remove define-syntax-macro from boot-9.scm
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 ;; A variant of string-fill! that we keep for compatability
83 ;;
84 (define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87 \f
88
89 ;;; {EVAL-CASE}
90 ;;;
91
92 ;; (eval-case ((situation*) forms)* (else forms)?)
93 ;;
94 ;; Evaluate certain code based on the situation that eval-case is used
95 ;; in. There are three situations defined. `load-toplevel' triggers for
96 ;; code evaluated at the top-level, for example from the REPL or when
97 ;; loading a file. `compile-toplevel' triggers for code compiled at the
98 ;; toplevel. `execute' triggers during execution of code not at the top
99 ;; level.
100
101 (define eval-case
102 (procedure->memoizing-macro
103 (lambda (exp env)
104 (define (toplevel-env? env)
105 (or (not (pair? env)) (not (pair? (car env)))))
106 (define (syntax)
107 (error "syntax error in eval-case"))
108 (let loop ((clauses (cdr exp)))
109 (cond
110 ((null? clauses)
111 #f)
112 ((not (list? (car clauses)))
113 (syntax))
114 ((eq? 'else (caar clauses))
115 (or (null? (cdr clauses))
116 (syntax))
117 (cons 'begin (cdar clauses)))
118 ((not (list? (caar clauses)))
119 (syntax))
120 ((and (toplevel-env? env)
121 (memq 'load-toplevel (caar clauses)))
122 (cons 'begin (cdar clauses)))
123 (else
124 (loop (cdr clauses))))))))
125
126 \f
127
128 ;; Before compiling, make sure any symbols are resolved in the (guile)
129 ;; module, the primary location of those symbols, rather than in
130 ;; (guile-user), the default module that we compile in.
131
132 (eval-case
133 ((compile-toplevel)
134 (set-current-module (resolve-module '(guile)))))
135
136 ;;; {Defmacros}
137 ;;;
138 ;;; Depends on: features, eval-case
139 ;;;
140
141 (define macro-table (make-weak-key-hash-table 61))
142 (define xformer-table (make-weak-key-hash-table 61))
143
144 (define (defmacro? m) (hashq-ref macro-table m))
145 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
146 (define (defmacro-transformer m) (hashq-ref xformer-table m))
147 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
148
149 (define defmacro:transformer
150 (lambda (f)
151 (let* ((xform (lambda (exp env)
152 (copy-tree (apply f (cdr exp)))))
153 (a (procedure->memoizing-macro xform)))
154 (assert-defmacro?! a)
155 (set-defmacro-transformer! a f)
156 a)))
157
158
159 (define defmacro
160 (let ((defmacro-transformer
161 (lambda (name parms . body)
162 (let ((transformer `(lambda ,parms ,@body)))
163 `(eval-case
164 ((load-toplevel compile-toplevel)
165 (define ,name (defmacro:transformer ,transformer)))
166 (else
167 (error "defmacro can only be used at the top level")))))))
168 (defmacro:transformer defmacro-transformer)))
169
170
171 ;; XXX - should the definition of the car really be looked up in the
172 ;; current module?
173
174 (define (macroexpand-1 e)
175 (cond
176 ((pair? e) (let* ((a (car e))
177 (val (and (symbol? a) (local-ref (list a)))))
178 (if (defmacro? val)
179 (apply (defmacro-transformer val) (cdr e))
180 e)))
181 (#t e)))
182
183 (define (macroexpand e)
184 (cond
185 ((pair? e) (let* ((a (car e))
186 (val (and (symbol? a) (local-ref (list a)))))
187 (if (defmacro? val)
188 (macroexpand (apply (defmacro-transformer val) (cdr e)))
189 e)))
190 (#t e)))
191
192 (provide 'defmacro)
193
194 \f
195
196 ;;; {Deprecation}
197 ;;;
198 ;;; Depends on: defmacro
199 ;;;
200
201 (defmacro begin-deprecated forms
202 (if (include-deprecated-features)
203 `(begin ,@forms)
204 (begin)))
205
206 \f
207
208 ;;; {R4RS compliance}
209 ;;;
210
211 (primitive-load-path "ice-9/r4rs.scm")
212
213 \f
214
215 ;;; {Simple Debugging Tools}
216 ;;;
217
218 ;; peek takes any number of arguments, writes them to the
219 ;; current ouput port, and returns the last argument.
220 ;; It is handy to wrap around an expression to look at
221 ;; a value each time is evaluated, e.g.:
222 ;;
223 ;; (+ 10 (troublesome-fn))
224 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
225 ;;
226
227 (define (peek . stuff)
228 (newline)
229 (display ";;; ")
230 (write stuff)
231 (newline)
232 (car (last-pair stuff)))
233
234 (define pk peek)
235
236 (define (warn . stuff)
237 (with-output-to-port (current-error-port)
238 (lambda ()
239 (newline)
240 (display ";;; WARNING ")
241 (display stuff)
242 (newline)
243 (car (last-pair stuff)))))
244
245 \f
246
247 ;;; {Trivial Functions}
248 ;;;
249
250 (define (identity x) x)
251 (define (and=> value procedure) (and value (procedure value)))
252 (define call/cc call-with-current-continuation)
253
254 ;;; apply-to-args is functionally redundant with apply and, worse,
255 ;;; is less general than apply since it only takes two arguments.
256 ;;;
257 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
258 ;;; perform binding in many circumstances when the "let" family of
259 ;;; of forms don't cut it. E.g.:
260 ;;;
261 ;;; (apply-to-args (return-3d-mouse-coords)
262 ;;; (lambda (x y z)
263 ;;; ...))
264 ;;;
265
266 (define (apply-to-args args fn) (apply fn args))
267
268 (defmacro false-if-exception (expr)
269 `(catch #t (lambda () ,expr)
270 (lambda args #f)))
271
272 \f
273
274 ;;; {General Properties}
275 ;;;
276
277 ;; This is a more modern interface to properties. It will replace all
278 ;; other property-like things eventually.
279
280 (define (make-object-property)
281 (let ((prop (primitive-make-property #f)))
282 (make-procedure-with-setter
283 (lambda (obj) (primitive-property-ref prop obj))
284 (lambda (obj val) (primitive-property-set! prop obj val)))))
285
286 \f
287
288 ;;; {Symbol Properties}
289 ;;;
290
291 (define (symbol-property sym prop)
292 (let ((pair (assoc prop (symbol-pref sym))))
293 (and pair (cdr pair))))
294
295 (define (set-symbol-property! sym prop val)
296 (let ((pair (assoc prop (symbol-pref sym))))
297 (if pair
298 (set-cdr! pair val)
299 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
300
301 (define (symbol-property-remove! sym prop)
302 (let ((pair (assoc prop (symbol-pref sym))))
303 (if pair
304 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
305
306 \f
307
308 ;;; {Arrays}
309 ;;;
310
311 (define (array-shape a)
312 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
313 (array-dimensions a)))
314
315 \f
316
317 ;;; {Keywords}
318 ;;;
319
320 (define (kw-arg-ref args kw)
321 (let ((rem (member kw args)))
322 (and rem (pair? (cdr rem)) (cadr rem))))
323
324 \f
325
326 ;;; {Structs}
327 ;;;
328
329 (define (struct-layout s)
330 (struct-ref (struct-vtable s) vtable-index-layout))
331
332 \f
333
334 ;;; {Records}
335 ;;;
336
337 ;; Printing records: by default, records are printed as
338 ;;
339 ;; #<type-name field1: val1 field2: val2 ...>
340 ;;
341 ;; You can change that by giving a custom printing function to
342 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
343 ;; will be called like
344 ;;
345 ;; (<printer> object port)
346 ;;
347 ;; It should print OBJECT to PORT.
348
349 (define (inherit-print-state old-port new-port)
350 (if (get-print-state old-port)
351 (port-with-print-state new-port (get-print-state old-port))
352 new-port))
353
354 ;; 0: type-name, 1: fields
355 (define record-type-vtable
356 (make-vtable-vtable "prpr" 0
357 (lambda (s p)
358 (cond ((eq? s record-type-vtable)
359 (display "#<record-type-vtable>" p))
360 (else
361 (display "#<record-type " p)
362 (display (record-type-name s) p)
363 (display ">" p))))))
364
365 (define (record-type? obj)
366 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
367
368 (define (make-record-type type-name fields . opt)
369 (let ((printer-fn (and (pair? opt) (car opt))))
370 (let ((struct (make-struct record-type-vtable 0
371 (make-struct-layout
372 (apply string-append
373 (map (lambda (f) "pw") fields)))
374 (or printer-fn
375 (lambda (s p)
376 (display "#<" p)
377 (display type-name p)
378 (let loop ((fields fields)
379 (off 0))
380 (cond
381 ((not (null? fields))
382 (display " " p)
383 (display (car fields) p)
384 (display ": " p)
385 (display (struct-ref s off) p)
386 (loop (cdr fields) (+ 1 off)))))
387 (display ">" p)))
388 type-name
389 (copy-tree fields))))
390 ;; Temporary solution: Associate a name to the record type descriptor
391 ;; so that the object system can create a wrapper class for it.
392 (set-struct-vtable-name! struct (if (symbol? type-name)
393 type-name
394 (string->symbol type-name)))
395 struct)))
396
397 (define (record-type-name obj)
398 (if (record-type? obj)
399 (struct-ref obj vtable-offset-user)
400 (error 'not-a-record-type obj)))
401
402 (define (record-type-fields obj)
403 (if (record-type? obj)
404 (struct-ref obj (+ 1 vtable-offset-user))
405 (error 'not-a-record-type obj)))
406
407 (define (record-constructor rtd . opt)
408 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
409 (primitive-eval
410 `(lambda ,field-names
411 (make-struct ',rtd 0 ,@(map (lambda (f)
412 (if (memq f field-names)
413 f
414 #f))
415 (record-type-fields rtd)))))))
416
417 (define (record-predicate rtd)
418 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
419
420 (define (%record-type-error rtd obj) ;; private helper
421 (or (eq? rtd (record-type-descriptor obj))
422 (scm-error 'wrong-type-arg "%record-type-check"
423 "Wrong type record (want `~S'): ~S"
424 (list (record-type-name rtd) obj)
425 #f)))
426
427 (define (record-accessor rtd field-name)
428 (let ((pos (list-index (record-type-fields rtd) field-name)))
429 (if (not pos)
430 (error 'no-such-field field-name))
431 (lambda (obj)
432 (if (eq? (struct-vtable obj) rtd)
433 (struct-ref obj pos)
434 (%record-type-error rtd obj)))))
435
436 (define (record-modifier rtd field-name)
437 (let ((pos (list-index (record-type-fields rtd) field-name)))
438 (if (not pos)
439 (error 'no-such-field field-name))
440 (lambda (obj val)
441 (if (eq? (struct-vtable obj) rtd)
442 (struct-set! obj pos val)
443 (%record-type-error rtd obj)))))
444
445 (define (record? obj)
446 (and (struct? obj) (record-type? (struct-vtable obj))))
447
448 (define (record-type-descriptor obj)
449 (if (struct? obj)
450 (struct-vtable obj)
451 (error 'not-a-record obj)))
452
453 (provide 'record)
454
455 \f
456
457 ;;; {Booleans}
458 ;;;
459
460 (define (->bool x) (not (not x)))
461
462 \f
463
464 ;;; {Symbols}
465 ;;;
466
467 (define (symbol-append . args)
468 (string->symbol (apply string-append (map symbol->string args))))
469
470 (define (list->symbol . args)
471 (string->symbol (apply list->string args)))
472
473 (define (symbol . args)
474 (string->symbol (apply string args)))
475
476 \f
477
478 ;;; {Lists}
479 ;;;
480
481 (define (list-index l k)
482 (let loop ((n 0)
483 (l l))
484 (and (not (null? l))
485 (if (eq? (car l) k)
486 n
487 (loop (+ n 1) (cdr l))))))
488
489 \f
490
491 ;;; {and-map and or-map}
492 ;;;
493 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
494 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
495 ;;;
496
497 ;; and-map f l
498 ;;
499 ;; Apply f to successive elements of l until exhaustion or f returns #f.
500 ;; If returning early, return #f. Otherwise, return the last value returned
501 ;; by f. If f has never been called because l is empty, return #t.
502 ;;
503 (define (and-map f lst)
504 (let loop ((result #t)
505 (l lst))
506 (and result
507 (or (and (null? l)
508 result)
509 (loop (f (car l)) (cdr l))))))
510
511 ;; or-map f l
512 ;;
513 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
514 ;; If returning early, return the return value of f.
515 ;;
516 (define (or-map f lst)
517 (let loop ((result #f)
518 (l lst))
519 (or result
520 (and (not (null? l))
521 (loop (f (car l)) (cdr l))))))
522
523 \f
524
525 (if (provided? 'posix)
526 (primitive-load-path "ice-9/posix.scm"))
527
528 (if (provided? 'socket)
529 (primitive-load-path "ice-9/networking.scm"))
530
531 ;; For reference, Emacs file-exists-p uses stat in this same way.
532 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
533 ;; C where all that's needed is to inspect the return from stat().
534 (define file-exists?
535 (if (provided? 'posix)
536 (lambda (str)
537 (->bool (false-if-exception (stat str))))
538 (lambda (str)
539 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
540 (lambda args #f))))
541 (if port (begin (close-port port) #t)
542 #f)))))
543
544 (define file-is-directory?
545 (if (provided? 'posix)
546 (lambda (str)
547 (eq? (stat:type (stat str)) 'directory))
548 (lambda (str)
549 (let ((port (catch 'system-error
550 (lambda () (open-file (string-append str "/.")
551 OPEN_READ))
552 (lambda args #f))))
553 (if port (begin (close-port port) #t)
554 #f)))))
555
556 (define (has-suffix? str suffix)
557 (string-suffix? suffix str))
558
559 (define (system-error-errno args)
560 (if (eq? (car args) 'system-error)
561 (car (list-ref args 4))
562 #f))
563
564 \f
565
566 ;;; {Error Handling}
567 ;;;
568
569 (define (error . args)
570 (save-stack)
571 (if (null? args)
572 (scm-error 'misc-error #f "?" #f #f)
573 (let loop ((msg "~A")
574 (rest (cdr args)))
575 (if (not (null? rest))
576 (loop (string-append msg " ~S")
577 (cdr rest))
578 (scm-error 'misc-error #f msg args #f)))))
579
580 ;; bad-throw is the hook that is called upon a throw to a an unhandled
581 ;; key (unless the throw has four arguments, in which case
582 ;; it's usually interpreted as an error throw.)
583 ;; If the key has a default handler (a throw-handler-default property),
584 ;; it is applied to the throw.
585 ;;
586 (define (bad-throw key . args)
587 (let ((default (symbol-property key 'throw-handler-default)))
588 (or (and default (apply default key args))
589 (apply error "unhandled-exception:" key args))))
590
591 \f
592
593 (define (tm:sec obj) (vector-ref obj 0))
594 (define (tm:min obj) (vector-ref obj 1))
595 (define (tm:hour obj) (vector-ref obj 2))
596 (define (tm:mday obj) (vector-ref obj 3))
597 (define (tm:mon obj) (vector-ref obj 4))
598 (define (tm:year obj) (vector-ref obj 5))
599 (define (tm:wday obj) (vector-ref obj 6))
600 (define (tm:yday obj) (vector-ref obj 7))
601 (define (tm:isdst obj) (vector-ref obj 8))
602 (define (tm:gmtoff obj) (vector-ref obj 9))
603 (define (tm:zone obj) (vector-ref obj 10))
604
605 (define (set-tm:sec obj val) (vector-set! obj 0 val))
606 (define (set-tm:min obj val) (vector-set! obj 1 val))
607 (define (set-tm:hour obj val) (vector-set! obj 2 val))
608 (define (set-tm:mday obj val) (vector-set! obj 3 val))
609 (define (set-tm:mon obj val) (vector-set! obj 4 val))
610 (define (set-tm:year obj val) (vector-set! obj 5 val))
611 (define (set-tm:wday obj val) (vector-set! obj 6 val))
612 (define (set-tm:yday obj val) (vector-set! obj 7 val))
613 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
614 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
615 (define (set-tm:zone obj val) (vector-set! obj 10 val))
616
617 (define (tms:clock obj) (vector-ref obj 0))
618 (define (tms:utime obj) (vector-ref obj 1))
619 (define (tms:stime obj) (vector-ref obj 2))
620 (define (tms:cutime obj) (vector-ref obj 3))
621 (define (tms:cstime obj) (vector-ref obj 4))
622
623 (define file-position ftell)
624 (define (file-set-position port offset . whence)
625 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
626 (seek port offset whence)))
627
628 (define (move->fdes fd/port fd)
629 (cond ((integer? fd/port)
630 (dup->fdes fd/port fd)
631 (close fd/port)
632 fd)
633 (else
634 (primitive-move->fdes fd/port fd)
635 (set-port-revealed! fd/port 1)
636 fd/port)))
637
638 (define (release-port-handle port)
639 (let ((revealed (port-revealed port)))
640 (if (> revealed 0)
641 (set-port-revealed! port (- revealed 1)))))
642
643 (define (dup->port port/fd mode . maybe-fd)
644 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
645 mode)))
646 (if (pair? maybe-fd)
647 (set-port-revealed! port 1))
648 port))
649
650 (define (dup->inport port/fd . maybe-fd)
651 (apply dup->port port/fd "r" maybe-fd))
652
653 (define (dup->outport port/fd . maybe-fd)
654 (apply dup->port port/fd "w" maybe-fd))
655
656 (define (dup port/fd . maybe-fd)
657 (if (integer? port/fd)
658 (apply dup->fdes port/fd maybe-fd)
659 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
660
661 (define (duplicate-port port modes)
662 (dup->port port modes))
663
664 (define (fdes->inport fdes)
665 (let loop ((rest-ports (fdes->ports fdes)))
666 (cond ((null? rest-ports)
667 (let ((result (fdopen fdes "r")))
668 (set-port-revealed! result 1)
669 result))
670 ((input-port? (car rest-ports))
671 (set-port-revealed! (car rest-ports)
672 (+ (port-revealed (car rest-ports)) 1))
673 (car rest-ports))
674 (else
675 (loop (cdr rest-ports))))))
676
677 (define (fdes->outport fdes)
678 (let loop ((rest-ports (fdes->ports fdes)))
679 (cond ((null? rest-ports)
680 (let ((result (fdopen fdes "w")))
681 (set-port-revealed! result 1)
682 result))
683 ((output-port? (car rest-ports))
684 (set-port-revealed! (car rest-ports)
685 (+ (port-revealed (car rest-ports)) 1))
686 (car rest-ports))
687 (else
688 (loop (cdr rest-ports))))))
689
690 (define (port->fdes port)
691 (set-port-revealed! port (+ (port-revealed port) 1))
692 (fileno port))
693
694 (define (setenv name value)
695 (if value
696 (putenv (string-append name "=" value))
697 (putenv name)))
698
699 (define (unsetenv name)
700 "Remove the entry for NAME from the environment."
701 (putenv name))
702
703 \f
704
705 ;;; {Load Paths}
706 ;;;
707
708 ;;; Here for backward compatability
709 ;;
710 (define scheme-file-suffix (lambda () ".scm"))
711
712 (define (in-vicinity vicinity file)
713 (let ((tail (let ((len (string-length vicinity)))
714 (if (zero? len)
715 #f
716 (string-ref vicinity (- len 1))))))
717 (string-append vicinity
718 (if (or (not tail)
719 (eq? tail #\/))
720 ""
721 "/")
722 file)))
723
724 \f
725
726 ;;; {Help for scm_shell}
727 ;;;
728 ;;; The argument-processing code used by Guile-based shells generates
729 ;;; Scheme code based on the argument list. This page contains help
730 ;;; functions for the code it generates.
731 ;;;
732
733 (define (command-line) (program-arguments))
734
735 ;; This is mostly for the internal use of the code generated by
736 ;; scm_compile_shell_switches.
737
738 (define (turn-on-debugging)
739 (debug-enable 'debug)
740 (debug-enable 'backtrace)
741 (read-enable 'positions))
742
743 (define (load-user-init)
744 (let* ((home (or (getenv "HOME")
745 (false-if-exception (passwd:dir (getpwuid (getuid))))
746 "/")) ;; fallback for cygwin etc.
747 (init-file (in-vicinity home ".guile")))
748 (if (file-exists? init-file)
749 (primitive-load init-file))))
750
751 \f
752
753 ;;; {Loading by paths}
754 ;;;
755
756 ;;; Load a Scheme source file named NAME, searching for it in the
757 ;;; directories listed in %load-path, and applying each of the file
758 ;;; name extensions listed in %load-extensions.
759 (define (load-from-path name)
760 (start-stack 'load-stack
761 (primitive-load-path name)))
762
763
764 \f
765
766 ;;; {Transcendental Functions}
767 ;;;
768 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
769 ;;; Written by Jerry D. Hedden, (C) FSF.
770 ;;; See the file `COPYING' for terms applying to this program.
771 ;;;
772
773 (define expt
774 (let ((integer-expt integer-expt))
775 (lambda (z1 z2)
776 (cond ((and (exact? z2) (integer? z2))
777 (integer-expt z1 z2))
778 ((and (real? z2) (real? z1) (>= z1 0))
779 ($expt z1 z2))
780 (else
781 (exp (* z2 (log z1))))))))
782
783 (define (sinh z)
784 (if (real? z) ($sinh z)
785 (let ((x (real-part z)) (y (imag-part z)))
786 (make-rectangular (* ($sinh x) ($cos y))
787 (* ($cosh x) ($sin y))))))
788 (define (cosh z)
789 (if (real? z) ($cosh z)
790 (let ((x (real-part z)) (y (imag-part z)))
791 (make-rectangular (* ($cosh x) ($cos y))
792 (* ($sinh x) ($sin y))))))
793 (define (tanh z)
794 (if (real? z) ($tanh z)
795 (let* ((x (* 2 (real-part z)))
796 (y (* 2 (imag-part z)))
797 (w (+ ($cosh x) ($cos y))))
798 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
799
800 (define (asinh z)
801 (if (real? z) ($asinh z)
802 (log (+ z (sqrt (+ (* z z) 1))))))
803
804 (define (acosh z)
805 (if (and (real? z) (>= z 1))
806 ($acosh z)
807 (log (+ z (sqrt (- (* z z) 1))))))
808
809 (define (atanh z)
810 (if (and (real? z) (> z -1) (< z 1))
811 ($atanh z)
812 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
813
814 (define (sin z)
815 (if (real? z) ($sin z)
816 (let ((x (real-part z)) (y (imag-part z)))
817 (make-rectangular (* ($sin x) ($cosh y))
818 (* ($cos x) ($sinh y))))))
819 (define (cos z)
820 (if (real? z) ($cos z)
821 (let ((x (real-part z)) (y (imag-part z)))
822 (make-rectangular (* ($cos x) ($cosh y))
823 (- (* ($sin x) ($sinh y)))))))
824 (define (tan z)
825 (if (real? z) ($tan z)
826 (let* ((x (* 2 (real-part z)))
827 (y (* 2 (imag-part z)))
828 (w (+ ($cos x) ($cosh y))))
829 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
830
831 (define (asin z)
832 (if (and (real? z) (>= z -1) (<= z 1))
833 ($asin z)
834 (* -i (asinh (* +i z)))))
835
836 (define (acos z)
837 (if (and (real? z) (>= z -1) (<= z 1))
838 ($acos z)
839 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
840
841 (define (atan z . y)
842 (if (null? y)
843 (if (real? z) ($atan z)
844 (/ (log (/ (- +i z) (+ +i z))) +2i))
845 ($atan2 z (car y))))
846
847 \f
848
849 ;;; {Reader Extensions}
850 ;;;
851 ;;; Reader code for various "#c" forms.
852 ;;;
853
854 (read-hash-extend #\' (lambda (c port)
855 (read port)))
856
857 (define read-eval? (make-fluid))
858 (fluid-set! read-eval? #f)
859 (read-hash-extend #\.
860 (lambda (c port)
861 (if (fluid-ref read-eval?)
862 (eval (read port) (interaction-environment))
863 (error
864 "#. read expansion found and read-eval? is #f."))))
865
866 \f
867
868 ;;; {Command Line Options}
869 ;;;
870
871 (define (get-option argv kw-opts kw-args return)
872 (cond
873 ((null? argv)
874 (return #f #f argv))
875
876 ((or (not (eq? #\- (string-ref (car argv) 0)))
877 (eq? (string-length (car argv)) 1))
878 (return 'normal-arg (car argv) (cdr argv)))
879
880 ((eq? #\- (string-ref (car argv) 1))
881 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
882 (string-length (car argv))))
883 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
884 (kw-opt? (member kw kw-opts))
885 (kw-arg? (member kw kw-args))
886 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
887 (substring (car argv)
888 (+ kw-arg-pos 1)
889 (string-length (car argv))))
890 (and kw-arg?
891 (begin (set! argv (cdr argv)) (car argv))))))
892 (if (or kw-opt? kw-arg?)
893 (return kw arg (cdr argv))
894 (return 'usage-error kw (cdr argv)))))
895
896 (else
897 (let* ((char (substring (car argv) 1 2))
898 (kw (symbol->keyword char)))
899 (cond
900
901 ((member kw kw-opts)
902 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
903 (new-argv (if (= 0 (string-length rest-car))
904 (cdr argv)
905 (cons (string-append "-" rest-car) (cdr argv)))))
906 (return kw #f new-argv)))
907
908 ((member kw kw-args)
909 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
910 (arg (if (= 0 (string-length rest-car))
911 (cadr argv)
912 rest-car))
913 (new-argv (if (= 0 (string-length rest-car))
914 (cddr argv)
915 (cdr argv))))
916 (return kw arg new-argv)))
917
918 (else (return 'usage-error kw argv)))))))
919
920 (define (for-next-option proc argv kw-opts kw-args)
921 (let loop ((argv argv))
922 (get-option argv kw-opts kw-args
923 (lambda (opt opt-arg argv)
924 (and opt (proc opt opt-arg argv loop))))))
925
926 (define (display-usage-report kw-desc)
927 (for-each
928 (lambda (kw)
929 (or (eq? (car kw) #t)
930 (eq? (car kw) 'else)
931 (let* ((opt-desc kw)
932 (help (cadr opt-desc))
933 (opts (car opt-desc))
934 (opts-proper (if (string? (car opts)) (cdr opts) opts))
935 (arg-name (if (string? (car opts))
936 (string-append "<" (car opts) ">")
937 ""))
938 (left-part (string-append
939 (with-output-to-string
940 (lambda ()
941 (map (lambda (x) (display (keyword->symbol x)) (display " "))
942 opts-proper)))
943 arg-name))
944 (middle-part (if (and (< (string-length left-part) 30)
945 (< (string-length help) 40))
946 (make-string (- 30 (string-length left-part)) #\ )
947 "\n\t")))
948 (display left-part)
949 (display middle-part)
950 (display help)
951 (newline))))
952 kw-desc))
953
954
955
956 (define (transform-usage-lambda cases)
957 (let* ((raw-usage (delq! 'else (map car cases)))
958 (usage-sans-specials (map (lambda (x)
959 (or (and (not (list? x)) x)
960 (and (symbol? (car x)) #t)
961 (and (boolean? (car x)) #t)
962 x))
963 raw-usage))
964 (usage-desc (delq! #t usage-sans-specials))
965 (kw-desc (map car usage-desc))
966 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
967 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
968 (transmogrified-cases (map (lambda (case)
969 (cons (let ((opts (car case)))
970 (if (or (boolean? opts) (eq? 'else opts))
971 opts
972 (cond
973 ((symbol? (car opts)) opts)
974 ((boolean? (car opts)) opts)
975 ((string? (caar opts)) (cdar opts))
976 (else (car opts)))))
977 (cdr case)))
978 cases)))
979 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
980 (lambda (%argv)
981 (let %next-arg ((%argv %argv))
982 (get-option %argv
983 ',kw-opts
984 ',kw-args
985 (lambda (%opt %arg %new-argv)
986 (case %opt
987 ,@ transmogrified-cases))))))))
988
989
990 \f
991
992 ;;; {Low Level Modules}
993 ;;;
994 ;;; These are the low level data structures for modules.
995 ;;;
996 ;;; Every module object is of the type 'module-type', which is a record
997 ;;; consisting of the following members:
998 ;;;
999 ;;; - eval-closure: the function that defines for its module the strategy that
1000 ;;; shall be followed when looking up symbols in the module.
1001 ;;;
1002 ;;; An eval-closure is a function taking two arguments: the symbol to be
1003 ;;; looked up and a boolean value telling whether a binding for the symbol
1004 ;;; should be created if it does not exist yet. If the symbol lookup
1005 ;;; succeeded (either because an existing binding was found or because a new
1006 ;;; binding was created), a variable object representing the binding is
1007 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1008 ;;; closure does not take the module to be searched as an argument: During
1009 ;;; construction of the eval-closure, the eval-closure has to store the
1010 ;;; module it belongs to in its environment. This means, that any
1011 ;;; eval-closure can belong to only one module.
1012 ;;;
1013 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1014 ;;; special cases of eval-closures are to be distinguished: During startup
1015 ;;; the module system is not yet activated. In this phase, no modules are
1016 ;;; defined and all bindings are automatically stored by the system in the
1017 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1018 ;;; functions which require an eval-closure as their argument need to be
1019 ;;; passed the value #f.
1020 ;;;
1021 ;;; The other two special cases of eval-closures are the
1022 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1023 ;;; behave equally for the case that no new binding is to be created. The
1024 ;;; difference between the two comes in, when the boolean argument to the
1025 ;;; eval-closure indicates that a new binding shall be created if it is not
1026 ;;; found.
1027 ;;;
1028 ;;; Given that no new binding shall be created, both standard eval-closures
1029 ;;; define the following standard strategy of searching bindings in the
1030 ;;; module: First, the module's obarray is searched for the symbol. Second,
1031 ;;; if no binding for the symbol was found in the module's obarray, the
1032 ;;; module's binder procedure is exececuted. If this procedure did not
1033 ;;; return a binding for the symbol, the modules referenced in the module's
1034 ;;; uses list are recursively searched for a binding of the symbol. If the
1035 ;;; binding can not be found in these modules also, the symbol lookup has
1036 ;;; failed.
1037 ;;;
1038 ;;; If a new binding shall be created, the standard-interface-eval-closure
1039 ;;; immediately returns indicating failure. That is, it does not even try
1040 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1041 ;;; first search the obarray, and if no binding was found there, would
1042 ;;; create a new binding in the obarray, therefore not calling the binder
1043 ;;; procedure or searching the modules in the uses list.
1044 ;;;
1045 ;;; The explanation of the following members obarray, binder and uses
1046 ;;; assumes that the symbol lookup follows the strategy that is defined in
1047 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1048 ;;;
1049 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1050 ;;; hash table, the definitions are found that are local to the module (that
1051 ;;; is, not imported from other modules). When looking up bindings in the
1052 ;;; module, this hash table is searched first.
1053 ;;;
1054 ;;; - binder: either #f or a function taking a module and a symbol argument.
1055 ;;; If it is a function it is called after the obarray has been
1056 ;;; unsuccessfully searched for a binding. It then can provide bindings
1057 ;;; that would otherwise not be found locally in the module.
1058 ;;;
1059 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1060 ;;; These modules are the third place queried for bindings after the obarray
1061 ;;; has been unsuccessfully searched and the binder function did not deliver
1062 ;;; a result either.
1063 ;;;
1064 ;;; - transformer: either #f or a function taking a scheme expression as
1065 ;;; delivered by read. If it is a function, it will be called to perform
1066 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1067 ;;; expression. The output of the transformer function will then be passed
1068 ;;; to Guile's internal memoizer. This means that the output must be valid
1069 ;;; scheme code. The only exception is, that the output may make use of the
1070 ;;; syntax extensions provided to identify the modules that a binding
1071 ;;; belongs to.
1072 ;;;
1073 ;;; - name: the name of the module. This is used for all kinds of printing
1074 ;;; outputs. In certain places the module name also serves as a way of
1075 ;;; identification. When adding a module to the uses list of another
1076 ;;; module, it is made sure that the new uses list will not contain two
1077 ;;; modules of the same name.
1078 ;;;
1079 ;;; - kind: classification of the kind of module. The value is (currently?)
1080 ;;; only used for printing. It has no influence on how a module is treated.
1081 ;;; Currently the following values are used when setting the module kind:
1082 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1083 ;;; is set, it defaults to 'module.
1084 ;;;
1085 ;;; - duplicates-handlers: a list of procedures that get called to make a
1086 ;;; choice between two duplicate bindings when name clashes occur. See the
1087 ;;; `duplicate-handlers' global variable below.
1088 ;;;
1089 ;;; - observers: a list of procedures that get called when the module is
1090 ;;; modified.
1091 ;;;
1092 ;;; - weak-observers: a weak-key hash table of procedures that get called
1093 ;;; when the module is modified. See `module-observe-weak' for details.
1094 ;;;
1095 ;;; In addition, the module may (must?) contain a binding for
1096 ;;; `%module-public-interface'. This variable should be bound to a module
1097 ;;; representing the exported interface of a module. See the
1098 ;;; `module-public-interface' and `module-export!' procedures.
1099 ;;;
1100 ;;; !!! warning: The interface to lazy binder procedures is going
1101 ;;; to be changed in an incompatible way to permit all the basic
1102 ;;; module ops to be virtualized.
1103 ;;;
1104 ;;; (make-module size use-list lazy-binding-proc) => module
1105 ;;; module-{obarray,uses,binder}[|-set!]
1106 ;;; (module? obj) => [#t|#f]
1107 ;;; (module-locally-bound? module symbol) => [#t|#f]
1108 ;;; (module-bound? module symbol) => [#t|#f]
1109 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1110 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1111 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1112 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1113 ;;; (module-symbol-binding module symbol opt-value)
1114 ;;; => [ <obj> | opt-value | an error occurs ]
1115 ;;; (module-make-local-var! module symbol) => #<variable...>
1116 ;;; (module-add! module symbol var) => unspecified
1117 ;;; (module-remove! module symbol) => unspecified
1118 ;;; (module-for-each proc module) => unspecified
1119 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1120 ;;; (set-current-module module) => unspecified
1121 ;;; (current-module) => #<module...>
1122 ;;;
1123 ;;;
1124
1125 \f
1126
1127 ;;; {Printing Modules}
1128 ;;;
1129
1130 ;; This is how modules are printed. You can re-define it.
1131 ;; (Redefining is actually more complicated than simply redefining
1132 ;; %print-module because that would only change the binding and not
1133 ;; the value stored in the vtable that determines how record are
1134 ;; printed. Sigh.)
1135
1136 (define (%print-module mod port) ; unused args: depth length style table)
1137 (display "#<" port)
1138 (display (or (module-kind mod) "module") port)
1139 (let ((name (module-name mod)))
1140 (if name
1141 (begin
1142 (display " " port)
1143 (display name port))))
1144 (display " " port)
1145 (display (number->string (object-address mod) 16) port)
1146 (display ">" port))
1147
1148 ;; module-type
1149 ;;
1150 ;; A module is characterized by an obarray in which local symbols
1151 ;; are interned, a list of modules, "uses", from which non-local
1152 ;; bindings can be inherited, and an optional lazy-binder which
1153 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1154 ;; bindings that would otherwise not be found locally in the module.
1155 ;;
1156 ;; NOTE: If you change anything here, you also need to change
1157 ;; libguile/modules.h.
1158 ;;
1159 (define module-type
1160 (make-record-type 'module
1161 '(obarray uses binder eval-closure transformer name kind
1162 duplicates-handlers import-obarray
1163 observers weak-observers)
1164 %print-module))
1165
1166 ;; make-module &opt size uses binder
1167 ;;
1168 ;; Create a new module, perhaps with a particular size of obarray,
1169 ;; initial uses list, or binding procedure.
1170 ;;
1171 (define make-module
1172 (lambda args
1173
1174 (define (parse-arg index default)
1175 (if (> (length args) index)
1176 (list-ref args index)
1177 default))
1178
1179 (define %default-import-size
1180 ;; Typical number of imported bindings actually used by a module.
1181 600)
1182
1183 (if (> (length args) 3)
1184 (error "Too many args to make-module." args))
1185
1186 (let ((size (parse-arg 0 31))
1187 (uses (parse-arg 1 '()))
1188 (binder (parse-arg 2 #f)))
1189
1190 (if (not (integer? size))
1191 (error "Illegal size to make-module." size))
1192 (if (not (and (list? uses)
1193 (and-map module? uses)))
1194 (error "Incorrect use list." uses))
1195 (if (and binder (not (procedure? binder)))
1196 (error
1197 "Lazy-binder expected to be a procedure or #f." binder))
1198
1199 (let ((module (module-constructor (make-hash-table size)
1200 uses binder #f #f #f #f #f
1201 (make-hash-table %default-import-size)
1202 '()
1203 (make-weak-key-hash-table 31))))
1204
1205 ;; We can't pass this as an argument to module-constructor,
1206 ;; because we need it to close over a pointer to the module
1207 ;; itself.
1208 (set-module-eval-closure! module (standard-eval-closure module))
1209
1210 module))))
1211
1212 (define module-constructor (record-constructor module-type))
1213 (define module-obarray (record-accessor module-type 'obarray))
1214 (define set-module-obarray! (record-modifier module-type 'obarray))
1215 (define module-uses (record-accessor module-type 'uses))
1216 (define set-module-uses! (record-modifier module-type 'uses))
1217 (define module-binder (record-accessor module-type 'binder))
1218 (define set-module-binder! (record-modifier module-type 'binder))
1219
1220 ;; NOTE: This binding is used in libguile/modules.c.
1221 (define module-eval-closure (record-accessor module-type 'eval-closure))
1222
1223 (define module-transformer (record-accessor module-type 'transformer))
1224 (define set-module-transformer! (record-modifier module-type 'transformer))
1225 (define module-name (record-accessor module-type 'name))
1226 (define set-module-name! (record-modifier module-type 'name))
1227 (define module-kind (record-accessor module-type 'kind))
1228 (define set-module-kind! (record-modifier module-type 'kind))
1229 (define module-duplicates-handlers
1230 (record-accessor module-type 'duplicates-handlers))
1231 (define set-module-duplicates-handlers!
1232 (record-modifier module-type 'duplicates-handlers))
1233 (define module-observers (record-accessor module-type 'observers))
1234 (define set-module-observers! (record-modifier module-type 'observers))
1235 (define module-weak-observers (record-accessor module-type 'weak-observers))
1236 (define module? (record-predicate module-type))
1237
1238 (define module-import-obarray (record-accessor module-type 'import-obarray))
1239
1240 (define set-module-eval-closure!
1241 (let ((setter (record-modifier module-type 'eval-closure)))
1242 (lambda (module closure)
1243 (setter module closure)
1244 ;; Make it possible to lookup the module from the environment.
1245 ;; This implementation is correct since an eval closure can belong
1246 ;; to maximally one module.
1247 (set-procedure-property! closure 'module module))))
1248
1249 \f
1250
1251 ;;; {Observer protocol}
1252 ;;;
1253
1254 (define (module-observe module proc)
1255 (set-module-observers! module (cons proc (module-observers module)))
1256 (cons module proc))
1257
1258 (define (module-observe-weak module observer-id . proc)
1259 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1260 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1261 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1262 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1263 ;; for instance).
1264
1265 ;; The two-argument version is kept for backward compatibility: when called
1266 ;; with two arguments, the observer gets unregistered when closure PROC
1267 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1268
1269 (let ((proc (if (null? proc) observer-id (car proc))))
1270 (hashq-set! (module-weak-observers module) observer-id proc)))
1271
1272 (define (module-unobserve token)
1273 (let ((module (car token))
1274 (id (cdr token)))
1275 (if (integer? id)
1276 (hash-remove! (module-weak-observers module) id)
1277 (set-module-observers! module (delq1! id (module-observers module)))))
1278 *unspecified*)
1279
1280 (define module-defer-observers #f)
1281 (define module-defer-observers-mutex (make-mutex))
1282 (define module-defer-observers-table (make-hash-table))
1283
1284 (define (module-modified m)
1285 (if module-defer-observers
1286 (hash-set! module-defer-observers-table m #t)
1287 (module-call-observers m)))
1288
1289 ;;; This function can be used to delay calls to observers so that they
1290 ;;; can be called once only in the face of massive updating of modules.
1291 ;;;
1292 (define (call-with-deferred-observers thunk)
1293 (dynamic-wind
1294 (lambda ()
1295 (lock-mutex module-defer-observers-mutex)
1296 (set! module-defer-observers #t))
1297 thunk
1298 (lambda ()
1299 (set! module-defer-observers #f)
1300 (hash-for-each (lambda (m dummy)
1301 (module-call-observers m))
1302 module-defer-observers-table)
1303 (hash-clear! module-defer-observers-table)
1304 (unlock-mutex module-defer-observers-mutex))))
1305
1306 (define (module-call-observers m)
1307 (for-each (lambda (proc) (proc m)) (module-observers m))
1308
1309 ;; We assume that weak observers don't (un)register themselves as they are
1310 ;; called since this would preclude proper iteration over the hash table
1311 ;; elements.
1312 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1313
1314 \f
1315
1316 ;;; {Module Searching in General}
1317 ;;;
1318 ;;; We sometimes want to look for properties of a symbol
1319 ;;; just within the obarray of one module. If the property
1320 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1321 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1322 ;;;
1323 ;;;
1324 ;;; Other times, we want to test for a symbol property in the obarray
1325 ;;; of M and, if it is not found there, try each of the modules in the
1326 ;;; uses list of M. This is the normal way of testing for some
1327 ;;; property, so we state these properties without qualification as
1328 ;;; in: ``The symbol 'fnord is interned in module M because it is
1329 ;;; interned locally in module M2 which is a member of the uses list
1330 ;;; of M.''
1331 ;;;
1332
1333 ;; module-search fn m
1334 ;;
1335 ;; return the first non-#f result of FN applied to M and then to
1336 ;; the modules in the uses of m, and so on recursively. If all applications
1337 ;; return #f, then so does this function.
1338 ;;
1339 (define (module-search fn m v)
1340 (define (loop pos)
1341 (and (pair? pos)
1342 (or (module-search fn (car pos) v)
1343 (loop (cdr pos)))))
1344 (or (fn m v)
1345 (loop (module-uses m))))
1346
1347
1348 ;;; {Is a symbol bound in a module?}
1349 ;;;
1350 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1351 ;;; of S in M has been set to some well-defined value.
1352 ;;;
1353
1354 ;; module-locally-bound? module symbol
1355 ;;
1356 ;; Is a symbol bound (interned and defined) locally in a given module?
1357 ;;
1358 (define (module-locally-bound? m v)
1359 (let ((var (module-local-variable m v)))
1360 (and var
1361 (variable-bound? var))))
1362
1363 ;; module-bound? module symbol
1364 ;;
1365 ;; Is a symbol bound (interned and defined) anywhere in a given module
1366 ;; or its uses?
1367 ;;
1368 (define (module-bound? m v)
1369 (module-search module-locally-bound? m v))
1370
1371 ;;; {Is a symbol interned in a module?}
1372 ;;;
1373 ;;; Symbol S in Module M is interned if S occurs in
1374 ;;; of S in M has been set to some well-defined value.
1375 ;;;
1376 ;;; It is possible to intern a symbol in a module without providing
1377 ;;; an initial binding for the corresponding variable. This is done
1378 ;;; with:
1379 ;;; (module-add! module symbol (make-undefined-variable))
1380 ;;;
1381 ;;; In that case, the symbol is interned in the module, but not
1382 ;;; bound there. The unbound symbol shadows any binding for that
1383 ;;; symbol that might otherwise be inherited from a member of the uses list.
1384 ;;;
1385
1386 (define (module-obarray-get-handle ob key)
1387 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1388
1389 (define (module-obarray-ref ob key)
1390 ((if (symbol? key) hashq-ref hash-ref) ob key))
1391
1392 (define (module-obarray-set! ob key val)
1393 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1394
1395 (define (module-obarray-remove! ob key)
1396 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1397
1398 ;; module-symbol-locally-interned? module symbol
1399 ;;
1400 ;; is a symbol interned (not neccessarily defined) locally in a given module
1401 ;; or its uses? Interned symbols shadow inherited bindings even if
1402 ;; they are not themselves bound to a defined value.
1403 ;;
1404 (define (module-symbol-locally-interned? m v)
1405 (not (not (module-obarray-get-handle (module-obarray m) v))))
1406
1407 ;; module-symbol-interned? module symbol
1408 ;;
1409 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1410 ;; or its uses? Interned symbols shadow inherited bindings even if
1411 ;; they are not themselves bound to a defined value.
1412 ;;
1413 (define (module-symbol-interned? m v)
1414 (module-search module-symbol-locally-interned? m v))
1415
1416
1417 ;;; {Mapping modules x symbols --> variables}
1418 ;;;
1419
1420 ;; module-local-variable module symbol
1421 ;; return the local variable associated with a MODULE and SYMBOL.
1422 ;;
1423 ;;; This function is very important. It is the only function that can
1424 ;;; return a variable from a module other than the mutators that store
1425 ;;; new variables in modules. Therefore, this function is the location
1426 ;;; of the "lazy binder" hack.
1427 ;;;
1428 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1429 ;;; to a variable, return that variable object.
1430 ;;;
1431 ;;; If the symbols is not found at first, but the module has a lazy binder,
1432 ;;; then try the binder.
1433 ;;;
1434 ;;; If the symbol is not found at all, return #f.
1435 ;;;
1436 ;;; (This is now written in C, see `modules.c'.)
1437 ;;;
1438
1439 ;;; {Mapping modules x symbols --> bindings}
1440 ;;;
1441 ;;; These are similar to the mapping to variables, except that the
1442 ;;; variable is dereferenced.
1443 ;;;
1444
1445 ;; module-symbol-binding module symbol opt-value
1446 ;;
1447 ;; return the binding of a variable specified by name within
1448 ;; a given module, signalling an error if the variable is unbound.
1449 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1450 ;; return OPT-VALUE.
1451 ;;
1452 (define (module-symbol-local-binding m v . opt-val)
1453 (let ((var (module-local-variable m v)))
1454 (if (and var (variable-bound? var))
1455 (variable-ref var)
1456 (if (not (null? opt-val))
1457 (car opt-val)
1458 (error "Locally unbound variable." v)))))
1459
1460 ;; module-symbol-binding module symbol opt-value
1461 ;;
1462 ;; return the binding of a variable specified by name within
1463 ;; a given module, signalling an error if the variable is unbound.
1464 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1465 ;; return OPT-VALUE.
1466 ;;
1467 (define (module-symbol-binding m v . opt-val)
1468 (let ((var (module-variable m v)))
1469 (if (and var (variable-bound? var))
1470 (variable-ref var)
1471 (if (not (null? opt-val))
1472 (car opt-val)
1473 (error "Unbound variable." v)))))
1474
1475
1476 \f
1477
1478 ;;; {Adding Variables to Modules}
1479 ;;;
1480
1481 ;; module-make-local-var! module symbol
1482 ;;
1483 ;; ensure a variable for V in the local namespace of M.
1484 ;; If no variable was already there, then create a new and uninitialzied
1485 ;; variable.
1486 ;;
1487 ;; This function is used in modules.c.
1488 ;;
1489 (define (module-make-local-var! m v)
1490 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1491 (and (variable? b)
1492 (begin
1493 ;; Mark as modified since this function is called when
1494 ;; the standard eval closure defines a binding
1495 (module-modified m)
1496 b)))
1497
1498 ;; Create a new local variable.
1499 (let ((local-var (make-undefined-variable)))
1500 (module-add! m v local-var)
1501 local-var)))
1502
1503 ;; module-ensure-local-variable! module symbol
1504 ;;
1505 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1506 ;; there is no binding for SYMBOL, create a new uninitialized
1507 ;; variable. Return the local variable.
1508 ;;
1509 (define (module-ensure-local-variable! module symbol)
1510 (or (module-local-variable module symbol)
1511 (let ((var (make-undefined-variable)))
1512 (module-add! module symbol var)
1513 var)))
1514
1515 ;; module-add! module symbol var
1516 ;;
1517 ;; ensure a particular variable for V in the local namespace of M.
1518 ;;
1519 (define (module-add! m v var)
1520 (if (not (variable? var))
1521 (error "Bad variable to module-add!" var))
1522 (module-obarray-set! (module-obarray m) v var)
1523 (module-modified m))
1524
1525 ;; module-remove!
1526 ;;
1527 ;; make sure that a symbol is undefined in the local namespace of M.
1528 ;;
1529 (define (module-remove! m v)
1530 (module-obarray-remove! (module-obarray m) v)
1531 (module-modified m))
1532
1533 (define (module-clear! m)
1534 (hash-clear! (module-obarray m))
1535 (module-modified m))
1536
1537 ;; MODULE-FOR-EACH -- exported
1538 ;;
1539 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1540 ;;
1541 (define (module-for-each proc module)
1542 (hash-for-each proc (module-obarray module)))
1543
1544 (define (module-map proc module)
1545 (hash-map->list proc (module-obarray module)))
1546
1547 \f
1548
1549 ;;; {Low Level Bootstrapping}
1550 ;;;
1551
1552 ;; make-root-module
1553
1554 ;; A root module uses the pre-modules-obarray as its obarray. This
1555 ;; special obarray accumulates all bindings that have been established
1556 ;; before the module system is fully booted.
1557 ;;
1558 ;; (The obarray continues to be used by code that has been closed over
1559 ;; before the module system has been booted.)
1560
1561 (define (make-root-module)
1562 (let ((m (make-module 0)))
1563 (set-module-obarray! m (%get-pre-modules-obarray))
1564 m))
1565
1566 ;; make-scm-module
1567
1568 ;; The root interface is a module that uses the same obarray as the
1569 ;; root module. It does not allow new definitions, tho.
1570
1571 (define (make-scm-module)
1572 (let ((m (make-module 0)))
1573 (set-module-obarray! m (%get-pre-modules-obarray))
1574 (set-module-eval-closure! m (standard-interface-eval-closure m))
1575 m))
1576
1577
1578 \f
1579
1580 ;;; {Module-based Loading}
1581 ;;;
1582
1583 (define (save-module-excursion thunk)
1584 (let ((inner-module (current-module))
1585 (outer-module #f))
1586 (dynamic-wind (lambda ()
1587 (set! outer-module (current-module))
1588 (set-current-module inner-module)
1589 (set! inner-module #f))
1590 thunk
1591 (lambda ()
1592 (set! inner-module (current-module))
1593 (set-current-module outer-module)
1594 (set! outer-module #f)))))
1595
1596 (define basic-load load)
1597
1598 (define (load-module filename . reader)
1599 (save-module-excursion
1600 (lambda ()
1601 (let ((oldname (and (current-load-port)
1602 (port-filename (current-load-port)))))
1603 (apply basic-load
1604 (if (and oldname
1605 (> (string-length filename) 0)
1606 (not (char=? (string-ref filename 0) #\/))
1607 (not (string=? (dirname oldname) ".")))
1608 (string-append (dirname oldname) "/" filename)
1609 filename)
1610 reader)))))
1611
1612
1613 \f
1614
1615 ;;; {MODULE-REF -- exported}
1616 ;;;
1617
1618 ;; Returns the value of a variable called NAME in MODULE or any of its
1619 ;; used modules. If there is no such variable, then if the optional third
1620 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1621 ;;
1622 (define (module-ref module name . rest)
1623 (let ((variable (module-variable module name)))
1624 (if (and variable (variable-bound? variable))
1625 (variable-ref variable)
1626 (if (null? rest)
1627 (error "No variable named" name 'in module)
1628 (car rest) ; default value
1629 ))))
1630
1631 ;; MODULE-SET! -- exported
1632 ;;
1633 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1634 ;; to VALUE; if there is no such variable, an error is signaled.
1635 ;;
1636 (define (module-set! module name value)
1637 (let ((variable (module-variable module name)))
1638 (if variable
1639 (variable-set! variable value)
1640 (error "No variable named" name 'in module))))
1641
1642 ;; MODULE-DEFINE! -- exported
1643 ;;
1644 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1645 ;; variable, it is added first.
1646 ;;
1647 (define (module-define! module name value)
1648 (let ((variable (module-local-variable module name)))
1649 (if variable
1650 (begin
1651 (variable-set! variable value)
1652 (module-modified module))
1653 (let ((variable (make-variable value)))
1654 (module-add! module name variable)))))
1655
1656 ;; MODULE-DEFINED? -- exported
1657 ;;
1658 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1659 ;; uses)
1660 ;;
1661 (define (module-defined? module name)
1662 (let ((variable (module-variable module name)))
1663 (and variable (variable-bound? variable))))
1664
1665 ;; MODULE-USE! module interface
1666 ;;
1667 ;; Add INTERFACE to the list of interfaces used by MODULE.
1668 ;;
1669 (define (module-use! module interface)
1670 (if (not (eq? module interface))
1671 (begin
1672 ;; Newly used modules must be appended rather than consed, so that
1673 ;; `module-variable' traverses the use list starting from the first
1674 ;; used module.
1675 (set-module-uses! module
1676 (append (filter (lambda (m)
1677 (not
1678 (equal? (module-name m)
1679 (module-name interface))))
1680 (module-uses module))
1681 (list interface)))
1682
1683 (module-modified module))))
1684
1685 ;; MODULE-USE-INTERFACES! module interfaces
1686 ;;
1687 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1688 ;;
1689 (define (module-use-interfaces! module interfaces)
1690 (set-module-uses! module
1691 (append (module-uses module) interfaces))
1692 (module-modified module))
1693
1694 \f
1695
1696 ;;; {Recursive Namespaces}
1697 ;;;
1698 ;;; A hierarchical namespace emerges if we consider some module to be
1699 ;;; root, and variables bound to modules as nested namespaces.
1700 ;;;
1701 ;;; The routines in this file manage variable names in hierarchical namespace.
1702 ;;; Each variable name is a list of elements, looked up in successively nested
1703 ;;; modules.
1704 ;;;
1705 ;;; (nested-ref some-root-module '(foo bar baz))
1706 ;;; => <value of a variable named baz in the module bound to bar in
1707 ;;; the module bound to foo in some-root-module>
1708 ;;;
1709 ;;;
1710 ;;; There are:
1711 ;;;
1712 ;;; ;; a-root is a module
1713 ;;; ;; name is a list of symbols
1714 ;;;
1715 ;;; nested-ref a-root name
1716 ;;; nested-set! a-root name val
1717 ;;; nested-define! a-root name val
1718 ;;; nested-remove! a-root name
1719 ;;;
1720 ;;;
1721 ;;; (current-module) is a natural choice for a-root so for convenience there are
1722 ;;; also:
1723 ;;;
1724 ;;; local-ref name == nested-ref (current-module) name
1725 ;;; local-set! name val == nested-set! (current-module) name val
1726 ;;; local-define! name val == nested-define! (current-module) name val
1727 ;;; local-remove! name == nested-remove! (current-module) name
1728 ;;;
1729
1730
1731 (define (nested-ref root names)
1732 (let loop ((cur root)
1733 (elts names))
1734 (cond
1735 ((null? elts) cur)
1736 ((not (module? cur)) #f)
1737 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1738
1739 (define (nested-set! root names val)
1740 (let loop ((cur root)
1741 (elts names))
1742 (if (null? (cdr elts))
1743 (module-set! cur (car elts) val)
1744 (loop (module-ref cur (car elts)) (cdr elts)))))
1745
1746 (define (nested-define! root names val)
1747 (let loop ((cur root)
1748 (elts names))
1749 (if (null? (cdr elts))
1750 (module-define! cur (car elts) val)
1751 (loop (module-ref cur (car elts)) (cdr elts)))))
1752
1753 (define (nested-remove! root names)
1754 (let loop ((cur root)
1755 (elts names))
1756 (if (null? (cdr elts))
1757 (module-remove! cur (car elts))
1758 (loop (module-ref cur (car elts)) (cdr elts)))))
1759
1760 (define (local-ref names) (nested-ref (current-module) names))
1761 (define (local-set! names val) (nested-set! (current-module) names val))
1762 (define (local-define names val) (nested-define! (current-module) names val))
1763 (define (local-remove names) (nested-remove! (current-module) names))
1764
1765
1766 \f
1767
1768 ;;; {The (%app) module}
1769 ;;;
1770 ;;; The root of conventionally named objects not directly in the top level.
1771 ;;;
1772 ;;; (%app modules)
1773 ;;; (%app modules guile)
1774 ;;;
1775 ;;; The directory of all modules and the standard root module.
1776 ;;;
1777
1778 (define (module-public-interface m)
1779 (module-ref m '%module-public-interface #f))
1780 (define (set-module-public-interface! m i)
1781 (module-define! m '%module-public-interface i))
1782 (define (set-system-module! m s)
1783 (set-procedure-property! (module-eval-closure m) 'system-module s))
1784 (define the-root-module (make-root-module))
1785 (define the-scm-module (make-scm-module))
1786 (set-module-public-interface! the-root-module the-scm-module)
1787 (set-module-name! the-root-module '(guile))
1788 (set-module-name! the-scm-module '(guile))
1789 (set-module-kind! the-scm-module 'interface)
1790 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1791
1792 ;; NOTE: This binding is used in libguile/modules.c.
1793 ;;
1794 (define (make-modules-in module name)
1795 (if (null? name)
1796 module
1797 (cond
1798 ((module-ref module (car name) #f)
1799 => (lambda (m) (make-modules-in m (cdr name))))
1800 (else (let ((m (make-module 31)))
1801 (set-module-kind! m 'directory)
1802 (set-module-name! m (append (or (module-name module)
1803 '())
1804 (list (car name))))
1805 (module-define! module (car name) m)
1806 (make-modules-in m (cdr name)))))))
1807
1808 (define (beautify-user-module! module)
1809 (let ((interface (module-public-interface module)))
1810 (if (or (not interface)
1811 (eq? interface module))
1812 (let ((interface (make-module 31)))
1813 (set-module-name! interface (module-name module))
1814 (set-module-kind! interface 'interface)
1815 (set-module-public-interface! module interface))))
1816 (if (and (not (memq the-scm-module (module-uses module)))
1817 (not (eq? module the-root-module)))
1818 ;; Import the default set of bindings (from the SCM module) in MODULE.
1819 (module-use! module the-scm-module)))
1820
1821 ;; NOTE: This binding is used in libguile/modules.c.
1822 ;;
1823 (define resolve-module
1824 (let ((the-root-module the-root-module))
1825 (lambda (name . maybe-autoload)
1826 (if (equal? name '(guile))
1827 the-root-module
1828 (let ((full-name (append '(%app modules) name)))
1829 (let ((already (nested-ref the-root-module full-name)))
1830 (if already
1831 ;; The module already exists...
1832 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1833 (not (module-public-interface already)))
1834 ;; ...but we are told to load and it doesn't contain source, so
1835 (begin
1836 (try-load-module name)
1837 already)
1838 ;; simply return it.
1839 already)
1840 (begin
1841 ;; Try to autoload it if we are told so
1842 (if (or (null? maybe-autoload) (car maybe-autoload))
1843 (try-load-module name))
1844 ;; Get/create it.
1845 (make-modules-in (current-module) full-name)))))))))
1846
1847 ;; Cheat. These bindings are needed by modules.c, but we don't want
1848 ;; to move their real definition here because that would be unnatural.
1849 ;;
1850 (define try-module-autoload #f)
1851 (define process-define-module #f)
1852 (define process-use-modules #f)
1853 (define module-export! #f)
1854 (define default-duplicate-binding-procedures #f)
1855
1856 (define %app (make-module 31))
1857 (define app %app) ;; for backwards compatability
1858
1859 (local-define '(%app modules) (make-module 31))
1860 (local-define '(%app modules guile) the-root-module)
1861
1862 ;; This boots the module system. All bindings needed by modules.c
1863 ;; must have been defined by now.
1864 ;;
1865 (set-current-module the-root-module)
1866
1867 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1868
1869 (define (try-load-module name)
1870 (or (begin-deprecated (try-module-linked name))
1871 (try-module-autoload name)
1872 (begin-deprecated (try-module-dynamic-link name))))
1873
1874 (define (purify-module! module)
1875 "Removes bindings in MODULE which are inherited from the (guile) module."
1876 (let ((use-list (module-uses module)))
1877 (if (and (pair? use-list)
1878 (eq? (car (last-pair use-list)) the-scm-module))
1879 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1880
1881 ;; Return a module that is an interface to the module designated by
1882 ;; NAME.
1883 ;;
1884 ;; `resolve-interface' takes four keyword arguments:
1885 ;;
1886 ;; #:select SELECTION
1887 ;;
1888 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1889 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1890 ;; is the name in the used module and SEEN is the name in the using
1891 ;; module. Note that SEEN is also passed through RENAMER, below. The
1892 ;; default is to select all bindings. If you specify no selection but
1893 ;; a renamer, only the bindings that already exist in the used module
1894 ;; are made available in the interface. Bindings that are added later
1895 ;; are not picked up.
1896 ;;
1897 ;; #:hide BINDINGS
1898 ;;
1899 ;; BINDINGS is a list of bindings which should not be imported.
1900 ;;
1901 ;; #:prefix PREFIX
1902 ;;
1903 ;; PREFIX is a symbol that will be appended to each exported name.
1904 ;; The default is to not perform any renaming.
1905 ;;
1906 ;; #:renamer RENAMER
1907 ;;
1908 ;; RENAMER is a procedure that takes a symbol and returns its new
1909 ;; name. The default is not perform any renaming.
1910 ;;
1911 ;; Signal "no code for module" error if module name is not resolvable
1912 ;; or its public interface is not available. Signal "no binding"
1913 ;; error if selected binding does not exist in the used module.
1914 ;;
1915 (define (resolve-interface name . args)
1916
1917 (define (get-keyword-arg args kw def)
1918 (cond ((memq kw args)
1919 => (lambda (kw-arg)
1920 (if (null? (cdr kw-arg))
1921 (error "keyword without value: " kw))
1922 (cadr kw-arg)))
1923 (else
1924 def)))
1925
1926 (let* ((select (get-keyword-arg args #:select #f))
1927 (hide (get-keyword-arg args #:hide '()))
1928 (renamer (or (get-keyword-arg args #:renamer #f)
1929 (let ((prefix (get-keyword-arg args #:prefix #f)))
1930 (and prefix (symbol-prefix-proc prefix)))
1931 identity))
1932 (module (resolve-module name))
1933 (public-i (and module (module-public-interface module))))
1934 (and (or (not module) (not public-i))
1935 (error "no code for module" name))
1936 (if (and (not select) (null? hide) (eq? renamer identity))
1937 public-i
1938 (let ((selection (or select (module-map (lambda (sym var) sym)
1939 public-i)))
1940 (custom-i (make-module 31)))
1941 (set-module-kind! custom-i 'custom-interface)
1942 (set-module-name! custom-i name)
1943 ;; XXX - should use a lazy binder so that changes to the
1944 ;; used module are picked up automatically.
1945 (for-each (lambda (bspec)
1946 (let* ((direct? (symbol? bspec))
1947 (orig (if direct? bspec (car bspec)))
1948 (seen (if direct? bspec (cdr bspec)))
1949 (var (or (module-local-variable public-i orig)
1950 (module-local-variable module orig)
1951 (error
1952 ;; fixme: format manually for now
1953 (simple-format
1954 #f "no binding `~A' in module ~A"
1955 orig name)))))
1956 (if (memq orig hide)
1957 (set! hide (delq! orig hide))
1958 (module-add! custom-i
1959 (renamer seen)
1960 var))))
1961 selection)
1962 ;; Check that we are not hiding bindings which don't exist
1963 (for-each (lambda (binding)
1964 (if (not (module-local-variable public-i binding))
1965 (error
1966 (simple-format
1967 #f "no binding `~A' to hide in module ~A"
1968 binding name))))
1969 hide)
1970 custom-i))))
1971
1972 (define (symbol-prefix-proc prefix)
1973 (lambda (symbol)
1974 (symbol-append prefix symbol)))
1975
1976 ;; This function is called from "modules.c". If you change it, be
1977 ;; sure to update "modules.c" as well.
1978
1979 (define (process-define-module args)
1980 (let* ((module-id (car args))
1981 (module (resolve-module module-id #f))
1982 (kws (cdr args))
1983 (unrecognized (lambda (arg)
1984 (error "unrecognized define-module argument" arg))))
1985 (beautify-user-module! module)
1986 (let loop ((kws kws)
1987 (reversed-interfaces '())
1988 (exports '())
1989 (re-exports '())
1990 (replacements '())
1991 (autoloads '()))
1992
1993 (if (null? kws)
1994 (call-with-deferred-observers
1995 (lambda ()
1996 (module-use-interfaces! module (reverse reversed-interfaces))
1997 (module-export! module exports)
1998 (module-replace! module replacements)
1999 (module-re-export! module re-exports)
2000 (if (not (null? autoloads))
2001 (apply module-autoload! module autoloads))))
2002 (case (car kws)
2003 ((#:use-module #:use-syntax)
2004 (or (pair? (cdr kws))
2005 (unrecognized kws))
2006 (let* ((interface-args (cadr kws))
2007 (interface (apply resolve-interface interface-args)))
2008 (and (eq? (car kws) #:use-syntax)
2009 (or (symbol? (caar interface-args))
2010 (error "invalid module name for use-syntax"
2011 (car interface-args)))
2012 (set-module-transformer!
2013 module
2014 (module-ref interface
2015 (car (last-pair (car interface-args)))
2016 #f)))
2017 (loop (cddr kws)
2018 (cons interface reversed-interfaces)
2019 exports
2020 re-exports
2021 replacements
2022 autoloads)))
2023 ((#:autoload)
2024 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2025 (unrecognized kws))
2026 (loop (cdddr kws)
2027 reversed-interfaces
2028 exports
2029 re-exports
2030 replacements
2031 (let ((name (cadr kws))
2032 (bindings (caddr kws)))
2033 (cons* name bindings autoloads))))
2034 ((#:no-backtrace)
2035 (set-system-module! module #t)
2036 (loop (cdr kws) reversed-interfaces exports re-exports
2037 replacements autoloads))
2038 ((#:pure)
2039 (purify-module! module)
2040 (loop (cdr kws) reversed-interfaces exports re-exports
2041 replacements autoloads))
2042 ((#:duplicates)
2043 (if (not (pair? (cdr kws)))
2044 (unrecognized kws))
2045 (set-module-duplicates-handlers!
2046 module
2047 (lookup-duplicates-handlers (cadr kws)))
2048 (loop (cddr kws) reversed-interfaces exports re-exports
2049 replacements autoloads))
2050 ((#:export #:export-syntax)
2051 (or (pair? (cdr kws))
2052 (unrecognized kws))
2053 (loop (cddr kws)
2054 reversed-interfaces
2055 (append (cadr kws) exports)
2056 re-exports
2057 replacements
2058 autoloads))
2059 ((#:re-export #:re-export-syntax)
2060 (or (pair? (cdr kws))
2061 (unrecognized kws))
2062 (loop (cddr kws)
2063 reversed-interfaces
2064 exports
2065 (append (cadr kws) re-exports)
2066 replacements
2067 autoloads))
2068 ((#:replace #:replace-syntax)
2069 (or (pair? (cdr kws))
2070 (unrecognized kws))
2071 (loop (cddr kws)
2072 reversed-interfaces
2073 exports
2074 re-exports
2075 (append (cadr kws) replacements)
2076 autoloads))
2077 (else
2078 (unrecognized kws)))))
2079 (run-hook module-defined-hook module)
2080 module))
2081
2082 ;; `module-defined-hook' is a hook that is run whenever a new module
2083 ;; is defined. Its members are called with one argument, the new
2084 ;; module.
2085 (define module-defined-hook (make-hook 1))
2086
2087 \f
2088
2089 ;;; {Autoload}
2090 ;;;
2091
2092 (define (make-autoload-interface module name bindings)
2093 (let ((b (lambda (a sym definep)
2094 (and (memq sym bindings)
2095 (let ((i (module-public-interface (resolve-module name))))
2096 (if (not i)
2097 (error "missing interface for module" name))
2098 (let ((autoload (memq a (module-uses module))))
2099 ;; Replace autoload-interface with actual interface if
2100 ;; that has not happened yet.
2101 (if (pair? autoload)
2102 (set-car! autoload i)))
2103 (module-local-variable i sym))))))
2104 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2105 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2106
2107 (define (module-autoload! module . args)
2108 "Have @var{module} automatically load the module named @var{name} when one
2109 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2110 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2111 module '(ice-9 q) '(make-q q-length))}."
2112 (let loop ((args args))
2113 (cond ((null? args)
2114 #t)
2115 ((null? (cdr args))
2116 (error "invalid name+binding autoload list" args))
2117 (else
2118 (let ((name (car args))
2119 (bindings (cadr args)))
2120 (module-use! module (make-autoload-interface module
2121 name bindings))
2122 (loop (cddr args)))))))
2123
2124
2125 ;;; {Compiled module}
2126
2127 (if (not (defined? 'load-compiled))
2128 (define load-compiled #f))
2129
2130 \f
2131
2132 ;;; {Autoloading modules}
2133 ;;;
2134
2135 (define autoloads-in-progress '())
2136
2137 ;; This function is called from "modules.c". If you change it, be
2138 ;; sure to update "modules.c" as well.
2139
2140 (define (try-module-autoload module-name)
2141 (let* ((reverse-name (reverse module-name))
2142 (name (symbol->string (car reverse-name)))
2143 (dir-hint-module-name (reverse (cdr reverse-name)))
2144 (dir-hint (apply string-append
2145 (map (lambda (elt)
2146 (string-append (symbol->string elt) "/"))
2147 dir-hint-module-name))))
2148 (resolve-module dir-hint-module-name #f)
2149 (and (not (autoload-done-or-in-progress? dir-hint name))
2150 (let ((didit #f))
2151 (define (load-file proc file)
2152 (save-module-excursion (lambda () (proc file)))
2153 (set! didit #t))
2154 (dynamic-wind
2155 (lambda () (autoload-in-progress! dir-hint name))
2156 (lambda ()
2157 (let ((file (in-vicinity dir-hint name)))
2158 (let ((compiled (and load-compiled
2159 (%search-load-path
2160 (string-append file ".go"))))
2161 (source (%search-load-path file)))
2162 (cond ((and source
2163 (or (not compiled)
2164 (< (stat:mtime (stat compiled))
2165 (stat:mtime (stat source)))))
2166 (if compiled
2167 (warn "source file" source "newer than" compiled))
2168 (with-fluids ((current-reader #f))
2169 (load-file primitive-load source)))
2170 (compiled
2171 (load-file load-compiled compiled))))))
2172 (lambda () (set-autoloaded! dir-hint name didit)))
2173 didit))))
2174
2175 \f
2176
2177 ;;; {Dynamic linking of modules}
2178 ;;;
2179
2180 (define autoloads-done '((guile . guile)))
2181
2182 (define (autoload-done-or-in-progress? p m)
2183 (let ((n (cons p m)))
2184 (->bool (or (member n autoloads-done)
2185 (member n autoloads-in-progress)))))
2186
2187 (define (autoload-done! p m)
2188 (let ((n (cons p m)))
2189 (set! autoloads-in-progress
2190 (delete! n autoloads-in-progress))
2191 (or (member n autoloads-done)
2192 (set! autoloads-done (cons n autoloads-done)))))
2193
2194 (define (autoload-in-progress! p m)
2195 (let ((n (cons p m)))
2196 (set! autoloads-done
2197 (delete! n autoloads-done))
2198 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2199
2200 (define (set-autoloaded! p m done?)
2201 (if done?
2202 (autoload-done! p m)
2203 (let ((n (cons p m)))
2204 (set! autoloads-done (delete! n autoloads-done))
2205 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2206
2207 \f
2208
2209 ;;; {Run-time options}
2210 ;;;
2211
2212 (defmacro define-option-interface (option-group)
2213 (let* ((option-name car)
2214 (option-value cadr)
2215 (option-documentation caddr)
2216
2217 ;; Below follow the macros defining the run-time option interfaces.
2218
2219 (make-options (lambda (interface)
2220 `(lambda args
2221 (cond ((null? args) (,interface))
2222 ((list? (car args))
2223 (,interface (car args)) (,interface))
2224 (else (for-each
2225 (lambda (option)
2226 (display (option-name option))
2227 (if (< (string-length
2228 (symbol->string (option-name option)))
2229 8)
2230 (display #\tab))
2231 (display #\tab)
2232 (display (option-value option))
2233 (display #\tab)
2234 (display (option-documentation option))
2235 (newline))
2236 (,interface #t)))))))
2237
2238 (make-enable (lambda (interface)
2239 `(lambda flags
2240 (,interface (append flags (,interface)))
2241 (,interface))))
2242
2243 (make-disable (lambda (interface)
2244 `(lambda flags
2245 (let ((options (,interface)))
2246 (for-each (lambda (flag)
2247 (set! options (delq! flag options)))
2248 flags)
2249 (,interface options)
2250 (,interface))))))
2251 (let* ((interface (car option-group))
2252 (options/enable/disable (cadr option-group)))
2253 `(begin
2254 (define ,(car options/enable/disable)
2255 ,(make-options interface))
2256 (define ,(cadr options/enable/disable)
2257 ,(make-enable interface))
2258 (define ,(caddr options/enable/disable)
2259 ,(make-disable interface))
2260 (defmacro ,(caaddr option-group) (opt val)
2261 `(,',(car options/enable/disable)
2262 (append (,',(car options/enable/disable))
2263 (list ',opt ,val))))))))
2264
2265 (define-option-interface
2266 (eval-options-interface
2267 (eval-options eval-enable eval-disable)
2268 (eval-set!)))
2269
2270 (define-option-interface
2271 (debug-options-interface
2272 (debug-options debug-enable debug-disable)
2273 (debug-set!)))
2274
2275 (define-option-interface
2276 (evaluator-traps-interface
2277 (traps trap-enable trap-disable)
2278 (trap-set!)))
2279
2280 (define-option-interface
2281 (read-options-interface
2282 (read-options read-enable read-disable)
2283 (read-set!)))
2284
2285 (define-option-interface
2286 (print-options-interface
2287 (print-options print-enable print-disable)
2288 (print-set!)))
2289
2290 \f
2291
2292 ;;; {Running Repls}
2293 ;;;
2294
2295 (define (repl read evaler print)
2296 (let loop ((source (read (current-input-port))))
2297 (print (evaler source))
2298 (loop (read (current-input-port)))))
2299
2300 ;; A provisional repl that acts like the SCM repl:
2301 ;;
2302 (define scm-repl-silent #f)
2303 (define (assert-repl-silence v) (set! scm-repl-silent v))
2304
2305 (define *unspecified* (if #f #f))
2306 (define (unspecified? v) (eq? v *unspecified*))
2307
2308 (define scm-repl-print-unspecified #f)
2309 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2310
2311 (define scm-repl-verbose #f)
2312 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2313
2314 (define scm-repl-prompt "guile> ")
2315
2316 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2317
2318 (define (default-lazy-handler key . args)
2319 (save-stack lazy-handler-dispatch)
2320 (apply throw key args))
2321
2322 (define (lazy-handler-dispatch key . args)
2323 (apply default-lazy-handler key args))
2324
2325 (define abort-hook (make-hook))
2326
2327 ;; these definitions are used if running a script.
2328 ;; otherwise redefined in error-catching-loop.
2329 (define (set-batch-mode?! arg) #t)
2330 (define (batch-mode?) #t)
2331
2332 (define (error-catching-loop thunk)
2333 (let ((status #f)
2334 (interactive #t))
2335 (define (loop first)
2336 (let ((next
2337 (catch #t
2338
2339 (lambda ()
2340 (call-with-unblocked-asyncs
2341 (lambda ()
2342 (with-traps
2343 (lambda ()
2344 (first)
2345
2346 ;; This line is needed because mark
2347 ;; doesn't do closures quite right.
2348 ;; Unreferenced locals should be
2349 ;; collected.
2350 (set! first #f)
2351 (let loop ((v (thunk)))
2352 (loop (thunk)))
2353 #f)))))
2354
2355 (lambda (key . args)
2356 (case key
2357 ((quit)
2358 (set! status args)
2359 #f)
2360
2361 ((switch-repl)
2362 (apply throw 'switch-repl args))
2363
2364 ((abort)
2365 ;; This is one of the closures that require
2366 ;; (set! first #f) above
2367 ;;
2368 (lambda ()
2369 (run-hook abort-hook)
2370 (force-output (current-output-port))
2371 (display "ABORT: " (current-error-port))
2372 (write args (current-error-port))
2373 (newline (current-error-port))
2374 (if interactive
2375 (begin
2376 (if (and
2377 (not has-shown-debugger-hint?)
2378 (not (memq 'backtrace
2379 (debug-options-interface)))
2380 (stack? (fluid-ref the-last-stack)))
2381 (begin
2382 (newline (current-error-port))
2383 (display
2384 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2385 (current-error-port))
2386 (set! has-shown-debugger-hint? #t)))
2387 (force-output (current-error-port)))
2388 (begin
2389 (primitive-exit 1)))
2390 (set! stack-saved? #f)))
2391
2392 (else
2393 ;; This is the other cons-leak closure...
2394 (lambda ()
2395 (cond ((= (length args) 4)
2396 (apply handle-system-error key args))
2397 (else
2398 (apply bad-throw key args)))))))
2399
2400 ;; Note that having just `lazy-handler-dispatch'
2401 ;; here is connected with the mechanism that
2402 ;; produces a nice backtrace upon error. If, for
2403 ;; example, this is replaced with (lambda args
2404 ;; (apply lazy-handler-dispatch args)), the stack
2405 ;; cutting (in save-stack) goes wrong and ends up
2406 ;; saving no stack at all, so there is no
2407 ;; backtrace.
2408 lazy-handler-dispatch)))
2409
2410 (if next (loop next) status)))
2411 (set! set-batch-mode?! (lambda (arg)
2412 (cond (arg
2413 (set! interactive #f)
2414 (restore-signals))
2415 (#t
2416 (error "sorry, not implemented")))))
2417 (set! batch-mode? (lambda () (not interactive)))
2418 (call-with-blocked-asyncs
2419 (lambda () (loop (lambda () #t))))))
2420
2421 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2422 (define before-signal-stack (make-fluid))
2423 (define stack-saved? #f)
2424
2425 (define (save-stack . narrowing)
2426 (or stack-saved?
2427 (cond ((not (memq 'debug (debug-options-interface)))
2428 (fluid-set! the-last-stack #f)
2429 (set! stack-saved? #t))
2430 (else
2431 (fluid-set!
2432 the-last-stack
2433 (case (stack-id #t)
2434 ((repl-stack)
2435 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2436 ((load-stack)
2437 (apply make-stack #t save-stack 0 #t 0 narrowing))
2438 ((tk-stack)
2439 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2440 ((#t)
2441 (apply make-stack #t save-stack 0 1 narrowing))
2442 (else
2443 (let ((id (stack-id #t)))
2444 (and (procedure? id)
2445 (apply make-stack #t save-stack id #t 0 narrowing))))))
2446 (set! stack-saved? #t)))))
2447
2448 (define before-error-hook (make-hook))
2449 (define after-error-hook (make-hook))
2450 (define before-backtrace-hook (make-hook))
2451 (define after-backtrace-hook (make-hook))
2452
2453 (define has-shown-debugger-hint? #f)
2454
2455 (define (handle-system-error key . args)
2456 (let ((cep (current-error-port)))
2457 (cond ((not (stack? (fluid-ref the-last-stack))))
2458 ((memq 'backtrace (debug-options-interface))
2459 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2460 (eq? key 'out-of-range))
2461 (list-ref args 3)
2462 '())))
2463 (run-hook before-backtrace-hook)
2464 (newline cep)
2465 (display "Backtrace:\n")
2466 (display-backtrace (fluid-ref the-last-stack) cep
2467 #f #f highlights)
2468 (newline cep)
2469 (run-hook after-backtrace-hook))))
2470 (run-hook before-error-hook)
2471 (apply display-error (fluid-ref the-last-stack) cep args)
2472 (run-hook after-error-hook)
2473 (force-output cep)
2474 (throw 'abort key)))
2475
2476 (define (quit . args)
2477 (apply throw 'quit args))
2478
2479 (define exit quit)
2480
2481 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2482
2483 ;; Replaced by C code:
2484 ;;(define (backtrace)
2485 ;; (if (fluid-ref the-last-stack)
2486 ;; (begin
2487 ;; (newline)
2488 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2489 ;; (newline)
2490 ;; (if (and (not has-shown-backtrace-hint?)
2491 ;; (not (memq 'backtrace (debug-options-interface))))
2492 ;; (begin
2493 ;; (display
2494 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2495 ;;automatically if an error occurs in the future.\n")
2496 ;; (set! has-shown-backtrace-hint? #t))))
2497 ;; (display "No backtrace available.\n")))
2498
2499 (define (error-catching-repl r e p)
2500 (error-catching-loop
2501 (lambda ()
2502 (call-with-values (lambda () (e (r)))
2503 (lambda the-values (for-each p the-values))))))
2504
2505 (define (gc-run-time)
2506 (cdr (assq 'gc-time-taken (gc-stats))))
2507
2508 (define before-read-hook (make-hook))
2509 (define after-read-hook (make-hook))
2510 (define before-eval-hook (make-hook 1))
2511 (define after-eval-hook (make-hook 1))
2512 (define before-print-hook (make-hook 1))
2513 (define after-print-hook (make-hook 1))
2514
2515 ;;; The default repl-reader function. We may override this if we've
2516 ;;; the readline library.
2517 (define repl-reader
2518 (lambda (prompt)
2519 (display (if (string? prompt) prompt (prompt)))
2520 (force-output)
2521 (run-hook before-read-hook)
2522 ((or (fluid-ref current-reader) read) (current-input-port))))
2523
2524 (define (scm-style-repl)
2525
2526 (letrec (
2527 (start-gc-rt #f)
2528 (start-rt #f)
2529 (repl-report-start-timing (lambda ()
2530 (set! start-gc-rt (gc-run-time))
2531 (set! start-rt (get-internal-run-time))))
2532 (repl-report (lambda ()
2533 (display ";;; ")
2534 (display (inexact->exact
2535 (* 1000 (/ (- (get-internal-run-time) start-rt)
2536 internal-time-units-per-second))))
2537 (display " msec (")
2538 (display (inexact->exact
2539 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2540 internal-time-units-per-second))))
2541 (display " msec in gc)\n")))
2542
2543 (consume-trailing-whitespace
2544 (lambda ()
2545 (let ((ch (peek-char)))
2546 (cond
2547 ((eof-object? ch))
2548 ((or (char=? ch #\space) (char=? ch #\tab))
2549 (read-char)
2550 (consume-trailing-whitespace))
2551 ((char=? ch #\newline)
2552 (read-char))))))
2553 (-read (lambda ()
2554 (let ((val
2555 (let ((prompt (cond ((string? scm-repl-prompt)
2556 scm-repl-prompt)
2557 ((thunk? scm-repl-prompt)
2558 (scm-repl-prompt))
2559 (scm-repl-prompt "> ")
2560 (else ""))))
2561 (repl-reader prompt))))
2562
2563 ;; As described in R4RS, the READ procedure updates the
2564 ;; port to point to the first character past the end of
2565 ;; the external representation of the object. This
2566 ;; means that it doesn't consume the newline typically
2567 ;; found after an expression. This means that, when
2568 ;; debugging Guile with GDB, GDB gets the newline, which
2569 ;; it often interprets as a "continue" command, making
2570 ;; breakpoints kind of useless. So, consume any
2571 ;; trailing newline here, as well as any whitespace
2572 ;; before it.
2573 ;; But not if EOF, for control-D.
2574 (if (not (eof-object? val))
2575 (consume-trailing-whitespace))
2576 (run-hook after-read-hook)
2577 (if (eof-object? val)
2578 (begin
2579 (repl-report-start-timing)
2580 (if scm-repl-verbose
2581 (begin
2582 (newline)
2583 (display ";;; EOF -- quitting")
2584 (newline)))
2585 (quit 0)))
2586 val)))
2587
2588 (-eval (lambda (sourc)
2589 (repl-report-start-timing)
2590 (run-hook before-eval-hook sourc)
2591 (let ((val (start-stack 'repl-stack
2592 ;; If you change this procedure
2593 ;; (primitive-eval), please also
2594 ;; modify the repl-stack case in
2595 ;; save-stack so that stack cutting
2596 ;; continues to work.
2597 (primitive-eval sourc))))
2598 (run-hook after-eval-hook sourc)
2599 val)))
2600
2601
2602 (-print (let ((maybe-print (lambda (result)
2603 (if (or scm-repl-print-unspecified
2604 (not (unspecified? result)))
2605 (begin
2606 (write result)
2607 (newline))))))
2608 (lambda (result)
2609 (if (not scm-repl-silent)
2610 (begin
2611 (run-hook before-print-hook result)
2612 (maybe-print result)
2613 (run-hook after-print-hook result)
2614 (if scm-repl-verbose
2615 (repl-report))
2616 (force-output))))))
2617
2618 (-quit (lambda (args)
2619 (if scm-repl-verbose
2620 (begin
2621 (display ";;; QUIT executed, repl exitting")
2622 (newline)
2623 (repl-report)))
2624 args))
2625
2626 (-abort (lambda ()
2627 (if scm-repl-verbose
2628 (begin
2629 (display ";;; ABORT executed.")
2630 (newline)
2631 (repl-report)))
2632 (repl -read -eval -print))))
2633
2634 (let ((status (error-catching-repl -read
2635 -eval
2636 -print)))
2637 (-quit status))))
2638
2639
2640 \f
2641
2642 ;;; {IOTA functions: generating lists of numbers}
2643 ;;;
2644
2645 (define (iota n)
2646 (let loop ((count (1- n)) (result '()))
2647 (if (< count 0) result
2648 (loop (1- count) (cons count result)))))
2649
2650 \f
2651
2652 ;;; {collect}
2653 ;;;
2654 ;;; Similar to `begin' but returns a list of the results of all constituent
2655 ;;; forms instead of the result of the last form.
2656 ;;; (The definition relies on the current left-to-right
2657 ;;; order of evaluation of operands in applications.)
2658 ;;;
2659
2660 (defmacro collect forms
2661 (cons 'list forms))
2662
2663 \f
2664
2665 ;;; {with-fluids}
2666 ;;;
2667
2668 ;; with-fluids is a convenience wrapper for the builtin procedure
2669 ;; `with-fluids*'. The syntax is just like `let':
2670 ;;
2671 ;; (with-fluids ((fluid val)
2672 ;; ...)
2673 ;; body)
2674
2675 (defmacro with-fluids (bindings . body)
2676 (let ((fluids (map car bindings))
2677 (values (map cadr bindings)))
2678 (if (and (= (length fluids) 1) (= (length values) 1))
2679 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2680 `(with-fluids* (list ,@fluids) (list ,@values)
2681 (lambda () ,@body)))))
2682
2683 \f
2684
2685 ;;; {Macros}
2686 ;;;
2687
2688 ;; actually....hobbit might be able to hack these with a little
2689 ;; coaxing
2690 ;;
2691
2692 (define (primitive-macro? m)
2693 (and (macro? m)
2694 (not (macro-transformer m))))
2695
2696 (defmacro define-macro (first . rest)
2697 (let ((name (if (symbol? first) first (car first)))
2698 (transformer
2699 (if (symbol? first)
2700 (car rest)
2701 `(lambda ,(cdr first) ,@rest))))
2702 `(eval-case
2703 ((load-toplevel compile-toplevel)
2704 (define ,name (defmacro:transformer ,transformer)))
2705 (else
2706 (error "define-macro can only be used at the top level")))))
2707
2708
2709 \f
2710
2711 ;;; {While}
2712 ;;;
2713 ;;; with `continue' and `break'.
2714 ;;;
2715
2716 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2717 ;; that's only necessary if continue is actually used. A new key is
2718 ;; generated every time, so break and continue apply to their originating
2719 ;; `while' even when recursing. `while-helper' is an easy way to keep the
2720 ;; `key' binding away from the cond and body code.
2721 ;;
2722 ;; FIXME: This is supposed to have an `unquote' on the `do' the same used
2723 ;; for lambda and not, so as to protect against any user rebinding of that
2724 ;; symbol, but unfortunately an unquote breaks with ice-9 syncase, eg.
2725 ;;
2726 ;; (use-modules (ice-9 syncase))
2727 ;; (while #f)
2728 ;; => ERROR: invalid syntax ()
2729 ;;
2730 ;; This is probably a bug in syncase.
2731 ;;
2732 (define-macro (while cond . body)
2733 (define (while-helper proc)
2734 (do ((key (make-symbol "while-key")))
2735 ((catch key
2736 (lambda ()
2737 (proc (lambda () (throw key #t))
2738 (lambda () (throw key #f))))
2739 (lambda (key arg) arg)))))
2740 `(,while-helper (,lambda (break continue)
2741 (do ()
2742 ((,not ,cond))
2743 ,@body)
2744 #t)))
2745
2746
2747 \f
2748
2749 ;;; {Module System Macros}
2750 ;;;
2751
2752 ;; Return a list of expressions that evaluate to the appropriate
2753 ;; arguments for resolve-interface according to SPEC.
2754
2755 (define (compile-interface-spec spec)
2756 (define (make-keyarg sym key quote?)
2757 (cond ((or (memq sym spec)
2758 (memq key spec))
2759 => (lambda (rest)
2760 (if quote?
2761 (list key (list 'quote (cadr rest)))
2762 (list key (cadr rest)))))
2763 (else
2764 '())))
2765 (define (map-apply func list)
2766 (map (lambda (args) (apply func args)) list))
2767 (define keys
2768 ;; sym key quote?
2769 '((:select #:select #t)
2770 (:hide #:hide #t)
2771 (:prefix #:prefix #t)
2772 (:renamer #:renamer #f)))
2773 (if (not (pair? (car spec)))
2774 `(',spec)
2775 `(',(car spec)
2776 ,@(apply append (map-apply make-keyarg keys)))))
2777
2778 (define (keyword-like-symbol->keyword sym)
2779 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2780
2781 (define (compile-define-module-args args)
2782 ;; Just quote everything except #:use-module and #:use-syntax. We
2783 ;; need to know about all arguments regardless since we want to turn
2784 ;; symbols that look like keywords into real keywords, and the
2785 ;; keyword args in a define-module form are not regular
2786 ;; (i.e. no-backtrace doesn't take a value).
2787 (let loop ((compiled-args `((quote ,(car args))))
2788 (args (cdr args)))
2789 (cond ((null? args)
2790 (reverse! compiled-args))
2791 ;; symbol in keyword position
2792 ((symbol? (car args))
2793 (loop compiled-args
2794 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2795 ((memq (car args) '(#:no-backtrace #:pure))
2796 (loop (cons (car args) compiled-args)
2797 (cdr args)))
2798 ((null? (cdr args))
2799 (error "keyword without value:" (car args)))
2800 ((memq (car args) '(#:use-module #:use-syntax))
2801 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2802 (car args)
2803 compiled-args)
2804 (cddr args)))
2805 ((eq? (car args) #:autoload)
2806 (loop (cons* `(quote ,(caddr args))
2807 `(quote ,(cadr args))
2808 (car args)
2809 compiled-args)
2810 (cdddr args)))
2811 (else
2812 (loop (cons* `(quote ,(cadr args))
2813 (car args)
2814 compiled-args)
2815 (cddr args))))))
2816
2817 (defmacro define-module args
2818 `(eval-case
2819 ((load-toplevel compile-toplevel)
2820 (let ((m (process-define-module
2821 (list ,@(compile-define-module-args args)))))
2822 (set-current-module m)
2823 m))
2824 (else
2825 (error "define-module can only be used at the top level"))))
2826
2827 ;; The guts of the use-modules macro. Add the interfaces of the named
2828 ;; modules to the use-list of the current module, in order.
2829
2830 ;; This function is called by "modules.c". If you change it, be sure
2831 ;; to change scm_c_use_module as well.
2832
2833 (define (process-use-modules module-interface-args)
2834 (let ((interfaces (map (lambda (mif-args)
2835 (or (apply resolve-interface mif-args)
2836 (error "no such module" mif-args)))
2837 module-interface-args)))
2838 (call-with-deferred-observers
2839 (lambda ()
2840 (module-use-interfaces! (current-module) interfaces)))))
2841
2842 (defmacro use-modules modules
2843 `(eval-case
2844 ((load-toplevel compile-toplevel)
2845 (process-use-modules
2846 (list ,@(map (lambda (m)
2847 `(list ,@(compile-interface-spec m)))
2848 modules)))
2849 *unspecified*)
2850 (else
2851 (error "use-modules can only be used at the top level"))))
2852
2853 (defmacro use-syntax (spec)
2854 `(eval-case
2855 ((load-toplevel compile-toplevel)
2856 ,@(if (pair? spec)
2857 `((process-use-modules (list
2858 (list ,@(compile-interface-spec spec))))
2859 (set-module-transformer! (current-module)
2860 ,(car (last-pair spec))))
2861 `((set-module-transformer! (current-module) ,spec)))
2862 *unspecified*)
2863 (else
2864 (error "use-syntax can only be used at the top level"))))
2865
2866 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2867 ;; as soon as guile supports hygienic macros.
2868 (define define-private define)
2869
2870 (defmacro define-public args
2871 (define (syntax)
2872 (error "bad syntax" (list 'define-public args)))
2873 (define (defined-name n)
2874 (cond
2875 ((symbol? n) n)
2876 ((pair? n) (defined-name (car n)))
2877 (else (syntax))))
2878 (cond
2879 ((null? args)
2880 (syntax))
2881 (#t
2882 (let ((name (defined-name (car args))))
2883 `(begin
2884 (define-private ,@args)
2885 (eval-case ((load-toplevel compile-toplevel) (export ,name))))))))
2886
2887 (defmacro defmacro-public args
2888 (define (syntax)
2889 (error "bad syntax" (list 'defmacro-public args)))
2890 (define (defined-name n)
2891 (cond
2892 ((symbol? n) n)
2893 (else (syntax))))
2894 (cond
2895 ((null? args)
2896 (syntax))
2897 (#t
2898 (let ((name (defined-name (car args))))
2899 `(begin
2900 (eval-case ((load-toplevel compile-toplevel) (export-syntax ,name)))
2901 (defmacro ,@args))))))
2902
2903 ;; Export a local variable
2904
2905 ;; This function is called from "modules.c". If you change it, be
2906 ;; sure to update "modules.c" as well.
2907
2908 (define (module-export! m names)
2909 (let ((public-i (module-public-interface m)))
2910 (for-each (lambda (name)
2911 (let ((var (module-ensure-local-variable! m name)))
2912 (module-add! public-i name var)))
2913 names)))
2914
2915 (define (module-replace! m names)
2916 (let ((public-i (module-public-interface m)))
2917 (for-each (lambda (name)
2918 (let ((var (module-ensure-local-variable! m name)))
2919 (set-object-property! var 'replace #t)
2920 (module-add! public-i name var)))
2921 names)))
2922
2923 ;; Re-export a imported variable
2924 ;;
2925 (define (module-re-export! m names)
2926 (let ((public-i (module-public-interface m)))
2927 (for-each (lambda (name)
2928 (let ((var (module-variable m name)))
2929 (cond ((not var)
2930 (error "Undefined variable:" name))
2931 ((eq? var (module-local-variable m name))
2932 (error "re-exporting local variable:" name))
2933 (else
2934 (module-add! public-i name var)))))
2935 names)))
2936
2937 (defmacro export names
2938 `(eval-case
2939 ((load-toplevel compile-toplevel)
2940 (call-with-deferred-observers
2941 (lambda ()
2942 (module-export! (current-module) ',names))))
2943 (else
2944 (error "export can only be used at the top level"))))
2945
2946 (defmacro re-export names
2947 `(eval-case
2948 ((load-toplevel compile-toplevel)
2949 (call-with-deferred-observers
2950 (lambda ()
2951 (module-re-export! (current-module) ',names))))
2952 (else
2953 (error "re-export can only be used at the top level"))))
2954
2955 (defmacro export-syntax names
2956 `(export ,@names))
2957
2958 (defmacro re-export-syntax names
2959 `(re-export ,@names))
2960
2961 (define load load-module)
2962
2963 ;; The following macro allows one to write, for example,
2964 ;;
2965 ;; (@ (ice-9 pretty-print) pretty-print)
2966 ;;
2967 ;; to refer directly to the pretty-print variable in module (ice-9
2968 ;; pretty-print). It works by looking up the variable and inserting
2969 ;; it directly into the code. This is understood by the evaluator.
2970 ;; Indeed, all references to global variables are memoized into such
2971 ;; variable objects.
2972
2973 (define-macro (@ mod-name var-name)
2974 (let ((var (module-variable (resolve-interface mod-name) var-name)))
2975 (if (not var)
2976 (error "no such public variable" (list '@ mod-name var-name)))
2977 var))
2978
2979 ;; The '@@' macro is like '@' but it can also access bindings that
2980 ;; have not been explicitely exported.
2981
2982 (define-macro (@@ mod-name var-name)
2983 (let ((var (module-variable (resolve-module mod-name) var-name)))
2984 (if (not var)
2985 (error "no such variable" (list '@@ mod-name var-name)))
2986 var))
2987
2988 \f
2989
2990 ;;; {Parameters}
2991 ;;;
2992
2993 (define make-mutable-parameter
2994 (let ((make (lambda (fluid converter)
2995 (lambda args
2996 (if (null? args)
2997 (fluid-ref fluid)
2998 (fluid-set! fluid (converter (car args))))))))
2999 (lambda (init . converter)
3000 (let ((fluid (make-fluid))
3001 (converter (if (null? converter)
3002 identity
3003 (car converter))))
3004 (fluid-set! fluid (converter init))
3005 (make fluid converter)))))
3006
3007 \f
3008
3009 ;;; {Handling of duplicate imported bindings}
3010 ;;;
3011
3012 ;; Duplicate handlers take the following arguments:
3013 ;;
3014 ;; module importing module
3015 ;; name conflicting name
3016 ;; int1 old interface where name occurs
3017 ;; val1 value of binding in old interface
3018 ;; int2 new interface where name occurs
3019 ;; val2 value of binding in new interface
3020 ;; var previous resolution or #f
3021 ;; val value of previous resolution
3022 ;;
3023 ;; A duplicate handler can take three alternative actions:
3024 ;;
3025 ;; 1. return #f => leave responsibility to next handler
3026 ;; 2. exit with an error
3027 ;; 3. return a variable resolving the conflict
3028 ;;
3029
3030 (define duplicate-handlers
3031 (let ((m (make-module 7)))
3032
3033 (define (check module name int1 val1 int2 val2 var val)
3034 (scm-error 'misc-error
3035 #f
3036 "~A: `~A' imported from both ~A and ~A"
3037 (list (module-name module)
3038 name
3039 (module-name int1)
3040 (module-name int2))
3041 #f))
3042
3043 (define (warn module name int1 val1 int2 val2 var val)
3044 (format (current-error-port)
3045 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3046 (module-name module)
3047 name
3048 (module-name int1)
3049 (module-name int2))
3050 #f)
3051
3052 (define (replace module name int1 val1 int2 val2 var val)
3053 (let ((old (or (and var (object-property var 'replace) var)
3054 (module-variable int1 name)))
3055 (new (module-variable int2 name)))
3056 (if (object-property old 'replace)
3057 (and (or (eq? old new)
3058 (not (object-property new 'replace)))
3059 old)
3060 (and (object-property new 'replace)
3061 new))))
3062
3063 (define (warn-override-core module name int1 val1 int2 val2 var val)
3064 (and (eq? int1 the-scm-module)
3065 (begin
3066 (format (current-error-port)
3067 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3068 (module-name module)
3069 (module-name int2)
3070 name)
3071 (module-local-variable int2 name))))
3072
3073 (define (first module name int1 val1 int2 val2 var val)
3074 (or var (module-local-variable int1 name)))
3075
3076 (define (last module name int1 val1 int2 val2 var val)
3077 (module-local-variable int2 name))
3078
3079 (define (noop module name int1 val1 int2 val2 var val)
3080 #f)
3081
3082 (set-module-name! m 'duplicate-handlers)
3083 (set-module-kind! m 'interface)
3084 (module-define! m 'check check)
3085 (module-define! m 'warn warn)
3086 (module-define! m 'replace replace)
3087 (module-define! m 'warn-override-core warn-override-core)
3088 (module-define! m 'first first)
3089 (module-define! m 'last last)
3090 (module-define! m 'merge-generics noop)
3091 (module-define! m 'merge-accessors noop)
3092 m))
3093
3094 (define (lookup-duplicates-handlers handler-names)
3095 (and handler-names
3096 (map (lambda (handler-name)
3097 (or (module-symbol-local-binding
3098 duplicate-handlers handler-name #f)
3099 (error "invalid duplicate handler name:"
3100 handler-name)))
3101 (if (list? handler-names)
3102 handler-names
3103 (list handler-names)))))
3104
3105 (define default-duplicate-binding-procedures
3106 (make-mutable-parameter #f))
3107
3108 (define default-duplicate-binding-handler
3109 (make-mutable-parameter '(replace warn-override-core warn last)
3110 (lambda (handler-names)
3111 (default-duplicate-binding-procedures
3112 (lookup-duplicates-handlers handler-names))
3113 handler-names)))
3114
3115 \f
3116
3117 ;;; {`cond-expand' for SRFI-0 support.}
3118 ;;;
3119 ;;; This syntactic form expands into different commands or
3120 ;;; definitions, depending on the features provided by the Scheme
3121 ;;; implementation.
3122 ;;;
3123 ;;; Syntax:
3124 ;;;
3125 ;;; <cond-expand>
3126 ;;; --> (cond-expand <cond-expand-clause>+)
3127 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3128 ;;; <cond-expand-clause>
3129 ;;; --> (<feature-requirement> <command-or-definition>*)
3130 ;;; <feature-requirement>
3131 ;;; --> <feature-identifier>
3132 ;;; | (and <feature-requirement>*)
3133 ;;; | (or <feature-requirement>*)
3134 ;;; | (not <feature-requirement>)
3135 ;;; <feature-identifier>
3136 ;;; --> <a symbol which is the name or alias of a SRFI>
3137 ;;;
3138 ;;; Additionally, this implementation provides the
3139 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3140 ;;; determine the implementation type and the supported standard.
3141 ;;;
3142 ;;; Currently, the following feature identifiers are supported:
3143 ;;;
3144 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3145 ;;;
3146 ;;; Remember to update the features list when adding more SRFIs.
3147 ;;;
3148
3149 (define %cond-expand-features
3150 ;; Adjust the above comment when changing this.
3151 '(guile
3152 r5rs
3153 srfi-0 ;; cond-expand itself
3154 srfi-4 ;; homogenous numeric vectors
3155 srfi-6 ;; open-input-string etc, in the guile core
3156 srfi-13 ;; string library
3157 srfi-14 ;; character sets
3158 srfi-55 ;; require-extension
3159 srfi-61 ;; general cond clause
3160 ))
3161
3162 ;; This table maps module public interfaces to the list of features.
3163 ;;
3164 (define %cond-expand-table (make-hash-table 31))
3165
3166 ;; Add one or more features to the `cond-expand' feature list of the
3167 ;; module `module'.
3168 ;;
3169 (define (cond-expand-provide module features)
3170 (let ((mod (module-public-interface module)))
3171 (and mod
3172 (hashq-set! %cond-expand-table mod
3173 (append (hashq-ref %cond-expand-table mod '())
3174 features)))))
3175
3176 (define cond-expand
3177 (procedure->memoizing-macro
3178 (lambda (exp env)
3179 (let ((clauses (cdr exp))
3180 (syntax-error (lambda (cl)
3181 (error "invalid clause in `cond-expand'" cl))))
3182 (letrec
3183 ((test-clause
3184 (lambda (clause)
3185 (cond
3186 ((symbol? clause)
3187 (or (memq clause %cond-expand-features)
3188 (let lp ((uses (module-uses (env-module env))))
3189 (if (pair? uses)
3190 (or (memq clause
3191 (hashq-ref %cond-expand-table
3192 (car uses) '()))
3193 (lp (cdr uses)))
3194 #f))))
3195 ((pair? clause)
3196 (cond
3197 ((eq? 'and (car clause))
3198 (let lp ((l (cdr clause)))
3199 (cond ((null? l)
3200 #t)
3201 ((pair? l)
3202 (and (test-clause (car l)) (lp (cdr l))))
3203 (else
3204 (syntax-error clause)))))
3205 ((eq? 'or (car clause))
3206 (let lp ((l (cdr clause)))
3207 (cond ((null? l)
3208 #f)
3209 ((pair? l)
3210 (or (test-clause (car l)) (lp (cdr l))))
3211 (else
3212 (syntax-error clause)))))
3213 ((eq? 'not (car clause))
3214 (cond ((not (pair? (cdr clause)))
3215 (syntax-error clause))
3216 ((pair? (cddr clause))
3217 ((syntax-error clause))))
3218 (not (test-clause (cadr clause))))
3219 (else
3220 (syntax-error clause))))
3221 (else
3222 (syntax-error clause))))))
3223 (let lp ((c clauses))
3224 (cond
3225 ((null? c)
3226 (error "Unfulfilled `cond-expand'"))
3227 ((not (pair? c))
3228 (syntax-error c))
3229 ((not (pair? (car c)))
3230 (syntax-error (car c)))
3231 ((test-clause (caar c))
3232 `(begin ,@(cdar c)))
3233 ((eq? (caar c) 'else)
3234 (if (pair? (cdr c))
3235 (syntax-error c))
3236 `(begin ,@(cdar c)))
3237 (else
3238 (lp (cdr c))))))))))
3239
3240 ;; This procedure gets called from the startup code with a list of
3241 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3242 ;;
3243 (define (use-srfis srfis)
3244 (process-use-modules
3245 (map (lambda (num)
3246 (list (list 'srfi (string->symbol
3247 (string-append "srfi-" (number->string num))))))
3248 srfis)))
3249
3250 \f
3251
3252 ;;; srfi-55: require-extension
3253 ;;;
3254
3255 (define-macro (require-extension extension-spec)
3256 ;; This macro only handles the srfi extension, which, at present, is
3257 ;; the only one defined by the standard.
3258 (if (not (pair? extension-spec))
3259 (scm-error 'wrong-type-arg "require-extension"
3260 "Not an extension: ~S" (list extension-spec) #f))
3261 (let ((extension (car extension-spec))
3262 (extension-args (cdr extension-spec)))
3263 (case extension
3264 ((srfi)
3265 (let ((use-list '()))
3266 (for-each
3267 (lambda (i)
3268 (if (not (integer? i))
3269 (scm-error 'wrong-type-arg "require-extension"
3270 "Invalid srfi name: ~S" (list i) #f))
3271 (let ((srfi-sym (string->symbol
3272 (string-append "srfi-" (number->string i)))))
3273 (if (not (memq srfi-sym %cond-expand-features))
3274 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3275 use-list)))))
3276 extension-args)
3277 (if (pair? use-list)
3278 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3279 `(begin ,@(reverse! use-list)))))
3280 (else
3281 (scm-error
3282 'wrong-type-arg "require-extension"
3283 "Not a recognized extension type: ~S" (list extension) #f)))))
3284
3285 \f
3286
3287 ;;; {Load emacs interface support if emacs option is given.}
3288 ;;;
3289
3290 (define (named-module-use! user usee)
3291 (module-use! (resolve-module user) (resolve-interface usee)))
3292
3293 (define (load-emacs-interface)
3294 (and (provided? 'debug-extensions)
3295 (debug-enable 'backtrace))
3296 (named-module-use! '(guile-user) '(ice-9 emacs)))
3297
3298 \f
3299
3300 (define using-readline?
3301 (let ((using-readline? (make-fluid)))
3302 (make-procedure-with-setter
3303 (lambda () (fluid-ref using-readline?))
3304 (lambda (v) (fluid-set! using-readline? v)))))
3305
3306 (define (top-repl)
3307 (let ((guile-user-module (resolve-module '(guile-user))))
3308
3309 ;; Load emacs interface support if emacs option is given.
3310 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3311 (module-ref guile-user-module 'use-emacs-interface))
3312 (load-emacs-interface))
3313
3314 ;; Use some convenient modules (in reverse order)
3315
3316 (set-current-module guile-user-module)
3317 (process-use-modules
3318 (append
3319 '(((ice-9 r5rs))
3320 ((ice-9 session))
3321 ((ice-9 debug)))
3322 (if (provided? 'regex)
3323 '(((ice-9 regex)))
3324 '())
3325 (if (provided? 'threads)
3326 '(((ice-9 threads)))
3327 '())))
3328 ;; load debugger on demand
3329 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3330
3331 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3332 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3333 ;; no effect.
3334 (let ((old-handlers #f)
3335 (signals (if (provided? 'posix)
3336 `((,SIGINT . "User interrupt")
3337 (,SIGFPE . "Arithmetic error")
3338 (,SIGSEGV
3339 . "Bad memory access (Segmentation violation)"))
3340 '())))
3341 ;; no SIGBUS on mingw
3342 (if (defined? 'SIGBUS)
3343 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3344 signals)))
3345
3346 (dynamic-wind
3347
3348 ;; call at entry
3349 (lambda ()
3350 (let ((make-handler (lambda (msg)
3351 (lambda (sig)
3352 ;; Make a backup copy of the stack
3353 (fluid-set! before-signal-stack
3354 (fluid-ref the-last-stack))
3355 (save-stack 2)
3356 (scm-error 'signal
3357 #f
3358 msg
3359 #f
3360 (list sig))))))
3361 (set! old-handlers
3362 (map (lambda (sig-msg)
3363 (sigaction (car sig-msg)
3364 (make-handler (cdr sig-msg))))
3365 signals))))
3366
3367 ;; the protected thunk.
3368 (lambda ()
3369 (let ((status (scm-style-repl)))
3370 (run-hook exit-hook)
3371 status))
3372
3373 ;; call at exit.
3374 (lambda ()
3375 (map (lambda (sig-msg old-handler)
3376 (if (not (car old-handler))
3377 ;; restore original C handler.
3378 (sigaction (car sig-msg) #f)
3379 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3380 (sigaction (car sig-msg)
3381 (car old-handler)
3382 (cdr old-handler))))
3383 signals old-handlers))))))
3384
3385 ;;; This hook is run at the very end of an interactive session.
3386 ;;;
3387 (define exit-hook (make-hook))
3388
3389 \f
3390
3391 ;;; {Deprecated stuff}
3392 ;;;
3393
3394 (begin-deprecated
3395 (define (feature? sym)
3396 (issue-deprecation-warning
3397 "`feature?' is deprecated. Use `provided?' instead.")
3398 (provided? sym)))
3399
3400 (begin-deprecated
3401 (primitive-load-path "ice-9/deprecated.scm"))
3402
3403 \f
3404
3405 ;;; Place the user in the guile-user module.
3406 ;;;
3407
3408 (define-module (guile-user))
3409
3410 ;;; boot-9.scm ends here