return the codepoint corresponding to its uppercase,
2330 lowercase, and titlecase forms respectively. The type
2331 @code{scm_t_wchar} is a signed, 32-bit integer.
2332 @end deftypefn
2333
2334 @node Character Sets
2335 @subsection Character Sets
2336
2337 The features described in this section correspond directly to SRFI-14.
2338
2339 The data type @dfn{charset} implements sets of characters
2340 (@pxref{Characters}). Because the internal representation of
2341 character sets is not visible to the user, a lot of procedures for
2342 handling them are provided.
2343
2344 Character sets can be created, extended, tested for the membership of a
2345 characters and be compared to other character sets.
2346
2347 @menu
2348 * Character Set Predicates/Comparison::
2349 * Iterating Over Character Sets:: Enumerate charset elements.
2350 * Creating Character Sets:: Making new charsets.
2351 * Querying Character Sets:: Test charsets for membership etc.
2352 * Character-Set Algebra:: Calculating new charsets.
2353 * Standard Character Sets:: Variables containing predefined charsets.
2354 @end menu
2355
2356 @node Character Set Predicates/Comparison
2357 @subsubsection Character Set Predicates/Comparison
2358
2359 Use these procedures for testing whether an object is a character set,
2360 or whether several character sets are equal or subsets of each other.
2361 @code{char-set-hash} can be used for calculating a hash value, maybe for
2362 usage in fast lookup procedures.
2363
2364 @deffn {Scheme Procedure} char-set? obj
2365 @deffnx {C Function} scm_char_set_p (obj)
2366 Return @code{#t} if @var{obj} is a character set, @code{#f}
2367 otherwise.
2368 @end deffn
2369
2370 @deffn {Scheme Procedure} char-set= char_set @dots{}
2371 @deffnx {C Function} scm_char_set_eq (char_sets)
2372 Return @code{#t} if all given character sets are equal.
2373 @end deffn
2374
2375 @deffn {Scheme Procedure} char-set<= char_set @dots{}
2376 @deffnx {C Function} scm_char_set_leq (char_sets)
2377 Return @code{#t} if every character set @var{char_set}i is a subset
2378 of character set @var{char_set}i+1.
2379 @end deffn
2380
2381 @deffn {Scheme Procedure} char-set-hash cs [bound]
2382 @deffnx {C Function} scm_char_set_hash (cs, bound)
2383 Compute a hash value for the character set @var{cs}. If
2384 @var{bound} is given and non-zero, it restricts the
2385 returned value to the range 0 @dots{} @var{bound} - 1.
2386 @end deffn
2387
2388 @c ===================================================================
2389
2390 @node Iterating Over Character Sets
2391 @subsubsection Iterating Over Character Sets
2392
2393 Character set cursors are a means for iterating over the members of a
2394 character sets. After creating a character set cursor with
2395 @code{char-set-cursor}, a cursor can be dereferenced with
2396 @code{char-set-ref}, advanced to the next member with
2397 @code{char-set-cursor-next}. Whether a cursor has passed past the last
2398 element of the set can be checked with @code{end-of-char-set?}.
2399
2400 Additionally, mapping and (un-)folding procedures for character sets are
2401 provided.
2402
2403 @deffn {Scheme Procedure} char-set-cursor cs
2404 @deffnx {C Function} scm_char_set_cursor (cs)
2405 Return a cursor into the character set @var{cs}.
2406 @end deffn
2407
2408 @deffn {Scheme Procedure} char-set-ref cs cursor
2409 @deffnx {C Function} scm_char_set_ref (cs, cursor)
2410 Return the character at the current cursor position
2411 @var{cursor} in the character set @var{cs}. It is an error to
2412 pass a cursor for which @code{end-of-char-set?} returns true.
2413 @end deffn
2414
2415 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
2416 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2417 Advance the character set cursor @var{cursor} to the next
2418 character in the character set @var{cs}. It is an error if the
2419 cursor given satisfies @code{end-of-char-set?}.
2420 @end deffn
2421
2422 @deffn {Scheme Procedure} end-of-char-set? cursor
2423 @deffnx {C Function} scm_end_of_char_set_p (cursor)
2424 Return @code{#t} if @var{cursor} has reached the end of a
2425 character set, @code{#f} otherwise.
2426 @end deffn
2427
2428 @deffn {Scheme Procedure} char-set-fold kons knil cs
2429 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2430 Fold the procedure @var{kons} over the character set @var{cs},
2431 initializing it with @var{knil}.
2432 @end deffn
2433
2434 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2435 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2436 This is a fundamental constructor for character sets.
2437 @itemize @bullet
2438 @item @var{g} is used to generate a series of ``seed'' values
2439 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2440 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2441 @item @var{p} tells us when to stop -- when it returns true
2442 when applied to one of the seed values.
2443 @item @var{f} maps each seed value to a character. These
2444 characters are added to the base character set @var{base_cs} to
2445 form the result; @var{base_cs} defaults to the empty set.
2446 @end itemize
2447 @end deffn
2448
2449 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2450 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2451 This is a fundamental constructor for character sets.
2452 @itemize @bullet
2453 @item @var{g} is used to generate a series of ``seed'' values
2454 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2455 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2456 @item @var{p} tells us when to stop -- when it returns true
2457 when applied to one of the seed values.
2458 @item @var{f} maps each seed value to a character. These
2459 characters are added to the base character set @var{base_cs} to
2460 form the result; @var{base_cs} defaults to the empty set.
2461 @end itemize
2462 @end deffn
2463
2464 @deffn {Scheme Procedure} char-set-for-each proc cs
2465 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2466 Apply @var{proc} to every character in the character set
2467 @var{cs}. The return value is not specified.
2468 @end deffn
2469
2470 @deffn {Scheme Procedure} char-set-map proc cs
2471 @deffnx {C Function} scm_char_set_map (proc, cs)
2472 Map the procedure @var{proc} over every character in @var{cs}.
2473 @var{proc} must be a character -> character procedure.
2474 @end deffn
2475
2476 @c ===================================================================
2477
2478 @node Creating Character Sets
2479 @subsubsection Creating Character Sets
2480
2481 New character sets are produced with these procedures.
2482
2483 @deffn {Scheme Procedure} char-set-copy cs
2484 @deffnx {C Function} scm_char_set_copy (cs)
2485 Return a newly allocated character set containing all
2486 characters in @var{cs}.
2487 @end deffn
2488
2489 @deffn {Scheme Procedure} char-set chr @dots{}
2490 @deffnx {C Function} scm_char_set (chrs)
2491 Return a character set containing all given characters.
2492 @end deffn
2493
2494 @deffn {Scheme Procedure} list->char-set list [base_cs]
2495 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2496 Convert the character list @var{list} to a character set. If
2497 the character set @var{base_cs} is given, the character in this
2498 set are also included in the result.
2499 @end deffn
2500
2501 @deffn {Scheme Procedure} list->char-set! list base_cs
2502 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2503 Convert the character list @var{list} to a character set. The
2504 characters are added to @var{base_cs} and @var{base_cs} is
2505 returned.
2506 @end deffn
2507
2508 @deffn {Scheme Procedure} string->char-set str [base_cs]
2509 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2510 Convert the string @var{str} to a character set. If the
2511 character set @var{base_cs} is given, the characters in this
2512 set are also included in the result.
2513 @end deffn
2514
2515 @deffn {Scheme Procedure} string->char-set! str base_cs
2516 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2517 Convert the string @var{str} to a character set. The
2518 characters from the string are added to @var{base_cs}, and
2519 @var{base_cs} is returned.
2520 @end deffn
2521
2522 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2523 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2524 Return a character set containing every character from @var{cs}
2525 so that it satisfies @var{pred}. If provided, the characters
2526 from @var{base_cs} are added to the result.
2527 @end deffn
2528
2529 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2530 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2531 Return a character set containing every character from @var{cs}
2532 so that it satisfies @var{pred}. The characters are added to
2533 @var{base_cs} and @var{base_cs} is returned.
2534 @end deffn
2535
2536 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2537 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2538 Return a character set containing all characters whose
2539 character codes lie in the half-open range
2540 [@var{lower},@var{upper}).
2541
2542 If @var{error} is a true value, an error is signalled if the
2543 specified range contains characters which are not contained in
2544 the implemented character range. If @var{error} is @code{#f},
2545 these characters are silently left out of the resulting
2546 character set.
2547
2548 The characters in @var{base_cs} are added to the result, if
2549 given.
2550 @end deffn
2551
2552 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2553 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2554 Return a character set containing all characters whose
2555 character codes lie in the half-open range
2556 [@var{lower},@var{upper}).
2557
2558 If @var{error} is a true value, an error is signalled if the
2559 specified range contains characters which are not contained in
2560 the implemented character range. If @var{error} is @code{#f},
2561 these characters are silently left out of the resulting
2562 character set.
2563
2564 The characters are added to @var{base_cs} and @var{base_cs} is
2565 returned.
2566 @end deffn
2567
2568 @deffn {Scheme Procedure} ->char-set x
2569 @deffnx {C Function} scm_to_char_set (x)
2570 Coerces x into a char-set. @var{x} may be a string, character or
2571 char-set. A string is converted to the set of its constituent
2572 characters; a character is converted to a singleton set; a char-set is
2573 returned as-is.
2574 @end deffn
2575
2576 @c ===================================================================
2577
2578 @node Querying Character Sets
2579 @subsubsection Querying Character Sets
2580
2581 Access the elements and other information of a character set with these
2582 procedures.
2583
2584 @deffn {Scheme Procedure} %char-set-dump cs
2585 Returns an association list containing debugging information
2586 for @var{cs}. The association list has the following entries.
2587 @table @code
2588 @item char-set
2589 The char-set itself
2590 @item len
2591 The number of groups of contiguous code points the char-set
2592 contains
2593 @item ranges
2594 A list of lists where each sublist is a range of code points
2595 and their associated characters
2596 @end table
2597 The return value of this function cannot be relied upon to be
2598 consistent between versions of Guile and should not be used in code.
2599 @end deffn
2600
2601 @deffn {Scheme Procedure} char-set-size cs
2602 @deffnx {C Function} scm_char_set_size (cs)
2603 Return the number of elements in character set @var{cs}.
2604 @end deffn
2605
2606 @deffn {Scheme Procedure} char-set-count pred cs
2607 @deffnx {C Function} scm_char_set_count (pred, cs)
2608 Return the number of the elements int the character set
2609 @var{cs} which satisfy the predicate @var{pred}.
2610 @end deffn
2611
2612 @deffn {Scheme Procedure} char-set->list cs
2613 @deffnx {C Function} scm_char_set_to_list (cs)
2614 Return a list containing the elements of the character set
2615 @var{cs}.
2616 @end deffn
2617
2618 @deffn {Scheme Procedure} char-set->string cs
2619 @deffnx {C Function} scm_char_set_to_string (cs)
2620 Return a string containing the elements of the character set
2621 @var{cs}. The order in which the characters are placed in the
2622 string is not defined.
2623 @end deffn
2624
2625 @deffn {Scheme Procedure} char-set-contains? cs ch
2626 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2627 Return @code{#t} if the character @var{ch} is contained in the
2628 character set @var{cs}, or @code{#f} otherwise.
2629 @end deffn
2630
2631 @deffn {Scheme Procedure} char-set-every pred cs
2632 @deffnx {C Function} scm_char_set_every (pred, cs)
2633 Return a true value if every character in the character set
2634 @var{cs} satisfies the predicate @var{pred}.
2635 @end deffn
2636
2637 @deffn {Scheme Procedure} char-set-any pred cs
2638 @deffnx {C Function} scm_char_set_any (pred, cs)
2639 Return a true value if any character in the character set
2640 @var{cs} satisfies the predicate @var{pred}.
2641 @end deffn
2642
2643 @c ===================================================================
2644
2645 @node Character-Set Algebra
2646 @subsubsection Character-Set Algebra
2647
2648 Character sets can be manipulated with the common set algebra operation,
2649 such as union, complement, intersection etc. All of these procedures
2650 provide side-effecting variants, which modify their character set
2651 argument(s).
2652
2653 @deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2654 @deffnx {C Function} scm_char_set_adjoin (cs, chrs)
2655 Add all character arguments to the first argument, which must
2656 be a character set.
2657 @end deffn
2658
2659 @deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2660 @deffnx {C Function} scm_char_set_delete (cs, chrs)
2661 Delete all character arguments from the first argument, which
2662 must be a character set.
2663 @end deffn
2664
2665 @deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2666 @deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
2667 Add all character arguments to the first argument, which must
2668 be a character set.
2669 @end deffn
2670
2671 @deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2672 @deffnx {C Function} scm_char_set_delete_x (cs, chrs)
2673 Delete all character arguments from the first argument, which
2674 must be a character set.
2675 @end deffn
2676
2677 @deffn {Scheme Procedure} char-set-complement cs
2678 @deffnx {C Function} scm_char_set_complement (cs)
2679 Return the complement of the character set @var{cs}.
2680 @end deffn
2681
2682 Note that the complement of a character set is likely to contain many
2683 reserved code points (code points that are not associated with
2684 characters). It may be helpful to modify the output of
2685 @code{char-set-complement} by computing its intersection with the set
2686 of designated code points, @code{char-set:designated}.
2687
2688 @deffn {Scheme Procedure} char-set-union cs @dots{}
2689 @deffnx {C Function} scm_char_set_union (char_sets)
2690 Return the union of all argument character sets.
2691 @end deffn
2692
2693 @deffn {Scheme Procedure} char-set-intersection cs @dots{}
2694 @deffnx {C Function} scm_char_set_intersection (char_sets)
2695 Return the intersection of all argument character sets.
2696 @end deffn
2697
2698 @deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2699 @deffnx {C Function} scm_char_set_difference (cs1, char_sets)
2700 Return the difference of all argument character sets.
2701 @end deffn
2702
2703 @deffn {Scheme Procedure} char-set-xor cs @dots{}
2704 @deffnx {C Function} scm_char_set_xor (char_sets)
2705 Return the exclusive-or of all argument character sets.
2706 @end deffn
2707
2708 @deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2709 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
2710 Return the difference and the intersection of all argument
2711 character sets.
2712 @end deffn
2713
2714 @deffn {Scheme Procedure} char-set-complement! cs
2715 @deffnx {C Function} scm_char_set_complement_x (cs)
2716 Return the complement of the character set @var{cs}.
2717 @end deffn
2718
2719 @deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2720 @deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
2721 Return the union of all argument character sets.
2722 @end deffn
2723
2724 @deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2725 @deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
2726 Return the intersection of all argument character sets.
2727 @end deffn
2728
2729 @deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2730 @deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
2731 Return the difference of all argument character sets.
2732 @end deffn
2733
2734 @deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2735 @deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
2736 Return the exclusive-or of all argument character sets.
2737 @end deffn
2738
2739 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2740 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
2741 Return the difference and the intersection of all argument
2742 character sets.
2743 @end deffn
2744
2745 @c ===================================================================
2746
2747 @node Standard Character Sets
2748 @subsubsection Standard Character Sets
2749
2750 In order to make the use of the character set data type and procedures
2751 useful, several predefined character set variables exist.
2752
2753 @cindex codeset
2754 @cindex charset
2755 @cindex locale
2756
2757 These character sets are locale independent and are not recomputed
2758 upon a @code{setlocale} call. They contain characters from the whole
2759 range of Unicode code points. For instance, @code{char-set:letter}
2760 contains about 100,000 characters.
2761
2762 @defvr {Scheme Variable} char-set:lower-case
2763 @defvrx {C Variable} scm_char_set_lower_case
2764 All lower-case characters.
2765 @end defvr
2766
2767 @defvr {Scheme Variable} char-set:upper-case
2768 @defvrx {C Variable} scm_char_set_upper_case
2769 All upper-case characters.
2770 @end defvr
2771
2772 @defvr {Scheme Variable} char-set:title-case
2773 @defvrx {C Variable} scm_char_set_title_case
2774 All single characters that function as if they were an upper-case
2775 letter followed by a lower-case letter.
2776 @end defvr
2777
2778 @defvr {Scheme Variable} char-set:letter
2779 @defvrx {C Variable} scm_char_set_letter
2780 All letters. This includes @code{char-set:lower-case},
2781 @code{char-set:upper-case}, @code{char-set:title-case}, and many
2782 letters that have no case at all. For example, Chinese and Japanese
2783 characters typically have no concept of case.
2784 @end defvr
2785
2786 @defvr {Scheme Variable} char-set:digit
2787 @defvrx {C Variable} scm_char_set_digit
2788 All digits.
2789 @end defvr
2790
2791 @defvr {Scheme Variable} char-set:letter+digit
2792 @defvrx {C Variable} scm_char_set_letter_and_digit
2793 The union of @code{char-set:letter} and @code{char-set:digit}.
2794 @end defvr
2795
2796 @defvr {Scheme Variable} char-set:graphic
2797 @defvrx {C Variable} scm_char_set_graphic
2798 All characters which would put ink on the paper.
2799 @end defvr
2800
2801 @defvr {Scheme Variable} char-set:printing
2802 @defvrx {C Variable} scm_char_set_printing
2803 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2804 @end defvr
2805
2806 @defvr {Scheme Variable} char-set:whitespace
2807 @defvrx {C Variable} scm_char_set_whitespace
2808 All whitespace characters.
2809 @end defvr
2810
2811 @defvr {Scheme Variable} char-set:blank
2812 @defvrx {C Variable} scm_char_set_blank
2813 All horizontal whitespace characters, which notably includes
2814 @code{#\space} and @code{#\tab}.
2815 @end defvr
2816
2817 @defvr {Scheme Variable} char-set:iso-control
2818 @defvrx {C Variable} scm_char_set_iso_control
2819 The ISO control characters are the C0 control characters (U+0000 to
2820 U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2821 U+009F).
2822 @end defvr
2823
2824 @defvr {Scheme Variable} char-set:punctuation
2825 @defvrx {C Variable} scm_char_set_punctuation
2826 All punctuation characters, such as the characters
2827 @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2828 @end defvr
2829
2830 @defvr {Scheme Variable} char-set:symbol
2831 @defvrx {C Variable} scm_char_set_symbol
2832 All symbol characters, such as the characters @code{$+<=>^`|~}.
2833 @end defvr
2834
2835 @defvr {Scheme Variable} char-set:hex-digit
2836 @defvrx {C Variable} scm_char_set_hex_digit
2837 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2838 @end defvr
2839
2840 @defvr {Scheme Variable} char-set:ascii
2841 @defvrx {C Variable} scm_char_set_ascii
2842 All ASCII characters.
2843 @end defvr
2844
2845 @defvr {Scheme Variable} char-set:empty
2846 @defvrx {C Variable} scm_char_set_empty
2847 The empty character set.
2848 @end defvr
2849
2850 @defvr {Scheme Variable} char-set:designated
2851 @defvrx {C Variable} scm_char_set_designated
2852 This character set contains all designated code points. This includes
2853 all the code points to which Unicode has assigned a character or other
2854 meaning.
2855 @end defvr
2856
2857 @defvr {Scheme Variable} char-set:full
2858 @defvrx {C Variable} scm_char_set_full
2859 This character set contains all possible code points. This includes
2860 both designated and reserved code points.
2861 @end defvr
2862
2863 @node Strings
2864 @subsection Strings
2865 @tpindex Strings
2866
2867 Strings are fixed-length sequences of characters. They can be created
2868 by calling constructor procedures, but they can also literally get
2869 entered at the @acronym{REPL} or in Scheme source files.
2870
2871 @c Guile provides a rich set of string processing procedures, because text
2872 @c handling is very important when Guile is used as a scripting language.
2873
2874 Strings always carry the information about how many characters they are
2875 composed of with them, so there is no special end-of-string character,
2876 like in C. That means that Scheme strings can contain any character,
2877 even the @samp{#\nul} character @samp{\0}.
2878
2879 To use strings efficiently, you need to know a bit about how Guile
2880 implements them. In Guile, a string consists of two parts, a head and
2881 the actual memory where the characters are stored. When a string (or
2882 a substring of it) is copied, only a new head gets created, the memory
2883 is usually not copied. The two heads start out pointing to the same
2884 memory.
2885
2886 When one of these two strings is modified, as with @code{string-set!},
2887 their common memory does get copied so that each string has its own
2888 memory and modifying one does not accidentally modify the other as well.
2889 Thus, Guile's strings are `copy on write'; the actual copying of their
2890 memory is delayed until one string is written to.
2891
2892 This implementation makes functions like @code{substring} very
2893 efficient in the common case that no modifications are done to the
2894 involved strings.
2895
2896 If you do know that your strings are getting modified right away, you
2897 can use @code{substring/copy} instead of @code{substring}. This
2898 function performs the copy immediately at the time of creation. This
2899 is more efficient, especially in a multi-threaded program. Also,
2900 @code{substring/copy} can avoid the problem that a short substring
2901 holds on to the memory of a very large original string that could
2902 otherwise be recycled.
2903
2904 If you want to avoid the copy altogether, so that modifications of one
2905 string show up in the other, you can use @code{substring/shared}. The
2906 strings created by this procedure are called @dfn{mutation sharing
2907 substrings} since the substring and the original string share
2908 modifications to each other.
2909
2910 If you want to prevent modifications, use @code{substring/read-only}.
2911
2912 Guile provides all procedures of SRFI-13 and a few more.
2913
2914 @menu
2915 * String Syntax:: Read syntax for strings.
2916 * String Predicates:: Testing strings for certain properties.
2917 * String Constructors:: Creating new string objects.
2918 * List/String Conversion:: Converting from/to lists of characters.
2919 * String Selection:: Select portions from strings.
2920 * String Modification:: Modify parts or whole strings.
2921 * String Comparison:: Lexicographic ordering predicates.
2922 * String Searching:: Searching in strings.
2923 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2924 * Reversing and Appending Strings:: Appending strings to form a new string.
2925 * Mapping Folding and Unfolding:: Iterating over strings.
2926 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2927 * Representing Strings as Bytes:: Encoding and decoding strings.
2928 * Conversion to/from C::
2929 * String Internals:: The storage strategy for strings.
2930 @end menu
2931
2932 @node String Syntax
2933 @subsubsection String Read Syntax
2934
2935 @c In the following @code is used to get a good font in TeX etc, but
2936 @c is omitted for Info format, so as not to risk any confusion over
2937 @c whether surrounding ` ' quotes are part of the escape or are
2938 @c special in a string (they're not).
2939
2940 The read syntax for strings is an arbitrarily long sequence of
2941 characters enclosed in double quotes (@nicode{"}).
2942
2943 Backslash is an escape character and can be used to insert the following
2944 special characters. @nicode{\"} and @nicode{\\} are R5RS standard,
2945 @nicode{\|} is R7RS standard, the next seven are R6RS standard ---
2946 notice they follow C syntax --- and the remaining four are Guile
2947 extensions.
2948
2949 @table @asis
2950 @item @nicode{\\}
2951 Backslash character.
2952
2953 @item @nicode{\"}
2954 Double quote character (an unescaped @nicode{"} is otherwise the end
2955 of the string).
2956
2957 @item @nicode{\|}
2958 Vertical bar character.
2959
2960 @item @nicode{\a}
2961 Bell character (ASCII 7).
2962
2963 @item @nicode{\f}
2964 Formfeed character (ASCII 12).
2965
2966 @item @nicode{\n}
2967 Newline character (ASCII 10).
2968
2969 @item @nicode{\r}
2970 Carriage return character (ASCII 13).
2971
2972 @item @nicode{\t}
2973 Tab character (ASCII 9).
2974
2975 @item @nicode{\v}
2976 Vertical tab character (ASCII 11).
2977
2978 @item @nicode{\b}
2979 Backspace character (ASCII 8).
2980
2981 @item @nicode{\0}
2982 NUL character (ASCII 0).
2983
2984 @item @nicode{\} followed by newline (ASCII 10)
2985 Nothing. This way if @nicode{\} is the last character in a line, the
2986 string will continue with the first character from the next line,
2987 without a line break.
2988
2989 If the @code{hungry-eol-escapes} reader option is enabled, which is not
2990 the case by default, leading whitespace on the next line is discarded.
2991
2992 @lisp
2993 "foo\
2994 bar"
2995 @result{} "foo bar"
2996 (read-enable 'hungry-eol-escapes)
2997 "foo\
2998 bar"
2999 @result{} "foobar"
3000 @end lisp
3001 @item @nicode{\xHH}
3002 Character code given by two hexadecimal digits. For example
3003 @nicode{\x7f} for an ASCII DEL (127).
3004
3005 @item @nicode{\uHHHH}
3006 Character code given by four hexadecimal digits. For example
3007 @nicode{\u0100} for a capital A with macron (U+0100).
3008
3009 @item @nicode{\UHHHHHH}
3010 Character code given by six hexadecimal digits. For example
3011 @nicode{\U010402}.
3012 @end table
3013
3014 @noindent
3015 The following are examples of string literals:
3016
3017 @lisp
3018 "foo"
3019 "bar plonk"
3020 "Hello World"
3021 "\"Hi\", he said."
3022 @end lisp
3023
3024 The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
3025 chosen to not break compatibility with code written for previous versions of
3026 Guile. The R6RS specification suggests a different, incompatible syntax for hex
3027 escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
3028 digits terminated with a semicolon. If this escape format is desired instead,
3029 it can be enabled with the reader option @code{r6rs-hex-escapes}.
3030
3031 @lisp
3032 (read-enable 'r6rs-hex-escapes)
3033 @end lisp
3034
3035 For more on reader options, @xref{Scheme Read}.
3036
3037 @node String Predicates
3038 @subsubsection String Predicates
3039
3040 The following procedures can be used to check whether a given string
3041 fulfills some specified property.
3042
3043 @rnindex string?
3044 @deffn {Scheme Procedure} string? obj
3045 @deffnx {C Function} scm_string_p (obj)
3046 Return @code{#t} if @var{obj} is a string, else @code{#f}.
3047 @end deffn
3048
3049 @deftypefn {C Function} int scm_is_string (SCM obj)
3050 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3051 @end deftypefn
3052
3053 @deffn {Scheme Procedure} string-null? str
3054 @deffnx {C Function} scm_string_null_p (str)
3055 Return @code{#t} if @var{str}'s length is zero, and
3056 @code{#f} otherwise.
3057 @lisp
3058 (string-null? "") @result{} #t
3059 y @result{} "foo"
3060 (string-null? y) @result{} #f
3061 @end lisp
3062 @end deffn
3063
3064 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
3065 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
3066 Check if @var{char_pred} is true for any character in string @var{s}.
3067
3068 @var{char_pred} can be a character to check for any equal to that, or
3069 a character set (@pxref{Character Sets}) to check for any in that set,
3070 or a predicate procedure to call.
3071
3072 For a procedure, calls @code{(@var{char_pred} c)} are made
3073 successively on the characters from @var{start} to @var{end}. If
3074 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3075 stops and that return value is the return from @code{string-any}. The
3076 call on the last character (ie.@: at @math{@var{end}-1}), if that
3077 point is reached, is a tail call.
3078
3079 If there are no characters in @var{s} (ie.@: @var{start} equals
3080 @var{end}) then the return is @code{#f}.
3081 @end deffn
3082
3083 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
3084 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
3085 Check if @var{char_pred} is true for every character in string
3086 @var{s}.
3087
3088 @var{char_pred} can be a character to check for every character equal
3089 to that, or a character set (@pxref{Character Sets}) to check for
3090 every character being in that set, or a predicate procedure to call.
3091
3092 For a procedure, calls @code{(@var{char_pred} c)} are made
3093 successively on the characters from @var{start} to @var{end}. If
3094 @var{char_pred} returns @code{#f}, @code{string-every} stops and
3095 returns @code{#f}. The call on the last character (ie.@: at
3096 @math{@var{end}-1}), if that point is reached, is a tail call and the
3097 return from that call is the return from @code{string-every}.
3098
3099 If there are no characters in @var{s} (ie.@: @var{start} equals
3100 @var{end}) then the return is @code{#t}.
3101 @end deffn
3102
3103 @node String Constructors
3104 @subsubsection String Constructors
3105
3106 The string constructor procedures create new string objects, possibly
3107 initializing them with some specified character data. See also
3108 @xref{String Selection}, for ways to create strings from existing
3109 strings.
3110
3111 @c FIXME::martin: list->string belongs into `List/String Conversion'
3112
3113 @deffn {Scheme Procedure} string char@dots{}
3114 @rnindex string
3115 Return a newly allocated string made from the given character
3116 arguments.
3117
3118 @example
3119 (string #\x #\y #\z) @result{} "xyz"
3120 (string) @result{} ""
3121 @end example
3122 @end deffn
3123
3124 @deffn {Scheme Procedure} list->string lst
3125 @deffnx {C Function} scm_string (lst)
3126 @rnindex list->string
3127 Return a newly allocated string made from a list of characters.
3128
3129 @example
3130 (list->string '(#\a #\b #\c)) @result{} "abc"
3131 @end example
3132 @end deffn
3133
3134 @deffn {Scheme Procedure} reverse-list->string lst
3135 @deffnx {C Function} scm_reverse_list_to_string (lst)
3136 Return a newly allocated string made from a list of characters, in
3137 reverse order.
3138
3139 @example
3140 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3141 @end example
3142 @end deffn
3143
3144 @rnindex make-string
3145 @deffn {Scheme Procedure} make-string k [chr]
3146 @deffnx {C Function} scm_make_string (k, chr)
3147 Return a newly allocated string of
3148 length @var{k}. If @var{chr} is given, then all elements of
3149 the string are initialized to @var{chr}, otherwise the contents
3150 of the string are unspecified.
3151 @end deffn
3152
3153 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3154 Like @code{scm_make_string}, but expects the length as a
3155 @code{size_t}.
3156 @end deftypefn
3157
3158 @deffn {Scheme Procedure} string-tabulate proc len
3159 @deffnx {C Function} scm_string_tabulate (proc, len)
3160 @var{proc} is an integer->char procedure. Construct a string
3161 of size @var{len} by applying @var{proc} to each index to
3162 produce the corresponding string element. The order in which
3163 @var{proc} is applied to the indices is not specified.
3164 @end deffn
3165
3166 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3167 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3168 Append the string in the string list @var{ls}, using the string
3169 @var{delimiter} as a delimiter between the elements of @var{ls}.
3170 @var{grammar} is a symbol which specifies how the delimiter is
3171 placed between the strings, and defaults to the symbol
3172 @code{infix}.
3173
3174 @table @code
3175 @item infix
3176 Insert the separator between list elements. An empty string
3177 will produce an empty list.
3178 @item strict-infix
3179 Like @code{infix}, but will raise an error if given the empty
3180 list.
3181 @item suffix
3182 Insert the separator after every list element.
3183 @item prefix
3184 Insert the separator before each list element.
3185 @end table
3186 @end deffn
3187
3188 @node List/String Conversion
3189 @subsubsection List/String conversion
3190
3191 When processing strings, it is often convenient to first convert them
3192 into a list representation by using the procedure @code{string->list},
3193 work with the resulting list, and then convert it back into a string.
3194 These procedures are useful for similar tasks.
3195
3196 @rnindex string->list
3197 @deffn {Scheme Procedure} string->list str [start [end]]
3198 @deffnx {C Function} scm_substring_to_list (str, start, end)
3199 @deffnx {C Function} scm_string_to_list (str)
3200 Convert the string @var{str} into a list of characters.
3201 @end deffn
3202
3203 @deffn {Scheme Procedure} string-split str char_pred
3204 @deffnx {C Function} scm_string_split (str, char_pred)
3205 Split the string @var{str} into a list of substrings delimited
3206 by appearances of characters that
3207
3208 @itemize @bullet
3209 @item
3210 equal @var{char_pred}, if it is a character,
3211
3212 @item
3213 satisfy the predicate @var{char_pred}, if it is a procedure,
3214
3215 @item
3216 are in the set @var{char_pred}, if it is a character set.
3217 @end itemize
3218
3219 Note that an empty substring between separator characters will result in
3220 an empty string in the result list.
3221
3222 @lisp
3223 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3224 @result{}
3225 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
3226
3227 (string-split "::" #\:)
3228 @result{}
3229 ("" "" "")
3230
3231 (string-split "" #\:)
3232 @result{}
3233 ("")
3234 @end lisp
3235 @end deffn
3236
3237
3238 @node String Selection
3239 @subsubsection String Selection
3240
3241 Portions of strings can be extracted by these procedures.
3242 @code{string-ref} delivers individual characters whereas
3243 @code{substring} can be used to extract substrings from longer strings.
3244
3245 @rnindex string-length
3246 @deffn {Scheme Procedure} string-length string
3247 @deffnx {C Function} scm_string_length (string)
3248 Return the number of characters in @var{string}.
3249 @end deffn
3250
3251 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
3252 Return the number of characters in @var{str} as a @code{size_t}.
3253 @end deftypefn
3254
3255 @rnindex string-ref
3256 @deffn {Scheme Procedure} string-ref str k
3257 @deffnx {C Function} scm_string_ref (str, k)
3258 Return character @var{k} of @var{str} using zero-origin
3259 indexing. @var{k} must be a valid index of @var{str}.
3260 @end deffn
3261
3262 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3263 Return character @var{k} of @var{str} using zero-origin
3264 indexing. @var{k} must be a valid index of @var{str}.
3265 @end deftypefn
3266
3267 @rnindex string-copy
3268 @deffn {Scheme Procedure} string-copy str [start [end]]
3269 @deffnx {C Function} scm_substring_copy (str, start, end)
3270 @deffnx {C Function} scm_string_copy (str)
3271 Return a copy of the given string @var{str}.
3272
3273 The returned string shares storage with @var{str} initially, but it is
3274 copied as soon as one of the two strings is modified.
3275 @end deffn
3276
3277 @rnindex substring
3278 @deffn {Scheme Procedure} substring str start [end]
3279 @deffnx {C Function} scm_substring (str, start, end)
3280 Return a new string formed from the characters
3281 of @var{str} beginning with index @var{start} (inclusive) and
3282 ending with index @var{end} (exclusive).
3283 @var{str} must be a string, @var{start} and @var{end} must be
3284 exact integers satisfying:
3285
3286 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
3287
3288 The returned string shares storage with @var{str} initially, but it is
3289 copied as soon as one of the two strings is modified.
3290 @end deffn
3291
3292 @deffn {Scheme Procedure} substring/shared str start [end]
3293 @deffnx {C Function} scm_substring_shared (str, start, end)
3294 Like @code{substring}, but the strings continue to share their storage
3295 even if they are modified. Thus, modifications to @var{str} show up
3296 in the new string, and vice versa.
3297 @end deffn
3298
3299 @deffn {Scheme Procedure} substring/copy str start [end]
3300 @deffnx {C Function} scm_substring_copy (str, start, end)
3301 Like @code{substring}, but the storage for the new string is copied
3302 immediately.
3303 @end deffn
3304
3305 @deffn {Scheme Procedure} substring/read-only str start [end]
3306 @deffnx {C Function} scm_substring_read_only (str, start, end)
3307 Like @code{substring}, but the resulting string can not be modified.
3308 @end deffn
3309
3310 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3311 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3312 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
3313 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
3314 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3315 @end deftypefn
3316
3317 @deffn {Scheme Procedure} string-take s n
3318 @deffnx {C Function} scm_string_take (s, n)
3319 Return the @var{n} first characters of @var{s}.
3320 @end deffn
3321
3322 @deffn {Scheme Procedure} string-drop s n
3323 @deffnx {C Function} scm_string_drop (s, n)
3324 Return all but the first @var{n} characters of @var{s}.
3325 @end deffn
3326
3327 @deffn {Scheme Procedure} string-take-right s n
3328 @deffnx {C Function} scm_string_take_right (s, n)
3329 Return the @var{n} last characters of @var{s}.
3330 @end deffn
3331
3332 @deffn {Scheme Procedure} string-drop-right s n
3333 @deffnx {C Function} scm_string_drop_right (s, n)
3334 Return all but the last @var{n} characters of @var{s}.
3335 @end deffn
3336
3337 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
3338 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
3339 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
3340 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
3341 Take characters @var{start} to @var{end} from the string @var{s} and
3342 either pad with @var{chr} or truncate them to give @var{len}
3343 characters.
3344
3345 @code{string-pad} pads or truncates on the left, so for example
3346
3347 @example
3348 (string-pad "x" 3) @result{} " x"
3349 (string-pad "abcde" 3) @result{} "cde"
3350 @end example
3351
3352 @code{string-pad-right} pads or truncates on the right, so for example
3353
3354 @example
3355 (string-pad-right "x" 3) @result{} "x "
3356 (string-pad-right "abcde" 3) @result{} "abc"
3357 @end example
3358 @end deffn
3359
3360 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
3361 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3362 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
3363 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
3364 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
3365 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
3366 Trim occurrences of @var{char_pred} from the ends of @var{s}.
3367
3368 @code{string-trim} trims @var{char_pred} characters from the left
3369 (start) of the string, @code{string-trim-right} trims them from the
3370 right (end) of the string, @code{string-trim-both} trims from both
3371 ends.
3372
3373 @var{char_pred} can be a character, a character set, or a predicate
3374 procedure to call on each character. If @var{char_pred} is not given
3375 the default is whitespace as per @code{char-set:whitespace}
3376 (@pxref{Standard Character Sets}).
3377
3378 @example
3379 (string-trim " x ") @result{} "x "
3380 (string-trim-right "banana" #\a) @result{} "banan"
3381 (string-trim-both ".,xy:;" char-set:punctuation)
3382 @result{} "xy"
3383 (string-trim-both "xyzzy" (lambda (c)
3384 (or (eqv? c #\x)
3385 (eqv? c #\y))))
3386 @result{} "zz"
3387 @end example
3388 @end deffn
3389
3390 @node String Modification
3391 @subsubsection String Modification
3392
3393 These procedures are for modifying strings in-place. This means that the
3394 result of the operation is not a new string; instead, the original string's
3395 memory representation is modified.
3396
3397 @rnindex string-set!
3398 @deffn {Scheme Procedure} string-set! str k chr
3399 @deffnx {C Function} scm_string_set_x (str, k, chr)
3400 Store @var{chr} in element @var{k} of @var{str} and return
3401 an unspecified value. @var{k} must be a valid index of
3402 @var{str}.
3403 @end deffn
3404
3405 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3406 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3407 @end deftypefn
3408
3409 @rnindex string-fill!
3410 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
3411 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
3412 @deffnx {C Function} scm_string_fill_x (str, chr)
3413 Stores @var{chr} in every element of the given @var{str} and
3414 returns an unspecified value.
3415 @end deffn
3416
3417 @deffn {Scheme Procedure} substring-fill! str start end fill
3418 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3419 Change every character in @var{str} between @var{start} and
3420 @var{end} to @var{fill}.
3421
3422 @lisp
3423 (define y (string-copy "abcdefg"))
3424 (substring-fill! y 1 3 #\r)
3425 y
3426 @result{} "arrdefg"
3427 @end lisp
3428 @end deffn
3429
3430 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3431 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3432 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3433 into @var{str2} beginning at position @var{start2}.
3434 @var{str1} and @var{str2} can be the same string.
3435 @end deffn
3436
3437 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3438 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3439 Copy the sequence of characters from index range [@var{start},
3440 @var{end}) in string @var{s} to string @var{target}, beginning
3441 at index @var{tstart}. The characters are copied left-to-right
3442 or right-to-left as needed -- the copy is guaranteed to work,
3443 even if @var{target} and @var{s} are the same string. It is an
3444 error if the copy operation runs off the end of the target
3445 string.
3446 @end deffn
3447
3448
3449 @node String Comparison
3450 @subsubsection String Comparison
3451
3452 The procedures in this section are similar to the character ordering
3453 predicates (@pxref{Characters}), but are defined on character sequences.
3454
3455 The first set is specified in R5RS and has names that end in @code{?}.
3456 The second set is specified in SRFI-13 and the names have not ending
3457 @code{?}.
3458
3459 The predicates ending in @code{-ci} ignore the character case
3460 when comparing strings. For now, case-insensitive comparison is done
3461 using the R5RS rules, where every lower-case character that has a
3462 single character upper-case form is converted to uppercase before
3463 comparison. See @xref{Text Collation, the @code{(ice-9
3464 i18n)} module}, for locale-dependent string comparison.
3465
3466 @rnindex string=?
3467 @deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
3468 Lexicographic equality predicate; return @code{#t} if all strings are
3469 the same length and contain the same characters in the same positions,
3470 otherwise return @code{#f}.
3471
3472 The procedure @code{string-ci=?} treats upper and lower case
3473 letters as though they were the same character, but
3474 @code{string=?} treats upper and lower case as distinct
3475 characters.
3476 @end deffn
3477
3478 @rnindex string<?
3479 @deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
3480 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3481 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3482 lexicographically less than @var{str_i+1}.
3483 @end deffn
3484
3485 @rnindex string<=?
3486 @deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
3487 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3488 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3489 lexicographically less than or equal to @var{str_i+1}.
3490 @end deffn
3491
3492 @rnindex string>?
3493 @deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
3494 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3495 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3496 lexicographically greater than @var{str_i+1}.
3497 @end deffn
3498
3499 @rnindex string>=?
3500 @deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
3501 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3502 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3503 lexicographically greater than or equal to @var{str_i+1}.
3504 @end deffn
3505
3506 @rnindex string-ci=?
3507 @deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
3508 Case-insensitive string equality predicate; return @code{#t} if
3509 all strings are the same length and their component
3510 characters match (ignoring case) at each position; otherwise
3511 return @code{#f}.
3512 @end deffn
3513
3514 @rnindex string-ci<?
3515 @deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
3516 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3517 for every pair of consecutive string arguments @var{str_i} and
3518 @var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
3519 regardless of case.
3520 @end deffn
3521
3522 @rnindex string<=?
3523 @deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
3524 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3525 for every pair of consecutive string arguments @var{str_i} and
3526 @var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3527 @var{str_i+1} regardless of case.
3528 @end deffn
3529
3530 @rnindex string-ci>?
3531 @deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
3532 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3533 for every pair of consecutive string arguments @var{str_i} and
3534 @var{str_i+1}, @var{str_i} is lexicographically greater than
3535 @var{str_i+1} regardless of case.
3536 @end deffn
3537
3538 @rnindex string-ci>=?
3539 @deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
3540 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3541 for every pair of consecutive string arguments @var{str_i} and
3542 @var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3543 @var{str_i+1} regardless of case.
3544 @end deffn
3545
3546 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3547 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3548 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3549 mismatch index, depending upon whether @var{s1} is less than,
3550 equal to, or greater than @var{s2}. The mismatch index is the
3551 largest index @var{i} such that for every 0 <= @var{j} <
3552 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3553 @var{i} is the first position that does not match.
3554 @end deffn
3555
3556 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3557 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3558 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3559 mismatch index, depending upon whether @var{s1} is less than,
3560 equal to, or greater than @var{s2}. The mismatch index is the
3561 largest index @var{i} such that for every 0 <= @var{j} <
3562 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3563 @var{i} is the first position where the lowercased letters
3564 do not match.
3565
3566 @end deffn
3567
3568 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3569 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3570 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3571 value otherwise.
3572 @end deffn
3573
3574 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3575 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3576 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3577 value otherwise.
3578 @end deffn
3579
3580 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3581 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3582 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3583 true value otherwise.
3584 @end deffn
3585
3586 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3587 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3588 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3589 true value otherwise.
3590 @end deffn
3591
3592 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3593 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3594 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3595 value otherwise.
3596 @end deffn
3597
3598 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3599 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3600 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3601 otherwise.
3602 @end deffn
3603
3604 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3605 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3606 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3607 value otherwise. The character comparison is done
3608 case-insensitively.
3609 @end deffn
3610
3611 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3612 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3613 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3614 value otherwise. The character comparison is done
3615 case-insensitively.
3616 @end deffn
3617
3618 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3619 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3620 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3621 true value otherwise. The character comparison is done
3622 case-insensitively.
3623 @end deffn
3624
3625 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3626 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3627 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3628 true value otherwise. The character comparison is done
3629 case-insensitively.
3630 @end deffn
3631
3632 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3633 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3634 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3635 value otherwise. The character comparison is done
3636 case-insensitively.
3637 @end deffn
3638
3639 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3640 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3641 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3642 otherwise. The character comparison is done
3643 case-insensitively.
3644 @end deffn
3645
3646 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3647 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3648 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3649 @end deffn
3650
3651 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3652 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3653 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3654 @end deffn
3655
3656 Because the same visual appearance of an abstract Unicode character can
3657 be obtained via multiple sequences of Unicode characters, even the
3658 case-insensitive string comparison functions described above may return
3659 @code{#f} when presented with strings containing different
3660 representations of the same character. For example, the Unicode
3661 character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3662 represented with a single character (U+1E69) or by the character ``LATIN
3663 SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3664 DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3665
3666 For this reason, it is often desirable to ensure that the strings
3667 to be compared are using a mutually consistent representation for every
3668 character. The Unicode standard defines two methods of normalizing the
3669 contents of strings: Decomposition, which breaks composite characters
3670 into a set of constituent characters with an ordering defined by the
3671 Unicode Standard; and composition, which performs the converse.
3672
3673 There are two decomposition operations. ``Canonical decomposition''
3674 produces character sequences that share the same visual appearance as
3675 the original characters, while ``compatibility decomposition'' produces
3676 ones whose visual appearances may differ from the originals but which
3677 represent the same abstract character.
3678
3679 These operations are encapsulated in the following set of normalization
3680 forms:
3681
3682 @table @dfn
3683 @item NFD
3684 Characters are decomposed to their canonical forms.
3685
3686 @item NFKD
3687 Characters are decomposed to their compatibility forms.
3688
3689 @item NFC
3690 Characters are decomposed to their canonical forms, then composed.
3691
3692 @item NFKC
3693 Characters are decomposed to their compatibility forms, then composed.
3694
3695 @end table
3696
3697 The functions below put their arguments into one of the forms described
3698 above.
3699
3700 @deffn {Scheme Procedure} string-normalize-nfd s
3701 @deffnx {C Function} scm_string_normalize_nfd (s)
3702 Return the @code{NFD} normalized form of @var{s}.
3703 @end deffn
3704
3705 @deffn {Scheme Procedure} string-normalize-nfkd s
3706 @deffnx {C Function} scm_string_normalize_nfkd (s)
3707 Return the @code{NFKD} normalized form of @var{s}.
3708 @end deffn
3709
3710 @deffn {Scheme Procedure} string-normalize-nfc s
3711 @deffnx {C Function} scm_string_normalize_nfc (s)
3712 Return the @code{NFC} normalized form of @var{s}.
3713 @end deffn
3714
3715 @deffn {Scheme Procedure} string-normalize-nfkc s
3716 @deffnx {C Function} scm_string_normalize_nfkc (s)
3717 Return the @code{NFKC} normalized form of @var{s}.
3718 @end deffn
3719
3720 @node String Searching
3721 @subsubsection String Searching
3722
3723 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3724 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3725 Search through the string @var{s} from left to right, returning
3726 the index of the first occurrence of a character which
3727
3728 @itemize @bullet
3729 @item
3730 equals @var{char_pred}, if it is character,
3731
3732 @item
3733 satisfies the predicate @var{char_pred}, if it is a procedure,
3734
3735 @item
3736 is in the set @var{char_pred}, if it is a character set.
3737 @end itemize
3738
3739 Return @code{#f} if no match is found.
3740 @end deffn
3741
3742 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3743 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3744 Search through the string @var{s} from right to left, returning
3745 the index of the last occurrence of a character which
3746
3747 @itemize @bullet
3748 @item
3749 equals @var{char_pred}, if it is character,
3750
3751 @item
3752 satisfies the predicate @var{char_pred}, if it is a procedure,
3753
3754 @item
3755 is in the set if @var{char_pred} is a character set.
3756 @end itemize
3757
3758 Return @code{#f} if no match is found.
3759 @end deffn
3760
3761 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3762 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3763 Return the length of the longest common prefix of the two
3764 strings.
3765 @end deffn
3766
3767 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3768 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3769 Return the length of the longest common prefix of the two
3770 strings, ignoring character case.
3771 @end deffn
3772
3773 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3774 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3775 Return the length of the longest common suffix of the two
3776 strings.
3777 @end deffn
3778
3779 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3780 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3781 Return the length of the longest common suffix of the two
3782 strings, ignoring character case.
3783 @end deffn
3784
3785 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3786 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3787 Is @var{s1} a prefix of @var{s2}?
3788 @end deffn
3789
3790 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3791 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3792 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3793 @end deffn
3794
3795 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3796 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3797 Is @var{s1} a suffix of @var{s2}?
3798 @end deffn
3799
3800 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3801 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3802 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3803 @end deffn
3804
3805 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3806 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3807 Search through the string @var{s} from right to left, returning
3808 the index of the last occurrence of a character which
3809
3810 @itemize @bullet
3811 @item
3812 equals @var{char_pred}, if it is character,
3813
3814 @item
3815 satisfies the predicate @var{char_pred}, if it is a procedure,
3816
3817 @item
3818 is in the set if @var{char_pred} is a character set.
3819 @end itemize
3820
3821 Return @code{#f} if no match is found.
3822 @end deffn
3823
3824 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3825 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3826 Search through the string @var{s} from left to right, returning
3827 the index of the first occurrence of a character which
3828
3829 @itemize @bullet
3830 @item
3831 does not equal @var{char_pred}, if it is character,
3832
3833 @item
3834 does not satisfy the predicate @var{char_pred}, if it is a
3835 procedure,
3836
3837 @item
3838 is not in the set if @var{char_pred} is a character set.
3839 @end itemize
3840 @end deffn
3841
3842 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3843 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3844 Search through the string @var{s} from right to left, returning
3845 the index of the last occurrence of a character which
3846
3847 @itemize @bullet
3848 @item
3849 does not equal @var{char_pred}, if it is character,
3850
3851 @item
3852 does not satisfy the predicate @var{char_pred}, if it is a
3853 procedure,
3854
3855 @item
3856 is not in the set if @var{char_pred} is a character set.
3857 @end itemize
3858 @end deffn
3859
3860 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3861 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3862 Return the count of the number of characters in the string
3863 @var{s} which
3864
3865 @itemize @bullet
3866 @item
3867 equals @var{char_pred}, if it is character,
3868
3869 @item
3870 satisfies the predicate @var{char_pred}, if it is a procedure.
3871
3872 @item
3873 is in the set @var{char_pred}, if it is a character set.
3874 @end itemize
3875 @end deffn
3876
3877 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3878 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3879 Does string @var{s1} contain string @var{s2}? Return the index
3880 in @var{s1} where @var{s2} occurs as a substring, or false.
3881 The optional start/end indices restrict the operation to the
3882 indicated substrings.
3883 @end deffn
3884
3885 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3886 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3887 Does string @var{s1} contain string @var{s2}? Return the index
3888 in @var{s1} where @var{s2} occurs as a substring, or false.
3889 The optional start/end indices restrict the operation to the
3890 indicated substrings. Character comparison is done
3891 case-insensitively.
3892 @end deffn
3893
3894 @node Alphabetic Case Mapping
3895 @subsubsection Alphabetic Case Mapping
3896
3897 These are procedures for mapping strings to their upper- or lower-case
3898 equivalents, respectively, or for capitalizing strings.
3899
3900 They use the basic case mapping rules for Unicode characters. No
3901 special language or context rules are considered. The resulting strings
3902 are guaranteed to be the same length as the input strings.
3903
3904 @xref{Character Case Mapping, the @code{(ice-9
3905 i18n)} module}, for locale-dependent case conversions.
3906
3907 @deffn {Scheme Procedure} string-upcase str [start [end]]
3908 @deffnx {C Function} scm_substring_upcase (str, start, end)
3909 @deffnx {C Function} scm_string_upcase (str)
3910 Upcase every character in @code{str}.
3911 @end deffn
3912
3913 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3914 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3915 @deffnx {C Function} scm_string_upcase_x (str)
3916 Destructively upcase every character in @code{str}.
3917
3918 @lisp
3919 (string-upcase! y)
3920 @result{} "ARRDEFG"
3921 y
3922 @result{} "ARRDEFG"
3923 @end lisp
3924 @end deffn
3925
3926 @deffn {Scheme Procedure} string-downcase str [start [end]]
3927 @deffnx {C Function} scm_substring_downcase (str, start, end)
3928 @deffnx {C Function} scm_string_downcase (str)
3929 Downcase every character in @var{str}.
3930 @end deffn
3931
3932 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3933 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3934 @deffnx {C Function} scm_string_downcase_x (str)
3935 Destructively downcase every character in @var{str}.
3936
3937 @lisp
3938 y
3939 @result{} "ARRDEFG"
3940 (string-downcase! y)
3941 @result{} "arrdefg"
3942 y
3943 @result{} "arrdefg"
3944 @end lisp
3945 @end deffn
3946
3947 @deffn {Scheme Procedure} string-capitalize str
3948 @deffnx {C Function} scm_string_capitalize (str)
3949 Return a freshly allocated string with the characters in
3950 @var{str}, where the first character of every word is
3951 capitalized.
3952 @end deffn
3953
3954 @deffn {Scheme Procedure} string-capitalize! str
3955 @deffnx {C Function} scm_string_capitalize_x (str)
3956 Upcase the first character of every word in @var{str}
3957 destructively and return @var{str}.
3958
3959 @lisp
3960 y @result{} "hello world"
3961 (string-capitalize! y) @result{} "Hello World"
3962 y @result{} "Hello World"
3963 @end lisp
3964 @end deffn
3965
3966 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3967 @deffnx {C Function} scm_string_titlecase (str, start, end)
3968 Titlecase every first character in a word in @var{str}.
3969 @end deffn
3970
3971 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3972 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3973 Destructively titlecase every first character in a word in
3974 @var{str}.
3975 @end deffn
3976
3977 @node Reversing and Appending Strings
3978 @subsubsection Reversing and Appending Strings
3979
3980 @deffn {Scheme Procedure} string-reverse str [start [end]]
3981 @deffnx {C Function} scm_string_reverse (str, start, end)
3982 Reverse the string @var{str}. The optional arguments
3983 @var{start} and @var{end} delimit the region of @var{str} to
3984 operate on.
3985 @end deffn
3986
3987 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3988 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3989 Reverse the string @var{str} in-place. The optional arguments
3990 @var{start} and @var{end} delimit the region of @var{str} to
3991 operate on. The return value is unspecified.
3992 @end deffn
3993
3994 @rnindex string-append
3995 @deffn {Scheme Procedure} string-append arg @dots{}
3996 @deffnx {C Function} scm_string_append (args)
3997 Return a newly allocated string whose characters form the
3998 concatenation of the given strings, @var{arg} @enddots{}.
3999
4000 @example
4001 (let ((h "hello "))
4002 (string-append h "world"))
4003 @result{} "hello world"
4004 @end example
4005 @end deffn
4006
4007 @deffn {Scheme Procedure} string-append/shared arg @dots{}
4008 @deffnx {C Function} scm_string_append_shared (args)
4009 Like @code{string-append}, but the result may share memory
4010 with the argument strings.
4011 @end deffn
4012
4013 @deffn {Scheme Procedure} string-concatenate ls
4014 @deffnx {C Function} scm_string_concatenate (ls)
4015 Append the elements (which must be strings) of @var{ls} together into a
4016 single string. Guaranteed to return a freshly allocated string.
4017 @end deffn
4018
4019 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
4020 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
4021 Without optional arguments, this procedure is equivalent to
4022
4023 @lisp
4024 (string-concatenate (reverse ls))
4025 @end lisp
4026
4027 If the optional argument @var{final_string} is specified, it is
4028 consed onto the beginning to @var{ls} before performing the
4029 list-reverse and string-concatenate operations. If @var{end}
4030 is given, only the characters of @var{final_string} up to index
4031 @var{end} are used.
4032
4033 Guaranteed to return a freshly allocated string.
4034 @end deffn
4035
4036 @deffn {Scheme Procedure} string-concatenate/shared ls
4037 @deffnx {C Function} scm_string_concatenate_shared (ls)
4038 Like @code{string-concatenate}, but the result may share memory
4039 with the strings in the list @var{ls}.
4040 @end deffn
4041
4042 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
4043 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
4044 Like @code{string-concatenate-reverse}, but the result may
4045 share memory with the strings in the @var{ls} arguments.
4046 @end deffn
4047
4048 @node Mapping Folding and Unfolding
4049 @subsubsection Mapping, Folding, and Unfolding
4050
4051 @deffn {Scheme Procedure} string-map proc s [start [end]]
4052 @deffnx {C Function} scm_string_map (proc, s, start, end)
4053 @var{proc} is a char->char procedure, it is mapped over
4054 @var{s}. The order in which the procedure is applied to the
4055 string elements is not specified.
4056 @end deffn
4057
4058 @deffn {Scheme Procedure} string-map! proc s [start [end]]
4059 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
4060 @var{proc} is a char->char procedure, it is mapped over
4061 @var{s}. The order in which the procedure is applied to the
4062 string elements is not specified. The string @var{s} is
4063 modified in-place, the return value is not specified.
4064 @end deffn
4065
4066 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
4067 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
4068 @var{proc} is mapped over @var{s} in left-to-right order. The
4069 return value is not specified.
4070 @end deffn
4071
4072 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4073 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
4074 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4075 right.
4076
4077 For example, to change characters to alternately upper and lower case,
4078
4079 @example
4080 (define str (string-copy "studly"))
4081 (string-for-each-index
4082 (lambda (i)
4083 (string-set! str i
4084 ((if (even? i) char-upcase char-downcase)
4085 (string-ref str i))))
4086 str)
4087 str @result{} "StUdLy"
4088 @end example
4089 @end deffn
4090
4091 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4092 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4093 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4094 as the terminating element, from left to right. @var{kons}
4095 must expect two arguments: The actual character and the last
4096 result of @var{kons}' application.
4097 @end deffn
4098
4099 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4100 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4101 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4102 as the terminating element, from right to left. @var{kons}
4103 must expect two arguments: The actual character and the last
4104 result of @var{kons}' application.
4105 @end deffn
4106
4107 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4108 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4109 @itemize @bullet
4110 @item @var{g} is used to generate a series of @emph{seed}
4111 values from the initial @var{seed}: @var{seed}, (@var{g}
4112 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4113 @dots{}
4114 @item @var{p} tells us when to stop -- when it returns true
4115 when applied to one of these seed values.
4116 @item @var{f} maps each seed value to the corresponding
4117 character in the result string. These chars are assembled
4118 into the string in a left-to-right order.
4119 @item @var{base} is the optional initial/leftmost portion
4120 of the constructed string; it default to the empty
4121 string.
4122 @item @var{make_final} is applied to the terminal seed
4123 value (on which @var{p} returns true) to produce
4124 the final/rightmost portion of the constructed string.
4125 The default is nothing extra.
4126 @end itemize
4127 @end deffn
4128
4129 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4130 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4131 @itemize @bullet
4132 @item @var{g} is used to generate a series of @emph{seed}
4133 values from the initial @var{seed}: @var{seed}, (@var{g}
4134 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4135 @dots{}
4136 @item @var{p} tells us when to stop -- when it returns true
4137 when applied to one of these seed values.
4138 @item @var{f} maps each seed value to the corresponding
4139 character in the result string. These chars are assembled
4140 into the string in a right-to-left order.
4141 @item @var{base} is the optional initial/rightmost portion
4142 of the constructed string; it default to the empty
4143 string.
4144 @item @var{make_final} is applied to the terminal seed
4145 value (on which @var{p} returns true) to produce
4146 the final/leftmost portion of the constructed string.
4147 It defaults to @code{(lambda (x) )}.
4148 @end itemize
4149 @end deffn
4150
4151 @node Miscellaneous String Operations
4152 @subsubsection Miscellaneous String Operations
4153
4154 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4155 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4156 This is the @emph{extended substring} procedure that implements
4157 replicated copying of a substring of some string.
4158
4159 @var{s} is a string, @var{start} and @var{end} are optional
4160 arguments that demarcate a substring of @var{s}, defaulting to
4161 0 and the length of @var{s}. Replicate this substring up and
4162 down index space, in both the positive and negative directions.
4163 @code{xsubstring} returns the substring of this string
4164 beginning at index @var{from}, and ending at @var{to}, which
4165 defaults to @var{from} + (@var{end} - @var{start}).
4166 @end deffn
4167
4168 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4169 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4170 Exactly the same as @code{xsubstring}, but the extracted text
4171 is written into the string @var{target} starting at index
4172 @var{tstart}. The operation is not defined if @code{(eq?
4173 @var{target} @var{s})} or these arguments share storage -- you
4174 cannot copy a string on top of itself.
4175 @end deffn
4176
4177 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4178 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4179 Return the string @var{s1}, but with the characters
4180 @var{start1} @dots{} @var{end1} replaced by the characters
4181 @var{start2} @dots{} @var{end2} from @var{s2}.
4182 @end deffn
4183
4184 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4185 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4186 Split the string @var{s} into a list of substrings, where each
4187 substring is a maximal non-empty contiguous sequence of
4188 characters from the character set @var{token_set}, which
4189 defaults to @code{char-set:graphic}.
4190 If @var{start} or @var{end} indices are provided, they restrict
4191 @code{string-tokenize} to operating on the indicated substring
4192 of @var{s}.
4193 @end deffn
4194
4195 @deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4196 @deffnx {C Function} scm_string_filter (char_pred, s, start, end)
4197 Filter the string @var{s}, retaining only those characters which
4198 satisfy @var{char_pred}.
4199
4200 If @var{char_pred} is a procedure, it is applied to each character as
4201 a predicate, if it is a character, it is tested for equality and if it
4202 is a character set, it is tested for membership.
4203 @end deffn
4204
4205 @deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4206 @deffnx {C Function} scm_string_delete (char_pred, s, start, end)
4207 Delete characters satisfying @var{char_pred} from @var{s}.
4208
4209 If @var{char_pred} is a procedure, it is applied to each character as
4210 a predicate, if it is a character, it is tested for equality and if it
4211 is a character set, it is tested for membership.
4212 @end deffn
4213
4214 @node Representing Strings as Bytes
4215 @subsubsection Representing Strings as Bytes
4216
4217 Out in the cold world outside of Guile, not all strings are treated in
4218 the same way. Out there there are only bytes, and there are many ways
4219 of representing a strings (sequences of characters) as binary data
4220 (sequences of bytes).
4221
4222 As a user, usually you don't have to think about this very much. When
4223 you type on your keyboard, your system encodes your keystrokes as bytes
4224 according to the locale that you have configured on your computer.
4225 Guile uses the locale to decode those bytes back into characters --
4226 hopefully the same characters that you typed in.
4227
4228 All is not so clear when dealing with a system with multiple users, such
4229 as a web server. Your web server might get a request from one user for
4230 data encoded in the ISO-8859-1 character set, and then another request
4231 from a different user for UTF-8 data.
4232
4233 @cindex iconv
4234 @cindex character encoding
4235 Guile provides an @dfn{iconv} module for converting between strings and
4236 sequences of bytes. @xref{Bytevectors}, for more on how Guile
4237 represents raw byte sequences. This module gets its name from the
4238 common @sc{unix} command of the same name.
4239
4240 Note that often it is sufficient to just read and write strings from
4241 ports instead of using these functions. To do this, specify the port
4242 encoding using @code{set-port-encoding!}. @xref{Ports}, for more on
4243 ports and character encodings.
4244
4245 Unlike the rest of the procedures in this section, you have to load the
4246 @code{iconv} module before having access to these procedures:
4247
4248 @example
4249 (use-modules (ice-9 iconv))
4250 @end example
4251
4252 @deffn {Scheme Procedure} string->bytevector string encoding [conversion-strategy]
4253 Encode @var{string} as a sequence of bytes.
4254
4255 The string will be encoded in the character set specified by the
4256 @var{encoding} string. If the string has characters that cannot be
4257 represented in the encoding, by default this procedure raises an
4258 @code{encoding-error}. Pass a @var{conversion-strategy} argument to
4259 specify other behaviors.
4260
4261 The return value is a bytevector. @xref{Bytevectors}, for more on
4262 bytevectors. @xref{Ports}, for more on character encodings and
4263 conversion strategies.
4264 @end deffn
4265
4266 @deffn {Scheme Procedure} bytevector->string bytevector encoding [conversion-strategy]
4267 Decode @var{bytevector} into a string.
4268
4269 The bytes will be decoded from the character set by the @var{encoding}
4270 string. If the bytes do not form a valid encoding, by default this
4271 procedure raises an @code{decoding-error}. As with
4272 @code{string->bytevector}, pass the optional @var{conversion-strategy}
4273 argument to modify this behavior. @xref{Ports}, for more on character
4274 encodings and conversion strategies.
4275 @end deffn
4276
4277 @deffn {Scheme Procedure} call-with-output-encoded-string encoding proc [conversion-strategy]
4278 Like @code{call-with-output-string}, but instead of returning a string,
4279 returns a encoding of the string according to @var{encoding}, as a
4280 bytevector. This procedure can be more efficient than collecting a
4281 string and then converting it via @code{string->bytevector}.
4282 @end deffn
4283
4284 @node Conversion to/from C
4285 @subsubsection Conversion to/from C
4286
4287 When creating a Scheme string from a C string or when converting a
4288 Scheme string to a C string, the concept of character encoding becomes
4289 important.
4290
4291 In C, a string is just a sequence of bytes, and the character encoding
4292 describes the relation between these bytes and the actual characters
4293 that make up the string. For Scheme strings, character encoding is not
4294 an issue (most of the time), since in Scheme you usually treat strings
4295 as character sequences, not byte sequences.
4296
4297 Converting to C and converting from C each have their own challenges.
4298
4299 When converting from C to Scheme, it is important that the sequence of
4300 bytes in the C string be valid with respect to its encoding. ASCII
4301 strings, for example, can't have any bytes greater than 127. An ASCII
4302 byte greater than 127 is considered @emph{ill-formed} and cannot be
4303 converted into a Scheme character.
4304
4305 Problems can occur in the reverse operation as well. Not all character
4306 encodings can hold all possible Scheme characters. Some encodings, like
4307 ASCII for example, can only describe a small subset of all possible
4308 characters. So, when converting to C, one must first decide what to do
4309 with Scheme characters that can't be represented in the C string.
4310
4311 Converting a Scheme string to a C string will often allocate fresh
4312 memory to hold the result. You must take care that this memory is
4313 properly freed eventually. In many cases, this can be achieved by
4314 using @code{scm_dynwind_free} inside an appropriate dynwind context,
4315 @xref{Dynamic Wind}.
4316
4317 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4318 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
4319 Creates a new Scheme string that has the same contents as @var{str} when
4320 interpreted in the character encoding of the current locale.
4321
4322 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4323
4324 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4325 @var{str} in bytes, and @var{str} does not need to be null-terminated.
4326 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4327 null-terminated and the real length will be found with @code{strlen}.
4328
4329 If the C string is ill-formed, an error will be raised.
4330
4331 Note that these functions should @emph{not} be used to convert C string
4332 constants, because there is no guarantee that the current locale will
4333 match that of the execution character set, used for string and character
4334 constants. Most modern C compilers use UTF-8 by default, so to convert
4335 C string constants we recommend @code{scm_from_utf8_string}.
4336 @end deftypefn
4337
4338 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
4339 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4340 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4341 respectively, but also frees @var{str} with @code{free} eventually.
4342 Thus, you can use this function when you would free @var{str} anyway
4343 immediately after creating the Scheme string. In certain cases, Guile
4344 can then use @var{str} directly as its internal representation.
4345 @end deftypefn
4346
4347 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4348 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
4349 Returns a C string with the same contents as @var{str} in the character
4350 encoding of the current locale. The C string must be freed with
4351 @code{free} eventually, maybe by using @code{scm_dynwind_free},
4352 @xref{Dynamic Wind}.
4353
4354 For @code{scm_to_locale_string}, the returned string is
4355 null-terminated and an error is signalled when @var{str} contains
4356 @code{#\nul} characters.
4357
4358 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4359 @var{str} might contain @code{#\nul} characters and the length of the
4360 returned string in bytes is stored in @code{*@var{lenp}}. The
4361 returned string will not be null-terminated in this case. If
4362 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4363 @code{scm_to_locale_string}.
4364
4365 If a character in @var{str} cannot be represented in the character
4366 encoding of the current locale, the default port conversion strategy is
4367 used. @xref{Ports}, for more on conversion strategies.
4368
4369 If the conversion strategy is @code{error}, an error will be raised. If
4370 it is @code{substitute}, a replacement character, such as a question
4371 mark, will be inserted in its place. If it is @code{escape}, a hex
4372 escape will be inserted in its place.
4373 @end deftypefn
4374
4375 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4376 Puts @var{str} as a C string in the current locale encoding into the
4377 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4378 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4379 more than that. No terminating @code{'\0'} will be stored.
4380
4381 The return value of @code{scm_to_locale_stringbuf} is the number of
4382 bytes that are needed for all of @var{str}, regardless of whether
4383 @var{buf} was large enough to hold them. Thus, when the return value
4384 is larger than @var{max_len}, only @var{max_len} bytes have been
4385 stored and you probably need to try again with a larger buffer.
4386 @end deftypefn
4387
4388 For most situations, string conversion should occur using the current
4389 locale, such as with the functions above. But there may be cases where
4390 one wants to convert strings from a character encoding other than the
4391 locale's character encoding. For these cases, the lower-level functions
4392 @code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4393 functions should seldom be necessary if one is properly using locales.
4394
4395 @deftp {C Type} scm_t_string_failed_conversion_handler
4396 This is an enumerated type that can take one of three values:
4397 @code{SCM_FAILED_CONVERSION_ERROR},
4398 @code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4399 @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4400 a strategy for handling characters that cannot be converted to or from a
4401 given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4402 that a conversion should throw an error if some characters cannot be
4403 converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4404 conversion should replace unconvertable characters with the question
4405 mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4406 requests that a conversion should replace an unconvertable character
4407 with an escape sequence.
4408
4409 While all three strategies apply when converting Scheme strings to C,
4410 only @code{SCM_FAILED_CONVERSION_ERROR} and
4411 @code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4412 strings to Scheme.
4413 @end deftp
4414
4415 @deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4416 This function returns a newly allocated C string from the Guile string
4417 @var{str}. The length of the returned string in bytes will be returned in
4418 @var{lenp}. The character encoding of the C string is passed as the ASCII,
4419 null-terminated C string @var{encoding}. The @var{handler} parameter
4420 gives a strategy for dealing with characters that cannot be converted
4421 into @var{encoding}.
4422
4423 If @var{lenp} is @code{NULL}, this function will return a null-terminated C
4424 string. It will throw an error if the string contains a null
4425 character.
4426
4427 The Scheme interface to this function is @code{string->bytevector}, from the
4428 @code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
4429 @end deftypefn
4430
4431 @deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4432 This function returns a scheme string from the C string @var{str}. The
4433 length in bytes of the C string is input as @var{len}. The encoding of the C
4434 string is passed as the ASCII, null-terminated C string @code{encoding}.
4435 The @var{handler} parameters suggests a strategy for dealing with
4436 unconvertable characters.
4437
4438 The Scheme interface to this function is @code{bytevector->string}.
4439 @xref{Representing Strings as Bytes}.
4440 @end deftypefn
4441
4442 The following conversion functions are provided as a convenience for the
4443 most commonly used encodings.
4444
4445 @deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4446 @deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4447 @deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4448 Return a scheme string from the null-terminated C string @var{str},
4449 which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4450 be used to convert hard-coded C string constants into Scheme strings.
4451 @end deftypefn
4452
4453 @deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
4454 @deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4455 @deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4456 Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4457 UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4458 of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4459 @code{scm_from_utf8_stringn}; it is the number of elements (code points)
4460 in @var{str} in the case of @code{scm_from_utf32_stringn}.
4461 @end deftypefn
4462
4463 @deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4464 @deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4465 @deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4466 Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4467 from Scheme string @var{str}. An error is thrown when @var{str}
4468 cannot be converted to the specified encoding. If @var{lenp} is
4469 @code{NULL}, the returned C string will be null terminated, and an error
4470 will be thrown if the C string would otherwise contain null
4471 characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4472 and the length of the returned string is returned in @var{lenp}. The length
4473 returned is the number of bytes for @code{scm_to_latin1_stringn} and
4474 @code{scm_to_utf8_stringn}; it is the number of elements (code points)
4475 for @code{scm_to_utf32_stringn}.
4476 @end deftypefn
4477
4478 @node String Internals
4479 @subsubsection String Internals
4480
4481 Guile stores each string in memory as a contiguous array of Unicode code
4482 points along with an associated set of attributes. If all of the code
4483 points of a string have an integer range between 0 and 255 inclusive,
4484 the code point array is stored as one byte per code point: it is stored
4485 as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4486 string has an integer value greater that 255, the code point array is
4487 stored as four bytes per code point: it is stored as a UTF-32 string.
4488
4489 Conversion between the one-byte-per-code-point and
4490 four-bytes-per-code-point representations happens automatically as
4491 necessary.
4492
4493 No API is provided to set the internal representation of strings;
4494 however, there are pair of procedures available to query it. These are
4495 debugging procedures. Using them in production code is discouraged,
4496 since the details of Guile's internal representation of strings may
4497 change from release to release.
4498
4499 @deffn {Scheme Procedure} string-bytes-per-char str
4500 @deffnx {C Function} scm_string_bytes_per_char (str)
4501 Return the number of bytes used to encode a Unicode code point in string
4502 @var{str}. The result is one or four.
4503 @end deffn
4504
4505 @deffn {Scheme Procedure} %string-dump str
4506 @deffnx {C Function} scm_sys_string_dump (str)
4507 Returns an association list containing debugging information for
4508 @var{str}. The association list has the following entries.
4509 @table @code
4510
4511 @item string
4512 The string itself.
4513
4514 @item start
4515 The start index of the string into its stringbuf
4516
4517 @item length
4518 The length of the string
4519
4520 @item shared
4521 If this string is a substring, it returns its
4522 parent string. Otherwise, it returns @code{#f}
4523
4524 @item read-only
4525 @code{#t} if the string is read-only
4526
4527 @item stringbuf-chars
4528 A new string containing this string's stringbuf's characters
4529
4530 @item stringbuf-length
4531 The number of characters in this stringbuf
4532
4533 @item stringbuf-shared
4534 @code{#t} if this stringbuf is shared
4535
4536 @item stringbuf-wide
4537 @code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4538 or @code{#f} if they are stored in an 8-bit buffer
4539 @end table
4540 @end deffn
4541
4542
4543 @node Bytevectors
4544 @subsection Bytevectors
4545
4546 @cindex bytevector
4547 @cindex R6RS
4548
4549 A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
4550 module provides the programming interface specified by the
4551 @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
4552 Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4553 interpret their contents in a number of ways: bytevector contents can be
4554 accessed as signed or unsigned integer of various sizes and endianness,
4555 as IEEE-754 floating point numbers, or as strings. It is a useful tool
4556 to encode and decode binary data.
4557
4558 The R6RS (Section 4.3.4) specifies an external representation for
4559 bytevectors, whereby the octets (integers in the range 0--255) contained
4560 in the bytevector are represented as a list prefixed by @code{#vu8}:
4561
4562 @lisp
4563 #vu8(1 53 204)
4564 @end lisp
4565
4566 denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4567 string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4568 they do not need to be quoted:
4569
4570 @lisp
4571 #vu8(1 53 204)
4572 @result{} #vu8(1 53 204)
4573 @end lisp
4574
4575 Bytevectors can be used with the binary input/output primitives of the
4576 R6RS (@pxref{R6RS I/O Ports}).
4577
4578 @menu
4579 * Bytevector Endianness:: Dealing with byte order.
4580 * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4581 * Bytevectors as Integers:: Interpreting bytes as integers.
4582 * Bytevectors and Integer Lists:: Converting to/from an integer list.
4583 * Bytevectors as Floats:: Interpreting bytes as real numbers.
4584 * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
4585 * Bytevectors as Arrays:: Guile extension to the bytevector API.
4586 * Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
4587 @end menu
4588
4589 @node Bytevector Endianness
4590 @subsubsection Endianness
4591
4592 @cindex endianness
4593 @cindex byte order
4594 @cindex word order
4595
4596 Some of the following procedures take an @var{endianness} parameter.
4597 The @dfn{endianness} is defined as the order of bytes in multi-byte
4598 numbers: numbers encoded in @dfn{big endian} have their most
4599 significant bytes written first, whereas numbers encoded in
4600 @dfn{little endian} have their least significant bytes
4601 first@footnote{Big-endian and little-endian are the most common
4602 ``endiannesses'', but others do exist. For instance, the GNU MP
4603 library allows @dfn{word order} to be specified independently of
4604 @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4605 Multiple Precision Arithmetic Library Manual}).}.
4606
4607 Little-endian is the native endianness of the IA32 architecture and
4608 its derivatives, while big-endian is native to SPARC and PowerPC,
4609 among others. The @code{native-endianness} procedure returns the
4610 native endianness of the machine it runs on.
4611
4612 @deffn {Scheme Procedure} native-endianness
4613 @deffnx {C Function} scm_native_endianness ()
4614 Return a value denoting the native endianness of the host machine.
4615 @end deffn
4616
4617 @deffn {Scheme Macro} endianness symbol
4618 Return an object denoting the endianness specified by @var{symbol}. If
4619 @var{symbol} is neither @code{big} nor @code{little} then an error is
4620 raised at expand-time.
4621 @end deffn
4622
4623 @defvr {C Variable} scm_endianness_big
4624 @defvrx {C Variable} scm_endianness_little
4625 The objects denoting big- and little-endianness, respectively.
4626 @end defvr
4627
4628
4629 @node Bytevector Manipulation
4630 @subsubsection Manipulating Bytevectors
4631
4632 Bytevectors can be created, copied, and analyzed with the following
4633 procedures and C functions.
4634
4635 @deffn {Scheme Procedure} make-bytevector len [fill]
4636 @deffnx {C Function} scm_make_bytevector (len, fill)
4637 @deffnx {C Function} scm_c_make_bytevector (size_t len)
4638 Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
4639 is given, fill it with @var{fill}; @var{fill} must be in the range
4640 [-128,255].
4641 @end deffn
4642
4643 @deffn {Scheme Procedure} bytevector? obj
4644 @deffnx {C Function} scm_bytevector_p (obj)
4645 Return true if @var{obj} is a bytevector.
4646 @end deffn
4647
4648 @deftypefn {C Function} int scm_is_bytevector (SCM obj)
4649 Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4650 @end deftypefn
4651
4652 @deffn {Scheme Procedure} bytevector-length bv
4653 @deffnx {C Function} scm_bytevector_length (bv)
4654 Return the length in bytes of bytevector @var{bv}.
4655 @end deffn
4656
4657 @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4658 Likewise, return the length in bytes of bytevector @var{bv}.
4659 @end deftypefn
4660
4661 @deffn {Scheme Procedure} bytevector=? bv1 bv2
4662 @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4663 Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4664 length and contents.
4665 @end deffn
4666
4667 @deffn {Scheme Procedure} bytevector-fill! bv fill
4668 @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4669 Fill bytevector @var{bv} with @var{fill}, a byte.
4670 @end deffn
4671
4672 @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4673 @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4674 Copy @var{len} bytes from @var{source} into @var{target}, starting
4675 reading from @var{source-start} (a positive index within @var{source})
4676 and start writing at @var{target-start}. It is permitted for the
4677 @var{source} and @var{target} regions to overlap.
4678 @end deffn
4679
4680 @deffn {Scheme Procedure} bytevector-copy bv
4681 @deffnx {C Function} scm_bytevector_copy (bv)
4682 Return a newly allocated copy of @var{bv}.
4683 @end deffn
4684
4685 @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4686 Return the byte at @var{index} in bytevector @var{bv}.
4687 @end deftypefn
4688
4689 @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4690 Set the byte at @var{index} in @var{bv} to @var{value}.
4691 @end deftypefn
4692
4693 Low-level C macros are available. They do not perform any
4694 type-checking; as such they should be used with care.
4695
4696 @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4697 Return the length in bytes of bytevector @var{bv}.
4698 @end deftypefn
4699
4700 @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4701 Return a pointer to the contents of bytevector @var{bv}.
4702 @end deftypefn
4703
4704
4705 @node Bytevectors as Integers
4706 @subsubsection Interpreting Bytevector Contents as Integers
4707
4708 The contents of a bytevector can be interpreted as a sequence of
4709 integers of any given size, sign, and endianness.
4710
4711 @lisp
4712 (let ((bv (make-bytevector 4)))
4713 (bytevector-u8-set! bv 0 #x12)
4714 (bytevector-u8-set! bv 1 #x34)
4715 (bytevector-u8-set! bv 2 #x56)
4716 (bytevector-u8-set! bv 3 #x78)
4717
4718 (map (lambda (number)
4719 (number->string number 16))
4720 (list (bytevector-u8-ref bv 0)
4721 (bytevector-u16-ref bv 0 (endianness big))
4722 (bytevector-u32-ref bv 0 (endianness little)))))
4723
4724 @result{} ("12" "1234" "78563412")
4725 @end lisp
4726
4727 The most generic procedures to interpret bytevector contents as integers
4728 are described below.
4729
4730 @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4731 @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4732 Return the @var{size}-byte long unsigned integer at index @var{index} in
4733 @var{bv}, decoded according to @var{endianness}.
4734 @end deffn
4735
4736 @deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
4737 @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4738 Return the @var{size}-byte long signed integer at index @var{index} in
4739 @var{bv}, decoded according to @var{endianness}.
4740 @end deffn
4741
4742 @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4743 @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4744 Set the @var{size}-byte long unsigned integer at @var{index} to
4745 @var{value}, encoded according to @var{endianness}.
4746 @end deffn
4747
4748 @deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4749 @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4750 Set the @var{size}-byte long signed integer at @var{index} to
4751 @var{value}, encoded according to @var{endianness}.
4752 @end deffn
4753
4754 The following procedures are similar to the ones above, but specialized
4755 to a given integer size:
4756
4757 @deffn {Scheme Procedure} bytevector-u8-ref bv index
4758 @deffnx {Scheme Procedure} bytevector-s8-ref bv index
4759 @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4760 @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4761 @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4762 @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4763 @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4764 @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4765 @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4766 @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4767 @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4768 @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4769 @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4770 @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4771 @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4772 @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4773 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4774 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
4775 @var{endianness}.
4776 @end deffn
4777
4778 @deffn {Scheme Procedure} bytevector-u8-set! bv index value
4779 @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4780 @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4781 @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4782 @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4783 @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4784 @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4785 @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4786 @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4787 @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4788 @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4789 @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4790 @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4791 @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4792 @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4793 @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4794 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4795 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4796 @var{endianness}.
4797 @end deffn
4798
4799 Finally, a variant specialized for the host's endianness is available
4800 for each of these functions (with the exception of the @code{u8}
4801 accessors, for obvious reasons):
4802
4803 @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4804 @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4805 @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4806 @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4807 @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4808 @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4809 @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4810 @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4811 @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4812 @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4813 @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4814 @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4815 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4816 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4817 host's native endianness.
4818 @end deffn
4819
4820 @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4821 @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4822 @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4823 @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4824 @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4825 @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4826 @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4827 @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4828 @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4829 @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4830 @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4831 @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4832 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4833 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4834 host's native endianness.
4835 @end deffn
4836
4837
4838 @node Bytevectors and Integer Lists
4839 @subsubsection Converting Bytevectors to/from Integer Lists
4840
4841 Bytevector contents can readily be converted to/from lists of signed or
4842 unsigned integers:
4843
4844 @lisp
4845 (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4846 (endianness little) 2)
4847 @result{} (-1 -1)
4848 @end lisp
4849
4850 @deffn {Scheme Procedure} bytevector->u8-list bv
4851 @deffnx {C Function} scm_bytevector_to_u8_list (bv)
4852 Return a newly allocated list of unsigned 8-bit integers from the
4853 contents of @var{bv}.
4854 @end deffn
4855
4856 @deffn {Scheme Procedure} u8-list->bytevector lst
4857 @deffnx {C Function} scm_u8_list_to_bytevector (lst)
4858 Return a newly allocated bytevector consisting of the unsigned 8-bit
4859 integers listed in @var{lst}.
4860 @end deffn
4861
4862 @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4863 @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4864 Return a list of unsigned integers of @var{size} bytes representing the
4865 contents of @var{bv}, decoded according to @var{endianness}.
4866 @end deffn
4867
4868 @deffn {Scheme Procedure} bytevector->sint-list bv endianness size
4869 @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4870 Return a list of signed integers of @var{size} bytes representing the
4871 contents of @var{bv}, decoded according to @var{endianness}.
4872 @end deffn
4873
4874 @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4875 @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4876 Return a new bytevector containing the unsigned integers listed in
4877 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4878 @end deffn
4879
4880 @deffn {Scheme Procedure} sint-list->bytevector lst endianness size
4881 @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4882 Return a new bytevector containing the signed integers listed in
4883 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4884 @end deffn
4885
4886 @node Bytevectors as Floats
4887 @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4888
4889 @cindex IEEE-754 floating point numbers
4890
4891 Bytevector contents can also be accessed as IEEE-754 single- or
4892 double-precision floating point numbers (respectively 32 and 64-bit
4893 long) using the procedures described here.
4894
4895 @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4896 @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4897 @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4898 @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4899 Return the IEEE-754 single-precision floating point number from @var{bv}
4900 at @var{index} according to @var{endianness}.
4901 @end deffn
4902
4903 @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4904 @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4905 @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4906 @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4907 Store real number @var{value} in @var{bv} at @var{index} according to
4908 @var{endianness}.
4909 @end deffn
4910
4911 Specialized procedures are also available:
4912
4913 @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4914 @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4915 @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4916 @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4917 Return the IEEE-754 single-precision floating point number from @var{bv}
4918 at @var{index} according to the host's native endianness.
4919 @end deffn
4920
4921 @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4922 @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4923 @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4924 @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4925 Store real number @var{value} in @var{bv} at @var{index} according to
4926 the host's native endianness.
4927 @end deffn
4928
4929
4930 @node Bytevectors as Strings
4931 @subsubsection Interpreting Bytevector Contents as Unicode Strings
4932
4933 @cindex Unicode string encoding
4934
4935 Bytevector contents can also be interpreted as Unicode strings encoded
4936 in one of the most commonly available encoding formats.
4937 @xref{Representing Strings as Bytes}, for a more generic interface.
4938
4939 @lisp
4940 (utf8->string (u8-list->bytevector '(99 97 102 101)))
4941 @result{} "cafe"
4942
4943 (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4944 @result{} #vu8(99 97 102 195 169)
4945 @end lisp
4946
4947 @deffn {Scheme Procedure} string->utf8 str
4948 @deffnx {Scheme Procedure} string->utf16 str [endianness]
4949 @deffnx {Scheme Procedure} string->utf32 str [endianness]
4950 @deffnx {C Function} scm_string_to_utf8 (str)
4951 @deffnx {C Function} scm_string_to_utf16 (str, endianness)
4952 @deffnx {C Function} scm_string_to_utf32 (str, endianness)
4953 Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4954 UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4955 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4956 it defaults to big endian.
4957 @end deffn
4958
4959 @deffn {Scheme Procedure} utf8->string utf
4960 @deffnx {Scheme Procedure} utf16->string utf [endianness]
4961 @deffnx {Scheme Procedure} utf32->string utf [endianness]
4962 @deffnx {C Function} scm_utf8_to_string (utf)
4963 @deffnx {C Function} scm_utf16_to_string (utf, endianness)
4964 @deffnx {C Function} scm_utf32_to_string (utf, endianness)
4965 Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4966 or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4967 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4968 it defaults to big endian.
4969 @end deffn
4970
4971 @node Bytevectors as Arrays
4972 @subsubsection Accessing Bytevectors with the Array API
4973
4974 As an extension to the R6RS, Guile allows bytevectors to be manipulated
4975 with the @dfn{array} procedures (@pxref{Arrays}). When using these
4976 APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4977
4978 @example
4979 (define bv #vu8(0 1 2 3))
4980
4981 (array? bv)
4982 @result{} #t
4983
4984 (array-rank bv)
4985 @result{} 1
4986
4987 (array-ref bv 2)
4988 @result{} 2
4989
4990 ;; Note the different argument order on array-set!.
4991 (array-set! bv 77 2)
4992 (array-ref bv 2)
4993 @result{} 77
4994
4995 (array-type bv)
4996 @result{} vu8
4997 @end example
4998
4999
5000 @node Bytevectors as Uniform Vectors
5001 @subsubsection Accessing Bytevectors with the SRFI-4 API
5002
5003 Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
5004 Bytevectors}, for more information.
5005
5006
5007 @node Symbols
5008 @subsection Symbols
5009 @tpindex Symbols
5010
5011 Symbols in Scheme are widely used in three ways: as items of discrete
5012 data, as lookup keys for alists and hash tables, and to denote variable
5013 references.
5014
5015 A @dfn{symbol} is similar to a string in that it is defined by a
5016 sequence of characters. The sequence of characters is known as the
5017 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
5018 name doesn't include any characters that could be confused with other
5019 elements of Scheme syntax --- a symbol is written in a Scheme program by
5020 writing the sequence of characters that make up the name, @emph{without}
5021 any quotation marks or other special syntax. For example, the symbol
5022 whose name is ``multiply-by-2'' is written, simply:
5023
5024 @lisp
5025 multiply-by-2
5026 @end lisp
5027
5028 Notice how this differs from a @emph{string} with contents
5029 ``multiply-by-2'', which is written with double quotation marks, like
5030 this:
5031
5032 @lisp
5033 "multiply-by-2"
5034 @end lisp
5035
5036 Looking beyond how they are written, symbols are different from strings
5037 in two important respects.
5038
5039 The first important difference is uniqueness. If the same-looking
5040 string is read twice from two different places in a program, the result
5041 is two @emph{different} string objects whose contents just happen to be
5042 the same. If, on the other hand, the same-looking symbol is read twice
5043 from two different places in a program, the result is the @emph{same}
5044 symbol object both times.
5045
5046 Given two read symbols, you can use @code{eq?} to test whether they are
5047 the same (that is, have the same name). @code{eq?} is the most
5048 efficient comparison operator in Scheme, and comparing two symbols like
5049 this is as fast as comparing, for example, two numbers. Given two
5050 strings, on the other hand, you must use @code{equal?} or
5051 @code{string=?}, which are much slower comparison operators, to
5052 determine whether the strings have the same contents.
5053
5054 @lisp
5055 (define sym1 (quote hello))
5056 (define sym2 (quote hello))
5057 (eq? sym1 sym2) @result{} #t
5058
5059 (define str1 "hello")
5060 (define str2 "hello")
5061 (eq? str1 str2) @result{} #f
5062 (equal? str1 str2) @result{} #t
5063 @end lisp
5064
5065 The second important difference is that symbols, unlike strings, are not
5066 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5067 example above: @code{(quote hello)} evaluates to the symbol named
5068 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5069 symbol named "hello" and evaluated as a variable reference @dots{} about
5070 which more below (@pxref{Symbol Variables}).
5071
5072 @menu
5073 * Symbol Data:: Symbols as discrete data.
5074 * Symbol Keys:: Symbols as lookup keys.
5075 * Symbol Variables:: Symbols as denoting variables.
5076 * Symbol Primitives:: Operations related to symbols.
5077 * Symbol Props:: Function slots and property lists.
5078 * Symbol Read Syntax:: Extended read syntax for symbols.
5079 * Symbol Uninterned:: Uninterned symbols.
5080 @end menu
5081
5082
5083 @node Symbol Data
5084 @subsubsection Symbols as Discrete Data
5085
5086 Numbers and symbols are similar to the extent that they both lend
5087 themselves to @code{eq?} comparison. But symbols are more descriptive
5088 than numbers, because a symbol's name can be used directly to describe
5089 the concept for which that symbol stands.
5090
5091 For example, imagine that you need to represent some colours in a
5092 computer program. Using numbers, you would have to choose arbitrarily
5093 some mapping between numbers and colours, and then take care to use that
5094 mapping consistently:
5095
5096 @lisp
5097 ;; 1=red, 2=green, 3=purple
5098
5099 (if (eq? (colour-of car) 1)
5100 ...)
5101 @end lisp
5102
5103 @noindent
5104 You can make the mapping more explicit and the code more readable by
5105 defining constants:
5106
5107 @lisp
5108 (define red 1)
5109 (define green 2)
5110 (define purple 3)
5111
5112 (if (eq? (colour-of car) red)
5113 ...)
5114 @end lisp
5115
5116 @noindent
5117 But the simplest and clearest approach is not to use numbers at all, but
5118 symbols whose names specify the colours that they refer to:
5119
5120 @lisp
5121 (if (eq? (colour-of car) 'red)
5122 ...)
5123 @end lisp
5124
5125 The descriptive advantages of symbols over numbers increase as the set
5126 of concepts that you want to describe grows. Suppose that a car object
5127 can have other properties as well, such as whether it has or uses:
5128
5129 @itemize @bullet
5130 @item
5131 automatic or manual transmission
5132 @item
5133 leaded or unleaded fuel
5134 @item
5135 power steering (or not).
5136 @end itemize
5137
5138 @noindent
5139 Then a car's combined property set could be naturally represented and
5140 manipulated as a list of symbols:
5141
5142 @lisp
5143 (properties-of car1)
5144 @result{}
5145 (red manual unleaded power-steering)
5146
5147 (if (memq 'power-steering (properties-of car1))
5148 (display "Unfit people can drive this car.\n")
5149 (display "You'll need strong arms to drive this car!\n"))
5150 @print{}
5151 Unfit people can drive this car.
5152 @end lisp
5153
5154 Remember, the fundamental property of symbols that we are relying on
5155 here is that an occurrence of @code{'red} in one part of a program is an
5156 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
5157 another part of a program; this means that symbols can usefully be
5158 compared using @code{eq?}. At the same time, symbols have naturally
5159 descriptive names. This combination of efficiency and descriptive power
5160 makes them ideal for use as discrete data.
5161
5162
5163 @node Symbol Keys
5164 @subsubsection Symbols as Lookup Keys
5165
5166 Given their efficiency and descriptive power, it is natural to use
5167 symbols as the keys in an association list or hash table.
5168
5169 To illustrate this, consider a more structured representation of the car
5170 properties example from the preceding subsection. Rather than
5171 mixing all the properties up together in a flat list, we could use an
5172 association list like this:
5173
5174 @lisp
5175 (define car1-properties '((colour . red)
5176 (transmission . manual)
5177 (fuel . unleaded)
5178 (steering . power-assisted)))
5179 @end lisp
5180
5181 Notice how this structure is more explicit and extensible than the flat
5182 list. For example it makes clear that @code{manual} refers to the
5183 transmission rather than, say, the windows or the locking of the car.
5184 It also allows further properties to use the same symbols among their
5185 possible values without becoming ambiguous:
5186
5187 @lisp
5188 (define car1-properties '((colour . red)
5189 (transmission . manual)
5190 (fuel . unleaded)
5191 (steering . power-assisted)
5192 (seat-colour . red)
5193 (locking . manual)))
5194 @end lisp
5195
5196 With a representation like this, it is easy to use the efficient
5197 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5198 extract or change individual pieces of information:
5199
5200 @lisp
5201 (assq-ref car1-properties 'fuel) @result{} unleaded
5202 (assq-ref car1-properties 'transmission) @result{} manual
5203
5204 (assq-set! car1-properties 'seat-colour 'black)
5205 @result{}
5206 ((colour . red)
5207 (transmission . manual)
5208 (fuel . unleaded)
5209 (steering . power-assisted)
5210 (seat-colour . black)
5211 (locking . manual)))
5212 @end lisp
5213
5214 Hash tables also have keys, and exactly the same arguments apply to the
5215 use of symbols in hash tables as in association lists. The hash value
5216 that Guile uses to decide where to add a symbol-keyed entry to a hash
5217 table can be obtained by calling the @code{symbol-hash} procedure:
5218
5219 @deffn {Scheme Procedure} symbol-hash symbol
5220 @deffnx {C Function} scm_symbol_hash (symbol)
5221 Return a hash value for @var{symbol}.
5222 @end deffn
5223
5224 See @ref{Hash Tables} for information about hash tables in general, and
5225 for why you might choose to use a hash table rather than an association
5226 list.
5227
5228
5229 @node Symbol Variables
5230 @subsubsection Symbols as Denoting Variables
5231
5232 When an unquoted symbol in a Scheme program is evaluated, it is
5233 interpreted as a variable reference, and the result of the evaluation is
5234 the appropriate variable's value.
5235
5236 For example, when the expression @code{(string-length "abcd")} is read
5237 and evaluated, the sequence of characters @code{string-length} is read
5238 as the symbol whose name is "string-length". This symbol is associated
5239 with a variable whose value is the procedure that implements string
5240 length calculation. Therefore evaluation of the @code{string-length}
5241 symbol results in that procedure.
5242
5243 The details of the connection between an unquoted symbol and the
5244 variable to which it refers are explained elsewhere. See @ref{Binding
5245 Constructs}, for how associations between symbols and variables are
5246 created, and @ref{Modules}, for how those associations are affected by
5247 Guile's module system.
5248
5249
5250 @node Symbol Primitives
5251 @subsubsection Operations Related to Symbols
5252
5253 Given any Scheme value, you can determine whether it is a symbol using
5254 the @code{symbol?} primitive:
5255
5256 @rnindex symbol?
5257 @deffn {Scheme Procedure} symbol? obj
5258 @deffnx {C Function} scm_symbol_p (obj)
5259 Return @code{#t} if @var{obj} is a symbol, otherwise return
5260 @code{#f}.
5261 @end deffn
5262
5263 @deftypefn {C Function} int scm_is_symbol (SCM val)
5264 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5265 @end deftypefn
5266
5267 Once you know that you have a symbol, you can obtain its name as a
5268 string by calling @code{symbol->string}. Note that Guile differs by
5269 default from R5RS on the details of @code{symbol->string} as regards
5270 case-sensitivity:
5271
5272 @rnindex symbol->string
5273 @deffn {Scheme Procedure} symbol->string s
5274 @deffnx {C Function} scm_symbol_to_string (s)
5275 Return the name of symbol @var{s} as a string. By default, Guile reads
5276 symbols case-sensitively, so the string returned will have the same case
5277 variation as the sequence of characters that caused @var{s} to be
5278 created.
5279
5280 If Guile is set to read symbols case-insensitively (as specified by
5281 R5RS), and @var{s} comes into being as part of a literal expression
5282 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5283 by a call to the @code{read} or @code{string-ci->symbol} procedures,
5284 Guile converts any alphabetic characters in the symbol's name to
5285 lower case before creating the symbol object, so the string returned
5286 here will be in lower case.
5287
5288 If @var{s} was created by @code{string->symbol}, the case of characters
5289 in the string returned will be the same as that in the string that was
5290 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5291 setting at the time @var{s} was created.
5292
5293 It is an error to apply mutation procedures like @code{string-set!} to
5294 strings returned by this procedure.
5295 @end deffn
5296
5297 Most symbols are created by writing them literally in code. However it
5298 is also possible to create symbols programmatically using the following
5299 procedures:
5300
5301 @deffn {Scheme Procedure} symbol char@dots{}
5302 @rnindex symbol
5303 Return a newly allocated symbol made from the given character arguments.
5304
5305 @example
5306 (symbol #\x #\y #\z) @result{} xyz
5307 @end example
5308 @end deffn
5309
5310 @deffn {Scheme Procedure} list->symbol lst
5311 @rnindex list->symbol
5312 Return a newly allocated symbol made from a list of characters.
5313
5314 @example
5315 (list->symbol '(#\a #\b #\c)) @result{} abc
5316 @end example
5317 @end deffn
5318
5319 @rnindex symbol-append
5320 @deffn {Scheme Procedure} symbol-append arg @dots{}
5321 Return a newly allocated symbol whose characters form the
5322 concatenation of the given symbols, @var{arg} @enddots{}.
5323
5324 @example
5325 (let ((h 'hello))
5326 (symbol-append h 'world))
5327 @result{} helloworld
5328 @end example
5329 @end deffn
5330
5331 @rnindex string->symbol
5332 @deffn {Scheme Procedure} string->symbol string
5333 @deffnx {C Function} scm_string_to_symbol (string)
5334 Return the symbol whose name is @var{string}. This procedure can create
5335 symbols with names containing special characters or letters in the
5336 non-standard case, but it is usually a bad idea to create such symbols
5337 because in some implementations of Scheme they cannot be read as
5338 themselves.
5339 @end deffn
5340
5341 @deffn {Scheme Procedure} string-ci->symbol str
5342 @deffnx {C Function} scm_string_ci_to_symbol (str)
5343 Return the symbol whose name is @var{str}. If Guile is currently
5344 reading symbols case-insensitively, @var{str} is converted to lowercase
5345 before the returned symbol is looked up or created.
5346 @end deffn
5347
5348 The following examples illustrate Guile's detailed behaviour as regards
5349 the case-sensitivity of symbols:
5350
5351 @lisp
5352 (read-enable 'case-insensitive) ; R5RS compliant behaviour
5353
5354 (symbol->string 'flying-fish) @result{} "flying-fish"
5355 (symbol->string 'Martin) @result{} "martin"
5356 (symbol->string
5357 (string->symbol "Malvina")) @result{} "Malvina"
5358
5359 (eq? 'mISSISSIppi 'mississippi) @result{} #t
5360 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5361 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5362 (eq? 'LolliPop
5363 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5364 (string=? "K. Harper, M.D."
5365 (symbol->string
5366 (string->symbol "K. Harper, M.D."))) @result{} #t
5367
5368 (read-disable 'case-insensitive) ; Guile default behaviour
5369
5370 (symbol->string 'flying-fish) @result{} "flying-fish"
5371 (symbol->string 'Martin) @result{} "Martin"
5372 (symbol->string
5373 (string->symbol "Malvina")) @result{} "Malvina"
5374
5375 (eq? 'mISSISSIppi 'mississippi) @result{} #f
5376 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5377 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5378 (eq? 'LolliPop
5379 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5380 (string=? "K. Harper, M.D."
5381 (symbol->string
5382 (string->symbol "K. Harper, M.D."))) @result{} #t
5383 @end lisp
5384
5385 From C, there are lower level functions that construct a Scheme symbol
5386 from a C string in the current locale encoding.
5387
5388 When you want to do more from C, you should convert between symbols
5389 and strings using @code{scm_symbol_to_string} and
5390 @code{scm_string_to_symbol} and work with the strings.
5391
5392 @deftypefn {C Function} SCM scm_from_latin1_symbol (const char *name)
5393 @deftypefnx {C Function} SCM scm_from_utf8_symbol (const char *name)
5394 Construct and return a Scheme symbol whose name is specified by the
5395 null-terminated C string @var{name}. These are appropriate when
5396 the C string is hard-coded in the source code.
5397 @end deftypefn
5398
5399 @deftypefn {C Function} SCM scm_from_locale_symbol (const char *name)
5400 @deftypefnx {C Function} SCM scm_from_locale_symboln (const char *name, size_t len)
5401 Construct and return a Scheme symbol whose name is specified by
5402 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5403 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
5404 specified explicitly by @var{len}.
5405
5406 Note that these functions should @emph{not} be used when @var{name} is a
5407 C string constant, because there is no guarantee that the current locale
5408 will match that of the execution character set, used for string and
5409 character constants. Most modern C compilers use UTF-8 by default, so
5410 in such cases we recommend @code{scm_from_utf8_symbol}.
5411 @end deftypefn
5412
5413 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5414 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5415 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5416 respectively, but also frees @var{str} with @code{free} eventually.
5417 Thus, you can use this function when you would free @var{str} anyway
5418 immediately after creating the Scheme string. In certain cases, Guile
5419 can then use @var{str} directly as its internal representation.
5420 @end deftypefn
5421
5422 The size of a symbol can also be obtained from C:
5423
5424 @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5425 Return the number of characters in @var{sym}.
5426 @end deftypefn
5427
5428 Finally, some applications, especially those that generate new Scheme
5429 code dynamically, need to generate symbols for use in the generated
5430 code. The @code{gensym} primitive meets this need:
5431
5432 @deffn {Scheme Procedure} gensym [prefix]
5433 @deffnx {C Function} scm_gensym (prefix)
5434 Create a new symbol with a name constructed from a prefix and a counter
5435 value. The string @var{prefix} can be specified as an optional
5436 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5437 at each call. There is no provision for resetting the counter.
5438 @end deffn
5439
5440 The symbols generated by @code{gensym} are @emph{likely} to be unique,
5441 since their names begin with a space and it is only otherwise possible
5442 to generate such symbols if a programmer goes out of their way to do
5443 so. Uniqueness can be guaranteed by instead using uninterned symbols
5444 (@pxref{Symbol Uninterned}), though they can't be usefully written out
5445 and read back in.
5446
5447
5448 @node Symbol Props
5449 @subsubsection Function Slots and Property Lists
5450
5451 In traditional Lisp dialects, symbols are often understood as having
5452 three kinds of value at once:
5453
5454 @itemize @bullet
5455 @item
5456 a @dfn{variable} value, which is used when the symbol appears in
5457 code in a variable reference context
5458
5459 @item
5460 a @dfn{function} value, which is used when the symbol appears in
5461 code in a function name position (i.e.@: as the first element in an
5462 unquoted list)
5463
5464 @item
5465 a @dfn{property list} value, which is used when the symbol is given as
5466 the first argument to Lisp's @code{put} or @code{get} functions.
5467 @end itemize
5468
5469 Although Scheme (as one of its simplifications with respect to Lisp)
5470 does away with the distinction between variable and function namespaces,
5471 Guile currently retains some elements of the traditional structure in
5472 case they turn out to be useful when implementing translators for other
5473 languages, in particular Emacs Lisp.
5474
5475 Specifically, Guile symbols have two extra slots, one for a symbol's
5476 property list, and one for its ``function value.'' The following procedures
5477 are provided to access these slots.
5478
5479 @deffn {Scheme Procedure} symbol-fref symbol
5480 @deffnx {C Function} scm_symbol_fref (symbol)
5481 Return the contents of @var{symbol}'s @dfn{function slot}.
5482 @end deffn
5483
5484 @deffn {Scheme Procedure} symbol-fset! symbol value
5485 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
5486 Set the contents of @var{symbol}'s function slot to @var{value}.
5487 @end deffn
5488
5489 @deffn {Scheme Procedure} symbol-pref symbol
5490 @deffnx {C Function} scm_symbol_pref (symbol)
5491 Return the @dfn{property list} currently associated with @var{symbol}.
5492 @end deffn
5493
5494 @deffn {Scheme Procedure} symbol-pset! symbol value
5495 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
5496 Set @var{symbol}'s property list to @var{value}.
5497 @end deffn
5498
5499 @deffn {Scheme Procedure} symbol-property sym prop
5500 From @var{sym}'s property list, return the value for property
5501 @var{prop}. The assumption is that @var{sym}'s property list is an
5502 association list whose keys are distinguished from each other using
5503 @code{equal?}; @var{prop} should be one of the keys in that list. If
5504 the property list has no entry for @var{prop}, @code{symbol-property}
5505 returns @code{#f}.
5506 @end deffn
5507
5508 @deffn {Scheme Procedure} set-symbol-property! sym prop val
5509 In @var{sym}'s property list, set the value for property @var{prop} to
5510 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5511 none already exists. For the structure of the property list, see
5512 @code{symbol-property}.
5513 @end deffn
5514
5515 @deffn {Scheme Procedure} symbol-property-remove! sym prop
5516 From @var{sym}'s property list, remove the entry for property
5517 @var{prop}, if there is one. For the structure of the property list,
5518 see @code{symbol-property}.
5519 @end deffn
5520
5521 Support for these extra slots may be removed in a future release, and it
5522 is probably better to avoid using them. For a more modern and Schemely
5523 approach to properties, see @ref{Object Properties}.
5524
5525
5526 @node Symbol Read Syntax
5527 @subsubsection Extended Read Syntax for Symbols
5528
5529 The read syntax for a symbol is a sequence of letters, digits, and
5530 @dfn{extended alphabetic characters}, beginning with a character that
5531 cannot begin a number. In addition, the special cases of @code{+},
5532 @code{-}, and @code{...} are read as symbols even though numbers can
5533 begin with @code{+}, @code{-} or @code{.}.
5534
5535 Extended alphabetic characters may be used within identifiers as if
5536 they were letters. The set of extended alphabetic characters is:
5537
5538 @example
5539 ! $ % & * + - . / : < = > ? @@ ^ _ ~
5540 @end example
5541
5542 In addition to the standard read syntax defined above (which is taken
5543 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5544 Scheme})), Guile provides an extended symbol read syntax that allows the
5545 inclusion of unusual characters such as space characters, newlines and
5546 parentheses. If (for whatever reason) you need to write a symbol
5547 containing characters not mentioned above, you can do so as follows.
5548
5549 @itemize @bullet
5550 @item
5551 Begin the symbol with the characters @code{#@{},
5552
5553 @item
5554 write the characters of the symbol and
5555
5556 @item
5557 finish the symbol with the characters @code{@}#}.
5558 @end itemize
5559
5560 Here are a few examples of this form of read syntax. The first symbol
5561 needs to use extended syntax because it contains a space character, the
5562 second because it contains a line break, and the last because it looks
5563 like a number.
5564
5565 @lisp
5566 #@{foo bar@}#
5567
5568 #@{what
5569 ever@}#
5570
5571 #@{4242@}#
5572 @end lisp
5573
5574 Although Guile provides this extended read syntax for symbols,
5575 widespread usage of it is discouraged because it is not portable and not
5576 very readable.
5577
5578 Alternatively, if you enable the @code{r7rs-symbols} read option (see
5579 @pxref{Scheme Read}), you can write arbitrary symbols using the same
5580 notation used for strings, except delimited by vertical bars instead of
5581 double quotes.
5582
5583 @example
5584 |foo bar|
5585 |\x3BB; is a greek lambda|
5586 |\| is a vertical bar|
5587 @end example
5588
5589 @node Symbol Uninterned
5590 @subsubsection Uninterned Symbols
5591
5592 What makes symbols useful is that they are automatically kept unique.
5593 There are no two symbols that are distinct objects but have the same
5594 name. But of course, there is no rule without exception. In addition
5595 to the normal symbols that have been discussed up to now, you can also
5596 create special @dfn{uninterned} symbols that behave slightly
5597 differently.
5598
5599 To understand what is different about them and why they might be useful,
5600 we look at how normal symbols are actually kept unique.
5601
5602 Whenever Guile wants to find the symbol with a specific name, for
5603 example during @code{read} or when executing @code{string->symbol}, it
5604 first looks into a table of all existing symbols to find out whether a
5605 symbol with the given name already exists. When this is the case, Guile
5606 just returns that symbol. When not, a new symbol with the name is
5607 created and entered into the table so that it can be found later.
5608
5609 Sometimes you might want to create a symbol that is guaranteed `fresh',
5610 i.e.@: a symbol that did not exist previously. You might also want to
5611 somehow guarantee that no one else will ever unintentionally stumble
5612 across your symbol in the future. These properties of a symbol are
5613 often needed when generating code during macro expansion. When
5614 introducing new temporary variables, you want to guarantee that they
5615 don't conflict with variables in other people's code.
5616
5617 The simplest way to arrange for this is to create a new symbol but
5618 not enter it into the global table of all symbols. That way, no one
5619 will ever get access to your symbol by chance. Symbols that are not in
5620 the table are called @dfn{uninterned}. Of course, symbols that
5621 @emph{are} in the table are called @dfn{interned}.
5622
5623 You create new uninterned symbols with the function @code{make-symbol}.
5624 You can test whether a symbol is interned or not with
5625 @code{symbol-interned?}.
5626
5627 Uninterned symbols break the rule that the name of a symbol uniquely
5628 identifies the symbol object. Because of this, they can not be written
5629 out and read back in like interned symbols. Currently, Guile has no
5630 support for reading uninterned symbols. Note that the function
5631 @code{gensym} does not return uninterned symbols for this reason.
5632
5633 @deffn {Scheme Procedure} make-symbol name
5634 @deffnx {C Function} scm_make_symbol (name)
5635 Return a new uninterned symbol with the name @var{name}. The returned
5636 symbol is guaranteed to be unique and future calls to
5637 @code{string->symbol} will not return it.
5638 @end deffn
5639
5640 @deffn {Scheme Procedure} symbol-interned? symbol
5641 @deffnx {C Function} scm_symbol_interned_p (symbol)
5642 Return @code{#t} if @var{symbol} is interned, otherwise return
5643 @code{#f}.
5644 @end deffn
5645
5646 For example:
5647
5648 @lisp
5649 (define foo-1 (string->symbol "foo"))
5650 (define foo-2 (string->symbol "foo"))
5651 (define foo-3 (make-symbol "foo"))
5652 (define foo-4 (make-symbol "foo"))
5653
5654 (eq? foo-1 foo-2)
5655 @result{} #t
5656 ; Two interned symbols with the same name are the same object,
5657
5658 (eq? foo-1 foo-3)
5659 @result{} #f
5660 ; but a call to make-symbol with the same name returns a
5661 ; distinct object.
5662
5663 (eq? foo-3 foo-4)
5664 @result{} #f
5665 ; A call to make-symbol always returns a new object, even for
5666 ; the same name.
5667
5668 foo-3
5669 @result{} #<uninterned-symbol foo 8085290>
5670 ; Uninterned symbols print differently from interned symbols,
5671
5672 (symbol? foo-3)
5673 @result{} #t
5674 ; but they are still symbols,
5675
5676 (symbol-interned? foo-3)
5677 @result{} #f
5678 ; just not interned.
5679 @end lisp
5680
5681
5682 @node Keywords
5683 @subsection Keywords
5684 @tpindex Keywords
5685
5686 Keywords are self-evaluating objects with a convenient read syntax that
5687 makes them easy to type.
5688
5689 Guile's keyword support conforms to R5RS, and adds a (switchable) read
5690 syntax extension to permit keywords to begin with @code{:} as well as
5691 @code{#:}, or to end with @code{:}.
5692
5693 @menu
5694 * Why Use Keywords?:: Motivation for keyword usage.
5695 * Coding With Keywords:: How to use keywords.
5696 * Keyword Read Syntax:: Read syntax for keywords.
5697 * Keyword Procedures:: Procedures for dealing with keywords.
5698 @end menu
5699
5700 @node Why Use Keywords?
5701 @subsubsection Why Use Keywords?
5702
5703 Keywords are useful in contexts where a program or procedure wants to be
5704 able to accept a large number of optional arguments without making its
5705 interface unmanageable.
5706
5707 To illustrate this, consider a hypothetical @code{make-window}
5708 procedure, which creates a new window on the screen for drawing into
5709 using some graphical toolkit. There are many parameters that the caller
5710 might like to specify, but which could also be sensibly defaulted, for
5711 example:
5712
5713 @itemize @bullet
5714 @item
5715 color depth -- Default: the color depth for the screen
5716
5717 @item
5718 background color -- Default: white
5719
5720 @item
5721 width -- Default: 600
5722
5723 @item
5724 height -- Default: 400
5725 @end itemize
5726
5727 If @code{make-window} did not use keywords, the caller would have to
5728 pass in a value for each possible argument, remembering the correct
5729 argument order and using a special value to indicate the default value
5730 for that argument:
5731
5732 @lisp
5733 (make-window 'default ;; Color depth
5734 'default ;; Background color
5735 800 ;; Width
5736 100 ;; Height
5737 @dots{}) ;; More make-window arguments
5738 @end lisp
5739
5740 With keywords, on the other hand, defaulted arguments are omitted, and
5741 non-default arguments are clearly tagged by the appropriate keyword. As
5742 a result, the invocation becomes much clearer:
5743
5744 @lisp
5745 (make-window #:width 800 #:height 100)
5746 @end lisp
5747
5748 On the other hand, for a simpler procedure with few arguments, the use
5749 of keywords would be a hindrance rather than a help. The primitive
5750 procedure @code{cons}, for example, would not be improved if it had to
5751 be invoked as
5752
5753 @lisp
5754 (cons #:car x #:cdr y)
5755 @end lisp
5756
5757 So the decision whether to use keywords or not is purely pragmatic: use
5758 them if they will clarify the procedure invocation at point of call.
5759
5760 @node Coding With Keywords
5761 @subsubsection Coding With Keywords
5762
5763 If a procedure wants to support keywords, it should take a rest argument
5764 and then use whatever means is convenient to extract keywords and their
5765 corresponding arguments from the contents of that rest argument.
5766
5767 The following example illustrates the principle: the code for
5768 @code{make-window} uses a helper procedure called
5769 @code{get-keyword-value} to extract individual keyword arguments from
5770 the rest argument.
5771
5772 @lisp
5773 (define (get-keyword-value args keyword default)
5774 (let ((kv (memq keyword args)))
5775 (if (and kv (>= (length kv) 2))
5776 (cadr kv)
5777 default)))
5778
5779 (define (make-window . args)
5780 (let ((depth (get-keyword-value args #:depth screen-depth))
5781 (bg (get-keyword-value args #:bg "white"))
5782 (width (get-keyword-value args #:width 800))
5783 (height (get-keyword-value args #:height 100))
5784 @dots{})
5785 @dots{}))
5786 @end lisp
5787
5788 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5789 optargs)} module provides a set of powerful macros that you can use to
5790 implement keyword-supporting procedures like this:
5791
5792 @lisp
5793 (use-modules (ice-9 optargs))
5794
5795 (define (make-window . args)
5796 (let-keywords args #f ((depth screen-depth)
5797 (bg "white")
5798 (width 800)
5799 (height 100))
5800 ...))
5801 @end lisp
5802
5803 @noindent
5804 Or, even more economically, like this:
5805
5806 @lisp
5807 (use-modules (ice-9 optargs))
5808
5809 (define* (make-window #:key (depth screen-depth)
5810 (bg "white")
5811 (width 800)
5812 (height 100))
5813 ...)
5814 @end lisp
5815
5816 For further details on @code{let-keywords}, @code{define*} and other
5817 facilities provided by the @code{(ice-9 optargs)} module, see
5818 @ref{Optional Arguments}.
5819
5820 To handle keyword arguments from procedures implemented in C,
5821 use @code{scm_c_bind_keyword_arguments} (@pxref{Keyword Procedures}).
5822
5823 @node Keyword Read Syntax
5824 @subsubsection Keyword Read Syntax
5825
5826 Guile, by default, only recognizes a keyword syntax that is compatible
5827 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5828 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5829 external representation of the keyword named @code{NAME}. Keyword
5830 objects print using this syntax as well, so values containing keyword
5831 objects can be read back into Guile. When used in an expression,
5832 keywords are self-quoting objects.
5833
5834 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5835 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5836 of the form @code{:NAME} are read as symbols, as required by R5RS.
5837
5838 @cindex SRFI-88 keyword syntax
5839
5840 If the @code{keyword} read option is set to @code{'postfix}, Guile
5841 recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5842 Otherwise, tokens of this form are read as symbols.
5843
5844 To enable and disable the alternative non-R5RS keyword syntax, you use
5845 the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5846 the @code{prefix} and @code{postfix} syntax are mutually exclusive.
5847
5848 @lisp
5849 (read-set! keywords 'prefix)
5850
5851 #:type
5852 @result{}
5853 #:type
5854
5855 :type
5856 @result{}
5857 #:type
5858
5859 (read-set! keywords 'postfix)
5860
5861 type:
5862 @result{}
5863 #:type
5864
5865 :type
5866 @result{}
5867 :type
5868
5869 (read-set! keywords #f)
5870
5871 #:type
5872 @result{}
5873 #:type
5874
5875 :type
5876 @print{}
5877 ERROR: In expression :type:
5878 ERROR: Unbound variable: :type
5879 ABORT: (unbound-variable)
5880 @end lisp
5881
5882 @node Keyword Procedures
5883 @subsubsection Keyword Procedures
5884
5885 @deffn {Scheme Procedure} keyword? obj
5886 @deffnx {C Function} scm_keyword_p (obj)
5887 Return @code{#t} if the argument @var{obj} is a keyword, else
5888 @code{#f}.
5889 @end deffn
5890
5891 @deffn {Scheme Procedure} keyword->symbol keyword
5892 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5893 Return the symbol with the same name as @var{keyword}.
5894 @end deffn
5895
5896 @deffn {Scheme Procedure} symbol->keyword symbol
5897 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5898 Return the keyword with the same name as @var{symbol}.
5899 @end deffn
5900
5901 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5902 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5903 @end deftypefn
5904
5905 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5906 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
5907 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5908 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5909 (@var{name}, @var{len}))}, respectively.
5910
5911 Note that these functions should @emph{not} be used when @var{name} is a
5912 C string constant, because there is no guarantee that the current locale
5913 will match that of the execution character set, used for string and
5914 character constants. Most modern C compilers use UTF-8 by default, so
5915 in such cases we recommend @code{scm_from_utf8_keyword}.
5916 @end deftypefn
5917
5918 @deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5919 @deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5920 Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5921 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5922 (@var{name}))}, respectively.
5923 @end deftypefn
5924
5925 @deftypefn {C Function} void scm_c_bind_keyword_arguments (const char *subr, @
5926 SCM rest, scm_t_keyword_arguments_flags flags, @
5927 SCM keyword1, SCM *argp1, @
5928 @dots{}, @
5929 SCM keywordN, SCM *argpN, @
5930 @nicode{SCM_UNDEFINED})
5931
5932 Extract the specified keyword arguments from @var{rest}, which is not
5933 modified. If the keyword argument @var{keyword1} is present in
5934 @var{rest} with an associated value, that value is stored in the
5935 variable pointed to by @var{argp1}, otherwise the variable is left
5936 unchanged. Similarly for the other keywords and argument pointers up to
5937 @var{keywordN} and @var{argpN}. The argument list to
5938 @code{scm_c_bind_keyword_arguments} must be terminated by
5939 @code{SCM_UNDEFINED}.
5940
5941 Note that since the variables pointed to by @var{argp1} through
5942 @var{argpN} are left unchanged if the associated keyword argument is not
5943 present, they should be initialized to their default values before
5944 calling @code{scm_c_bind_keyword_arguments}. Alternatively, you can
5945 initialize them to @code{SCM_UNDEFINED} before the call, and then use
5946 @code{SCM_UNBNDP} after the call to see which ones were provided.
5947
5948 If an unrecognized keyword argument is present in @var{rest} and
5949 @var{flags} does not contain @code{SCM_ALLOW_OTHER_KEYS}, or if
5950 non-keyword arguments are present and @var{flags} does not contain
5951 @code{SCM_ALLOW_NON_KEYWORD_ARGUMENTS}, an exception is raised.
5952 @var{subr} should be the name of the procedure receiving the keyword
5953 arguments, for purposes of error reporting.
5954
5955 For example:
5956
5957 @example
5958 SCM k_delimiter;
5959 SCM k_grammar;
5960 SCM sym_infix;
5961
5962 SCM my_string_join (SCM strings, SCM rest)
5963 @{
5964 SCM delimiter = SCM_UNDEFINED;
5965 SCM grammar = sym_infix;
5966
5967 scm_c_bind_keyword_arguments ("my-string-join", rest, 0,
5968 k_delimiter, &delimiter,
5969 k_grammar, &grammar,
5970 SCM_UNDEFINED);
5971
5972 if (SCM_UNBNDP (delimiter))
5973 delimiter = scm_from_utf8_string (" ");
5974
5975 return scm_string_join (strings, delimiter, grammar);
5976 @}
5977
5978 void my_init ()
5979 @{
5980 k_delimiter = scm_from_utf8_keyword ("delimiter");
5981 k_grammar = scm_from_utf8_keyword ("grammar");
5982 sym_infix = scm_from_utf8_symbol ("infix");
5983 scm_c_define_gsubr ("my-string-join", 1, 0, 1, my_string_join);
5984 @}
5985 @end example
5986 @end deftypefn
5987
5988
5989 @node Other Types
5990 @subsection ``Functionality-Centric'' Data Types
5991
5992 Procedures and macros are documented in their own sections: see
5993 @ref{Procedures} and @ref{Macros}.
5994
5995 Variable objects are documented as part of the description of Guile's
5996 module system: see @ref{Variables}.
5997
5998 Asyncs, dynamic roots and fluids are described in the section on
5999 scheduling: see @ref{Scheduling}.
6000
6001 Hooks are documented in the section on general utility functions: see
6002 @ref{Hooks}.
6003
6004 Ports are described in the section on I/O: see @ref{Input and Output}.
6005
6006 Regular expressions are described in their own section: see @ref{Regular
6007 Expressions}.
6008
6009 @c Local Variables:
6010 @c TeX-master: "guile.texi"
6011 @c End: