*** empty log message ***
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 ;;;;
5 ;;;; This program is free software; you can redistribute it and/or modify
6 ;;;; it under the terms of the GNU General Public License as published by
7 ;;;; the Free Software Foundation; either version 2, or (at your option)
8 ;;;; any later version.
9 ;;;;
10 ;;;; This program is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ;;;; GNU General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU General Public License
16 ;;;; along with this software; see the file COPYING. If not, write to
17 ;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18 ;;;; Boston, MA 02111-1307 USA
19 ;;;;
20 \f
21
22 ;;; Commentary:
23
24 ;;; This file is the first thing loaded into Guile. It adds many mundane
25 ;;; definitions and a few that are interesting.
26 ;;;
27 ;;; The module system (hence the hierarchical namespace) are defined in this
28 ;;; file.
29 ;;;
30
31 ;;; Code:
32
33 \f
34 ;;; {Deprecation}
35 ;;;
36
37 ;; We don't have macros here, but we do want to define
38 ;; `begin-deprecated' early.
39
40 (define begin-deprecated
41 (procedure->memoizing-macro
42 (lambda (exp env)
43 (if (include-deprecated-features)
44 `(begin ,@(cdr exp))
45 `#f))))
46
47 \f
48 ;;; {Features}
49 ;;
50
51 (define (provide sym)
52 (if (not (memq sym *features*))
53 (set! *features* (cons sym *features*))))
54
55 ;;; Return #t iff FEATURE is available to this Guile interpreter.
56 ;;; In SLIB, provided? also checks to see if the module is available.
57 ;;; We should do that too, but don't.
58 (define (provided? feature)
59 (and (memq feature *features*) #t))
60
61 ;;; presumably deprecated.
62 (define feature? provided?)
63
64 ;;; let format alias simple-format until the more complete version is loaded
65 (define format simple-format)
66
67 \f
68 ;;; {R4RS compliance}
69
70 (primitive-load-path "ice-9/r4rs.scm")
71
72 \f
73 ;;; {Simple Debugging Tools}
74 ;;
75
76
77 ;; peek takes any number of arguments, writes them to the
78 ;; current ouput port, and returns the last argument.
79 ;; It is handy to wrap around an expression to look at
80 ;; a value each time is evaluated, e.g.:
81 ;;
82 ;; (+ 10 (troublesome-fn))
83 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
84 ;;
85
86 (define (peek . stuff)
87 (newline)
88 (display ";;; ")
89 (write stuff)
90 (newline)
91 (car (last-pair stuff)))
92
93 (define pk peek)
94
95 (define (warn . stuff)
96 (with-output-to-port (current-error-port)
97 (lambda ()
98 (newline)
99 (display ";;; WARNING ")
100 (display stuff)
101 (newline)
102 (car (last-pair stuff)))))
103
104 \f
105 ;;; {Trivial Functions}
106 ;;;
107
108 (define (identity x) x)
109 (define (1+ n) (+ n 1))
110 (define (-1+ n) (+ n -1))
111 (define 1- -1+)
112 (define return-it noop)
113 (define (and=> value procedure) (and value (procedure value)))
114 (define (make-hash-table k) (make-vector k '()))
115
116 (begin-deprecated
117 (define (id x)
118 (issue-deprecation-warning "`id' is deprecated. Use `identity' instead.")
119 (identity x)))
120
121 ;;; apply-to-args is functionally redunant with apply and, worse,
122 ;;; is less general than apply since it only takes two arguments.
123 ;;;
124 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
125 ;;; perform binding in many circumstances when the "let" family of
126 ;;; of forms don't cut it. E.g.:
127 ;;;
128 ;;; (apply-to-args (return-3d-mouse-coords)
129 ;;; (lambda (x y z)
130 ;;; ...))
131 ;;;
132
133 (define (apply-to-args args fn) (apply fn args))
134
135 \f
136
137 ;;; {Integer Math}
138 ;;;
139
140 (define (ipow-by-squaring x k acc proc)
141 (cond ((zero? k) acc)
142 ((= 1 k) (proc acc x))
143 (else (ipow-by-squaring (proc x x)
144 (quotient k 2)
145 (if (even? k) acc (proc acc x))
146 proc))))
147
148 (define string-character-length string-length)
149
150
151
152 ;; A convenience function for combining flag bits. Like logior, but
153 ;; handles the cases of 0 and 1 arguments.
154 ;;
155 (define (flags . args)
156 (cond
157 ((null? args) 0)
158 ((null? (cdr args)) (car args))
159 (else (apply logior args))))
160
161 \f
162 ;;; {Symbol Properties}
163 ;;;
164
165 (define (symbol-property sym prop)
166 (let ((pair (assoc prop (symbol-pref sym))))
167 (and pair (cdr pair))))
168
169 (define (set-symbol-property! sym prop val)
170 (let ((pair (assoc prop (symbol-pref sym))))
171 (if pair
172 (set-cdr! pair val)
173 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
174
175 (define (symbol-property-remove! sym prop)
176 (let ((pair (assoc prop (symbol-pref sym))))
177 (if pair
178 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
179
180 ;;; {General Properties}
181
182 ;; This is a more modern interface to properties. It will replace all
183 ;; other property-like things eventually.
184
185 (define (make-object-property)
186 (let ((prop (primitive-make-property #f)))
187 (make-procedure-with-setter
188 (lambda (obj) (primitive-property-ref prop obj))
189 (lambda (obj val) (primitive-property-set! prop obj val)))))
190
191 \f
192
193 ;;; {Arrays}
194 ;;;
195
196 (if (provided? 'array)
197 (primitive-load-path "ice-9/arrays.scm"))
198
199 \f
200 ;;; {Keywords}
201 ;;;
202
203 (define (symbol->keyword symbol)
204 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
205
206 (define (keyword->symbol kw)
207 (let ((sym (symbol->string (keyword-dash-symbol kw))))
208 (string->symbol (substring sym 1 (string-length sym)))))
209
210 (define (kw-arg-ref args kw)
211 (let ((rem (member kw args)))
212 (and rem (pair? (cdr rem)) (cadr rem))))
213
214 \f
215
216 ;;; {Structs}
217
218 (define (struct-layout s)
219 (struct-ref (struct-vtable s) vtable-index-layout))
220
221 \f
222
223 ;;; Environments
224
225 (define the-environment
226 (procedure->syntax
227 (lambda (x e)
228 e)))
229
230 (define the-root-environment (the-environment))
231
232 (define (environment-module env)
233 (let ((closure (and (pair? env) (car (last-pair env)))))
234 (and closure (procedure-property closure 'module))))
235
236 \f
237 ;;; {Records}
238 ;;;
239
240 ;; Printing records: by default, records are printed as
241 ;;
242 ;; #<type-name field1: val1 field2: val2 ...>
243 ;;
244 ;; You can change that by giving a custom printing function to
245 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
246 ;; will be called like
247 ;;
248 ;; (<printer> object port)
249 ;;
250 ;; It should print OBJECT to PORT.
251
252 (define (inherit-print-state old-port new-port)
253 (if (get-print-state old-port)
254 (port-with-print-state new-port (get-print-state old-port))
255 new-port))
256
257 ;; 0: type-name, 1: fields
258 (define record-type-vtable
259 (make-vtable-vtable "prpr" 0
260 (lambda (s p)
261 (cond ((eq? s record-type-vtable)
262 (display "#<record-type-vtable>" p))
263 (else
264 (display "#<record-type " p)
265 (display (record-type-name s) p)
266 (display ">" p))))))
267
268 (define (record-type? obj)
269 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
270
271 (define (make-record-type type-name fields . opt)
272 (let ((printer-fn (and (pair? opt) (car opt))))
273 (let ((struct (make-struct record-type-vtable 0
274 (make-struct-layout
275 (apply string-append
276 (map (lambda (f) "pw") fields)))
277 (or printer-fn
278 (lambda (s p)
279 (display "#<" p)
280 (display type-name p)
281 (let loop ((fields fields)
282 (off 0))
283 (cond
284 ((not (null? fields))
285 (display " " p)
286 (display (car fields) p)
287 (display ": " p)
288 (display (struct-ref s off) p)
289 (loop (cdr fields) (+ 1 off)))))
290 (display ">" p)))
291 type-name
292 (copy-tree fields))))
293 ;; Temporary solution: Associate a name to the record type descriptor
294 ;; so that the object system can create a wrapper class for it.
295 (set-struct-vtable-name! struct (if (symbol? type-name)
296 type-name
297 (string->symbol type-name)))
298 struct)))
299
300 (define (record-type-name obj)
301 (if (record-type? obj)
302 (struct-ref obj vtable-offset-user)
303 (error 'not-a-record-type obj)))
304
305 (define (record-type-fields obj)
306 (if (record-type? obj)
307 (struct-ref obj (+ 1 vtable-offset-user))
308 (error 'not-a-record-type obj)))
309
310 (define (record-constructor rtd . opt)
311 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
312 (local-eval `(lambda ,field-names
313 (make-struct ',rtd 0 ,@(map (lambda (f)
314 (if (memq f field-names)
315 f
316 #f))
317 (record-type-fields rtd))))
318 the-root-environment)))
319
320 (define (record-predicate rtd)
321 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
322
323 (define (record-accessor rtd field-name)
324 (let* ((pos (list-index (record-type-fields rtd) field-name)))
325 (if (not pos)
326 (error 'no-such-field field-name))
327 (local-eval `(lambda (obj)
328 (and (eq? ',rtd (record-type-descriptor obj))
329 (struct-ref obj ,pos)))
330 the-root-environment)))
331
332 (define (record-modifier rtd field-name)
333 (let* ((pos (list-index (record-type-fields rtd) field-name)))
334 (if (not pos)
335 (error 'no-such-field field-name))
336 (local-eval `(lambda (obj val)
337 (and (eq? ',rtd (record-type-descriptor obj))
338 (struct-set! obj ,pos val)))
339 the-root-environment)))
340
341
342 (define (record? obj)
343 (and (struct? obj) (record-type? (struct-vtable obj))))
344
345 (define (record-type-descriptor obj)
346 (if (struct? obj)
347 (struct-vtable obj)
348 (error 'not-a-record obj)))
349
350 (provide 'record)
351
352 \f
353 ;;; {Booleans}
354 ;;;
355
356 (define (->bool x) (not (not x)))
357
358 \f
359 ;;; {Symbols}
360 ;;;
361
362 (define (symbol-append . args)
363 (string->symbol (apply string-append (map symbol->string args))))
364
365 (define (list->symbol . args)
366 (string->symbol (apply list->string args)))
367
368 (define (symbol . args)
369 (string->symbol (apply string args)))
370
371 \f
372 ;;; {Lists}
373 ;;;
374
375 (define (list-index l k)
376 (let loop ((n 0)
377 (l l))
378 (and (not (null? l))
379 (if (eq? (car l) k)
380 n
381 (loop (+ n 1) (cdr l))))))
382
383 (define (make-list n . init)
384 (if (pair? init) (set! init (car init)))
385 (let loop ((answer '())
386 (n n))
387 (if (<= n 0)
388 answer
389 (loop (cons init answer) (- n 1)))))
390
391 \f
392 ;;; {and-map and or-map}
393 ;;;
394 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
395 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
396 ;;;
397
398 ;; and-map f l
399 ;;
400 ;; Apply f to successive elements of l until exhaustion or f returns #f.
401 ;; If returning early, return #f. Otherwise, return the last value returned
402 ;; by f. If f has never been called because l is empty, return #t.
403 ;;
404 (define (and-map f lst)
405 (let loop ((result #t)
406 (l lst))
407 (and result
408 (or (and (null? l)
409 result)
410 (loop (f (car l)) (cdr l))))))
411
412 ;; or-map f l
413 ;;
414 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
415 ;; If returning early, return the return value of f.
416 ;;
417 (define (or-map f lst)
418 (let loop ((result #f)
419 (l lst))
420 (or result
421 (and (not (null? l))
422 (loop (f (car l)) (cdr l))))))
423
424 \f
425
426 (if (provided? 'posix)
427 (primitive-load-path "ice-9/posix.scm"))
428
429 (if (provided? 'socket)
430 (primitive-load-path "ice-9/networking.scm"))
431
432 (define file-exists?
433 (if (provided? 'posix)
434 (lambda (str)
435 (access? str F_OK))
436 (lambda (str)
437 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
438 (lambda args #f))))
439 (if port (begin (close-port port) #t)
440 #f)))))
441
442 (define file-is-directory?
443 (if (provided? 'posix)
444 (lambda (str)
445 (eq? (stat:type (stat str)) 'directory))
446 (lambda (str)
447 (let ((port (catch 'system-error
448 (lambda () (open-file (string-append str "/.")
449 OPEN_READ))
450 (lambda args #f))))
451 (if port (begin (close-port port) #t)
452 #f)))))
453
454 (define (has-suffix? str suffix)
455 (let ((sufl (string-length suffix))
456 (sl (string-length str)))
457 (and (> sl sufl)
458 (string=? (substring str (- sl sufl) sl) suffix))))
459
460 \f
461 ;;; {Error Handling}
462 ;;;
463
464 (define (error . args)
465 (save-stack)
466 (if (null? args)
467 (scm-error 'misc-error #f "?" #f #f)
468 (let loop ((msg "~A")
469 (rest (cdr args)))
470 (if (not (null? rest))
471 (loop (string-append msg " ~S")
472 (cdr rest))
473 (scm-error 'misc-error #f msg args #f)))))
474
475 ;; bad-throw is the hook that is called upon a throw to a an unhandled
476 ;; key (unless the throw has four arguments, in which case
477 ;; it's usually interpreted as an error throw.)
478 ;; If the key has a default handler (a throw-handler-default property),
479 ;; it is applied to the throw.
480 ;;
481 (define (bad-throw key . args)
482 (let ((default (symbol-property key 'throw-handler-default)))
483 (or (and default (apply default key args))
484 (apply error "unhandled-exception:" key args))))
485
486 \f
487
488 (define (tm:sec obj) (vector-ref obj 0))
489 (define (tm:min obj) (vector-ref obj 1))
490 (define (tm:hour obj) (vector-ref obj 2))
491 (define (tm:mday obj) (vector-ref obj 3))
492 (define (tm:mon obj) (vector-ref obj 4))
493 (define (tm:year obj) (vector-ref obj 5))
494 (define (tm:wday obj) (vector-ref obj 6))
495 (define (tm:yday obj) (vector-ref obj 7))
496 (define (tm:isdst obj) (vector-ref obj 8))
497 (define (tm:gmtoff obj) (vector-ref obj 9))
498 (define (tm:zone obj) (vector-ref obj 10))
499
500 (define (set-tm:sec obj val) (vector-set! obj 0 val))
501 (define (set-tm:min obj val) (vector-set! obj 1 val))
502 (define (set-tm:hour obj val) (vector-set! obj 2 val))
503 (define (set-tm:mday obj val) (vector-set! obj 3 val))
504 (define (set-tm:mon obj val) (vector-set! obj 4 val))
505 (define (set-tm:year obj val) (vector-set! obj 5 val))
506 (define (set-tm:wday obj val) (vector-set! obj 6 val))
507 (define (set-tm:yday obj val) (vector-set! obj 7 val))
508 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
509 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
510 (define (set-tm:zone obj val) (vector-set! obj 10 val))
511
512 (define (tms:clock obj) (vector-ref obj 0))
513 (define (tms:utime obj) (vector-ref obj 1))
514 (define (tms:stime obj) (vector-ref obj 2))
515 (define (tms:cutime obj) (vector-ref obj 3))
516 (define (tms:cstime obj) (vector-ref obj 4))
517
518 (define (file-position . args) (apply ftell args))
519 (define (file-set-position . args) (apply fseek args))
520
521 (define (move->fdes fd/port fd)
522 (cond ((integer? fd/port)
523 (dup->fdes fd/port fd)
524 (close fd/port)
525 fd)
526 (else
527 (primitive-move->fdes fd/port fd)
528 (set-port-revealed! fd/port 1)
529 fd/port)))
530
531 (define (release-port-handle port)
532 (let ((revealed (port-revealed port)))
533 (if (> revealed 0)
534 (set-port-revealed! port (- revealed 1)))))
535
536 (define (dup->port port/fd mode . maybe-fd)
537 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
538 mode)))
539 (if (pair? maybe-fd)
540 (set-port-revealed! port 1))
541 port))
542
543 (define (dup->inport port/fd . maybe-fd)
544 (apply dup->port port/fd "r" maybe-fd))
545
546 (define (dup->outport port/fd . maybe-fd)
547 (apply dup->port port/fd "w" maybe-fd))
548
549 (define (dup port/fd . maybe-fd)
550 (if (integer? port/fd)
551 (apply dup->fdes port/fd maybe-fd)
552 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
553
554 (define (duplicate-port port modes)
555 (dup->port port modes))
556
557 (define (fdes->inport fdes)
558 (let loop ((rest-ports (fdes->ports fdes)))
559 (cond ((null? rest-ports)
560 (let ((result (fdopen fdes "r")))
561 (set-port-revealed! result 1)
562 result))
563 ((input-port? (car rest-ports))
564 (set-port-revealed! (car rest-ports)
565 (+ (port-revealed (car rest-ports)) 1))
566 (car rest-ports))
567 (else
568 (loop (cdr rest-ports))))))
569
570 (define (fdes->outport fdes)
571 (let loop ((rest-ports (fdes->ports fdes)))
572 (cond ((null? rest-ports)
573 (let ((result (fdopen fdes "w")))
574 (set-port-revealed! result 1)
575 result))
576 ((output-port? (car rest-ports))
577 (set-port-revealed! (car rest-ports)
578 (+ (port-revealed (car rest-ports)) 1))
579 (car rest-ports))
580 (else
581 (loop (cdr rest-ports))))))
582
583 (define (port->fdes port)
584 (set-port-revealed! port (+ (port-revealed port) 1))
585 (fileno port))
586
587 (define (setenv name value)
588 (if value
589 (putenv (string-append name "=" value))
590 (putenv name)))
591
592 \f
593 ;;; {Load Paths}
594 ;;;
595
596 ;;; Here for backward compatability
597 ;;
598 (define scheme-file-suffix (lambda () ".scm"))
599
600 (define (in-vicinity vicinity file)
601 (let ((tail (let ((len (string-length vicinity)))
602 (if (zero? len)
603 #f
604 (string-ref vicinity (- len 1))))))
605 (string-append vicinity
606 (if (or (not tail)
607 (eq? tail #\/))
608 ""
609 "/")
610 file)))
611
612 \f
613 ;;; {Help for scm_shell}
614 ;;; The argument-processing code used by Guile-based shells generates
615 ;;; Scheme code based on the argument list. This page contains help
616 ;;; functions for the code it generates.
617
618 (define (command-line) (program-arguments))
619
620 ;; This is mostly for the internal use of the code generated by
621 ;; scm_compile_shell_switches.
622 (define (load-user-init)
623 (let* ((home (or (getenv "HOME")
624 (false-if-exception (passwd:dir (getpwuid (getuid))))
625 "/")) ;; fallback for cygwin etc.
626 (init-file (in-vicinity home ".guile")))
627 (if (file-exists? init-file)
628 (primitive-load init-file))))
629
630 \f
631 ;;; {Loading by paths}
632
633 ;;; Load a Scheme source file named NAME, searching for it in the
634 ;;; directories listed in %load-path, and applying each of the file
635 ;;; name extensions listed in %load-extensions.
636 (define (load-from-path name)
637 (start-stack 'load-stack
638 (primitive-load-path name)))
639
640
641 \f
642 ;;; {Transcendental Functions}
643 ;;;
644 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
645 ;;; Written by Jerry D. Hedden, (C) FSF.
646 ;;; See the file `COPYING' for terms applying to this program.
647 ;;;
648
649 (define (exp z)
650 (if (real? z) ($exp z)
651 (make-polar ($exp (real-part z)) (imag-part z))))
652
653 (define (log z)
654 (if (and (real? z) (>= z 0))
655 ($log z)
656 (make-rectangular ($log (magnitude z)) (angle z))))
657
658 (define (sqrt z)
659 (if (real? z)
660 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
661 ($sqrt z))
662 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
663
664 (define expt
665 (let ((integer-expt integer-expt))
666 (lambda (z1 z2)
667 (cond ((integer? z2)
668 (if (>= z2 0)
669 (integer-expt z1 z2)
670 (/ 1 (integer-expt z1 (- z2)))))
671 ((and (real? z2) (real? z1) (>= z1 0))
672 ($expt z1 z2))
673 (else
674 (exp (* z2 (log z1))))))))
675
676 (define (sinh z)
677 (if (real? z) ($sinh z)
678 (let ((x (real-part z)) (y (imag-part z)))
679 (make-rectangular (* ($sinh x) ($cos y))
680 (* ($cosh x) ($sin y))))))
681 (define (cosh z)
682 (if (real? z) ($cosh z)
683 (let ((x (real-part z)) (y (imag-part z)))
684 (make-rectangular (* ($cosh x) ($cos y))
685 (* ($sinh x) ($sin y))))))
686 (define (tanh z)
687 (if (real? z) ($tanh z)
688 (let* ((x (* 2 (real-part z)))
689 (y (* 2 (imag-part z)))
690 (w (+ ($cosh x) ($cos y))))
691 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
692
693 (define (asinh z)
694 (if (real? z) ($asinh z)
695 (log (+ z (sqrt (+ (* z z) 1))))))
696
697 (define (acosh z)
698 (if (and (real? z) (>= z 1))
699 ($acosh z)
700 (log (+ z (sqrt (- (* z z) 1))))))
701
702 (define (atanh z)
703 (if (and (real? z) (> z -1) (< z 1))
704 ($atanh z)
705 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
706
707 (define (sin z)
708 (if (real? z) ($sin z)
709 (let ((x (real-part z)) (y (imag-part z)))
710 (make-rectangular (* ($sin x) ($cosh y))
711 (* ($cos x) ($sinh y))))))
712 (define (cos z)
713 (if (real? z) ($cos z)
714 (let ((x (real-part z)) (y (imag-part z)))
715 (make-rectangular (* ($cos x) ($cosh y))
716 (- (* ($sin x) ($sinh y)))))))
717 (define (tan z)
718 (if (real? z) ($tan z)
719 (let* ((x (* 2 (real-part z)))
720 (y (* 2 (imag-part z)))
721 (w (+ ($cos x) ($cosh y))))
722 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
723
724 (define (asin z)
725 (if (and (real? z) (>= z -1) (<= z 1))
726 ($asin z)
727 (* -i (asinh (* +i z)))))
728
729 (define (acos z)
730 (if (and (real? z) (>= z -1) (<= z 1))
731 ($acos z)
732 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
733
734 (define (atan z . y)
735 (if (null? y)
736 (if (real? z) ($atan z)
737 (/ (log (/ (- +i z) (+ +i z))) +2i))
738 ($atan2 z (car y))))
739
740 (define (log10 arg)
741 (/ (log arg) (log 10)))
742
743 \f
744
745 ;;; {Reader Extensions}
746 ;;;
747
748 ;;; Reader code for various "#c" forms.
749 ;;;
750
751 (read-hash-extend #\' (lambda (c port)
752 (read port)))
753 (read-hash-extend #\. (lambda (c port)
754 (eval (read port) (interaction-environment))))
755
756 \f
757 ;;; {Command Line Options}
758 ;;;
759
760 (define (get-option argv kw-opts kw-args return)
761 (cond
762 ((null? argv)
763 (return #f #f argv))
764
765 ((or (not (eq? #\- (string-ref (car argv) 0)))
766 (eq? (string-length (car argv)) 1))
767 (return 'normal-arg (car argv) (cdr argv)))
768
769 ((eq? #\- (string-ref (car argv) 1))
770 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
771 (string-length (car argv))))
772 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
773 (kw-opt? (member kw kw-opts))
774 (kw-arg? (member kw kw-args))
775 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
776 (substring (car argv)
777 (+ kw-arg-pos 1)
778 (string-length (car argv))))
779 (and kw-arg?
780 (begin (set! argv (cdr argv)) (car argv))))))
781 (if (or kw-opt? kw-arg?)
782 (return kw arg (cdr argv))
783 (return 'usage-error kw (cdr argv)))))
784
785 (else
786 (let* ((char (substring (car argv) 1 2))
787 (kw (symbol->keyword char)))
788 (cond
789
790 ((member kw kw-opts)
791 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
792 (new-argv (if (= 0 (string-length rest-car))
793 (cdr argv)
794 (cons (string-append "-" rest-car) (cdr argv)))))
795 (return kw #f new-argv)))
796
797 ((member kw kw-args)
798 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
799 (arg (if (= 0 (string-length rest-car))
800 (cadr argv)
801 rest-car))
802 (new-argv (if (= 0 (string-length rest-car))
803 (cddr argv)
804 (cdr argv))))
805 (return kw arg new-argv)))
806
807 (else (return 'usage-error kw argv)))))))
808
809 (define (for-next-option proc argv kw-opts kw-args)
810 (let loop ((argv argv))
811 (get-option argv kw-opts kw-args
812 (lambda (opt opt-arg argv)
813 (and opt (proc opt opt-arg argv loop))))))
814
815 (define (display-usage-report kw-desc)
816 (for-each
817 (lambda (kw)
818 (or (eq? (car kw) #t)
819 (eq? (car kw) 'else)
820 (let* ((opt-desc kw)
821 (help (cadr opt-desc))
822 (opts (car opt-desc))
823 (opts-proper (if (string? (car opts)) (cdr opts) opts))
824 (arg-name (if (string? (car opts))
825 (string-append "<" (car opts) ">")
826 ""))
827 (left-part (string-append
828 (with-output-to-string
829 (lambda ()
830 (map (lambda (x) (display (keyword-symbol x)) (display " "))
831 opts-proper)))
832 arg-name))
833 (middle-part (if (and (< (string-length left-part) 30)
834 (< (string-length help) 40))
835 (make-string (- 30 (string-length left-part)) #\ )
836 "\n\t")))
837 (display left-part)
838 (display middle-part)
839 (display help)
840 (newline))))
841 kw-desc))
842
843
844
845 (define (transform-usage-lambda cases)
846 (let* ((raw-usage (delq! 'else (map car cases)))
847 (usage-sans-specials (map (lambda (x)
848 (or (and (not (list? x)) x)
849 (and (symbol? (car x)) #t)
850 (and (boolean? (car x)) #t)
851 x))
852 raw-usage))
853 (usage-desc (delq! #t usage-sans-specials))
854 (kw-desc (map car usage-desc))
855 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
856 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
857 (transmogrified-cases (map (lambda (case)
858 (cons (let ((opts (car case)))
859 (if (or (boolean? opts) (eq? 'else opts))
860 opts
861 (cond
862 ((symbol? (car opts)) opts)
863 ((boolean? (car opts)) opts)
864 ((string? (caar opts)) (cdar opts))
865 (else (car opts)))))
866 (cdr case)))
867 cases)))
868 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
869 (lambda (%argv)
870 (let %next-arg ((%argv %argv))
871 (get-option %argv
872 ',kw-opts
873 ',kw-args
874 (lambda (%opt %arg %new-argv)
875 (case %opt
876 ,@ transmogrified-cases))))))))
877
878
879 \f
880
881 ;;; {Low Level Modules}
882 ;;;
883 ;;; These are the low level data structures for modules.
884 ;;;
885 ;;; !!! warning: The interface to lazy binder procedures is going
886 ;;; to be changed in an incompatible way to permit all the basic
887 ;;; module ops to be virtualized.
888 ;;;
889 ;;; (make-module size use-list lazy-binding-proc) => module
890 ;;; module-{obarray,uses,binder}[|-set!]
891 ;;; (module? obj) => [#t|#f]
892 ;;; (module-locally-bound? module symbol) => [#t|#f]
893 ;;; (module-bound? module symbol) => [#t|#f]
894 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
895 ;;; (module-symbol-interned? module symbol) => [#t|#f]
896 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
897 ;;; (module-variable module symbol) => [#<variable ...> | #f]
898 ;;; (module-symbol-binding module symbol opt-value)
899 ;;; => [ <obj> | opt-value | an error occurs ]
900 ;;; (module-make-local-var! module symbol) => #<variable...>
901 ;;; (module-add! module symbol var) => unspecified
902 ;;; (module-remove! module symbol) => unspecified
903 ;;; (module-for-each proc module) => unspecified
904 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
905 ;;; (set-current-module module) => unspecified
906 ;;; (current-module) => #<module...>
907 ;;;
908 ;;;
909
910 \f
911 ;;; {Printing Modules}
912 ;; This is how modules are printed. You can re-define it.
913 ;; (Redefining is actually more complicated than simply redefining
914 ;; %print-module because that would only change the binding and not
915 ;; the value stored in the vtable that determines how record are
916 ;; printed. Sigh.)
917
918 (define (%print-module mod port) ; unused args: depth length style table)
919 (display "#<" port)
920 (display (or (module-kind mod) "module") port)
921 (let ((name (module-name mod)))
922 (if name
923 (begin
924 (display " " port)
925 (display name port))))
926 (display " " port)
927 (display (number->string (object-address mod) 16) port)
928 (display ">" port))
929
930 ;; module-type
931 ;;
932 ;; A module is characterized by an obarray in which local symbols
933 ;; are interned, a list of modules, "uses", from which non-local
934 ;; bindings can be inherited, and an optional lazy-binder which
935 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
936 ;; bindings that would otherwise not be found locally in the module.
937 ;;
938 ;; NOTE: If you change here, you also need to change libguile/modules.h.
939 ;;
940 (define module-type
941 (make-record-type 'module
942 '(obarray uses binder eval-closure transformer name kind
943 observers weak-observers observer-id)
944 %print-module))
945
946 ;; make-module &opt size uses binder
947 ;;
948 ;; Create a new module, perhaps with a particular size of obarray,
949 ;; initial uses list, or binding procedure.
950 ;;
951 (define make-module
952 (lambda args
953
954 (define (parse-arg index default)
955 (if (> (length args) index)
956 (list-ref args index)
957 default))
958
959 (if (> (length args) 3)
960 (error "Too many args to make-module." args))
961
962 (let ((size (parse-arg 0 1021))
963 (uses (parse-arg 1 '()))
964 (binder (parse-arg 2 #f)))
965
966 (if (not (integer? size))
967 (error "Illegal size to make-module." size))
968 (if (not (and (list? uses)
969 (and-map module? uses)))
970 (error "Incorrect use list." uses))
971 (if (and binder (not (procedure? binder)))
972 (error
973 "Lazy-binder expected to be a procedure or #f." binder))
974
975 (let ((module (module-constructor (make-vector size '())
976 uses binder #f #f #f #f
977 '()
978 (make-weak-value-hash-table 31)
979 0)))
980
981 ;; We can't pass this as an argument to module-constructor,
982 ;; because we need it to close over a pointer to the module
983 ;; itself.
984 (set-module-eval-closure! module (standard-eval-closure module))
985
986 module))))
987
988 (define module-constructor (record-constructor module-type))
989 (define module-obarray (record-accessor module-type 'obarray))
990 (define set-module-obarray! (record-modifier module-type 'obarray))
991 (define module-uses (record-accessor module-type 'uses))
992 (define set-module-uses! (record-modifier module-type 'uses))
993 (define module-binder (record-accessor module-type 'binder))
994 (define set-module-binder! (record-modifier module-type 'binder))
995
996 ;; NOTE: This binding is used in libguile/modules.c.
997 (define module-eval-closure (record-accessor module-type 'eval-closure))
998
999 (define module-transformer (record-accessor module-type 'transformer))
1000 (define set-module-transformer! (record-modifier module-type 'transformer))
1001 (define module-name (record-accessor module-type 'name))
1002 (define set-module-name! (record-modifier module-type 'name))
1003 (define module-kind (record-accessor module-type 'kind))
1004 (define set-module-kind! (record-modifier module-type 'kind))
1005 (define module-observers (record-accessor module-type 'observers))
1006 (define set-module-observers! (record-modifier module-type 'observers))
1007 (define module-weak-observers (record-accessor module-type 'weak-observers))
1008 (define module-observer-id (record-accessor module-type 'observer-id))
1009 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1010 (define module? (record-predicate module-type))
1011
1012 (define set-module-eval-closure!
1013 (let ((setter (record-modifier module-type 'eval-closure)))
1014 (lambda (module closure)
1015 (setter module closure)
1016 ;; Make it possible to lookup the module from the environment.
1017 ;; This implementation is correct since an eval closure can belong
1018 ;; to maximally one module.
1019 (set-procedure-property! closure 'module module))))
1020
1021 (begin-deprecated
1022 (define (eval-in-module exp mod)
1023 (issue-deprecation-warning
1024 "`eval-in-module' is deprecated. Use `eval' instead.")
1025 (eval exp mod)))
1026
1027 \f
1028 ;;; {Observer protocol}
1029 ;;;
1030
1031 (define (module-observe module proc)
1032 (set-module-observers! module (cons proc (module-observers module)))
1033 (cons module proc))
1034
1035 (define (module-observe-weak module proc)
1036 (let ((id (module-observer-id module)))
1037 (hash-set! (module-weak-observers module) id proc)
1038 (set-module-observer-id! module (+ 1 id))
1039 (cons module id)))
1040
1041 (define (module-unobserve token)
1042 (let ((module (car token))
1043 (id (cdr token)))
1044 (if (integer? id)
1045 (hash-remove! (module-weak-observers module) id)
1046 (set-module-observers! module (delq1! id (module-observers module)))))
1047 *unspecified*)
1048
1049 (define (module-modified m)
1050 (for-each (lambda (proc) (proc m)) (module-observers m))
1051 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1052
1053 \f
1054 ;;; {Module Searching in General}
1055 ;;;
1056 ;;; We sometimes want to look for properties of a symbol
1057 ;;; just within the obarray of one module. If the property
1058 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1059 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1060 ;;;
1061 ;;;
1062 ;;; Other times, we want to test for a symbol property in the obarray
1063 ;;; of M and, if it is not found there, try each of the modules in the
1064 ;;; uses list of M. This is the normal way of testing for some
1065 ;;; property, so we state these properties without qualification as
1066 ;;; in: ``The symbol 'fnord is interned in module M because it is
1067 ;;; interned locally in module M2 which is a member of the uses list
1068 ;;; of M.''
1069 ;;;
1070
1071 ;; module-search fn m
1072 ;;
1073 ;; return the first non-#f result of FN applied to M and then to
1074 ;; the modules in the uses of m, and so on recursively. If all applications
1075 ;; return #f, then so does this function.
1076 ;;
1077 (define (module-search fn m v)
1078 (define (loop pos)
1079 (and (pair? pos)
1080 (or (module-search fn (car pos) v)
1081 (loop (cdr pos)))))
1082 (or (fn m v)
1083 (loop (module-uses m))))
1084
1085
1086 ;;; {Is a symbol bound in a module?}
1087 ;;;
1088 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1089 ;;; of S in M has been set to some well-defined value.
1090 ;;;
1091
1092 ;; module-locally-bound? module symbol
1093 ;;
1094 ;; Is a symbol bound (interned and defined) locally in a given module?
1095 ;;
1096 (define (module-locally-bound? m v)
1097 (let ((var (module-local-variable m v)))
1098 (and var
1099 (variable-bound? var))))
1100
1101 ;; module-bound? module symbol
1102 ;;
1103 ;; Is a symbol bound (interned and defined) anywhere in a given module
1104 ;; or its uses?
1105 ;;
1106 (define (module-bound? m v)
1107 (module-search module-locally-bound? m v))
1108
1109 ;;; {Is a symbol interned in a module?}
1110 ;;;
1111 ;;; Symbol S in Module M is interned if S occurs in
1112 ;;; of S in M has been set to some well-defined value.
1113 ;;;
1114 ;;; It is possible to intern a symbol in a module without providing
1115 ;;; an initial binding for the corresponding variable. This is done
1116 ;;; with:
1117 ;;; (module-add! module symbol (make-undefined-variable))
1118 ;;;
1119 ;;; In that case, the symbol is interned in the module, but not
1120 ;;; bound there. The unbound symbol shadows any binding for that
1121 ;;; symbol that might otherwise be inherited from a member of the uses list.
1122 ;;;
1123
1124 (define (module-obarray-get-handle ob key)
1125 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1126
1127 (define (module-obarray-ref ob key)
1128 ((if (symbol? key) hashq-ref hash-ref) ob key))
1129
1130 (define (module-obarray-set! ob key val)
1131 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1132
1133 (define (module-obarray-remove! ob key)
1134 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1135
1136 ;; module-symbol-locally-interned? module symbol
1137 ;;
1138 ;; is a symbol interned (not neccessarily defined) locally in a given module
1139 ;; or its uses? Interned symbols shadow inherited bindings even if
1140 ;; they are not themselves bound to a defined value.
1141 ;;
1142 (define (module-symbol-locally-interned? m v)
1143 (not (not (module-obarray-get-handle (module-obarray m) v))))
1144
1145 ;; module-symbol-interned? module symbol
1146 ;;
1147 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1148 ;; or its uses? Interned symbols shadow inherited bindings even if
1149 ;; they are not themselves bound to a defined value.
1150 ;;
1151 (define (module-symbol-interned? m v)
1152 (module-search module-symbol-locally-interned? m v))
1153
1154
1155 ;;; {Mapping modules x symbols --> variables}
1156 ;;;
1157
1158 ;; module-local-variable module symbol
1159 ;; return the local variable associated with a MODULE and SYMBOL.
1160 ;;
1161 ;;; This function is very important. It is the only function that can
1162 ;;; return a variable from a module other than the mutators that store
1163 ;;; new variables in modules. Therefore, this function is the location
1164 ;;; of the "lazy binder" hack.
1165 ;;;
1166 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1167 ;;; to a variable, return that variable object.
1168 ;;;
1169 ;;; If the symbols is not found at first, but the module has a lazy binder,
1170 ;;; then try the binder.
1171 ;;;
1172 ;;; If the symbol is not found at all, return #f.
1173 ;;;
1174 (define (module-local-variable m v)
1175 ; (caddr
1176 ; (list m v
1177 (let ((b (module-obarray-ref (module-obarray m) v)))
1178 (or (and (variable? b) b)
1179 (and (module-binder m)
1180 ((module-binder m) m v #f)))))
1181 ;))
1182
1183 ;; module-variable module symbol
1184 ;;
1185 ;; like module-local-variable, except search the uses in the
1186 ;; case V is not found in M.
1187 ;;
1188 ;; NOTE: This function is superseded with C code (see modules.c)
1189 ;;; when using the standard eval closure.
1190 ;;
1191 (define (module-variable m v)
1192 (module-search module-local-variable m v))
1193
1194
1195 ;;; {Mapping modules x symbols --> bindings}
1196 ;;;
1197 ;;; These are similar to the mapping to variables, except that the
1198 ;;; variable is dereferenced.
1199 ;;;
1200
1201 ;; module-symbol-binding module symbol opt-value
1202 ;;
1203 ;; return the binding of a variable specified by name within
1204 ;; a given module, signalling an error if the variable is unbound.
1205 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1206 ;; return OPT-VALUE.
1207 ;;
1208 (define (module-symbol-local-binding m v . opt-val)
1209 (let ((var (module-local-variable m v)))
1210 (if var
1211 (variable-ref var)
1212 (if (not (null? opt-val))
1213 (car opt-val)
1214 (error "Locally unbound variable." v)))))
1215
1216 ;; module-symbol-binding module symbol opt-value
1217 ;;
1218 ;; return the binding of a variable specified by name within
1219 ;; a given module, signalling an error if the variable is unbound.
1220 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1221 ;; return OPT-VALUE.
1222 ;;
1223 (define (module-symbol-binding m v . opt-val)
1224 (let ((var (module-variable m v)))
1225 (if var
1226 (variable-ref var)
1227 (if (not (null? opt-val))
1228 (car opt-val)
1229 (error "Unbound variable." v)))))
1230
1231
1232 \f
1233 ;;; {Adding Variables to Modules}
1234 ;;;
1235 ;;;
1236
1237
1238 ;; module-make-local-var! module symbol
1239 ;;
1240 ;; ensure a variable for V in the local namespace of M.
1241 ;; If no variable was already there, then create a new and uninitialzied
1242 ;; variable.
1243 ;;
1244 (define (module-make-local-var! m v)
1245 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1246 (and (variable? b)
1247 (begin
1248 (module-modified m)
1249 b)))
1250 (and (module-binder m)
1251 ((module-binder m) m v #t))
1252 (begin
1253 (let ((answer (make-undefined-variable v)))
1254 (module-obarray-set! (module-obarray m) v answer)
1255 (module-modified m)
1256 answer))))
1257
1258 ;; module-add! module symbol var
1259 ;;
1260 ;; ensure a particular variable for V in the local namespace of M.
1261 ;;
1262 (define (module-add! m v var)
1263 (if (not (variable? var))
1264 (error "Bad variable to module-add!" var))
1265 (module-obarray-set! (module-obarray m) v var)
1266 (module-modified m))
1267
1268 ;; module-remove!
1269 ;;
1270 ;; make sure that a symbol is undefined in the local namespace of M.
1271 ;;
1272 (define (module-remove! m v)
1273 (module-obarray-remove! (module-obarray m) v)
1274 (module-modified m))
1275
1276 (define (module-clear! m)
1277 (vector-fill! (module-obarray m) '())
1278 (module-modified m))
1279
1280 ;; MODULE-FOR-EACH -- exported
1281 ;;
1282 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1283 ;;
1284 (define (module-for-each proc module)
1285 (let ((obarray (module-obarray module)))
1286 (do ((index 0 (+ index 1))
1287 (end (vector-length obarray)))
1288 ((= index end))
1289 (for-each
1290 (lambda (bucket)
1291 (proc (car bucket) (cdr bucket)))
1292 (vector-ref obarray index)))))
1293
1294
1295 (define (module-map proc module)
1296 (let* ((obarray (module-obarray module))
1297 (end (vector-length obarray)))
1298
1299 (let loop ((i 0)
1300 (answer '()))
1301 (if (= i end)
1302 answer
1303 (loop (+ 1 i)
1304 (append!
1305 (map (lambda (bucket)
1306 (proc (car bucket) (cdr bucket)))
1307 (vector-ref obarray i))
1308 answer))))))
1309 \f
1310
1311 ;;; {Low Level Bootstrapping}
1312 ;;;
1313
1314 ;; make-root-module
1315
1316 ;; A root module uses the symhash table (the system's privileged
1317 ;; obarray). Being inside a root module is like using SCM without
1318 ;; any module system.
1319 ;;
1320
1321
1322 (define (root-module-closure m s define?)
1323 (let ((bi (builtin-variable s)))
1324 (and bi
1325 (or define? (variable-bound? bi))
1326 (begin
1327 (module-add! m s bi)
1328 bi))))
1329
1330 (define (make-root-module)
1331 (make-module 1019 '() root-module-closure))
1332
1333
1334 ;; make-scm-module
1335
1336 ;; An scm module is a module into which the lazy binder copies
1337 ;; variable bindings from the system symhash table. The mapping is
1338 ;; one way only; newly introduced bindings in an scm module are not
1339 ;; copied back into the system symhash table (and can be used to override
1340 ;; bindings from the symhash table).
1341 ;;
1342
1343 (define (scm-module-closure m s define?)
1344 (let ((bi (builtin-variable s)))
1345 (and bi
1346 (variable-bound? bi)
1347 (begin
1348 (module-add! m s bi)
1349 bi))))
1350
1351 (define (make-scm-module)
1352 (make-module 1019 '() scm-module-closure))
1353
1354
1355 \f
1356 ;;; {Module-based Loading}
1357 ;;;
1358
1359 (define (save-module-excursion thunk)
1360 (let ((inner-module (current-module))
1361 (outer-module #f))
1362 (dynamic-wind (lambda ()
1363 (set! outer-module (current-module))
1364 (set-current-module inner-module)
1365 (set! inner-module #f))
1366 thunk
1367 (lambda ()
1368 (set! inner-module (current-module))
1369 (set-current-module outer-module)
1370 (set! outer-module #f)))))
1371
1372 (define basic-load load)
1373
1374 (define (load-module filename)
1375 (save-module-excursion
1376 (lambda ()
1377 (let ((oldname (and (current-load-port)
1378 (port-filename (current-load-port)))))
1379 (basic-load (if (and oldname
1380 (> (string-length filename) 0)
1381 (not (char=? (string-ref filename 0) #\/))
1382 (not (string=? (dirname oldname) ".")))
1383 (string-append (dirname oldname) "/" filename)
1384 filename))))))
1385
1386
1387 \f
1388 ;;; {MODULE-REF -- exported}
1389 ;;
1390 ;; Returns the value of a variable called NAME in MODULE or any of its
1391 ;; used modules. If there is no such variable, then if the optional third
1392 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1393 ;;
1394 (define (module-ref module name . rest)
1395 (let ((variable (module-variable module name)))
1396 (if (and variable (variable-bound? variable))
1397 (variable-ref variable)
1398 (if (null? rest)
1399 (error "No variable named" name 'in module)
1400 (car rest) ; default value
1401 ))))
1402
1403 ;; MODULE-SET! -- exported
1404 ;;
1405 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1406 ;; to VALUE; if there is no such variable, an error is signaled.
1407 ;;
1408 (define (module-set! module name value)
1409 (let ((variable (module-variable module name)))
1410 (if variable
1411 (variable-set! variable value)
1412 (error "No variable named" name 'in module))))
1413
1414 ;; MODULE-DEFINE! -- exported
1415 ;;
1416 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1417 ;; variable, it is added first.
1418 ;;
1419 (define (module-define! module name value)
1420 (let ((variable (module-local-variable module name)))
1421 (if variable
1422 (begin
1423 (variable-set! variable value)
1424 (module-modified module))
1425 (module-add! module name (make-variable value name)))))
1426
1427 ;; MODULE-DEFINED? -- exported
1428 ;;
1429 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1430 ;; uses)
1431 ;;
1432 (define (module-defined? module name)
1433 (let ((variable (module-variable module name)))
1434 (and variable (variable-bound? variable))))
1435
1436 ;; MODULE-USE! module interface
1437 ;;
1438 ;; Add INTERFACE to the list of interfaces used by MODULE.
1439 ;;
1440 (define (module-use! module interface)
1441 (set-module-uses! module
1442 (cons interface (delq! interface (module-uses module))))
1443 (module-modified module))
1444
1445 \f
1446 ;;; {Recursive Namespaces}
1447 ;;;
1448 ;;;
1449 ;;; A hierarchical namespace emerges if we consider some module to be
1450 ;;; root, and variables bound to modules as nested namespaces.
1451 ;;;
1452 ;;; The routines in this file manage variable names in hierarchical namespace.
1453 ;;; Each variable name is a list of elements, looked up in successively nested
1454 ;;; modules.
1455 ;;;
1456 ;;; (nested-ref some-root-module '(foo bar baz))
1457 ;;; => <value of a variable named baz in the module bound to bar in
1458 ;;; the module bound to foo in some-root-module>
1459 ;;;
1460 ;;;
1461 ;;; There are:
1462 ;;;
1463 ;;; ;; a-root is a module
1464 ;;; ;; name is a list of symbols
1465 ;;;
1466 ;;; nested-ref a-root name
1467 ;;; nested-set! a-root name val
1468 ;;; nested-define! a-root name val
1469 ;;; nested-remove! a-root name
1470 ;;;
1471 ;;;
1472 ;;; (current-module) is a natural choice for a-root so for convenience there are
1473 ;;; also:
1474 ;;;
1475 ;;; local-ref name == nested-ref (current-module) name
1476 ;;; local-set! name val == nested-set! (current-module) name val
1477 ;;; local-define! name val == nested-define! (current-module) name val
1478 ;;; local-remove! name == nested-remove! (current-module) name
1479 ;;;
1480
1481
1482 (define (nested-ref root names)
1483 (let loop ((cur root)
1484 (elts names))
1485 (cond
1486 ((null? elts) cur)
1487 ((not (module? cur)) #f)
1488 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1489
1490 (define (nested-set! root names val)
1491 (let loop ((cur root)
1492 (elts names))
1493 (if (null? (cdr elts))
1494 (module-set! cur (car elts) val)
1495 (loop (module-ref cur (car elts)) (cdr elts)))))
1496
1497 (define (nested-define! root names val)
1498 (let loop ((cur root)
1499 (elts names))
1500 (if (null? (cdr elts))
1501 (module-define! cur (car elts) val)
1502 (loop (module-ref cur (car elts)) (cdr elts)))))
1503
1504 (define (nested-remove! root names)
1505 (let loop ((cur root)
1506 (elts names))
1507 (if (null? (cdr elts))
1508 (module-remove! cur (car elts))
1509 (loop (module-ref cur (car elts)) (cdr elts)))))
1510
1511 (define (local-ref names) (nested-ref (current-module) names))
1512 (define (local-set! names val) (nested-set! (current-module) names val))
1513 (define (local-define names val) (nested-define! (current-module) names val))
1514 (define (local-remove names) (nested-remove! (current-module) names))
1515
1516
1517 \f
1518 ;;; {The (app) module}
1519 ;;;
1520 ;;; The root of conventionally named objects not directly in the top level.
1521 ;;;
1522 ;;; (app modules)
1523 ;;; (app modules guile)
1524 ;;;
1525 ;;; The directory of all modules and the standard root module.
1526 ;;;
1527
1528 (define (module-public-interface m)
1529 (module-ref m '%module-public-interface #f))
1530 (define (set-module-public-interface! m i)
1531 (module-define! m '%module-public-interface i))
1532 (define (set-system-module! m s)
1533 (set-procedure-property! (module-eval-closure m) 'system-module s))
1534 (define the-root-module (make-root-module))
1535 (define the-scm-module (make-scm-module))
1536 (set-module-public-interface! the-root-module the-scm-module)
1537 (set-module-name! the-root-module '(guile))
1538 (set-module-name! the-scm-module '(guile))
1539 (set-module-kind! the-scm-module 'interface)
1540 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1541
1542 (set-current-module the-root-module)
1543
1544 (define app (make-module 31))
1545 (local-define '(app modules) (make-module 31))
1546 (local-define '(app modules guile) the-root-module)
1547
1548 ;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1549
1550 (define (try-load-module name)
1551 (or (try-module-linked name)
1552 (try-module-autoload name)
1553 (try-module-dynamic-link name)))
1554
1555 ;; NOTE: This binding is used in libguile/modules.c.
1556 ;;
1557 (define (resolve-module name . maybe-autoload)
1558 (let ((full-name (append '(app modules) name)))
1559 (let ((already (local-ref full-name)))
1560 (if already
1561 ;; The module already exists...
1562 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1563 (not (module-public-interface already)))
1564 ;; ...but we are told to load and it doesn't contain source, so
1565 (begin
1566 (try-load-module name)
1567 already)
1568 ;; simply return it.
1569 already)
1570 (begin
1571 ;; Try to autoload it if we are told so
1572 (if (or (null? maybe-autoload) (car maybe-autoload))
1573 (try-load-module name))
1574 ;; Get/create it.
1575 (make-modules-in (current-module) full-name))))))
1576
1577 (define (beautify-user-module! module)
1578 (let ((interface (module-public-interface module)))
1579 (if (or (not interface)
1580 (eq? interface module))
1581 (let ((interface (make-module 31)))
1582 (set-module-name! interface (module-name module))
1583 (set-module-kind! interface 'interface)
1584 (set-module-public-interface! module interface))))
1585 (if (and (not (memq the-scm-module (module-uses module)))
1586 (not (eq? module the-root-module)))
1587 (set-module-uses! module (append (module-uses module)
1588 (list the-scm-module)))))
1589
1590 (define (purify-module! module)
1591 "Removes bindings in MODULE which are inherited from the (guile) module."
1592 (let ((use-list (module-uses module)))
1593 (if (and (pair? use-list)
1594 (eq? (car (last-pair use-list)) the-scm-module))
1595 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1596
1597 ;; NOTE: This binding is used in libguile/modules.c.
1598 ;;
1599 (define (make-modules-in module name)
1600 (if (null? name)
1601 module
1602 (cond
1603 ((module-ref module (car name) #f)
1604 => (lambda (m) (make-modules-in m (cdr name))))
1605 (else (let ((m (make-module 31)))
1606 (set-module-kind! m 'directory)
1607 (set-module-name! m (append (or (module-name module)
1608 '())
1609 (list (car name))))
1610 (module-define! module (car name) m)
1611 (make-modules-in m (cdr name)))))))
1612
1613 ;; Return a module interface made from SPEC.
1614 ;; SPEC can be a list of symbols, in which case it names a module
1615 ;; whose public interface is found and returned.
1616 ;;
1617 ;; SPEC can also be of the form:
1618 ;; (MODULE-NAME [:select SELECTION] [:rename RENAMER])
1619 ;; in which case a partial interface is newly created and returned.
1620 ;; MODULE-NAME is a list of symbols, as above; SELECTION is a list of
1621 ;; selection-specs to be imported; and RENAMER is a procedure that takes a
1622 ;; symbol and returns its new name. A selection-spec is either a symbol or a
1623 ;; pair of symbols (ORIG . SEEN), where ORIG is the name in the used module
1624 ;; and SEEN is the name in the using module. Note that SEEN is also passed
1625 ;; through RENAMER.
1626 ;;
1627 ;; The `:select' and `:rename' clauses are optional. If both are omitted, the
1628 ;; returned interface has no bindings. If the `:select' clause is omitted,
1629 ;; RENAMER operates on the used module's public interface.
1630 ;;
1631 ;; Signal error if module name is not resolvable.
1632 ;;
1633 (define (resolve-interface spec)
1634 (let* ((simple? (not (pair? (car spec))))
1635 (name (if simple? spec (car spec)))
1636 (module (resolve-module name)))
1637 (if (not module)
1638 (error "no code for module" name)
1639 (let ((public-i (module-public-interface module)))
1640 (cond ((not public-i)
1641 (beautify-user-module! module)
1642 (set! public-i (module-public-interface module))))
1643 (if simple?
1644 public-i
1645 (let ((selection (cond ((memq ':select spec) => cadr)
1646 (else (module-map (lambda (sym var) sym)
1647 public-i))))
1648 (rename (cond ((memq ':rename spec)
1649 => (lambda (x)
1650 (eval (cadr x) (current-module))))
1651 (else identity)))
1652 (partial-i (make-module 31)))
1653 (set-module-kind! partial-i 'interface)
1654 (for-each (lambda (sel-spec)
1655 (let* ((direct? (symbol? sel-spec))
1656 (orig (if direct?
1657 sel-spec
1658 (car sel-spec)))
1659 (seen (if direct?
1660 sel-spec
1661 (cdr sel-spec))))
1662 (module-add! partial-i (rename seen)
1663 (module-variable module orig))))
1664 selection)
1665 partial-i))))))
1666
1667 (define (symbol-prefix-proc prefix)
1668 (lambda (symbol)
1669 (symbol-append prefix symbol)))
1670
1671 (define (process-define-module args)
1672 (let* ((module-id (car args))
1673 (module (resolve-module module-id #f))
1674 (kws (cdr args))
1675 (unrecognized (lambda ()
1676 (error "unrecognized define-module argument" kws))))
1677 (beautify-user-module! module)
1678 (let loop ((kws kws)
1679 (reversed-interfaces '())
1680 (exports '()))
1681 (if (null? kws)
1682 (begin
1683 (for-each (lambda (interface)
1684 (module-use! module interface))
1685 reversed-interfaces)
1686 (module-export! module exports))
1687 (let ((keyword (if (keyword? (car kws))
1688 (keyword->symbol (car kws))
1689 (and (symbol? (car kws))
1690 (let ((s (symbol->string (car kws))))
1691 (and (eq? (string-ref s 0) #\:)
1692 (string->symbol (substring s 1))))))))
1693 (case keyword
1694 ((use-module use-syntax)
1695 (or (pair? (cdr kws))
1696 (unrecognized))
1697 (let* ((spec (cadr kws))
1698 (interface (resolve-interface spec)))
1699 (and (eq? keyword 'use-syntax)
1700 (or (symbol? (car spec))
1701 (error "invalid module name for use-syntax"
1702 spec))
1703 (set-module-transformer!
1704 module
1705 (module-ref interface (car (last-pair module-name))
1706 #f)))
1707 (loop (cddr kws)
1708 (cons interface reversed-interfaces)
1709 exports)))
1710 ((autoload)
1711 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
1712 (unrecognized))
1713 (loop (cdddr kws)
1714 (cons (make-autoload-interface module
1715 (cadr kws)
1716 (caddr kws))
1717 reversed-interfaces)
1718 exports))
1719 ((no-backtrace)
1720 (set-system-module! module #t)
1721 (loop (cdr kws) reversed-interfaces exports))
1722 ((pure)
1723 (purify-module! module)
1724 (loop (cdr kws) reversed-interfaces exports))
1725 ((export)
1726 (or (pair? (cdr kws))
1727 (unrecognized))
1728 (loop (cddr kws)
1729 reversed-interfaces
1730 (append (cadr kws) exports)))
1731 (else
1732 (unrecognized))))))
1733 (set-current-module module)
1734 module))
1735
1736 ;;; {Autoload}
1737
1738 (define (make-autoload-interface module name bindings)
1739 (let ((b (lambda (a sym definep)
1740 (and (memq sym bindings)
1741 (let ((i (module-public-interface (resolve-module name))))
1742 (if (not i)
1743 (error "missing interface for module" name))
1744 ;; Replace autoload-interface with interface
1745 (set-car! (memq a (module-uses module)) i)
1746 (module-local-variable i sym))))))
1747 (module-constructor #() '() b #f #f name 'autoload
1748 '() (make-weak-value-hash-table 31) 0)))
1749
1750 ;;; {Compiled module}
1751
1752 (define load-compiled #f)
1753
1754 \f
1755 ;;; {Autoloading modules}
1756
1757 (define autoloads-in-progress '())
1758
1759 (define (try-module-autoload module-name)
1760 (let* ((reverse-name (reverse module-name))
1761 (name (symbol->string (car reverse-name)))
1762 (dir-hint-module-name (reverse (cdr reverse-name)))
1763 (dir-hint (apply string-append
1764 (map (lambda (elt)
1765 (string-append (symbol->string elt) "/"))
1766 dir-hint-module-name))))
1767 (resolve-module dir-hint-module-name #f)
1768 (and (not (autoload-done-or-in-progress? dir-hint name))
1769 (let ((didit #f))
1770 (define (load-file proc file)
1771 (save-module-excursion (lambda () (proc file)))
1772 (set! didit #t))
1773 (dynamic-wind
1774 (lambda () (autoload-in-progress! dir-hint name))
1775 (lambda ()
1776 (let ((file (in-vicinity dir-hint name)))
1777 (cond ((and load-compiled
1778 (%search-load-path (string-append file ".go")))
1779 => (lambda (full)
1780 (load-file load-compiled full)))
1781 ((%search-load-path file)
1782 => (lambda (full)
1783 (load-file primitive-load full))))))
1784 (lambda () (set-autoloaded! dir-hint name didit)))
1785 didit))))
1786
1787 \f
1788 ;;; Dynamic linking of modules
1789
1790 ;; This method of dynamically linking Guile Extensions is deprecated.
1791 ;; Use `dynamic-link' and `dynamic-call' explicitely from Scheme code
1792 ;; instead.
1793
1794 ;; XXX - We can not offer the removal of this code thru the
1795 ;; deprecation mechanism since we have no complete replacement yet.
1796
1797 (define (split-c-module-name str)
1798 (let loop ((rev '())
1799 (start 0)
1800 (pos 0)
1801 (end (string-length str)))
1802 (cond
1803 ((= pos end)
1804 (reverse (cons (string->symbol (substring str start pos)) rev)))
1805 ((eq? (string-ref str pos) #\space)
1806 (loop (cons (string->symbol (substring str start pos)) rev)
1807 (+ pos 1)
1808 (+ pos 1)
1809 end))
1810 (else
1811 (loop rev start (+ pos 1) end)))))
1812
1813 (define (convert-c-registered-modules dynobj)
1814 (let ((res (map (lambda (c)
1815 (list (split-c-module-name (car c)) (cdr c) dynobj))
1816 (c-registered-modules))))
1817 (c-clear-registered-modules)
1818 res))
1819
1820 (define registered-modules '())
1821
1822 (define (register-modules dynobj)
1823 (set! registered-modules
1824 (append! (convert-c-registered-modules dynobj)
1825 registered-modules)))
1826
1827 (define (warn-autoload-deprecation modname)
1828 ;; Do nothing here until we can deprecate the code for real.
1829 (if #f
1830 (issue-deprecation-warning
1831 "Autoloading of compiled code modules is deprecated."
1832 "Write a Scheme file instead that uses `dynamic-link' directly.")))
1833
1834 (define (init-dynamic-module modname)
1835 ;; Register any linked modules which have been registered on the C level
1836 (register-modules #f)
1837 (or-map (lambda (modinfo)
1838 (if (equal? (car modinfo) modname)
1839 (begin
1840 (warn-autoload-deprecation modname)
1841 (set! registered-modules (delq! modinfo registered-modules))
1842 (let ((mod (resolve-module modname #f)))
1843 (save-module-excursion
1844 (lambda ()
1845 (set-current-module mod)
1846 (set-module-public-interface! mod mod)
1847 (dynamic-call (cadr modinfo) (caddr modinfo))
1848 ))
1849 #t))
1850 #f))
1851 registered-modules))
1852
1853 (define (dynamic-maybe-call name dynobj)
1854 (catch #t ; could use false-if-exception here
1855 (lambda ()
1856 (dynamic-call name dynobj))
1857 (lambda args
1858 #f)))
1859
1860 (define (dynamic-maybe-link filename)
1861 (catch #t ; could use false-if-exception here
1862 (lambda ()
1863 (dynamic-link filename))
1864 (lambda args
1865 #f)))
1866
1867 (define (find-and-link-dynamic-module module-name)
1868 (define (make-init-name mod-name)
1869 (string-append "scm_init"
1870 (list->string (map (lambda (c)
1871 (if (or (char-alphabetic? c)
1872 (char-numeric? c))
1873 c
1874 #\_))
1875 (string->list mod-name)))
1876 "_module"))
1877
1878 ;; Put the subdirectory for this module in the car of SUBDIR-AND-LIBNAME,
1879 ;; and the `libname' (the name of the module prepended by `lib') in the cdr
1880 ;; field. For example, if MODULE-NAME is the list (inet tcp-ip udp), then
1881 ;; SUBDIR-AND-LIBNAME will be the pair ("inet/tcp-ip" . "libudp").
1882 (let ((subdir-and-libname
1883 (let loop ((dirs "")
1884 (syms module-name))
1885 (if (null? (cdr syms))
1886 (cons dirs (string-append "lib" (symbol->string (car syms))))
1887 (loop (string-append dirs (symbol->string (car syms)) "/")
1888 (cdr syms)))))
1889 (init (make-init-name (apply string-append
1890 (map (lambda (s)
1891 (string-append "_"
1892 (symbol->string s)))
1893 module-name)))))
1894 (let ((subdir (car subdir-and-libname))
1895 (libname (cdr subdir-and-libname)))
1896
1897 ;; Now look in each dir in %LOAD-PATH for `subdir/libfoo.la'. If that
1898 ;; file exists, fetch the dlname from that file and attempt to link
1899 ;; against it. If `subdir/libfoo.la' does not exist, or does not seem
1900 ;; to name any shared library, look for `subdir/libfoo.so' instead and
1901 ;; link against that.
1902 (let check-dirs ((dir-list %load-path))
1903 (if (null? dir-list)
1904 #f
1905 (let* ((dir (in-vicinity (car dir-list) subdir))
1906 (sharlib-full
1907 (or (try-using-libtool-name dir libname)
1908 (try-using-sharlib-name dir libname))))
1909 (if (and sharlib-full (file-exists? sharlib-full))
1910 (link-dynamic-module sharlib-full init)
1911 (check-dirs (cdr dir-list)))))))))
1912
1913 (define (try-using-libtool-name libdir libname)
1914 (let ((libtool-filename (in-vicinity libdir
1915 (string-append libname ".la"))))
1916 (and (file-exists? libtool-filename)
1917 libtool-filename)))
1918
1919 (define (try-using-sharlib-name libdir libname)
1920 (in-vicinity libdir (string-append libname ".so")))
1921
1922 (define (link-dynamic-module filename initname)
1923 ;; Register any linked modules which has been registered on the C level
1924 (register-modules #f)
1925 (let ((dynobj (dynamic-link filename)))
1926 (dynamic-call initname dynobj)
1927 (register-modules dynobj)))
1928
1929 (define (try-module-linked module-name)
1930 (init-dynamic-module module-name))
1931
1932 (define (try-module-dynamic-link module-name)
1933 (and (find-and-link-dynamic-module module-name)
1934 (init-dynamic-module module-name)))
1935
1936
1937
1938 (define autoloads-done '((guile . guile)))
1939
1940 (define (autoload-done-or-in-progress? p m)
1941 (let ((n (cons p m)))
1942 (->bool (or (member n autoloads-done)
1943 (member n autoloads-in-progress)))))
1944
1945 (define (autoload-done! p m)
1946 (let ((n (cons p m)))
1947 (set! autoloads-in-progress
1948 (delete! n autoloads-in-progress))
1949 (or (member n autoloads-done)
1950 (set! autoloads-done (cons n autoloads-done)))))
1951
1952 (define (autoload-in-progress! p m)
1953 (let ((n (cons p m)))
1954 (set! autoloads-done
1955 (delete! n autoloads-done))
1956 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1957
1958 (define (set-autoloaded! p m done?)
1959 (if done?
1960 (autoload-done! p m)
1961 (let ((n (cons p m)))
1962 (set! autoloads-done (delete! n autoloads-done))
1963 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1964
1965
1966
1967 \f
1968 ;; {EVAL-CASE}
1969 ;;
1970 ;; (eval-case ((situation*) forms)* (else forms)?)
1971 ;;
1972 ;; Evaluate certain code based on the situation that eval-case is used
1973 ;; in. The only defined situation right now is `load-toplevel' which
1974 ;; triggers for code evaluated at the top-level, for example from the
1975 ;; REPL or when loading a file.
1976
1977 (define eval-case
1978 (procedure->memoizing-macro
1979 (lambda (exp env)
1980 (define (toplevel-env? env)
1981 (or (not (pair? env)) (not (pair? (car env)))))
1982 (define (syntax)
1983 (error "syntax error in eval-case"))
1984 (let loop ((clauses (cdr exp)))
1985 (cond
1986 ((null? clauses)
1987 #f)
1988 ((not (list? (car clauses)))
1989 (syntax))
1990 ((eq? 'else (caar clauses))
1991 (or (null? (cdr clauses))
1992 (syntax))
1993 (cons 'begin (cdar clauses)))
1994 ((not (list? (caar clauses)))
1995 (syntax))
1996 ((and (toplevel-env? env)
1997 (memq 'load-toplevel (caar clauses)))
1998 (cons 'begin (cdar clauses)))
1999 (else
2000 (loop (cdr clauses))))))))
2001
2002 \f
2003 ;;; {Macros}
2004 ;;;
2005
2006 (define (primitive-macro? m)
2007 (and (macro? m)
2008 (not (macro-transformer m))))
2009
2010 ;;; {Defmacros}
2011 ;;;
2012 (define macro-table (make-weak-key-hash-table 523))
2013 (define xformer-table (make-weak-key-hash-table 523))
2014
2015 (define (defmacro? m) (hashq-ref macro-table m))
2016 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
2017 (define (defmacro-transformer m) (hashq-ref xformer-table m))
2018 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
2019
2020 (define defmacro:transformer
2021 (lambda (f)
2022 (let* ((xform (lambda (exp env)
2023 (copy-tree (apply f (cdr exp)))))
2024 (a (procedure->memoizing-macro xform)))
2025 (assert-defmacro?! a)
2026 (set-defmacro-transformer! a f)
2027 a)))
2028
2029
2030 (define defmacro
2031 (let ((defmacro-transformer
2032 (lambda (name parms . body)
2033 (let ((transformer `(lambda ,parms ,@body)))
2034 `(eval-case
2035 ((load-toplevel)
2036 (define ,name (defmacro:transformer ,transformer)))
2037 (else
2038 (error "defmacro can only be used at the top level")))))))
2039 (defmacro:transformer defmacro-transformer)))
2040
2041 (define defmacro:syntax-transformer
2042 (lambda (f)
2043 (procedure->syntax
2044 (lambda (exp env)
2045 (copy-tree (apply f (cdr exp)))))))
2046
2047
2048 ;; XXX - should the definition of the car really be looked up in the
2049 ;; current module?
2050
2051 (define (macroexpand-1 e)
2052 (cond
2053 ((pair? e) (let* ((a (car e))
2054 (val (and (symbol? a) (local-ref (list a)))))
2055 (if (defmacro? val)
2056 (apply (defmacro-transformer val) (cdr e))
2057 e)))
2058 (#t e)))
2059
2060 (define (macroexpand e)
2061 (cond
2062 ((pair? e) (let* ((a (car e))
2063 (val (and (symbol? a) (local-ref (list a)))))
2064 (if (defmacro? val)
2065 (macroexpand (apply (defmacro-transformer val) (cdr e)))
2066 e)))
2067 (#t e)))
2068
2069 (provide 'defmacro)
2070
2071 \f
2072
2073 ;;; {Run-time options}
2074
2075 (define define-option-interface
2076 (let* ((option-name car)
2077 (option-value cadr)
2078 (option-documentation caddr)
2079
2080 (print-option (lambda (option)
2081 (display (option-name option))
2082 (if (< (string-length
2083 (symbol->string (option-name option)))
2084 8)
2085 (display #\tab))
2086 (display #\tab)
2087 (display (option-value option))
2088 (display #\tab)
2089 (display (option-documentation option))
2090 (newline)))
2091
2092 ;; Below follow the macros defining the run-time option interfaces.
2093
2094 (make-options (lambda (interface)
2095 `(lambda args
2096 (cond ((null? args) (,interface))
2097 ((list? (car args))
2098 (,interface (car args)) (,interface))
2099 (else (for-each ,print-option
2100 (,interface #t)))))))
2101
2102 (make-enable (lambda (interface)
2103 `(lambda flags
2104 (,interface (append flags (,interface)))
2105 (,interface))))
2106
2107 (make-disable (lambda (interface)
2108 `(lambda flags
2109 (let ((options (,interface)))
2110 (for-each (lambda (flag)
2111 (set! options (delq! flag options)))
2112 flags)
2113 (,interface options)
2114 (,interface)))))
2115
2116 (make-set! (lambda (interface)
2117 `((name exp)
2118 (,'quasiquote
2119 (begin (,interface (append (,interface)
2120 (list '(,'unquote name)
2121 (,'unquote exp))))
2122 (,interface)))))))
2123 (procedure->macro
2124 (lambda (exp env)
2125 (cons 'begin
2126 (let* ((option-group (cadr exp))
2127 (interface (car option-group)))
2128 (append (map (lambda (name constructor)
2129 `(define ,name
2130 ,(constructor interface)))
2131 (cadr option-group)
2132 (list make-options
2133 make-enable
2134 make-disable))
2135 (map (lambda (name constructor)
2136 `(defmacro ,name
2137 ,@(constructor interface)))
2138 (caddr option-group)
2139 (list make-set!)))))))))
2140
2141 (define-option-interface
2142 (eval-options-interface
2143 (eval-options eval-enable eval-disable)
2144 (eval-set!)))
2145
2146 (define-option-interface
2147 (debug-options-interface
2148 (debug-options debug-enable debug-disable)
2149 (debug-set!)))
2150
2151 (define-option-interface
2152 (evaluator-traps-interface
2153 (traps trap-enable trap-disable)
2154 (trap-set!)))
2155
2156 (define-option-interface
2157 (read-options-interface
2158 (read-options read-enable read-disable)
2159 (read-set!)))
2160
2161 (define-option-interface
2162 (print-options-interface
2163 (print-options print-enable print-disable)
2164 (print-set!)))
2165
2166 \f
2167
2168 ;;; {Running Repls}
2169 ;;;
2170
2171 (define (repl read evaler print)
2172 (let loop ((source (read (current-input-port))))
2173 (print (evaler source))
2174 (loop (read (current-input-port)))))
2175
2176 ;; A provisional repl that acts like the SCM repl:
2177 ;;
2178 (define scm-repl-silent #f)
2179 (define (assert-repl-silence v) (set! scm-repl-silent v))
2180
2181 (define *unspecified* (if #f #f))
2182 (define (unspecified? v) (eq? v *unspecified*))
2183
2184 (define scm-repl-print-unspecified #f)
2185 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2186
2187 (define scm-repl-verbose #f)
2188 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2189
2190 (define scm-repl-prompt "guile> ")
2191
2192 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2193
2194 (define (default-lazy-handler key . args)
2195 (save-stack lazy-handler-dispatch)
2196 (apply throw key args))
2197
2198 (define enter-frame-handler default-lazy-handler)
2199 (define apply-frame-handler default-lazy-handler)
2200 (define exit-frame-handler default-lazy-handler)
2201
2202 (define (lazy-handler-dispatch key . args)
2203 (case key
2204 ((apply-frame)
2205 (apply apply-frame-handler key args))
2206 ((exit-frame)
2207 (apply exit-frame-handler key args))
2208 ((enter-frame)
2209 (apply enter-frame-handler key args))
2210 (else
2211 (apply default-lazy-handler key args))))
2212
2213 (define abort-hook (make-hook))
2214
2215 ;; these definitions are used if running a script.
2216 ;; otherwise redefined in error-catching-loop.
2217 (define (set-batch-mode?! arg) #t)
2218 (define (batch-mode?) #t)
2219
2220 (define (error-catching-loop thunk)
2221 (let ((status #f)
2222 (interactive #t))
2223 (define (loop first)
2224 (let ((next
2225 (catch #t
2226
2227 (lambda ()
2228 (lazy-catch #t
2229 (lambda ()
2230 (dynamic-wind
2231 (lambda () (unmask-signals))
2232 (lambda ()
2233 (with-traps
2234 (lambda ()
2235 (first)
2236
2237 ;; This line is needed because mark
2238 ;; doesn't do closures quite right.
2239 ;; Unreferenced locals should be
2240 ;; collected.
2241 ;;
2242 (set! first #f)
2243 (let loop ((v (thunk)))
2244 (loop (thunk)))
2245 #f)))
2246 (lambda () (mask-signals))))
2247
2248 lazy-handler-dispatch))
2249
2250 (lambda (key . args)
2251 (case key
2252 ((quit)
2253 (set! status args)
2254 #f)
2255
2256 ((switch-repl)
2257 (apply throw 'switch-repl args))
2258
2259 ((abort)
2260 ;; This is one of the closures that require
2261 ;; (set! first #f) above
2262 ;;
2263 (lambda ()
2264 (run-hook abort-hook)
2265 (force-output (current-output-port))
2266 (display "ABORT: " (current-error-port))
2267 (write args (current-error-port))
2268 (newline (current-error-port))
2269 (if interactive
2270 (begin
2271 (if (and
2272 (not has-shown-debugger-hint?)
2273 (not (memq 'backtrace
2274 (debug-options-interface)))
2275 (stack? (fluid-ref the-last-stack)))
2276 (begin
2277 (newline (current-error-port))
2278 (display
2279 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2280 (current-error-port))
2281 (set! has-shown-debugger-hint? #t)))
2282 (force-output (current-error-port)))
2283 (begin
2284 (primitive-exit 1)))
2285 (set! stack-saved? #f)))
2286
2287 (else
2288 ;; This is the other cons-leak closure...
2289 (lambda ()
2290 (cond ((= (length args) 4)
2291 (apply handle-system-error key args))
2292 (else
2293 (apply bad-throw key args))))))))))
2294 (if next (loop next) status)))
2295 (set! set-batch-mode?! (lambda (arg)
2296 (cond (arg
2297 (set! interactive #f)
2298 (restore-signals))
2299 (#t
2300 (error "sorry, not implemented")))))
2301 (set! batch-mode? (lambda () (not interactive)))
2302 (loop (lambda () #t))))
2303
2304 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2305 (define before-signal-stack (make-fluid))
2306 (define stack-saved? #f)
2307
2308 (define (save-stack . narrowing)
2309 (or stack-saved?
2310 (cond ((not (memq 'debug (debug-options-interface)))
2311 (fluid-set! the-last-stack #f)
2312 (set! stack-saved? #t))
2313 (else
2314 (fluid-set!
2315 the-last-stack
2316 (case (stack-id #t)
2317 ((repl-stack)
2318 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2319 ((load-stack)
2320 (apply make-stack #t save-stack 0 #t 0 narrowing))
2321 ((tk-stack)
2322 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2323 ((#t)
2324 (apply make-stack #t save-stack 0 1 narrowing))
2325 (else
2326 (let ((id (stack-id #t)))
2327 (and (procedure? id)
2328 (apply make-stack #t save-stack id #t 0 narrowing))))))
2329 (set! stack-saved? #t)))))
2330
2331 (define before-error-hook (make-hook))
2332 (define after-error-hook (make-hook))
2333 (define before-backtrace-hook (make-hook))
2334 (define after-backtrace-hook (make-hook))
2335
2336 (define has-shown-debugger-hint? #f)
2337
2338 (define (handle-system-error key . args)
2339 (let ((cep (current-error-port)))
2340 (cond ((not (stack? (fluid-ref the-last-stack))))
2341 ((memq 'backtrace (debug-options-interface))
2342 (run-hook before-backtrace-hook)
2343 (newline cep)
2344 (display "Backtrace:\n")
2345 (display-backtrace (fluid-ref the-last-stack) cep)
2346 (newline cep)
2347 (run-hook after-backtrace-hook)))
2348 (run-hook before-error-hook)
2349 (apply display-error (fluid-ref the-last-stack) cep args)
2350 (run-hook after-error-hook)
2351 (force-output cep)
2352 (throw 'abort key)))
2353
2354 (define (quit . args)
2355 (apply throw 'quit args))
2356
2357 (define exit quit)
2358
2359 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2360
2361 ;; Replaced by C code:
2362 ;;(define (backtrace)
2363 ;; (if (fluid-ref the-last-stack)
2364 ;; (begin
2365 ;; (newline)
2366 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2367 ;; (newline)
2368 ;; (if (and (not has-shown-backtrace-hint?)
2369 ;; (not (memq 'backtrace (debug-options-interface))))
2370 ;; (begin
2371 ;; (display
2372 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2373 ;;automatically if an error occurs in the future.\n")
2374 ;; (set! has-shown-backtrace-hint? #t))))
2375 ;; (display "No backtrace available.\n")))
2376
2377 (define (error-catching-repl r e p)
2378 (error-catching-loop (lambda () (p (e (r))))))
2379
2380 (define (gc-run-time)
2381 (cdr (assq 'gc-time-taken (gc-stats))))
2382
2383 (define before-read-hook (make-hook))
2384 (define after-read-hook (make-hook))
2385 (define before-eval-hook (make-hook 1))
2386 (define after-eval-hook (make-hook 1))
2387 (define before-print-hook (make-hook 1))
2388 (define after-print-hook (make-hook 1))
2389
2390 ;;; The default repl-reader function. We may override this if we've
2391 ;;; the readline library.
2392 (define repl-reader
2393 (lambda (prompt)
2394 (display prompt)
2395 (force-output)
2396 (run-hook before-read-hook)
2397 (read (current-input-port))))
2398
2399 (define (scm-style-repl)
2400
2401 (letrec (
2402 (start-gc-rt #f)
2403 (start-rt #f)
2404 (repl-report-start-timing (lambda ()
2405 (set! start-gc-rt (gc-run-time))
2406 (set! start-rt (get-internal-run-time))))
2407 (repl-report (lambda ()
2408 (display ";;; ")
2409 (display (inexact->exact
2410 (* 1000 (/ (- (get-internal-run-time) start-rt)
2411 internal-time-units-per-second))))
2412 (display " msec (")
2413 (display (inexact->exact
2414 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2415 internal-time-units-per-second))))
2416 (display " msec in gc)\n")))
2417
2418 (consume-trailing-whitespace
2419 (lambda ()
2420 (let ((ch (peek-char)))
2421 (cond
2422 ((eof-object? ch))
2423 ((or (char=? ch #\space) (char=? ch #\tab))
2424 (read-char)
2425 (consume-trailing-whitespace))
2426 ((char=? ch #\newline)
2427 (read-char))))))
2428 (-read (lambda ()
2429 (let ((val
2430 (let ((prompt (cond ((string? scm-repl-prompt)
2431 scm-repl-prompt)
2432 ((thunk? scm-repl-prompt)
2433 (scm-repl-prompt))
2434 (scm-repl-prompt "> ")
2435 (else ""))))
2436 (repl-reader prompt))))
2437
2438 ;; As described in R4RS, the READ procedure updates the
2439 ;; port to point to the first character past the end of
2440 ;; the external representation of the object. This
2441 ;; means that it doesn't consume the newline typically
2442 ;; found after an expression. This means that, when
2443 ;; debugging Guile with GDB, GDB gets the newline, which
2444 ;; it often interprets as a "continue" command, making
2445 ;; breakpoints kind of useless. So, consume any
2446 ;; trailing newline here, as well as any whitespace
2447 ;; before it.
2448 ;; But not if EOF, for control-D.
2449 (if (not (eof-object? val))
2450 (consume-trailing-whitespace))
2451 (run-hook after-read-hook)
2452 (if (eof-object? val)
2453 (begin
2454 (repl-report-start-timing)
2455 (if scm-repl-verbose
2456 (begin
2457 (newline)
2458 (display ";;; EOF -- quitting")
2459 (newline)))
2460 (quit 0)))
2461 val)))
2462
2463 (-eval (lambda (sourc)
2464 (repl-report-start-timing)
2465 (run-hook before-eval-hook sourc)
2466 (let ((val (start-stack 'repl-stack
2467 ;; If you change this procedure
2468 ;; (primitive-eval), please also
2469 ;; modify the repl-stack case in
2470 ;; save-stack so that stack cutting
2471 ;; continues to work.
2472 (primitive-eval sourc))))
2473 (run-hook after-eval-hook sourc)
2474 val)))
2475
2476
2477 (-print (let ((maybe-print (lambda (result)
2478 (if (or scm-repl-print-unspecified
2479 (not (unspecified? result)))
2480 (begin
2481 (write result)
2482 (newline))))))
2483 (lambda (result)
2484 (if (not scm-repl-silent)
2485 (begin
2486 (run-hook before-print-hook result)
2487 (maybe-print result)
2488 (run-hook after-print-hook result)
2489 (if scm-repl-verbose
2490 (repl-report))
2491 (force-output))))))
2492
2493 (-quit (lambda (args)
2494 (if scm-repl-verbose
2495 (begin
2496 (display ";;; QUIT executed, repl exitting")
2497 (newline)
2498 (repl-report)))
2499 args))
2500
2501 (-abort (lambda ()
2502 (if scm-repl-verbose
2503 (begin
2504 (display ";;; ABORT executed.")
2505 (newline)
2506 (repl-report)))
2507 (repl -read -eval -print))))
2508
2509 (let ((status (error-catching-repl -read
2510 -eval
2511 -print)))
2512 (-quit status))))
2513
2514
2515 \f
2516 ;;; {IOTA functions: generating lists of numbers}
2517
2518 (define (iota n)
2519 (let loop ((count (1- n)) (result '()))
2520 (if (< count 0) result
2521 (loop (1- count) (cons count result)))))
2522
2523 \f
2524 ;;; {While}
2525 ;;;
2526 ;;; with `continue' and `break'.
2527 ;;;
2528
2529 (defmacro while (cond . body)
2530 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2531 (break (lambda val (apply throw 'break val))))
2532 (catch 'break
2533 (lambda () (continue))
2534 (lambda v (cadr v)))))
2535
2536 ;;; {collect}
2537 ;;;
2538 ;;; Similar to `begin' but returns a list of the results of all constituent
2539 ;;; forms instead of the result of the last form.
2540 ;;; (The definition relies on the current left-to-right
2541 ;;; order of evaluation of operands in applications.)
2542
2543 (defmacro collect forms
2544 (cons 'list forms))
2545
2546 ;;; {with-fluids}
2547
2548 ;; with-fluids is a convenience wrapper for the builtin procedure
2549 ;; `with-fluids*'. The syntax is just like `let':
2550 ;;
2551 ;; (with-fluids ((fluid val)
2552 ;; ...)
2553 ;; body)
2554
2555 (defmacro with-fluids (bindings . body)
2556 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2557 (lambda () ,@body)))
2558
2559 \f
2560
2561 ;;; {Macros}
2562 ;;;
2563
2564 ;; actually....hobbit might be able to hack these with a little
2565 ;; coaxing
2566 ;;
2567
2568 (defmacro define-macro (first . rest)
2569 (let ((name (if (symbol? first) first (car first)))
2570 (transformer
2571 (if (symbol? first)
2572 (car rest)
2573 `(lambda ,(cdr first) ,@rest))))
2574 `(eval-case
2575 ((load-toplevel)
2576 (define ,name (defmacro:transformer ,transformer)))
2577 (else
2578 (error "define-macro can only be used at the top level")))))
2579
2580
2581 (defmacro define-syntax-macro (first . rest)
2582 (let ((name (if (symbol? first) first (car first)))
2583 (transformer
2584 (if (symbol? first)
2585 (car rest)
2586 `(lambda ,(cdr first) ,@rest))))
2587 `(eval-case
2588 ((load-toplevel)
2589 (define ,name (defmacro:syntax-transformer ,transformer)))
2590 (else
2591 (error "define-syntax-macro can only be used at the top level")))))
2592
2593 \f
2594 ;;; {Module System Macros}
2595 ;;;
2596
2597 (defmacro define-module args
2598 `(eval-case
2599 ((load-toplevel)
2600 (process-define-module ',args))
2601 (else
2602 (error "define-module can only be used at the top level"))))
2603
2604 ;; the guts of the use-modules macro. add the interfaces of the named
2605 ;; modules to the use-list of the current module, in order
2606 (define (process-use-modules module-interface-specs)
2607 (for-each (lambda (mif-spec)
2608 (let ((mod-iface (resolve-interface mif-spec)))
2609 (or mod-iface
2610 (error "no such module" mif-spec))
2611 (module-use! (current-module) mod-iface)))
2612 module-interface-specs))
2613
2614 (defmacro use-modules modules
2615 `(eval-case
2616 ((load-toplevel)
2617 (process-use-modules ',modules))
2618 (else
2619 (error "use-modules can only be used at the top level"))))
2620
2621 (defmacro use-syntax (spec)
2622 `(eval-case
2623 ((load-toplevel)
2624 ,@(if (pair? spec)
2625 `((process-use-modules ',(list spec))
2626 (set-module-transformer! (current-module)
2627 ,(car (last-pair spec))))
2628 `((set-module-transformer! (current-module) ,spec)))
2629 (fluid-set! scm:eval-transformer (module-transformer (current-module))))
2630 (else
2631 (error "use-syntax can only be used at the top level"))))
2632
2633 (define define-private define)
2634
2635 (defmacro define-public args
2636 (define (syntax)
2637 (error "bad syntax" (list 'define-public args)))
2638 (define (defined-name n)
2639 (cond
2640 ((symbol? n) n)
2641 ((pair? n) (defined-name (car n)))
2642 (else (syntax))))
2643 (cond
2644 ((null? args)
2645 (syntax))
2646 (#t
2647 (let ((name (defined-name (car args))))
2648 `(begin
2649 (eval-case ((load-toplevel) (export ,name)))
2650 (define-private ,@args))))))
2651
2652 (defmacro defmacro-public args
2653 (define (syntax)
2654 (error "bad syntax" (list 'defmacro-public args)))
2655 (define (defined-name n)
2656 (cond
2657 ((symbol? n) n)
2658 (else (syntax))))
2659 (cond
2660 ((null? args)
2661 (syntax))
2662 (#t
2663 (let ((name (defined-name (car args))))
2664 `(begin
2665 (eval-case ((load-toplevel) (export ,name)))
2666 (defmacro ,@args))))))
2667
2668 (define (module-export! m names)
2669 (let ((public-i (module-public-interface m)))
2670 (for-each (lambda (name)
2671 ;; Make sure there is a local variable:
2672 (module-define! m name (module-ref m name #f))
2673 ;; Make sure that local is exported:
2674 (module-add! public-i name (module-variable m name)))
2675 names)))
2676
2677 (defmacro export names
2678 `(eval-case
2679 ((load-toplevel)
2680 (module-export! (current-module) ',names))
2681 (else
2682 (error "export can only be used at the top level"))))
2683
2684 (define export-syntax export)
2685
2686
2687 (define load load-module)
2688
2689
2690 \f
2691
2692 ;;; {Load emacs interface support if emacs option is given.}
2693
2694 (define (named-module-use! user usee)
2695 (module-use! (resolve-module user) (resolve-module usee)))
2696
2697 (define (load-emacs-interface)
2698 (and (provided? 'debug-extensions)
2699 (debug-enable 'backtrace))
2700 (named-module-use! '(guile-user) '(ice-9 emacs)))
2701
2702 \f
2703
2704 (define using-readline?
2705 (let ((using-readline? (make-fluid)))
2706 (make-procedure-with-setter
2707 (lambda () (fluid-ref using-readline?))
2708 (lambda (v) (fluid-set! using-readline? v)))))
2709
2710 (define (top-repl)
2711
2712 ;; Load emacs interface support if emacs option is given.
2713 (if (and (module-defined? the-root-module 'use-emacs-interface)
2714 (module-ref the-root-module 'use-emacs-interface))
2715 (load-emacs-interface))
2716
2717 ;; Place the user in the guile-user module.
2718 (process-define-module
2719 '((guile-user)
2720 :use-module (guile) ;so that bindings will be checked here first
2721 :use-module (ice-9 session)
2722 :use-module (ice-9 debug)
2723 :autoload (ice-9 debugger) (debug))) ;load debugger on demand
2724 (and (provided? 'threads)
2725 (named-module-use! '(guile-user) '(ice-9 threads)))
2726 (and (provided? 'regex)
2727 (named-module-use! '(guile-user) '(ice-9 regex)))
2728
2729 (let ((old-handlers #f)
2730 (signals (if (provided? 'posix)
2731 `((,SIGINT . "User interrupt")
2732 (,SIGFPE . "Arithmetic error")
2733 (,SIGBUS . "Bad memory access (bus error)")
2734 (,SIGSEGV .
2735 "Bad memory access (Segmentation violation)"))
2736 '())))
2737
2738 (dynamic-wind
2739
2740 ;; call at entry
2741 (lambda ()
2742 (let ((make-handler (lambda (msg)
2743 (lambda (sig)
2744 ;; Make a backup copy of the stack
2745 (fluid-set! before-signal-stack
2746 (fluid-ref the-last-stack))
2747 (save-stack %deliver-signals)
2748 (scm-error 'signal
2749 #f
2750 msg
2751 #f
2752 (list sig))))))
2753 (set! old-handlers
2754 (map (lambda (sig-msg)
2755 (sigaction (car sig-msg)
2756 (make-handler (cdr sig-msg))))
2757 signals))))
2758
2759 ;; the protected thunk.
2760 (lambda ()
2761 (let ((status (scm-style-repl)))
2762 (run-hook exit-hook)
2763 status))
2764
2765 ;; call at exit.
2766 (lambda ()
2767 (map (lambda (sig-msg old-handler)
2768 (if (not (car old-handler))
2769 ;; restore original C handler.
2770 (sigaction (car sig-msg) #f)
2771 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
2772 (sigaction (car sig-msg)
2773 (car old-handler)
2774 (cdr old-handler))))
2775 signals old-handlers)))))
2776
2777 (defmacro false-if-exception (expr)
2778 `(catch #t (lambda () ,expr)
2779 (lambda args #f)))
2780
2781 ;;; This hook is run at the very end of an interactive session.
2782 ;;;
2783 (define exit-hook (make-hook))
2784
2785 \f
2786 (define-module (guile))
2787
2788 (append! %load-path (cons "." '()))
2789
2790 ;;; boot-9.scm ends here