* Unified ssymbols and msymbols to a single symbol type 'scm_tc7_symbol'.
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995, 96, 97, 98, 99, 2000 Free Software Foundation, Inc.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2, or (at your option)
6 * any later version.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this software; see the file COPYING. If not, write to
15 * the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
16 * Boston, MA 02111-1307 USA
17 *
18 * As a special exception, the Free Software Foundation gives permission
19 * for additional uses of the text contained in its release of GUILE.
20 *
21 * The exception is that, if you link the GUILE library with other files
22 * to produce an executable, this does not by itself cause the
23 * resulting executable to be covered by the GNU General Public License.
24 * Your use of that executable is in no way restricted on account of
25 * linking the GUILE library code into it.
26 *
27 * This exception does not however invalidate any other reasons why
28 * the executable file might be covered by the GNU General Public License.
29 *
30 * This exception applies only to the code released by the
31 * Free Software Foundation under the name GUILE. If you copy
32 * code from other Free Software Foundation releases into a copy of
33 * GUILE, as the General Public License permits, the exception does
34 * not apply to the code that you add in this way. To avoid misleading
35 * anyone as to the status of such modified files, you must delete
36 * this exception notice from them.
37 *
38 * If you write modifications of your own for GUILE, it is your choice
39 * whether to permit this exception to apply to your modifications.
40 * If you do not wish that, delete this exception notice. */
41
42 /* Software engineering face-lift by Greg J. Badros, 11-Dec-1999,
43 gjb@cs.washington.edu, http://www.cs.washington.edu/homes/gjb */
44
45 /* #define DEBUGINFO */
46
47 \f
48 #include <stdio.h>
49 #include "libguile/_scm.h"
50 #include "libguile/eval.h"
51 #include "libguile/stime.h"
52 #include "libguile/stackchk.h"
53 #include "libguile/struct.h"
54 #include "libguile/smob.h"
55 #include "libguile/unif.h"
56 #include "libguile/async.h"
57 #include "libguile/ports.h"
58 #include "libguile/root.h"
59 #include "libguile/strings.h"
60 #include "libguile/vectors.h"
61 #include "libguile/weaks.h"
62 #include "libguile/hashtab.h"
63
64 #include "libguile/validate.h"
65 #include "libguile/gc.h"
66
67 #ifdef GUILE_DEBUG_MALLOC
68 #include "libguile/debug-malloc.h"
69 #endif
70
71 #ifdef HAVE_MALLOC_H
72 #include <malloc.h>
73 #endif
74
75 #ifdef HAVE_UNISTD_H
76 #include <unistd.h>
77 #endif
78
79 #ifdef __STDC__
80 #include <stdarg.h>
81 #define var_start(x, y) va_start(x, y)
82 #else
83 #include <varargs.h>
84 #define var_start(x, y) va_start(x)
85 #endif
86
87 \f
88
89 unsigned int scm_gc_running_p = 0;
90
91 \f
92
93 #if (SCM_DEBUG_CELL_ACCESSES == 1)
94
95 unsigned int scm_debug_cell_accesses_p = 0;
96
97
98 /* Assert that the given object is a valid reference to a valid cell. This
99 * test involves to determine whether the object is a cell pointer, whether
100 * this pointer actually points into a heap segment and whether the cell
101 * pointed to is not a free cell.
102 */
103 void
104 scm_assert_cell_valid (SCM cell)
105 {
106 if (scm_debug_cell_accesses_p)
107 {
108 scm_debug_cell_accesses_p = 0; /* disable to avoid recursion */
109
110 if (!scm_cellp (cell))
111 {
112 fprintf (stderr, "scm_assert_cell_valid: Not a cell object: %lx\n", SCM_UNPACK (cell));
113 abort ();
114 }
115 else if (!scm_gc_running_p)
116 {
117 /* Dirk::FIXME:: During garbage collection there occur references to
118 free cells. This is allright during conservative marking, but
119 should not happen otherwise (I think). The case of free cells
120 accessed during conservative marking is handled in function
121 scm_mark_locations. However, there still occur accesses to free
122 cells during gc. I don't understand why this happens. If it is
123 a bug and gets fixed, the following test should also work while
124 gc is running.
125 */
126 if (SCM_FREE_CELL_P (cell))
127 {
128 fprintf (stderr, "scm_assert_cell_valid: Accessing free cell: %lx\n", SCM_UNPACK (cell));
129 abort ();
130 }
131 }
132 scm_debug_cell_accesses_p = 1; /* re-enable */
133 }
134 }
135
136
137 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
138 (SCM flag),
139 "If FLAG is #f, cell access checking is disabled.\n"
140 "If FLAG is #t, cell access checking is enabled.\n"
141 "This procedure only exists because the compile-time flag\n"
142 "SCM_DEBUG_CELL_ACCESSES was set to 1.\n")
143 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
144 {
145 if (SCM_FALSEP (flag)) {
146 scm_debug_cell_accesses_p = 0;
147 } else if (SCM_EQ_P (flag, SCM_BOOL_T)) {
148 scm_debug_cell_accesses_p = 1;
149 } else {
150 SCM_WRONG_TYPE_ARG (1, flag);
151 }
152 return SCM_UNSPECIFIED;
153 }
154 #undef FUNC_NAME
155
156 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
157
158 \f
159
160 /* {heap tuning parameters}
161 *
162 * These are parameters for controlling memory allocation. The heap
163 * is the area out of which scm_cons, and object headers are allocated.
164 *
165 * Each heap cell is 8 bytes on a 32 bit machine and 16 bytes on a
166 * 64 bit machine. The units of the _SIZE parameters are bytes.
167 * Cons pairs and object headers occupy one heap cell.
168 *
169 * SCM_INIT_HEAP_SIZE is the initial size of heap. If this much heap is
170 * allocated initially the heap will grow by half its current size
171 * each subsequent time more heap is needed.
172 *
173 * If SCM_INIT_HEAP_SIZE heap cannot be allocated initially, SCM_HEAP_SEG_SIZE
174 * will be used, and the heap will grow by SCM_HEAP_SEG_SIZE when more
175 * heap is needed. SCM_HEAP_SEG_SIZE must fit into type scm_sizet. This code
176 * is in scm_init_storage() and alloc_some_heap() in sys.c
177 *
178 * If SCM_INIT_HEAP_SIZE can be allocated initially, the heap will grow by
179 * SCM_EXPHEAP(scm_heap_size) when more heap is needed.
180 *
181 * SCM_MIN_HEAP_SEG_SIZE is minimum size of heap to accept when more heap
182 * is needed.
183 *
184 * INIT_MALLOC_LIMIT is the initial amount of malloc usage which will
185 * trigger a GC.
186 *
187 * SCM_MTRIGGER_HYSTERESIS is the amount of malloc storage that must be
188 * reclaimed by a GC triggered by must_malloc. If less than this is
189 * reclaimed, the trigger threshold is raised. [I don't know what a
190 * good value is. I arbitrarily chose 1/10 of the INIT_MALLOC_LIMIT to
191 * work around a oscillation that caused almost constant GC.]
192 */
193
194 /*
195 * Heap size 45000 and 40% min yield gives quick startup and no extra
196 * heap allocation. Having higher values on min yield may lead to
197 * large heaps, especially if code behaviour is varying its
198 * maximum consumption between different freelists.
199 */
200
201 #define SCM_DATA_CELLS2CARDS(n) (((n) + SCM_GC_CARD_N_DATA_CELLS - 1) / SCM_GC_CARD_N_DATA_CELLS)
202 #define SCM_CARDS_PER_CLUSTER SCM_DATA_CELLS2CARDS (2000L)
203 #define SCM_CLUSTER_SIZE_1 (SCM_CARDS_PER_CLUSTER * SCM_GC_CARD_N_DATA_CELLS)
204 int scm_default_init_heap_size_1 = (((SCM_DATA_CELLS2CARDS (45000L) + SCM_CARDS_PER_CLUSTER - 1)
205 / SCM_CARDS_PER_CLUSTER) * SCM_GC_CARD_SIZE);
206 int scm_default_min_yield_1 = 40;
207
208 #define SCM_CLUSTER_SIZE_2 (SCM_CARDS_PER_CLUSTER * (SCM_GC_CARD_N_DATA_CELLS / 2))
209 int scm_default_init_heap_size_2 = (((SCM_DATA_CELLS2CARDS (2500L * 2) + SCM_CARDS_PER_CLUSTER - 1)
210 / SCM_CARDS_PER_CLUSTER) * SCM_GC_CARD_SIZE);
211 /* The following value may seem large, but note that if we get to GC at
212 * all, this means that we have a numerically intensive application
213 */
214 int scm_default_min_yield_2 = 40;
215
216 int scm_default_max_segment_size = 2097000L;/* a little less (adm) than 2 Mb */
217
218 #define SCM_MIN_HEAP_SEG_SIZE (8 * SCM_GC_CARD_SIZE)
219 #ifdef _QC
220 # define SCM_HEAP_SEG_SIZE 32768L
221 #else
222 # ifdef sequent
223 # define SCM_HEAP_SEG_SIZE (7000L * sizeof (scm_cell))
224 # else
225 # define SCM_HEAP_SEG_SIZE (16384L * sizeof (scm_cell))
226 # endif
227 #endif
228 /* Make heap grow with factor 1.5 */
229 #define SCM_EXPHEAP(scm_heap_size) (scm_heap_size / 2)
230 #define SCM_INIT_MALLOC_LIMIT 100000
231 #define SCM_MTRIGGER_HYSTERESIS (SCM_INIT_MALLOC_LIMIT/10)
232
233 /* CELL_UP and CELL_DN are used by scm_init_heap_seg to find (scm_cell * span)
234 aligned inner bounds for allocated storage */
235
236 #ifdef PROT386
237 /*in 386 protected mode we must only adjust the offset */
238 # define CELL_UP(p, span) MK_FP(FP_SEG(p), ~(8*(span)-1)&(FP_OFF(p)+8*(span)-1))
239 # define CELL_DN(p, span) MK_FP(FP_SEG(p), ~(8*(span)-1)&FP_OFF(p))
240 #else
241 # ifdef _UNICOS
242 # define CELL_UP(p, span) (SCM_CELLPTR)(~(span) & ((long)(p)+(span)))
243 # define CELL_DN(p, span) (SCM_CELLPTR)(~(span) & (long)(p))
244 # else
245 # define CELL_UP(p, span) (SCM_CELLPTR)(~(sizeof(scm_cell)*(span)-1L) & ((long)(p)+sizeof(scm_cell)*(span)-1L))
246 # define CELL_DN(p, span) (SCM_CELLPTR)(~(sizeof(scm_cell)*(span)-1L) & (long)(p))
247 # endif /* UNICOS */
248 #endif /* PROT386 */
249
250 #define ALIGNMENT_SLACK(freelist) (SCM_GC_CARD_SIZE - 1)
251 #define CLUSTER_SIZE_IN_BYTES(freelist) \
252 (((freelist)->cluster_size / (SCM_GC_CARD_N_DATA_CELLS / (freelist)->span)) * SCM_GC_CARD_SIZE)
253
254 \f
255 /* scm_freelists
256 */
257
258 typedef struct scm_freelist_t {
259 /* collected cells */
260 SCM cells;
261 /* number of cells left to collect before cluster is full */
262 unsigned int left_to_collect;
263 /* number of clusters which have been allocated */
264 unsigned int clusters_allocated;
265 /* a list of freelists, each of size cluster_size,
266 * except the last one which may be shorter
267 */
268 SCM clusters;
269 SCM *clustertail;
270 /* this is the number of objects in each cluster, including the spine cell */
271 int cluster_size;
272 /* indicates that we should grow heap instead of GC:ing
273 */
274 int grow_heap_p;
275 /* minimum yield on this list in order not to grow the heap
276 */
277 long min_yield;
278 /* defines min_yield as percent of total heap size
279 */
280 int min_yield_fraction;
281 /* number of cells per object on this list */
282 int span;
283 /* number of collected cells during last GC */
284 long collected;
285 /* number of collected cells during penultimate GC */
286 long collected_1;
287 /* total number of cells in heap segments
288 * belonging to this list.
289 */
290 long heap_size;
291 } scm_freelist_t;
292
293 SCM scm_freelist = SCM_EOL;
294 scm_freelist_t scm_master_freelist = {
295 SCM_EOL, 0, 0, SCM_EOL, 0, SCM_CLUSTER_SIZE_1, 0, 0, 0, 1, 0, 0
296 };
297 SCM scm_freelist2 = SCM_EOL;
298 scm_freelist_t scm_master_freelist2 = {
299 SCM_EOL, 0, 0, SCM_EOL, 0, SCM_CLUSTER_SIZE_2, 0, 0, 0, 2, 0, 0
300 };
301
302 /* scm_mtrigger
303 * is the number of bytes of must_malloc allocation needed to trigger gc.
304 */
305 unsigned long scm_mtrigger;
306
307 /* scm_gc_heap_lock
308 * If set, don't expand the heap. Set only during gc, during which no allocation
309 * is supposed to take place anyway.
310 */
311 int scm_gc_heap_lock = 0;
312
313 /* GC Blocking
314 * Don't pause for collection if this is set -- just
315 * expand the heap.
316 */
317 int scm_block_gc = 1;
318
319 /* During collection, this accumulates objects holding
320 * weak references.
321 */
322 SCM scm_weak_vectors;
323
324 /* During collection, this accumulates structures which are to be freed.
325 */
326 SCM scm_structs_to_free;
327
328 /* GC Statistics Keeping
329 */
330 unsigned long scm_cells_allocated = 0;
331 long scm_mallocated = 0;
332 unsigned long scm_gc_cells_collected;
333 unsigned long scm_gc_yield;
334 static unsigned long scm_gc_yield_1 = 0; /* previous GC yield */
335 unsigned long scm_gc_malloc_collected;
336 unsigned long scm_gc_ports_collected;
337 unsigned long scm_gc_time_taken = 0;
338 static unsigned long t_before_gc;
339 static unsigned long t_before_sweep;
340 unsigned long scm_gc_mark_time_taken = 0;
341 unsigned long scm_gc_sweep_time_taken = 0;
342 unsigned long scm_gc_times = 0;
343 unsigned long scm_gc_cells_swept = 0;
344 double scm_gc_cells_marked_acc = 0.;
345 double scm_gc_cells_swept_acc = 0.;
346
347 SCM_SYMBOL (sym_cells_allocated, "cells-allocated");
348 SCM_SYMBOL (sym_heap_size, "cell-heap-size");
349 SCM_SYMBOL (sym_mallocated, "bytes-malloced");
350 SCM_SYMBOL (sym_mtrigger, "gc-malloc-threshold");
351 SCM_SYMBOL (sym_heap_segments, "cell-heap-segments");
352 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
353 SCM_SYMBOL (sym_gc_mark_time_taken, "gc-mark-time-taken");
354 SCM_SYMBOL (sym_gc_sweep_time_taken, "gc-sweep-time-taken");
355 SCM_SYMBOL (sym_times, "gc-times");
356 SCM_SYMBOL (sym_cells_marked, "cells-marked");
357 SCM_SYMBOL (sym_cells_swept, "cells-swept");
358
359 typedef struct scm_heap_seg_data_t
360 {
361 /* lower and upper bounds of the segment */
362 SCM_CELLPTR bounds[2];
363
364 /* address of the head-of-freelist pointer for this segment's cells.
365 All segments usually point to the same one, scm_freelist. */
366 scm_freelist_t *freelist;
367
368 /* number of cells per object in this segment */
369 int span;
370 } scm_heap_seg_data_t;
371
372
373
374 static scm_sizet init_heap_seg (SCM_CELLPTR, scm_sizet, scm_freelist_t *);
375
376 typedef enum { return_on_error, abort_on_error } policy_on_error;
377 static void alloc_some_heap (scm_freelist_t *, policy_on_error);
378
379
380 #define SCM_HEAP_SIZE \
381 (scm_master_freelist.heap_size + scm_master_freelist2.heap_size)
382 #define SCM_MAX(A, B) ((A) > (B) ? (A) : (B))
383
384 #define BVEC_GROW_SIZE 256
385 #define BVEC_GROW_SIZE_IN_LIMBS (SCM_GC_CARD_BVEC_SIZE_IN_LIMBS * BVEC_GROW_SIZE)
386 #define BVEC_GROW_SIZE_IN_BYTES (BVEC_GROW_SIZE_IN_LIMBS * sizeof (scm_c_bvec_limb_t))
387
388 /* mark space allocation */
389
390 typedef struct scm_mark_space_t
391 {
392 scm_c_bvec_limb_t *bvec_space;
393 struct scm_mark_space_t *next;
394 } scm_mark_space_t;
395
396 static scm_mark_space_t *current_mark_space;
397 static scm_mark_space_t **mark_space_ptr;
398 static int current_mark_space_offset;
399 static scm_mark_space_t *mark_space_head;
400
401 static scm_c_bvec_limb_t *
402 get_bvec ()
403 {
404 scm_c_bvec_limb_t *res;
405
406 if (!current_mark_space)
407 {
408 SCM_SYSCALL (current_mark_space = (scm_mark_space_t *) malloc (sizeof (scm_mark_space_t)));
409 if (!current_mark_space)
410 scm_wta (SCM_UNDEFINED, "could not grow", "heap");
411
412 current_mark_space->bvec_space = NULL;
413 current_mark_space->next = NULL;
414
415 *mark_space_ptr = current_mark_space;
416 mark_space_ptr = &(current_mark_space->next);
417
418 return get_bvec ();
419 }
420
421 if (!(current_mark_space->bvec_space))
422 {
423 SCM_SYSCALL (current_mark_space->bvec_space =
424 (scm_c_bvec_limb_t *) calloc (BVEC_GROW_SIZE_IN_BYTES, 1));
425 if (!(current_mark_space->bvec_space))
426 scm_wta (SCM_UNDEFINED, "could not grow", "heap");
427
428 current_mark_space_offset = 0;
429
430 return get_bvec ();
431 }
432
433 if (current_mark_space_offset == BVEC_GROW_SIZE_IN_LIMBS)
434 {
435 current_mark_space = NULL;
436
437 return get_bvec ();
438 }
439
440 res = current_mark_space->bvec_space + current_mark_space_offset;
441 current_mark_space_offset += SCM_GC_CARD_BVEC_SIZE_IN_LIMBS;
442
443 return res;
444 }
445
446 static void
447 clear_mark_space ()
448 {
449 scm_mark_space_t *ms;
450
451 for (ms = mark_space_head; ms; ms = ms->next)
452 memset (ms->bvec_space, 0, BVEC_GROW_SIZE_IN_BYTES);
453 }
454
455
456 \f
457 /* Debugging functions. */
458
459 #if defined (GUILE_DEBUG) || defined (GUILE_DEBUG_FREELIST)
460
461 /* Return the number of the heap segment containing CELL. */
462 static int
463 which_seg (SCM cell)
464 {
465 int i;
466
467 for (i = 0; i < scm_n_heap_segs; i++)
468 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], SCM2PTR (cell))
469 && SCM_PTR_GT (scm_heap_table[i].bounds[1], SCM2PTR (cell)))
470 return i;
471 fprintf (stderr, "which_seg: can't find segment containing cell %lx\n",
472 SCM_UNPACK (cell));
473 abort ();
474 }
475
476
477 static void
478 map_free_list (scm_freelist_t *master, SCM freelist)
479 {
480 int last_seg = -1, count = 0;
481 SCM f;
482
483 for (f = freelist; !SCM_NULLP (f); f = SCM_FREE_CELL_CDR (f))
484 {
485 int this_seg = which_seg (f);
486
487 if (this_seg != last_seg)
488 {
489 if (last_seg != -1)
490 fprintf (stderr, " %5d %d-cells in segment %d\n",
491 count, master->span, last_seg);
492 last_seg = this_seg;
493 count = 0;
494 }
495 count++;
496 }
497 if (last_seg != -1)
498 fprintf (stderr, " %5d %d-cells in segment %d\n",
499 count, master->span, last_seg);
500 }
501
502 SCM_DEFINE (scm_map_free_list, "map-free-list", 0, 0, 0,
503 (),
504 "Print debugging information about the free-list.\n"
505 "`map-free-list' is only included in --enable-guile-debug builds of Guile.")
506 #define FUNC_NAME s_scm_map_free_list
507 {
508 int i;
509 fprintf (stderr, "%d segments total (%d:%d",
510 scm_n_heap_segs,
511 scm_heap_table[0].span,
512 scm_heap_table[0].bounds[1] - scm_heap_table[0].bounds[0]);
513 for (i = 1; i < scm_n_heap_segs; i++)
514 fprintf (stderr, ", %d:%d",
515 scm_heap_table[i].span,
516 scm_heap_table[i].bounds[1] - scm_heap_table[i].bounds[0]);
517 fprintf (stderr, ")\n");
518 map_free_list (&scm_master_freelist, scm_freelist);
519 map_free_list (&scm_master_freelist2, scm_freelist2);
520 fflush (stderr);
521
522 return SCM_UNSPECIFIED;
523 }
524 #undef FUNC_NAME
525
526 static int last_cluster;
527 static int last_size;
528
529 static int
530 free_list_length (char *title, int i, SCM freelist)
531 {
532 SCM ls;
533 int n = 0;
534 for (ls = freelist; !SCM_NULLP (ls); ls = SCM_FREE_CELL_CDR (ls))
535 if (SCM_FREE_CELL_P (ls))
536 ++n;
537 else
538 {
539 fprintf (stderr, "bad cell in %s at position %d\n", title, n);
540 abort ();
541 }
542 if (n != last_size)
543 {
544 if (i > 0)
545 {
546 if (last_cluster == i - 1)
547 fprintf (stderr, "\t%d\n", last_size);
548 else
549 fprintf (stderr, "-%d\t%d\n", i - 1, last_size);
550 }
551 if (i >= 0)
552 fprintf (stderr, "%s %d", title, i);
553 else
554 fprintf (stderr, "%s\t%d\n", title, n);
555 last_cluster = i;
556 last_size = n;
557 }
558 return n;
559 }
560
561 static void
562 free_list_lengths (char *title, scm_freelist_t *master, SCM freelist)
563 {
564 SCM clusters;
565 int i = 0, len, n = 0;
566 fprintf (stderr, "%s\n\n", title);
567 n += free_list_length ("free list", -1, freelist);
568 for (clusters = master->clusters;
569 SCM_NNULLP (clusters);
570 clusters = SCM_CDR (clusters))
571 {
572 len = free_list_length ("cluster", i++, SCM_CAR (clusters));
573 n += len;
574 }
575 if (last_cluster == i - 1)
576 fprintf (stderr, "\t%d\n", last_size);
577 else
578 fprintf (stderr, "-%d\t%d\n", i - 1, last_size);
579 fprintf (stderr, "\ntotal %d objects\n\n", n);
580 }
581
582 SCM_DEFINE (scm_free_list_length, "free-list-length", 0, 0, 0,
583 (),
584 "Print debugging information about the free-list.\n"
585 "`free-list-length' is only included in --enable-guile-debug builds of Guile.")
586 #define FUNC_NAME s_scm_free_list_length
587 {
588 free_list_lengths ("1-cells", &scm_master_freelist, scm_freelist);
589 free_list_lengths ("2-cells", &scm_master_freelist2, scm_freelist2);
590 return SCM_UNSPECIFIED;
591 }
592 #undef FUNC_NAME
593
594 #endif
595
596 #ifdef GUILE_DEBUG_FREELIST
597
598 /* Number of calls to SCM_NEWCELL since startup. */
599 static unsigned long scm_newcell_count;
600 static unsigned long scm_newcell2_count;
601
602 /* Search freelist for anything that isn't marked as a free cell.
603 Abort if we find something. */
604 static void
605 scm_check_freelist (SCM freelist)
606 {
607 SCM f;
608 int i = 0;
609
610 for (f = freelist; !SCM_NULLP (f); f = SCM_FREE_CELL_CDR (f), i++)
611 if (!SCM_FREE_CELL_P (f))
612 {
613 fprintf (stderr, "Bad cell in freelist on newcell %lu: %d'th elt\n",
614 scm_newcell_count, i);
615 abort ();
616 }
617 }
618
619 SCM_DEFINE (scm_gc_set_debug_check_freelist_x, "gc-set-debug-check-freelist!", 1, 0, 0,
620 (SCM flag),
621 "If FLAG is #t, check the freelist for consistency on each cell allocation.\n"
622 "This procedure only exists because the GUILE_DEBUG_FREELIST \n"
623 "compile-time flag was selected.\n")
624 #define FUNC_NAME s_scm_gc_set_debug_check_freelist_x
625 {
626 /* [cmm] I did a double-take when I read this code the first time.
627 well, FWIW. */
628 SCM_VALIDATE_BOOL_COPY (1, flag, scm_debug_check_freelist);
629 return SCM_UNSPECIFIED;
630 }
631 #undef FUNC_NAME
632
633
634 SCM
635 scm_debug_newcell (void)
636 {
637 SCM new;
638
639 scm_newcell_count++;
640 if (scm_debug_check_freelist)
641 {
642 scm_check_freelist (scm_freelist);
643 scm_gc();
644 }
645
646 /* The rest of this is supposed to be identical to the SCM_NEWCELL
647 macro. */
648 if (SCM_NULLP (scm_freelist))
649 new = scm_gc_for_newcell (&scm_master_freelist, &scm_freelist);
650 else
651 {
652 new = scm_freelist;
653 scm_freelist = SCM_FREE_CELL_CDR (scm_freelist);
654 }
655
656 return new;
657 }
658
659 SCM
660 scm_debug_newcell2 (void)
661 {
662 SCM new;
663
664 scm_newcell2_count++;
665 if (scm_debug_check_freelist)
666 {
667 scm_check_freelist (scm_freelist2);
668 scm_gc ();
669 }
670
671 /* The rest of this is supposed to be identical to the SCM_NEWCELL
672 macro. */
673 if (SCM_NULLP (scm_freelist2))
674 new = scm_gc_for_newcell (&scm_master_freelist2, &scm_freelist2);
675 else
676 {
677 new = scm_freelist2;
678 scm_freelist2 = SCM_FREE_CELL_CDR (scm_freelist2);
679 }
680
681 return new;
682 }
683
684 #endif /* GUILE_DEBUG_FREELIST */
685
686 \f
687
688 static unsigned long
689 master_cells_allocated (scm_freelist_t *master)
690 {
691 /* the '- 1' below is to ignore the cluster spine cells. */
692 int objects = master->clusters_allocated * (master->cluster_size - 1);
693 if (SCM_NULLP (master->clusters))
694 objects -= master->left_to_collect;
695 return master->span * objects;
696 }
697
698 static unsigned long
699 freelist_length (SCM freelist)
700 {
701 int n;
702 for (n = 0; !SCM_NULLP (freelist); freelist = SCM_FREE_CELL_CDR (freelist))
703 ++n;
704 return n;
705 }
706
707 static unsigned long
708 compute_cells_allocated ()
709 {
710 return (scm_cells_allocated
711 + master_cells_allocated (&scm_master_freelist)
712 + master_cells_allocated (&scm_master_freelist2)
713 - scm_master_freelist.span * freelist_length (scm_freelist)
714 - scm_master_freelist2.span * freelist_length (scm_freelist2));
715 }
716
717 /* {Scheme Interface to GC}
718 */
719
720 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
721 (),
722 "Returns an association list of statistics about Guile's current use of storage. ")
723 #define FUNC_NAME s_scm_gc_stats
724 {
725 int i;
726 int n;
727 SCM heap_segs;
728 long int local_scm_mtrigger;
729 long int local_scm_mallocated;
730 long int local_scm_heap_size;
731 long int local_scm_cells_allocated;
732 long int local_scm_gc_time_taken;
733 long int local_scm_gc_times;
734 long int local_scm_gc_mark_time_taken;
735 long int local_scm_gc_sweep_time_taken;
736 double local_scm_gc_cells_swept;
737 double local_scm_gc_cells_marked;
738 SCM answer;
739
740 SCM_DEFER_INTS;
741
742 ++scm_block_gc;
743
744 retry:
745 heap_segs = SCM_EOL;
746 n = scm_n_heap_segs;
747 for (i = scm_n_heap_segs; i--; )
748 heap_segs = scm_cons (scm_cons (scm_ulong2num ((unsigned long)scm_heap_table[i].bounds[1]),
749 scm_ulong2num ((unsigned long)scm_heap_table[i].bounds[0])),
750 heap_segs);
751 if (scm_n_heap_segs != n)
752 goto retry;
753
754 --scm_block_gc;
755
756 /* Below, we cons to produce the resulting list. We want a snapshot of
757 * the heap situation before consing.
758 */
759 local_scm_mtrigger = scm_mtrigger;
760 local_scm_mallocated = scm_mallocated;
761 local_scm_heap_size = SCM_HEAP_SIZE;
762 local_scm_cells_allocated = compute_cells_allocated ();
763 local_scm_gc_time_taken = scm_gc_time_taken;
764 local_scm_gc_mark_time_taken = scm_gc_mark_time_taken;
765 local_scm_gc_sweep_time_taken = scm_gc_sweep_time_taken;
766 local_scm_gc_times = scm_gc_times;
767 local_scm_gc_cells_swept = scm_gc_cells_swept_acc;
768 local_scm_gc_cells_marked = scm_gc_cells_marked_acc;
769
770 answer = scm_listify (scm_cons (sym_gc_time_taken, scm_ulong2num (local_scm_gc_time_taken)),
771 scm_cons (sym_cells_allocated, scm_ulong2num (local_scm_cells_allocated)),
772 scm_cons (sym_heap_size, scm_ulong2num (local_scm_heap_size)),
773 scm_cons (sym_mallocated, scm_ulong2num (local_scm_mallocated)),
774 scm_cons (sym_mtrigger, scm_ulong2num (local_scm_mtrigger)),
775 scm_cons (sym_times, scm_ulong2num (local_scm_gc_times)),
776 scm_cons (sym_gc_mark_time_taken, scm_ulong2num (local_scm_gc_mark_time_taken)),
777 scm_cons (sym_gc_sweep_time_taken, scm_ulong2num (local_scm_gc_sweep_time_taken)),
778 scm_cons (sym_cells_marked, scm_dbl2big (local_scm_gc_cells_marked)),
779 scm_cons (sym_cells_swept, scm_dbl2big (local_scm_gc_cells_swept)),
780 scm_cons (sym_heap_segments, heap_segs),
781 SCM_UNDEFINED);
782 SCM_ALLOW_INTS;
783 return answer;
784 }
785 #undef FUNC_NAME
786
787
788 static void
789 gc_start_stats (const char *what)
790 {
791 t_before_gc = scm_c_get_internal_run_time ();
792 scm_gc_cells_swept = 0;
793 scm_gc_cells_collected = 0;
794 scm_gc_yield_1 = scm_gc_yield;
795 scm_gc_yield = (scm_cells_allocated
796 + master_cells_allocated (&scm_master_freelist)
797 + master_cells_allocated (&scm_master_freelist2));
798 scm_gc_malloc_collected = 0;
799 scm_gc_ports_collected = 0;
800 }
801
802
803 static void
804 gc_end_stats ()
805 {
806 unsigned long t = scm_c_get_internal_run_time ();
807 scm_gc_time_taken += (t - t_before_gc);
808 scm_gc_sweep_time_taken += (t - t_before_sweep);
809 ++scm_gc_times;
810
811 scm_gc_cells_marked_acc += scm_gc_cells_swept - scm_gc_cells_collected;
812 scm_gc_cells_swept_acc += scm_gc_cells_swept;
813 }
814
815
816 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
817 (SCM obj),
818 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
819 "returned by this function for @var{obj}")
820 #define FUNC_NAME s_scm_object_address
821 {
822 return scm_ulong2num ((unsigned long) SCM_UNPACK (obj));
823 }
824 #undef FUNC_NAME
825
826
827 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
828 (),
829 "Scans all of SCM objects and reclaims for further use those that are\n"
830 "no longer accessible.")
831 #define FUNC_NAME s_scm_gc
832 {
833 SCM_DEFER_INTS;
834 scm_igc ("call");
835 SCM_ALLOW_INTS;
836 return SCM_UNSPECIFIED;
837 }
838 #undef FUNC_NAME
839
840
841 \f
842 /* {C Interface For When GC is Triggered}
843 */
844
845 static void
846 adjust_min_yield (scm_freelist_t *freelist)
847 {
848 /* min yield is adjusted upwards so that next predicted total yield
849 * (allocated cells actually freed by GC) becomes
850 * `min_yield_fraction' of total heap size. Note, however, that
851 * the absolute value of min_yield will correspond to `collected'
852 * on one master (the one which currently is triggering GC).
853 *
854 * The reason why we look at total yield instead of cells collected
855 * on one list is that we want to take other freelists into account.
856 * On this freelist, we know that (local) yield = collected cells,
857 * but that's probably not the case on the other lists.
858 *
859 * (We might consider computing a better prediction, for example
860 * by computing an average over multiple GC:s.)
861 */
862 if (freelist->min_yield_fraction)
863 {
864 /* Pick largest of last two yields. */
865 int delta = ((SCM_HEAP_SIZE * freelist->min_yield_fraction / 100)
866 - (long) SCM_MAX (scm_gc_yield_1, scm_gc_yield));
867 #ifdef DEBUGINFO
868 fprintf (stderr, " after GC = %d, delta = %d\n",
869 scm_cells_allocated,
870 delta);
871 #endif
872 if (delta > 0)
873 freelist->min_yield += delta;
874 }
875 }
876
877
878 /* When we get POSIX threads support, the master will be global and
879 * common while the freelist will be individual for each thread.
880 */
881
882 SCM
883 scm_gc_for_newcell (scm_freelist_t *master, SCM *freelist)
884 {
885 SCM cell;
886 ++scm_ints_disabled;
887 do
888 {
889 if (SCM_NULLP (master->clusters))
890 {
891 if (master->grow_heap_p || scm_block_gc)
892 {
893 /* In order to reduce gc frequency, try to allocate a new heap
894 * segment first, even if gc might find some free cells. If we
895 * can't obtain a new heap segment, we will try gc later.
896 */
897 master->grow_heap_p = 0;
898 alloc_some_heap (master, return_on_error);
899 }
900 if (SCM_NULLP (master->clusters))
901 {
902 /* The heap was not grown, either because it wasn't scheduled to
903 * grow, or because there was not enough memory available. In
904 * both cases we have to try gc to get some free cells.
905 */
906 #ifdef DEBUGINFO
907 fprintf (stderr, "allocated = %d, ",
908 scm_cells_allocated
909 + master_cells_allocated (&scm_master_freelist)
910 + master_cells_allocated (&scm_master_freelist2));
911 #endif
912 scm_igc ("cells");
913 adjust_min_yield (master);
914 if (SCM_NULLP (master->clusters))
915 {
916 /* gc could not free any cells. Now, we _must_ allocate a
917 * new heap segment, because there is no other possibility
918 * to provide a new cell for the caller.
919 */
920 alloc_some_heap (master, abort_on_error);
921 }
922 }
923 }
924 cell = SCM_CAR (master->clusters);
925 master->clusters = SCM_CDR (master->clusters);
926 ++master->clusters_allocated;
927 }
928 while (SCM_NULLP (cell));
929
930 #ifdef GUILE_DEBUG_FREELIST
931 scm_check_freelist (cell);
932 #endif
933
934 --scm_ints_disabled;
935 *freelist = SCM_FREE_CELL_CDR (cell);
936 return cell;
937 }
938
939
940 #if 0
941 /* This is a support routine which can be used to reserve a cluster
942 * for some special use, such as debugging. It won't be useful until
943 * free cells are preserved between garbage collections.
944 */
945
946 void
947 scm_alloc_cluster (scm_freelist_t *master)
948 {
949 SCM freelist, cell;
950 cell = scm_gc_for_newcell (master, &freelist);
951 SCM_SETCDR (cell, freelist);
952 return cell;
953 }
954 #endif
955
956
957 scm_c_hook_t scm_before_gc_c_hook;
958 scm_c_hook_t scm_before_mark_c_hook;
959 scm_c_hook_t scm_before_sweep_c_hook;
960 scm_c_hook_t scm_after_sweep_c_hook;
961 scm_c_hook_t scm_after_gc_c_hook;
962
963
964 void
965 scm_igc (const char *what)
966 {
967 int j;
968
969 ++scm_gc_running_p;
970 scm_c_hook_run (&scm_before_gc_c_hook, 0);
971 #ifdef DEBUGINFO
972 fprintf (stderr,
973 SCM_NULLP (scm_freelist)
974 ? "*"
975 : (SCM_NULLP (scm_freelist2) ? "o" : "m"));
976 #endif
977 #ifdef USE_THREADS
978 /* During the critical section, only the current thread may run. */
979 SCM_THREAD_CRITICAL_SECTION_START;
980 #endif
981
982 /* fprintf (stderr, "gc: %s\n", what); */
983
984 if (!scm_stack_base || scm_block_gc)
985 {
986 --scm_gc_running_p;
987 return;
988 }
989
990 gc_start_stats (what);
991
992 if (scm_mallocated < 0)
993 /* The byte count of allocated objects has underflowed. This is
994 probably because you forgot to report the sizes of objects you
995 have allocated, by calling scm_done_malloc or some such. When
996 the GC freed them, it subtracted their size from
997 scm_mallocated, which underflowed. */
998 abort ();
999
1000 if (scm_gc_heap_lock)
1001 /* We've invoked the collector while a GC is already in progress.
1002 That should never happen. */
1003 abort ();
1004
1005 ++scm_gc_heap_lock;
1006
1007 /* flush dead entries from the continuation stack */
1008 {
1009 int x;
1010 int bound;
1011 SCM * elts;
1012 elts = SCM_VELTS (scm_continuation_stack);
1013 bound = SCM_LENGTH (scm_continuation_stack);
1014 x = SCM_INUM (scm_continuation_stack_ptr);
1015 while (x < bound)
1016 {
1017 elts[x] = SCM_BOOL_F;
1018 ++x;
1019 }
1020 }
1021
1022 scm_c_hook_run (&scm_before_mark_c_hook, 0);
1023
1024 clear_mark_space ();
1025
1026 #ifndef USE_THREADS
1027
1028 /* Protect from the C stack. This must be the first marking
1029 * done because it provides information about what objects
1030 * are "in-use" by the C code. "in-use" objects are those
1031 * for which the values from SCM_LENGTH and SCM_CHARS must remain
1032 * usable. This requirement is stricter than a liveness
1033 * requirement -- in particular, it constrains the implementation
1034 * of scm_vector_set_length_x.
1035 */
1036 SCM_FLUSH_REGISTER_WINDOWS;
1037 /* This assumes that all registers are saved into the jmp_buf */
1038 setjmp (scm_save_regs_gc_mark);
1039 scm_mark_locations ((SCM_STACKITEM *) scm_save_regs_gc_mark,
1040 ( (scm_sizet) (sizeof (SCM_STACKITEM) - 1 +
1041 sizeof scm_save_regs_gc_mark)
1042 / sizeof (SCM_STACKITEM)));
1043
1044 {
1045 scm_sizet stack_len = scm_stack_size (scm_stack_base);
1046 #ifdef SCM_STACK_GROWS_UP
1047 scm_mark_locations (scm_stack_base, stack_len);
1048 #else
1049 scm_mark_locations (scm_stack_base - stack_len, stack_len);
1050 #endif
1051 }
1052
1053 #else /* USE_THREADS */
1054
1055 /* Mark every thread's stack and registers */
1056 scm_threads_mark_stacks ();
1057
1058 #endif /* USE_THREADS */
1059
1060 /* FIXME: insert a phase to un-protect string-data preserved
1061 * in scm_vector_set_length_x.
1062 */
1063
1064 j = SCM_NUM_PROTECTS;
1065 while (j--)
1066 scm_gc_mark (scm_sys_protects[j]);
1067
1068 /* FIXME: we should have a means to register C functions to be run
1069 * in different phases of GC
1070 */
1071 scm_mark_subr_table ();
1072
1073 #ifndef USE_THREADS
1074 scm_gc_mark (scm_root->handle);
1075 #endif
1076
1077 t_before_sweep = scm_c_get_internal_run_time ();
1078 scm_gc_mark_time_taken += (t_before_sweep - t_before_gc);
1079
1080 scm_c_hook_run (&scm_before_sweep_c_hook, 0);
1081
1082 scm_gc_sweep ();
1083
1084 scm_c_hook_run (&scm_after_sweep_c_hook, 0);
1085
1086 --scm_gc_heap_lock;
1087 gc_end_stats ();
1088
1089 #ifdef USE_THREADS
1090 SCM_THREAD_CRITICAL_SECTION_END;
1091 #endif
1092 scm_c_hook_run (&scm_after_gc_c_hook, 0);
1093 --scm_gc_running_p;
1094 }
1095
1096 \f
1097
1098 /* {Mark/Sweep}
1099 */
1100
1101
1102
1103 /* Mark an object precisely.
1104 */
1105 void
1106 scm_gc_mark (SCM p)
1107 #define FUNC_NAME "scm_gc_mark"
1108 {
1109 register long i;
1110 register SCM ptr;
1111
1112 ptr = p;
1113
1114 gc_mark_loop:
1115 if (SCM_IMP (ptr))
1116 return;
1117
1118 gc_mark_nimp:
1119 if (!SCM_CELLP (ptr))
1120 SCM_MISC_ERROR ("rogue pointer in heap", SCM_EOL);
1121
1122 #if (defined (GUILE_DEBUG_FREELIST))
1123
1124 if (SCM_GC_IN_CARD_HEADERP (SCM2PTR (ptr)))
1125 scm_wta (ptr, "rogue pointer in heap", NULL);
1126
1127 #endif
1128
1129 if (SCM_GCMARKP (ptr))
1130 return;
1131
1132 SCM_SETGCMARK (ptr);
1133
1134 switch (SCM_TYP7 (ptr))
1135 {
1136 case scm_tcs_cons_nimcar:
1137 if (SCM_IMP (SCM_CDR (ptr)))
1138 {
1139 ptr = SCM_CAR (ptr);
1140 goto gc_mark_nimp;
1141 }
1142 scm_gc_mark (SCM_CAR (ptr));
1143 ptr = SCM_CDR (ptr);
1144 goto gc_mark_nimp;
1145 case scm_tcs_cons_imcar:
1146 ptr = SCM_CDR (ptr);
1147 goto gc_mark_loop;
1148 case scm_tc7_pws:
1149 scm_gc_mark (SCM_CELL_OBJECT_2 (ptr));
1150 ptr = SCM_CDR (ptr);
1151 goto gc_mark_loop;
1152 case scm_tcs_cons_gloc:
1153 {
1154 /* Dirk:FIXME:: The following code is super ugly: ptr may be a struct
1155 * or a gloc. If it is a gloc, the cell word #0 of ptr is a pointer
1156 * to a heap cell. If it is a struct, the cell word #0 of ptr is a
1157 * pointer to a struct vtable data region. The fact that these are
1158 * accessed in the same way restricts the possibilites to change the
1159 * data layout of structs or heap cells.
1160 */
1161 scm_bits_t word0 = SCM_CELL_WORD_0 (ptr) - scm_tc3_cons_gloc;
1162 scm_bits_t * vtable_data = (scm_bits_t *) word0; /* access as struct */
1163 if (vtable_data [scm_vtable_index_vcell] != 0)
1164 {
1165 /* ptr is a gloc */
1166 SCM gloc_car = SCM_PACK (word0);
1167 scm_gc_mark (gloc_car);
1168 ptr = SCM_CDR (ptr);
1169 goto gc_mark_loop;
1170 }
1171 else
1172 {
1173 /* ptr is a struct */
1174 SCM layout = SCM_PACK (vtable_data [scm_vtable_index_layout]);
1175 int len = SCM_LENGTH (layout);
1176 char * fields_desc = SCM_CHARS (layout);
1177 scm_bits_t * struct_data = (scm_bits_t *) SCM_STRUCT_DATA (ptr);
1178
1179 if (vtable_data[scm_struct_i_flags] & SCM_STRUCTF_ENTITY)
1180 {
1181 scm_gc_mark (SCM_PACK (struct_data[scm_struct_i_procedure]));
1182 scm_gc_mark (SCM_PACK (struct_data[scm_struct_i_setter]));
1183 }
1184 if (len)
1185 {
1186 int x;
1187
1188 for (x = 0; x < len - 2; x += 2, ++struct_data)
1189 if (fields_desc[x] == 'p')
1190 scm_gc_mark (SCM_PACK (*struct_data));
1191 if (fields_desc[x] == 'p')
1192 {
1193 if (SCM_LAYOUT_TAILP (fields_desc[x + 1]))
1194 for (x = *struct_data; x; --x)
1195 scm_gc_mark (SCM_PACK (*++struct_data));
1196 else
1197 scm_gc_mark (SCM_PACK (*struct_data));
1198 }
1199 }
1200 /* mark vtable */
1201 ptr = SCM_PACK (vtable_data [scm_vtable_index_vtable]);
1202 goto gc_mark_loop;
1203 }
1204 }
1205 break;
1206 case scm_tcs_closures:
1207 if (SCM_IMP (SCM_CDR (ptr)))
1208 {
1209 ptr = SCM_CLOSCAR (ptr);
1210 goto gc_mark_nimp;
1211 }
1212 scm_gc_mark (SCM_CLOSCAR (ptr));
1213 ptr = SCM_CDR (ptr);
1214 goto gc_mark_nimp;
1215 case scm_tc7_vector:
1216 case scm_tc7_lvector:
1217 #ifdef CCLO
1218 case scm_tc7_cclo:
1219 #endif
1220 i = SCM_LENGTH (ptr);
1221 if (i == 0)
1222 break;
1223 while (--i > 0)
1224 if (SCM_NIMP (SCM_VELTS (ptr)[i]))
1225 scm_gc_mark (SCM_VELTS (ptr)[i]);
1226 ptr = SCM_VELTS (ptr)[0];
1227 goto gc_mark_loop;
1228 case scm_tc7_contin:
1229 if (SCM_VELTS (ptr))
1230 scm_mark_locations (SCM_VELTS_AS_STACKITEMS (ptr),
1231 (scm_sizet)
1232 (SCM_LENGTH (ptr) +
1233 (sizeof (SCM_STACKITEM) + -1 +
1234 sizeof (scm_contregs)) /
1235 sizeof (SCM_STACKITEM)));
1236 break;
1237 #ifdef HAVE_ARRAYS
1238 case scm_tc7_bvect:
1239 case scm_tc7_byvect:
1240 case scm_tc7_ivect:
1241 case scm_tc7_uvect:
1242 case scm_tc7_fvect:
1243 case scm_tc7_dvect:
1244 case scm_tc7_cvect:
1245 case scm_tc7_svect:
1246 #ifdef HAVE_LONG_LONGS
1247 case scm_tc7_llvect:
1248 #endif
1249 #endif
1250 case scm_tc7_string:
1251 break;
1252
1253 case scm_tc7_substring:
1254 ptr = SCM_CDR (ptr);
1255 goto gc_mark_loop;
1256
1257 case scm_tc7_wvect:
1258 SCM_WVECT_GC_CHAIN (ptr) = scm_weak_vectors;
1259 scm_weak_vectors = ptr;
1260 if (SCM_IS_WHVEC_ANY (ptr))
1261 {
1262 int x;
1263 int len;
1264 int weak_keys;
1265 int weak_values;
1266
1267 len = SCM_LENGTH (ptr);
1268 weak_keys = SCM_IS_WHVEC (ptr) || SCM_IS_WHVEC_B (ptr);
1269 weak_values = SCM_IS_WHVEC_V (ptr) || SCM_IS_WHVEC_B (ptr);
1270
1271 for (x = 0; x < len; ++x)
1272 {
1273 SCM alist;
1274 alist = SCM_VELTS (ptr)[x];
1275
1276 /* mark everything on the alist except the keys or
1277 * values, according to weak_values and weak_keys. */
1278 while ( SCM_CONSP (alist)
1279 && !SCM_GCMARKP (alist)
1280 && SCM_CONSP (SCM_CAR (alist)))
1281 {
1282 SCM kvpair;
1283 SCM next_alist;
1284
1285 kvpair = SCM_CAR (alist);
1286 next_alist = SCM_CDR (alist);
1287 /*
1288 * Do not do this:
1289 * SCM_SETGCMARK (alist);
1290 * SCM_SETGCMARK (kvpair);
1291 *
1292 * It may be that either the key or value is protected by
1293 * an escaped reference to part of the spine of this alist.
1294 * If we mark the spine here, and only mark one or neither of the
1295 * key and value, they may never be properly marked.
1296 * This leads to a horrible situation in which an alist containing
1297 * freelist cells is exported.
1298 *
1299 * So only mark the spines of these arrays last of all marking.
1300 * If somebody confuses us by constructing a weak vector
1301 * with a circular alist then we are hosed, but at least we
1302 * won't prematurely drop table entries.
1303 */
1304 if (!weak_keys)
1305 scm_gc_mark (SCM_CAR (kvpair));
1306 if (!weak_values)
1307 scm_gc_mark (SCM_CDR (kvpair));
1308 alist = next_alist;
1309 }
1310 if (SCM_NIMP (alist))
1311 scm_gc_mark (alist);
1312 }
1313 }
1314 break;
1315
1316 case scm_tc7_symbol:
1317 ptr = SCM_PROP_SLOTS (ptr);
1318 goto gc_mark_loop;
1319 case scm_tcs_subrs:
1320 break;
1321 case scm_tc7_port:
1322 i = SCM_PTOBNUM (ptr);
1323 if (!(i < scm_numptob))
1324 goto def;
1325 if (SCM_PTAB_ENTRY(ptr))
1326 scm_gc_mark (SCM_PTAB_ENTRY(ptr)->file_name);
1327 if (scm_ptobs[i].mark)
1328 {
1329 ptr = (scm_ptobs[i].mark) (ptr);
1330 goto gc_mark_loop;
1331 }
1332 else
1333 return;
1334 break;
1335 case scm_tc7_smob:
1336 switch (SCM_TYP16 (ptr))
1337 { /* should be faster than going through scm_smobs */
1338 case scm_tc_free_cell:
1339 /* printf("found free_cell %X ", ptr); fflush(stdout); */
1340 case scm_tc16_big:
1341 case scm_tc16_real:
1342 case scm_tc16_complex:
1343 break;
1344 default:
1345 i = SCM_SMOBNUM (ptr);
1346 if (!(i < scm_numsmob))
1347 goto def;
1348 if (scm_smobs[i].mark)
1349 {
1350 ptr = (scm_smobs[i].mark) (ptr);
1351 goto gc_mark_loop;
1352 }
1353 else
1354 return;
1355 }
1356 break;
1357 default:
1358 def:
1359 SCM_MISC_ERROR ("unknown type", SCM_EOL);
1360 }
1361 }
1362 #undef FUNC_NAME
1363
1364
1365 /* Mark a Region Conservatively
1366 */
1367
1368 void
1369 scm_mark_locations (SCM_STACKITEM x[], scm_sizet n)
1370 {
1371 unsigned long m;
1372
1373 for (m = 0; m < n; ++m)
1374 {
1375 SCM obj = * (SCM *) &x[m];
1376 if (SCM_CELLP (obj))
1377 {
1378 SCM_CELLPTR ptr = SCM2PTR (obj);
1379 int i = 0;
1380 int j = scm_n_heap_segs - 1;
1381 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], ptr)
1382 && SCM_PTR_GT (scm_heap_table[j].bounds[1], ptr))
1383 {
1384 while (i <= j)
1385 {
1386 int seg_id;
1387 seg_id = -1;
1388 if ((i == j)
1389 || SCM_PTR_GT (scm_heap_table[i].bounds[1], ptr))
1390 seg_id = i;
1391 else if (SCM_PTR_LE (scm_heap_table[j].bounds[0], ptr))
1392 seg_id = j;
1393 else
1394 {
1395 int k;
1396 k = (i + j) / 2;
1397 if (k == i)
1398 break;
1399 if (SCM_PTR_GT (scm_heap_table[k].bounds[1], ptr))
1400 {
1401 j = k;
1402 ++i;
1403 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], ptr))
1404 continue;
1405 else
1406 break;
1407 }
1408 else if (SCM_PTR_LE (scm_heap_table[k].bounds[0], ptr))
1409 {
1410 i = k;
1411 --j;
1412 if (SCM_PTR_GT (scm_heap_table[j].bounds[1], ptr))
1413 continue;
1414 else
1415 break;
1416 }
1417 }
1418
1419 if (SCM_GC_IN_CARD_HEADERP (ptr))
1420 break;
1421
1422 if (scm_heap_table[seg_id].span == 1
1423 || SCM_DOUBLE_CELLP (obj))
1424 scm_gc_mark (obj);
1425
1426 break;
1427 }
1428 }
1429 }
1430 }
1431 }
1432
1433
1434 /* The function scm_cellp determines whether an SCM value can be regarded as a
1435 * pointer to a cell on the heap. Binary search is used in order to determine
1436 * the heap segment that contains the cell.
1437 */
1438 int
1439 scm_cellp (SCM value)
1440 {
1441 if (SCM_CELLP (value)) {
1442 scm_cell * ptr = SCM2PTR (value);
1443 unsigned int i = 0;
1444 unsigned int j = scm_n_heap_segs - 1;
1445
1446 while (i < j) {
1447 int k = (i + j) / 2;
1448 if (SCM_PTR_GT (scm_heap_table[k].bounds[1], ptr)) {
1449 j = k;
1450 } else if (SCM_PTR_LE (scm_heap_table[k].bounds[0], ptr)) {
1451 i = k + 1;
1452 }
1453 }
1454
1455 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], ptr)
1456 && SCM_PTR_GT (scm_heap_table[i].bounds[1], ptr)
1457 && (scm_heap_table[i].span == 1 || SCM_DOUBLE_CELLP (value))
1458 && !SCM_GC_IN_CARD_HEADERP (ptr)
1459 )
1460 return 1;
1461 else
1462 return 0;
1463 } else
1464 return 0;
1465 }
1466
1467
1468 static void
1469 gc_sweep_freelist_start (scm_freelist_t *freelist)
1470 {
1471 freelist->cells = SCM_EOL;
1472 freelist->left_to_collect = freelist->cluster_size;
1473 freelist->clusters_allocated = 0;
1474 freelist->clusters = SCM_EOL;
1475 freelist->clustertail = &freelist->clusters;
1476 freelist->collected_1 = freelist->collected;
1477 freelist->collected = 0;
1478 }
1479
1480 static void
1481 gc_sweep_freelist_finish (scm_freelist_t *freelist)
1482 {
1483 int collected;
1484 *freelist->clustertail = freelist->cells;
1485 if (!SCM_NULLP (freelist->cells))
1486 {
1487 SCM c = freelist->cells;
1488 SCM_SETCAR (c, SCM_CDR (c));
1489 SCM_SETCDR (c, SCM_EOL);
1490 freelist->collected +=
1491 freelist->span * (freelist->cluster_size - freelist->left_to_collect);
1492 }
1493 scm_gc_cells_collected += freelist->collected;
1494
1495 /* Although freelist->min_yield is used to test freelist->collected
1496 * (which is the local GC yield for freelist), it is adjusted so
1497 * that *total* yield is freelist->min_yield_fraction of total heap
1498 * size. This means that a too low yield is compensated by more
1499 * heap on the list which is currently doing most work, which is
1500 * just what we want.
1501 */
1502 collected = SCM_MAX (freelist->collected_1, freelist->collected);
1503 freelist->grow_heap_p = (collected < freelist->min_yield);
1504 }
1505
1506 #define NEXT_DATA_CELL(ptr, span) \
1507 do { \
1508 scm_cell *nxt__ = CELL_UP ((char *) (ptr) + 1, (span)); \
1509 (ptr) = (SCM_GC_IN_CARD_HEADERP (nxt__) ? \
1510 CELL_UP (SCM_GC_CELL_CARD (nxt__) + SCM_GC_CARD_N_HEADER_CELLS, span) \
1511 : nxt__); \
1512 } while (0)
1513
1514 void
1515 scm_gc_sweep ()
1516 #define FUNC_NAME "scm_gc_sweep"
1517 {
1518 register SCM_CELLPTR ptr;
1519 register SCM nfreelist;
1520 register scm_freelist_t *freelist;
1521 register long m;
1522 register int span;
1523 long i;
1524 scm_sizet seg_size;
1525
1526 m = 0;
1527
1528 gc_sweep_freelist_start (&scm_master_freelist);
1529 gc_sweep_freelist_start (&scm_master_freelist2);
1530
1531 for (i = 0; i < scm_n_heap_segs; i++)
1532 {
1533 register unsigned int left_to_collect;
1534 register scm_sizet j;
1535
1536 /* Unmarked cells go onto the front of the freelist this heap
1537 segment points to. Rather than updating the real freelist
1538 pointer as we go along, we accumulate the new head in
1539 nfreelist. Then, if it turns out that the entire segment is
1540 free, we free (i.e., malloc's free) the whole segment, and
1541 simply don't assign nfreelist back into the real freelist. */
1542 freelist = scm_heap_table[i].freelist;
1543 nfreelist = freelist->cells;
1544 left_to_collect = freelist->left_to_collect;
1545 span = scm_heap_table[i].span;
1546
1547 ptr = CELL_UP (scm_heap_table[i].bounds[0], span);
1548 seg_size = CELL_DN (scm_heap_table[i].bounds[1], span) - ptr;
1549
1550 /* use only data cells in seg_size */
1551 seg_size = (seg_size / SCM_GC_CARD_N_CELLS) * (SCM_GC_CARD_N_DATA_CELLS / span) * span;
1552
1553 scm_gc_cells_swept += seg_size;
1554
1555 for (j = seg_size + span; j -= span; ptr += span)
1556 {
1557 SCM scmptr;
1558
1559 if (SCM_GC_IN_CARD_HEADERP (ptr))
1560 {
1561 SCM_CELLPTR nxt;
1562
1563 /* cheat here */
1564 nxt = ptr;
1565 NEXT_DATA_CELL (nxt, span);
1566 j += span;
1567
1568 ptr = nxt - span;
1569 continue;
1570 }
1571
1572 scmptr = PTR2SCM (ptr);
1573
1574 if (SCM_GCMARKP (scmptr))
1575 continue;
1576
1577 switch SCM_TYP7 (scmptr)
1578 {
1579 case scm_tcs_cons_gloc:
1580 {
1581 /* Dirk:FIXME:: Again, super ugly code: scmptr may be a
1582 * struct or a gloc. See the corresponding comment in
1583 * scm_gc_mark.
1584 */
1585 scm_bits_t word0 = (SCM_CELL_WORD_0 (scmptr)
1586 - scm_tc3_cons_gloc);
1587 /* access as struct */
1588 scm_bits_t * vtable_data = (scm_bits_t *) word0;
1589 if (vtable_data[scm_vtable_index_vcell] == 0)
1590 {
1591 /* Structs need to be freed in a special order.
1592 * This is handled by GC C hooks in struct.c.
1593 */
1594 SCM_SET_STRUCT_GC_CHAIN (scmptr, scm_structs_to_free);
1595 scm_structs_to_free = scmptr;
1596 continue;
1597 }
1598 /* fall through so that scmptr gets collected */
1599 }
1600 break;
1601 case scm_tcs_cons_imcar:
1602 case scm_tcs_cons_nimcar:
1603 case scm_tcs_closures:
1604 case scm_tc7_pws:
1605 break;
1606 case scm_tc7_wvect:
1607 m += (2 + SCM_LENGTH (scmptr)) * sizeof (SCM);
1608 scm_must_free ((char *)(SCM_VELTS (scmptr) - 2));
1609 break;
1610 case scm_tc7_vector:
1611 case scm_tc7_lvector:
1612 #ifdef CCLO
1613 case scm_tc7_cclo:
1614 #endif
1615 m += (SCM_LENGTH (scmptr) * sizeof (SCM));
1616 freechars:
1617 scm_must_free (SCM_CHARS (scmptr));
1618 /* SCM_SETCHARS(scmptr, 0);*/
1619 break;
1620 #ifdef HAVE_ARRAYS
1621 case scm_tc7_bvect:
1622 m += sizeof (long) * ((SCM_HUGE_LENGTH (scmptr) + SCM_LONG_BIT - 1) / SCM_LONG_BIT);
1623 goto freechars;
1624 case scm_tc7_byvect:
1625 m += SCM_HUGE_LENGTH (scmptr) * sizeof (char);
1626 goto freechars;
1627 case scm_tc7_ivect:
1628 case scm_tc7_uvect:
1629 m += SCM_HUGE_LENGTH (scmptr) * sizeof (long);
1630 goto freechars;
1631 case scm_tc7_svect:
1632 m += SCM_HUGE_LENGTH (scmptr) * sizeof (short);
1633 goto freechars;
1634 #ifdef HAVE_LONG_LONGS
1635 case scm_tc7_llvect:
1636 m += SCM_HUGE_LENGTH (scmptr) * sizeof (long_long);
1637 goto freechars;
1638 #endif
1639 case scm_tc7_fvect:
1640 m += SCM_HUGE_LENGTH (scmptr) * sizeof (float);
1641 goto freechars;
1642 case scm_tc7_dvect:
1643 m += SCM_HUGE_LENGTH (scmptr) * sizeof (double);
1644 goto freechars;
1645 case scm_tc7_cvect:
1646 m += SCM_HUGE_LENGTH (scmptr) * 2 * sizeof (double);
1647 goto freechars;
1648 #endif
1649 case scm_tc7_substring:
1650 break;
1651 case scm_tc7_string:
1652 m += SCM_HUGE_LENGTH (scmptr) + 1;
1653 goto freechars;
1654 case scm_tc7_symbol:
1655 m += SCM_LENGTH (scmptr) + 1;
1656 scm_must_free (SCM_CHARS (scmptr));
1657 break;
1658 case scm_tc7_contin:
1659 m += SCM_LENGTH (scmptr) * sizeof (SCM_STACKITEM) + sizeof (scm_contregs);
1660 if (SCM_VELTS (scmptr))
1661 goto freechars;
1662 case scm_tcs_subrs:
1663 /* the various "subrs" (primitives) are never freed */
1664 continue;
1665 case scm_tc7_port:
1666 if SCM_OPENP (scmptr)
1667 {
1668 int k = SCM_PTOBNUM (scmptr);
1669 if (!(k < scm_numptob))
1670 goto sweeperr;
1671 /* Keep "revealed" ports alive. */
1672 if (scm_revealed_count (scmptr) > 0)
1673 continue;
1674 /* Yes, I really do mean scm_ptobs[k].free */
1675 /* rather than ftobs[k].close. .close */
1676 /* is for explicit CLOSE-PORT by user */
1677 m += (scm_ptobs[k].free) (scmptr);
1678 SCM_SETSTREAM (scmptr, 0);
1679 scm_remove_from_port_table (scmptr);
1680 scm_gc_ports_collected++;
1681 SCM_SETAND_CAR (scmptr, ~SCM_OPN);
1682 }
1683 break;
1684 case scm_tc7_smob:
1685 switch SCM_TYP16 (scmptr)
1686 {
1687 case scm_tc_free_cell:
1688 case scm_tc16_real:
1689 break;
1690 #ifdef SCM_BIGDIG
1691 case scm_tc16_big:
1692 m += (SCM_NUMDIGS (scmptr) * SCM_BITSPERDIG / SCM_CHAR_BIT);
1693 goto freechars;
1694 #endif /* def SCM_BIGDIG */
1695 case scm_tc16_complex:
1696 m += 2 * sizeof (double);
1697 goto freechars;
1698 default:
1699 {
1700 int k;
1701 k = SCM_SMOBNUM (scmptr);
1702 if (!(k < scm_numsmob))
1703 goto sweeperr;
1704 m += (scm_smobs[k].free) (scmptr);
1705 break;
1706 }
1707 }
1708 break;
1709 default:
1710 sweeperr:
1711 SCM_MISC_ERROR ("unknown type", SCM_EOL);
1712 }
1713
1714 if (!--left_to_collect)
1715 {
1716 SCM_SETCAR (scmptr, nfreelist);
1717 *freelist->clustertail = scmptr;
1718 freelist->clustertail = SCM_CDRLOC (scmptr);
1719
1720 nfreelist = SCM_EOL;
1721 freelist->collected += span * freelist->cluster_size;
1722 left_to_collect = freelist->cluster_size;
1723 }
1724 else
1725 {
1726 /* Stick the new cell on the front of nfreelist. It's
1727 critical that we mark this cell as freed; otherwise, the
1728 conservative collector might trace it as some other type
1729 of object. */
1730 SCM_SET_CELL_TYPE (scmptr, scm_tc_free_cell);
1731 SCM_SET_FREE_CELL_CDR (scmptr, nfreelist);
1732 nfreelist = scmptr;
1733 }
1734 }
1735
1736 #ifdef GC_FREE_SEGMENTS
1737 if (n == seg_size)
1738 {
1739 register long j;
1740
1741 freelist->heap_size -= seg_size;
1742 free ((char *) scm_heap_table[i].bounds[0]);
1743 scm_heap_table[i].bounds[0] = 0;
1744 for (j = i + 1; j < scm_n_heap_segs; j++)
1745 scm_heap_table[j - 1] = scm_heap_table[j];
1746 scm_n_heap_segs -= 1;
1747 i--; /* We need to scan the segment just moved. */
1748 }
1749 else
1750 #endif /* ifdef GC_FREE_SEGMENTS */
1751 {
1752 /* Update the real freelist pointer to point to the head of
1753 the list of free cells we've built for this segment. */
1754 freelist->cells = nfreelist;
1755 freelist->left_to_collect = left_to_collect;
1756 }
1757
1758 #ifdef GUILE_DEBUG_FREELIST
1759 scm_map_free_list ();
1760 #endif
1761 }
1762
1763 gc_sweep_freelist_finish (&scm_master_freelist);
1764 gc_sweep_freelist_finish (&scm_master_freelist2);
1765
1766 /* When we move to POSIX threads private freelists should probably
1767 be GC-protected instead. */
1768 scm_freelist = SCM_EOL;
1769 scm_freelist2 = SCM_EOL;
1770
1771 scm_cells_allocated = (SCM_HEAP_SIZE - scm_gc_cells_collected);
1772 scm_gc_yield -= scm_cells_allocated;
1773 scm_mallocated -= m;
1774 scm_gc_malloc_collected = m;
1775 }
1776 #undef FUNC_NAME
1777
1778
1779 \f
1780 /* {Front end to malloc}
1781 *
1782 * scm_must_malloc, scm_must_realloc, scm_must_free, scm_done_malloc,
1783 * scm_done_free
1784 *
1785 * These functions provide services comperable to malloc, realloc, and
1786 * free. They are for allocating malloced parts of scheme objects.
1787 * The primary purpose of the front end is to impose calls to gc. */
1788
1789
1790 /* scm_must_malloc
1791 * Return newly malloced storage or throw an error.
1792 *
1793 * The parameter WHAT is a string for error reporting.
1794 * If the threshold scm_mtrigger will be passed by this
1795 * allocation, or if the first call to malloc fails,
1796 * garbage collect -- on the presumption that some objects
1797 * using malloced storage may be collected.
1798 *
1799 * The limit scm_mtrigger may be raised by this allocation.
1800 */
1801 void *
1802 scm_must_malloc (scm_sizet size, const char *what)
1803 {
1804 void *ptr;
1805 unsigned long nm = scm_mallocated + size;
1806
1807 if (nm <= scm_mtrigger)
1808 {
1809 SCM_SYSCALL (ptr = malloc (size));
1810 if (NULL != ptr)
1811 {
1812 scm_mallocated = nm;
1813 #ifdef GUILE_DEBUG_MALLOC
1814 scm_malloc_register (ptr, what);
1815 #endif
1816 return ptr;
1817 }
1818 }
1819
1820 scm_igc (what);
1821
1822 nm = scm_mallocated + size;
1823 SCM_SYSCALL (ptr = malloc (size));
1824 if (NULL != ptr)
1825 {
1826 scm_mallocated = nm;
1827 if (nm > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS) {
1828 if (nm > scm_mtrigger)
1829 scm_mtrigger = nm + nm / 2;
1830 else
1831 scm_mtrigger += scm_mtrigger / 2;
1832 }
1833 #ifdef GUILE_DEBUG_MALLOC
1834 scm_malloc_register (ptr, what);
1835 #endif
1836
1837 return ptr;
1838 }
1839
1840 scm_memory_error (what);
1841 }
1842
1843
1844 /* scm_must_realloc
1845 * is similar to scm_must_malloc.
1846 */
1847 void *
1848 scm_must_realloc (void *where,
1849 scm_sizet old_size,
1850 scm_sizet size,
1851 const char *what)
1852 {
1853 void *ptr;
1854 scm_sizet nm = scm_mallocated + size - old_size;
1855
1856 if (nm <= scm_mtrigger)
1857 {
1858 SCM_SYSCALL (ptr = realloc (where, size));
1859 if (NULL != ptr)
1860 {
1861 scm_mallocated = nm;
1862 #ifdef GUILE_DEBUG_MALLOC
1863 scm_malloc_reregister (where, ptr, what);
1864 #endif
1865 return ptr;
1866 }
1867 }
1868
1869 scm_igc (what);
1870
1871 nm = scm_mallocated + size - old_size;
1872 SCM_SYSCALL (ptr = realloc (where, size));
1873 if (NULL != ptr)
1874 {
1875 scm_mallocated = nm;
1876 if (nm > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS) {
1877 if (nm > scm_mtrigger)
1878 scm_mtrigger = nm + nm / 2;
1879 else
1880 scm_mtrigger += scm_mtrigger / 2;
1881 }
1882 #ifdef GUILE_DEBUG_MALLOC
1883 scm_malloc_reregister (where, ptr, what);
1884 #endif
1885 return ptr;
1886 }
1887
1888 scm_memory_error (what);
1889 }
1890
1891
1892 void
1893 scm_must_free (void *obj)
1894 #define FUNC_NAME "scm_must_free"
1895 {
1896 #ifdef GUILE_DEBUG_MALLOC
1897 scm_malloc_unregister (obj);
1898 #endif
1899 if (obj)
1900 free (obj);
1901 else
1902 SCM_MISC_ERROR ("freeing NULL pointer", SCM_EOL);
1903 }
1904 #undef FUNC_NAME
1905
1906
1907 /* Announce that there has been some malloc done that will be freed
1908 * during gc. A typical use is for a smob that uses some malloced
1909 * memory but can not get it from scm_must_malloc (for whatever
1910 * reason). When a new object of this smob is created you call
1911 * scm_done_malloc with the size of the object. When your smob free
1912 * function is called, be sure to include this size in the return
1913 * value.
1914 *
1915 * If you can't actually free the memory in the smob free function,
1916 * for whatever reason (like reference counting), you still can (and
1917 * should) report the amount of memory freed when you actually free it.
1918 * Do it by calling scm_done_malloc with the _negated_ size. Clever,
1919 * eh? Or even better, call scm_done_free. */
1920
1921 void
1922 scm_done_malloc (long size)
1923 {
1924 scm_mallocated += size;
1925
1926 if (scm_mallocated > scm_mtrigger)
1927 {
1928 scm_igc ("foreign mallocs");
1929 if (scm_mallocated > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS)
1930 {
1931 if (scm_mallocated > scm_mtrigger)
1932 scm_mtrigger = scm_mallocated + scm_mallocated / 2;
1933 else
1934 scm_mtrigger += scm_mtrigger / 2;
1935 }
1936 }
1937 }
1938
1939 void
1940 scm_done_free (long size)
1941 {
1942 scm_mallocated -= size;
1943 }
1944
1945
1946 \f
1947 /* {Heap Segments}
1948 *
1949 * Each heap segment is an array of objects of a particular size.
1950 * Every segment has an associated (possibly shared) freelist.
1951 * A table of segment records is kept that records the upper and
1952 * lower extents of the segment; this is used during the conservative
1953 * phase of gc to identify probably gc roots (because they point
1954 * into valid segments at reasonable offsets). */
1955
1956 /* scm_expmem
1957 * is true if the first segment was smaller than INIT_HEAP_SEG.
1958 * If scm_expmem is set to one, subsequent segment allocations will
1959 * allocate segments of size SCM_EXPHEAP(scm_heap_size).
1960 */
1961 int scm_expmem = 0;
1962
1963 scm_sizet scm_max_segment_size;
1964
1965 /* scm_heap_org
1966 * is the lowest base address of any heap segment.
1967 */
1968 SCM_CELLPTR scm_heap_org;
1969
1970 scm_heap_seg_data_t * scm_heap_table = 0;
1971 static unsigned int heap_segment_table_size = 0;
1972 int scm_n_heap_segs = 0;
1973
1974 /* init_heap_seg
1975 * initializes a new heap segment and returns the number of objects it contains.
1976 *
1977 * The segment origin and segment size in bytes are input parameters.
1978 * The freelist is both input and output.
1979 *
1980 * This function presumes that the scm_heap_table has already been expanded
1981 * to accomodate a new segment record and that the markbit space was reserved
1982 * for all the cards in this segment.
1983 */
1984
1985 #define INIT_CARD(card, span) \
1986 do { \
1987 SCM_GC_CARD_BVEC (card) = get_bvec (); \
1988 if ((span) == 2) \
1989 SCM_GC_SET_CARD_DOUBLECELL (card); \
1990 } while (0)
1991
1992 static scm_sizet
1993 init_heap_seg (SCM_CELLPTR seg_org, scm_sizet size, scm_freelist_t *freelist)
1994 {
1995 register SCM_CELLPTR ptr;
1996 SCM_CELLPTR seg_end;
1997 int new_seg_index;
1998 int n_new_cells;
1999 int span = freelist->span;
2000
2001 if (seg_org == NULL)
2002 return 0;
2003
2004 /* Align the begin ptr up.
2005 */
2006 ptr = SCM_GC_CARD_UP (seg_org);
2007
2008 /* Compute the ceiling on valid object pointers w/in this segment.
2009 */
2010 seg_end = SCM_GC_CARD_DOWN ((char *)seg_org + size);
2011
2012 /* Find the right place and insert the segment record.
2013 *
2014 */
2015 for (new_seg_index = 0;
2016 ( (new_seg_index < scm_n_heap_segs)
2017 && SCM_PTR_LE (scm_heap_table[new_seg_index].bounds[0], seg_org));
2018 new_seg_index++)
2019 ;
2020
2021 {
2022 int i;
2023 for (i = scm_n_heap_segs; i > new_seg_index; --i)
2024 scm_heap_table[i] = scm_heap_table[i - 1];
2025 }
2026
2027 ++scm_n_heap_segs;
2028
2029 scm_heap_table[new_seg_index].span = span;
2030 scm_heap_table[new_seg_index].freelist = freelist;
2031 scm_heap_table[new_seg_index].bounds[0] = ptr;
2032 scm_heap_table[new_seg_index].bounds[1] = seg_end;
2033
2034 /*n_new_cells*/
2035 n_new_cells = seg_end - ptr;
2036
2037 freelist->heap_size += n_new_cells;
2038
2039 /* Partition objects in this segment into clusters */
2040 {
2041 SCM clusters;
2042 SCM *clusterp = &clusters;
2043
2044 NEXT_DATA_CELL (ptr, span);
2045 while (ptr < seg_end)
2046 {
2047 scm_cell *nxt = ptr;
2048 scm_cell *prv = NULL;
2049 scm_cell *last_card = NULL;
2050 int n_data_cells = (SCM_GC_CARD_N_DATA_CELLS / span) * SCM_CARDS_PER_CLUSTER - 1;
2051 NEXT_DATA_CELL(nxt, span);
2052
2053 /* Allocate cluster spine
2054 */
2055 *clusterp = PTR2SCM (ptr);
2056 SCM_SETCAR (*clusterp, PTR2SCM (nxt));
2057 clusterp = SCM_CDRLOC (*clusterp);
2058 ptr = nxt;
2059
2060 while (n_data_cells--)
2061 {
2062 scm_cell *card = SCM_GC_CELL_CARD (ptr);
2063 SCM scmptr = PTR2SCM (ptr);
2064 nxt = ptr;
2065 NEXT_DATA_CELL (nxt, span);
2066 prv = ptr;
2067
2068 if (card != last_card)
2069 {
2070 INIT_CARD (card, span);
2071 last_card = card;
2072 }
2073
2074 SCM_SET_CELL_TYPE (scmptr, scm_tc_free_cell);
2075 SCM_SETCDR (scmptr, PTR2SCM (nxt));
2076
2077 ptr = nxt;
2078 }
2079
2080 SCM_SET_FREE_CELL_CDR (PTR2SCM (prv), SCM_EOL);
2081 }
2082
2083 /* sanity check */
2084 {
2085 scm_cell *ref = seg_end;
2086 NEXT_DATA_CELL (ref, span);
2087 if (ref != ptr)
2088 /* [cmm] looks like the segment size doesn't divide cleanly by
2089 cluster size. bad cmm! */
2090 abort();
2091 }
2092
2093 /* Patch up the last cluster pointer in the segment
2094 * to join it to the input freelist.
2095 */
2096 *clusterp = freelist->clusters;
2097 freelist->clusters = clusters;
2098 }
2099
2100 #ifdef DEBUGINFO
2101 fprintf (stderr, "H");
2102 #endif
2103 return size;
2104 }
2105
2106 static scm_sizet
2107 round_to_cluster_size (scm_freelist_t *freelist, scm_sizet len)
2108 {
2109 scm_sizet cluster_size_in_bytes = CLUSTER_SIZE_IN_BYTES (freelist);
2110
2111 return
2112 (len + cluster_size_in_bytes - 1) / cluster_size_in_bytes * cluster_size_in_bytes
2113 + ALIGNMENT_SLACK (freelist);
2114 }
2115
2116 static void
2117 alloc_some_heap (scm_freelist_t *freelist, policy_on_error error_policy)
2118 #define FUNC_NAME "alloc_some_heap"
2119 {
2120 SCM_CELLPTR ptr;
2121 long len;
2122
2123 if (scm_gc_heap_lock)
2124 {
2125 /* Critical code sections (such as the garbage collector) aren't
2126 * supposed to add heap segments.
2127 */
2128 fprintf (stderr, "alloc_some_heap: Can not extend locked heap.\n");
2129 abort ();
2130 }
2131
2132 if (scm_n_heap_segs == heap_segment_table_size)
2133 {
2134 /* We have to expand the heap segment table to have room for the new
2135 * segment. Do not yet increment scm_n_heap_segs -- that is done by
2136 * init_heap_seg only if the allocation of the segment itself succeeds.
2137 */
2138 unsigned int new_table_size = scm_n_heap_segs + 1;
2139 size_t size = new_table_size * sizeof (scm_heap_seg_data_t);
2140 scm_heap_seg_data_t * new_heap_table;
2141
2142 SCM_SYSCALL (new_heap_table = ((scm_heap_seg_data_t *)
2143 realloc ((char *)scm_heap_table, size)));
2144 if (!new_heap_table)
2145 {
2146 if (error_policy == abort_on_error)
2147 {
2148 fprintf (stderr, "alloc_some_heap: Could not grow heap segment table.\n");
2149 abort ();
2150 }
2151 else
2152 {
2153 return;
2154 }
2155 }
2156 else
2157 {
2158 scm_heap_table = new_heap_table;
2159 heap_segment_table_size = new_table_size;
2160 }
2161 }
2162
2163 /* Pick a size for the new heap segment.
2164 * The rule for picking the size of a segment is explained in
2165 * gc.h
2166 */
2167 {
2168 /* Assure that the new segment is predicted to be large enough.
2169 *
2170 * New yield should at least equal GC fraction of new heap size, i.e.
2171 *
2172 * y + dh > f * (h + dh)
2173 *
2174 * y : yield
2175 * f : min yield fraction
2176 * h : heap size
2177 * dh : size of new heap segment
2178 *
2179 * This gives dh > (f * h - y) / (1 - f)
2180 */
2181 int f = freelist->min_yield_fraction;
2182 long h = SCM_HEAP_SIZE;
2183 long min_cells = (f * h - 100 * (long) scm_gc_yield) / (99 - f);
2184 len = SCM_EXPHEAP (freelist->heap_size);
2185 #ifdef DEBUGINFO
2186 fprintf (stderr, "(%d < %d)", len, min_cells);
2187 #endif
2188 if (len < min_cells)
2189 len = min_cells + freelist->cluster_size;
2190 len *= sizeof (scm_cell);
2191 /* force new sampling */
2192 freelist->collected = LONG_MAX;
2193 }
2194
2195 if (len > scm_max_segment_size)
2196 len = scm_max_segment_size;
2197
2198 {
2199 scm_sizet smallest;
2200
2201 smallest = CLUSTER_SIZE_IN_BYTES (freelist);
2202
2203 if (len < smallest)
2204 len = smallest;
2205
2206 /* Allocate with decaying ambition. */
2207 while ((len >= SCM_MIN_HEAP_SEG_SIZE)
2208 && (len >= smallest))
2209 {
2210 scm_sizet rounded_len = round_to_cluster_size (freelist, len);
2211 SCM_SYSCALL (ptr = (SCM_CELLPTR) malloc (rounded_len));
2212 if (ptr)
2213 {
2214 init_heap_seg (ptr, rounded_len, freelist);
2215 return;
2216 }
2217 len /= 2;
2218 }
2219 }
2220
2221 if (error_policy == abort_on_error)
2222 {
2223 fprintf (stderr, "alloc_some_heap: Could not grow heap.\n");
2224 abort ();
2225 }
2226 }
2227 #undef FUNC_NAME
2228
2229
2230 SCM_DEFINE (scm_unhash_name, "unhash-name", 1, 0, 0,
2231 (SCM name),
2232 "")
2233 #define FUNC_NAME s_scm_unhash_name
2234 {
2235 int x;
2236 int bound;
2237 SCM_VALIDATE_SYMBOL (1,name);
2238 SCM_DEFER_INTS;
2239 bound = scm_n_heap_segs;
2240 for (x = 0; x < bound; ++x)
2241 {
2242 SCM_CELLPTR p;
2243 SCM_CELLPTR pbound;
2244 p = scm_heap_table[x].bounds[0];
2245 pbound = scm_heap_table[x].bounds[1];
2246 while (p < pbound)
2247 {
2248 SCM cell = PTR2SCM (p);
2249 if (SCM_TYP3 (cell) == scm_tc3_cons_gloc)
2250 {
2251 /* Dirk:FIXME:: Again, super ugly code: cell may be a gloc or a
2252 * struct cell. See the corresponding comment in scm_gc_mark.
2253 */
2254 scm_bits_t word0 = SCM_CELL_WORD_0 (cell) - scm_tc3_cons_gloc;
2255 SCM gloc_car = SCM_PACK (word0); /* access as gloc */
2256 SCM vcell = SCM_CELL_OBJECT_1 (gloc_car);
2257 if ((SCM_EQ_P (name, SCM_BOOL_T) || SCM_EQ_P (SCM_CAR (gloc_car), name))
2258 && (SCM_UNPACK (vcell) != 0) && (SCM_UNPACK (vcell) != 1))
2259 {
2260 SCM_SET_CELL_OBJECT_0 (cell, name);
2261 }
2262 }
2263 ++p;
2264 }
2265 }
2266 SCM_ALLOW_INTS;
2267 return name;
2268 }
2269 #undef FUNC_NAME
2270
2271
2272 \f
2273 /* {GC Protection Helper Functions}
2274 */
2275
2276
2277 void
2278 scm_remember (SCM *ptr)
2279 { /* empty */ }
2280
2281
2282 /*
2283 These crazy functions prevent garbage collection
2284 of arguments after the first argument by
2285 ensuring they remain live throughout the
2286 function because they are used in the last
2287 line of the code block.
2288 It'd be better to have a nice compiler hint to
2289 aid the conservative stack-scanning GC. --03/09/00 gjb */
2290 SCM
2291 scm_return_first (SCM elt, ...)
2292 {
2293 return elt;
2294 }
2295
2296 int
2297 scm_return_first_int (int i, ...)
2298 {
2299 return i;
2300 }
2301
2302
2303 SCM
2304 scm_permanent_object (SCM obj)
2305 {
2306 SCM_REDEFER_INTS;
2307 scm_permobjs = scm_cons (obj, scm_permobjs);
2308 SCM_REALLOW_INTS;
2309 return obj;
2310 }
2311
2312
2313 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
2314 other references are dropped, until the object is unprotected by calling
2315 scm_unprotect_object (OBJ). Calls to scm_protect/unprotect_object nest,
2316 i. e. it is possible to protect the same object several times, but it is
2317 necessary to unprotect the object the same number of times to actually get
2318 the object unprotected. It is an error to unprotect an object more often
2319 than it has been protected before. The function scm_protect_object returns
2320 OBJ.
2321 */
2322
2323 /* Implementation note: For every object X, there is a counter which
2324 scm_protect_object(X) increments and scm_unprotect_object(X) decrements.
2325 */
2326
2327 SCM
2328 scm_protect_object (SCM obj)
2329 {
2330 SCM handle;
2331
2332 /* This critical section barrier will be replaced by a mutex. */
2333 SCM_REDEFER_INTS;
2334
2335 handle = scm_hashq_create_handle_x (scm_protects, obj, SCM_MAKINUM (0));
2336 SCM_SETCDR (handle, SCM_MAKINUM (SCM_INUM (SCM_CDR (handle)) + 1));
2337
2338 SCM_REALLOW_INTS;
2339
2340 return obj;
2341 }
2342
2343
2344 /* Remove any protection for OBJ established by a prior call to
2345 scm_protect_object. This function returns OBJ.
2346
2347 See scm_protect_object for more information. */
2348 SCM
2349 scm_unprotect_object (SCM obj)
2350 {
2351 SCM handle;
2352
2353 /* This critical section barrier will be replaced by a mutex. */
2354 SCM_REDEFER_INTS;
2355
2356 handle = scm_hashq_get_handle (scm_protects, obj);
2357
2358 if (SCM_IMP (handle))
2359 {
2360 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
2361 abort ();
2362 }
2363 else
2364 {
2365 unsigned long int count = SCM_INUM (SCM_CDR (handle)) - 1;
2366 if (count == 0)
2367 scm_hashq_remove_x (scm_protects, obj);
2368 else
2369 SCM_SETCDR (handle, SCM_MAKINUM (count));
2370 }
2371
2372 SCM_REALLOW_INTS;
2373
2374 return obj;
2375 }
2376
2377 int terminating;
2378
2379 /* called on process termination. */
2380 #ifdef HAVE_ATEXIT
2381 static void
2382 cleanup (void)
2383 #else
2384 #ifdef HAVE_ON_EXIT
2385 extern int on_exit (void (*procp) (), int arg);
2386
2387 static void
2388 cleanup (int status, void *arg)
2389 #else
2390 #error Dont know how to setup a cleanup handler on your system.
2391 #endif
2392 #endif
2393 {
2394 terminating = 1;
2395 scm_flush_all_ports ();
2396 }
2397
2398 \f
2399 static int
2400 make_initial_segment (scm_sizet init_heap_size, scm_freelist_t *freelist)
2401 {
2402 scm_sizet rounded_size = round_to_cluster_size (freelist, init_heap_size);
2403
2404 if (!init_heap_seg ((SCM_CELLPTR) malloc (rounded_size),
2405 rounded_size,
2406 freelist))
2407 {
2408 rounded_size = round_to_cluster_size (freelist, SCM_HEAP_SEG_SIZE);
2409 if (!init_heap_seg ((SCM_CELLPTR) malloc (rounded_size),
2410 rounded_size,
2411 freelist))
2412 return 1;
2413 }
2414 else
2415 scm_expmem = 1;
2416
2417 if (freelist->min_yield_fraction)
2418 freelist->min_yield = (freelist->heap_size * freelist->min_yield_fraction
2419 / 100);
2420 freelist->grow_heap_p = (freelist->heap_size < freelist->min_yield);
2421
2422 return 0;
2423 }
2424
2425 \f
2426 static void
2427 init_freelist (scm_freelist_t *freelist,
2428 int span,
2429 int cluster_size,
2430 int min_yield)
2431 {
2432 freelist->clusters = SCM_EOL;
2433 freelist->cluster_size = cluster_size + 1;
2434 freelist->left_to_collect = 0;
2435 freelist->clusters_allocated = 0;
2436 freelist->min_yield = 0;
2437 freelist->min_yield_fraction = min_yield;
2438 freelist->span = span;
2439 freelist->collected = 0;
2440 freelist->collected_1 = 0;
2441 freelist->heap_size = 0;
2442 }
2443
2444 int
2445 scm_init_storage (scm_sizet init_heap_size_1, int gc_trigger_1,
2446 scm_sizet init_heap_size_2, int gc_trigger_2,
2447 scm_sizet max_segment_size)
2448 {
2449 scm_sizet j;
2450
2451 if (!init_heap_size_1)
2452 init_heap_size_1 = scm_default_init_heap_size_1;
2453 if (!init_heap_size_2)
2454 init_heap_size_2 = scm_default_init_heap_size_2;
2455
2456 j = SCM_NUM_PROTECTS;
2457 while (j)
2458 scm_sys_protects[--j] = SCM_BOOL_F;
2459 scm_block_gc = 1;
2460
2461 scm_freelist = SCM_EOL;
2462 scm_freelist2 = SCM_EOL;
2463 init_freelist (&scm_master_freelist,
2464 1, SCM_CLUSTER_SIZE_1,
2465 gc_trigger_1 ? gc_trigger_1 : scm_default_min_yield_1);
2466 init_freelist (&scm_master_freelist2,
2467 2, SCM_CLUSTER_SIZE_2,
2468 gc_trigger_2 ? gc_trigger_2 : scm_default_min_yield_2);
2469 scm_max_segment_size
2470 = max_segment_size ? max_segment_size : scm_default_max_segment_size;
2471
2472 scm_expmem = 0;
2473
2474 j = SCM_HEAP_SEG_SIZE;
2475 scm_mtrigger = SCM_INIT_MALLOC_LIMIT;
2476 scm_heap_table = ((scm_heap_seg_data_t *)
2477 scm_must_malloc (sizeof (scm_heap_seg_data_t) * 2, "hplims"));
2478 heap_segment_table_size = 2;
2479
2480 mark_space_ptr = &mark_space_head;
2481
2482 if (make_initial_segment (init_heap_size_1, &scm_master_freelist) ||
2483 make_initial_segment (init_heap_size_2, &scm_master_freelist2))
2484 return 1;
2485
2486 /* scm_hplims[0] can change. do not remove scm_heap_org */
2487 scm_heap_org = CELL_UP (scm_heap_table[0].bounds[0], 1);
2488
2489 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
2490 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
2491 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
2492 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
2493 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
2494
2495 /* Initialise the list of ports. */
2496 scm_port_table = (scm_port **)
2497 malloc (sizeof (scm_port *) * scm_port_table_room);
2498 if (!scm_port_table)
2499 return 1;
2500
2501 #ifdef HAVE_ATEXIT
2502 atexit (cleanup);
2503 #else
2504 #ifdef HAVE_ON_EXIT
2505 on_exit (cleanup, 0);
2506 #endif
2507 #endif
2508
2509 scm_undefineds = scm_cons (SCM_UNDEFINED, SCM_EOL);
2510 SCM_SETCDR (scm_undefineds, scm_undefineds);
2511
2512 scm_listofnull = scm_cons (SCM_EOL, SCM_EOL);
2513 scm_nullstr = scm_makstr (0L, 0);
2514 scm_nullvect = scm_make_vector (SCM_INUM0, SCM_UNDEFINED);
2515 scm_symhash = scm_make_vector (SCM_MAKINUM (scm_symhash_dim), SCM_EOL);
2516 scm_weak_symhash = scm_make_weak_key_hash_table (SCM_MAKINUM (scm_symhash_dim));
2517 scm_symhash_vars = scm_make_vector (SCM_MAKINUM (scm_symhash_dim), SCM_EOL);
2518 scm_stand_in_procs = SCM_EOL;
2519 scm_permobjs = SCM_EOL;
2520 scm_protects = scm_make_vector (SCM_MAKINUM (31), SCM_EOL);
2521 scm_sysintern ("most-positive-fixnum", SCM_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
2522 scm_sysintern ("most-negative-fixnum", SCM_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
2523 #ifdef SCM_BIGDIG
2524 scm_sysintern ("bignum-radix", SCM_MAKINUM (SCM_BIGRAD));
2525 #endif
2526
2527 return 0;
2528 }
2529
2530 \f
2531
2532 SCM scm_after_gc_hook;
2533
2534 #if (SCM_DEBUG_DEPRECATED == 0)
2535 static SCM scm_gc_vcell; /* the vcell for gc-thunk. */
2536 #endif /* SCM_DEBUG_DEPRECATED == 0 */
2537 static SCM gc_async;
2538
2539
2540 /* The function gc_async_thunk causes the execution of the after-gc-hook. It
2541 * is run after the gc, as soon as the asynchronous events are handled by the
2542 * evaluator.
2543 */
2544 static SCM
2545 gc_async_thunk (void)
2546 {
2547 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
2548
2549 #if (SCM_DEBUG_DEPRECATED == 0)
2550
2551 /* The following code will be removed in Guile 1.5. */
2552 if (SCM_NFALSEP (scm_gc_vcell))
2553 {
2554 SCM proc = SCM_CDR (scm_gc_vcell);
2555
2556 if (SCM_NFALSEP (proc) && !SCM_UNBNDP (proc))
2557 scm_apply (proc, SCM_EOL, SCM_EOL);
2558 }
2559
2560 #endif /* SCM_DEBUG_DEPRECATED == 0 */
2561
2562 return SCM_UNSPECIFIED;
2563 }
2564
2565
2566 /* The function mark_gc_async is run by the scm_after_gc_c_hook at the end of
2567 * the garbage collection. The only purpose of this function is to mark the
2568 * gc_async (which will eventually lead to the execution of the
2569 * gc_async_thunk).
2570 */
2571 static void *
2572 mark_gc_async (void * hook_data, void *func_data, void *data)
2573 {
2574 scm_system_async_mark (gc_async);
2575 return NULL;
2576 }
2577
2578
2579 void
2580 scm_init_gc ()
2581 {
2582 SCM after_gc_thunk;
2583
2584 scm_after_gc_hook = scm_create_hook ("after-gc-hook", 0);
2585
2586 #if (SCM_DEBUG_DEPRECATED == 0)
2587 scm_gc_vcell = scm_sysintern ("gc-thunk", SCM_BOOL_F);
2588 #endif /* SCM_DEBUG_DEPRECATED == 0 */
2589 /* Dirk:FIXME:: We don't really want a binding here. */
2590 after_gc_thunk = scm_make_gsubr ("%gc-thunk", 0, 0, 0, gc_async_thunk);
2591 gc_async = scm_system_async (after_gc_thunk);
2592
2593 scm_c_hook_add (&scm_after_gc_c_hook, mark_gc_async, NULL, 0);
2594
2595 #include "libguile/gc.x"
2596 }
2597
2598 /*
2599 Local Variables:
2600 c-file-style: "gnu"
2601 End:
2602 */