* arrays.scm, deprecated.scm (uniform-vector-fill!,
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 \f
83
84 ;;; {EVAL-CASE}
85 ;;;
86
87 ;; (eval-case ((situation*) forms)* (else forms)?)
88 ;;
89 ;; Evaluate certain code based on the situation that eval-case is used
90 ;; in. The only defined situation right now is `load-toplevel' which
91 ;; triggers for code evaluated at the top-level, for example from the
92 ;; REPL or when loading a file.
93
94 (define eval-case
95 (procedure->memoizing-macro
96 (lambda (exp env)
97 (define (toplevel-env? env)
98 (or (not (pair? env)) (not (pair? (car env)))))
99 (define (syntax)
100 (error "syntax error in eval-case"))
101 (let loop ((clauses (cdr exp)))
102 (cond
103 ((null? clauses)
104 #f)
105 ((not (list? (car clauses)))
106 (syntax))
107 ((eq? 'else (caar clauses))
108 (or (null? (cdr clauses))
109 (syntax))
110 (cons 'begin (cdar clauses)))
111 ((not (list? (caar clauses)))
112 (syntax))
113 ((and (toplevel-env? env)
114 (memq 'load-toplevel (caar clauses)))
115 (cons 'begin (cdar clauses)))
116 (else
117 (loop (cdr clauses))))))))
118
119 \f
120
121 ;;; {Defmacros}
122 ;;;
123 ;;; Depends on: features, eval-case
124 ;;;
125
126 (define macro-table (make-weak-key-hash-table 61))
127 (define xformer-table (make-weak-key-hash-table 61))
128
129 (define (defmacro? m) (hashq-ref macro-table m))
130 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
131 (define (defmacro-transformer m) (hashq-ref xformer-table m))
132 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
133
134 (define defmacro:transformer
135 (lambda (f)
136 (let* ((xform (lambda (exp env)
137 (copy-tree (apply f (cdr exp)))))
138 (a (procedure->memoizing-macro xform)))
139 (assert-defmacro?! a)
140 (set-defmacro-transformer! a f)
141 a)))
142
143
144 (define defmacro
145 (let ((defmacro-transformer
146 (lambda (name parms . body)
147 (let ((transformer `(lambda ,parms ,@body)))
148 `(eval-case
149 ((load-toplevel)
150 (define ,name (defmacro:transformer ,transformer)))
151 (else
152 (error "defmacro can only be used at the top level")))))))
153 (defmacro:transformer defmacro-transformer)))
154
155 (define defmacro:syntax-transformer
156 (lambda (f)
157 (procedure->syntax
158 (lambda (exp env)
159 (copy-tree (apply f (cdr exp)))))))
160
161
162 ;; XXX - should the definition of the car really be looked up in the
163 ;; current module?
164
165 (define (macroexpand-1 e)
166 (cond
167 ((pair? e) (let* ((a (car e))
168 (val (and (symbol? a) (local-ref (list a)))))
169 (if (defmacro? val)
170 (apply (defmacro-transformer val) (cdr e))
171 e)))
172 (#t e)))
173
174 (define (macroexpand e)
175 (cond
176 ((pair? e) (let* ((a (car e))
177 (val (and (symbol? a) (local-ref (list a)))))
178 (if (defmacro? val)
179 (macroexpand (apply (defmacro-transformer val) (cdr e)))
180 e)))
181 (#t e)))
182
183 (provide 'defmacro)
184
185 \f
186
187 ;;; {Deprecation}
188 ;;;
189 ;;; Depends on: defmacro
190 ;;;
191
192 (defmacro begin-deprecated forms
193 (if (include-deprecated-features)
194 (cons begin forms)
195 #f))
196
197 \f
198
199 ;;; {R4RS compliance}
200 ;;;
201
202 (primitive-load-path "ice-9/r4rs.scm")
203
204 \f
205
206 ;;; {Simple Debugging Tools}
207 ;;;
208
209 ;; peek takes any number of arguments, writes them to the
210 ;; current ouput port, and returns the last argument.
211 ;; It is handy to wrap around an expression to look at
212 ;; a value each time is evaluated, e.g.:
213 ;;
214 ;; (+ 10 (troublesome-fn))
215 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
216 ;;
217
218 (define (peek . stuff)
219 (newline)
220 (display ";;; ")
221 (write stuff)
222 (newline)
223 (car (last-pair stuff)))
224
225 (define pk peek)
226
227 (define (warn . stuff)
228 (with-output-to-port (current-error-port)
229 (lambda ()
230 (newline)
231 (display ";;; WARNING ")
232 (display stuff)
233 (newline)
234 (car (last-pair stuff)))))
235
236 \f
237
238 ;;; {Trivial Functions}
239 ;;;
240
241 (define (identity x) x)
242 (define (1+ n) (+ n 1))
243 (define (1- n) (+ n -1))
244 (define (and=> value procedure) (and value (procedure value)))
245 (define call/cc call-with-current-continuation)
246
247 ;;; apply-to-args is functionally redundant with apply and, worse,
248 ;;; is less general than apply since it only takes two arguments.
249 ;;;
250 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
251 ;;; perform binding in many circumstances when the "let" family of
252 ;;; of forms don't cut it. E.g.:
253 ;;;
254 ;;; (apply-to-args (return-3d-mouse-coords)
255 ;;; (lambda (x y z)
256 ;;; ...))
257 ;;;
258
259 (define (apply-to-args args fn) (apply fn args))
260
261 (defmacro false-if-exception (expr)
262 `(catch #t (lambda () ,expr)
263 (lambda args #f)))
264
265 \f
266
267 ;;; {General Properties}
268 ;;;
269
270 ;; This is a more modern interface to properties. It will replace all
271 ;; other property-like things eventually.
272
273 (define (make-object-property)
274 (let ((prop (primitive-make-property #f)))
275 (make-procedure-with-setter
276 (lambda (obj) (primitive-property-ref prop obj))
277 (lambda (obj val) (primitive-property-set! prop obj val)))))
278
279 \f
280
281 ;;; {Symbol Properties}
282 ;;;
283
284 (define (symbol-property sym prop)
285 (let ((pair (assoc prop (symbol-pref sym))))
286 (and pair (cdr pair))))
287
288 (define (set-symbol-property! sym prop val)
289 (let ((pair (assoc prop (symbol-pref sym))))
290 (if pair
291 (set-cdr! pair val)
292 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
293
294 (define (symbol-property-remove! sym prop)
295 (let ((pair (assoc prop (symbol-pref sym))))
296 (if pair
297 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
298
299 \f
300
301 ;;; {Arrays}
302 ;;;
303
304 (define (array-shape a)
305 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
306 (array-dimensions a)))
307
308 \f
309
310 ;;; {Keywords}
311 ;;;
312
313 (define (kw-arg-ref args kw)
314 (let ((rem (member kw args)))
315 (and rem (pair? (cdr rem)) (cadr rem))))
316
317 \f
318
319 ;;; {Structs}
320 ;;;
321
322 (define (struct-layout s)
323 (struct-ref (struct-vtable s) vtable-index-layout))
324
325 \f
326
327 ;;; {Environments}
328 ;;;
329
330 (define the-environment
331 (procedure->syntax
332 (lambda (x e)
333 e)))
334
335 (define the-root-environment (the-environment))
336
337 (define (environment-module env)
338 (let ((closure (and (pair? env) (car (last-pair env)))))
339 (and closure (procedure-property closure 'module))))
340
341 \f
342
343 ;;; {Records}
344 ;;;
345
346 ;; Printing records: by default, records are printed as
347 ;;
348 ;; #<type-name field1: val1 field2: val2 ...>
349 ;;
350 ;; You can change that by giving a custom printing function to
351 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
352 ;; will be called like
353 ;;
354 ;; (<printer> object port)
355 ;;
356 ;; It should print OBJECT to PORT.
357
358 (define (inherit-print-state old-port new-port)
359 (if (get-print-state old-port)
360 (port-with-print-state new-port (get-print-state old-port))
361 new-port))
362
363 ;; 0: type-name, 1: fields
364 (define record-type-vtable
365 (make-vtable-vtable "prpr" 0
366 (lambda (s p)
367 (cond ((eq? s record-type-vtable)
368 (display "#<record-type-vtable>" p))
369 (else
370 (display "#<record-type " p)
371 (display (record-type-name s) p)
372 (display ">" p))))))
373
374 (define (record-type? obj)
375 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
376
377 (define (make-record-type type-name fields . opt)
378 (let ((printer-fn (and (pair? opt) (car opt))))
379 (let ((struct (make-struct record-type-vtable 0
380 (make-struct-layout
381 (apply string-append
382 (map (lambda (f) "pw") fields)))
383 (or printer-fn
384 (lambda (s p)
385 (display "#<" p)
386 (display type-name p)
387 (let loop ((fields fields)
388 (off 0))
389 (cond
390 ((not (null? fields))
391 (display " " p)
392 (display (car fields) p)
393 (display ": " p)
394 (display (struct-ref s off) p)
395 (loop (cdr fields) (+ 1 off)))))
396 (display ">" p)))
397 type-name
398 (copy-tree fields))))
399 ;; Temporary solution: Associate a name to the record type descriptor
400 ;; so that the object system can create a wrapper class for it.
401 (set-struct-vtable-name! struct (if (symbol? type-name)
402 type-name
403 (string->symbol type-name)))
404 struct)))
405
406 (define (record-type-name obj)
407 (if (record-type? obj)
408 (struct-ref obj vtable-offset-user)
409 (error 'not-a-record-type obj)))
410
411 (define (record-type-fields obj)
412 (if (record-type? obj)
413 (struct-ref obj (+ 1 vtable-offset-user))
414 (error 'not-a-record-type obj)))
415
416 (define (record-constructor rtd . opt)
417 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
418 (local-eval `(lambda ,field-names
419 (make-struct ',rtd 0 ,@(map (lambda (f)
420 (if (memq f field-names)
421 f
422 #f))
423 (record-type-fields rtd))))
424 the-root-environment)))
425
426 (define (record-predicate rtd)
427 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
428
429 (define (record-accessor rtd field-name)
430 (let* ((pos (list-index (record-type-fields rtd) field-name)))
431 (if (not pos)
432 (error 'no-such-field field-name))
433 (local-eval `(lambda (obj)
434 (and (eq? ',rtd (record-type-descriptor obj))
435 (struct-ref obj ,pos)))
436 the-root-environment)))
437
438 (define (record-modifier rtd field-name)
439 (let* ((pos (list-index (record-type-fields rtd) field-name)))
440 (if (not pos)
441 (error 'no-such-field field-name))
442 (local-eval `(lambda (obj val)
443 (and (eq? ',rtd (record-type-descriptor obj))
444 (struct-set! obj ,pos val)))
445 the-root-environment)))
446
447
448 (define (record? obj)
449 (and (struct? obj) (record-type? (struct-vtable obj))))
450
451 (define (record-type-descriptor obj)
452 (if (struct? obj)
453 (struct-vtable obj)
454 (error 'not-a-record obj)))
455
456 (provide 'record)
457
458 \f
459
460 ;;; {Booleans}
461 ;;;
462
463 (define (->bool x) (not (not x)))
464
465 \f
466
467 ;;; {Symbols}
468 ;;;
469
470 (define (symbol-append . args)
471 (string->symbol (apply string-append (map symbol->string args))))
472
473 (define (list->symbol . args)
474 (string->symbol (apply list->string args)))
475
476 (define (symbol . args)
477 (string->symbol (apply string args)))
478
479 \f
480
481 ;;; {Lists}
482 ;;;
483
484 (define (list-index l k)
485 (let loop ((n 0)
486 (l l))
487 (and (not (null? l))
488 (if (eq? (car l) k)
489 n
490 (loop (+ n 1) (cdr l))))))
491
492 (define (make-list n . init)
493 (if (pair? init) (set! init (car init)))
494 (let loop ((answer '())
495 (n n))
496 (if (<= n 0)
497 answer
498 (loop (cons init answer) (- n 1)))))
499
500 \f
501
502 ;;; {and-map and or-map}
503 ;;;
504 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
505 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
506 ;;;
507
508 ;; and-map f l
509 ;;
510 ;; Apply f to successive elements of l until exhaustion or f returns #f.
511 ;; If returning early, return #f. Otherwise, return the last value returned
512 ;; by f. If f has never been called because l is empty, return #t.
513 ;;
514 (define (and-map f lst)
515 (let loop ((result #t)
516 (l lst))
517 (and result
518 (or (and (null? l)
519 result)
520 (loop (f (car l)) (cdr l))))))
521
522 ;; or-map f l
523 ;;
524 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
525 ;; If returning early, return the return value of f.
526 ;;
527 (define (or-map f lst)
528 (let loop ((result #f)
529 (l lst))
530 (or result
531 (and (not (null? l))
532 (loop (f (car l)) (cdr l))))))
533
534 \f
535
536 (if (provided? 'posix)
537 (primitive-load-path "ice-9/posix.scm"))
538
539 (if (provided? 'socket)
540 (primitive-load-path "ice-9/networking.scm"))
541
542 ;; For reference, Emacs file-exists-p uses stat in this same way.
543 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
544 ;; C where all that's needed is to inspect the return from stat().
545 (define file-exists?
546 (if (provided? 'posix)
547 (lambda (str)
548 (->bool (false-if-exception (stat str))))
549 (lambda (str)
550 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
551 (lambda args #f))))
552 (if port (begin (close-port port) #t)
553 #f)))))
554
555 (define file-is-directory?
556 (if (provided? 'posix)
557 (lambda (str)
558 (eq? (stat:type (stat str)) 'directory))
559 (lambda (str)
560 (let ((port (catch 'system-error
561 (lambda () (open-file (string-append str "/.")
562 OPEN_READ))
563 (lambda args #f))))
564 (if port (begin (close-port port) #t)
565 #f)))))
566
567 (define (has-suffix? str suffix)
568 (let ((sufl (string-length suffix))
569 (sl (string-length str)))
570 (and (> sl sufl)
571 (string=? (substring str (- sl sufl) sl) suffix))))
572
573 (define (system-error-errno args)
574 (if (eq? (car args) 'system-error)
575 (car (list-ref args 4))
576 #f))
577
578 \f
579
580 ;;; {Error Handling}
581 ;;;
582
583 (define (error . args)
584 (save-stack)
585 (if (null? args)
586 (scm-error 'misc-error #f "?" #f #f)
587 (let loop ((msg "~A")
588 (rest (cdr args)))
589 (if (not (null? rest))
590 (loop (string-append msg " ~S")
591 (cdr rest))
592 (scm-error 'misc-error #f msg args #f)))))
593
594 ;; bad-throw is the hook that is called upon a throw to a an unhandled
595 ;; key (unless the throw has four arguments, in which case
596 ;; it's usually interpreted as an error throw.)
597 ;; If the key has a default handler (a throw-handler-default property),
598 ;; it is applied to the throw.
599 ;;
600 (define (bad-throw key . args)
601 (let ((default (symbol-property key 'throw-handler-default)))
602 (or (and default (apply default key args))
603 (apply error "unhandled-exception:" key args))))
604
605 \f
606
607 (define (tm:sec obj) (vector-ref obj 0))
608 (define (tm:min obj) (vector-ref obj 1))
609 (define (tm:hour obj) (vector-ref obj 2))
610 (define (tm:mday obj) (vector-ref obj 3))
611 (define (tm:mon obj) (vector-ref obj 4))
612 (define (tm:year obj) (vector-ref obj 5))
613 (define (tm:wday obj) (vector-ref obj 6))
614 (define (tm:yday obj) (vector-ref obj 7))
615 (define (tm:isdst obj) (vector-ref obj 8))
616 (define (tm:gmtoff obj) (vector-ref obj 9))
617 (define (tm:zone obj) (vector-ref obj 10))
618
619 (define (set-tm:sec obj val) (vector-set! obj 0 val))
620 (define (set-tm:min obj val) (vector-set! obj 1 val))
621 (define (set-tm:hour obj val) (vector-set! obj 2 val))
622 (define (set-tm:mday obj val) (vector-set! obj 3 val))
623 (define (set-tm:mon obj val) (vector-set! obj 4 val))
624 (define (set-tm:year obj val) (vector-set! obj 5 val))
625 (define (set-tm:wday obj val) (vector-set! obj 6 val))
626 (define (set-tm:yday obj val) (vector-set! obj 7 val))
627 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
628 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
629 (define (set-tm:zone obj val) (vector-set! obj 10 val))
630
631 (define (tms:clock obj) (vector-ref obj 0))
632 (define (tms:utime obj) (vector-ref obj 1))
633 (define (tms:stime obj) (vector-ref obj 2))
634 (define (tms:cutime obj) (vector-ref obj 3))
635 (define (tms:cstime obj) (vector-ref obj 4))
636
637 (define file-position ftell)
638 (define (file-set-position port offset . whence)
639 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
640 (seek port offset whence)))
641
642 (define (move->fdes fd/port fd)
643 (cond ((integer? fd/port)
644 (dup->fdes fd/port fd)
645 (close fd/port)
646 fd)
647 (else
648 (primitive-move->fdes fd/port fd)
649 (set-port-revealed! fd/port 1)
650 fd/port)))
651
652 (define (release-port-handle port)
653 (let ((revealed (port-revealed port)))
654 (if (> revealed 0)
655 (set-port-revealed! port (- revealed 1)))))
656
657 (define (dup->port port/fd mode . maybe-fd)
658 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
659 mode)))
660 (if (pair? maybe-fd)
661 (set-port-revealed! port 1))
662 port))
663
664 (define (dup->inport port/fd . maybe-fd)
665 (apply dup->port port/fd "r" maybe-fd))
666
667 (define (dup->outport port/fd . maybe-fd)
668 (apply dup->port port/fd "w" maybe-fd))
669
670 (define (dup port/fd . maybe-fd)
671 (if (integer? port/fd)
672 (apply dup->fdes port/fd maybe-fd)
673 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
674
675 (define (duplicate-port port modes)
676 (dup->port port modes))
677
678 (define (fdes->inport fdes)
679 (let loop ((rest-ports (fdes->ports fdes)))
680 (cond ((null? rest-ports)
681 (let ((result (fdopen fdes "r")))
682 (set-port-revealed! result 1)
683 result))
684 ((input-port? (car rest-ports))
685 (set-port-revealed! (car rest-ports)
686 (+ (port-revealed (car rest-ports)) 1))
687 (car rest-ports))
688 (else
689 (loop (cdr rest-ports))))))
690
691 (define (fdes->outport fdes)
692 (let loop ((rest-ports (fdes->ports fdes)))
693 (cond ((null? rest-ports)
694 (let ((result (fdopen fdes "w")))
695 (set-port-revealed! result 1)
696 result))
697 ((output-port? (car rest-ports))
698 (set-port-revealed! (car rest-ports)
699 (+ (port-revealed (car rest-ports)) 1))
700 (car rest-ports))
701 (else
702 (loop (cdr rest-ports))))))
703
704 (define (port->fdes port)
705 (set-port-revealed! port (+ (port-revealed port) 1))
706 (fileno port))
707
708 (define (setenv name value)
709 (if value
710 (putenv (string-append name "=" value))
711 (putenv name)))
712
713 (define (unsetenv name)
714 "Remove the entry for NAME from the environment."
715 (putenv name))
716
717 \f
718
719 ;;; {Load Paths}
720 ;;;
721
722 ;;; Here for backward compatability
723 ;;
724 (define scheme-file-suffix (lambda () ".scm"))
725
726 (define (in-vicinity vicinity file)
727 (let ((tail (let ((len (string-length vicinity)))
728 (if (zero? len)
729 #f
730 (string-ref vicinity (- len 1))))))
731 (string-append vicinity
732 (if (or (not tail)
733 (eq? tail #\/))
734 ""
735 "/")
736 file)))
737
738 \f
739
740 ;;; {Help for scm_shell}
741 ;;;
742 ;;; The argument-processing code used by Guile-based shells generates
743 ;;; Scheme code based on the argument list. This page contains help
744 ;;; functions for the code it generates.
745 ;;;
746
747 (define (command-line) (program-arguments))
748
749 ;; This is mostly for the internal use of the code generated by
750 ;; scm_compile_shell_switches.
751
752 (define (turn-on-debugging)
753 (debug-enable 'debug)
754 (debug-enable 'backtrace)
755 (read-enable 'positions))
756
757 (define (load-user-init)
758 (let* ((home (or (getenv "HOME")
759 (false-if-exception (passwd:dir (getpwuid (getuid))))
760 "/")) ;; fallback for cygwin etc.
761 (init-file (in-vicinity home ".guile")))
762 (if (file-exists? init-file)
763 (primitive-load init-file))))
764
765 \f
766
767 ;;; {Loading by paths}
768 ;;;
769
770 ;;; Load a Scheme source file named NAME, searching for it in the
771 ;;; directories listed in %load-path, and applying each of the file
772 ;;; name extensions listed in %load-extensions.
773 (define (load-from-path name)
774 (start-stack 'load-stack
775 (primitive-load-path name)))
776
777
778 \f
779
780 ;;; {Transcendental Functions}
781 ;;;
782 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
783 ;;; Written by Jerry D. Hedden, (C) FSF.
784 ;;; See the file `COPYING' for terms applying to this program.
785 ;;;
786
787 (define (exp z)
788 (if (real? z) ($exp z)
789 (make-polar ($exp (real-part z)) (imag-part z))))
790
791 (define (log z)
792 (if (and (real? z) (>= z 0))
793 ($log z)
794 (make-rectangular ($log (magnitude z)) (angle z))))
795
796 (define (sqrt z)
797 (if (real? z)
798 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
799 ($sqrt z))
800 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
801
802 (define expt
803 (let ((integer-expt integer-expt))
804 (lambda (z1 z2)
805 (cond ((and (exact? z2) (integer? z2))
806 (integer-expt z1 z2))
807 ((and (real? z2) (real? z1) (>= z1 0))
808 ($expt z1 z2))
809 (else
810 (exp (* z2 (log z1))))))))
811
812 (define (sinh z)
813 (if (real? z) ($sinh z)
814 (let ((x (real-part z)) (y (imag-part z)))
815 (make-rectangular (* ($sinh x) ($cos y))
816 (* ($cosh x) ($sin y))))))
817 (define (cosh z)
818 (if (real? z) ($cosh z)
819 (let ((x (real-part z)) (y (imag-part z)))
820 (make-rectangular (* ($cosh x) ($cos y))
821 (* ($sinh x) ($sin y))))))
822 (define (tanh z)
823 (if (real? z) ($tanh z)
824 (let* ((x (* 2 (real-part z)))
825 (y (* 2 (imag-part z)))
826 (w (+ ($cosh x) ($cos y))))
827 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
828
829 (define (asinh z)
830 (if (real? z) ($asinh z)
831 (log (+ z (sqrt (+ (* z z) 1))))))
832
833 (define (acosh z)
834 (if (and (real? z) (>= z 1))
835 ($acosh z)
836 (log (+ z (sqrt (- (* z z) 1))))))
837
838 (define (atanh z)
839 (if (and (real? z) (> z -1) (< z 1))
840 ($atanh z)
841 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
842
843 (define (sin z)
844 (if (real? z) ($sin z)
845 (let ((x (real-part z)) (y (imag-part z)))
846 (make-rectangular (* ($sin x) ($cosh y))
847 (* ($cos x) ($sinh y))))))
848 (define (cos z)
849 (if (real? z) ($cos z)
850 (let ((x (real-part z)) (y (imag-part z)))
851 (make-rectangular (* ($cos x) ($cosh y))
852 (- (* ($sin x) ($sinh y)))))))
853 (define (tan z)
854 (if (real? z) ($tan z)
855 (let* ((x (* 2 (real-part z)))
856 (y (* 2 (imag-part z)))
857 (w (+ ($cos x) ($cosh y))))
858 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
859
860 (define (asin z)
861 (if (and (real? z) (>= z -1) (<= z 1))
862 ($asin z)
863 (* -i (asinh (* +i z)))))
864
865 (define (acos z)
866 (if (and (real? z) (>= z -1) (<= z 1))
867 ($acos z)
868 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
869
870 (define (atan z . y)
871 (if (null? y)
872 (if (real? z) ($atan z)
873 (/ (log (/ (- +i z) (+ +i z))) +2i))
874 ($atan2 z (car y))))
875
876 (define (log10 arg)
877 (/ (log arg) (log 10)))
878
879 \f
880
881 ;;; {Reader Extensions}
882 ;;;
883 ;;; Reader code for various "#c" forms.
884 ;;;
885
886 (read-hash-extend #\' (lambda (c port)
887 (read port)))
888
889 (define read-eval? (make-fluid))
890 (fluid-set! read-eval? #f)
891 (read-hash-extend #\.
892 (lambda (c port)
893 (if (fluid-ref read-eval?)
894 (eval (read port) (interaction-environment))
895 (error
896 "#. read expansion found and read-eval? is #f."))))
897
898 \f
899
900 ;;; {Command Line Options}
901 ;;;
902
903 (define (get-option argv kw-opts kw-args return)
904 (cond
905 ((null? argv)
906 (return #f #f argv))
907
908 ((or (not (eq? #\- (string-ref (car argv) 0)))
909 (eq? (string-length (car argv)) 1))
910 (return 'normal-arg (car argv) (cdr argv)))
911
912 ((eq? #\- (string-ref (car argv) 1))
913 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
914 (string-length (car argv))))
915 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
916 (kw-opt? (member kw kw-opts))
917 (kw-arg? (member kw kw-args))
918 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
919 (substring (car argv)
920 (+ kw-arg-pos 1)
921 (string-length (car argv))))
922 (and kw-arg?
923 (begin (set! argv (cdr argv)) (car argv))))))
924 (if (or kw-opt? kw-arg?)
925 (return kw arg (cdr argv))
926 (return 'usage-error kw (cdr argv)))))
927
928 (else
929 (let* ((char (substring (car argv) 1 2))
930 (kw (symbol->keyword char)))
931 (cond
932
933 ((member kw kw-opts)
934 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
935 (new-argv (if (= 0 (string-length rest-car))
936 (cdr argv)
937 (cons (string-append "-" rest-car) (cdr argv)))))
938 (return kw #f new-argv)))
939
940 ((member kw kw-args)
941 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
942 (arg (if (= 0 (string-length rest-car))
943 (cadr argv)
944 rest-car))
945 (new-argv (if (= 0 (string-length rest-car))
946 (cddr argv)
947 (cdr argv))))
948 (return kw arg new-argv)))
949
950 (else (return 'usage-error kw argv)))))))
951
952 (define (for-next-option proc argv kw-opts kw-args)
953 (let loop ((argv argv))
954 (get-option argv kw-opts kw-args
955 (lambda (opt opt-arg argv)
956 (and opt (proc opt opt-arg argv loop))))))
957
958 (define (display-usage-report kw-desc)
959 (for-each
960 (lambda (kw)
961 (or (eq? (car kw) #t)
962 (eq? (car kw) 'else)
963 (let* ((opt-desc kw)
964 (help (cadr opt-desc))
965 (opts (car opt-desc))
966 (opts-proper (if (string? (car opts)) (cdr opts) opts))
967 (arg-name (if (string? (car opts))
968 (string-append "<" (car opts) ">")
969 ""))
970 (left-part (string-append
971 (with-output-to-string
972 (lambda ()
973 (map (lambda (x) (display (keyword->symbol x)) (display " "))
974 opts-proper)))
975 arg-name))
976 (middle-part (if (and (< (string-length left-part) 30)
977 (< (string-length help) 40))
978 (make-string (- 30 (string-length left-part)) #\ )
979 "\n\t")))
980 (display left-part)
981 (display middle-part)
982 (display help)
983 (newline))))
984 kw-desc))
985
986
987
988 (define (transform-usage-lambda cases)
989 (let* ((raw-usage (delq! 'else (map car cases)))
990 (usage-sans-specials (map (lambda (x)
991 (or (and (not (list? x)) x)
992 (and (symbol? (car x)) #t)
993 (and (boolean? (car x)) #t)
994 x))
995 raw-usage))
996 (usage-desc (delq! #t usage-sans-specials))
997 (kw-desc (map car usage-desc))
998 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
999 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1000 (transmogrified-cases (map (lambda (case)
1001 (cons (let ((opts (car case)))
1002 (if (or (boolean? opts) (eq? 'else opts))
1003 opts
1004 (cond
1005 ((symbol? (car opts)) opts)
1006 ((boolean? (car opts)) opts)
1007 ((string? (caar opts)) (cdar opts))
1008 (else (car opts)))))
1009 (cdr case)))
1010 cases)))
1011 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1012 (lambda (%argv)
1013 (let %next-arg ((%argv %argv))
1014 (get-option %argv
1015 ',kw-opts
1016 ',kw-args
1017 (lambda (%opt %arg %new-argv)
1018 (case %opt
1019 ,@ transmogrified-cases))))))))
1020
1021
1022 \f
1023
1024 ;;; {Low Level Modules}
1025 ;;;
1026 ;;; These are the low level data structures for modules.
1027 ;;;
1028 ;;; Every module object is of the type 'module-type', which is a record
1029 ;;; consisting of the following members:
1030 ;;;
1031 ;;; - eval-closure: the function that defines for its module the strategy that
1032 ;;; shall be followed when looking up symbols in the module.
1033 ;;;
1034 ;;; An eval-closure is a function taking two arguments: the symbol to be
1035 ;;; looked up and a boolean value telling whether a binding for the symbol
1036 ;;; should be created if it does not exist yet. If the symbol lookup
1037 ;;; succeeded (either because an existing binding was found or because a new
1038 ;;; binding was created), a variable object representing the binding is
1039 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1040 ;;; closure does not take the module to be searched as an argument: During
1041 ;;; construction of the eval-closure, the eval-closure has to store the
1042 ;;; module it belongs to in its environment. This means, that any
1043 ;;; eval-closure can belong to only one module.
1044 ;;;
1045 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1046 ;;; special cases of eval-closures are to be distinguished: During startup
1047 ;;; the module system is not yet activated. In this phase, no modules are
1048 ;;; defined and all bindings are automatically stored by the system in the
1049 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1050 ;;; functions which require an eval-closure as their argument need to be
1051 ;;; passed the value #f.
1052 ;;;
1053 ;;; The other two special cases of eval-closures are the
1054 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1055 ;;; behave equally for the case that no new binding is to be created. The
1056 ;;; difference between the two comes in, when the boolean argument to the
1057 ;;; eval-closure indicates that a new binding shall be created if it is not
1058 ;;; found.
1059 ;;;
1060 ;;; Given that no new binding shall be created, both standard eval-closures
1061 ;;; define the following standard strategy of searching bindings in the
1062 ;;; module: First, the module's obarray is searched for the symbol. Second,
1063 ;;; if no binding for the symbol was found in the module's obarray, the
1064 ;;; module's binder procedure is exececuted. If this procedure did not
1065 ;;; return a binding for the symbol, the modules referenced in the module's
1066 ;;; uses list are recursively searched for a binding of the symbol. If the
1067 ;;; binding can not be found in these modules also, the symbol lookup has
1068 ;;; failed.
1069 ;;;
1070 ;;; If a new binding shall be created, the standard-interface-eval-closure
1071 ;;; immediately returns indicating failure. That is, it does not even try
1072 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1073 ;;; first search the obarray, and if no binding was found there, would
1074 ;;; create a new binding in the obarray, therefore not calling the binder
1075 ;;; procedure or searching the modules in the uses list.
1076 ;;;
1077 ;;; The explanation of the following members obarray, binder and uses
1078 ;;; assumes that the symbol lookup follows the strategy that is defined in
1079 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1080 ;;;
1081 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1082 ;;; hash table, the definitions are found that are local to the module (that
1083 ;;; is, not imported from other modules). When looking up bindings in the
1084 ;;; module, this hash table is searched first.
1085 ;;;
1086 ;;; - binder: either #f or a function taking a module and a symbol argument.
1087 ;;; If it is a function it is called after the obarray has been
1088 ;;; unsuccessfully searched for a binding. It then can provide bindings
1089 ;;; that would otherwise not be found locally in the module.
1090 ;;;
1091 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1092 ;;; These modules are the third place queried for bindings after the obarray
1093 ;;; has been unsuccessfully searched and the binder function did not deliver
1094 ;;; a result either.
1095 ;;;
1096 ;;; - transformer: either #f or a function taking a scheme expression as
1097 ;;; delivered by read. If it is a function, it will be called to perform
1098 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1099 ;;; expression. The output of the transformer function will then be passed
1100 ;;; to Guile's internal memoizer. This means that the output must be valid
1101 ;;; scheme code. The only exception is, that the output may make use of the
1102 ;;; syntax extensions provided to identify the modules that a binding
1103 ;;; belongs to.
1104 ;;;
1105 ;;; - name: the name of the module. This is used for all kinds of printing
1106 ;;; outputs. In certain places the module name also serves as a way of
1107 ;;; identification. When adding a module to the uses list of another
1108 ;;; module, it is made sure that the new uses list will not contain two
1109 ;;; modules of the same name.
1110 ;;;
1111 ;;; - kind: classification of the kind of module. The value is (currently?)
1112 ;;; only used for printing. It has no influence on how a module is treated.
1113 ;;; Currently the following values are used when setting the module kind:
1114 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1115 ;;; is set, it defaults to 'module.
1116 ;;;
1117 ;;; - duplicates-handlers
1118 ;;;
1119 ;;; - duplicates-interface
1120 ;;;
1121 ;;; - observers
1122 ;;;
1123 ;;; - weak-observers
1124 ;;;
1125 ;;; - observer-id
1126 ;;;
1127 ;;; In addition, the module may (must?) contain a binding for
1128 ;;; %module-public-interface... More explanations here...
1129 ;;;
1130 ;;; !!! warning: The interface to lazy binder procedures is going
1131 ;;; to be changed in an incompatible way to permit all the basic
1132 ;;; module ops to be virtualized.
1133 ;;;
1134 ;;; (make-module size use-list lazy-binding-proc) => module
1135 ;;; module-{obarray,uses,binder}[|-set!]
1136 ;;; (module? obj) => [#t|#f]
1137 ;;; (module-locally-bound? module symbol) => [#t|#f]
1138 ;;; (module-bound? module symbol) => [#t|#f]
1139 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1140 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1141 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1142 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1143 ;;; (module-symbol-binding module symbol opt-value)
1144 ;;; => [ <obj> | opt-value | an error occurs ]
1145 ;;; (module-make-local-var! module symbol) => #<variable...>
1146 ;;; (module-add! module symbol var) => unspecified
1147 ;;; (module-remove! module symbol) => unspecified
1148 ;;; (module-for-each proc module) => unspecified
1149 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1150 ;;; (set-current-module module) => unspecified
1151 ;;; (current-module) => #<module...>
1152 ;;;
1153 ;;;
1154
1155 \f
1156
1157 ;;; {Printing Modules}
1158 ;;;
1159
1160 ;; This is how modules are printed. You can re-define it.
1161 ;; (Redefining is actually more complicated than simply redefining
1162 ;; %print-module because that would only change the binding and not
1163 ;; the value stored in the vtable that determines how record are
1164 ;; printed. Sigh.)
1165
1166 (define (%print-module mod port) ; unused args: depth length style table)
1167 (display "#<" port)
1168 (display (or (module-kind mod) "module") port)
1169 (let ((name (module-name mod)))
1170 (if name
1171 (begin
1172 (display " " port)
1173 (display name port))))
1174 (display " " port)
1175 (display (number->string (object-address mod) 16) port)
1176 (display ">" port))
1177
1178 ;; module-type
1179 ;;
1180 ;; A module is characterized by an obarray in which local symbols
1181 ;; are interned, a list of modules, "uses", from which non-local
1182 ;; bindings can be inherited, and an optional lazy-binder which
1183 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1184 ;; bindings that would otherwise not be found locally in the module.
1185 ;;
1186 ;; NOTE: If you change anything here, you also need to change
1187 ;; libguile/modules.h.
1188 ;;
1189 (define module-type
1190 (make-record-type 'module
1191 '(obarray uses binder eval-closure transformer name kind
1192 duplicates-handlers duplicates-interface
1193 observers weak-observers observer-id)
1194 %print-module))
1195
1196 ;; make-module &opt size uses binder
1197 ;;
1198 ;; Create a new module, perhaps with a particular size of obarray,
1199 ;; initial uses list, or binding procedure.
1200 ;;
1201 (define make-module
1202 (lambda args
1203
1204 (define (parse-arg index default)
1205 (if (> (length args) index)
1206 (list-ref args index)
1207 default))
1208
1209 (if (> (length args) 3)
1210 (error "Too many args to make-module." args))
1211
1212 (let ((size (parse-arg 0 31))
1213 (uses (parse-arg 1 '()))
1214 (binder (parse-arg 2 #f)))
1215
1216 (if (not (integer? size))
1217 (error "Illegal size to make-module." size))
1218 (if (not (and (list? uses)
1219 (and-map module? uses)))
1220 (error "Incorrect use list." uses))
1221 (if (and binder (not (procedure? binder)))
1222 (error
1223 "Lazy-binder expected to be a procedure or #f." binder))
1224
1225 (let ((module (module-constructor (make-hash-table size)
1226 uses binder #f #f #f #f #f #f
1227 '()
1228 (make-weak-value-hash-table 31)
1229 0)))
1230
1231 ;; We can't pass this as an argument to module-constructor,
1232 ;; because we need it to close over a pointer to the module
1233 ;; itself.
1234 (set-module-eval-closure! module (standard-eval-closure module))
1235
1236 module))))
1237
1238 (define module-constructor (record-constructor module-type))
1239 (define module-obarray (record-accessor module-type 'obarray))
1240 (define set-module-obarray! (record-modifier module-type 'obarray))
1241 (define module-uses (record-accessor module-type 'uses))
1242 (define set-module-uses! (record-modifier module-type 'uses))
1243 (define module-binder (record-accessor module-type 'binder))
1244 (define set-module-binder! (record-modifier module-type 'binder))
1245
1246 ;; NOTE: This binding is used in libguile/modules.c.
1247 (define module-eval-closure (record-accessor module-type 'eval-closure))
1248
1249 (define module-transformer (record-accessor module-type 'transformer))
1250 (define set-module-transformer! (record-modifier module-type 'transformer))
1251 (define module-name (record-accessor module-type 'name))
1252 (define set-module-name! (record-modifier module-type 'name))
1253 (define module-kind (record-accessor module-type 'kind))
1254 (define set-module-kind! (record-modifier module-type 'kind))
1255 (define module-duplicates-handlers
1256 (record-accessor module-type 'duplicates-handlers))
1257 (define set-module-duplicates-handlers!
1258 (record-modifier module-type 'duplicates-handlers))
1259 (define module-duplicates-interface
1260 (record-accessor module-type 'duplicates-interface))
1261 (define set-module-duplicates-interface!
1262 (record-modifier module-type 'duplicates-interface))
1263 (define module-observers (record-accessor module-type 'observers))
1264 (define set-module-observers! (record-modifier module-type 'observers))
1265 (define module-weak-observers (record-accessor module-type 'weak-observers))
1266 (define module-observer-id (record-accessor module-type 'observer-id))
1267 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1268 (define module? (record-predicate module-type))
1269
1270 (define set-module-eval-closure!
1271 (let ((setter (record-modifier module-type 'eval-closure)))
1272 (lambda (module closure)
1273 (setter module closure)
1274 ;; Make it possible to lookup the module from the environment.
1275 ;; This implementation is correct since an eval closure can belong
1276 ;; to maximally one module.
1277 (set-procedure-property! closure 'module module))))
1278
1279 \f
1280
1281 ;;; {Observer protocol}
1282 ;;;
1283
1284 (define (module-observe module proc)
1285 (set-module-observers! module (cons proc (module-observers module)))
1286 (cons module proc))
1287
1288 (define (module-observe-weak module proc)
1289 (let ((id (module-observer-id module)))
1290 (hash-set! (module-weak-observers module) id proc)
1291 (set-module-observer-id! module (+ 1 id))
1292 (cons module id)))
1293
1294 (define (module-unobserve token)
1295 (let ((module (car token))
1296 (id (cdr token)))
1297 (if (integer? id)
1298 (hash-remove! (module-weak-observers module) id)
1299 (set-module-observers! module (delq1! id (module-observers module)))))
1300 *unspecified*)
1301
1302 (define module-defer-observers #f)
1303 (define module-defer-observers-mutex (make-mutex))
1304 (define module-defer-observers-table (make-hash-table))
1305
1306 (define (module-modified m)
1307 (if module-defer-observers
1308 (hash-set! module-defer-observers-table m #t)
1309 (module-call-observers m)))
1310
1311 ;;; This function can be used to delay calls to observers so that they
1312 ;;; can be called once only in the face of massive updating of modules.
1313 ;;;
1314 (define (call-with-deferred-observers thunk)
1315 (dynamic-wind
1316 (lambda ()
1317 (lock-mutex module-defer-observers-mutex)
1318 (set! module-defer-observers #t))
1319 thunk
1320 (lambda ()
1321 (set! module-defer-observers #f)
1322 (hash-for-each (lambda (m dummy)
1323 (module-call-observers m))
1324 module-defer-observers-table)
1325 (hash-clear! module-defer-observers-table)
1326 (unlock-mutex module-defer-observers-mutex))))
1327
1328 (define (module-call-observers m)
1329 (for-each (lambda (proc) (proc m)) (module-observers m))
1330 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1331
1332 \f
1333
1334 ;;; {Module Searching in General}
1335 ;;;
1336 ;;; We sometimes want to look for properties of a symbol
1337 ;;; just within the obarray of one module. If the property
1338 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1339 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1340 ;;;
1341 ;;;
1342 ;;; Other times, we want to test for a symbol property in the obarray
1343 ;;; of M and, if it is not found there, try each of the modules in the
1344 ;;; uses list of M. This is the normal way of testing for some
1345 ;;; property, so we state these properties without qualification as
1346 ;;; in: ``The symbol 'fnord is interned in module M because it is
1347 ;;; interned locally in module M2 which is a member of the uses list
1348 ;;; of M.''
1349 ;;;
1350
1351 ;; module-search fn m
1352 ;;
1353 ;; return the first non-#f result of FN applied to M and then to
1354 ;; the modules in the uses of m, and so on recursively. If all applications
1355 ;; return #f, then so does this function.
1356 ;;
1357 (define (module-search fn m v)
1358 (define (loop pos)
1359 (and (pair? pos)
1360 (or (module-search fn (car pos) v)
1361 (loop (cdr pos)))))
1362 (or (fn m v)
1363 (loop (module-uses m))))
1364
1365
1366 ;;; {Is a symbol bound in a module?}
1367 ;;;
1368 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1369 ;;; of S in M has been set to some well-defined value.
1370 ;;;
1371
1372 ;; module-locally-bound? module symbol
1373 ;;
1374 ;; Is a symbol bound (interned and defined) locally in a given module?
1375 ;;
1376 (define (module-locally-bound? m v)
1377 (let ((var (module-local-variable m v)))
1378 (and var
1379 (variable-bound? var))))
1380
1381 ;; module-bound? module symbol
1382 ;;
1383 ;; Is a symbol bound (interned and defined) anywhere in a given module
1384 ;; or its uses?
1385 ;;
1386 (define (module-bound? m v)
1387 (module-search module-locally-bound? m v))
1388
1389 ;;; {Is a symbol interned in a module?}
1390 ;;;
1391 ;;; Symbol S in Module M is interned if S occurs in
1392 ;;; of S in M has been set to some well-defined value.
1393 ;;;
1394 ;;; It is possible to intern a symbol in a module without providing
1395 ;;; an initial binding for the corresponding variable. This is done
1396 ;;; with:
1397 ;;; (module-add! module symbol (make-undefined-variable))
1398 ;;;
1399 ;;; In that case, the symbol is interned in the module, but not
1400 ;;; bound there. The unbound symbol shadows any binding for that
1401 ;;; symbol that might otherwise be inherited from a member of the uses list.
1402 ;;;
1403
1404 (define (module-obarray-get-handle ob key)
1405 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1406
1407 (define (module-obarray-ref ob key)
1408 ((if (symbol? key) hashq-ref hash-ref) ob key))
1409
1410 (define (module-obarray-set! ob key val)
1411 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1412
1413 (define (module-obarray-remove! ob key)
1414 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1415
1416 ;; module-symbol-locally-interned? module symbol
1417 ;;
1418 ;; is a symbol interned (not neccessarily defined) locally in a given module
1419 ;; or its uses? Interned symbols shadow inherited bindings even if
1420 ;; they are not themselves bound to a defined value.
1421 ;;
1422 (define (module-symbol-locally-interned? m v)
1423 (not (not (module-obarray-get-handle (module-obarray m) v))))
1424
1425 ;; module-symbol-interned? module symbol
1426 ;;
1427 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1428 ;; or its uses? Interned symbols shadow inherited bindings even if
1429 ;; they are not themselves bound to a defined value.
1430 ;;
1431 (define (module-symbol-interned? m v)
1432 (module-search module-symbol-locally-interned? m v))
1433
1434
1435 ;;; {Mapping modules x symbols --> variables}
1436 ;;;
1437
1438 ;; module-local-variable module symbol
1439 ;; return the local variable associated with a MODULE and SYMBOL.
1440 ;;
1441 ;;; This function is very important. It is the only function that can
1442 ;;; return a variable from a module other than the mutators that store
1443 ;;; new variables in modules. Therefore, this function is the location
1444 ;;; of the "lazy binder" hack.
1445 ;;;
1446 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1447 ;;; to a variable, return that variable object.
1448 ;;;
1449 ;;; If the symbols is not found at first, but the module has a lazy binder,
1450 ;;; then try the binder.
1451 ;;;
1452 ;;; If the symbol is not found at all, return #f.
1453 ;;;
1454 (define (module-local-variable m v)
1455 ; (caddr
1456 ; (list m v
1457 (let ((b (module-obarray-ref (module-obarray m) v)))
1458 (or (and (variable? b) b)
1459 (and (module-binder m)
1460 ((module-binder m) m v #f)))))
1461 ;))
1462
1463 ;; module-variable module symbol
1464 ;;
1465 ;; like module-local-variable, except search the uses in the
1466 ;; case V is not found in M.
1467 ;;
1468 ;; NOTE: This function is superseded with C code (see modules.c)
1469 ;;; when using the standard eval closure.
1470 ;;
1471 (define (module-variable m v)
1472 (module-search module-local-variable m v))
1473
1474
1475 ;;; {Mapping modules x symbols --> bindings}
1476 ;;;
1477 ;;; These are similar to the mapping to variables, except that the
1478 ;;; variable is dereferenced.
1479 ;;;
1480
1481 ;; module-symbol-binding module symbol opt-value
1482 ;;
1483 ;; return the binding of a variable specified by name within
1484 ;; a given module, signalling an error if the variable is unbound.
1485 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1486 ;; return OPT-VALUE.
1487 ;;
1488 (define (module-symbol-local-binding m v . opt-val)
1489 (let ((var (module-local-variable m v)))
1490 (if (and var (variable-bound? var))
1491 (variable-ref var)
1492 (if (not (null? opt-val))
1493 (car opt-val)
1494 (error "Locally unbound variable." v)))))
1495
1496 ;; module-symbol-binding module symbol opt-value
1497 ;;
1498 ;; return the binding of a variable specified by name within
1499 ;; a given module, signalling an error if the variable is unbound.
1500 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1501 ;; return OPT-VALUE.
1502 ;;
1503 (define (module-symbol-binding m v . opt-val)
1504 (let ((var (module-variable m v)))
1505 (if (and var (variable-bound? var))
1506 (variable-ref var)
1507 (if (not (null? opt-val))
1508 (car opt-val)
1509 (error "Unbound variable." v)))))
1510
1511
1512 \f
1513
1514 ;;; {Adding Variables to Modules}
1515 ;;;
1516
1517 ;; module-make-local-var! module symbol
1518 ;;
1519 ;; ensure a variable for V in the local namespace of M.
1520 ;; If no variable was already there, then create a new and uninitialzied
1521 ;; variable.
1522 ;;
1523 ;; This function is used in modules.c.
1524 ;;
1525 (define (module-make-local-var! m v)
1526 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1527 (and (variable? b)
1528 (begin
1529 ;; Mark as modified since this function is called when
1530 ;; the standard eval closure defines a binding
1531 (module-modified m)
1532 b)))
1533
1534 ;; No local variable yet, so we need to create a new one. That
1535 ;; new variable is initialized with the old imported value of V,
1536 ;; if there is one.
1537 (let ((imported-var (module-variable m v))
1538 (local-var (or (and (module-binder m)
1539 ((module-binder m) m v #t))
1540 (begin
1541 (let ((answer (make-undefined-variable)))
1542 (module-add! m v answer)
1543 answer)))))
1544 (if (and imported-var (not (variable-bound? local-var)))
1545 (variable-set! local-var (variable-ref imported-var)))
1546 local-var)))
1547
1548 ;; module-ensure-local-variable! module symbol
1549 ;;
1550 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1551 ;; there is no binding for SYMBOL, create a new uninitialized
1552 ;; variable. Return the local variable.
1553 ;;
1554 (define (module-ensure-local-variable! module symbol)
1555 (or (module-local-variable module symbol)
1556 (let ((var (make-undefined-variable)))
1557 (module-add! module symbol var)
1558 var)))
1559
1560 ;; module-add! module symbol var
1561 ;;
1562 ;; ensure a particular variable for V in the local namespace of M.
1563 ;;
1564 (define (module-add! m v var)
1565 (if (not (variable? var))
1566 (error "Bad variable to module-add!" var))
1567 (module-obarray-set! (module-obarray m) v var)
1568 (module-modified m))
1569
1570 ;; module-remove!
1571 ;;
1572 ;; make sure that a symbol is undefined in the local namespace of M.
1573 ;;
1574 (define (module-remove! m v)
1575 (module-obarray-remove! (module-obarray m) v)
1576 (module-modified m))
1577
1578 (define (module-clear! m)
1579 (hash-clear! (module-obarray m))
1580 (module-modified m))
1581
1582 ;; MODULE-FOR-EACH -- exported
1583 ;;
1584 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1585 ;;
1586 (define (module-for-each proc module)
1587 (hash-for-each proc (module-obarray module)))
1588
1589 (define (module-map proc module)
1590 (hash-map->list proc (module-obarray module)))
1591
1592 \f
1593
1594 ;;; {Low Level Bootstrapping}
1595 ;;;
1596
1597 ;; make-root-module
1598
1599 ;; A root module uses the pre-modules-obarray as its obarray. This
1600 ;; special obarray accumulates all bindings that have been established
1601 ;; before the module system is fully booted.
1602 ;;
1603 ;; (The obarray continues to be used by code that has been closed over
1604 ;; before the module system has been booted.)
1605
1606 (define (make-root-module)
1607 (let ((m (make-module 0)))
1608 (set-module-obarray! m (%get-pre-modules-obarray))
1609 m))
1610
1611 ;; make-scm-module
1612
1613 ;; The root interface is a module that uses the same obarray as the
1614 ;; root module. It does not allow new definitions, tho.
1615
1616 (define (make-scm-module)
1617 (let ((m (make-module 0)))
1618 (set-module-obarray! m (%get-pre-modules-obarray))
1619 (set-module-eval-closure! m (standard-interface-eval-closure m))
1620 m))
1621
1622
1623 \f
1624
1625 ;;; {Module-based Loading}
1626 ;;;
1627
1628 (define (save-module-excursion thunk)
1629 (let ((inner-module (current-module))
1630 (outer-module #f))
1631 (dynamic-wind (lambda ()
1632 (set! outer-module (current-module))
1633 (set-current-module inner-module)
1634 (set! inner-module #f))
1635 thunk
1636 (lambda ()
1637 (set! inner-module (current-module))
1638 (set-current-module outer-module)
1639 (set! outer-module #f)))))
1640
1641 (define basic-load load)
1642
1643 (define (load-module filename)
1644 (save-module-excursion
1645 (lambda ()
1646 (let ((oldname (and (current-load-port)
1647 (port-filename (current-load-port)))))
1648 (basic-load (if (and oldname
1649 (> (string-length filename) 0)
1650 (not (char=? (string-ref filename 0) #\/))
1651 (not (string=? (dirname oldname) ".")))
1652 (string-append (dirname oldname) "/" filename)
1653 filename))))))
1654
1655
1656 \f
1657
1658 ;;; {MODULE-REF -- exported}
1659 ;;;
1660
1661 ;; Returns the value of a variable called NAME in MODULE or any of its
1662 ;; used modules. If there is no such variable, then if the optional third
1663 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1664 ;;
1665 (define (module-ref module name . rest)
1666 (let ((variable (module-variable module name)))
1667 (if (and variable (variable-bound? variable))
1668 (variable-ref variable)
1669 (if (null? rest)
1670 (error "No variable named" name 'in module)
1671 (car rest) ; default value
1672 ))))
1673
1674 ;; MODULE-SET! -- exported
1675 ;;
1676 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1677 ;; to VALUE; if there is no such variable, an error is signaled.
1678 ;;
1679 (define (module-set! module name value)
1680 (let ((variable (module-variable module name)))
1681 (if variable
1682 (variable-set! variable value)
1683 (error "No variable named" name 'in module))))
1684
1685 ;; MODULE-DEFINE! -- exported
1686 ;;
1687 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1688 ;; variable, it is added first.
1689 ;;
1690 (define (module-define! module name value)
1691 (let ((variable (module-local-variable module name)))
1692 (if variable
1693 (begin
1694 (variable-set! variable value)
1695 (module-modified module))
1696 (let ((variable (make-variable value)))
1697 (module-add! module name variable)))))
1698
1699 ;; MODULE-DEFINED? -- exported
1700 ;;
1701 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1702 ;; uses)
1703 ;;
1704 (define (module-defined? module name)
1705 (let ((variable (module-variable module name)))
1706 (and variable (variable-bound? variable))))
1707
1708 ;; MODULE-USE! module interface
1709 ;;
1710 ;; Add INTERFACE to the list of interfaces used by MODULE.
1711 ;;
1712 (define (module-use! module interface)
1713 (set-module-uses! module
1714 (cons interface
1715 (filter (lambda (m)
1716 (not (equal? (module-name m)
1717 (module-name interface))))
1718 (module-uses module))))
1719 (module-modified module))
1720
1721 ;; MODULE-USE-INTERFACES! module interfaces
1722 ;;
1723 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1724 ;;
1725 (define (module-use-interfaces! module interfaces)
1726 (let* ((duplicates-handlers? (or (module-duplicates-handlers module)
1727 (default-duplicate-binding-procedures)))
1728 (uses (module-uses module)))
1729 ;; remove duplicates-interface
1730 (set! uses (delq! (module-duplicates-interface module) uses))
1731 ;; remove interfaces to be added
1732 (for-each (lambda (interface)
1733 (set! uses
1734 (filter (lambda (m)
1735 (not (equal? (module-name m)
1736 (module-name interface))))
1737 uses)))
1738 interfaces)
1739 ;; add interfaces to use list
1740 (set-module-uses! module uses)
1741 (for-each (lambda (interface)
1742 (and duplicates-handlers?
1743 ;; perform duplicate checking
1744 (process-duplicates module interface))
1745 (set! uses (cons interface uses))
1746 (set-module-uses! module uses))
1747 interfaces)
1748 ;; add duplicates interface
1749 (if (module-duplicates-interface module)
1750 (set-module-uses! module
1751 (cons (module-duplicates-interface module) uses)))
1752 (module-modified module)))
1753
1754 \f
1755
1756 ;;; {Recursive Namespaces}
1757 ;;;
1758 ;;; A hierarchical namespace emerges if we consider some module to be
1759 ;;; root, and variables bound to modules as nested namespaces.
1760 ;;;
1761 ;;; The routines in this file manage variable names in hierarchical namespace.
1762 ;;; Each variable name is a list of elements, looked up in successively nested
1763 ;;; modules.
1764 ;;;
1765 ;;; (nested-ref some-root-module '(foo bar baz))
1766 ;;; => <value of a variable named baz in the module bound to bar in
1767 ;;; the module bound to foo in some-root-module>
1768 ;;;
1769 ;;;
1770 ;;; There are:
1771 ;;;
1772 ;;; ;; a-root is a module
1773 ;;; ;; name is a list of symbols
1774 ;;;
1775 ;;; nested-ref a-root name
1776 ;;; nested-set! a-root name val
1777 ;;; nested-define! a-root name val
1778 ;;; nested-remove! a-root name
1779 ;;;
1780 ;;;
1781 ;;; (current-module) is a natural choice for a-root so for convenience there are
1782 ;;; also:
1783 ;;;
1784 ;;; local-ref name == nested-ref (current-module) name
1785 ;;; local-set! name val == nested-set! (current-module) name val
1786 ;;; local-define! name val == nested-define! (current-module) name val
1787 ;;; local-remove! name == nested-remove! (current-module) name
1788 ;;;
1789
1790
1791 (define (nested-ref root names)
1792 (let loop ((cur root)
1793 (elts names))
1794 (cond
1795 ((null? elts) cur)
1796 ((not (module? cur)) #f)
1797 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1798
1799 (define (nested-set! root names val)
1800 (let loop ((cur root)
1801 (elts names))
1802 (if (null? (cdr elts))
1803 (module-set! cur (car elts) val)
1804 (loop (module-ref cur (car elts)) (cdr elts)))))
1805
1806 (define (nested-define! root names val)
1807 (let loop ((cur root)
1808 (elts names))
1809 (if (null? (cdr elts))
1810 (module-define! cur (car elts) val)
1811 (loop (module-ref cur (car elts)) (cdr elts)))))
1812
1813 (define (nested-remove! root names)
1814 (let loop ((cur root)
1815 (elts names))
1816 (if (null? (cdr elts))
1817 (module-remove! cur (car elts))
1818 (loop (module-ref cur (car elts)) (cdr elts)))))
1819
1820 (define (local-ref names) (nested-ref (current-module) names))
1821 (define (local-set! names val) (nested-set! (current-module) names val))
1822 (define (local-define names val) (nested-define! (current-module) names val))
1823 (define (local-remove names) (nested-remove! (current-module) names))
1824
1825
1826 \f
1827
1828 ;;; {The (%app) module}
1829 ;;;
1830 ;;; The root of conventionally named objects not directly in the top level.
1831 ;;;
1832 ;;; (%app modules)
1833 ;;; (%app modules guile)
1834 ;;;
1835 ;;; The directory of all modules and the standard root module.
1836 ;;;
1837
1838 (define (module-public-interface m)
1839 (module-ref m '%module-public-interface #f))
1840 (define (set-module-public-interface! m i)
1841 (module-define! m '%module-public-interface i))
1842 (define (set-system-module! m s)
1843 (set-procedure-property! (module-eval-closure m) 'system-module s))
1844 (define the-root-module (make-root-module))
1845 (define the-scm-module (make-scm-module))
1846 (set-module-public-interface! the-root-module the-scm-module)
1847 (set-module-name! the-root-module '(guile))
1848 (set-module-name! the-scm-module '(guile))
1849 (set-module-kind! the-scm-module 'interface)
1850 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1851
1852 ;; NOTE: This binding is used in libguile/modules.c.
1853 ;;
1854 (define (make-modules-in module name)
1855 (if (null? name)
1856 module
1857 (cond
1858 ((module-ref module (car name) #f)
1859 => (lambda (m) (make-modules-in m (cdr name))))
1860 (else (let ((m (make-module 31)))
1861 (set-module-kind! m 'directory)
1862 (set-module-name! m (append (or (module-name module)
1863 '())
1864 (list (car name))))
1865 (module-define! module (car name) m)
1866 (make-modules-in m (cdr name)))))))
1867
1868 (define (beautify-user-module! module)
1869 (let ((interface (module-public-interface module)))
1870 (if (or (not interface)
1871 (eq? interface module))
1872 (let ((interface (make-module 31)))
1873 (set-module-name! interface (module-name module))
1874 (set-module-kind! interface 'interface)
1875 (set-module-public-interface! module interface))))
1876 (if (and (not (memq the-scm-module (module-uses module)))
1877 (not (eq? module the-root-module)))
1878 (set-module-uses! module
1879 (append (module-uses module) (list the-scm-module)))))
1880
1881 ;; NOTE: This binding is used in libguile/modules.c.
1882 ;;
1883 (define (resolve-module name . maybe-autoload)
1884 (let ((full-name (append '(%app modules) name)))
1885 (let ((already (nested-ref the-root-module full-name)))
1886 (if already
1887 ;; The module already exists...
1888 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1889 (not (module-public-interface already)))
1890 ;; ...but we are told to load and it doesn't contain source, so
1891 (begin
1892 (try-load-module name)
1893 already)
1894 ;; simply return it.
1895 already)
1896 (begin
1897 ;; Try to autoload it if we are told so
1898 (if (or (null? maybe-autoload) (car maybe-autoload))
1899 (try-load-module name))
1900 ;; Get/create it.
1901 (make-modules-in (current-module) full-name))))))
1902
1903 ;; Cheat. These bindings are needed by modules.c, but we don't want
1904 ;; to move their real definition here because that would be unnatural.
1905 ;;
1906 (define try-module-autoload #f)
1907 (define process-define-module #f)
1908 (define process-use-modules #f)
1909 (define module-export! #f)
1910
1911 ;; This boots the module system. All bindings needed by modules.c
1912 ;; must have been defined by now.
1913 ;;
1914 (set-current-module the-root-module)
1915
1916 (define %app (make-module 31))
1917 (define app %app) ;; for backwards compatability
1918 (local-define '(%app modules) (make-module 31))
1919 (local-define '(%app modules guile) the-root-module)
1920
1921 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1922
1923 (define (try-load-module name)
1924 (or (begin-deprecated (try-module-linked name))
1925 (try-module-autoload name)
1926 (begin-deprecated (try-module-dynamic-link name))))
1927
1928 (define (purify-module! module)
1929 "Removes bindings in MODULE which are inherited from the (guile) module."
1930 (let ((use-list (module-uses module)))
1931 (if (and (pair? use-list)
1932 (eq? (car (last-pair use-list)) the-scm-module))
1933 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1934
1935 ;; Return a module that is an interface to the module designated by
1936 ;; NAME.
1937 ;;
1938 ;; `resolve-interface' takes four keyword arguments:
1939 ;;
1940 ;; #:select SELECTION
1941 ;;
1942 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1943 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1944 ;; is the name in the used module and SEEN is the name in the using
1945 ;; module. Note that SEEN is also passed through RENAMER, below. The
1946 ;; default is to select all bindings. If you specify no selection but
1947 ;; a renamer, only the bindings that already exist in the used module
1948 ;; are made available in the interface. Bindings that are added later
1949 ;; are not picked up.
1950 ;;
1951 ;; #:hide BINDINGS
1952 ;;
1953 ;; BINDINGS is a list of bindings which should not be imported.
1954 ;;
1955 ;; #:prefix PREFIX
1956 ;;
1957 ;; PREFIX is a symbol that will be appended to each exported name.
1958 ;; The default is to not perform any renaming.
1959 ;;
1960 ;; #:renamer RENAMER
1961 ;;
1962 ;; RENAMER is a procedure that takes a symbol and returns its new
1963 ;; name. The default is not perform any renaming.
1964 ;;
1965 ;; Signal "no code for module" error if module name is not resolvable
1966 ;; or its public interface is not available. Signal "no binding"
1967 ;; error if selected binding does not exist in the used module.
1968 ;;
1969 (define (resolve-interface name . args)
1970
1971 (define (get-keyword-arg args kw def)
1972 (cond ((memq kw args)
1973 => (lambda (kw-arg)
1974 (if (null? (cdr kw-arg))
1975 (error "keyword without value: " kw))
1976 (cadr kw-arg)))
1977 (else
1978 def)))
1979
1980 (let* ((select (get-keyword-arg args #:select #f))
1981 (hide (get-keyword-arg args #:hide '()))
1982 (renamer (or (get-keyword-arg args #:renamer #f)
1983 (let ((prefix (get-keyword-arg args #:prefix #f)))
1984 (and prefix (symbol-prefix-proc prefix)))
1985 identity))
1986 (module (resolve-module name))
1987 (public-i (and module (module-public-interface module))))
1988 (and (or (not module) (not public-i))
1989 (error "no code for module" name))
1990 (if (and (not select) (null? hide) (eq? renamer identity))
1991 public-i
1992 (let ((selection (or select (module-map (lambda (sym var) sym)
1993 public-i)))
1994 (custom-i (make-module 31)))
1995 (set-module-kind! custom-i 'custom-interface)
1996 (set-module-name! custom-i name)
1997 ;; XXX - should use a lazy binder so that changes to the
1998 ;; used module are picked up automatically.
1999 (for-each (lambda (bspec)
2000 (let* ((direct? (symbol? bspec))
2001 (orig (if direct? bspec (car bspec)))
2002 (seen (if direct? bspec (cdr bspec)))
2003 (var (or (module-local-variable public-i orig)
2004 (module-local-variable module orig)
2005 (error
2006 ;; fixme: format manually for now
2007 (simple-format
2008 #f "no binding `~A' in module ~A"
2009 orig name)))))
2010 (if (memq orig hide)
2011 (set! hide (delq! orig hide))
2012 (module-add! custom-i
2013 (renamer seen)
2014 var))))
2015 selection)
2016 ;; Check that we are not hiding bindings which don't exist
2017 (for-each (lambda (binding)
2018 (if (not (module-local-variable public-i binding))
2019 (error
2020 (simple-format
2021 #f "no binding `~A' to hide in module ~A"
2022 binding name))))
2023 hide)
2024 custom-i))))
2025
2026 (define (symbol-prefix-proc prefix)
2027 (lambda (symbol)
2028 (symbol-append prefix symbol)))
2029
2030 ;; This function is called from "modules.c". If you change it, be
2031 ;; sure to update "modules.c" as well.
2032
2033 (define (process-define-module args)
2034 (let* ((module-id (car args))
2035 (module (resolve-module module-id #f))
2036 (kws (cdr args))
2037 (unrecognized (lambda (arg)
2038 (error "unrecognized define-module argument" arg))))
2039 (beautify-user-module! module)
2040 (let loop ((kws kws)
2041 (reversed-interfaces '())
2042 (exports '())
2043 (re-exports '())
2044 (replacements '()))
2045 (if (null? kws)
2046 (call-with-deferred-observers
2047 (lambda ()
2048 (module-use-interfaces! module (reverse reversed-interfaces))
2049 (module-export! module exports)
2050 (module-replace! module replacements)
2051 (module-re-export! module re-exports)))
2052 (case (car kws)
2053 ((#:use-module #:use-syntax)
2054 (or (pair? (cdr kws))
2055 (unrecognized kws))
2056 (let* ((interface-args (cadr kws))
2057 (interface (apply resolve-interface interface-args)))
2058 (and (eq? (car kws) #:use-syntax)
2059 (or (symbol? (caar interface-args))
2060 (error "invalid module name for use-syntax"
2061 (car interface-args)))
2062 (set-module-transformer!
2063 module
2064 (module-ref interface
2065 (car (last-pair (car interface-args)))
2066 #f)))
2067 (loop (cddr kws)
2068 (cons interface reversed-interfaces)
2069 exports
2070 re-exports
2071 replacements)))
2072 ((#:autoload)
2073 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2074 (unrecognized kws))
2075 (loop (cdddr kws)
2076 (cons (make-autoload-interface module
2077 (cadr kws)
2078 (caddr kws))
2079 reversed-interfaces)
2080 exports
2081 re-exports
2082 replacements))
2083 ((#:no-backtrace)
2084 (set-system-module! module #t)
2085 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
2086 ((#:pure)
2087 (purify-module! module)
2088 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
2089 ((#:duplicates)
2090 (if (not (pair? (cdr kws)))
2091 (unrecognized kws))
2092 (set-module-duplicates-handlers!
2093 module
2094 (lookup-duplicates-handlers (cadr kws)))
2095 (loop (cddr kws) reversed-interfaces exports re-exports replacements))
2096 ((#:export #:export-syntax)
2097 (or (pair? (cdr kws))
2098 (unrecognized kws))
2099 (loop (cddr kws)
2100 reversed-interfaces
2101 (append (cadr kws) exports)
2102 re-exports
2103 replacements))
2104 ((#:re-export #:re-export-syntax)
2105 (or (pair? (cdr kws))
2106 (unrecognized kws))
2107 (loop (cddr kws)
2108 reversed-interfaces
2109 exports
2110 (append (cadr kws) re-exports)
2111 replacements))
2112 ((#:replace #:replace-syntax)
2113 (or (pair? (cdr kws))
2114 (unrecognized kws))
2115 (loop (cddr kws)
2116 reversed-interfaces
2117 exports
2118 re-exports
2119 (append (cadr kws) replacements)))
2120 (else
2121 (unrecognized kws)))))
2122 (run-hook module-defined-hook module)
2123 module))
2124
2125 ;; `module-defined-hook' is a hook that is run whenever a new module
2126 ;; is defined. Its members are called with one argument, the new
2127 ;; module.
2128 (define module-defined-hook (make-hook 1))
2129
2130 \f
2131
2132 ;;; {Autoload}
2133 ;;;
2134
2135 (define (make-autoload-interface module name bindings)
2136 (let ((b (lambda (a sym definep)
2137 (and (memq sym bindings)
2138 (let ((i (module-public-interface (resolve-module name))))
2139 (if (not i)
2140 (error "missing interface for module" name))
2141 ;; Replace autoload-interface with interface
2142 (set-car! (memq a (module-uses module)) i)
2143 (module-local-variable i sym))))))
2144 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f #f
2145 '() (make-weak-value-hash-table 31) 0)))
2146
2147 ;;; {Compiled module}
2148
2149 (define load-compiled #f)
2150
2151 \f
2152
2153 ;;; {Autoloading modules}
2154 ;;;
2155
2156 (define autoloads-in-progress '())
2157
2158 ;; This function is called from "modules.c". If you change it, be
2159 ;; sure to update "modules.c" as well.
2160
2161 (define (try-module-autoload module-name)
2162 (let* ((reverse-name (reverse module-name))
2163 (name (symbol->string (car reverse-name)))
2164 (dir-hint-module-name (reverse (cdr reverse-name)))
2165 (dir-hint (apply string-append
2166 (map (lambda (elt)
2167 (string-append (symbol->string elt) "/"))
2168 dir-hint-module-name))))
2169 (resolve-module dir-hint-module-name #f)
2170 (and (not (autoload-done-or-in-progress? dir-hint name))
2171 (let ((didit #f))
2172 (define (load-file proc file)
2173 (save-module-excursion (lambda () (proc file)))
2174 (set! didit #t))
2175 (dynamic-wind
2176 (lambda () (autoload-in-progress! dir-hint name))
2177 (lambda ()
2178 (let ((file (in-vicinity dir-hint name)))
2179 (cond ((and load-compiled
2180 (%search-load-path (string-append file ".go")))
2181 => (lambda (full)
2182 (load-file load-compiled full)))
2183 ((%search-load-path file)
2184 => (lambda (full)
2185 (load-file primitive-load full))))))
2186 (lambda () (set-autoloaded! dir-hint name didit)))
2187 didit))))
2188
2189 \f
2190
2191 ;;; {Dynamic linking of modules}
2192 ;;;
2193
2194 (define autoloads-done '((guile . guile)))
2195
2196 (define (autoload-done-or-in-progress? p m)
2197 (let ((n (cons p m)))
2198 (->bool (or (member n autoloads-done)
2199 (member n autoloads-in-progress)))))
2200
2201 (define (autoload-done! p m)
2202 (let ((n (cons p m)))
2203 (set! autoloads-in-progress
2204 (delete! n autoloads-in-progress))
2205 (or (member n autoloads-done)
2206 (set! autoloads-done (cons n autoloads-done)))))
2207
2208 (define (autoload-in-progress! p m)
2209 (let ((n (cons p m)))
2210 (set! autoloads-done
2211 (delete! n autoloads-done))
2212 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2213
2214 (define (set-autoloaded! p m done?)
2215 (if done?
2216 (autoload-done! p m)
2217 (let ((n (cons p m)))
2218 (set! autoloads-done (delete! n autoloads-done))
2219 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2220
2221 \f
2222
2223 ;;; {Run-time options}
2224 ;;;
2225
2226 (define define-option-interface
2227 (let* ((option-name car)
2228 (option-value cadr)
2229 (option-documentation caddr)
2230
2231 (print-option (lambda (option)
2232 (display (option-name option))
2233 (if (< (string-length
2234 (symbol->string (option-name option)))
2235 8)
2236 (display #\tab))
2237 (display #\tab)
2238 (display (option-value option))
2239 (display #\tab)
2240 (display (option-documentation option))
2241 (newline)))
2242
2243 ;; Below follow the macros defining the run-time option interfaces.
2244
2245 (make-options (lambda (interface)
2246 `(lambda args
2247 (cond ((null? args) (,interface))
2248 ((list? (car args))
2249 (,interface (car args)) (,interface))
2250 (else (for-each ,print-option
2251 (,interface #t)))))))
2252
2253 (make-enable (lambda (interface)
2254 `(lambda flags
2255 (,interface (append flags (,interface)))
2256 (,interface))))
2257
2258 (make-disable (lambda (interface)
2259 `(lambda flags
2260 (let ((options (,interface)))
2261 (for-each (lambda (flag)
2262 (set! options (delq! flag options)))
2263 flags)
2264 (,interface options)
2265 (,interface))))))
2266 (procedure->memoizing-macro
2267 (lambda (exp env)
2268 (let* ((option-group (cadr exp))
2269 (interface (car option-group))
2270 (options/enable/disable (cadr option-group)))
2271 `(begin
2272 (define ,(car options/enable/disable)
2273 ,(make-options interface))
2274 (define ,(cadr options/enable/disable)
2275 ,(make-enable interface))
2276 (define ,(caddr options/enable/disable)
2277 ,(make-disable interface))
2278 (defmacro ,(caaddr option-group) (opt val)
2279 `(,,(car options/enable/disable)
2280 (append (,,(car options/enable/disable))
2281 (list ',opt ,val))))))))))
2282
2283 (define-option-interface
2284 (eval-options-interface
2285 (eval-options eval-enable eval-disable)
2286 (eval-set!)))
2287
2288 (define-option-interface
2289 (debug-options-interface
2290 (debug-options debug-enable debug-disable)
2291 (debug-set!)))
2292
2293 (define-option-interface
2294 (evaluator-traps-interface
2295 (traps trap-enable trap-disable)
2296 (trap-set!)))
2297
2298 (define-option-interface
2299 (read-options-interface
2300 (read-options read-enable read-disable)
2301 (read-set!)))
2302
2303 (define-option-interface
2304 (print-options-interface
2305 (print-options print-enable print-disable)
2306 (print-set!)))
2307
2308 \f
2309
2310 ;;; {Running Repls}
2311 ;;;
2312
2313 (define (repl read evaler print)
2314 (let loop ((source (read (current-input-port))))
2315 (print (evaler source))
2316 (loop (read (current-input-port)))))
2317
2318 ;; A provisional repl that acts like the SCM repl:
2319 ;;
2320 (define scm-repl-silent #f)
2321 (define (assert-repl-silence v) (set! scm-repl-silent v))
2322
2323 (define *unspecified* (if #f #f))
2324 (define (unspecified? v) (eq? v *unspecified*))
2325
2326 (define scm-repl-print-unspecified #f)
2327 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2328
2329 (define scm-repl-verbose #f)
2330 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2331
2332 (define scm-repl-prompt "guile> ")
2333
2334 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2335
2336 (define (default-lazy-handler key . args)
2337 (save-stack lazy-handler-dispatch)
2338 (apply throw key args))
2339
2340 (define (lazy-handler-dispatch key . args)
2341 (apply default-lazy-handler key args))
2342
2343 (define abort-hook (make-hook))
2344
2345 ;; these definitions are used if running a script.
2346 ;; otherwise redefined in error-catching-loop.
2347 (define (set-batch-mode?! arg) #t)
2348 (define (batch-mode?) #t)
2349
2350 (define (error-catching-loop thunk)
2351 (let ((status #f)
2352 (interactive #t))
2353 (define (loop first)
2354 (let ((next
2355 (catch #t
2356
2357 (lambda ()
2358 (lazy-catch #t
2359 (lambda ()
2360 (call-with-unblocked-asyncs
2361 (lambda ()
2362 (with-traps
2363 (lambda ()
2364 (first)
2365
2366 ;; This line is needed because mark
2367 ;; doesn't do closures quite right.
2368 ;; Unreferenced locals should be
2369 ;; collected.
2370 ;;
2371 (set! first #f)
2372 (let loop ((v (thunk)))
2373 (loop (thunk)))
2374 #f)))))
2375
2376 ;; Note that having just
2377 ;; `lazy-handler-dispatch' here is
2378 ;; connected with the mechanism that
2379 ;; produces a nice backtrace upon
2380 ;; error. If, for example, this is
2381 ;; replaced with (lambda args (apply
2382 ;; lazy-handler-dispatch args)), the
2383 ;; stack cutting (in save-stack)
2384 ;; goes wrong and ends up saving no
2385 ;; stack at all, so there is no
2386 ;; backtrace.
2387 lazy-handler-dispatch))
2388
2389 (lambda (key . args)
2390 (case key
2391 ((quit)
2392 (set! status args)
2393 #f)
2394
2395 ((switch-repl)
2396 (apply throw 'switch-repl args))
2397
2398 ((abort)
2399 ;; This is one of the closures that require
2400 ;; (set! first #f) above
2401 ;;
2402 (lambda ()
2403 (run-hook abort-hook)
2404 (force-output (current-output-port))
2405 (display "ABORT: " (current-error-port))
2406 (write args (current-error-port))
2407 (newline (current-error-port))
2408 (if interactive
2409 (begin
2410 (if (and
2411 (not has-shown-debugger-hint?)
2412 (not (memq 'backtrace
2413 (debug-options-interface)))
2414 (stack? (fluid-ref the-last-stack)))
2415 (begin
2416 (newline (current-error-port))
2417 (display
2418 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2419 (current-error-port))
2420 (set! has-shown-debugger-hint? #t)))
2421 (force-output (current-error-port)))
2422 (begin
2423 (primitive-exit 1)))
2424 (set! stack-saved? #f)))
2425
2426 (else
2427 ;; This is the other cons-leak closure...
2428 (lambda ()
2429 (cond ((= (length args) 4)
2430 (apply handle-system-error key args))
2431 (else
2432 (apply bad-throw key args))))))))))
2433 (if next (loop next) status)))
2434 (set! set-batch-mode?! (lambda (arg)
2435 (cond (arg
2436 (set! interactive #f)
2437 (restore-signals))
2438 (#t
2439 (error "sorry, not implemented")))))
2440 (set! batch-mode? (lambda () (not interactive)))
2441 (call-with-blocked-asyncs
2442 (lambda () (loop (lambda () #t))))))
2443
2444 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2445 (define before-signal-stack (make-fluid))
2446 (define stack-saved? #f)
2447
2448 (define (save-stack . narrowing)
2449 (or stack-saved?
2450 (cond ((not (memq 'debug (debug-options-interface)))
2451 (fluid-set! the-last-stack #f)
2452 (set! stack-saved? #t))
2453 (else
2454 (fluid-set!
2455 the-last-stack
2456 (case (stack-id #t)
2457 ((repl-stack)
2458 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2459 ((load-stack)
2460 (apply make-stack #t save-stack 0 #t 0 narrowing))
2461 ((tk-stack)
2462 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2463 ((#t)
2464 (apply make-stack #t save-stack 0 1 narrowing))
2465 (else
2466 (let ((id (stack-id #t)))
2467 (and (procedure? id)
2468 (apply make-stack #t save-stack id #t 0 narrowing))))))
2469 (set! stack-saved? #t)))))
2470
2471 (define before-error-hook (make-hook))
2472 (define after-error-hook (make-hook))
2473 (define before-backtrace-hook (make-hook))
2474 (define after-backtrace-hook (make-hook))
2475
2476 (define has-shown-debugger-hint? #f)
2477
2478 (define (handle-system-error key . args)
2479 (let ((cep (current-error-port)))
2480 (cond ((not (stack? (fluid-ref the-last-stack))))
2481 ((memq 'backtrace (debug-options-interface))
2482 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2483 (eq? key 'out-of-range))
2484 (list-ref args 3)
2485 '())))
2486 (run-hook before-backtrace-hook)
2487 (newline cep)
2488 (display "Backtrace:\n")
2489 (display-backtrace (fluid-ref the-last-stack) cep
2490 #f #f highlights)
2491 (newline cep)
2492 (run-hook after-backtrace-hook))))
2493 (run-hook before-error-hook)
2494 (apply display-error (fluid-ref the-last-stack) cep args)
2495 (run-hook after-error-hook)
2496 (force-output cep)
2497 (throw 'abort key)))
2498
2499 (define (quit . args)
2500 (apply throw 'quit args))
2501
2502 (define exit quit)
2503
2504 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2505
2506 ;; Replaced by C code:
2507 ;;(define (backtrace)
2508 ;; (if (fluid-ref the-last-stack)
2509 ;; (begin
2510 ;; (newline)
2511 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2512 ;; (newline)
2513 ;; (if (and (not has-shown-backtrace-hint?)
2514 ;; (not (memq 'backtrace (debug-options-interface))))
2515 ;; (begin
2516 ;; (display
2517 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2518 ;;automatically if an error occurs in the future.\n")
2519 ;; (set! has-shown-backtrace-hint? #t))))
2520 ;; (display "No backtrace available.\n")))
2521
2522 (define (error-catching-repl r e p)
2523 (error-catching-loop
2524 (lambda ()
2525 (call-with-values (lambda () (e (r)))
2526 (lambda the-values (for-each p the-values))))))
2527
2528 (define (gc-run-time)
2529 (cdr (assq 'gc-time-taken (gc-stats))))
2530
2531 (define before-read-hook (make-hook))
2532 (define after-read-hook (make-hook))
2533 (define before-eval-hook (make-hook 1))
2534 (define after-eval-hook (make-hook 1))
2535 (define before-print-hook (make-hook 1))
2536 (define after-print-hook (make-hook 1))
2537
2538 ;;; The default repl-reader function. We may override this if we've
2539 ;;; the readline library.
2540 (define repl-reader
2541 (lambda (prompt)
2542 (display prompt)
2543 (force-output)
2544 (run-hook before-read-hook)
2545 (read (current-input-port))))
2546
2547 (define (scm-style-repl)
2548
2549 (letrec (
2550 (start-gc-rt #f)
2551 (start-rt #f)
2552 (repl-report-start-timing (lambda ()
2553 (set! start-gc-rt (gc-run-time))
2554 (set! start-rt (get-internal-run-time))))
2555 (repl-report (lambda ()
2556 (display ";;; ")
2557 (display (inexact->exact
2558 (* 1000 (/ (- (get-internal-run-time) start-rt)
2559 internal-time-units-per-second))))
2560 (display " msec (")
2561 (display (inexact->exact
2562 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2563 internal-time-units-per-second))))
2564 (display " msec in gc)\n")))
2565
2566 (consume-trailing-whitespace
2567 (lambda ()
2568 (let ((ch (peek-char)))
2569 (cond
2570 ((eof-object? ch))
2571 ((or (char=? ch #\space) (char=? ch #\tab))
2572 (read-char)
2573 (consume-trailing-whitespace))
2574 ((char=? ch #\newline)
2575 (read-char))))))
2576 (-read (lambda ()
2577 (let ((val
2578 (let ((prompt (cond ((string? scm-repl-prompt)
2579 scm-repl-prompt)
2580 ((thunk? scm-repl-prompt)
2581 (scm-repl-prompt))
2582 (scm-repl-prompt "> ")
2583 (else ""))))
2584 (repl-reader prompt))))
2585
2586 ;; As described in R4RS, the READ procedure updates the
2587 ;; port to point to the first character past the end of
2588 ;; the external representation of the object. This
2589 ;; means that it doesn't consume the newline typically
2590 ;; found after an expression. This means that, when
2591 ;; debugging Guile with GDB, GDB gets the newline, which
2592 ;; it often interprets as a "continue" command, making
2593 ;; breakpoints kind of useless. So, consume any
2594 ;; trailing newline here, as well as any whitespace
2595 ;; before it.
2596 ;; But not if EOF, for control-D.
2597 (if (not (eof-object? val))
2598 (consume-trailing-whitespace))
2599 (run-hook after-read-hook)
2600 (if (eof-object? val)
2601 (begin
2602 (repl-report-start-timing)
2603 (if scm-repl-verbose
2604 (begin
2605 (newline)
2606 (display ";;; EOF -- quitting")
2607 (newline)))
2608 (quit 0)))
2609 val)))
2610
2611 (-eval (lambda (sourc)
2612 (repl-report-start-timing)
2613 (run-hook before-eval-hook sourc)
2614 (let ((val (start-stack 'repl-stack
2615 ;; If you change this procedure
2616 ;; (primitive-eval), please also
2617 ;; modify the repl-stack case in
2618 ;; save-stack so that stack cutting
2619 ;; continues to work.
2620 (primitive-eval sourc))))
2621 (run-hook after-eval-hook sourc)
2622 val)))
2623
2624
2625 (-print (let ((maybe-print (lambda (result)
2626 (if (or scm-repl-print-unspecified
2627 (not (unspecified? result)))
2628 (begin
2629 (write result)
2630 (newline))))))
2631 (lambda (result)
2632 (if (not scm-repl-silent)
2633 (begin
2634 (run-hook before-print-hook result)
2635 (maybe-print result)
2636 (run-hook after-print-hook result)
2637 (if scm-repl-verbose
2638 (repl-report))
2639 (force-output))))))
2640
2641 (-quit (lambda (args)
2642 (if scm-repl-verbose
2643 (begin
2644 (display ";;; QUIT executed, repl exitting")
2645 (newline)
2646 (repl-report)))
2647 args))
2648
2649 (-abort (lambda ()
2650 (if scm-repl-verbose
2651 (begin
2652 (display ";;; ABORT executed.")
2653 (newline)
2654 (repl-report)))
2655 (repl -read -eval -print))))
2656
2657 (let ((status (error-catching-repl -read
2658 -eval
2659 -print)))
2660 (-quit status))))
2661
2662
2663 \f
2664
2665 ;;; {IOTA functions: generating lists of numbers}
2666 ;;;
2667
2668 (define (iota n)
2669 (let loop ((count (1- n)) (result '()))
2670 (if (< count 0) result
2671 (loop (1- count) (cons count result)))))
2672
2673 \f
2674
2675 ;;; {collect}
2676 ;;;
2677 ;;; Similar to `begin' but returns a list of the results of all constituent
2678 ;;; forms instead of the result of the last form.
2679 ;;; (The definition relies on the current left-to-right
2680 ;;; order of evaluation of operands in applications.)
2681 ;;;
2682
2683 (defmacro collect forms
2684 (cons 'list forms))
2685
2686 \f
2687
2688 ;;; {with-fluids}
2689 ;;;
2690
2691 ;; with-fluids is a convenience wrapper for the builtin procedure
2692 ;; `with-fluids*'. The syntax is just like `let':
2693 ;;
2694 ;; (with-fluids ((fluid val)
2695 ;; ...)
2696 ;; body)
2697
2698 (defmacro with-fluids (bindings . body)
2699 (let ((fluids (map car bindings))
2700 (values (map cadr bindings)))
2701 (if (and (= (length fluids) 1) (= (length values) 1))
2702 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2703 `(with-fluids* (list ,@fluids) (list ,@values)
2704 (lambda () ,@body)))))
2705
2706 \f
2707
2708 ;;; {Macros}
2709 ;;;
2710
2711 ;; actually....hobbit might be able to hack these with a little
2712 ;; coaxing
2713 ;;
2714
2715 (define (primitive-macro? m)
2716 (and (macro? m)
2717 (not (macro-transformer m))))
2718
2719 (defmacro define-macro (first . rest)
2720 (let ((name (if (symbol? first) first (car first)))
2721 (transformer
2722 (if (symbol? first)
2723 (car rest)
2724 `(lambda ,(cdr first) ,@rest))))
2725 `(eval-case
2726 ((load-toplevel)
2727 (define ,name (defmacro:transformer ,transformer)))
2728 (else
2729 (error "define-macro can only be used at the top level")))))
2730
2731
2732 (defmacro define-syntax-macro (first . rest)
2733 (let ((name (if (symbol? first) first (car first)))
2734 (transformer
2735 (if (symbol? first)
2736 (car rest)
2737 `(lambda ,(cdr first) ,@rest))))
2738 `(eval-case
2739 ((load-toplevel)
2740 (define ,name (defmacro:syntax-transformer ,transformer)))
2741 (else
2742 (error "define-syntax-macro can only be used at the top level")))))
2743
2744 \f
2745
2746 ;;; {While}
2747 ;;;
2748 ;;; with `continue' and `break'.
2749 ;;;
2750
2751 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2752 ;; that's only necessary if continue is actually used. A new key is
2753 ;; generated every time, so break and continue apply to their originating
2754 ;; `while' even when recursing. `while-helper' is an easy way to keep the
2755 ;; `key' binding away from the cond and body code.
2756 ;;
2757 (define-macro (while cond . body)
2758 (define (while-helper proc)
2759 (do ((key (make-symbol "while-key")))
2760 ((catch key
2761 (lambda ()
2762 (proc (lambda () (throw key #t))
2763 (lambda () (throw key #f))))
2764 (lambda (key arg) arg)))))
2765 `(,while-helper (,lambda (break continue)
2766 (,do ()
2767 ((,not ,cond))
2768 ,@body)
2769 #t)))
2770
2771
2772 \f
2773
2774 ;;; {Module System Macros}
2775 ;;;
2776
2777 ;; Return a list of expressions that evaluate to the appropriate
2778 ;; arguments for resolve-interface according to SPEC.
2779
2780 (define (compile-interface-spec spec)
2781 (define (make-keyarg sym key quote?)
2782 (cond ((or (memq sym spec)
2783 (memq key spec))
2784 => (lambda (rest)
2785 (if quote?
2786 (list key (list 'quote (cadr rest)))
2787 (list key (cadr rest)))))
2788 (else
2789 '())))
2790 (define (map-apply func list)
2791 (map (lambda (args) (apply func args)) list))
2792 (define keys
2793 ;; sym key quote?
2794 '((:select #:select #t)
2795 (:hide #:hide #t)
2796 (:prefix #:prefix #t)
2797 (:renamer #:renamer #f)))
2798 (if (not (pair? (car spec)))
2799 `(',spec)
2800 `(',(car spec)
2801 ,@(apply append (map-apply make-keyarg keys)))))
2802
2803 (define (keyword-like-symbol->keyword sym)
2804 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2805
2806 (define (compile-define-module-args args)
2807 ;; Just quote everything except #:use-module and #:use-syntax. We
2808 ;; need to know about all arguments regardless since we want to turn
2809 ;; symbols that look like keywords into real keywords, and the
2810 ;; keyword args in a define-module form are not regular
2811 ;; (i.e. no-backtrace doesn't take a value).
2812 (let loop ((compiled-args `((quote ,(car args))))
2813 (args (cdr args)))
2814 (cond ((null? args)
2815 (reverse! compiled-args))
2816 ;; symbol in keyword position
2817 ((symbol? (car args))
2818 (loop compiled-args
2819 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2820 ((memq (car args) '(#:no-backtrace #:pure))
2821 (loop (cons (car args) compiled-args)
2822 (cdr args)))
2823 ((null? (cdr args))
2824 (error "keyword without value:" (car args)))
2825 ((memq (car args) '(#:use-module #:use-syntax))
2826 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2827 (car args)
2828 compiled-args)
2829 (cddr args)))
2830 ((eq? (car args) #:autoload)
2831 (loop (cons* `(quote ,(caddr args))
2832 `(quote ,(cadr args))
2833 (car args)
2834 compiled-args)
2835 (cdddr args)))
2836 (else
2837 (loop (cons* `(quote ,(cadr args))
2838 (car args)
2839 compiled-args)
2840 (cddr args))))))
2841
2842 (defmacro define-module args
2843 `(eval-case
2844 ((load-toplevel)
2845 (let ((m (process-define-module
2846 (list ,@(compile-define-module-args args)))))
2847 (set-current-module m)
2848 m))
2849 (else
2850 (error "define-module can only be used at the top level"))))
2851
2852 ;; The guts of the use-modules macro. Add the interfaces of the named
2853 ;; modules to the use-list of the current module, in order.
2854
2855 ;; This function is called by "modules.c". If you change it, be sure
2856 ;; to change scm_c_use_module as well.
2857
2858 (define (process-use-modules module-interface-args)
2859 (let ((interfaces (map (lambda (mif-args)
2860 (or (apply resolve-interface mif-args)
2861 (error "no such module" mif-args)))
2862 module-interface-args)))
2863 (call-with-deferred-observers
2864 (lambda ()
2865 (module-use-interfaces! (current-module) interfaces)))))
2866
2867 (defmacro use-modules modules
2868 `(eval-case
2869 ((load-toplevel)
2870 (process-use-modules
2871 (list ,@(map (lambda (m)
2872 `(list ,@(compile-interface-spec m)))
2873 modules)))
2874 *unspecified*)
2875 (else
2876 (error "use-modules can only be used at the top level"))))
2877
2878 (defmacro use-syntax (spec)
2879 `(eval-case
2880 ((load-toplevel)
2881 ,@(if (pair? spec)
2882 `((process-use-modules (list
2883 (list ,@(compile-interface-spec spec))))
2884 (set-module-transformer! (current-module)
2885 ,(car (last-pair spec))))
2886 `((set-module-transformer! (current-module) ,spec)))
2887 *unspecified*)
2888 (else
2889 (error "use-syntax can only be used at the top level"))))
2890
2891 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2892 ;; as soon as guile supports hygienic macros.
2893 (define define-private define)
2894
2895 (defmacro define-public args
2896 (define (syntax)
2897 (error "bad syntax" (list 'define-public args)))
2898 (define (defined-name n)
2899 (cond
2900 ((symbol? n) n)
2901 ((pair? n) (defined-name (car n)))
2902 (else (syntax))))
2903 (cond
2904 ((null? args)
2905 (syntax))
2906 (#t
2907 (let ((name (defined-name (car args))))
2908 `(begin
2909 (define-private ,@args)
2910 (eval-case ((load-toplevel) (export ,name))))))))
2911
2912 (defmacro defmacro-public args
2913 (define (syntax)
2914 (error "bad syntax" (list 'defmacro-public args)))
2915 (define (defined-name n)
2916 (cond
2917 ((symbol? n) n)
2918 (else (syntax))))
2919 (cond
2920 ((null? args)
2921 (syntax))
2922 (#t
2923 (let ((name (defined-name (car args))))
2924 `(begin
2925 (eval-case ((load-toplevel) (export-syntax ,name)))
2926 (defmacro ,@args))))))
2927
2928 ;; Export a local variable
2929
2930 ;; This function is called from "modules.c". If you change it, be
2931 ;; sure to update "modules.c" as well.
2932
2933 (define (module-export! m names)
2934 (let ((public-i (module-public-interface m)))
2935 (for-each (lambda (name)
2936 (let ((var (module-ensure-local-variable! m name)))
2937 (module-add! public-i name var)))
2938 names)))
2939
2940 (define (module-replace! m names)
2941 (let ((public-i (module-public-interface m)))
2942 (for-each (lambda (name)
2943 (let ((var (module-ensure-local-variable! m name)))
2944 (set-object-property! var 'replace #t)
2945 (module-add! public-i name var)))
2946 names)))
2947
2948 ;; Re-export a imported variable
2949 ;;
2950 (define (module-re-export! m names)
2951 (let ((public-i (module-public-interface m)))
2952 (for-each (lambda (name)
2953 (let ((var (module-variable m name)))
2954 (cond ((not var)
2955 (error "Undefined variable:" name))
2956 ((eq? var (module-local-variable m name))
2957 (error "re-exporting local variable:" name))
2958 (else
2959 (module-add! public-i name var)))))
2960 names)))
2961
2962 (defmacro export names
2963 `(eval-case
2964 ((load-toplevel)
2965 (call-with-deferred-observers
2966 (lambda ()
2967 (module-export! (current-module) ',names))))
2968 (else
2969 (error "export can only be used at the top level"))))
2970
2971 (defmacro re-export names
2972 `(eval-case
2973 ((load-toplevel)
2974 (call-with-deferred-observers
2975 (lambda ()
2976 (module-re-export! (current-module) ',names))))
2977 (else
2978 (error "re-export can only be used at the top level"))))
2979
2980 (defmacro export-syntax names
2981 `(export ,@names))
2982
2983 (defmacro re-export-syntax names
2984 `(re-export ,@names))
2985
2986 (define load load-module)
2987
2988 ;; The following macro allows one to write, for example,
2989 ;;
2990 ;; (@ (ice-9 pretty-print) pretty-print)
2991 ;;
2992 ;; to refer directly to the pretty-print variable in module (ice-9
2993 ;; pretty-print). It works by looking up the variable and inserting
2994 ;; it directly into the code. This is understood by the evaluator.
2995 ;; Indeed, all references to global variables are memoized into such
2996 ;; variable objects.
2997
2998 (define-macro (@ mod-name var-name)
2999 (let ((var (module-variable (resolve-interface mod-name) var-name)))
3000 (if (not var)
3001 (error "no such public variable" (list '@ mod-name var-name)))
3002 var))
3003
3004 ;; The '@@' macro is like '@' but it can also access bindings that
3005 ;; have not been explicitely exported.
3006
3007 (define-macro (@@ mod-name var-name)
3008 (let ((var (module-variable (resolve-module mod-name) var-name)))
3009 (if (not var)
3010 (error "no such variable" (list '@@ mod-name var-name)))
3011 var))
3012
3013 \f
3014
3015 ;;; {Parameters}
3016 ;;;
3017
3018 (define make-mutable-parameter
3019 (let ((make (lambda (fluid converter)
3020 (lambda args
3021 (if (null? args)
3022 (fluid-ref fluid)
3023 (fluid-set! fluid (converter (car args))))))))
3024 (lambda (init . converter)
3025 (let ((fluid (make-fluid))
3026 (converter (if (null? converter)
3027 identity
3028 (car converter))))
3029 (fluid-set! fluid (converter init))
3030 (make fluid converter)))))
3031
3032 \f
3033
3034 ;;; {Handling of duplicate imported bindings}
3035 ;;;
3036
3037 ;; Duplicate handlers take the following arguments:
3038 ;;
3039 ;; module importing module
3040 ;; name conflicting name
3041 ;; int1 old interface where name occurs
3042 ;; val1 value of binding in old interface
3043 ;; int2 new interface where name occurs
3044 ;; val2 value of binding in new interface
3045 ;; var previous resolution or #f
3046 ;; val value of previous resolution
3047 ;;
3048 ;; A duplicate handler can take three alternative actions:
3049 ;;
3050 ;; 1. return #f => leave responsibility to next handler
3051 ;; 2. exit with an error
3052 ;; 3. return a variable resolving the conflict
3053 ;;
3054
3055 (define duplicate-handlers
3056 (let ((m (make-module 7)))
3057
3058 (define (check module name int1 val1 int2 val2 var val)
3059 (scm-error 'misc-error
3060 #f
3061 "~A: `~A' imported from both ~A and ~A"
3062 (list (module-name module)
3063 name
3064 (module-name int1)
3065 (module-name int2))
3066 #f))
3067
3068 (define (warn module name int1 val1 int2 val2 var val)
3069 (format #t
3070 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3071 (module-name module)
3072 name
3073 (module-name int1)
3074 (module-name int2))
3075 #f)
3076
3077 (define (replace module name int1 val1 int2 val2 var val)
3078 (let ((old (or (and var (object-property var 'replace) var)
3079 (module-variable int1 name)))
3080 (new (module-variable int2 name)))
3081 (if (object-property old 'replace)
3082 (and (or (eq? old new)
3083 (not (object-property new 'replace)))
3084 old)
3085 (and (object-property new 'replace)
3086 new))))
3087
3088 (define (warn-override-core module name int1 val1 int2 val2 var val)
3089 (and (eq? int1 the-scm-module)
3090 (begin
3091 (format #t
3092 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3093 (module-name module)
3094 (module-name int2)
3095 name)
3096 (module-local-variable int2 name))))
3097
3098 (define (first module name int1 val1 int2 val2 var val)
3099 (or var (module-local-variable int1 name)))
3100
3101 (define (last module name int1 val1 int2 val2 var val)
3102 (module-local-variable int2 name))
3103
3104 (define (noop module name int1 val1 int2 val2 var val)
3105 #f)
3106
3107 (set-module-name! m 'duplicate-handlers)
3108 (set-module-kind! m 'interface)
3109 (module-define! m 'check check)
3110 (module-define! m 'warn warn)
3111 (module-define! m 'replace replace)
3112 (module-define! m 'warn-override-core warn-override-core)
3113 (module-define! m 'first first)
3114 (module-define! m 'last last)
3115 (module-define! m 'merge-generics noop)
3116 (module-define! m 'merge-accessors noop)
3117 m))
3118
3119 (define (lookup-duplicates-handlers handler-names)
3120 (and handler-names
3121 (map (lambda (handler-name)
3122 (or (module-symbol-local-binding
3123 duplicate-handlers handler-name #f)
3124 (error "invalid duplicate handler name:"
3125 handler-name)))
3126 (if (list? handler-names)
3127 handler-names
3128 (list handler-names)))))
3129
3130 (define default-duplicate-binding-procedures
3131 (make-mutable-parameter #f))
3132
3133 (define default-duplicate-binding-handler
3134 (make-mutable-parameter '(replace warn-override-core warn last)
3135 (lambda (handler-names)
3136 (default-duplicate-binding-procedures
3137 (lookup-duplicates-handlers handler-names))
3138 handler-names)))
3139
3140 (define (make-duplicates-interface)
3141 (let ((m (make-module)))
3142 (set-module-kind! m 'custom-interface)
3143 (set-module-name! m 'duplicates)
3144 m))
3145
3146 (define (process-duplicates module interface)
3147 (let* ((duplicates-handlers (or (module-duplicates-handlers module)
3148 (default-duplicate-binding-procedures)))
3149 (duplicates-interface (module-duplicates-interface module)))
3150 (module-for-each
3151 (lambda (name var)
3152 (cond ((module-import-interface module name)
3153 =>
3154 (lambda (prev-interface)
3155 (let ((var1 (module-local-variable prev-interface name))
3156 (var2 (module-local-variable interface name)))
3157 (if (not (eq? var1 var2))
3158 (begin
3159 (if (not duplicates-interface)
3160 (begin
3161 (set! duplicates-interface
3162 (make-duplicates-interface))
3163 (set-module-duplicates-interface!
3164 module
3165 duplicates-interface)))
3166 (let* ((var (module-local-variable duplicates-interface
3167 name))
3168 (val (and var
3169 (variable-bound? var)
3170 (variable-ref var))))
3171 (let loop ((duplicates-handlers duplicates-handlers))
3172 (cond ((null? duplicates-handlers))
3173 (((car duplicates-handlers)
3174 module
3175 name
3176 prev-interface
3177 (and (variable-bound? var1)
3178 (variable-ref var1))
3179 interface
3180 (and (variable-bound? var2)
3181 (variable-ref var2))
3182 var
3183 val)
3184 =>
3185 (lambda (var)
3186 (module-add! duplicates-interface name var)))
3187 (else
3188 (loop (cdr duplicates-handlers)))))))))))))
3189 interface)))
3190
3191 \f
3192
3193 ;;; {`cond-expand' for SRFI-0 support.}
3194 ;;;
3195 ;;; This syntactic form expands into different commands or
3196 ;;; definitions, depending on the features provided by the Scheme
3197 ;;; implementation.
3198 ;;;
3199 ;;; Syntax:
3200 ;;;
3201 ;;; <cond-expand>
3202 ;;; --> (cond-expand <cond-expand-clause>+)
3203 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3204 ;;; <cond-expand-clause>
3205 ;;; --> (<feature-requirement> <command-or-definition>*)
3206 ;;; <feature-requirement>
3207 ;;; --> <feature-identifier>
3208 ;;; | (and <feature-requirement>*)
3209 ;;; | (or <feature-requirement>*)
3210 ;;; | (not <feature-requirement>)
3211 ;;; <feature-identifier>
3212 ;;; --> <a symbol which is the name or alias of a SRFI>
3213 ;;;
3214 ;;; Additionally, this implementation provides the
3215 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3216 ;;; determine the implementation type and the supported standard.
3217 ;;;
3218 ;;; Currently, the following feature identifiers are supported:
3219 ;;;
3220 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14
3221 ;;;
3222 ;;; Remember to update the features list when adding more SRFIs.
3223 ;;;
3224
3225 (define %cond-expand-features
3226 ;; Adjust the above comment when changing this.
3227 '(guile
3228 r5rs
3229 srfi-0 ;; cond-expand itself
3230 srfi-4 ;; homogenous numeric vectors
3231 srfi-6 ;; open-input-string etc, in the guile core
3232 srfi-13 ;; string library
3233 srfi-14 ;; character sets
3234 ))
3235
3236 ;; This table maps module public interfaces to the list of features.
3237 ;;
3238 (define %cond-expand-table (make-hash-table 31))
3239
3240 ;; Add one or more features to the `cond-expand' feature list of the
3241 ;; module `module'.
3242 ;;
3243 (define (cond-expand-provide module features)
3244 (let ((mod (module-public-interface module)))
3245 (and mod
3246 (hashq-set! %cond-expand-table mod
3247 (append (hashq-ref %cond-expand-table mod '())
3248 features)))))
3249
3250 (define cond-expand
3251 (procedure->memoizing-macro
3252 (lambda (exp env)
3253 (let ((clauses (cdr exp))
3254 (syntax-error (lambda (cl)
3255 (error "invalid clause in `cond-expand'" cl))))
3256 (letrec
3257 ((test-clause
3258 (lambda (clause)
3259 (cond
3260 ((symbol? clause)
3261 (or (memq clause %cond-expand-features)
3262 (let lp ((uses (module-uses (env-module env))))
3263 (if (pair? uses)
3264 (or (memq clause
3265 (hashq-ref %cond-expand-table
3266 (car uses) '()))
3267 (lp (cdr uses)))
3268 #f))))
3269 ((pair? clause)
3270 (cond
3271 ((eq? 'and (car clause))
3272 (let lp ((l (cdr clause)))
3273 (cond ((null? l)
3274 #t)
3275 ((pair? l)
3276 (and (test-clause (car l)) (lp (cdr l))))
3277 (else
3278 (syntax-error clause)))))
3279 ((eq? 'or (car clause))
3280 (let lp ((l (cdr clause)))
3281 (cond ((null? l)
3282 #f)
3283 ((pair? l)
3284 (or (test-clause (car l)) (lp (cdr l))))
3285 (else
3286 (syntax-error clause)))))
3287 ((eq? 'not (car clause))
3288 (cond ((not (pair? (cdr clause)))
3289 (syntax-error clause))
3290 ((pair? (cddr clause))
3291 ((syntax-error clause))))
3292 (not (test-clause (cadr clause))))
3293 (else
3294 (syntax-error clause))))
3295 (else
3296 (syntax-error clause))))))
3297 (let lp ((c clauses))
3298 (cond
3299 ((null? c)
3300 (error "Unfulfilled `cond-expand'"))
3301 ((not (pair? c))
3302 (syntax-error c))
3303 ((not (pair? (car c)))
3304 (syntax-error (car c)))
3305 ((test-clause (caar c))
3306 `(begin ,@(cdar c)))
3307 ((eq? (caar c) 'else)
3308 (if (pair? (cdr c))
3309 (syntax-error c))
3310 `(begin ,@(cdar c)))
3311 (else
3312 (lp (cdr c))))))))))
3313
3314 ;; This procedure gets called from the startup code with a list of
3315 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3316 ;;
3317 (define (use-srfis srfis)
3318 (let lp ((s srfis))
3319 (if (pair? s)
3320 (let* ((srfi (string->symbol
3321 (string-append "srfi-" (number->string (car s)))))
3322 (mod-i (resolve-interface (list 'srfi srfi))))
3323 (module-use! (current-module) mod-i)
3324 (lp (cdr s))))))
3325
3326 \f
3327
3328 ;;; {Load emacs interface support if emacs option is given.}
3329 ;;;
3330
3331 (define (named-module-use! user usee)
3332 (module-use! (resolve-module user) (resolve-interface usee)))
3333
3334 (define (load-emacs-interface)
3335 (and (provided? 'debug-extensions)
3336 (debug-enable 'backtrace))
3337 (named-module-use! '(guile-user) '(ice-9 emacs)))
3338
3339 \f
3340
3341 (define using-readline?
3342 (let ((using-readline? (make-fluid)))
3343 (make-procedure-with-setter
3344 (lambda () (fluid-ref using-readline?))
3345 (lambda (v) (fluid-set! using-readline? v)))))
3346
3347 (define (top-repl)
3348 (let ((guile-user-module (resolve-module '(guile-user))))
3349
3350 ;; Load emacs interface support if emacs option is given.
3351 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3352 (module-ref guile-user-module 'use-emacs-interface))
3353 (load-emacs-interface))
3354
3355 ;; Use some convenient modules (in reverse order)
3356
3357 (if (provided? 'regex)
3358 (module-use! guile-user-module (resolve-interface '(ice-9 regex))))
3359 (if (provided? 'threads)
3360 (module-use! guile-user-module (resolve-interface '(ice-9 threads))))
3361 ;; load debugger on demand
3362 (module-use! guile-user-module
3363 (make-autoload-interface guile-user-module
3364 '(ice-9 debugger) '(debug)))
3365 (module-use! guile-user-module (resolve-interface '(ice-9 session)))
3366 (module-use! guile-user-module (resolve-interface '(ice-9 debug)))
3367 ;; so that builtin bindings will be checked first
3368 (module-use! guile-user-module (resolve-interface '(ice-9 r5rs)))
3369 (module-use! guile-user-module (resolve-interface '(guile)))
3370
3371 (set-current-module guile-user-module)
3372
3373 (let ((old-handlers #f)
3374 (signals (if (provided? 'posix)
3375 `((,SIGINT . "User interrupt")
3376 (,SIGFPE . "Arithmetic error")
3377 (,SIGBUS . "Bad memory access (bus error)")
3378 (,SIGSEGV
3379 . "Bad memory access (Segmentation violation)"))
3380 '())))
3381
3382 (dynamic-wind
3383
3384 ;; call at entry
3385 (lambda ()
3386 (let ((make-handler (lambda (msg)
3387 (lambda (sig)
3388 ;; Make a backup copy of the stack
3389 (fluid-set! before-signal-stack
3390 (fluid-ref the-last-stack))
3391 (save-stack 2)
3392 (scm-error 'signal
3393 #f
3394 msg
3395 #f
3396 (list sig))))))
3397 (set! old-handlers
3398 (map (lambda (sig-msg)
3399 (sigaction (car sig-msg)
3400 (make-handler (cdr sig-msg))))
3401 signals))))
3402
3403 ;; the protected thunk.
3404 (lambda ()
3405 (let ((status (scm-style-repl)))
3406 (run-hook exit-hook)
3407 status))
3408
3409 ;; call at exit.
3410 (lambda ()
3411 (map (lambda (sig-msg old-handler)
3412 (if (not (car old-handler))
3413 ;; restore original C handler.
3414 (sigaction (car sig-msg) #f)
3415 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3416 (sigaction (car sig-msg)
3417 (car old-handler)
3418 (cdr old-handler))))
3419 signals old-handlers))))))
3420
3421 ;;; This hook is run at the very end of an interactive session.
3422 ;;;
3423 (define exit-hook (make-hook))
3424
3425 \f
3426
3427 ;;; {Deprecated stuff}
3428 ;;;
3429
3430 (begin-deprecated
3431 (define (feature? sym)
3432 (issue-deprecation-warning
3433 "`feature?' is deprecated. Use `provided?' instead.")
3434 (provided? sym)))
3435
3436 (begin-deprecated
3437 (primitive-load-path "ice-9/deprecated.scm"))
3438
3439 \f
3440
3441 ;;; Place the user in the guile-user module.
3442 ;;;
3443
3444 (define-module (guile-user))
3445
3446 ;;; boot-9.scm ends here