Merged from mvo-vcell-cleanup-1-branch.
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 ;;;;
5 ;;;; This program is free software; you can redistribute it and/or modify
6 ;;;; it under the terms of the GNU General Public License as published by
7 ;;;; the Free Software Foundation; either version 2, or (at your option)
8 ;;;; any later version.
9 ;;;;
10 ;;;; This program is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ;;;; GNU General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU General Public License
16 ;;;; along with this software; see the file COPYING. If not, write to
17 ;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18 ;;;; Boston, MA 02111-1307 USA
19 ;;;;
20 \f
21
22 ;;; Commentary:
23
24 ;;; This file is the first thing loaded into Guile. It adds many mundane
25 ;;; definitions and a few that are interesting.
26 ;;;
27 ;;; The module system (hence the hierarchical namespace) are defined in this
28 ;;; file.
29 ;;;
30
31 ;;; Code:
32
33 \f
34 ;;; {Deprecation}
35 ;;;
36
37 ;; We don't have macros here, but we do want to define
38 ;; `begin-deprecated' early.
39
40 (define begin-deprecated
41 (procedure->memoizing-macro
42 (lambda (exp env)
43 (if (include-deprecated-features)
44 `(begin ,@(cdr exp))
45 `#f))))
46
47 \f
48 ;;; {Features}
49 ;;
50
51 (define (provide sym)
52 (if (not (memq sym *features*))
53 (set! *features* (cons sym *features*))))
54
55 ;;; Return #t iff FEATURE is available to this Guile interpreter.
56 ;;; In SLIB, provided? also checks to see if the module is available.
57 ;;; We should do that too, but don't.
58 (define (provided? feature)
59 (and (memq feature *features*) #t))
60
61 ;;; presumably deprecated.
62 (define feature? provided?)
63
64 ;;; let format alias simple-format until the more complete version is loaded
65 (define format simple-format)
66
67 \f
68 ;;; {R4RS compliance}
69
70 (primitive-load-path "ice-9/r4rs.scm")
71
72 \f
73 ;;; {Simple Debugging Tools}
74 ;;
75
76
77 ;; peek takes any number of arguments, writes them to the
78 ;; current ouput port, and returns the last argument.
79 ;; It is handy to wrap around an expression to look at
80 ;; a value each time is evaluated, e.g.:
81 ;;
82 ;; (+ 10 (troublesome-fn))
83 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
84 ;;
85
86 (define (peek . stuff)
87 (newline)
88 (display ";;; ")
89 (write stuff)
90 (newline)
91 (car (last-pair stuff)))
92
93 (define pk peek)
94
95 (define (warn . stuff)
96 (with-output-to-port (current-error-port)
97 (lambda ()
98 (newline)
99 (display ";;; WARNING ")
100 (display stuff)
101 (newline)
102 (car (last-pair stuff)))))
103
104 \f
105 ;;; {Trivial Functions}
106 ;;;
107
108 (define (identity x) x)
109 (define (1+ n) (+ n 1))
110 (define (1- n) (+ n -1))
111 (define (and=> value procedure) (and value (procedure value)))
112 (define (make-hash-table k) (make-vector k '()))
113
114 (begin-deprecated
115 (define (id x)
116 (issue-deprecation-warning "`id' is deprecated. Use `identity' instead.")
117 (identity x))
118 (define (-1+ n)
119 (issue-deprecation-warning "`-1+' is deprecated. Use `1-' instead.")
120 (1- n))
121 (define (return-it . args)
122 (issue-deprecation-warning "`return-it' is deprecated. Use `noop' instead.")
123 (apply noop args)))
124
125 ;;; apply-to-args is functionally redundant with apply and, worse,
126 ;;; is less general than apply since it only takes two arguments.
127 ;;;
128 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
129 ;;; perform binding in many circumstances when the "let" family of
130 ;;; of forms don't cut it. E.g.:
131 ;;;
132 ;;; (apply-to-args (return-3d-mouse-coords)
133 ;;; (lambda (x y z)
134 ;;; ...))
135 ;;;
136
137 (define (apply-to-args args fn) (apply fn args))
138
139 \f
140
141 ;;; {Integer Math}
142 ;;;
143
144 (define (ipow-by-squaring x k acc proc)
145 (cond ((zero? k) acc)
146 ((= 1 k) (proc acc x))
147 (else (ipow-by-squaring (proc x x)
148 (quotient k 2)
149 (if (even? k) acc (proc acc x))
150 proc))))
151
152 (begin-deprecated
153 (define (string-character-length s)
154 (issue-deprecation-warning "`string-character-length' is deprecated. Use `string-length' instead.")
155 (string-length s))
156 (define (flags . args)
157 (issue-deprecation-warning "`flags' is deprecated. Use `logior' instead.")
158 (apply logior args)))
159
160 \f
161 ;;; {Symbol Properties}
162 ;;;
163
164 (define (symbol-property sym prop)
165 (let ((pair (assoc prop (symbol-pref sym))))
166 (and pair (cdr pair))))
167
168 (define (set-symbol-property! sym prop val)
169 (let ((pair (assoc prop (symbol-pref sym))))
170 (if pair
171 (set-cdr! pair val)
172 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
173
174 (define (symbol-property-remove! sym prop)
175 (let ((pair (assoc prop (symbol-pref sym))))
176 (if pair
177 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
178
179 ;;; {General Properties}
180 ;;;
181
182 ;; This is a more modern interface to properties. It will replace all
183 ;; other property-like things eventually.
184
185 (define (make-object-property)
186 (let ((prop (primitive-make-property #f)))
187 (make-procedure-with-setter
188 (lambda (obj) (primitive-property-ref prop obj))
189 (lambda (obj val) (primitive-property-set! prop obj val)))))
190
191 \f
192
193 ;;; {Arrays}
194 ;;;
195
196 (if (provided? 'array)
197 (primitive-load-path "ice-9/arrays.scm"))
198
199 \f
200 ;;; {Keywords}
201 ;;;
202
203 (define (symbol->keyword symbol)
204 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
205
206 (define (keyword->symbol kw)
207 (let ((sym (symbol->string (keyword-dash-symbol kw))))
208 (string->symbol (substring sym 1 (string-length sym)))))
209
210 (define (kw-arg-ref args kw)
211 (let ((rem (member kw args)))
212 (and rem (pair? (cdr rem)) (cadr rem))))
213
214 \f
215
216 ;;; {Structs}
217
218 (define (struct-layout s)
219 (struct-ref (struct-vtable s) vtable-index-layout))
220
221 \f
222
223 ;;; Environments
224
225 (define the-environment
226 (procedure->syntax
227 (lambda (x e)
228 e)))
229
230 (define the-root-environment (the-environment))
231
232 (define (environment-module env)
233 (let ((closure (and (pair? env) (car (last-pair env)))))
234 (and closure (procedure-property closure 'module))))
235
236 \f
237 ;;; {Records}
238 ;;;
239
240 ;; Printing records: by default, records are printed as
241 ;;
242 ;; #<type-name field1: val1 field2: val2 ...>
243 ;;
244 ;; You can change that by giving a custom printing function to
245 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
246 ;; will be called like
247 ;;
248 ;; (<printer> object port)
249 ;;
250 ;; It should print OBJECT to PORT.
251
252 (define (inherit-print-state old-port new-port)
253 (if (get-print-state old-port)
254 (port-with-print-state new-port (get-print-state old-port))
255 new-port))
256
257 ;; 0: type-name, 1: fields
258 (define record-type-vtable
259 (make-vtable-vtable "prpr" 0
260 (lambda (s p)
261 (cond ((eq? s record-type-vtable)
262 (display "#<record-type-vtable>" p))
263 (else
264 (display "#<record-type " p)
265 (display (record-type-name s) p)
266 (display ">" p))))))
267
268 (define (record-type? obj)
269 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
270
271 (define (make-record-type type-name fields . opt)
272 (let ((printer-fn (and (pair? opt) (car opt))))
273 (let ((struct (make-struct record-type-vtable 0
274 (make-struct-layout
275 (apply string-append
276 (map (lambda (f) "pw") fields)))
277 (or printer-fn
278 (lambda (s p)
279 (display "#<" p)
280 (display type-name p)
281 (let loop ((fields fields)
282 (off 0))
283 (cond
284 ((not (null? fields))
285 (display " " p)
286 (display (car fields) p)
287 (display ": " p)
288 (display (struct-ref s off) p)
289 (loop (cdr fields) (+ 1 off)))))
290 (display ">" p)))
291 type-name
292 (copy-tree fields))))
293 ;; Temporary solution: Associate a name to the record type descriptor
294 ;; so that the object system can create a wrapper class for it.
295 (set-struct-vtable-name! struct (if (symbol? type-name)
296 type-name
297 (string->symbol type-name)))
298 struct)))
299
300 (define (record-type-name obj)
301 (if (record-type? obj)
302 (struct-ref obj vtable-offset-user)
303 (error 'not-a-record-type obj)))
304
305 (define (record-type-fields obj)
306 (if (record-type? obj)
307 (struct-ref obj (+ 1 vtable-offset-user))
308 (error 'not-a-record-type obj)))
309
310 (define (record-constructor rtd . opt)
311 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
312 (local-eval `(lambda ,field-names
313 (make-struct ',rtd 0 ,@(map (lambda (f)
314 (if (memq f field-names)
315 f
316 #f))
317 (record-type-fields rtd))))
318 the-root-environment)))
319
320 (define (record-predicate rtd)
321 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
322
323 (define (record-accessor rtd field-name)
324 (let* ((pos (list-index (record-type-fields rtd) field-name)))
325 (if (not pos)
326 (error 'no-such-field field-name))
327 (local-eval `(lambda (obj)
328 (and (eq? ',rtd (record-type-descriptor obj))
329 (struct-ref obj ,pos)))
330 the-root-environment)))
331
332 (define (record-modifier rtd field-name)
333 (let* ((pos (list-index (record-type-fields rtd) field-name)))
334 (if (not pos)
335 (error 'no-such-field field-name))
336 (local-eval `(lambda (obj val)
337 (and (eq? ',rtd (record-type-descriptor obj))
338 (struct-set! obj ,pos val)))
339 the-root-environment)))
340
341
342 (define (record? obj)
343 (and (struct? obj) (record-type? (struct-vtable obj))))
344
345 (define (record-type-descriptor obj)
346 (if (struct? obj)
347 (struct-vtable obj)
348 (error 'not-a-record obj)))
349
350 (provide 'record)
351
352 \f
353 ;;; {Booleans}
354 ;;;
355
356 (define (->bool x) (not (not x)))
357
358 \f
359 ;;; {Symbols}
360 ;;;
361
362 (define (symbol-append . args)
363 (string->symbol (apply string-append (map symbol->string args))))
364
365 (define (list->symbol . args)
366 (string->symbol (apply list->string args)))
367
368 (define (symbol . args)
369 (string->symbol (apply string args)))
370
371 \f
372 ;;; {Lists}
373 ;;;
374
375 (define (list-index l k)
376 (let loop ((n 0)
377 (l l))
378 (and (not (null? l))
379 (if (eq? (car l) k)
380 n
381 (loop (+ n 1) (cdr l))))))
382
383 (define (make-list n . init)
384 (if (pair? init) (set! init (car init)))
385 (let loop ((answer '())
386 (n n))
387 (if (<= n 0)
388 answer
389 (loop (cons init answer) (- n 1)))))
390
391 \f
392 ;;; {and-map and or-map}
393 ;;;
394 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
395 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
396 ;;;
397
398 ;; and-map f l
399 ;;
400 ;; Apply f to successive elements of l until exhaustion or f returns #f.
401 ;; If returning early, return #f. Otherwise, return the last value returned
402 ;; by f. If f has never been called because l is empty, return #t.
403 ;;
404 (define (and-map f lst)
405 (let loop ((result #t)
406 (l lst))
407 (and result
408 (or (and (null? l)
409 result)
410 (loop (f (car l)) (cdr l))))))
411
412 ;; or-map f l
413 ;;
414 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
415 ;; If returning early, return the return value of f.
416 ;;
417 (define (or-map f lst)
418 (let loop ((result #f)
419 (l lst))
420 (or result
421 (and (not (null? l))
422 (loop (f (car l)) (cdr l))))))
423
424 \f
425
426 (if (provided? 'posix)
427 (primitive-load-path "ice-9/posix.scm"))
428
429 (if (provided? 'socket)
430 (primitive-load-path "ice-9/networking.scm"))
431
432 (define file-exists?
433 (if (provided? 'posix)
434 (lambda (str)
435 (access? str F_OK))
436 (lambda (str)
437 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
438 (lambda args #f))))
439 (if port (begin (close-port port) #t)
440 #f)))))
441
442 (define file-is-directory?
443 (if (provided? 'posix)
444 (lambda (str)
445 (eq? (stat:type (stat str)) 'directory))
446 (lambda (str)
447 (let ((port (catch 'system-error
448 (lambda () (open-file (string-append str "/.")
449 OPEN_READ))
450 (lambda args #f))))
451 (if port (begin (close-port port) #t)
452 #f)))))
453
454 (define (has-suffix? str suffix)
455 (let ((sufl (string-length suffix))
456 (sl (string-length str)))
457 (and (> sl sufl)
458 (string=? (substring str (- sl sufl) sl) suffix))))
459
460 \f
461 ;;; {Error Handling}
462 ;;;
463
464 (define (error . args)
465 (save-stack)
466 (if (null? args)
467 (scm-error 'misc-error #f "?" #f #f)
468 (let loop ((msg "~A")
469 (rest (cdr args)))
470 (if (not (null? rest))
471 (loop (string-append msg " ~S")
472 (cdr rest))
473 (scm-error 'misc-error #f msg args #f)))))
474
475 ;; bad-throw is the hook that is called upon a throw to a an unhandled
476 ;; key (unless the throw has four arguments, in which case
477 ;; it's usually interpreted as an error throw.)
478 ;; If the key has a default handler (a throw-handler-default property),
479 ;; it is applied to the throw.
480 ;;
481 (define (bad-throw key . args)
482 (let ((default (symbol-property key 'throw-handler-default)))
483 (or (and default (apply default key args))
484 (apply error "unhandled-exception:" key args))))
485
486 \f
487
488 (define (tm:sec obj) (vector-ref obj 0))
489 (define (tm:min obj) (vector-ref obj 1))
490 (define (tm:hour obj) (vector-ref obj 2))
491 (define (tm:mday obj) (vector-ref obj 3))
492 (define (tm:mon obj) (vector-ref obj 4))
493 (define (tm:year obj) (vector-ref obj 5))
494 (define (tm:wday obj) (vector-ref obj 6))
495 (define (tm:yday obj) (vector-ref obj 7))
496 (define (tm:isdst obj) (vector-ref obj 8))
497 (define (tm:gmtoff obj) (vector-ref obj 9))
498 (define (tm:zone obj) (vector-ref obj 10))
499
500 (define (set-tm:sec obj val) (vector-set! obj 0 val))
501 (define (set-tm:min obj val) (vector-set! obj 1 val))
502 (define (set-tm:hour obj val) (vector-set! obj 2 val))
503 (define (set-tm:mday obj val) (vector-set! obj 3 val))
504 (define (set-tm:mon obj val) (vector-set! obj 4 val))
505 (define (set-tm:year obj val) (vector-set! obj 5 val))
506 (define (set-tm:wday obj val) (vector-set! obj 6 val))
507 (define (set-tm:yday obj val) (vector-set! obj 7 val))
508 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
509 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
510 (define (set-tm:zone obj val) (vector-set! obj 10 val))
511
512 (define (tms:clock obj) (vector-ref obj 0))
513 (define (tms:utime obj) (vector-ref obj 1))
514 (define (tms:stime obj) (vector-ref obj 2))
515 (define (tms:cutime obj) (vector-ref obj 3))
516 (define (tms:cstime obj) (vector-ref obj 4))
517
518 (define (file-position . args) (apply ftell args))
519 (define (file-set-position . args) (apply fseek args))
520
521 (define (move->fdes fd/port fd)
522 (cond ((integer? fd/port)
523 (dup->fdes fd/port fd)
524 (close fd/port)
525 fd)
526 (else
527 (primitive-move->fdes fd/port fd)
528 (set-port-revealed! fd/port 1)
529 fd/port)))
530
531 (define (release-port-handle port)
532 (let ((revealed (port-revealed port)))
533 (if (> revealed 0)
534 (set-port-revealed! port (- revealed 1)))))
535
536 (define (dup->port port/fd mode . maybe-fd)
537 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
538 mode)))
539 (if (pair? maybe-fd)
540 (set-port-revealed! port 1))
541 port))
542
543 (define (dup->inport port/fd . maybe-fd)
544 (apply dup->port port/fd "r" maybe-fd))
545
546 (define (dup->outport port/fd . maybe-fd)
547 (apply dup->port port/fd "w" maybe-fd))
548
549 (define (dup port/fd . maybe-fd)
550 (if (integer? port/fd)
551 (apply dup->fdes port/fd maybe-fd)
552 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
553
554 (define (duplicate-port port modes)
555 (dup->port port modes))
556
557 (define (fdes->inport fdes)
558 (let loop ((rest-ports (fdes->ports fdes)))
559 (cond ((null? rest-ports)
560 (let ((result (fdopen fdes "r")))
561 (set-port-revealed! result 1)
562 result))
563 ((input-port? (car rest-ports))
564 (set-port-revealed! (car rest-ports)
565 (+ (port-revealed (car rest-ports)) 1))
566 (car rest-ports))
567 (else
568 (loop (cdr rest-ports))))))
569
570 (define (fdes->outport fdes)
571 (let loop ((rest-ports (fdes->ports fdes)))
572 (cond ((null? rest-ports)
573 (let ((result (fdopen fdes "w")))
574 (set-port-revealed! result 1)
575 result))
576 ((output-port? (car rest-ports))
577 (set-port-revealed! (car rest-ports)
578 (+ (port-revealed (car rest-ports)) 1))
579 (car rest-ports))
580 (else
581 (loop (cdr rest-ports))))))
582
583 (define (port->fdes port)
584 (set-port-revealed! port (+ (port-revealed port) 1))
585 (fileno port))
586
587 (define (setenv name value)
588 (if value
589 (putenv (string-append name "=" value))
590 (putenv name)))
591
592 \f
593 ;;; {Load Paths}
594 ;;;
595
596 ;;; Here for backward compatability
597 ;;
598 (define scheme-file-suffix (lambda () ".scm"))
599
600 (define (in-vicinity vicinity file)
601 (let ((tail (let ((len (string-length vicinity)))
602 (if (zero? len)
603 #f
604 (string-ref vicinity (- len 1))))))
605 (string-append vicinity
606 (if (or (not tail)
607 (eq? tail #\/))
608 ""
609 "/")
610 file)))
611
612 \f
613 ;;; {Help for scm_shell}
614 ;;; The argument-processing code used by Guile-based shells generates
615 ;;; Scheme code based on the argument list. This page contains help
616 ;;; functions for the code it generates.
617
618 (define (command-line) (program-arguments))
619
620 ;; This is mostly for the internal use of the code generated by
621 ;; scm_compile_shell_switches.
622 (define (load-user-init)
623 (let* ((home (or (getenv "HOME")
624 (false-if-exception (passwd:dir (getpwuid (getuid))))
625 "/")) ;; fallback for cygwin etc.
626 (init-file (in-vicinity home ".guile")))
627 (if (file-exists? init-file)
628 (primitive-load init-file))))
629
630 \f
631 ;;; {Loading by paths}
632
633 ;;; Load a Scheme source file named NAME, searching for it in the
634 ;;; directories listed in %load-path, and applying each of the file
635 ;;; name extensions listed in %load-extensions.
636 (define (load-from-path name)
637 (start-stack 'load-stack
638 (primitive-load-path name)))
639
640
641 \f
642 ;;; {Transcendental Functions}
643 ;;;
644 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
645 ;;; Written by Jerry D. Hedden, (C) FSF.
646 ;;; See the file `COPYING' for terms applying to this program.
647 ;;;
648
649 (define (exp z)
650 (if (real? z) ($exp z)
651 (make-polar ($exp (real-part z)) (imag-part z))))
652
653 (define (log z)
654 (if (and (real? z) (>= z 0))
655 ($log z)
656 (make-rectangular ($log (magnitude z)) (angle z))))
657
658 (define (sqrt z)
659 (if (real? z)
660 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
661 ($sqrt z))
662 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
663
664 (define expt
665 (let ((integer-expt integer-expt))
666 (lambda (z1 z2)
667 (cond ((integer? z2)
668 (if (>= z2 0)
669 (integer-expt z1 z2)
670 (/ 1 (integer-expt z1 (- z2)))))
671 ((and (real? z2) (real? z1) (>= z1 0))
672 ($expt z1 z2))
673 (else
674 (exp (* z2 (log z1))))))))
675
676 (define (sinh z)
677 (if (real? z) ($sinh z)
678 (let ((x (real-part z)) (y (imag-part z)))
679 (make-rectangular (* ($sinh x) ($cos y))
680 (* ($cosh x) ($sin y))))))
681 (define (cosh z)
682 (if (real? z) ($cosh z)
683 (let ((x (real-part z)) (y (imag-part z)))
684 (make-rectangular (* ($cosh x) ($cos y))
685 (* ($sinh x) ($sin y))))))
686 (define (tanh z)
687 (if (real? z) ($tanh z)
688 (let* ((x (* 2 (real-part z)))
689 (y (* 2 (imag-part z)))
690 (w (+ ($cosh x) ($cos y))))
691 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
692
693 (define (asinh z)
694 (if (real? z) ($asinh z)
695 (log (+ z (sqrt (+ (* z z) 1))))))
696
697 (define (acosh z)
698 (if (and (real? z) (>= z 1))
699 ($acosh z)
700 (log (+ z (sqrt (- (* z z) 1))))))
701
702 (define (atanh z)
703 (if (and (real? z) (> z -1) (< z 1))
704 ($atanh z)
705 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
706
707 (define (sin z)
708 (if (real? z) ($sin z)
709 (let ((x (real-part z)) (y (imag-part z)))
710 (make-rectangular (* ($sin x) ($cosh y))
711 (* ($cos x) ($sinh y))))))
712 (define (cos z)
713 (if (real? z) ($cos z)
714 (let ((x (real-part z)) (y (imag-part z)))
715 (make-rectangular (* ($cos x) ($cosh y))
716 (- (* ($sin x) ($sinh y)))))))
717 (define (tan z)
718 (if (real? z) ($tan z)
719 (let* ((x (* 2 (real-part z)))
720 (y (* 2 (imag-part z)))
721 (w (+ ($cos x) ($cosh y))))
722 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
723
724 (define (asin z)
725 (if (and (real? z) (>= z -1) (<= z 1))
726 ($asin z)
727 (* -i (asinh (* +i z)))))
728
729 (define (acos z)
730 (if (and (real? z) (>= z -1) (<= z 1))
731 ($acos z)
732 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
733
734 (define (atan z . y)
735 (if (null? y)
736 (if (real? z) ($atan z)
737 (/ (log (/ (- +i z) (+ +i z))) +2i))
738 ($atan2 z (car y))))
739
740 (define (log10 arg)
741 (/ (log arg) (log 10)))
742
743 \f
744
745 ;;; {Reader Extensions}
746 ;;;
747
748 ;;; Reader code for various "#c" forms.
749 ;;;
750
751 (read-hash-extend #\' (lambda (c port)
752 (read port)))
753 (read-hash-extend #\. (lambda (c port)
754 (eval (read port) (interaction-environment))))
755
756 \f
757 ;;; {Command Line Options}
758 ;;;
759
760 (define (get-option argv kw-opts kw-args return)
761 (cond
762 ((null? argv)
763 (return #f #f argv))
764
765 ((or (not (eq? #\- (string-ref (car argv) 0)))
766 (eq? (string-length (car argv)) 1))
767 (return 'normal-arg (car argv) (cdr argv)))
768
769 ((eq? #\- (string-ref (car argv) 1))
770 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
771 (string-length (car argv))))
772 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
773 (kw-opt? (member kw kw-opts))
774 (kw-arg? (member kw kw-args))
775 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
776 (substring (car argv)
777 (+ kw-arg-pos 1)
778 (string-length (car argv))))
779 (and kw-arg?
780 (begin (set! argv (cdr argv)) (car argv))))))
781 (if (or kw-opt? kw-arg?)
782 (return kw arg (cdr argv))
783 (return 'usage-error kw (cdr argv)))))
784
785 (else
786 (let* ((char (substring (car argv) 1 2))
787 (kw (symbol->keyword char)))
788 (cond
789
790 ((member kw kw-opts)
791 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
792 (new-argv (if (= 0 (string-length rest-car))
793 (cdr argv)
794 (cons (string-append "-" rest-car) (cdr argv)))))
795 (return kw #f new-argv)))
796
797 ((member kw kw-args)
798 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
799 (arg (if (= 0 (string-length rest-car))
800 (cadr argv)
801 rest-car))
802 (new-argv (if (= 0 (string-length rest-car))
803 (cddr argv)
804 (cdr argv))))
805 (return kw arg new-argv)))
806
807 (else (return 'usage-error kw argv)))))))
808
809 (define (for-next-option proc argv kw-opts kw-args)
810 (let loop ((argv argv))
811 (get-option argv kw-opts kw-args
812 (lambda (opt opt-arg argv)
813 (and opt (proc opt opt-arg argv loop))))))
814
815 (define (display-usage-report kw-desc)
816 (for-each
817 (lambda (kw)
818 (or (eq? (car kw) #t)
819 (eq? (car kw) 'else)
820 (let* ((opt-desc kw)
821 (help (cadr opt-desc))
822 (opts (car opt-desc))
823 (opts-proper (if (string? (car opts)) (cdr opts) opts))
824 (arg-name (if (string? (car opts))
825 (string-append "<" (car opts) ">")
826 ""))
827 (left-part (string-append
828 (with-output-to-string
829 (lambda ()
830 (map (lambda (x) (display (keyword-symbol x)) (display " "))
831 opts-proper)))
832 arg-name))
833 (middle-part (if (and (< (string-length left-part) 30)
834 (< (string-length help) 40))
835 (make-string (- 30 (string-length left-part)) #\ )
836 "\n\t")))
837 (display left-part)
838 (display middle-part)
839 (display help)
840 (newline))))
841 kw-desc))
842
843
844
845 (define (transform-usage-lambda cases)
846 (let* ((raw-usage (delq! 'else (map car cases)))
847 (usage-sans-specials (map (lambda (x)
848 (or (and (not (list? x)) x)
849 (and (symbol? (car x)) #t)
850 (and (boolean? (car x)) #t)
851 x))
852 raw-usage))
853 (usage-desc (delq! #t usage-sans-specials))
854 (kw-desc (map car usage-desc))
855 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
856 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
857 (transmogrified-cases (map (lambda (case)
858 (cons (let ((opts (car case)))
859 (if (or (boolean? opts) (eq? 'else opts))
860 opts
861 (cond
862 ((symbol? (car opts)) opts)
863 ((boolean? (car opts)) opts)
864 ((string? (caar opts)) (cdar opts))
865 (else (car opts)))))
866 (cdr case)))
867 cases)))
868 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
869 (lambda (%argv)
870 (let %next-arg ((%argv %argv))
871 (get-option %argv
872 ',kw-opts
873 ',kw-args
874 (lambda (%opt %arg %new-argv)
875 (case %opt
876 ,@ transmogrified-cases))))))))
877
878
879 \f
880
881 ;;; {Low Level Modules}
882 ;;;
883 ;;; These are the low level data structures for modules.
884 ;;;
885 ;;; !!! warning: The interface to lazy binder procedures is going
886 ;;; to be changed in an incompatible way to permit all the basic
887 ;;; module ops to be virtualized.
888 ;;;
889 ;;; (make-module size use-list lazy-binding-proc) => module
890 ;;; module-{obarray,uses,binder}[|-set!]
891 ;;; (module? obj) => [#t|#f]
892 ;;; (module-locally-bound? module symbol) => [#t|#f]
893 ;;; (module-bound? module symbol) => [#t|#f]
894 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
895 ;;; (module-symbol-interned? module symbol) => [#t|#f]
896 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
897 ;;; (module-variable module symbol) => [#<variable ...> | #f]
898 ;;; (module-symbol-binding module symbol opt-value)
899 ;;; => [ <obj> | opt-value | an error occurs ]
900 ;;; (module-make-local-var! module symbol) => #<variable...>
901 ;;; (module-add! module symbol var) => unspecified
902 ;;; (module-remove! module symbol) => unspecified
903 ;;; (module-for-each proc module) => unspecified
904 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
905 ;;; (set-current-module module) => unspecified
906 ;;; (current-module) => #<module...>
907 ;;;
908 ;;;
909
910 \f
911 ;;; {Printing Modules}
912 ;; This is how modules are printed. You can re-define it.
913 ;; (Redefining is actually more complicated than simply redefining
914 ;; %print-module because that would only change the binding and not
915 ;; the value stored in the vtable that determines how record are
916 ;; printed. Sigh.)
917
918 (define (%print-module mod port) ; unused args: depth length style table)
919 (display "#<" port)
920 (display (or (module-kind mod) "module") port)
921 (let ((name (module-name mod)))
922 (if name
923 (begin
924 (display " " port)
925 (display name port))))
926 (display " " port)
927 (display (number->string (object-address mod) 16) port)
928 (display ">" port))
929
930 ;; module-type
931 ;;
932 ;; A module is characterized by an obarray in which local symbols
933 ;; are interned, a list of modules, "uses", from which non-local
934 ;; bindings can be inherited, and an optional lazy-binder which
935 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
936 ;; bindings that would otherwise not be found locally in the module.
937 ;;
938 ;; NOTE: If you change here, you also need to change libguile/modules.h.
939 ;;
940 (define module-type
941 (make-record-type 'module
942 '(obarray uses binder eval-closure transformer name kind
943 observers weak-observers observer-id)
944 %print-module))
945
946 ;; make-module &opt size uses binder
947 ;;
948 ;; Create a new module, perhaps with a particular size of obarray,
949 ;; initial uses list, or binding procedure.
950 ;;
951 (define make-module
952 (lambda args
953
954 (define (parse-arg index default)
955 (if (> (length args) index)
956 (list-ref args index)
957 default))
958
959 (if (> (length args) 3)
960 (error "Too many args to make-module." args))
961
962 (let ((size (parse-arg 0 1021))
963 (uses (parse-arg 1 '()))
964 (binder (parse-arg 2 #f)))
965
966 (if (not (integer? size))
967 (error "Illegal size to make-module." size))
968 (if (not (and (list? uses)
969 (and-map module? uses)))
970 (error "Incorrect use list." uses))
971 (if (and binder (not (procedure? binder)))
972 (error
973 "Lazy-binder expected to be a procedure or #f." binder))
974
975 (let ((module (module-constructor (make-vector size '())
976 uses binder #f #f #f #f
977 '()
978 (make-weak-value-hash-table 31)
979 0)))
980
981 ;; We can't pass this as an argument to module-constructor,
982 ;; because we need it to close over a pointer to the module
983 ;; itself.
984 (set-module-eval-closure! module (standard-eval-closure module))
985
986 module))))
987
988 (define module-constructor (record-constructor module-type))
989 (define module-obarray (record-accessor module-type 'obarray))
990 (define set-module-obarray! (record-modifier module-type 'obarray))
991 (define module-uses (record-accessor module-type 'uses))
992 (define set-module-uses! (record-modifier module-type 'uses))
993 (define module-binder (record-accessor module-type 'binder))
994 (define set-module-binder! (record-modifier module-type 'binder))
995
996 ;; NOTE: This binding is used in libguile/modules.c.
997 (define module-eval-closure (record-accessor module-type 'eval-closure))
998
999 (define module-transformer (record-accessor module-type 'transformer))
1000 (define set-module-transformer! (record-modifier module-type 'transformer))
1001 (define module-name (record-accessor module-type 'name))
1002 (define set-module-name! (record-modifier module-type 'name))
1003 (define module-kind (record-accessor module-type 'kind))
1004 (define set-module-kind! (record-modifier module-type 'kind))
1005 (define module-observers (record-accessor module-type 'observers))
1006 (define set-module-observers! (record-modifier module-type 'observers))
1007 (define module-weak-observers (record-accessor module-type 'weak-observers))
1008 (define module-observer-id (record-accessor module-type 'observer-id))
1009 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1010 (define module? (record-predicate module-type))
1011
1012 (define set-module-eval-closure!
1013 (let ((setter (record-modifier module-type 'eval-closure)))
1014 (lambda (module closure)
1015 (setter module closure)
1016 ;; Make it possible to lookup the module from the environment.
1017 ;; This implementation is correct since an eval closure can belong
1018 ;; to maximally one module.
1019 (set-procedure-property! closure 'module module))))
1020
1021 (begin-deprecated
1022 (define (eval-in-module exp mod)
1023 (issue-deprecation-warning
1024 "`eval-in-module' is deprecated. Use `eval' instead.")
1025 (eval exp mod)))
1026
1027 \f
1028 ;;; {Observer protocol}
1029 ;;;
1030
1031 (define (module-observe module proc)
1032 (set-module-observers! module (cons proc (module-observers module)))
1033 (cons module proc))
1034
1035 (define (module-observe-weak module proc)
1036 (let ((id (module-observer-id module)))
1037 (hash-set! (module-weak-observers module) id proc)
1038 (set-module-observer-id! module (+ 1 id))
1039 (cons module id)))
1040
1041 (define (module-unobserve token)
1042 (let ((module (car token))
1043 (id (cdr token)))
1044 (if (integer? id)
1045 (hash-remove! (module-weak-observers module) id)
1046 (set-module-observers! module (delq1! id (module-observers module)))))
1047 *unspecified*)
1048
1049 (define (module-modified m)
1050 (for-each (lambda (proc) (proc m)) (module-observers m))
1051 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1052
1053 \f
1054 ;;; {Module Searching in General}
1055 ;;;
1056 ;;; We sometimes want to look for properties of a symbol
1057 ;;; just within the obarray of one module. If the property
1058 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1059 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1060 ;;;
1061 ;;;
1062 ;;; Other times, we want to test for a symbol property in the obarray
1063 ;;; of M and, if it is not found there, try each of the modules in the
1064 ;;; uses list of M. This is the normal way of testing for some
1065 ;;; property, so we state these properties without qualification as
1066 ;;; in: ``The symbol 'fnord is interned in module M because it is
1067 ;;; interned locally in module M2 which is a member of the uses list
1068 ;;; of M.''
1069 ;;;
1070
1071 ;; module-search fn m
1072 ;;
1073 ;; return the first non-#f result of FN applied to M and then to
1074 ;; the modules in the uses of m, and so on recursively. If all applications
1075 ;; return #f, then so does this function.
1076 ;;
1077 (define (module-search fn m v)
1078 (define (loop pos)
1079 (and (pair? pos)
1080 (or (module-search fn (car pos) v)
1081 (loop (cdr pos)))))
1082 (or (fn m v)
1083 (loop (module-uses m))))
1084
1085
1086 ;;; {Is a symbol bound in a module?}
1087 ;;;
1088 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1089 ;;; of S in M has been set to some well-defined value.
1090 ;;;
1091
1092 ;; module-locally-bound? module symbol
1093 ;;
1094 ;; Is a symbol bound (interned and defined) locally in a given module?
1095 ;;
1096 (define (module-locally-bound? m v)
1097 (let ((var (module-local-variable m v)))
1098 (and var
1099 (variable-bound? var))))
1100
1101 ;; module-bound? module symbol
1102 ;;
1103 ;; Is a symbol bound (interned and defined) anywhere in a given module
1104 ;; or its uses?
1105 ;;
1106 (define (module-bound? m v)
1107 (module-search module-locally-bound? m v))
1108
1109 ;;; {Is a symbol interned in a module?}
1110 ;;;
1111 ;;; Symbol S in Module M is interned if S occurs in
1112 ;;; of S in M has been set to some well-defined value.
1113 ;;;
1114 ;;; It is possible to intern a symbol in a module without providing
1115 ;;; an initial binding for the corresponding variable. This is done
1116 ;;; with:
1117 ;;; (module-add! module symbol (make-undefined-variable))
1118 ;;;
1119 ;;; In that case, the symbol is interned in the module, but not
1120 ;;; bound there. The unbound symbol shadows any binding for that
1121 ;;; symbol that might otherwise be inherited from a member of the uses list.
1122 ;;;
1123
1124 (define (module-obarray-get-handle ob key)
1125 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1126
1127 (define (module-obarray-ref ob key)
1128 ((if (symbol? key) hashq-ref hash-ref) ob key))
1129
1130 (define (module-obarray-set! ob key val)
1131 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1132
1133 (define (module-obarray-remove! ob key)
1134 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1135
1136 ;; module-symbol-locally-interned? module symbol
1137 ;;
1138 ;; is a symbol interned (not neccessarily defined) locally in a given module
1139 ;; or its uses? Interned symbols shadow inherited bindings even if
1140 ;; they are not themselves bound to a defined value.
1141 ;;
1142 (define (module-symbol-locally-interned? m v)
1143 (not (not (module-obarray-get-handle (module-obarray m) v))))
1144
1145 ;; module-symbol-interned? module symbol
1146 ;;
1147 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1148 ;; or its uses? Interned symbols shadow inherited bindings even if
1149 ;; they are not themselves bound to a defined value.
1150 ;;
1151 (define (module-symbol-interned? m v)
1152 (module-search module-symbol-locally-interned? m v))
1153
1154
1155 ;;; {Mapping modules x symbols --> variables}
1156 ;;;
1157
1158 ;; module-local-variable module symbol
1159 ;; return the local variable associated with a MODULE and SYMBOL.
1160 ;;
1161 ;;; This function is very important. It is the only function that can
1162 ;;; return a variable from a module other than the mutators that store
1163 ;;; new variables in modules. Therefore, this function is the location
1164 ;;; of the "lazy binder" hack.
1165 ;;;
1166 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1167 ;;; to a variable, return that variable object.
1168 ;;;
1169 ;;; If the symbols is not found at first, but the module has a lazy binder,
1170 ;;; then try the binder.
1171 ;;;
1172 ;;; If the symbol is not found at all, return #f.
1173 ;;;
1174 (define (module-local-variable m v)
1175 ; (caddr
1176 ; (list m v
1177 (let ((b (module-obarray-ref (module-obarray m) v)))
1178 (or (and (variable? b) b)
1179 (and (module-binder m)
1180 ((module-binder m) m v #f)))))
1181 ;))
1182
1183 ;; module-variable module symbol
1184 ;;
1185 ;; like module-local-variable, except search the uses in the
1186 ;; case V is not found in M.
1187 ;;
1188 ;; NOTE: This function is superseded with C code (see modules.c)
1189 ;;; when using the standard eval closure.
1190 ;;
1191 (define (module-variable m v)
1192 (module-search module-local-variable m v))
1193
1194
1195 ;;; {Mapping modules x symbols --> bindings}
1196 ;;;
1197 ;;; These are similar to the mapping to variables, except that the
1198 ;;; variable is dereferenced.
1199 ;;;
1200
1201 ;; module-symbol-binding module symbol opt-value
1202 ;;
1203 ;; return the binding of a variable specified by name within
1204 ;; a given module, signalling an error if the variable is unbound.
1205 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1206 ;; return OPT-VALUE.
1207 ;;
1208 (define (module-symbol-local-binding m v . opt-val)
1209 (let ((var (module-local-variable m v)))
1210 (if var
1211 (variable-ref var)
1212 (if (not (null? opt-val))
1213 (car opt-val)
1214 (error "Locally unbound variable." v)))))
1215
1216 ;; module-symbol-binding module symbol opt-value
1217 ;;
1218 ;; return the binding of a variable specified by name within
1219 ;; a given module, signalling an error if the variable is unbound.
1220 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1221 ;; return OPT-VALUE.
1222 ;;
1223 (define (module-symbol-binding m v . opt-val)
1224 (let ((var (module-variable m v)))
1225 (if var
1226 (variable-ref var)
1227 (if (not (null? opt-val))
1228 (car opt-val)
1229 (error "Unbound variable." v)))))
1230
1231
1232 \f
1233 ;;; {Adding Variables to Modules}
1234 ;;;
1235 ;;;
1236
1237
1238 ;; module-make-local-var! module symbol
1239 ;;
1240 ;; ensure a variable for V in the local namespace of M.
1241 ;; If no variable was already there, then create a new and uninitialzied
1242 ;; variable.
1243 ;;
1244 (define (module-make-local-var! m v)
1245 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1246 (and (variable? b)
1247 (begin
1248 (module-modified m)
1249 b)))
1250 (and (module-binder m)
1251 ((module-binder m) m v #t))
1252 (begin
1253 (let ((answer (make-undefined-variable)))
1254 (variable-set-name-hint! answer v)
1255 (module-obarray-set! (module-obarray m) v answer)
1256 (module-modified m)
1257 answer))))
1258
1259 ;; module-add! module symbol var
1260 ;;
1261 ;; ensure a particular variable for V in the local namespace of M.
1262 ;;
1263 (define (module-add! m v var)
1264 (if (not (variable? var))
1265 (error "Bad variable to module-add!" var))
1266 (module-obarray-set! (module-obarray m) v var)
1267 (module-modified m))
1268
1269 ;; module-remove!
1270 ;;
1271 ;; make sure that a symbol is undefined in the local namespace of M.
1272 ;;
1273 (define (module-remove! m v)
1274 (module-obarray-remove! (module-obarray m) v)
1275 (module-modified m))
1276
1277 (define (module-clear! m)
1278 (vector-fill! (module-obarray m) '())
1279 (module-modified m))
1280
1281 ;; MODULE-FOR-EACH -- exported
1282 ;;
1283 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1284 ;;
1285 (define (module-for-each proc module)
1286 (let ((obarray (module-obarray module)))
1287 (do ((index 0 (+ index 1))
1288 (end (vector-length obarray)))
1289 ((= index end))
1290 (for-each
1291 (lambda (bucket)
1292 (proc (car bucket) (cdr bucket)))
1293 (vector-ref obarray index)))))
1294
1295
1296 (define (module-map proc module)
1297 (let* ((obarray (module-obarray module))
1298 (end (vector-length obarray)))
1299
1300 (let loop ((i 0)
1301 (answer '()))
1302 (if (= i end)
1303 answer
1304 (loop (+ 1 i)
1305 (append!
1306 (map (lambda (bucket)
1307 (proc (car bucket) (cdr bucket)))
1308 (vector-ref obarray i))
1309 answer))))))
1310 \f
1311
1312 ;;; {Low Level Bootstrapping}
1313 ;;;
1314
1315 ;; make-root-module
1316
1317 ;; A root module uses the pre-modules-obarray as its obarray. This
1318 ;; special obarray accumulates all bindings that have been established
1319 ;; before the module system is fully booted.
1320 ;;
1321 ;; (The obarray continues to be used by code that has been closed over
1322 ;; before the module system has been booted.)
1323
1324 (define (make-root-module)
1325 (let ((m (make-module 0)))
1326 (set-module-obarray! m (%get-pre-modules-obarray))
1327 m))
1328
1329 ;; make-scm-module
1330
1331 ;; The root interface is a module that uses the same obarray as the
1332 ;; root module. It does not allow new definitions, tho.
1333
1334 (define (make-scm-module)
1335 (let ((m (make-module 0)))
1336 (set-module-obarray! m (%get-pre-modules-obarray))
1337 (set-module-eval-closure! m (standard-interface-eval-closure m))
1338 m))
1339
1340
1341 \f
1342 ;;; {Module-based Loading}
1343 ;;;
1344
1345 (define (save-module-excursion thunk)
1346 (let ((inner-module (current-module))
1347 (outer-module #f))
1348 (dynamic-wind (lambda ()
1349 (set! outer-module (current-module))
1350 (set-current-module inner-module)
1351 (set! inner-module #f))
1352 thunk
1353 (lambda ()
1354 (set! inner-module (current-module))
1355 (set-current-module outer-module)
1356 (set! outer-module #f)))))
1357
1358 (define basic-load load)
1359
1360 (define (load-module filename)
1361 (save-module-excursion
1362 (lambda ()
1363 (let ((oldname (and (current-load-port)
1364 (port-filename (current-load-port)))))
1365 (basic-load (if (and oldname
1366 (> (string-length filename) 0)
1367 (not (char=? (string-ref filename 0) #\/))
1368 (not (string=? (dirname oldname) ".")))
1369 (string-append (dirname oldname) "/" filename)
1370 filename))))))
1371
1372
1373 \f
1374 ;;; {MODULE-REF -- exported}
1375 ;;
1376 ;; Returns the value of a variable called NAME in MODULE or any of its
1377 ;; used modules. If there is no such variable, then if the optional third
1378 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1379 ;;
1380 (define (module-ref module name . rest)
1381 (let ((variable (module-variable module name)))
1382 (if (and variable (variable-bound? variable))
1383 (variable-ref variable)
1384 (if (null? rest)
1385 (error "No variable named" name 'in module)
1386 (car rest) ; default value
1387 ))))
1388
1389 ;; MODULE-SET! -- exported
1390 ;;
1391 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1392 ;; to VALUE; if there is no such variable, an error is signaled.
1393 ;;
1394 (define (module-set! module name value)
1395 (let ((variable (module-variable module name)))
1396 (if variable
1397 (variable-set! variable value)
1398 (error "No variable named" name 'in module))))
1399
1400 ;; MODULE-DEFINE! -- exported
1401 ;;
1402 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1403 ;; variable, it is added first.
1404 ;;
1405 (define (module-define! module name value)
1406 (let ((variable (module-local-variable module name)))
1407 (if variable
1408 (begin
1409 (variable-set! variable value)
1410 (module-modified module))
1411 (let ((variable (make-variable value)))
1412 (variable-set-name-hint! variable name)
1413 (module-add! module name variable)))))
1414
1415 ;; MODULE-DEFINED? -- exported
1416 ;;
1417 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1418 ;; uses)
1419 ;;
1420 (define (module-defined? module name)
1421 (let ((variable (module-variable module name)))
1422 (and variable (variable-bound? variable))))
1423
1424 ;; MODULE-USE! module interface
1425 ;;
1426 ;; Add INTERFACE to the list of interfaces used by MODULE.
1427 ;;
1428 (define (module-use! module interface)
1429 (set-module-uses! module
1430 (cons interface (delq! interface (module-uses module))))
1431 (module-modified module))
1432
1433 \f
1434 ;;; {Recursive Namespaces}
1435 ;;;
1436 ;;;
1437 ;;; A hierarchical namespace emerges if we consider some module to be
1438 ;;; root, and variables bound to modules as nested namespaces.
1439 ;;;
1440 ;;; The routines in this file manage variable names in hierarchical namespace.
1441 ;;; Each variable name is a list of elements, looked up in successively nested
1442 ;;; modules.
1443 ;;;
1444 ;;; (nested-ref some-root-module '(foo bar baz))
1445 ;;; => <value of a variable named baz in the module bound to bar in
1446 ;;; the module bound to foo in some-root-module>
1447 ;;;
1448 ;;;
1449 ;;; There are:
1450 ;;;
1451 ;;; ;; a-root is a module
1452 ;;; ;; name is a list of symbols
1453 ;;;
1454 ;;; nested-ref a-root name
1455 ;;; nested-set! a-root name val
1456 ;;; nested-define! a-root name val
1457 ;;; nested-remove! a-root name
1458 ;;;
1459 ;;;
1460 ;;; (current-module) is a natural choice for a-root so for convenience there are
1461 ;;; also:
1462 ;;;
1463 ;;; local-ref name == nested-ref (current-module) name
1464 ;;; local-set! name val == nested-set! (current-module) name val
1465 ;;; local-define! name val == nested-define! (current-module) name val
1466 ;;; local-remove! name == nested-remove! (current-module) name
1467 ;;;
1468
1469
1470 (define (nested-ref root names)
1471 (let loop ((cur root)
1472 (elts names))
1473 (cond
1474 ((null? elts) cur)
1475 ((not (module? cur)) #f)
1476 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1477
1478 (define (nested-set! root names val)
1479 (let loop ((cur root)
1480 (elts names))
1481 (if (null? (cdr elts))
1482 (module-set! cur (car elts) val)
1483 (loop (module-ref cur (car elts)) (cdr elts)))))
1484
1485 (define (nested-define! root names val)
1486 (let loop ((cur root)
1487 (elts names))
1488 (if (null? (cdr elts))
1489 (module-define! cur (car elts) val)
1490 (loop (module-ref cur (car elts)) (cdr elts)))))
1491
1492 (define (nested-remove! root names)
1493 (let loop ((cur root)
1494 (elts names))
1495 (if (null? (cdr elts))
1496 (module-remove! cur (car elts))
1497 (loop (module-ref cur (car elts)) (cdr elts)))))
1498
1499 (define (local-ref names) (nested-ref (current-module) names))
1500 (define (local-set! names val) (nested-set! (current-module) names val))
1501 (define (local-define names val) (nested-define! (current-module) names val))
1502 (define (local-remove names) (nested-remove! (current-module) names))
1503
1504
1505 \f
1506 ;;; {The (app) module}
1507 ;;;
1508 ;;; The root of conventionally named objects not directly in the top level.
1509 ;;;
1510 ;;; (app modules)
1511 ;;; (app modules guile)
1512 ;;;
1513 ;;; The directory of all modules and the standard root module.
1514 ;;;
1515
1516 (define (module-public-interface m)
1517 (module-ref m '%module-public-interface #f))
1518 (define (set-module-public-interface! m i)
1519 (module-define! m '%module-public-interface i))
1520 (define (set-system-module! m s)
1521 (set-procedure-property! (module-eval-closure m) 'system-module s))
1522 (define the-root-module (make-root-module))
1523 (define the-scm-module (make-scm-module))
1524 (set-module-public-interface! the-root-module the-scm-module)
1525 (set-module-name! the-root-module '(guile))
1526 (set-module-name! the-scm-module '(guile))
1527 (set-module-kind! the-scm-module 'interface)
1528 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1529
1530 ;; NOTE: This binding is used in libguile/modules.c.
1531 ;;
1532 (define (make-modules-in module name)
1533 (if (null? name)
1534 module
1535 (cond
1536 ((module-ref module (car name) #f)
1537 => (lambda (m) (make-modules-in m (cdr name))))
1538 (else (let ((m (make-module 31)))
1539 (set-module-kind! m 'directory)
1540 (set-module-name! m (append (or (module-name module)
1541 '())
1542 (list (car name))))
1543 (module-define! module (car name) m)
1544 (make-modules-in m (cdr name)))))))
1545
1546 (define (beautify-user-module! module)
1547 (let ((interface (module-public-interface module)))
1548 (if (or (not interface)
1549 (eq? interface module))
1550 (let ((interface (make-module 31)))
1551 (set-module-name! interface (module-name module))
1552 (set-module-kind! interface 'interface)
1553 (set-module-public-interface! module interface))))
1554 (if (and (not (memq the-scm-module (module-uses module)))
1555 (not (eq? module the-root-module)))
1556 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1557
1558 ;; NOTE: This binding is used in libguile/modules.c.
1559 ;;
1560 (define (resolve-module name . maybe-autoload)
1561 (let ((full-name (append '(app modules) name)))
1562 (let ((already (local-ref full-name)))
1563 (if already
1564 ;; The module already exists...
1565 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1566 (not (module-public-interface already)))
1567 ;; ...but we are told to load and it doesn't contain source, so
1568 (begin
1569 (try-load-module name)
1570 already)
1571 ;; simply return it.
1572 already)
1573 (begin
1574 ;; Try to autoload it if we are told so
1575 (if (or (null? maybe-autoload) (car maybe-autoload))
1576 (try-load-module name))
1577 ;; Get/create it.
1578 (make-modules-in (current-module) full-name))))))
1579
1580 ;; Cheat.
1581 (define try-module-autoload #f)
1582
1583 ;; This boots the module system. All bindings needed by modules.c
1584 ;; must have been defined by now.
1585 ;;
1586 (set-current-module the-root-module)
1587
1588 (define app (make-module 31))
1589 (local-define '(app modules) (make-module 31))
1590 (local-define '(app modules guile) the-root-module)
1591
1592 ;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1593
1594 (define (try-load-module name)
1595 (or (try-module-linked name)
1596 (try-module-autoload name)
1597 (try-module-dynamic-link name)))
1598
1599 (define (purify-module! module)
1600 "Removes bindings in MODULE which are inherited from the (guile) module."
1601 (let ((use-list (module-uses module)))
1602 (if (and (pair? use-list)
1603 (eq? (car (last-pair use-list)) the-scm-module))
1604 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1605
1606 (define (resolve-interface name)
1607 (let ((module (resolve-module name)))
1608 (and module (module-public-interface module))))
1609
1610
1611 ;; Return a module interface made from SPEC.
1612 ;; SPEC can be a list of symbols, in which case it names a module
1613 ;; whose public interface is found and returned.
1614 ;;
1615 ;; SPEC can also be of the form:
1616 ;; (MODULE-NAME [:select SELECTION] [:rename RENAMER])
1617 ;; in which case a partial interface is newly created and returned.
1618 ;; MODULE-NAME is a list of symbols, as above; SELECTION is a list of
1619 ;; selection-specs to be imported; and RENAMER is a procedure that takes a
1620 ;; symbol and returns its new name. A selection-spec is either a symbol or a
1621 ;; pair of symbols (ORIG . SEEN), where ORIG is the name in the used module
1622 ;; and SEEN is the name in the using module. Note that SEEN is also passed
1623 ;; through RENAMER.
1624 ;;
1625 ;; The `:select' and `:rename' clauses are optional. If both are omitted, the
1626 ;; returned interface has no bindings. If the `:select' clause is omitted,
1627 ;; RENAMER operates on the used module's public interface.
1628 ;;
1629 ;; Signal error if module name is not resolvable.
1630 ;;
1631 (define (resolve-interface spec)
1632 (let* ((simple? (not (pair? (car spec))))
1633 (name (if simple? spec (car spec)))
1634 (module (resolve-module name)))
1635 (if (not module)
1636 (error "no code for module" name)
1637 (let ((public-i (module-public-interface module)))
1638 (cond ((not public-i)
1639 (beautify-user-module! module)
1640 (set! public-i (module-public-interface module))))
1641 (if simple?
1642 public-i
1643 (let ((selection (cond ((memq ':select spec) => cadr)
1644 (else (module-map (lambda (sym var) sym)
1645 public-i))))
1646 (rename (cond ((memq ':rename spec)
1647 => (lambda (x)
1648 (eval (cadr x) (current-module))))
1649 (else identity)))
1650 (partial-i (make-module 31)))
1651 (set-module-kind! partial-i 'interface)
1652 (for-each (lambda (sel-spec)
1653 (let* ((direct? (symbol? sel-spec))
1654 (orig (if direct?
1655 sel-spec
1656 (car sel-spec)))
1657 (seen (if direct?
1658 sel-spec
1659 (cdr sel-spec))))
1660 (module-add! partial-i (rename seen)
1661 (module-variable module orig))))
1662 selection)
1663 partial-i))))))
1664
1665 (define (symbol-prefix-proc prefix)
1666 (lambda (symbol)
1667 (symbol-append prefix symbol)))
1668
1669 (define (process-define-module args)
1670 (let* ((module-id (car args))
1671 (module (resolve-module module-id #f))
1672 (kws (cdr args))
1673 (unrecognized (lambda ()
1674 (error "unrecognized define-module argument" kws))))
1675 (beautify-user-module! module)
1676 (let loop ((kws kws)
1677 (reversed-interfaces '())
1678 (exports '()))
1679 (if (null? kws)
1680 (begin
1681 (for-each (lambda (interface)
1682 (module-use! module interface))
1683 reversed-interfaces)
1684 (module-export! module exports))
1685 (let ((keyword (if (keyword? (car kws))
1686 (keyword->symbol (car kws))
1687 (and (symbol? (car kws))
1688 (let ((s (symbol->string (car kws))))
1689 (and (eq? (string-ref s 0) #\:)
1690 (string->symbol (substring s 1))))))))
1691 (case keyword
1692 ((use-module use-syntax)
1693 (or (pair? (cdr kws))
1694 (unrecognized))
1695 (let* ((spec (cadr kws))
1696 (interface (resolve-interface spec)))
1697 (and (eq? keyword 'use-syntax)
1698 (or (symbol? (car spec))
1699 (error "invalid module name for use-syntax"
1700 spec))
1701 (set-module-transformer!
1702 module
1703 (module-ref interface (car (last-pair module-name))
1704 #f)))
1705 (loop (cddr kws)
1706 (cons interface reversed-interfaces)
1707 exports)))
1708 ((autoload)
1709 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
1710 (unrecognized))
1711 (loop (cdddr kws)
1712 (cons (make-autoload-interface module
1713 (cadr kws)
1714 (caddr kws))
1715 reversed-interfaces)
1716 exports))
1717 ((no-backtrace)
1718 (set-system-module! module #t)
1719 (loop (cdr kws) reversed-interfaces exports))
1720 ((pure)
1721 (purify-module! module)
1722 (loop (cdr kws) reversed-interfaces exports))
1723 ((export)
1724 (or (pair? (cdr kws))
1725 (unrecognized))
1726 (loop (cddr kws)
1727 reversed-interfaces
1728 (append (cadr kws) exports)))
1729 (else
1730 (unrecognized))))))
1731 (set-current-module module)
1732 module))
1733
1734 ;;; {Autoload}
1735
1736 (define (make-autoload-interface module name bindings)
1737 (let ((b (lambda (a sym definep)
1738 (and (memq sym bindings)
1739 (let ((i (module-public-interface (resolve-module name))))
1740 (if (not i)
1741 (error "missing interface for module" name))
1742 ;; Replace autoload-interface with interface
1743 (set-car! (memq a (module-uses module)) i)
1744 (module-local-variable i sym))))))
1745 (module-constructor #() '() b #f #f name 'autoload
1746 '() (make-weak-value-hash-table 31) 0)))
1747
1748 ;;; {Compiled module}
1749
1750 (define load-compiled #f)
1751
1752 \f
1753 ;;; {Autoloading modules}
1754
1755 (define autoloads-in-progress '())
1756
1757 (define (try-module-autoload module-name)
1758 (let* ((reverse-name (reverse module-name))
1759 (name (symbol->string (car reverse-name)))
1760 (dir-hint-module-name (reverse (cdr reverse-name)))
1761 (dir-hint (apply string-append
1762 (map (lambda (elt)
1763 (string-append (symbol->string elt) "/"))
1764 dir-hint-module-name))))
1765 (resolve-module dir-hint-module-name #f)
1766 (and (not (autoload-done-or-in-progress? dir-hint name))
1767 (let ((didit #f))
1768 (define (load-file proc file)
1769 (save-module-excursion (lambda () (proc file)))
1770 (set! didit #t))
1771 (dynamic-wind
1772 (lambda () (autoload-in-progress! dir-hint name))
1773 (lambda ()
1774 (let ((file (in-vicinity dir-hint name)))
1775 (cond ((and load-compiled
1776 (%search-load-path (string-append file ".go")))
1777 => (lambda (full)
1778 (load-file load-compiled full)))
1779 ((%search-load-path file)
1780 => (lambda (full)
1781 (load-file primitive-load full))))))
1782 (lambda () (set-autoloaded! dir-hint name didit)))
1783 didit))))
1784
1785 \f
1786 ;;; Dynamic linking of modules
1787
1788 ;; This method of dynamically linking Guile Extensions is deprecated.
1789 ;; Use `dynamic-link' and `dynamic-call' explicitely from Scheme code
1790 ;; instead.
1791
1792 ;; XXX - We can not offer the removal of this code thru the
1793 ;; deprecation mechanism since we have no complete replacement yet.
1794
1795 (define (split-c-module-name str)
1796 (let loop ((rev '())
1797 (start 0)
1798 (pos 0)
1799 (end (string-length str)))
1800 (cond
1801 ((= pos end)
1802 (reverse (cons (string->symbol (substring str start pos)) rev)))
1803 ((eq? (string-ref str pos) #\space)
1804 (loop (cons (string->symbol (substring str start pos)) rev)
1805 (+ pos 1)
1806 (+ pos 1)
1807 end))
1808 (else
1809 (loop rev start (+ pos 1) end)))))
1810
1811 (define (convert-c-registered-modules dynobj)
1812 (let ((res (map (lambda (c)
1813 (list (split-c-module-name (car c)) (cdr c) dynobj))
1814 (c-registered-modules))))
1815 (c-clear-registered-modules)
1816 res))
1817
1818 (define registered-modules '())
1819
1820 (define (register-modules dynobj)
1821 (set! registered-modules
1822 (append! (convert-c-registered-modules dynobj)
1823 registered-modules)))
1824
1825 (define (warn-autoload-deprecation modname)
1826 ;; Do nothing here until we can deprecate the code for real.
1827 (if #f
1828 (issue-deprecation-warning
1829 "Autoloading of compiled code modules is deprecated."
1830 "Write a Scheme file instead that uses `dynamic-link' directly.")))
1831
1832 (define (init-dynamic-module modname)
1833 ;; Register any linked modules which have been registered on the C level
1834 (register-modules #f)
1835 (or-map (lambda (modinfo)
1836 (if (equal? (car modinfo) modname)
1837 (begin
1838 (warn-autoload-deprecation modname)
1839 (set! registered-modules (delq! modinfo registered-modules))
1840 (let ((mod (resolve-module modname #f)))
1841 (save-module-excursion
1842 (lambda ()
1843 (set-current-module mod)
1844 (set-module-public-interface! mod mod)
1845 (dynamic-call (cadr modinfo) (caddr modinfo))
1846 ))
1847 #t))
1848 #f))
1849 registered-modules))
1850
1851 (define (dynamic-maybe-call name dynobj)
1852 (catch #t ; could use false-if-exception here
1853 (lambda ()
1854 (dynamic-call name dynobj))
1855 (lambda args
1856 #f)))
1857
1858 (define (dynamic-maybe-link filename)
1859 (catch #t ; could use false-if-exception here
1860 (lambda ()
1861 (dynamic-link filename))
1862 (lambda args
1863 #f)))
1864
1865 (define (find-and-link-dynamic-module module-name)
1866 (define (make-init-name mod-name)
1867 (string-append "scm_init"
1868 (list->string (map (lambda (c)
1869 (if (or (char-alphabetic? c)
1870 (char-numeric? c))
1871 c
1872 #\_))
1873 (string->list mod-name)))
1874 "_module"))
1875
1876 ;; Put the subdirectory for this module in the car of SUBDIR-AND-LIBNAME,
1877 ;; and the `libname' (the name of the module prepended by `lib') in the cdr
1878 ;; field. For example, if MODULE-NAME is the list (inet tcp-ip udp), then
1879 ;; SUBDIR-AND-LIBNAME will be the pair ("inet/tcp-ip" . "libudp").
1880 (let ((subdir-and-libname
1881 (let loop ((dirs "")
1882 (syms module-name))
1883 (if (null? (cdr syms))
1884 (cons dirs (string-append "lib" (symbol->string (car syms))))
1885 (loop (string-append dirs (symbol->string (car syms)) "/")
1886 (cdr syms)))))
1887 (init (make-init-name (apply string-append
1888 (map (lambda (s)
1889 (string-append "_"
1890 (symbol->string s)))
1891 module-name)))))
1892 (let ((subdir (car subdir-and-libname))
1893 (libname (cdr subdir-and-libname)))
1894
1895 ;; Now look in each dir in %LOAD-PATH for `subdir/libfoo.la'. If that
1896 ;; file exists, fetch the dlname from that file and attempt to link
1897 ;; against it. If `subdir/libfoo.la' does not exist, or does not seem
1898 ;; to name any shared library, look for `subdir/libfoo.so' instead and
1899 ;; link against that.
1900 (let check-dirs ((dir-list %load-path))
1901 (if (null? dir-list)
1902 #f
1903 (let* ((dir (in-vicinity (car dir-list) subdir))
1904 (sharlib-full
1905 (or (try-using-libtool-name dir libname)
1906 (try-using-sharlib-name dir libname))))
1907 (if (and sharlib-full (file-exists? sharlib-full))
1908 (link-dynamic-module sharlib-full init)
1909 (check-dirs (cdr dir-list)))))))))
1910
1911 (define (try-using-libtool-name libdir libname)
1912 (let ((libtool-filename (in-vicinity libdir
1913 (string-append libname ".la"))))
1914 (and (file-exists? libtool-filename)
1915 libtool-filename)))
1916
1917 (define (try-using-sharlib-name libdir libname)
1918 (in-vicinity libdir (string-append libname ".so")))
1919
1920 (define (link-dynamic-module filename initname)
1921 ;; Register any linked modules which has been registered on the C level
1922 (register-modules #f)
1923 (let ((dynobj (dynamic-link filename)))
1924 (dynamic-call initname dynobj)
1925 (register-modules dynobj)))
1926
1927 (define (try-module-linked module-name)
1928 (init-dynamic-module module-name))
1929
1930 (define (try-module-dynamic-link module-name)
1931 (and (find-and-link-dynamic-module module-name)
1932 (init-dynamic-module module-name)))
1933
1934
1935
1936 (define autoloads-done '((guile . guile)))
1937
1938 (define (autoload-done-or-in-progress? p m)
1939 (let ((n (cons p m)))
1940 (->bool (or (member n autoloads-done)
1941 (member n autoloads-in-progress)))))
1942
1943 (define (autoload-done! p m)
1944 (let ((n (cons p m)))
1945 (set! autoloads-in-progress
1946 (delete! n autoloads-in-progress))
1947 (or (member n autoloads-done)
1948 (set! autoloads-done (cons n autoloads-done)))))
1949
1950 (define (autoload-in-progress! p m)
1951 (let ((n (cons p m)))
1952 (set! autoloads-done
1953 (delete! n autoloads-done))
1954 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1955
1956 (define (set-autoloaded! p m done?)
1957 (if done?
1958 (autoload-done! p m)
1959 (let ((n (cons p m)))
1960 (set! autoloads-done (delete! n autoloads-done))
1961 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1962
1963
1964
1965 \f
1966 ;; {EVAL-CASE}
1967 ;;
1968 ;; (eval-case ((situation*) forms)* (else forms)?)
1969 ;;
1970 ;; Evaluate certain code based on the situation that eval-case is used
1971 ;; in. The only defined situation right now is `load-toplevel' which
1972 ;; triggers for code evaluated at the top-level, for example from the
1973 ;; REPL or when loading a file.
1974
1975 (define eval-case
1976 (procedure->memoizing-macro
1977 (lambda (exp env)
1978 (define (toplevel-env? env)
1979 (or (not (pair? env)) (not (pair? (car env)))))
1980 (define (syntax)
1981 (error "syntax error in eval-case"))
1982 (let loop ((clauses (cdr exp)))
1983 (cond
1984 ((null? clauses)
1985 #f)
1986 ((not (list? (car clauses)))
1987 (syntax))
1988 ((eq? 'else (caar clauses))
1989 (or (null? (cdr clauses))
1990 (syntax))
1991 (cons 'begin (cdar clauses)))
1992 ((not (list? (caar clauses)))
1993 (syntax))
1994 ((and (toplevel-env? env)
1995 (memq 'load-toplevel (caar clauses)))
1996 (cons 'begin (cdar clauses)))
1997 (else
1998 (loop (cdr clauses))))))))
1999
2000 \f
2001 ;;; {Macros}
2002 ;;;
2003
2004 (define (primitive-macro? m)
2005 (and (macro? m)
2006 (not (macro-transformer m))))
2007
2008 ;;; {Defmacros}
2009 ;;;
2010 (define macro-table (make-weak-key-hash-table 523))
2011 (define xformer-table (make-weak-key-hash-table 523))
2012
2013 (define (defmacro? m) (hashq-ref macro-table m))
2014 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
2015 (define (defmacro-transformer m) (hashq-ref xformer-table m))
2016 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
2017
2018 (define defmacro:transformer
2019 (lambda (f)
2020 (let* ((xform (lambda (exp env)
2021 (copy-tree (apply f (cdr exp)))))
2022 (a (procedure->memoizing-macro xform)))
2023 (assert-defmacro?! a)
2024 (set-defmacro-transformer! a f)
2025 a)))
2026
2027
2028 (define defmacro
2029 (let ((defmacro-transformer
2030 (lambda (name parms . body)
2031 (let ((transformer `(lambda ,parms ,@body)))
2032 `(eval-case
2033 ((load-toplevel)
2034 (define ,name (defmacro:transformer ,transformer)))
2035 (else
2036 (error "defmacro can only be used at the top level")))))))
2037 (defmacro:transformer defmacro-transformer)))
2038
2039 (define defmacro:syntax-transformer
2040 (lambda (f)
2041 (procedure->syntax
2042 (lambda (exp env)
2043 (copy-tree (apply f (cdr exp)))))))
2044
2045
2046 ;; XXX - should the definition of the car really be looked up in the
2047 ;; current module?
2048
2049 (define (macroexpand-1 e)
2050 (cond
2051 ((pair? e) (let* ((a (car e))
2052 (val (and (symbol? a) (local-ref (list a)))))
2053 (if (defmacro? val)
2054 (apply (defmacro-transformer val) (cdr e))
2055 e)))
2056 (#t e)))
2057
2058 (define (macroexpand e)
2059 (cond
2060 ((pair? e) (let* ((a (car e))
2061 (val (and (symbol? a) (local-ref (list a)))))
2062 (if (defmacro? val)
2063 (macroexpand (apply (defmacro-transformer val) (cdr e)))
2064 e)))
2065 (#t e)))
2066
2067 (provide 'defmacro)
2068
2069 \f
2070
2071 ;;; {Run-time options}
2072
2073 (define define-option-interface
2074 (let* ((option-name car)
2075 (option-value cadr)
2076 (option-documentation caddr)
2077
2078 (print-option (lambda (option)
2079 (display (option-name option))
2080 (if (< (string-length
2081 (symbol->string (option-name option)))
2082 8)
2083 (display #\tab))
2084 (display #\tab)
2085 (display (option-value option))
2086 (display #\tab)
2087 (display (option-documentation option))
2088 (newline)))
2089
2090 ;; Below follow the macros defining the run-time option interfaces.
2091
2092 (make-options (lambda (interface)
2093 `(lambda args
2094 (cond ((null? args) (,interface))
2095 ((list? (car args))
2096 (,interface (car args)) (,interface))
2097 (else (for-each ,print-option
2098 (,interface #t)))))))
2099
2100 (make-enable (lambda (interface)
2101 `(lambda flags
2102 (,interface (append flags (,interface)))
2103 (,interface))))
2104
2105 (make-disable (lambda (interface)
2106 `(lambda flags
2107 (let ((options (,interface)))
2108 (for-each (lambda (flag)
2109 (set! options (delq! flag options)))
2110 flags)
2111 (,interface options)
2112 (,interface)))))
2113
2114 (make-set! (lambda (interface)
2115 `((name exp)
2116 (,'quasiquote
2117 (begin (,interface (append (,interface)
2118 (list '(,'unquote name)
2119 (,'unquote exp))))
2120 (,interface)))))))
2121 (procedure->macro
2122 (lambda (exp env)
2123 (cons 'begin
2124 (let* ((option-group (cadr exp))
2125 (interface (car option-group)))
2126 (append (map (lambda (name constructor)
2127 `(define ,name
2128 ,(constructor interface)))
2129 (cadr option-group)
2130 (list make-options
2131 make-enable
2132 make-disable))
2133 (map (lambda (name constructor)
2134 `(defmacro ,name
2135 ,@(constructor interface)))
2136 (caddr option-group)
2137 (list make-set!)))))))))
2138
2139 (define-option-interface
2140 (eval-options-interface
2141 (eval-options eval-enable eval-disable)
2142 (eval-set!)))
2143
2144 (define-option-interface
2145 (debug-options-interface
2146 (debug-options debug-enable debug-disable)
2147 (debug-set!)))
2148
2149 (define-option-interface
2150 (evaluator-traps-interface
2151 (traps trap-enable trap-disable)
2152 (trap-set!)))
2153
2154 (define-option-interface
2155 (read-options-interface
2156 (read-options read-enable read-disable)
2157 (read-set!)))
2158
2159 (define-option-interface
2160 (print-options-interface
2161 (print-options print-enable print-disable)
2162 (print-set!)))
2163
2164 \f
2165
2166 ;;; {Running Repls}
2167 ;;;
2168
2169 (define (repl read evaler print)
2170 (let loop ((source (read (current-input-port))))
2171 (print (evaler source))
2172 (loop (read (current-input-port)))))
2173
2174 ;; A provisional repl that acts like the SCM repl:
2175 ;;
2176 (define scm-repl-silent #f)
2177 (define (assert-repl-silence v) (set! scm-repl-silent v))
2178
2179 (define *unspecified* (if #f #f))
2180 (define (unspecified? v) (eq? v *unspecified*))
2181
2182 (define scm-repl-print-unspecified #f)
2183 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2184
2185 (define scm-repl-verbose #f)
2186 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2187
2188 (define scm-repl-prompt "guile> ")
2189
2190 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2191
2192 (define (default-lazy-handler key . args)
2193 (save-stack lazy-handler-dispatch)
2194 (apply throw key args))
2195
2196 (define enter-frame-handler default-lazy-handler)
2197 (define apply-frame-handler default-lazy-handler)
2198 (define exit-frame-handler default-lazy-handler)
2199
2200 (define (lazy-handler-dispatch key . args)
2201 (case key
2202 ((apply-frame)
2203 (apply apply-frame-handler key args))
2204 ((exit-frame)
2205 (apply exit-frame-handler key args))
2206 ((enter-frame)
2207 (apply enter-frame-handler key args))
2208 (else
2209 (apply default-lazy-handler key args))))
2210
2211 (define abort-hook (make-hook))
2212
2213 ;; these definitions are used if running a script.
2214 ;; otherwise redefined in error-catching-loop.
2215 (define (set-batch-mode?! arg) #t)
2216 (define (batch-mode?) #t)
2217
2218 (define (error-catching-loop thunk)
2219 (let ((status #f)
2220 (interactive #t))
2221 (define (loop first)
2222 (let ((next
2223 (catch #t
2224
2225 (lambda ()
2226 (lazy-catch #t
2227 (lambda ()
2228 (dynamic-wind
2229 (lambda () (unmask-signals))
2230 (lambda ()
2231 (with-traps
2232 (lambda ()
2233 (first)
2234
2235 ;; This line is needed because mark
2236 ;; doesn't do closures quite right.
2237 ;; Unreferenced locals should be
2238 ;; collected.
2239 ;;
2240 (set! first #f)
2241 (let loop ((v (thunk)))
2242 (loop (thunk)))
2243 #f)))
2244 (lambda () (mask-signals))))
2245
2246 lazy-handler-dispatch))
2247
2248 (lambda (key . args)
2249 (case key
2250 ((quit)
2251 (set! status args)
2252 #f)
2253
2254 ((switch-repl)
2255 (apply throw 'switch-repl args))
2256
2257 ((abort)
2258 ;; This is one of the closures that require
2259 ;; (set! first #f) above
2260 ;;
2261 (lambda ()
2262 (run-hook abort-hook)
2263 (force-output (current-output-port))
2264 (display "ABORT: " (current-error-port))
2265 (write args (current-error-port))
2266 (newline (current-error-port))
2267 (if interactive
2268 (begin
2269 (if (and
2270 (not has-shown-debugger-hint?)
2271 (not (memq 'backtrace
2272 (debug-options-interface)))
2273 (stack? (fluid-ref the-last-stack)))
2274 (begin
2275 (newline (current-error-port))
2276 (display
2277 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2278 (current-error-port))
2279 (set! has-shown-debugger-hint? #t)))
2280 (force-output (current-error-port)))
2281 (begin
2282 (primitive-exit 1)))
2283 (set! stack-saved? #f)))
2284
2285 (else
2286 ;; This is the other cons-leak closure...
2287 (lambda ()
2288 (cond ((= (length args) 4)
2289 (apply handle-system-error key args))
2290 (else
2291 (apply bad-throw key args))))))))))
2292 (if next (loop next) status)))
2293 (set! set-batch-mode?! (lambda (arg)
2294 (cond (arg
2295 (set! interactive #f)
2296 (restore-signals))
2297 (#t
2298 (error "sorry, not implemented")))))
2299 (set! batch-mode? (lambda () (not interactive)))
2300 (loop (lambda () #t))))
2301
2302 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2303 (define before-signal-stack (make-fluid))
2304 (define stack-saved? #f)
2305
2306 (define (save-stack . narrowing)
2307 (or stack-saved?
2308 (cond ((not (memq 'debug (debug-options-interface)))
2309 (fluid-set! the-last-stack #f)
2310 (set! stack-saved? #t))
2311 (else
2312 (fluid-set!
2313 the-last-stack
2314 (case (stack-id #t)
2315 ((repl-stack)
2316 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2317 ((load-stack)
2318 (apply make-stack #t save-stack 0 #t 0 narrowing))
2319 ((tk-stack)
2320 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2321 ((#t)
2322 (apply make-stack #t save-stack 0 1 narrowing))
2323 (else
2324 (let ((id (stack-id #t)))
2325 (and (procedure? id)
2326 (apply make-stack #t save-stack id #t 0 narrowing))))))
2327 (set! stack-saved? #t)))))
2328
2329 (define before-error-hook (make-hook))
2330 (define after-error-hook (make-hook))
2331 (define before-backtrace-hook (make-hook))
2332 (define after-backtrace-hook (make-hook))
2333
2334 (define has-shown-debugger-hint? #f)
2335
2336 (define (handle-system-error key . args)
2337 (let ((cep (current-error-port)))
2338 (cond ((not (stack? (fluid-ref the-last-stack))))
2339 ((memq 'backtrace (debug-options-interface))
2340 (run-hook before-backtrace-hook)
2341 (newline cep)
2342 (display "Backtrace:\n")
2343 (display-backtrace (fluid-ref the-last-stack) cep)
2344 (newline cep)
2345 (run-hook after-backtrace-hook)))
2346 (run-hook before-error-hook)
2347 (apply display-error (fluid-ref the-last-stack) cep args)
2348 (run-hook after-error-hook)
2349 (force-output cep)
2350 (throw 'abort key)))
2351
2352 (define (quit . args)
2353 (apply throw 'quit args))
2354
2355 (define exit quit)
2356
2357 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2358
2359 ;; Replaced by C code:
2360 ;;(define (backtrace)
2361 ;; (if (fluid-ref the-last-stack)
2362 ;; (begin
2363 ;; (newline)
2364 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2365 ;; (newline)
2366 ;; (if (and (not has-shown-backtrace-hint?)
2367 ;; (not (memq 'backtrace (debug-options-interface))))
2368 ;; (begin
2369 ;; (display
2370 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2371 ;;automatically if an error occurs in the future.\n")
2372 ;; (set! has-shown-backtrace-hint? #t))))
2373 ;; (display "No backtrace available.\n")))
2374
2375 (define (error-catching-repl r e p)
2376 (error-catching-loop
2377 (lambda ()
2378 (call-with-values (lambda () (e (r)))
2379 (lambda the-values (for-each p the-values))))))
2380
2381 (define (gc-run-time)
2382 (cdr (assq 'gc-time-taken (gc-stats))))
2383
2384 (define before-read-hook (make-hook))
2385 (define after-read-hook (make-hook))
2386 (define before-eval-hook (make-hook 1))
2387 (define after-eval-hook (make-hook 1))
2388 (define before-print-hook (make-hook 1))
2389 (define after-print-hook (make-hook 1))
2390
2391 ;;; The default repl-reader function. We may override this if we've
2392 ;;; the readline library.
2393 (define repl-reader
2394 (lambda (prompt)
2395 (display prompt)
2396 (force-output)
2397 (run-hook before-read-hook)
2398 (read (current-input-port))))
2399
2400 (define (scm-style-repl)
2401
2402 (letrec (
2403 (start-gc-rt #f)
2404 (start-rt #f)
2405 (repl-report-start-timing (lambda ()
2406 (set! start-gc-rt (gc-run-time))
2407 (set! start-rt (get-internal-run-time))))
2408 (repl-report (lambda ()
2409 (display ";;; ")
2410 (display (inexact->exact
2411 (* 1000 (/ (- (get-internal-run-time) start-rt)
2412 internal-time-units-per-second))))
2413 (display " msec (")
2414 (display (inexact->exact
2415 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2416 internal-time-units-per-second))))
2417 (display " msec in gc)\n")))
2418
2419 (consume-trailing-whitespace
2420 (lambda ()
2421 (let ((ch (peek-char)))
2422 (cond
2423 ((eof-object? ch))
2424 ((or (char=? ch #\space) (char=? ch #\tab))
2425 (read-char)
2426 (consume-trailing-whitespace))
2427 ((char=? ch #\newline)
2428 (read-char))))))
2429 (-read (lambda ()
2430 (let ((val
2431 (let ((prompt (cond ((string? scm-repl-prompt)
2432 scm-repl-prompt)
2433 ((thunk? scm-repl-prompt)
2434 (scm-repl-prompt))
2435 (scm-repl-prompt "> ")
2436 (else ""))))
2437 (repl-reader prompt))))
2438
2439 ;; As described in R4RS, the READ procedure updates the
2440 ;; port to point to the first character past the end of
2441 ;; the external representation of the object. This
2442 ;; means that it doesn't consume the newline typically
2443 ;; found after an expression. This means that, when
2444 ;; debugging Guile with GDB, GDB gets the newline, which
2445 ;; it often interprets as a "continue" command, making
2446 ;; breakpoints kind of useless. So, consume any
2447 ;; trailing newline here, as well as any whitespace
2448 ;; before it.
2449 ;; But not if EOF, for control-D.
2450 (if (not (eof-object? val))
2451 (consume-trailing-whitespace))
2452 (run-hook after-read-hook)
2453 (if (eof-object? val)
2454 (begin
2455 (repl-report-start-timing)
2456 (if scm-repl-verbose
2457 (begin
2458 (newline)
2459 (display ";;; EOF -- quitting")
2460 (newline)))
2461 (quit 0)))
2462 val)))
2463
2464 (-eval (lambda (sourc)
2465 (repl-report-start-timing)
2466 (run-hook before-eval-hook sourc)
2467 (let ((val (start-stack 'repl-stack
2468 ;; If you change this procedure
2469 ;; (primitive-eval), please also
2470 ;; modify the repl-stack case in
2471 ;; save-stack so that stack cutting
2472 ;; continues to work.
2473 (primitive-eval sourc))))
2474 (run-hook after-eval-hook sourc)
2475 val)))
2476
2477
2478 (-print (let ((maybe-print (lambda (result)
2479 (if (or scm-repl-print-unspecified
2480 (not (unspecified? result)))
2481 (begin
2482 (write result)
2483 (newline))))))
2484 (lambda (result)
2485 (if (not scm-repl-silent)
2486 (begin
2487 (run-hook before-print-hook result)
2488 (maybe-print result)
2489 (run-hook after-print-hook result)
2490 (if scm-repl-verbose
2491 (repl-report))
2492 (force-output))))))
2493
2494 (-quit (lambda (args)
2495 (if scm-repl-verbose
2496 (begin
2497 (display ";;; QUIT executed, repl exitting")
2498 (newline)
2499 (repl-report)))
2500 args))
2501
2502 (-abort (lambda ()
2503 (if scm-repl-verbose
2504 (begin
2505 (display ";;; ABORT executed.")
2506 (newline)
2507 (repl-report)))
2508 (repl -read -eval -print))))
2509
2510 (let ((status (error-catching-repl -read
2511 -eval
2512 -print)))
2513 (-quit status))))
2514
2515
2516 \f
2517 ;;; {IOTA functions: generating lists of numbers}
2518
2519 (define (iota n)
2520 (let loop ((count (1- n)) (result '()))
2521 (if (< count 0) result
2522 (loop (1- count) (cons count result)))))
2523
2524 \f
2525 ;;; {While}
2526 ;;;
2527 ;;; with `continue' and `break'.
2528 ;;;
2529
2530 (defmacro while (cond . body)
2531 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2532 (break (lambda val (apply throw 'break val))))
2533 (catch 'break
2534 (lambda () (continue))
2535 (lambda v (cadr v)))))
2536
2537 ;;; {collect}
2538 ;;;
2539 ;;; Similar to `begin' but returns a list of the results of all constituent
2540 ;;; forms instead of the result of the last form.
2541 ;;; (The definition relies on the current left-to-right
2542 ;;; order of evaluation of operands in applications.)
2543
2544 (defmacro collect forms
2545 (cons 'list forms))
2546
2547 ;;; {with-fluids}
2548
2549 ;; with-fluids is a convenience wrapper for the builtin procedure
2550 ;; `with-fluids*'. The syntax is just like `let':
2551 ;;
2552 ;; (with-fluids ((fluid val)
2553 ;; ...)
2554 ;; body)
2555
2556 (defmacro with-fluids (bindings . body)
2557 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2558 (lambda () ,@body)))
2559
2560 \f
2561
2562 ;;; {Macros}
2563 ;;;
2564
2565 ;; actually....hobbit might be able to hack these with a little
2566 ;; coaxing
2567 ;;
2568
2569 (defmacro define-macro (first . rest)
2570 (let ((name (if (symbol? first) first (car first)))
2571 (transformer
2572 (if (symbol? first)
2573 (car rest)
2574 `(lambda ,(cdr first) ,@rest))))
2575 `(eval-case
2576 ((load-toplevel)
2577 (define ,name (defmacro:transformer ,transformer)))
2578 (else
2579 (error "define-macro can only be used at the top level")))))
2580
2581
2582 (defmacro define-syntax-macro (first . rest)
2583 (let ((name (if (symbol? first) first (car first)))
2584 (transformer
2585 (if (symbol? first)
2586 (car rest)
2587 `(lambda ,(cdr first) ,@rest))))
2588 `(eval-case
2589 ((load-toplevel)
2590 (define ,name (defmacro:syntax-transformer ,transformer)))
2591 (else
2592 (error "define-syntax-macro can only be used at the top level")))))
2593
2594 \f
2595 ;;; {Module System Macros}
2596 ;;;
2597
2598 (defmacro define-module args
2599 `(eval-case
2600 ((load-toplevel)
2601 (process-define-module ',args))
2602 (else
2603 (error "define-module can only be used at the top level"))))
2604
2605 ;; the guts of the use-modules macro. add the interfaces of the named
2606 ;; modules to the use-list of the current module, in order
2607 (define (process-use-modules module-interface-specs)
2608 (for-each (lambda (mif-spec)
2609 (let ((mod-iface (resolve-interface mif-spec)))
2610 (or mod-iface
2611 (error "no such module" mif-spec))
2612 (module-use! (current-module) mod-iface)))
2613 module-interface-specs))
2614
2615 (defmacro use-modules modules
2616 `(eval-case
2617 ((load-toplevel)
2618 (process-use-modules ',modules))
2619 (else
2620 (error "use-modules can only be used at the top level"))))
2621
2622 (defmacro use-syntax (spec)
2623 `(eval-case
2624 ((load-toplevel)
2625 ,@(if (pair? spec)
2626 `((process-use-modules ',(list spec))
2627 (set-module-transformer! (current-module)
2628 ,(car (last-pair spec))))
2629 `((set-module-transformer! (current-module) ,spec)))
2630 (fluid-set! scm:eval-transformer (module-transformer (current-module))))
2631 (else
2632 (error "use-syntax can only be used at the top level"))))
2633
2634 (define define-private define)
2635
2636 (defmacro define-public args
2637 (define (syntax)
2638 (error "bad syntax" (list 'define-public args)))
2639 (define (defined-name n)
2640 (cond
2641 ((symbol? n) n)
2642 ((pair? n) (defined-name (car n)))
2643 (else (syntax))))
2644 (cond
2645 ((null? args)
2646 (syntax))
2647 (#t
2648 (let ((name (defined-name (car args))))
2649 `(begin
2650 (eval-case ((load-toplevel) (export ,name)))
2651 (define-private ,@args))))))
2652
2653 (defmacro defmacro-public args
2654 (define (syntax)
2655 (error "bad syntax" (list 'defmacro-public args)))
2656 (define (defined-name n)
2657 (cond
2658 ((symbol? n) n)
2659 (else (syntax))))
2660 (cond
2661 ((null? args)
2662 (syntax))
2663 (#t
2664 (let ((name (defined-name (car args))))
2665 `(begin
2666 (eval-case ((load-toplevel) (export ,name)))
2667 (defmacro ,@args))))))
2668
2669 (define (module-export! m names)
2670 (let ((public-i (module-public-interface m)))
2671 (for-each (lambda (name)
2672 ;; Make sure there is a local variable:
2673 (module-define! m name (module-ref m name #f))
2674 ;; Make sure that local is exported:
2675 (module-add! public-i name (module-variable m name)))
2676 names)))
2677
2678 (defmacro export names
2679 `(eval-case
2680 ((load-toplevel)
2681 (module-export! (current-module) ',names))
2682 (else
2683 (error "export can only be used at the top level"))))
2684
2685 (define export-syntax export)
2686
2687
2688 (define load load-module)
2689
2690 \f
2691
2692 ;;; {`cond-expand' for SRFI-0 support.}
2693 ;;;
2694 ;;; This syntactic form expands into different commands or
2695 ;;; definitions, depending on the features provided by the Scheme
2696 ;;; implementation.
2697 ;;;
2698 ;;; Syntax:
2699 ;;;
2700 ;;; <cond-expand>
2701 ;;; --> (cond-expand <cond-expand-clause>+)
2702 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
2703 ;;; <cond-expand-clause>
2704 ;;; --> (<feature-requirement> <command-or-definition>*)
2705 ;;; <feature-requirement>
2706 ;;; --> <feature-identifier>
2707 ;;; | (and <feature-requirement>*)
2708 ;;; | (or <feature-requirement>*)
2709 ;;; | (not <feature-requirement>)
2710 ;;; <feature-identifier>
2711 ;;; --> <a symbol which is the name or alias of a SRFI>
2712 ;;;
2713 ;;; Additionally, this implementation provides the
2714 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
2715 ;;; determine the implementation type and the supported standard.
2716 ;;;
2717 ;;; Currently, the following feature identifiers are supported:
2718 ;;;
2719 ;;; guile r5rs srfi-0 srfi-6
2720 ;;;
2721 ;;; Remember to update the features list when adding more SRFIs.
2722
2723 (define-macro (cond-expand clause . clauses)
2724
2725 (define features
2726 ;; Adjust the above comment when changing this.
2727 '(guile r5rs srfi-0 srfi-6))
2728
2729 (let ((clauses (cons clause clauses))
2730 (syntax-error (lambda (cl)
2731 (error "invalid clause in `cond-expand'" cl))))
2732 (letrec
2733 ((test-clause
2734 (lambda (clause)
2735 (cond
2736 ((symbol? clause)
2737 (memq clause features))
2738 ((pair? clause)
2739 (cond
2740 ((eq? 'and (car clause))
2741 (let lp ((l (cdr clause)))
2742 (cond ((null? l)
2743 #t)
2744 ((pair? l)
2745 (and (test-clause (car l)) (lp (cdr l))))
2746 (else
2747 (syntax-error clause)))))
2748 ((eq? 'or (car clause))
2749 (let lp ((l (cdr clause)))
2750 (cond ((null? l)
2751 #f)
2752 ((pair? l)
2753 (or (test-clause (car l)) (lp (cdr l))))
2754 (else
2755 (syntax-error clause)))))
2756 ((eq? 'not (car clause))
2757 (cond ((not (pair? (cdr clause)))
2758 (syntax-error clause))
2759 ((pair? (cddr clause))
2760 ((syntax-error clause))))
2761 (not (test-clause (cadr clause))))
2762 (else
2763 (syntax-error clause))))
2764 (else
2765 (syntax-error clause))))))
2766 (let lp ((c clauses))
2767 (cond
2768 ((null? c)
2769 (error "Unfulfilled `cond-expand'"))
2770 ((not (pair? c))
2771 (syntax-error c))
2772 ((not (pair? (car c)))
2773 (syntax-error (car c)))
2774 ((test-clause (caar c))
2775 `(begin ,@(cdar c)))
2776 ((eq? (caar c) 'else)
2777 (if (pair? (cdr c))
2778 (syntax-error c))
2779 `(begin ,@(cdar c)))
2780 (else
2781 (lp (cdr c))))))))
2782
2783 \f
2784
2785 ;;; {Load emacs interface support if emacs option is given.}
2786
2787 (define (named-module-use! user usee)
2788 (module-use! (resolve-module user) (resolve-module usee)))
2789
2790 (define (load-emacs-interface)
2791 (and (provided? 'debug-extensions)
2792 (debug-enable 'backtrace))
2793 (named-module-use! '(guile-user) '(ice-9 emacs)))
2794
2795 \f
2796
2797 (define using-readline?
2798 (let ((using-readline? (make-fluid)))
2799 (make-procedure-with-setter
2800 (lambda () (fluid-ref using-readline?))
2801 (lambda (v) (fluid-set! using-readline? v)))))
2802
2803 (define (top-repl)
2804
2805 ;; Load emacs interface support if emacs option is given.
2806 (if (and (module-defined? the-root-module 'use-emacs-interface)
2807 (module-ref the-root-module 'use-emacs-interface))
2808 (load-emacs-interface))
2809
2810 ;; Place the user in the guile-user module.
2811 (process-define-module
2812 '((guile-user)
2813 :use-module (guile) ;so that bindings will be checked here first
2814 :use-module (ice-9 session)
2815 :use-module (ice-9 debug)
2816 :autoload (ice-9 debugger) (debug))) ;load debugger on demand
2817 (and (provided? 'threads)
2818 (named-module-use! '(guile-user) '(ice-9 threads)))
2819 (and (provided? 'regex)
2820 (named-module-use! '(guile-user) '(ice-9 regex)))
2821
2822 (let ((old-handlers #f)
2823 (signals (if (provided? 'posix)
2824 `((,SIGINT . "User interrupt")
2825 (,SIGFPE . "Arithmetic error")
2826 (,SIGBUS . "Bad memory access (bus error)")
2827 (,SIGSEGV .
2828 "Bad memory access (Segmentation violation)"))
2829 '())))
2830
2831 (dynamic-wind
2832
2833 ;; call at entry
2834 (lambda ()
2835 (let ((make-handler (lambda (msg)
2836 (lambda (sig)
2837 ;; Make a backup copy of the stack
2838 (fluid-set! before-signal-stack
2839 (fluid-ref the-last-stack))
2840 (save-stack %deliver-signals)
2841 (scm-error 'signal
2842 #f
2843 msg
2844 #f
2845 (list sig))))))
2846 (set! old-handlers
2847 (map (lambda (sig-msg)
2848 (sigaction (car sig-msg)
2849 (make-handler (cdr sig-msg))))
2850 signals))))
2851
2852 ;; the protected thunk.
2853 (lambda ()
2854 (let ((status (scm-style-repl)))
2855 (run-hook exit-hook)
2856 status))
2857
2858 ;; call at exit.
2859 (lambda ()
2860 (map (lambda (sig-msg old-handler)
2861 (if (not (car old-handler))
2862 ;; restore original C handler.
2863 (sigaction (car sig-msg) #f)
2864 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
2865 (sigaction (car sig-msg)
2866 (car old-handler)
2867 (cdr old-handler))))
2868 signals old-handlers)))))
2869
2870 (defmacro false-if-exception (expr)
2871 `(catch #t (lambda () ,expr)
2872 (lambda args #f)))
2873
2874 ;;; This hook is run at the very end of an interactive session.
2875 ;;;
2876 (define exit-hook (make-hook))
2877
2878 \f
2879 (define-module (guile))
2880
2881 (append! %load-path (cons "." '()))
2882
2883 ;;; boot-9.scm ends here