update docs
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010
4 @c Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @node Simple Data Types
8 @section Simple Generic Data Types
9
10 This chapter describes those of Guile's simple data types which are
11 primarily used for their role as items of generic data. By
12 @dfn{simple} we mean data types that are not primarily used as
13 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14 For the documentation of such @dfn{compound} data types, see
15 @ref{Compound Data Types}.
16
17 @c One of the great strengths of Scheme is that there is no straightforward
18 @c distinction between ``data'' and ``functionality''. For example,
19 @c Guile's support for dynamic linking could be described:
20
21 @c @itemize @bullet
22 @c @item
23 @c either in a ``data-centric'' way, as the behaviour and properties of the
24 @c ``dynamically linked object'' data type, and the operations that may be
25 @c applied to instances of this type
26
27 @c @item
28 @c or in a ``functionality-centric'' way, as the set of procedures that
29 @c constitute Guile's support for dynamic linking, in the context of the
30 @c module system.
31 @c @end itemize
32
33 @c The contents of this chapter are, therefore, a matter of judgment. By
34 @c @dfn{generic}, we mean to select those data types whose typical use as
35 @c @emph{data} in a wide variety of programming contexts is more important
36 @c than their use in the implementation of a particular piece of
37 @c @emph{functionality}. The last section of this chapter provides
38 @c references for all the data types that are documented not here but in a
39 @c ``functionality-centric'' way elsewhere in the manual.
40
41 @menu
42 * Booleans:: True/false values.
43 * Numbers:: Numerical data types.
44 * Characters:: Single characters.
45 * Character Sets:: Sets of characters.
46 * Strings:: Sequences of characters.
47 * Bytevectors:: Sequences of bytes.
48 * Regular Expressions:: Pattern matching and substitution.
49 * Symbols:: Symbols.
50 * Keywords:: Self-quoting, customizable display keywords.
51 * Other Types:: "Functionality-centric" data types.
52 @end menu
53
54
55 @node Booleans
56 @subsection Booleans
57 @tpindex Booleans
58
59 The two boolean values are @code{#t} for true and @code{#f} for false.
60
61 Boolean values are returned by predicate procedures, such as the general
62 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63 (@pxref{Equality}) and numerical and string comparison operators like
64 @code{string=?} (@pxref{String Comparison}) and @code{<=}
65 (@pxref{Comparison}).
66
67 @lisp
68 (<= 3 8)
69 @result{} #t
70
71 (<= 3 -3)
72 @result{} #f
73
74 (equal? "house" "houses")
75 @result{} #f
76
77 (eq? #f #f)
78 @result{}
79 #t
80 @end lisp
81
82 In test condition contexts like @code{if} and @code{cond} (@pxref{if
83 cond case}), where a group of subexpressions will be evaluated only if a
84 @var{condition} expression evaluates to ``true'', ``true'' means any
85 value at all except @code{#f}.
86
87 @lisp
88 (if #t "yes" "no")
89 @result{} "yes"
90
91 (if 0 "yes" "no")
92 @result{} "yes"
93
94 (if #f "yes" "no")
95 @result{} "no"
96 @end lisp
97
98 A result of this asymmetry is that typical Scheme source code more often
99 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101 not necessary to represent an @code{if} or @code{cond} true value.
102
103 It is important to note that @code{#f} is @strong{not} equivalent to any
104 other Scheme value. In particular, @code{#f} is not the same as the
105 number 0 (like in C and C++), and not the same as the ``empty list''
106 (like in some Lisp dialects).
107
108 In C, the two Scheme boolean values are available as the two constants
109 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111 false when used in C conditionals. In order to test for it, use
112 @code{scm_is_false} or @code{scm_is_true}.
113
114 @rnindex not
115 @deffn {Scheme Procedure} not x
116 @deffnx {C Function} scm_not (x)
117 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118 @end deffn
119
120 @rnindex boolean?
121 @deffn {Scheme Procedure} boolean? obj
122 @deffnx {C Function} scm_boolean_p (obj)
123 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124 return @code{#f}.
125 @end deffn
126
127 @deftypevr {C Macro} SCM SCM_BOOL_T
128 The @code{SCM} representation of the Scheme object @code{#t}.
129 @end deftypevr
130
131 @deftypevr {C Macro} SCM SCM_BOOL_F
132 The @code{SCM} representation of the Scheme object @code{#f}.
133 @end deftypevr
134
135 @deftypefn {C Function} int scm_is_true (SCM obj)
136 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137 @end deftypefn
138
139 @deftypefn {C Function} int scm_is_false (SCM obj)
140 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141 @end deftypefn
142
143 @deftypefn {C Function} int scm_is_bool (SCM obj)
144 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145 return @code{0}.
146 @end deftypefn
147
148 @deftypefn {C Function} SCM scm_from_bool (int val)
149 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150 @end deftypefn
151
152 @deftypefn {C Function} int scm_to_bool (SCM val)
153 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156 You should probably use @code{scm_is_true} instead of this function
157 when you just want to test a @code{SCM} value for trueness.
158 @end deftypefn
159
160 @node Numbers
161 @subsection Numerical data types
162 @tpindex Numbers
163
164 Guile supports a rich ``tower'' of numerical types --- integer,
165 rational, real and complex --- and provides an extensive set of
166 mathematical and scientific functions for operating on numerical
167 data. This section of the manual documents those types and functions.
168
169 You may also find it illuminating to read R5RS's presentation of numbers
170 in Scheme, which is particularly clear and accessible: see
171 @ref{Numbers,,,r5rs,R5RS}.
172
173 @menu
174 * Numerical Tower:: Scheme's numerical "tower".
175 * Integers:: Whole numbers.
176 * Reals and Rationals:: Real and rational numbers.
177 * Complex Numbers:: Complex numbers.
178 * Exactness:: Exactness and inexactness.
179 * Number Syntax:: Read syntax for numerical data.
180 * Integer Operations:: Operations on integer values.
181 * Comparison:: Comparison predicates.
182 * Conversion:: Converting numbers to and from strings.
183 * Complex:: Complex number operations.
184 * Arithmetic:: Arithmetic functions.
185 * Scientific:: Scientific functions.
186 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
187 * Random:: Random number generation.
188 @end menu
189
190
191 @node Numerical Tower
192 @subsubsection Scheme's Numerical ``Tower''
193 @rnindex number?
194
195 Scheme's numerical ``tower'' consists of the following categories of
196 numbers:
197
198 @table @dfn
199 @item integers
200 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
201
202 @item rationals
203 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
204 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
205 pi (an irrational number) doesn't. These include integers
206 (@math{@var{n}/1}).
207
208 @item real numbers
209 The set of numbers that describes all possible positions along a
210 one-dimensional line. This includes rationals as well as irrational
211 numbers.
212
213 @item complex numbers
214 The set of numbers that describes all possible positions in a two
215 dimensional space. This includes real as well as imaginary numbers
216 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
217 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
218 @minus{}1.)
219 @end table
220
221 It is called a tower because each category ``sits on'' the one that
222 follows it, in the sense that every integer is also a rational, every
223 rational is also real, and every real number is also a complex number
224 (but with zero imaginary part).
225
226 In addition to the classification into integers, rationals, reals and
227 complex numbers, Scheme also distinguishes between whether a number is
228 represented exactly or not. For example, the result of
229 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
230 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
231 Instead, it stores an inexact approximation, using the C type
232 @code{double}.
233
234 Guile can represent exact rationals of any magnitude, inexact
235 rationals that fit into a C @code{double}, and inexact complex numbers
236 with @code{double} real and imaginary parts.
237
238 The @code{number?} predicate may be applied to any Scheme value to
239 discover whether the value is any of the supported numerical types.
240
241 @deffn {Scheme Procedure} number? obj
242 @deffnx {C Function} scm_number_p (obj)
243 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
244 @end deffn
245
246 For example:
247
248 @lisp
249 (number? 3)
250 @result{} #t
251
252 (number? "hello there!")
253 @result{} #f
254
255 (define pi 3.141592654)
256 (number? pi)
257 @result{} #t
258 @end lisp
259
260 @deftypefn {C Function} int scm_is_number (SCM obj)
261 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
262 @end deftypefn
263
264 The next few subsections document each of Guile's numerical data types
265 in detail.
266
267 @node Integers
268 @subsubsection Integers
269
270 @tpindex Integer numbers
271
272 @rnindex integer?
273
274 Integers are whole numbers, that is numbers with no fractional part,
275 such as 2, 83, and @minus{}3789.
276
277 Integers in Guile can be arbitrarily big, as shown by the following
278 example.
279
280 @lisp
281 (define (factorial n)
282 (let loop ((n n) (product 1))
283 (if (= n 0)
284 product
285 (loop (- n 1) (* product n)))))
286
287 (factorial 3)
288 @result{} 6
289
290 (factorial 20)
291 @result{} 2432902008176640000
292
293 (- (factorial 45))
294 @result{} -119622220865480194561963161495657715064383733760000000000
295 @end lisp
296
297 Readers whose background is in programming languages where integers are
298 limited by the need to fit into just 4 or 8 bytes of memory may find
299 this surprising, or suspect that Guile's representation of integers is
300 inefficient. In fact, Guile achieves a near optimal balance of
301 convenience and efficiency by using the host computer's native
302 representation of integers where possible, and a more general
303 representation where the required number does not fit in the native
304 form. Conversion between these two representations is automatic and
305 completely invisible to the Scheme level programmer.
306
307 The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
308 inexact integers. They are explained in detail in the next section,
309 together with reals and rationals.
310
311 C has a host of different integer types, and Guile offers a host of
312 functions to convert between them and the @code{SCM} representation.
313 For example, a C @code{int} can be handled with @code{scm_to_int} and
314 @code{scm_from_int}. Guile also defines a few C integer types of its
315 own, to help with differences between systems.
316
317 C integer types that are not covered can be handled with the generic
318 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
319 signed types, or with @code{scm_to_unsigned_integer} and
320 @code{scm_from_unsigned_integer} for unsigned types.
321
322 Scheme integers can be exact and inexact. For example, a number
323 written as @code{3.0} with an explicit decimal-point is inexact, but
324 it is also an integer. The functions @code{integer?} and
325 @code{scm_is_integer} report true for such a number, but the functions
326 @code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
327 allow exact integers and thus report false. Likewise, the conversion
328 functions like @code{scm_to_signed_integer} only accept exact
329 integers.
330
331 The motivation for this behavior is that the inexactness of a number
332 should not be lost silently. If you want to allow inexact integers,
333 you can explicitly insert a call to @code{inexact->exact} or to its C
334 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
335 be converted by this call into exact integers; inexact non-integers
336 will become exact fractions.)
337
338 @deffn {Scheme Procedure} integer? x
339 @deffnx {C Function} scm_integer_p (x)
340 Return @code{#t} if @var{x} is an exact or inexact integer number, else
341 @code{#f}.
342
343 @lisp
344 (integer? 487)
345 @result{} #t
346
347 (integer? 3.0)
348 @result{} #t
349
350 (integer? -3.4)
351 @result{} #f
352
353 (integer? +inf.0)
354 @result{} #t
355 @end lisp
356 @end deffn
357
358 @deftypefn {C Function} int scm_is_integer (SCM x)
359 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
360 @end deftypefn
361
362 @defvr {C Type} scm_t_int8
363 @defvrx {C Type} scm_t_uint8
364 @defvrx {C Type} scm_t_int16
365 @defvrx {C Type} scm_t_uint16
366 @defvrx {C Type} scm_t_int32
367 @defvrx {C Type} scm_t_uint32
368 @defvrx {C Type} scm_t_int64
369 @defvrx {C Type} scm_t_uint64
370 @defvrx {C Type} scm_t_intmax
371 @defvrx {C Type} scm_t_uintmax
372 The C types are equivalent to the corresponding ISO C types but are
373 defined on all platforms, with the exception of @code{scm_t_int64} and
374 @code{scm_t_uint64}, which are only defined when a 64-bit type is
375 available. For example, @code{scm_t_int8} is equivalent to
376 @code{int8_t}.
377
378 You can regard these definitions as a stop-gap measure until all
379 platforms provide these types. If you know that all the platforms
380 that you are interested in already provide these types, it is better
381 to use them directly instead of the types provided by Guile.
382 @end defvr
383
384 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
385 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
386 Return @code{1} when @var{x} represents an exact integer that is
387 between @var{min} and @var{max}, inclusive.
388
389 These functions can be used to check whether a @code{SCM} value will
390 fit into a given range, such as the range of a given C integer type.
391 If you just want to convert a @code{SCM} value to a given C integer
392 type, use one of the conversion functions directly.
393 @end deftypefn
394
395 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
396 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
397 When @var{x} represents an exact integer that is between @var{min} and
398 @var{max} inclusive, return that integer. Else signal an error,
399 either a `wrong-type' error when @var{x} is not an exact integer, or
400 an `out-of-range' error when it doesn't fit the given range.
401 @end deftypefn
402
403 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
404 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
405 Return the @code{SCM} value that represents the integer @var{x}. This
406 function will always succeed and will always return an exact number.
407 @end deftypefn
408
409 @deftypefn {C Function} char scm_to_char (SCM x)
410 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
411 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
412 @deftypefnx {C Function} short scm_to_short (SCM x)
413 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
414 @deftypefnx {C Function} int scm_to_int (SCM x)
415 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
416 @deftypefnx {C Function} long scm_to_long (SCM x)
417 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
418 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
419 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
420 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
421 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
422 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
423 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
424 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
425 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
426 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
427 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
428 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
429 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
430 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
431 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
432 When @var{x} represents an exact integer that fits into the indicated
433 C type, return that integer. Else signal an error, either a
434 `wrong-type' error when @var{x} is not an exact integer, or an
435 `out-of-range' error when it doesn't fit the given range.
436
437 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
438 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
439 the corresponding types are.
440 @end deftypefn
441
442 @deftypefn {C Function} SCM scm_from_char (char x)
443 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
444 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
445 @deftypefnx {C Function} SCM scm_from_short (short x)
446 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
447 @deftypefnx {C Function} SCM scm_from_int (int x)
448 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
449 @deftypefnx {C Function} SCM scm_from_long (long x)
450 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
451 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
452 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
453 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
454 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
455 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
456 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
457 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
458 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
459 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
460 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
461 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
462 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
463 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
464 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
465 Return the @code{SCM} value that represents the integer @var{x}.
466 These functions will always succeed and will always return an exact
467 number.
468 @end deftypefn
469
470 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
471 Assign @var{val} to the multiple precision integer @var{rop}.
472 @var{val} must be an exact integer, otherwise an error will be
473 signalled. @var{rop} must have been initialized with @code{mpz_init}
474 before this function is called. When @var{rop} is no longer needed
475 the occupied space must be freed with @code{mpz_clear}.
476 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
477 @end deftypefn
478
479 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
480 Return the @code{SCM} value that represents @var{val}.
481 @end deftypefn
482
483 @node Reals and Rationals
484 @subsubsection Real and Rational Numbers
485 @tpindex Real numbers
486 @tpindex Rational numbers
487
488 @rnindex real?
489 @rnindex rational?
490
491 Mathematically, the real numbers are the set of numbers that describe
492 all possible points along a continuous, infinite, one-dimensional line.
493 The rational numbers are the set of all numbers that can be written as
494 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
495 All rational numbers are also real, but there are real numbers that
496 are not rational, for example @m{\sqrt2, the square root of 2}, and
497 @m{\pi,pi}.
498
499 Guile can represent both exact and inexact rational numbers, but it
500 can not represent irrational numbers. Exact rationals are represented
501 by storing the numerator and denominator as two exact integers.
502 Inexact rationals are stored as floating point numbers using the C
503 type @code{double}.
504
505 Exact rationals are written as a fraction of integers. There must be
506 no whitespace around the slash:
507
508 @lisp
509 1/2
510 -22/7
511 @end lisp
512
513 Even though the actual encoding of inexact rationals is in binary, it
514 may be helpful to think of it as a decimal number with a limited
515 number of significant figures and a decimal point somewhere, since
516 this corresponds to the standard notation for non-whole numbers. For
517 example:
518
519 @lisp
520 0.34
521 -0.00000142857931198
522 -5648394822220000000000.0
523 4.0
524 @end lisp
525
526 The limited precision of Guile's encoding means that any ``real'' number
527 in Guile can be written in a rational form, by multiplying and then dividing
528 by sufficient powers of 10 (or in fact, 2). For example,
529 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
530 100000000000000000. In Guile's current incarnation, therefore, the
531 @code{rational?} and @code{real?} predicates are equivalent.
532
533
534 Dividing by an exact zero leads to a error message, as one might
535 expect. However, dividing by an inexact zero does not produce an
536 error. Instead, the result of the division is either plus or minus
537 infinity, depending on the sign of the divided number.
538
539 The infinities are written @samp{+inf.0} and @samp{-inf.0},
540 respectively. This syntax is also recognized by @code{read} as an
541 extension to the usual Scheme syntax.
542
543 Dividing zero by zero yields something that is not a number at all:
544 @samp{+nan.0}. This is the special `not a number' value.
545
546 On platforms that follow @acronym{IEEE} 754 for their floating point
547 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
548 are implemented using the corresponding @acronym{IEEE} 754 values.
549 They behave in arithmetic operations like @acronym{IEEE} 754 describes
550 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
551
552 The infinities are inexact integers and are considered to be both even
553 and odd. While @samp{+nan.0} is not @code{=} to itself, it is
554 @code{eqv?} to itself.
555
556 To test for the special values, use the functions @code{inf?} and
557 @code{nan?}.
558
559 @deffn {Scheme Procedure} real? obj
560 @deffnx {C Function} scm_real_p (obj)
561 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
562 that the sets of integer and rational values form subsets of the set
563 of real numbers, so the predicate will also be fulfilled if @var{obj}
564 is an integer number or a rational number.
565 @end deffn
566
567 @deffn {Scheme Procedure} rational? x
568 @deffnx {C Function} scm_rational_p (x)
569 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
570 Note that the set of integer values forms a subset of the set of
571 rational numbers, i. e. the predicate will also be fulfilled if
572 @var{x} is an integer number.
573
574 Since Guile can not represent irrational numbers, every number
575 satisfying @code{real?} also satisfies @code{rational?} in Guile.
576 @end deffn
577
578 @deffn {Scheme Procedure} rationalize x eps
579 @deffnx {C Function} scm_rationalize (x, eps)
580 Returns the @emph{simplest} rational number differing
581 from @var{x} by no more than @var{eps}.
582
583 As required by @acronym{R5RS}, @code{rationalize} only returns an
584 exact result when both its arguments are exact. Thus, you might need
585 to use @code{inexact->exact} on the arguments.
586
587 @lisp
588 (rationalize (inexact->exact 1.2) 1/100)
589 @result{} 6/5
590 @end lisp
591
592 @end deffn
593
594 @deffn {Scheme Procedure} inf? x
595 @deffnx {C Function} scm_inf_p (x)
596 Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
597 @code{#f} otherwise.
598 @end deffn
599
600 @deffn {Scheme Procedure} nan? x
601 @deffnx {C Function} scm_nan_p (x)
602 Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
603 @end deffn
604
605 @deffn {Scheme Procedure} nan
606 @deffnx {C Function} scm_nan ()
607 Return NaN.
608 @end deffn
609
610 @deffn {Scheme Procedure} inf
611 @deffnx {C Function} scm_inf ()
612 Return Inf.
613 @end deffn
614
615 @deffn {Scheme Procedure} numerator x
616 @deffnx {C Function} scm_numerator (x)
617 Return the numerator of the rational number @var{x}.
618 @end deffn
619
620 @deffn {Scheme Procedure} denominator x
621 @deffnx {C Function} scm_denominator (x)
622 Return the denominator of the rational number @var{x}.
623 @end deffn
624
625 @deftypefn {C Function} int scm_is_real (SCM val)
626 @deftypefnx {C Function} int scm_is_rational (SCM val)
627 Equivalent to @code{scm_is_true (scm_real_p (val))} and
628 @code{scm_is_true (scm_rational_p (val))}, respectively.
629 @end deftypefn
630
631 @deftypefn {C Function} double scm_to_double (SCM val)
632 Returns the number closest to @var{val} that is representable as a
633 @code{double}. Returns infinity for a @var{val} that is too large in
634 magnitude. The argument @var{val} must be a real number.
635 @end deftypefn
636
637 @deftypefn {C Function} SCM scm_from_double (double val)
638 Return the @code{SCM} value that represents @var{val}. The returned
639 value is inexact according to the predicate @code{inexact?}, but it
640 will be exactly equal to @var{val}.
641 @end deftypefn
642
643 @node Complex Numbers
644 @subsubsection Complex Numbers
645 @tpindex Complex numbers
646
647 @rnindex complex?
648
649 Complex numbers are the set of numbers that describe all possible points
650 in a two-dimensional space. The two coordinates of a particular point
651 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
652 the complex number that describes that point.
653
654 In Guile, complex numbers are written in rectangular form as the sum of
655 their real and imaginary parts, using the symbol @code{i} to indicate
656 the imaginary part.
657
658 @lisp
659 3+4i
660 @result{}
661 3.0+4.0i
662
663 (* 3-8i 2.3+0.3i)
664 @result{}
665 9.3-17.5i
666 @end lisp
667
668 @cindex polar form
669 @noindent
670 Polar form can also be used, with an @samp{@@} between magnitude and
671 angle,
672
673 @lisp
674 1@@3.141592 @result{} -1.0 (approx)
675 -1@@1.57079 @result{} 0.0-1.0i (approx)
676 @end lisp
677
678 Guile represents a complex number with a non-zero imaginary part as a
679 pair of inexact rationals, so the real and imaginary parts of a
680 complex number have the same properties of inexactness and limited
681 precision as single inexact rational numbers. Guile can not represent
682 exact complex numbers with non-zero imaginary parts.
683
684 @deffn {Scheme Procedure} complex? z
685 @deffnx {C Function} scm_complex_p (z)
686 Return @code{#t} if @var{x} is a complex number, @code{#f}
687 otherwise. Note that the sets of real, rational and integer
688 values form subsets of the set of complex numbers, i. e. the
689 predicate will also be fulfilled if @var{x} is a real,
690 rational or integer number.
691 @end deffn
692
693 @deftypefn {C Function} int scm_is_complex (SCM val)
694 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
695 @end deftypefn
696
697 @node Exactness
698 @subsubsection Exact and Inexact Numbers
699 @tpindex Exact numbers
700 @tpindex Inexact numbers
701
702 @rnindex exact?
703 @rnindex inexact?
704 @rnindex exact->inexact
705 @rnindex inexact->exact
706
707 R5RS requires that a calculation involving inexact numbers always
708 produces an inexact result. To meet this requirement, Guile
709 distinguishes between an exact integer value such as @samp{5} and the
710 corresponding inexact real value which, to the limited precision
711 available, has no fractional part, and is printed as @samp{5.0}. Guile
712 will only convert the latter value to the former when forced to do so by
713 an invocation of the @code{inexact->exact} procedure.
714
715 @deffn {Scheme Procedure} exact? z
716 @deffnx {C Function} scm_exact_p (z)
717 Return @code{#t} if the number @var{z} is exact, @code{#f}
718 otherwise.
719
720 @lisp
721 (exact? 2)
722 @result{} #t
723
724 (exact? 0.5)
725 @result{} #f
726
727 (exact? (/ 2))
728 @result{} #t
729 @end lisp
730
731 @end deffn
732
733 @deffn {Scheme Procedure} inexact? z
734 @deffnx {C Function} scm_inexact_p (z)
735 Return @code{#t} if the number @var{z} is inexact, @code{#f}
736 else.
737 @end deffn
738
739 @deffn {Scheme Procedure} inexact->exact z
740 @deffnx {C Function} scm_inexact_to_exact (z)
741 Return an exact number that is numerically closest to @var{z}, when
742 there is one. For inexact rationals, Guile returns the exact rational
743 that is numerically equal to the inexact rational. Inexact complex
744 numbers with a non-zero imaginary part can not be made exact.
745
746 @lisp
747 (inexact->exact 0.5)
748 @result{} 1/2
749 @end lisp
750
751 The following happens because 12/10 is not exactly representable as a
752 @code{double} (on most platforms). However, when reading a decimal
753 number that has been marked exact with the ``#e'' prefix, Guile is
754 able to represent it correctly.
755
756 @lisp
757 (inexact->exact 1.2)
758 @result{} 5404319552844595/4503599627370496
759
760 #e1.2
761 @result{} 6/5
762 @end lisp
763
764 @end deffn
765
766 @c begin (texi-doc-string "guile" "exact->inexact")
767 @deffn {Scheme Procedure} exact->inexact z
768 @deffnx {C Function} scm_exact_to_inexact (z)
769 Convert the number @var{z} to its inexact representation.
770 @end deffn
771
772
773 @node Number Syntax
774 @subsubsection Read Syntax for Numerical Data
775
776 The read syntax for integers is a string of digits, optionally
777 preceded by a minus or plus character, a code indicating the
778 base in which the integer is encoded, and a code indicating whether
779 the number is exact or inexact. The supported base codes are:
780
781 @table @code
782 @item #b
783 @itemx #B
784 the integer is written in binary (base 2)
785
786 @item #o
787 @itemx #O
788 the integer is written in octal (base 8)
789
790 @item #d
791 @itemx #D
792 the integer is written in decimal (base 10)
793
794 @item #x
795 @itemx #X
796 the integer is written in hexadecimal (base 16)
797 @end table
798
799 If the base code is omitted, the integer is assumed to be decimal. The
800 following examples show how these base codes are used.
801
802 @lisp
803 -13
804 @result{} -13
805
806 #d-13
807 @result{} -13
808
809 #x-13
810 @result{} -19
811
812 #b+1101
813 @result{} 13
814
815 #o377
816 @result{} 255
817 @end lisp
818
819 The codes for indicating exactness (which can, incidentally, be applied
820 to all numerical values) are:
821
822 @table @code
823 @item #e
824 @itemx #E
825 the number is exact
826
827 @item #i
828 @itemx #I
829 the number is inexact.
830 @end table
831
832 If the exactness indicator is omitted, the number is exact unless it
833 contains a radix point. Since Guile can not represent exact complex
834 numbers, an error is signalled when asking for them.
835
836 @lisp
837 (exact? 1.2)
838 @result{} #f
839
840 (exact? #e1.2)
841 @result{} #t
842
843 (exact? #e+1i)
844 ERROR: Wrong type argument
845 @end lisp
846
847 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
848 plus and minus infinity, respectively. The value must be written
849 exactly as shown, that is, they always must have a sign and exactly
850 one zero digit after the decimal point. It also understands
851 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
852 The sign is ignored for `not-a-number' and the value is always printed
853 as @samp{+nan.0}.
854
855 @node Integer Operations
856 @subsubsection Operations on Integer Values
857 @rnindex odd?
858 @rnindex even?
859 @rnindex quotient
860 @rnindex remainder
861 @rnindex modulo
862 @rnindex gcd
863 @rnindex lcm
864
865 @deffn {Scheme Procedure} odd? n
866 @deffnx {C Function} scm_odd_p (n)
867 Return @code{#t} if @var{n} is an odd number, @code{#f}
868 otherwise.
869 @end deffn
870
871 @deffn {Scheme Procedure} even? n
872 @deffnx {C Function} scm_even_p (n)
873 Return @code{#t} if @var{n} is an even number, @code{#f}
874 otherwise.
875 @end deffn
876
877 @c begin (texi-doc-string "guile" "quotient")
878 @c begin (texi-doc-string "guile" "remainder")
879 @deffn {Scheme Procedure} quotient n d
880 @deffnx {Scheme Procedure} remainder n d
881 @deffnx {C Function} scm_quotient (n, d)
882 @deffnx {C Function} scm_remainder (n, d)
883 Return the quotient or remainder from @var{n} divided by @var{d}. The
884 quotient is rounded towards zero, and the remainder will have the same
885 sign as @var{n}. In all cases quotient and remainder satisfy
886 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
887
888 @lisp
889 (remainder 13 4) @result{} 1
890 (remainder -13 4) @result{} -1
891 @end lisp
892 @end deffn
893
894 @c begin (texi-doc-string "guile" "modulo")
895 @deffn {Scheme Procedure} modulo n d
896 @deffnx {C Function} scm_modulo (n, d)
897 Return the remainder from @var{n} divided by @var{d}, with the same
898 sign as @var{d}.
899
900 @lisp
901 (modulo 13 4) @result{} 1
902 (modulo -13 4) @result{} 3
903 (modulo 13 -4) @result{} -3
904 (modulo -13 -4) @result{} -1
905 @end lisp
906 @end deffn
907
908 @c begin (texi-doc-string "guile" "gcd")
909 @deffn {Scheme Procedure} gcd x@dots{}
910 @deffnx {C Function} scm_gcd (x, y)
911 Return the greatest common divisor of all arguments.
912 If called without arguments, 0 is returned.
913
914 The C function @code{scm_gcd} always takes two arguments, while the
915 Scheme function can take an arbitrary number.
916 @end deffn
917
918 @c begin (texi-doc-string "guile" "lcm")
919 @deffn {Scheme Procedure} lcm x@dots{}
920 @deffnx {C Function} scm_lcm (x, y)
921 Return the least common multiple of the arguments.
922 If called without arguments, 1 is returned.
923
924 The C function @code{scm_lcm} always takes two arguments, while the
925 Scheme function can take an arbitrary number.
926 @end deffn
927
928 @deffn {Scheme Procedure} modulo-expt n k m
929 @deffnx {C Function} scm_modulo_expt (n, k, m)
930 Return @var{n} raised to the integer exponent
931 @var{k}, modulo @var{m}.
932
933 @lisp
934 (modulo-expt 2 3 5)
935 @result{} 3
936 @end lisp
937 @end deffn
938
939 @node Comparison
940 @subsubsection Comparison Predicates
941 @rnindex zero?
942 @rnindex positive?
943 @rnindex negative?
944
945 The C comparison functions below always takes two arguments, while the
946 Scheme functions can take an arbitrary number. Also keep in mind that
947 the C functions return one of the Scheme boolean values
948 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
949 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
950 y))} when testing the two Scheme numbers @code{x} and @code{y} for
951 equality, for example.
952
953 @c begin (texi-doc-string "guile" "=")
954 @deffn {Scheme Procedure} =
955 @deffnx {C Function} scm_num_eq_p (x, y)
956 Return @code{#t} if all parameters are numerically equal.
957 @end deffn
958
959 @c begin (texi-doc-string "guile" "<")
960 @deffn {Scheme Procedure} <
961 @deffnx {C Function} scm_less_p (x, y)
962 Return @code{#t} if the list of parameters is monotonically
963 increasing.
964 @end deffn
965
966 @c begin (texi-doc-string "guile" ">")
967 @deffn {Scheme Procedure} >
968 @deffnx {C Function} scm_gr_p (x, y)
969 Return @code{#t} if the list of parameters is monotonically
970 decreasing.
971 @end deffn
972
973 @c begin (texi-doc-string "guile" "<=")
974 @deffn {Scheme Procedure} <=
975 @deffnx {C Function} scm_leq_p (x, y)
976 Return @code{#t} if the list of parameters is monotonically
977 non-decreasing.
978 @end deffn
979
980 @c begin (texi-doc-string "guile" ">=")
981 @deffn {Scheme Procedure} >=
982 @deffnx {C Function} scm_geq_p (x, y)
983 Return @code{#t} if the list of parameters is monotonically
984 non-increasing.
985 @end deffn
986
987 @c begin (texi-doc-string "guile" "zero?")
988 @deffn {Scheme Procedure} zero? z
989 @deffnx {C Function} scm_zero_p (z)
990 Return @code{#t} if @var{z} is an exact or inexact number equal to
991 zero.
992 @end deffn
993
994 @c begin (texi-doc-string "guile" "positive?")
995 @deffn {Scheme Procedure} positive? x
996 @deffnx {C Function} scm_positive_p (x)
997 Return @code{#t} if @var{x} is an exact or inexact number greater than
998 zero.
999 @end deffn
1000
1001 @c begin (texi-doc-string "guile" "negative?")
1002 @deffn {Scheme Procedure} negative? x
1003 @deffnx {C Function} scm_negative_p (x)
1004 Return @code{#t} if @var{x} is an exact or inexact number less than
1005 zero.
1006 @end deffn
1007
1008
1009 @node Conversion
1010 @subsubsection Converting Numbers To and From Strings
1011 @rnindex number->string
1012 @rnindex string->number
1013
1014 The following procedures read and write numbers according to their
1015 external representation as defined by R5RS (@pxref{Lexical structure,
1016 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1017 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1018 i18n)} module}, for locale-dependent number parsing.
1019
1020 @deffn {Scheme Procedure} number->string n [radix]
1021 @deffnx {C Function} scm_number_to_string (n, radix)
1022 Return a string holding the external representation of the
1023 number @var{n} in the given @var{radix}. If @var{n} is
1024 inexact, a radix of 10 will be used.
1025 @end deffn
1026
1027 @deffn {Scheme Procedure} string->number string [radix]
1028 @deffnx {C Function} scm_string_to_number (string, radix)
1029 Return a number of the maximally precise representation
1030 expressed by the given @var{string}. @var{radix} must be an
1031 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1032 is a default radix that may be overridden by an explicit radix
1033 prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1034 supplied, then the default radix is 10. If string is not a
1035 syntactically valid notation for a number, then
1036 @code{string->number} returns @code{#f}.
1037 @end deffn
1038
1039 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1040 As per @code{string->number} above, but taking a C string, as pointer
1041 and length. The string characters should be in the current locale
1042 encoding (@code{locale} in the name refers only to that, there's no
1043 locale-dependent parsing).
1044 @end deftypefn
1045
1046
1047 @node Complex
1048 @subsubsection Complex Number Operations
1049 @rnindex make-rectangular
1050 @rnindex make-polar
1051 @rnindex real-part
1052 @rnindex imag-part
1053 @rnindex magnitude
1054 @rnindex angle
1055
1056 @deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1057 @deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1058 Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
1059 @end deffn
1060
1061 @deffn {Scheme Procedure} make-polar x y
1062 @deffnx {C Function} scm_make_polar (x, y)
1063 @cindex polar form
1064 Return the complex number @var{x} * e^(i * @var{y}).
1065 @end deffn
1066
1067 @c begin (texi-doc-string "guile" "real-part")
1068 @deffn {Scheme Procedure} real-part z
1069 @deffnx {C Function} scm_real_part (z)
1070 Return the real part of the number @var{z}.
1071 @end deffn
1072
1073 @c begin (texi-doc-string "guile" "imag-part")
1074 @deffn {Scheme Procedure} imag-part z
1075 @deffnx {C Function} scm_imag_part (z)
1076 Return the imaginary part of the number @var{z}.
1077 @end deffn
1078
1079 @c begin (texi-doc-string "guile" "magnitude")
1080 @deffn {Scheme Procedure} magnitude z
1081 @deffnx {C Function} scm_magnitude (z)
1082 Return the magnitude of the number @var{z}. This is the same as
1083 @code{abs} for real arguments, but also allows complex numbers.
1084 @end deffn
1085
1086 @c begin (texi-doc-string "guile" "angle")
1087 @deffn {Scheme Procedure} angle z
1088 @deffnx {C Function} scm_angle (z)
1089 Return the angle of the complex number @var{z}.
1090 @end deffn
1091
1092 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1093 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1094 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1095 respectively, but these functions take @code{double}s as their
1096 arguments.
1097 @end deftypefn
1098
1099 @deftypefn {C Function} double scm_c_real_part (z)
1100 @deftypefnx {C Function} double scm_c_imag_part (z)
1101 Returns the real or imaginary part of @var{z} as a @code{double}.
1102 @end deftypefn
1103
1104 @deftypefn {C Function} double scm_c_magnitude (z)
1105 @deftypefnx {C Function} double scm_c_angle (z)
1106 Returns the magnitude or angle of @var{z} as a @code{double}.
1107 @end deftypefn
1108
1109
1110 @node Arithmetic
1111 @subsubsection Arithmetic Functions
1112 @rnindex max
1113 @rnindex min
1114 @rnindex +
1115 @rnindex *
1116 @rnindex -
1117 @rnindex /
1118 @findex 1+
1119 @findex 1-
1120 @rnindex abs
1121 @rnindex floor
1122 @rnindex ceiling
1123 @rnindex truncate
1124 @rnindex round
1125
1126 The C arithmetic functions below always takes two arguments, while the
1127 Scheme functions can take an arbitrary number. When you need to
1128 invoke them with just one argument, for example to compute the
1129 equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1130 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1131
1132 @c begin (texi-doc-string "guile" "+")
1133 @deffn {Scheme Procedure} + z1 @dots{}
1134 @deffnx {C Function} scm_sum (z1, z2)
1135 Return the sum of all parameter values. Return 0 if called without any
1136 parameters.
1137 @end deffn
1138
1139 @c begin (texi-doc-string "guile" "-")
1140 @deffn {Scheme Procedure} - z1 z2 @dots{}
1141 @deffnx {C Function} scm_difference (z1, z2)
1142 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1143 the sum of all but the first argument are subtracted from the first
1144 argument.
1145 @end deffn
1146
1147 @c begin (texi-doc-string "guile" "*")
1148 @deffn {Scheme Procedure} * z1 @dots{}
1149 @deffnx {C Function} scm_product (z1, z2)
1150 Return the product of all arguments. If called without arguments, 1 is
1151 returned.
1152 @end deffn
1153
1154 @c begin (texi-doc-string "guile" "/")
1155 @deffn {Scheme Procedure} / z1 z2 @dots{}
1156 @deffnx {C Function} scm_divide (z1, z2)
1157 Divide the first argument by the product of the remaining arguments. If
1158 called with one argument @var{z1}, 1/@var{z1} is returned.
1159 @end deffn
1160
1161 @deffn {Scheme Procedure} 1+ z
1162 @deffnx {C Function} scm_oneplus (z)
1163 Return @math{@var{z} + 1}.
1164 @end deffn
1165
1166 @deffn {Scheme Procedure} 1- z
1167 @deffnx {C function} scm_oneminus (z)
1168 Return @math{@var{z} - 1}.
1169 @end deffn
1170
1171 @c begin (texi-doc-string "guile" "abs")
1172 @deffn {Scheme Procedure} abs x
1173 @deffnx {C Function} scm_abs (x)
1174 Return the absolute value of @var{x}.
1175
1176 @var{x} must be a number with zero imaginary part. To calculate the
1177 magnitude of a complex number, use @code{magnitude} instead.
1178 @end deffn
1179
1180 @c begin (texi-doc-string "guile" "max")
1181 @deffn {Scheme Procedure} max x1 x2 @dots{}
1182 @deffnx {C Function} scm_max (x1, x2)
1183 Return the maximum of all parameter values.
1184 @end deffn
1185
1186 @c begin (texi-doc-string "guile" "min")
1187 @deffn {Scheme Procedure} min x1 x2 @dots{}
1188 @deffnx {C Function} scm_min (x1, x2)
1189 Return the minimum of all parameter values.
1190 @end deffn
1191
1192 @c begin (texi-doc-string "guile" "truncate")
1193 @deffn {Scheme Procedure} truncate x
1194 @deffnx {C Function} scm_truncate_number (x)
1195 Round the inexact number @var{x} towards zero.
1196 @end deffn
1197
1198 @c begin (texi-doc-string "guile" "round")
1199 @deffn {Scheme Procedure} round x
1200 @deffnx {C Function} scm_round_number (x)
1201 Round the inexact number @var{x} to the nearest integer. When exactly
1202 halfway between two integers, round to the even one.
1203 @end deffn
1204
1205 @c begin (texi-doc-string "guile" "floor")
1206 @deffn {Scheme Procedure} floor x
1207 @deffnx {C Function} scm_floor (x)
1208 Round the number @var{x} towards minus infinity.
1209 @end deffn
1210
1211 @c begin (texi-doc-string "guile" "ceiling")
1212 @deffn {Scheme Procedure} ceiling x
1213 @deffnx {C Function} scm_ceiling (x)
1214 Round the number @var{x} towards infinity.
1215 @end deffn
1216
1217 @deftypefn {C Function} double scm_c_truncate (double x)
1218 @deftypefnx {C Function} double scm_c_round (double x)
1219 Like @code{scm_truncate_number} or @code{scm_round_number},
1220 respectively, but these functions take and return @code{double}
1221 values.
1222 @end deftypefn
1223
1224 @node Scientific
1225 @subsubsection Scientific Functions
1226
1227 The following procedures accept any kind of number as arguments,
1228 including complex numbers.
1229
1230 @rnindex sqrt
1231 @c begin (texi-doc-string "guile" "sqrt")
1232 @deffn {Scheme Procedure} sqrt z
1233 Return the square root of @var{z}. Of the two possible roots
1234 (positive and negative), the one with the a positive real part is
1235 returned, or if that's zero then a positive imaginary part. Thus,
1236
1237 @example
1238 (sqrt 9.0) @result{} 3.0
1239 (sqrt -9.0) @result{} 0.0+3.0i
1240 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1241 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1242 @end example
1243 @end deffn
1244
1245 @rnindex expt
1246 @c begin (texi-doc-string "guile" "expt")
1247 @deffn {Scheme Procedure} expt z1 z2
1248 Return @var{z1} raised to the power of @var{z2}.
1249 @end deffn
1250
1251 @rnindex sin
1252 @c begin (texi-doc-string "guile" "sin")
1253 @deffn {Scheme Procedure} sin z
1254 Return the sine of @var{z}.
1255 @end deffn
1256
1257 @rnindex cos
1258 @c begin (texi-doc-string "guile" "cos")
1259 @deffn {Scheme Procedure} cos z
1260 Return the cosine of @var{z}.
1261 @end deffn
1262
1263 @rnindex tan
1264 @c begin (texi-doc-string "guile" "tan")
1265 @deffn {Scheme Procedure} tan z
1266 Return the tangent of @var{z}.
1267 @end deffn
1268
1269 @rnindex asin
1270 @c begin (texi-doc-string "guile" "asin")
1271 @deffn {Scheme Procedure} asin z
1272 Return the arcsine of @var{z}.
1273 @end deffn
1274
1275 @rnindex acos
1276 @c begin (texi-doc-string "guile" "acos")
1277 @deffn {Scheme Procedure} acos z
1278 Return the arccosine of @var{z}.
1279 @end deffn
1280
1281 @rnindex atan
1282 @c begin (texi-doc-string "guile" "atan")
1283 @deffn {Scheme Procedure} atan z
1284 @deffnx {Scheme Procedure} atan y x
1285 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1286 @end deffn
1287
1288 @rnindex exp
1289 @c begin (texi-doc-string "guile" "exp")
1290 @deffn {Scheme Procedure} exp z
1291 Return e to the power of @var{z}, where e is the base of natural
1292 logarithms (2.71828@dots{}).
1293 @end deffn
1294
1295 @rnindex log
1296 @c begin (texi-doc-string "guile" "log")
1297 @deffn {Scheme Procedure} log z
1298 Return the natural logarithm of @var{z}.
1299 @end deffn
1300
1301 @c begin (texi-doc-string "guile" "log10")
1302 @deffn {Scheme Procedure} log10 z
1303 Return the base 10 logarithm of @var{z}.
1304 @end deffn
1305
1306 @c begin (texi-doc-string "guile" "sinh")
1307 @deffn {Scheme Procedure} sinh z
1308 Return the hyperbolic sine of @var{z}.
1309 @end deffn
1310
1311 @c begin (texi-doc-string "guile" "cosh")
1312 @deffn {Scheme Procedure} cosh z
1313 Return the hyperbolic cosine of @var{z}.
1314 @end deffn
1315
1316 @c begin (texi-doc-string "guile" "tanh")
1317 @deffn {Scheme Procedure} tanh z
1318 Return the hyperbolic tangent of @var{z}.
1319 @end deffn
1320
1321 @c begin (texi-doc-string "guile" "asinh")
1322 @deffn {Scheme Procedure} asinh z
1323 Return the hyperbolic arcsine of @var{z}.
1324 @end deffn
1325
1326 @c begin (texi-doc-string "guile" "acosh")
1327 @deffn {Scheme Procedure} acosh z
1328 Return the hyperbolic arccosine of @var{z}.
1329 @end deffn
1330
1331 @c begin (texi-doc-string "guile" "atanh")
1332 @deffn {Scheme Procedure} atanh z
1333 Return the hyperbolic arctangent of @var{z}.
1334 @end deffn
1335
1336
1337 @node Bitwise Operations
1338 @subsubsection Bitwise Operations
1339
1340 For the following bitwise functions, negative numbers are treated as
1341 infinite precision twos-complements. For instance @math{-6} is bits
1342 @math{@dots{}111010}, with infinitely many ones on the left. It can
1343 be seen that adding 6 (binary 110) to such a bit pattern gives all
1344 zeros.
1345
1346 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1347 @deffnx {C Function} scm_logand (n1, n2)
1348 Return the bitwise @sc{and} of the integer arguments.
1349
1350 @lisp
1351 (logand) @result{} -1
1352 (logand 7) @result{} 7
1353 (logand #b111 #b011 #b001) @result{} 1
1354 @end lisp
1355 @end deffn
1356
1357 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1358 @deffnx {C Function} scm_logior (n1, n2)
1359 Return the bitwise @sc{or} of the integer arguments.
1360
1361 @lisp
1362 (logior) @result{} 0
1363 (logior 7) @result{} 7
1364 (logior #b000 #b001 #b011) @result{} 3
1365 @end lisp
1366 @end deffn
1367
1368 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1369 @deffnx {C Function} scm_loxor (n1, n2)
1370 Return the bitwise @sc{xor} of the integer arguments. A bit is
1371 set in the result if it is set in an odd number of arguments.
1372
1373 @lisp
1374 (logxor) @result{} 0
1375 (logxor 7) @result{} 7
1376 (logxor #b000 #b001 #b011) @result{} 2
1377 (logxor #b000 #b001 #b011 #b011) @result{} 1
1378 @end lisp
1379 @end deffn
1380
1381 @deffn {Scheme Procedure} lognot n
1382 @deffnx {C Function} scm_lognot (n)
1383 Return the integer which is the ones-complement of the integer
1384 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1385
1386 @lisp
1387 (number->string (lognot #b10000000) 2)
1388 @result{} "-10000001"
1389 (number->string (lognot #b0) 2)
1390 @result{} "-1"
1391 @end lisp
1392 @end deffn
1393
1394 @deffn {Scheme Procedure} logtest j k
1395 @deffnx {C Function} scm_logtest (j, k)
1396 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1397 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1398 calculating the @code{logand}, just testing for non-zero.
1399
1400 @lisp
1401 (logtest #b0100 #b1011) @result{} #f
1402 (logtest #b0100 #b0111) @result{} #t
1403 @end lisp
1404 @end deffn
1405
1406 @deffn {Scheme Procedure} logbit? index j
1407 @deffnx {C Function} scm_logbit_p (index, j)
1408 Test whether bit number @var{index} in @var{j} is set. @var{index}
1409 starts from 0 for the least significant bit.
1410
1411 @lisp
1412 (logbit? 0 #b1101) @result{} #t
1413 (logbit? 1 #b1101) @result{} #f
1414 (logbit? 2 #b1101) @result{} #t
1415 (logbit? 3 #b1101) @result{} #t
1416 (logbit? 4 #b1101) @result{} #f
1417 @end lisp
1418 @end deffn
1419
1420 @deffn {Scheme Procedure} ash n cnt
1421 @deffnx {C Function} scm_ash (n, cnt)
1422 Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1423 @var{cnt} is negative. This is an ``arithmetic'' shift.
1424
1425 This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1426 when @var{cnt} is negative it's a division, rounded towards negative
1427 infinity. (Note that this is not the same rounding as @code{quotient}
1428 does.)
1429
1430 With @var{n} viewed as an infinite precision twos complement,
1431 @code{ash} means a left shift introducing zero bits, or a right shift
1432 dropping bits.
1433
1434 @lisp
1435 (number->string (ash #b1 3) 2) @result{} "1000"
1436 (number->string (ash #b1010 -1) 2) @result{} "101"
1437
1438 ;; -23 is bits ...11101001, -6 is bits ...111010
1439 (ash -23 -2) @result{} -6
1440 @end lisp
1441 @end deffn
1442
1443 @deffn {Scheme Procedure} logcount n
1444 @deffnx {C Function} scm_logcount (n)
1445 Return the number of bits in integer @var{n}. If @var{n} is
1446 positive, the 1-bits in its binary representation are counted.
1447 If negative, the 0-bits in its two's-complement binary
1448 representation are counted. If zero, 0 is returned.
1449
1450 @lisp
1451 (logcount #b10101010)
1452 @result{} 4
1453 (logcount 0)
1454 @result{} 0
1455 (logcount -2)
1456 @result{} 1
1457 @end lisp
1458 @end deffn
1459
1460 @deffn {Scheme Procedure} integer-length n
1461 @deffnx {C Function} scm_integer_length (n)
1462 Return the number of bits necessary to represent @var{n}.
1463
1464 For positive @var{n} this is how many bits to the most significant one
1465 bit. For negative @var{n} it's how many bits to the most significant
1466 zero bit in twos complement form.
1467
1468 @lisp
1469 (integer-length #b10101010) @result{} 8
1470 (integer-length #b1111) @result{} 4
1471 (integer-length 0) @result{} 0
1472 (integer-length -1) @result{} 0
1473 (integer-length -256) @result{} 8
1474 (integer-length -257) @result{} 9
1475 @end lisp
1476 @end deffn
1477
1478 @deffn {Scheme Procedure} integer-expt n k
1479 @deffnx {C Function} scm_integer_expt (n, k)
1480 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1481 integer, @var{n} can be any number.
1482
1483 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1484 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1485 @math{0^0} is 1.
1486
1487 @lisp
1488 (integer-expt 2 5) @result{} 32
1489 (integer-expt -3 3) @result{} -27
1490 (integer-expt 5 -3) @result{} 1/125
1491 (integer-expt 0 0) @result{} 1
1492 @end lisp
1493 @end deffn
1494
1495 @deffn {Scheme Procedure} bit-extract n start end
1496 @deffnx {C Function} scm_bit_extract (n, start, end)
1497 Return the integer composed of the @var{start} (inclusive)
1498 through @var{end} (exclusive) bits of @var{n}. The
1499 @var{start}th bit becomes the 0-th bit in the result.
1500
1501 @lisp
1502 (number->string (bit-extract #b1101101010 0 4) 2)
1503 @result{} "1010"
1504 (number->string (bit-extract #b1101101010 4 9) 2)
1505 @result{} "10110"
1506 @end lisp
1507 @end deffn
1508
1509
1510 @node Random
1511 @subsubsection Random Number Generation
1512
1513 Pseudo-random numbers are generated from a random state object, which
1514 can be created with @code{seed->random-state} or
1515 @code{datum->random-state}. An external representation (i.e. one
1516 which can written with @code{write} and read with @code{read}) of a
1517 random state object can be obtained via
1518 @code{random-state->datum}. The @var{state} parameter to the
1519 various functions below is optional, it defaults to the state object
1520 in the @code{*random-state*} variable.
1521
1522 @deffn {Scheme Procedure} copy-random-state [state]
1523 @deffnx {C Function} scm_copy_random_state (state)
1524 Return a copy of the random state @var{state}.
1525 @end deffn
1526
1527 @deffn {Scheme Procedure} random n [state]
1528 @deffnx {C Function} scm_random (n, state)
1529 Return a number in [0, @var{n}).
1530
1531 Accepts a positive integer or real n and returns a
1532 number of the same type between zero (inclusive) and
1533 @var{n} (exclusive). The values returned have a uniform
1534 distribution.
1535 @end deffn
1536
1537 @deffn {Scheme Procedure} random:exp [state]
1538 @deffnx {C Function} scm_random_exp (state)
1539 Return an inexact real in an exponential distribution with mean
1540 1. For an exponential distribution with mean @var{u} use @code{(*
1541 @var{u} (random:exp))}.
1542 @end deffn
1543
1544 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1545 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1546 Fills @var{vect} with inexact real random numbers the sum of whose
1547 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1548 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1549 the coordinates are uniformly distributed over the surface of the unit
1550 n-sphere.
1551 @end deffn
1552
1553 @deffn {Scheme Procedure} random:normal [state]
1554 @deffnx {C Function} scm_random_normal (state)
1555 Return an inexact real in a normal distribution. The distribution
1556 used has mean 0 and standard deviation 1. For a normal distribution
1557 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1558 (* @var{d} (random:normal)))}.
1559 @end deffn
1560
1561 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1562 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1563 Fills @var{vect} with inexact real random numbers that are
1564 independent and standard normally distributed
1565 (i.e., with mean 0 and variance 1).
1566 @end deffn
1567
1568 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1569 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1570 Fills @var{vect} with inexact real random numbers the sum of whose
1571 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1572 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1573 the coordinates are uniformly distributed within the unit
1574 @var{n}-sphere.
1575 @c FIXME: What does this mean, particularly the n-sphere part?
1576 @end deffn
1577
1578 @deffn {Scheme Procedure} random:uniform [state]
1579 @deffnx {C Function} scm_random_uniform (state)
1580 Return a uniformly distributed inexact real random number in
1581 [0,1).
1582 @end deffn
1583
1584 @deffn {Scheme Procedure} seed->random-state seed
1585 @deffnx {C Function} scm_seed_to_random_state (seed)
1586 Return a new random state using @var{seed}.
1587 @end deffn
1588
1589 @deffn {Scheme Procedure} datum->random-state datum
1590 @deffnx {C Function} scm_datum_to_random_state (datum)
1591 Return a new random state from @var{datum}, which should have been
1592 obtained by @code{random-state->datum}.
1593 @end deffn
1594
1595 @deffn {Scheme Procedure} random-state->datum state
1596 @deffnx {C Function} scm_random_state_to_datum (state)
1597 Return a datum representation of @var{state} that may be written out and
1598 read back with the Scheme reader.
1599 @end deffn
1600
1601 @defvar *random-state*
1602 The global random state used by the above functions when the
1603 @var{state} parameter is not given.
1604 @end defvar
1605
1606 Note that the initial value of @code{*random-state*} is the same every
1607 time Guile starts up. Therefore, if you don't pass a @var{state}
1608 parameter to the above procedures, and you don't set
1609 @code{*random-state*} to @code{(seed->random-state your-seed)}, where
1610 @code{your-seed} is something that @emph{isn't} the same every time,
1611 you'll get the same sequence of ``random'' numbers on every run.
1612
1613 For example, unless the relevant source code has changed, @code{(map
1614 random (cdr (iota 30)))}, if the first use of random numbers since
1615 Guile started up, will always give:
1616
1617 @lisp
1618 (map random (cdr (iota 19)))
1619 @result{}
1620 (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1621 @end lisp
1622
1623 To use the time of day as the random seed, you can use code like this:
1624
1625 @lisp
1626 (let ((time (gettimeofday)))
1627 (set! *random-state*
1628 (seed->random-state (+ (car time)
1629 (cdr time)))))
1630 @end lisp
1631
1632 @noindent
1633 And then (depending on the time of day, of course):
1634
1635 @lisp
1636 (map random (cdr (iota 19)))
1637 @result{}
1638 (0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
1639 @end lisp
1640
1641 For security applications, such as password generation, you should use
1642 more bits of seed. Otherwise an open source password generator could
1643 be attacked by guessing the seed@dots{} but that's a subject for
1644 another manual.
1645
1646
1647 @node Characters
1648 @subsection Characters
1649 @tpindex Characters
1650
1651 In Scheme, there is a data type to describe a single character.
1652
1653 Defining what exactly a character @emph{is} can be more complicated
1654 than it seems. Guile follows the advice of R6RS and uses The Unicode
1655 Standard to help define what a character is. So, for Guile, a
1656 character is anything in the Unicode Character Database.
1657
1658 @cindex code point
1659 @cindex Unicode code point
1660
1661 The Unicode Character Database is basically a table of characters
1662 indexed using integers called 'code points'. Valid code points are in
1663 the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1664 @code{#x10FFFF} inclusive, which is about 1.1 million code points.
1665
1666 @cindex designated code point
1667 @cindex code point, designated
1668
1669 Any code point that has been assigned to a character or that has
1670 otherwise been given a meaning by Unicode is called a 'designated code
1671 point'. Most of the designated code points, about 200,000 of them,
1672 indicate characters, accents or other combining marks that modify
1673 other characters, symbols, whitespace, and control characters. Some
1674 are not characters but indicators that suggest how to format or
1675 display neighboring characters.
1676
1677 @cindex reserved code point
1678 @cindex code point, reserved
1679
1680 If a code point is not a designated code point -- if it has not been
1681 assigned to a character by The Unicode Standard -- it is a 'reserved
1682 code point', meaning that they are reserved for future use. Most of
1683 the code points, about 800,000, are 'reserved code points'.
1684
1685 By convention, a Unicode code point is written as
1686 ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1687 this convenient notation is not valid code. Guile does not interpret
1688 ``U+XXXX'' as a character.
1689
1690 In Scheme, a character literal is written as @code{#\@var{name}} where
1691 @var{name} is the name of the character that you want. Printable
1692 characters have their usual single character name; for example,
1693 @code{#\a} is a lower case @code{a}.
1694
1695 Some of the code points are 'combining characters' that are not meant
1696 to be printed by themselves but are instead meant to modify the
1697 appearance of the previous character. For combining characters, an
1698 alternate form of the character literal is @code{#\} followed by
1699 U+25CC (a small, dotted circle), followed by the combining character.
1700 This allows the combining character to be drawn on the circle, not on
1701 the backslash of @code{#\}.
1702
1703 Many of the non-printing characters, such as whitespace characters and
1704 control characters, also have names.
1705
1706 The most commonly used non-printing characters have long character
1707 names, described in the table below.
1708
1709 @multitable {@code{#\backspace}} {Preferred}
1710 @item Character Name @tab Codepoint
1711 @item @code{#\nul} @tab U+0000
1712 @item @code{#\alarm} @tab u+0007
1713 @item @code{#\backspace} @tab U+0008
1714 @item @code{#\tab} @tab U+0009
1715 @item @code{#\linefeed} @tab U+000A
1716 @item @code{#\newline} @tab U+000A
1717 @item @code{#\vtab} @tab U+000B
1718 @item @code{#\page} @tab U+000C
1719 @item @code{#\return} @tab U+000D
1720 @item @code{#\esc} @tab U+001B
1721 @item @code{#\space} @tab U+0020
1722 @item @code{#\delete} @tab U+007F
1723 @end multitable
1724
1725 There are also short names for all of the ``C0 control characters''
1726 (those with code points below 32). The following table lists the short
1727 name for each character.
1728
1729 @multitable @columnfractions .25 .25 .25 .25
1730 @item 0 = @code{#\nul}
1731 @tab 1 = @code{#\soh}
1732 @tab 2 = @code{#\stx}
1733 @tab 3 = @code{#\etx}
1734 @item 4 = @code{#\eot}
1735 @tab 5 = @code{#\enq}
1736 @tab 6 = @code{#\ack}
1737 @tab 7 = @code{#\bel}
1738 @item 8 = @code{#\bs}
1739 @tab 9 = @code{#\ht}
1740 @tab 10 = @code{#\lf}
1741 @tab 11 = @code{#\vt}
1742 @item 12 = @code{#\ff}
1743 @tab 13 = @code{#\cr}
1744 @tab 14 = @code{#\so}
1745 @tab 15 = @code{#\si}
1746 @item 16 = @code{#\dle}
1747 @tab 17 = @code{#\dc1}
1748 @tab 18 = @code{#\dc2}
1749 @tab 19 = @code{#\dc3}
1750 @item 20 = @code{#\dc4}
1751 @tab 21 = @code{#\nak}
1752 @tab 22 = @code{#\syn}
1753 @tab 23 = @code{#\etb}
1754 @item 24 = @code{#\can}
1755 @tab 25 = @code{#\em}
1756 @tab 26 = @code{#\sub}
1757 @tab 27 = @code{#\esc}
1758 @item 28 = @code{#\fs}
1759 @tab 29 = @code{#\gs}
1760 @tab 30 = @code{#\rs}
1761 @tab 31 = @code{#\us}
1762 @item 32 = @code{#\sp}
1763 @end multitable
1764
1765 The short name for the ``delete'' character (code point U+007F) is
1766 @code{#\del}.
1767
1768 There are also a few alternative names left over for compatibility with
1769 previous versions of Guile.
1770
1771 @multitable {@code{#\backspace}} {Preferred}
1772 @item Alternate @tab Standard
1773 @item @code{#\nl} @tab @code{#\newline}
1774 @item @code{#\np} @tab @code{#\page}
1775 @item @code{#\null} @tab @code{#\nul}
1776 @end multitable
1777
1778 Characters may also be written using their code point values. They can
1779 be written with as an octal number, such as @code{#\10} for
1780 @code{#\bs} or @code{#\177} for @code{#\del}.
1781
1782 If one prefers hex to octal, there is an additional syntax for character
1783 escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
1784 number of one to eight digits.
1785
1786 @rnindex char?
1787 @deffn {Scheme Procedure} char? x
1788 @deffnx {C Function} scm_char_p (x)
1789 Return @code{#t} iff @var{x} is a character, else @code{#f}.
1790 @end deffn
1791
1792 Fundamentally, the character comparison operations below are
1793 numeric comparisons of the character's code points.
1794
1795 @rnindex char=?
1796 @deffn {Scheme Procedure} char=? x y
1797 Return @code{#t} iff code point of @var{x} is equal to the code point
1798 of @var{y}, else @code{#f}.
1799 @end deffn
1800
1801 @rnindex char<?
1802 @deffn {Scheme Procedure} char<? x y
1803 Return @code{#t} iff the code point of @var{x} is less than the code
1804 point of @var{y}, else @code{#f}.
1805 @end deffn
1806
1807 @rnindex char<=?
1808 @deffn {Scheme Procedure} char<=? x y
1809 Return @code{#t} iff the code point of @var{x} is less than or equal
1810 to the code point of @var{y}, else @code{#f}.
1811 @end deffn
1812
1813 @rnindex char>?
1814 @deffn {Scheme Procedure} char>? x y
1815 Return @code{#t} iff the code point of @var{x} is greater than the
1816 code point of @var{y}, else @code{#f}.
1817 @end deffn
1818
1819 @rnindex char>=?
1820 @deffn {Scheme Procedure} char>=? x y
1821 Return @code{#t} iff the code point of @var{x} is greater than or
1822 equal to the code point of @var{y}, else @code{#f}.
1823 @end deffn
1824
1825 @cindex case folding
1826
1827 Case-insensitive character comparisons use @emph{Unicode case
1828 folding}. In case folding comparisons, if a character is lowercase
1829 and has an uppercase form that can be expressed as a single character,
1830 it is converted to uppercase before comparison. All other characters
1831 undergo no conversion before the comparison occurs. This includes the
1832 German sharp S (Eszett) which is not uppercased before conversion
1833 because its uppercase form has two characters. Unicode case folding
1834 is language independent: it uses rules that are generally true, but,
1835 it cannot cover all cases for all languages.
1836
1837 @rnindex char-ci=?
1838 @deffn {Scheme Procedure} char-ci=? x y
1839 Return @code{#t} iff the case-folded code point of @var{x} is the same
1840 as the case-folded code point of @var{y}, else @code{#f}.
1841 @end deffn
1842
1843 @rnindex char-ci<?
1844 @deffn {Scheme Procedure} char-ci<? x y
1845 Return @code{#t} iff the case-folded code point of @var{x} is less
1846 than the case-folded code point of @var{y}, else @code{#f}.
1847 @end deffn
1848
1849 @rnindex char-ci<=?
1850 @deffn {Scheme Procedure} char-ci<=? x y
1851 Return @code{#t} iff the case-folded code point of @var{x} is less
1852 than or equal to the case-folded code point of @var{y}, else
1853 @code{#f}.
1854 @end deffn
1855
1856 @rnindex char-ci>?
1857 @deffn {Scheme Procedure} char-ci>? x y
1858 Return @code{#t} iff the case-folded code point of @var{x} is greater
1859 than the case-folded code point of @var{y}, else @code{#f}.
1860 @end deffn
1861
1862 @rnindex char-ci>=?
1863 @deffn {Scheme Procedure} char-ci>=? x y
1864 Return @code{#t} iff the case-folded code point of @var{x} is greater
1865 than or equal to the case-folded code point of @var{y}, else
1866 @code{#f}.
1867 @end deffn
1868
1869 @rnindex char-alphabetic?
1870 @deffn {Scheme Procedure} char-alphabetic? chr
1871 @deffnx {C Function} scm_char_alphabetic_p (chr)
1872 Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
1873 @end deffn
1874
1875 @rnindex char-numeric?
1876 @deffn {Scheme Procedure} char-numeric? chr
1877 @deffnx {C Function} scm_char_numeric_p (chr)
1878 Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
1879 @end deffn
1880
1881 @rnindex char-whitespace?
1882 @deffn {Scheme Procedure} char-whitespace? chr
1883 @deffnx {C Function} scm_char_whitespace_p (chr)
1884 Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
1885 @end deffn
1886
1887 @rnindex char-upper-case?
1888 @deffn {Scheme Procedure} char-upper-case? chr
1889 @deffnx {C Function} scm_char_upper_case_p (chr)
1890 Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
1891 @end deffn
1892
1893 @rnindex char-lower-case?
1894 @deffn {Scheme Procedure} char-lower-case? chr
1895 @deffnx {C Function} scm_char_lower_case_p (chr)
1896 Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
1897 @end deffn
1898
1899 @deffn {Scheme Procedure} char-is-both? chr
1900 @deffnx {C Function} scm_char_is_both_p (chr)
1901 Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
1902 @code{#f}.
1903 @end deffn
1904
1905 @deffn {Scheme Procedure} char-general-category chr
1906 @deffnx {C Function} scm_char_general_category (chr)
1907 Return a symbol giving the two-letter name of the Unicode general
1908 category assigned to @var{chr} or @code{#f} if no named category is
1909 assigned. The following table provides a list of category names along
1910 with their meanings.
1911
1912 @multitable @columnfractions .1 .4 .1 .4
1913 @item Lu
1914 @tab Uppercase letter
1915 @tab Pf
1916 @tab Final quote punctuation
1917 @item Ll
1918 @tab Lowercase letter
1919 @tab Po
1920 @tab Other punctuation
1921 @item Lt
1922 @tab Titlecase letter
1923 @tab Sm
1924 @tab Math symbol
1925 @item Lm
1926 @tab Modifier letter
1927 @tab Sc
1928 @tab Currency symbol
1929 @item Lo
1930 @tab Other letter
1931 @tab Sk
1932 @tab Modifier symbol
1933 @item Mn
1934 @tab Non-spacing mark
1935 @tab So
1936 @tab Other symbol
1937 @item Mc
1938 @tab Combining spacing mark
1939 @tab Zs
1940 @tab Space separator
1941 @item Me
1942 @tab Enclosing mark
1943 @tab Zl
1944 @tab Line separator
1945 @item Nd
1946 @tab Decimal digit number
1947 @tab Zp
1948 @tab Paragraph separator
1949 @item Nl
1950 @tab Letter number
1951 @tab Cc
1952 @tab Control
1953 @item No
1954 @tab Other number
1955 @tab Cf
1956 @tab Format
1957 @item Pc
1958 @tab Connector punctuation
1959 @tab Cs
1960 @tab Surrogate
1961 @item Pd
1962 @tab Dash punctuation
1963 @tab Co
1964 @tab Private use
1965 @item Ps
1966 @tab Open punctuation
1967 @tab Cn
1968 @tab Unassigned
1969 @item Pe
1970 @tab Close punctuation
1971 @tab
1972 @tab
1973 @item Pi
1974 @tab Initial quote punctuation
1975 @tab
1976 @tab
1977 @end multitable
1978 @end deffn
1979
1980 @rnindex char->integer
1981 @deffn {Scheme Procedure} char->integer chr
1982 @deffnx {C Function} scm_char_to_integer (chr)
1983 Return the code point of @var{chr}.
1984 @end deffn
1985
1986 @rnindex integer->char
1987 @deffn {Scheme Procedure} integer->char n
1988 @deffnx {C Function} scm_integer_to_char (n)
1989 Return the character that has code point @var{n}. The integer @var{n}
1990 must be a valid code point. Valid code points are in the ranges 0 to
1991 @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
1992 @end deffn
1993
1994 @rnindex char-upcase
1995 @deffn {Scheme Procedure} char-upcase chr
1996 @deffnx {C Function} scm_char_upcase (chr)
1997 Return the uppercase character version of @var{chr}.
1998 @end deffn
1999
2000 @rnindex char-downcase
2001 @deffn {Scheme Procedure} char-downcase chr
2002 @deffnx {C Function} scm_char_downcase (chr)
2003 Return the lowercase character version of @var{chr}.
2004 @end deffn
2005
2006 @rnindex char-titlecase
2007 @deffn {Scheme Procedure} char-titlecase chr
2008 @deffnx {C Function} scm_char_titlecase (chr)
2009 Return the titlecase character version of @var{chr} if one exists;
2010 otherwise return the uppercase version.
2011
2012 For most characters these will be the same, but the Unicode Standard
2013 includes certain digraph compatibility characters, such as @code{U+01F3}
2014 ``dz'', for which the uppercase and titlecase characters are different
2015 (@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2016 respectively).
2017 @end deffn
2018
2019 @tindex scm_t_wchar
2020 @deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2021 @deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2022 @deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2023
2024 These C functions take an integer representation of a Unicode
2025 codepoint and return the codepoint corresponding to its uppercase,
2026 lowercase, and titlecase forms respectively. The type
2027 @code{scm_t_wchar} is a signed, 32-bit integer.
2028 @end deftypefn
2029
2030 @node Character Sets
2031 @subsection Character Sets
2032
2033 The features described in this section correspond directly to SRFI-14.
2034
2035 The data type @dfn{charset} implements sets of characters
2036 (@pxref{Characters}). Because the internal representation of
2037 character sets is not visible to the user, a lot of procedures for
2038 handling them are provided.
2039
2040 Character sets can be created, extended, tested for the membership of a
2041 characters and be compared to other character sets.
2042
2043 @menu
2044 * Character Set Predicates/Comparison::
2045 * Iterating Over Character Sets:: Enumerate charset elements.
2046 * Creating Character Sets:: Making new charsets.
2047 * Querying Character Sets:: Test charsets for membership etc.
2048 * Character-Set Algebra:: Calculating new charsets.
2049 * Standard Character Sets:: Variables containing predefined charsets.
2050 @end menu
2051
2052 @node Character Set Predicates/Comparison
2053 @subsubsection Character Set Predicates/Comparison
2054
2055 Use these procedures for testing whether an object is a character set,
2056 or whether several character sets are equal or subsets of each other.
2057 @code{char-set-hash} can be used for calculating a hash value, maybe for
2058 usage in fast lookup procedures.
2059
2060 @deffn {Scheme Procedure} char-set? obj
2061 @deffnx {C Function} scm_char_set_p (obj)
2062 Return @code{#t} if @var{obj} is a character set, @code{#f}
2063 otherwise.
2064 @end deffn
2065
2066 @deffn {Scheme Procedure} char-set= . char_sets
2067 @deffnx {C Function} scm_char_set_eq (char_sets)
2068 Return @code{#t} if all given character sets are equal.
2069 @end deffn
2070
2071 @deffn {Scheme Procedure} char-set<= . char_sets
2072 @deffnx {C Function} scm_char_set_leq (char_sets)
2073 Return @code{#t} if every character set @var{cs}i is a subset
2074 of character set @var{cs}i+1.
2075 @end deffn
2076
2077 @deffn {Scheme Procedure} char-set-hash cs [bound]
2078 @deffnx {C Function} scm_char_set_hash (cs, bound)
2079 Compute a hash value for the character set @var{cs}. If
2080 @var{bound} is given and non-zero, it restricts the
2081 returned value to the range 0 @dots{} @var{bound - 1}.
2082 @end deffn
2083
2084 @c ===================================================================
2085
2086 @node Iterating Over Character Sets
2087 @subsubsection Iterating Over Character Sets
2088
2089 Character set cursors are a means for iterating over the members of a
2090 character sets. After creating a character set cursor with
2091 @code{char-set-cursor}, a cursor can be dereferenced with
2092 @code{char-set-ref}, advanced to the next member with
2093 @code{char-set-cursor-next}. Whether a cursor has passed past the last
2094 element of the set can be checked with @code{end-of-char-set?}.
2095
2096 Additionally, mapping and (un-)folding procedures for character sets are
2097 provided.
2098
2099 @deffn {Scheme Procedure} char-set-cursor cs
2100 @deffnx {C Function} scm_char_set_cursor (cs)
2101 Return a cursor into the character set @var{cs}.
2102 @end deffn
2103
2104 @deffn {Scheme Procedure} char-set-ref cs cursor
2105 @deffnx {C Function} scm_char_set_ref (cs, cursor)
2106 Return the character at the current cursor position
2107 @var{cursor} in the character set @var{cs}. It is an error to
2108 pass a cursor for which @code{end-of-char-set?} returns true.
2109 @end deffn
2110
2111 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
2112 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2113 Advance the character set cursor @var{cursor} to the next
2114 character in the character set @var{cs}. It is an error if the
2115 cursor given satisfies @code{end-of-char-set?}.
2116 @end deffn
2117
2118 @deffn {Scheme Procedure} end-of-char-set? cursor
2119 @deffnx {C Function} scm_end_of_char_set_p (cursor)
2120 Return @code{#t} if @var{cursor} has reached the end of a
2121 character set, @code{#f} otherwise.
2122 @end deffn
2123
2124 @deffn {Scheme Procedure} char-set-fold kons knil cs
2125 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2126 Fold the procedure @var{kons} over the character set @var{cs},
2127 initializing it with @var{knil}.
2128 @end deffn
2129
2130 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2131 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2132 This is a fundamental constructor for character sets.
2133 @itemize @bullet
2134 @item @var{g} is used to generate a series of ``seed'' values
2135 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2136 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2137 @item @var{p} tells us when to stop -- when it returns true
2138 when applied to one of the seed values.
2139 @item @var{f} maps each seed value to a character. These
2140 characters are added to the base character set @var{base_cs} to
2141 form the result; @var{base_cs} defaults to the empty set.
2142 @end itemize
2143 @end deffn
2144
2145 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2146 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2147 This is a fundamental constructor for character sets.
2148 @itemize @bullet
2149 @item @var{g} is used to generate a series of ``seed'' values
2150 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2151 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2152 @item @var{p} tells us when to stop -- when it returns true
2153 when applied to one of the seed values.
2154 @item @var{f} maps each seed value to a character. These
2155 characters are added to the base character set @var{base_cs} to
2156 form the result; @var{base_cs} defaults to the empty set.
2157 @end itemize
2158 @end deffn
2159
2160 @deffn {Scheme Procedure} char-set-for-each proc cs
2161 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2162 Apply @var{proc} to every character in the character set
2163 @var{cs}. The return value is not specified.
2164 @end deffn
2165
2166 @deffn {Scheme Procedure} char-set-map proc cs
2167 @deffnx {C Function} scm_char_set_map (proc, cs)
2168 Map the procedure @var{proc} over every character in @var{cs}.
2169 @var{proc} must be a character -> character procedure.
2170 @end deffn
2171
2172 @c ===================================================================
2173
2174 @node Creating Character Sets
2175 @subsubsection Creating Character Sets
2176
2177 New character sets are produced with these procedures.
2178
2179 @deffn {Scheme Procedure} char-set-copy cs
2180 @deffnx {C Function} scm_char_set_copy (cs)
2181 Return a newly allocated character set containing all
2182 characters in @var{cs}.
2183 @end deffn
2184
2185 @deffn {Scheme Procedure} char-set . rest
2186 @deffnx {C Function} scm_char_set (rest)
2187 Return a character set containing all given characters.
2188 @end deffn
2189
2190 @deffn {Scheme Procedure} list->char-set list [base_cs]
2191 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2192 Convert the character list @var{list} to a character set. If
2193 the character set @var{base_cs} is given, the character in this
2194 set are also included in the result.
2195 @end deffn
2196
2197 @deffn {Scheme Procedure} list->char-set! list base_cs
2198 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2199 Convert the character list @var{list} to a character set. The
2200 characters are added to @var{base_cs} and @var{base_cs} is
2201 returned.
2202 @end deffn
2203
2204 @deffn {Scheme Procedure} string->char-set str [base_cs]
2205 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2206 Convert the string @var{str} to a character set. If the
2207 character set @var{base_cs} is given, the characters in this
2208 set are also included in the result.
2209 @end deffn
2210
2211 @deffn {Scheme Procedure} string->char-set! str base_cs
2212 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2213 Convert the string @var{str} to a character set. The
2214 characters from the string are added to @var{base_cs}, and
2215 @var{base_cs} is returned.
2216 @end deffn
2217
2218 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2219 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2220 Return a character set containing every character from @var{cs}
2221 so that it satisfies @var{pred}. If provided, the characters
2222 from @var{base_cs} are added to the result.
2223 @end deffn
2224
2225 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2226 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2227 Return a character set containing every character from @var{cs}
2228 so that it satisfies @var{pred}. The characters are added to
2229 @var{base_cs} and @var{base_cs} is returned.
2230 @end deffn
2231
2232 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2233 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2234 Return a character set containing all characters whose
2235 character codes lie in the half-open range
2236 [@var{lower},@var{upper}).
2237
2238 If @var{error} is a true value, an error is signalled if the
2239 specified range contains characters which are not contained in
2240 the implemented character range. If @var{error} is @code{#f},
2241 these characters are silently left out of the resulting
2242 character set.
2243
2244 The characters in @var{base_cs} are added to the result, if
2245 given.
2246 @end deffn
2247
2248 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2249 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2250 Return a character set containing all characters whose
2251 character codes lie in the half-open range
2252 [@var{lower},@var{upper}).
2253
2254 If @var{error} is a true value, an error is signalled if the
2255 specified range contains characters which are not contained in
2256 the implemented character range. If @var{error} is @code{#f},
2257 these characters are silently left out of the resulting
2258 character set.
2259
2260 The characters are added to @var{base_cs} and @var{base_cs} is
2261 returned.
2262 @end deffn
2263
2264 @deffn {Scheme Procedure} ->char-set x
2265 @deffnx {C Function} scm_to_char_set (x)
2266 Coerces x into a char-set. @var{x} may be a string, character or
2267 char-set. A string is converted to the set of its constituent
2268 characters; a character is converted to a singleton set; a char-set is
2269 returned as-is.
2270 @end deffn
2271
2272 @c ===================================================================
2273
2274 @node Querying Character Sets
2275 @subsubsection Querying Character Sets
2276
2277 Access the elements and other information of a character set with these
2278 procedures.
2279
2280 @deffn {Scheme Procedure} %char-set-dump cs
2281 Returns an association list containing debugging information
2282 for @var{cs}. The association list has the following entries.
2283 @table @code
2284 @item char-set
2285 The char-set itself
2286 @item len
2287 The number of groups of contiguous code points the char-set
2288 contains
2289 @item ranges
2290 A list of lists where each sublist is a range of code points
2291 and their associated characters
2292 @end table
2293 The return value of this function cannot be relied upon to be
2294 consistent between versions of Guile and should not be used in code.
2295 @end deffn
2296
2297 @deffn {Scheme Procedure} char-set-size cs
2298 @deffnx {C Function} scm_char_set_size (cs)
2299 Return the number of elements in character set @var{cs}.
2300 @end deffn
2301
2302 @deffn {Scheme Procedure} char-set-count pred cs
2303 @deffnx {C Function} scm_char_set_count (pred, cs)
2304 Return the number of the elements int the character set
2305 @var{cs} which satisfy the predicate @var{pred}.
2306 @end deffn
2307
2308 @deffn {Scheme Procedure} char-set->list cs
2309 @deffnx {C Function} scm_char_set_to_list (cs)
2310 Return a list containing the elements of the character set
2311 @var{cs}.
2312 @end deffn
2313
2314 @deffn {Scheme Procedure} char-set->string cs
2315 @deffnx {C Function} scm_char_set_to_string (cs)
2316 Return a string containing the elements of the character set
2317 @var{cs}. The order in which the characters are placed in the
2318 string is not defined.
2319 @end deffn
2320
2321 @deffn {Scheme Procedure} char-set-contains? cs ch
2322 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2323 Return @code{#t} iff the character @var{ch} is contained in the
2324 character set @var{cs}.
2325 @end deffn
2326
2327 @deffn {Scheme Procedure} char-set-every pred cs
2328 @deffnx {C Function} scm_char_set_every (pred, cs)
2329 Return a true value if every character in the character set
2330 @var{cs} satisfies the predicate @var{pred}.
2331 @end deffn
2332
2333 @deffn {Scheme Procedure} char-set-any pred cs
2334 @deffnx {C Function} scm_char_set_any (pred, cs)
2335 Return a true value if any character in the character set
2336 @var{cs} satisfies the predicate @var{pred}.
2337 @end deffn
2338
2339 @c ===================================================================
2340
2341 @node Character-Set Algebra
2342 @subsubsection Character-Set Algebra
2343
2344 Character sets can be manipulated with the common set algebra operation,
2345 such as union, complement, intersection etc. All of these procedures
2346 provide side-effecting variants, which modify their character set
2347 argument(s).
2348
2349 @deffn {Scheme Procedure} char-set-adjoin cs . rest
2350 @deffnx {C Function} scm_char_set_adjoin (cs, rest)
2351 Add all character arguments to the first argument, which must
2352 be a character set.
2353 @end deffn
2354
2355 @deffn {Scheme Procedure} char-set-delete cs . rest
2356 @deffnx {C Function} scm_char_set_delete (cs, rest)
2357 Delete all character arguments from the first argument, which
2358 must be a character set.
2359 @end deffn
2360
2361 @deffn {Scheme Procedure} char-set-adjoin! cs . rest
2362 @deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2363 Add all character arguments to the first argument, which must
2364 be a character set.
2365 @end deffn
2366
2367 @deffn {Scheme Procedure} char-set-delete! cs . rest
2368 @deffnx {C Function} scm_char_set_delete_x (cs, rest)
2369 Delete all character arguments from the first argument, which
2370 must be a character set.
2371 @end deffn
2372
2373 @deffn {Scheme Procedure} char-set-complement cs
2374 @deffnx {C Function} scm_char_set_complement (cs)
2375 Return the complement of the character set @var{cs}.
2376 @end deffn
2377
2378 Note that the complement of a character set is likely to contain many
2379 reserved code points (code points that are not associated with
2380 characters). It may be helpful to modify the output of
2381 @code{char-set-complement} by computing its intersection with the set
2382 of designated code points, @code{char-set:designated}.
2383
2384 @deffn {Scheme Procedure} char-set-union . rest
2385 @deffnx {C Function} scm_char_set_union (rest)
2386 Return the union of all argument character sets.
2387 @end deffn
2388
2389 @deffn {Scheme Procedure} char-set-intersection . rest
2390 @deffnx {C Function} scm_char_set_intersection (rest)
2391 Return the intersection of all argument character sets.
2392 @end deffn
2393
2394 @deffn {Scheme Procedure} char-set-difference cs1 . rest
2395 @deffnx {C Function} scm_char_set_difference (cs1, rest)
2396 Return the difference of all argument character sets.
2397 @end deffn
2398
2399 @deffn {Scheme Procedure} char-set-xor . rest
2400 @deffnx {C Function} scm_char_set_xor (rest)
2401 Return the exclusive-or of all argument character sets.
2402 @end deffn
2403
2404 @deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2405 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2406 Return the difference and the intersection of all argument
2407 character sets.
2408 @end deffn
2409
2410 @deffn {Scheme Procedure} char-set-complement! cs
2411 @deffnx {C Function} scm_char_set_complement_x (cs)
2412 Return the complement of the character set @var{cs}.
2413 @end deffn
2414
2415 @deffn {Scheme Procedure} char-set-union! cs1 . rest
2416 @deffnx {C Function} scm_char_set_union_x (cs1, rest)
2417 Return the union of all argument character sets.
2418 @end deffn
2419
2420 @deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2421 @deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2422 Return the intersection of all argument character sets.
2423 @end deffn
2424
2425 @deffn {Scheme Procedure} char-set-difference! cs1 . rest
2426 @deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2427 Return the difference of all argument character sets.
2428 @end deffn
2429
2430 @deffn {Scheme Procedure} char-set-xor! cs1 . rest
2431 @deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2432 Return the exclusive-or of all argument character sets.
2433 @end deffn
2434
2435 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2436 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2437 Return the difference and the intersection of all argument
2438 character sets.
2439 @end deffn
2440
2441 @c ===================================================================
2442
2443 @node Standard Character Sets
2444 @subsubsection Standard Character Sets
2445
2446 In order to make the use of the character set data type and procedures
2447 useful, several predefined character set variables exist.
2448
2449 @cindex codeset
2450 @cindex charset
2451 @cindex locale
2452
2453 These character sets are locale independent and are not recomputed
2454 upon a @code{setlocale} call. They contain characters from the whole
2455 range of Unicode code points. For instance, @code{char-set:letter}
2456 contains about 94,000 characters.
2457
2458 @defvr {Scheme Variable} char-set:lower-case
2459 @defvrx {C Variable} scm_char_set_lower_case
2460 All lower-case characters.
2461 @end defvr
2462
2463 @defvr {Scheme Variable} char-set:upper-case
2464 @defvrx {C Variable} scm_char_set_upper_case
2465 All upper-case characters.
2466 @end defvr
2467
2468 @defvr {Scheme Variable} char-set:title-case
2469 @defvrx {C Variable} scm_char_set_title_case
2470 All single characters that function as if they were an upper-case
2471 letter followed by a lower-case letter.
2472 @end defvr
2473
2474 @defvr {Scheme Variable} char-set:letter
2475 @defvrx {C Variable} scm_char_set_letter
2476 All letters. This includes @code{char-set:lower-case},
2477 @code{char-set:upper-case}, @code{char-set:title-case}, and many
2478 letters that have no case at all. For example, Chinese and Japanese
2479 characters typically have no concept of case.
2480 @end defvr
2481
2482 @defvr {Scheme Variable} char-set:digit
2483 @defvrx {C Variable} scm_char_set_digit
2484 All digits.
2485 @end defvr
2486
2487 @defvr {Scheme Variable} char-set:letter+digit
2488 @defvrx {C Variable} scm_char_set_letter_and_digit
2489 The union of @code{char-set:letter} and @code{char-set:digit}.
2490 @end defvr
2491
2492 @defvr {Scheme Variable} char-set:graphic
2493 @defvrx {C Variable} scm_char_set_graphic
2494 All characters which would put ink on the paper.
2495 @end defvr
2496
2497 @defvr {Scheme Variable} char-set:printing
2498 @defvrx {C Variable} scm_char_set_printing
2499 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2500 @end defvr
2501
2502 @defvr {Scheme Variable} char-set:whitespace
2503 @defvrx {C Variable} scm_char_set_whitespace
2504 All whitespace characters.
2505 @end defvr
2506
2507 @defvr {Scheme Variable} char-set:blank
2508 @defvrx {C Variable} scm_char_set_blank
2509 All horizontal whitespace characters, which notably includes
2510 @code{#\space} and @code{#\tab}.
2511 @end defvr
2512
2513 @defvr {Scheme Variable} char-set:iso-control
2514 @defvrx {C Variable} scm_char_set_iso_control
2515 The ISO control characters are the C0 control characters (U+0000 to
2516 U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2517 U+009F).
2518 @end defvr
2519
2520 @defvr {Scheme Variable} char-set:punctuation
2521 @defvrx {C Variable} scm_char_set_punctuation
2522 All punctuation characters, such as the characters
2523 @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2524 @end defvr
2525
2526 @defvr {Scheme Variable} char-set:symbol
2527 @defvrx {C Variable} scm_char_set_symbol
2528 All symbol characters, such as the characters @code{$+<=>^`|~}.
2529 @end defvr
2530
2531 @defvr {Scheme Variable} char-set:hex-digit
2532 @defvrx {C Variable} scm_char_set_hex_digit
2533 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2534 @end defvr
2535
2536 @defvr {Scheme Variable} char-set:ascii
2537 @defvrx {C Variable} scm_char_set_ascii
2538 All ASCII characters.
2539 @end defvr
2540
2541 @defvr {Scheme Variable} char-set:empty
2542 @defvrx {C Variable} scm_char_set_empty
2543 The empty character set.
2544 @end defvr
2545
2546 @defvr {Scheme Variable} char-set:designated
2547 @defvrx {C Variable} scm_char_set_designated
2548 This character set contains all designated code points. This includes
2549 all the code points to which Unicode has assigned a character or other
2550 meaning.
2551 @end defvr
2552
2553 @defvr {Scheme Variable} char-set:full
2554 @defvrx {C Variable} scm_char_set_full
2555 This character set contains all possible code points. This includes
2556 both designated and reserved code points.
2557 @end defvr
2558
2559 @node Strings
2560 @subsection Strings
2561 @tpindex Strings
2562
2563 Strings are fixed-length sequences of characters. They can be created
2564 by calling constructor procedures, but they can also literally get
2565 entered at the @acronym{REPL} or in Scheme source files.
2566
2567 @c Guile provides a rich set of string processing procedures, because text
2568 @c handling is very important when Guile is used as a scripting language.
2569
2570 Strings always carry the information about how many characters they are
2571 composed of with them, so there is no special end-of-string character,
2572 like in C. That means that Scheme strings can contain any character,
2573 even the @samp{#\nul} character @samp{\0}.
2574
2575 To use strings efficiently, you need to know a bit about how Guile
2576 implements them. In Guile, a string consists of two parts, a head and
2577 the actual memory where the characters are stored. When a string (or
2578 a substring of it) is copied, only a new head gets created, the memory
2579 is usually not copied. The two heads start out pointing to the same
2580 memory.
2581
2582 When one of these two strings is modified, as with @code{string-set!},
2583 their common memory does get copied so that each string has its own
2584 memory and modifying one does not accidentally modify the other as well.
2585 Thus, Guile's strings are `copy on write'; the actual copying of their
2586 memory is delayed until one string is written to.
2587
2588 This implementation makes functions like @code{substring} very
2589 efficient in the common case that no modifications are done to the
2590 involved strings.
2591
2592 If you do know that your strings are getting modified right away, you
2593 can use @code{substring/copy} instead of @code{substring}. This
2594 function performs the copy immediately at the time of creation. This
2595 is more efficient, especially in a multi-threaded program. Also,
2596 @code{substring/copy} can avoid the problem that a short substring
2597 holds on to the memory of a very large original string that could
2598 otherwise be recycled.
2599
2600 If you want to avoid the copy altogether, so that modifications of one
2601 string show up in the other, you can use @code{substring/shared}. The
2602 strings created by this procedure are called @dfn{mutation sharing
2603 substrings} since the substring and the original string share
2604 modifications to each other.
2605
2606 If you want to prevent modifications, use @code{substring/read-only}.
2607
2608 Guile provides all procedures of SRFI-13 and a few more.
2609
2610 @menu
2611 * String Syntax:: Read syntax for strings.
2612 * String Predicates:: Testing strings for certain properties.
2613 * String Constructors:: Creating new string objects.
2614 * List/String Conversion:: Converting from/to lists of characters.
2615 * String Selection:: Select portions from strings.
2616 * String Modification:: Modify parts or whole strings.
2617 * String Comparison:: Lexicographic ordering predicates.
2618 * String Searching:: Searching in strings.
2619 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2620 * Reversing and Appending Strings:: Appending strings to form a new string.
2621 * Mapping Folding and Unfolding:: Iterating over strings.
2622 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2623 * Conversion to/from C::
2624 * String Internals:: The storage strategy for strings.
2625 @end menu
2626
2627 @node String Syntax
2628 @subsubsection String Read Syntax
2629
2630 @c In the following @code is used to get a good font in TeX etc, but
2631 @c is omitted for Info format, so as not to risk any confusion over
2632 @c whether surrounding ` ' quotes are part of the escape or are
2633 @c special in a string (they're not).
2634
2635 The read syntax for strings is an arbitrarily long sequence of
2636 characters enclosed in double quotes (@nicode{"}).
2637
2638 Backslash is an escape character and can be used to insert the following
2639 special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2640 next seven are R6RS standard --- notice they follow C syntax --- and the
2641 remaining four are Guile extensions.
2642
2643 @table @asis
2644 @item @nicode{\\}
2645 Backslash character.
2646
2647 @item @nicode{\"}
2648 Double quote character (an unescaped @nicode{"} is otherwise the end
2649 of the string).
2650
2651 @item @nicode{\a}
2652 Bell character (ASCII 7).
2653
2654 @item @nicode{\f}
2655 Formfeed character (ASCII 12).
2656
2657 @item @nicode{\n}
2658 Newline character (ASCII 10).
2659
2660 @item @nicode{\r}
2661 Carriage return character (ASCII 13).
2662
2663 @item @nicode{\t}
2664 Tab character (ASCII 9).
2665
2666 @item @nicode{\v}
2667 Vertical tab character (ASCII 11).
2668
2669 @item @nicode{\b}
2670 Backspace character (ASCII 8).
2671
2672 @item @nicode{\0}
2673 NUL character (ASCII 0).
2674
2675 @item @nicode{\xHH}
2676 Character code given by two hexadecimal digits. For example
2677 @nicode{\x7f} for an ASCII DEL (127).
2678
2679 @item @nicode{\uHHHH}
2680 Character code given by four hexadecimal digits. For example
2681 @nicode{\u0100} for a capital A with macron (U+0100).
2682
2683 @item @nicode{\UHHHHHH}
2684 Character code given by six hexadecimal digits. For example
2685 @nicode{\U010402}.
2686 @end table
2687
2688 @noindent
2689 The following are examples of string literals:
2690
2691 @lisp
2692 "foo"
2693 "bar plonk"
2694 "Hello World"
2695 "\"Hi\", he said."
2696 @end lisp
2697
2698 The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
2699 chosen to not break compatibility with code written for previous versions of
2700 Guile. The R6RS specification suggests a different, incompatible syntax for hex
2701 escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
2702 digits terminated with a semicolon. If this escape format is desired instead,
2703 it can be enabled with the reader option @code{r6rs-hex-escapes}.
2704
2705 @lisp
2706 (read-enable 'r6rs-hex-escapes)
2707 @end lisp
2708
2709 More on reader options in general can be found at (@pxref{Reader
2710 options}).
2711
2712 @node String Predicates
2713 @subsubsection String Predicates
2714
2715 The following procedures can be used to check whether a given string
2716 fulfills some specified property.
2717
2718 @rnindex string?
2719 @deffn {Scheme Procedure} string? obj
2720 @deffnx {C Function} scm_string_p (obj)
2721 Return @code{#t} if @var{obj} is a string, else @code{#f}.
2722 @end deffn
2723
2724 @deftypefn {C Function} int scm_is_string (SCM obj)
2725 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2726 @end deftypefn
2727
2728 @deffn {Scheme Procedure} string-null? str
2729 @deffnx {C Function} scm_string_null_p (str)
2730 Return @code{#t} if @var{str}'s length is zero, and
2731 @code{#f} otherwise.
2732 @lisp
2733 (string-null? "") @result{} #t
2734 y @result{} "foo"
2735 (string-null? y) @result{} #f
2736 @end lisp
2737 @end deffn
2738
2739 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
2740 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
2741 Check if @var{char_pred} is true for any character in string @var{s}.
2742
2743 @var{char_pred} can be a character to check for any equal to that, or
2744 a character set (@pxref{Character Sets}) to check for any in that set,
2745 or a predicate procedure to call.
2746
2747 For a procedure, calls @code{(@var{char_pred} c)} are made
2748 successively on the characters from @var{start} to @var{end}. If
2749 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2750 stops and that return value is the return from @code{string-any}. The
2751 call on the last character (ie.@: at @math{@var{end}-1}), if that
2752 point is reached, is a tail call.
2753
2754 If there are no characters in @var{s} (ie.@: @var{start} equals
2755 @var{end}) then the return is @code{#f}.
2756 @end deffn
2757
2758 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
2759 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
2760 Check if @var{char_pred} is true for every character in string
2761 @var{s}.
2762
2763 @var{char_pred} can be a character to check for every character equal
2764 to that, or a character set (@pxref{Character Sets}) to check for
2765 every character being in that set, or a predicate procedure to call.
2766
2767 For a procedure, calls @code{(@var{char_pred} c)} are made
2768 successively on the characters from @var{start} to @var{end}. If
2769 @var{char_pred} returns @code{#f}, @code{string-every} stops and
2770 returns @code{#f}. The call on the last character (ie.@: at
2771 @math{@var{end}-1}), if that point is reached, is a tail call and the
2772 return from that call is the return from @code{string-every}.
2773
2774 If there are no characters in @var{s} (ie.@: @var{start} equals
2775 @var{end}) then the return is @code{#t}.
2776 @end deffn
2777
2778 @node String Constructors
2779 @subsubsection String Constructors
2780
2781 The string constructor procedures create new string objects, possibly
2782 initializing them with some specified character data. See also
2783 @xref{String Selection}, for ways to create strings from existing
2784 strings.
2785
2786 @c FIXME::martin: list->string belongs into `List/String Conversion'
2787
2788 @deffn {Scheme Procedure} string char@dots{}
2789 @rnindex string
2790 Return a newly allocated string made from the given character
2791 arguments.
2792
2793 @example
2794 (string #\x #\y #\z) @result{} "xyz"
2795 (string) @result{} ""
2796 @end example
2797 @end deffn
2798
2799 @deffn {Scheme Procedure} list->string lst
2800 @deffnx {C Function} scm_string (lst)
2801 @rnindex list->string
2802 Return a newly allocated string made from a list of characters.
2803
2804 @example
2805 (list->string '(#\a #\b #\c)) @result{} "abc"
2806 @end example
2807 @end deffn
2808
2809 @deffn {Scheme Procedure} reverse-list->string lst
2810 @deffnx {C Function} scm_reverse_list_to_string (lst)
2811 Return a newly allocated string made from a list of characters, in
2812 reverse order.
2813
2814 @example
2815 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2816 @end example
2817 @end deffn
2818
2819 @rnindex make-string
2820 @deffn {Scheme Procedure} make-string k [chr]
2821 @deffnx {C Function} scm_make_string (k, chr)
2822 Return a newly allocated string of
2823 length @var{k}. If @var{chr} is given, then all elements of
2824 the string are initialized to @var{chr}, otherwise the contents
2825 of the @var{string} are unspecified.
2826 @end deffn
2827
2828 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2829 Like @code{scm_make_string}, but expects the length as a
2830 @code{size_t}.
2831 @end deftypefn
2832
2833 @deffn {Scheme Procedure} string-tabulate proc len
2834 @deffnx {C Function} scm_string_tabulate (proc, len)
2835 @var{proc} is an integer->char procedure. Construct a string
2836 of size @var{len} by applying @var{proc} to each index to
2837 produce the corresponding string element. The order in which
2838 @var{proc} is applied to the indices is not specified.
2839 @end deffn
2840
2841 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2842 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2843 Append the string in the string list @var{ls}, using the string
2844 @var{delim} as a delimiter between the elements of @var{ls}.
2845 @var{grammar} is a symbol which specifies how the delimiter is
2846 placed between the strings, and defaults to the symbol
2847 @code{infix}.
2848
2849 @table @code
2850 @item infix
2851 Insert the separator between list elements. An empty string
2852 will produce an empty list.
2853 @item string-infix
2854 Like @code{infix}, but will raise an error if given the empty
2855 list.
2856 @item suffix
2857 Insert the separator after every list element.
2858 @item prefix
2859 Insert the separator before each list element.
2860 @end table
2861 @end deffn
2862
2863 @node List/String Conversion
2864 @subsubsection List/String conversion
2865
2866 When processing strings, it is often convenient to first convert them
2867 into a list representation by using the procedure @code{string->list},
2868 work with the resulting list, and then convert it back into a string.
2869 These procedures are useful for similar tasks.
2870
2871 @rnindex string->list
2872 @deffn {Scheme Procedure} string->list str [start [end]]
2873 @deffnx {C Function} scm_substring_to_list (str, start, end)
2874 @deffnx {C Function} scm_string_to_list (str)
2875 Convert the string @var{str} into a list of characters.
2876 @end deffn
2877
2878 @deffn {Scheme Procedure} string-split str chr
2879 @deffnx {C Function} scm_string_split (str, chr)
2880 Split the string @var{str} into the a list of the substrings delimited
2881 by appearances of the character @var{chr}. Note that an empty substring
2882 between separator characters will result in an empty string in the
2883 result list.
2884
2885 @lisp
2886 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2887 @result{}
2888 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
2889
2890 (string-split "::" #\:)
2891 @result{}
2892 ("" "" "")
2893
2894 (string-split "" #\:)
2895 @result{}
2896 ("")
2897 @end lisp
2898 @end deffn
2899
2900
2901 @node String Selection
2902 @subsubsection String Selection
2903
2904 Portions of strings can be extracted by these procedures.
2905 @code{string-ref} delivers individual characters whereas
2906 @code{substring} can be used to extract substrings from longer strings.
2907
2908 @rnindex string-length
2909 @deffn {Scheme Procedure} string-length string
2910 @deffnx {C Function} scm_string_length (string)
2911 Return the number of characters in @var{string}.
2912 @end deffn
2913
2914 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
2915 Return the number of characters in @var{str} as a @code{size_t}.
2916 @end deftypefn
2917
2918 @rnindex string-ref
2919 @deffn {Scheme Procedure} string-ref str k
2920 @deffnx {C Function} scm_string_ref (str, k)
2921 Return character @var{k} of @var{str} using zero-origin
2922 indexing. @var{k} must be a valid index of @var{str}.
2923 @end deffn
2924
2925 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2926 Return character @var{k} of @var{str} using zero-origin
2927 indexing. @var{k} must be a valid index of @var{str}.
2928 @end deftypefn
2929
2930 @rnindex string-copy
2931 @deffn {Scheme Procedure} string-copy str [start [end]]
2932 @deffnx {C Function} scm_substring_copy (str, start, end)
2933 @deffnx {C Function} scm_string_copy (str)
2934 Return a copy of the given string @var{str}.
2935
2936 The returned string shares storage with @var{str} initially, but it is
2937 copied as soon as one of the two strings is modified.
2938 @end deffn
2939
2940 @rnindex substring
2941 @deffn {Scheme Procedure} substring str start [end]
2942 @deffnx {C Function} scm_substring (str, start, end)
2943 Return a new string formed from the characters
2944 of @var{str} beginning with index @var{start} (inclusive) and
2945 ending with index @var{end} (exclusive).
2946 @var{str} must be a string, @var{start} and @var{end} must be
2947 exact integers satisfying:
2948
2949 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
2950
2951 The returned string shares storage with @var{str} initially, but it is
2952 copied as soon as one of the two strings is modified.
2953 @end deffn
2954
2955 @deffn {Scheme Procedure} substring/shared str start [end]
2956 @deffnx {C Function} scm_substring_shared (str, start, end)
2957 Like @code{substring}, but the strings continue to share their storage
2958 even if they are modified. Thus, modifications to @var{str} show up
2959 in the new string, and vice versa.
2960 @end deffn
2961
2962 @deffn {Scheme Procedure} substring/copy str start [end]
2963 @deffnx {C Function} scm_substring_copy (str, start, end)
2964 Like @code{substring}, but the storage for the new string is copied
2965 immediately.
2966 @end deffn
2967
2968 @deffn {Scheme Procedure} substring/read-only str start [end]
2969 @deffnx {C Function} scm_substring_read_only (str, start, end)
2970 Like @code{substring}, but the resulting string can not be modified.
2971 @end deffn
2972
2973 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2974 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2975 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
2976 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
2977 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2978 @end deftypefn
2979
2980 @deffn {Scheme Procedure} string-take s n
2981 @deffnx {C Function} scm_string_take (s, n)
2982 Return the @var{n} first characters of @var{s}.
2983 @end deffn
2984
2985 @deffn {Scheme Procedure} string-drop s n
2986 @deffnx {C Function} scm_string_drop (s, n)
2987 Return all but the first @var{n} characters of @var{s}.
2988 @end deffn
2989
2990 @deffn {Scheme Procedure} string-take-right s n
2991 @deffnx {C Function} scm_string_take_right (s, n)
2992 Return the @var{n} last characters of @var{s}.
2993 @end deffn
2994
2995 @deffn {Scheme Procedure} string-drop-right s n
2996 @deffnx {C Function} scm_string_drop_right (s, n)
2997 Return all but the last @var{n} characters of @var{s}.
2998 @end deffn
2999
3000 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
3001 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
3002 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
3003 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
3004 Take characters @var{start} to @var{end} from the string @var{s} and
3005 either pad with @var{char} or truncate them to give @var{len}
3006 characters.
3007
3008 @code{string-pad} pads or truncates on the left, so for example
3009
3010 @example
3011 (string-pad "x" 3) @result{} " x"
3012 (string-pad "abcde" 3) @result{} "cde"
3013 @end example
3014
3015 @code{string-pad-right} pads or truncates on the right, so for example
3016
3017 @example
3018 (string-pad-right "x" 3) @result{} "x "
3019 (string-pad-right "abcde" 3) @result{} "abc"
3020 @end example
3021 @end deffn
3022
3023 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
3024 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3025 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
3026 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
3027 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
3028 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
3029 Trim occurrences of @var{char_pred} from the ends of @var{s}.
3030
3031 @code{string-trim} trims @var{char_pred} characters from the left
3032 (start) of the string, @code{string-trim-right} trims them from the
3033 right (end) of the string, @code{string-trim-both} trims from both
3034 ends.
3035
3036 @var{char_pred} can be a character, a character set, or a predicate
3037 procedure to call on each character. If @var{char_pred} is not given
3038 the default is whitespace as per @code{char-set:whitespace}
3039 (@pxref{Standard Character Sets}).
3040
3041 @example
3042 (string-trim " x ") @result{} "x "
3043 (string-trim-right "banana" #\a) @result{} "banan"
3044 (string-trim-both ".,xy:;" char-set:punctuation)
3045 @result{} "xy"
3046 (string-trim-both "xyzzy" (lambda (c)
3047 (or (eqv? c #\x)
3048 (eqv? c #\y))))
3049 @result{} "zz"
3050 @end example
3051 @end deffn
3052
3053 @node String Modification
3054 @subsubsection String Modification
3055
3056 These procedures are for modifying strings in-place. This means that the
3057 result of the operation is not a new string; instead, the original string's
3058 memory representation is modified.
3059
3060 @rnindex string-set!
3061 @deffn {Scheme Procedure} string-set! str k chr
3062 @deffnx {C Function} scm_string_set_x (str, k, chr)
3063 Store @var{chr} in element @var{k} of @var{str} and return
3064 an unspecified value. @var{k} must be a valid index of
3065 @var{str}.
3066 @end deffn
3067
3068 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3069 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3070 @end deftypefn
3071
3072 @rnindex string-fill!
3073 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
3074 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
3075 @deffnx {C Function} scm_string_fill_x (str, chr)
3076 Stores @var{chr} in every element of the given @var{str} and
3077 returns an unspecified value.
3078 @end deffn
3079
3080 @deffn {Scheme Procedure} substring-fill! str start end fill
3081 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3082 Change every character in @var{str} between @var{start} and
3083 @var{end} to @var{fill}.
3084
3085 @lisp
3086 (define y "abcdefg")
3087 (substring-fill! y 1 3 #\r)
3088 y
3089 @result{} "arrdefg"
3090 @end lisp
3091 @end deffn
3092
3093 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3094 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3095 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3096 into @var{str2} beginning at position @var{start2}.
3097 @var{str1} and @var{str2} can be the same string.
3098 @end deffn
3099
3100 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3101 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3102 Copy the sequence of characters from index range [@var{start},
3103 @var{end}) in string @var{s} to string @var{target}, beginning
3104 at index @var{tstart}. The characters are copied left-to-right
3105 or right-to-left as needed -- the copy is guaranteed to work,
3106 even if @var{target} and @var{s} are the same string. It is an
3107 error if the copy operation runs off the end of the target
3108 string.
3109 @end deffn
3110
3111
3112 @node String Comparison
3113 @subsubsection String Comparison
3114
3115 The procedures in this section are similar to the character ordering
3116 predicates (@pxref{Characters}), but are defined on character sequences.
3117
3118 The first set is specified in R5RS and has names that end in @code{?}.
3119 The second set is specified in SRFI-13 and the names have not ending
3120 @code{?}.
3121
3122 The predicates ending in @code{-ci} ignore the character case
3123 when comparing strings. For now, case-insensitive comparison is done
3124 using the R5RS rules, where every lower-case character that has a
3125 single character upper-case form is converted to uppercase before
3126 comparison. See @xref{Text Collation, the @code{(ice-9
3127 i18n)} module}, for locale-dependent string comparison.
3128
3129 @rnindex string=?
3130 @deffn {Scheme Procedure} string=? [s1 [s2 . rest]]
3131 @deffnx {C Function} scm_i_string_equal_p (s1, s2, rest)
3132 Lexicographic equality predicate; return @code{#t} if the two
3133 strings are the same length and contain the same characters in
3134 the same positions, otherwise return @code{#f}.
3135
3136 The procedure @code{string-ci=?} treats upper and lower case
3137 letters as though they were the same character, but
3138 @code{string=?} treats upper and lower case as distinct
3139 characters.
3140 @end deffn
3141
3142 @rnindex string<?
3143 @deffn {Scheme Procedure} string<? [s1 [s2 . rest]]
3144 @deffnx {C Function} scm_i_string_less_p (s1, s2, rest)
3145 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3146 is lexicographically less than @var{s2}.
3147 @end deffn
3148
3149 @rnindex string<=?
3150 @deffn {Scheme Procedure} string<=? [s1 [s2 . rest]]
3151 @deffnx {C Function} scm_i_string_leq_p (s1, s2, rest)
3152 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3153 is lexicographically less than or equal to @var{s2}.
3154 @end deffn
3155
3156 @rnindex string>?
3157 @deffn {Scheme Procedure} string>? [s1 [s2 . rest]]
3158 @deffnx {C Function} scm_i_string_gr_p (s1, s2, rest)
3159 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3160 is lexicographically greater than @var{s2}.
3161 @end deffn
3162
3163 @rnindex string>=?
3164 @deffn {Scheme Procedure} string>=? [s1 [s2 . rest]]
3165 @deffnx {C Function} scm_i_string_geq_p (s1, s2, rest)
3166 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3167 is lexicographically greater than or equal to @var{s2}.
3168 @end deffn
3169
3170 @rnindex string-ci=?
3171 @deffn {Scheme Procedure} string-ci=? [s1 [s2 . rest]]
3172 @deffnx {C Function} scm_i_string_ci_equal_p (s1, s2, rest)
3173 Case-insensitive string equality predicate; return @code{#t} if
3174 the two strings are the same length and their component
3175 characters match (ignoring case) at each position; otherwise
3176 return @code{#f}.
3177 @end deffn
3178
3179 @rnindex string-ci<?
3180 @deffn {Scheme Procedure} string-ci<? [s1 [s2 . rest]]
3181 @deffnx {C Function} scm_i_string_ci_less_p (s1, s2, rest)
3182 Case insensitive lexicographic ordering predicate; return
3183 @code{#t} if @var{s1} is lexicographically less than @var{s2}
3184 regardless of case.
3185 @end deffn
3186
3187 @rnindex string<=?
3188 @deffn {Scheme Procedure} string-ci<=? [s1 [s2 . rest]]
3189 @deffnx {C Function} scm_i_string_ci_leq_p (s1, s2, rest)
3190 Case insensitive lexicographic ordering predicate; return
3191 @code{#t} if @var{s1} is lexicographically less than or equal
3192 to @var{s2} regardless of case.
3193 @end deffn
3194
3195 @rnindex string-ci>?
3196 @deffn {Scheme Procedure} string-ci>? [s1 [s2 . rest]]
3197 @deffnx {C Function} scm_i_string_ci_gr_p (s1, s2, rest)
3198 Case insensitive lexicographic ordering predicate; return
3199 @code{#t} if @var{s1} is lexicographically greater than
3200 @var{s2} regardless of case.
3201 @end deffn
3202
3203 @rnindex string-ci>=?
3204 @deffn {Scheme Procedure} string-ci>=? [s1 [s2 . rest]]
3205 @deffnx {C Function} scm_i_string_ci_geq_p (s1, s2, rest)
3206 Case insensitive lexicographic ordering predicate; return
3207 @code{#t} if @var{s1} is lexicographically greater than or
3208 equal to @var{s2} regardless of case.
3209 @end deffn
3210
3211 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3212 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3213 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3214 mismatch index, depending upon whether @var{s1} is less than,
3215 equal to, or greater than @var{s2}. The mismatch index is the
3216 largest index @var{i} such that for every 0 <= @var{j} <
3217 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3218 @var{i} is the first position that does not match.
3219 @end deffn
3220
3221 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3222 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3223 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3224 mismatch index, depending upon whether @var{s1} is less than,
3225 equal to, or greater than @var{s2}. The mismatch index is the
3226 largest index @var{i} such that for every 0 <= @var{j} <
3227 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3228 @var{i} is the first position where the lowercased letters
3229 do not match.
3230
3231 @end deffn
3232
3233 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3234 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3235 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3236 value otherwise.
3237 @end deffn
3238
3239 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3240 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3241 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3242 value otherwise.
3243 @end deffn
3244
3245 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3246 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3247 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3248 true value otherwise.
3249 @end deffn
3250
3251 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3252 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3253 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3254 true value otherwise.
3255 @end deffn
3256
3257 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3258 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3259 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3260 value otherwise.
3261 @end deffn
3262
3263 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3264 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3265 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3266 otherwise.
3267 @end deffn
3268
3269 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3270 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3271 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3272 value otherwise. The character comparison is done
3273 case-insensitively.
3274 @end deffn
3275
3276 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3277 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3278 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3279 value otherwise. The character comparison is done
3280 case-insensitively.
3281 @end deffn
3282
3283 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3284 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3285 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3286 true value otherwise. The character comparison is done
3287 case-insensitively.
3288 @end deffn
3289
3290 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3291 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3292 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3293 true value otherwise. The character comparison is done
3294 case-insensitively.
3295 @end deffn
3296
3297 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3298 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3299 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3300 value otherwise. The character comparison is done
3301 case-insensitively.
3302 @end deffn
3303
3304 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3305 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3306 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3307 otherwise. The character comparison is done
3308 case-insensitively.
3309 @end deffn
3310
3311 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3312 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3313 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3314 @end deffn
3315
3316 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3317 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3318 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3319 @end deffn
3320
3321 Because the same visual appearance of an abstract Unicode character can
3322 be obtained via multiple sequences of Unicode characters, even the
3323 case-insensitive string comparison functions described above may return
3324 @code{#f} when presented with strings containing different
3325 representations of the same character. For example, the Unicode
3326 character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3327 represented with a single character (U+1E69) or by the character ``LATIN
3328 SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3329 DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3330
3331 For this reason, it is often desirable to ensure that the strings
3332 to be compared are using a mutually consistent representation for every
3333 character. The Unicode standard defines two methods of normalizing the
3334 contents of strings: Decomposition, which breaks composite characters
3335 into a set of constituent characters with an ordering defined by the
3336 Unicode Standard; and composition, which performs the converse.
3337
3338 There are two decomposition operations. ``Canonical decomposition''
3339 produces character sequences that share the same visual appearance as
3340 the original characters, while ``compatiblity decomposition'' produces
3341 ones whose visual appearances may differ from the originals but which
3342 represent the same abstract character.
3343
3344 These operations are encapsulated in the following set of normalization
3345 forms:
3346
3347 @table @dfn
3348 @item NFD
3349 Characters are decomposed to their canonical forms.
3350
3351 @item NFKD
3352 Characters are decomposed to their compatibility forms.
3353
3354 @item NFC
3355 Characters are decomposed to their canonical forms, then composed.
3356
3357 @item NFKC
3358 Characters are decomposed to their compatibility forms, then composed.
3359
3360 @end table
3361
3362 The functions below put their arguments into one of the forms described
3363 above.
3364
3365 @deffn {Scheme Procedure} string-normalize-nfd s
3366 @deffnx {C Function} scm_string_normalize_nfd (s)
3367 Return the @code{NFD} normalized form of @var{s}.
3368 @end deffn
3369
3370 @deffn {Scheme Procedure} string-normalize-nfkd s
3371 @deffnx {C Function} scm_string_normalize_nfkd (s)
3372 Return the @code{NFKD} normalized form of @var{s}.
3373 @end deffn
3374
3375 @deffn {Scheme Procedure} string-normalize-nfc s
3376 @deffnx {C Function} scm_string_normalize_nfc (s)
3377 Return the @code{NFC} normalized form of @var{s}.
3378 @end deffn
3379
3380 @deffn {Scheme Procedure} string-normalize-nfkc s
3381 @deffnx {C Function} scm_string_normalize_nfkc (s)
3382 Return the @code{NFKC} normalized form of @var{s}.
3383 @end deffn
3384
3385 @node String Searching
3386 @subsubsection String Searching
3387
3388 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3389 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3390 Search through the string @var{s} from left to right, returning
3391 the index of the first occurrence of a character which
3392
3393 @itemize @bullet
3394 @item
3395 equals @var{char_pred}, if it is character,
3396
3397 @item
3398 satisfies the predicate @var{char_pred}, if it is a procedure,
3399
3400 @item
3401 is in the set @var{char_pred}, if it is a character set.
3402 @end itemize
3403 @end deffn
3404
3405 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3406 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3407 Search through the string @var{s} from right to left, returning
3408 the index of the last occurrence of a character which
3409
3410 @itemize @bullet
3411 @item
3412 equals @var{char_pred}, if it is character,
3413
3414 @item
3415 satisfies the predicate @var{char_pred}, if it is a procedure,
3416
3417 @item
3418 is in the set if @var{char_pred} is a character set.
3419 @end itemize
3420 @end deffn
3421
3422 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3423 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3424 Return the length of the longest common prefix of the two
3425 strings.
3426 @end deffn
3427
3428 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3429 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3430 Return the length of the longest common prefix of the two
3431 strings, ignoring character case.
3432 @end deffn
3433
3434 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3435 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3436 Return the length of the longest common suffix of the two
3437 strings.
3438 @end deffn
3439
3440 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3441 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3442 Return the length of the longest common suffix of the two
3443 strings, ignoring character case.
3444 @end deffn
3445
3446 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3447 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3448 Is @var{s1} a prefix of @var{s2}?
3449 @end deffn
3450
3451 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3452 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3453 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3454 @end deffn
3455
3456 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3457 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3458 Is @var{s1} a suffix of @var{s2}?
3459 @end deffn
3460
3461 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3462 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3463 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3464 @end deffn
3465
3466 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3467 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3468 Search through the string @var{s} from right to left, returning
3469 the index of the last occurrence of a character which
3470
3471 @itemize @bullet
3472 @item
3473 equals @var{char_pred}, if it is character,
3474
3475 @item
3476 satisfies the predicate @var{char_pred}, if it is a procedure,
3477
3478 @item
3479 is in the set if @var{char_pred} is a character set.
3480 @end itemize
3481 @end deffn
3482
3483 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3484 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3485 Search through the string @var{s} from left to right, returning
3486 the index of the first occurrence of a character which
3487
3488 @itemize @bullet
3489 @item
3490 does not equal @var{char_pred}, if it is character,
3491
3492 @item
3493 does not satisfy the predicate @var{char_pred}, if it is a
3494 procedure,
3495
3496 @item
3497 is not in the set if @var{char_pred} is a character set.
3498 @end itemize
3499 @end deffn
3500
3501 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3502 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3503 Search through the string @var{s} from right to left, returning
3504 the index of the last occurrence of a character which
3505
3506 @itemize @bullet
3507 @item
3508 does not equal @var{char_pred}, if it is character,
3509
3510 @item
3511 does not satisfy the predicate @var{char_pred}, if it is a
3512 procedure,
3513
3514 @item
3515 is not in the set if @var{char_pred} is a character set.
3516 @end itemize
3517 @end deffn
3518
3519 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3520 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3521 Return the count of the number of characters in the string
3522 @var{s} which
3523
3524 @itemize @bullet
3525 @item
3526 equals @var{char_pred}, if it is character,
3527
3528 @item
3529 satisfies the predicate @var{char_pred}, if it is a procedure.
3530
3531 @item
3532 is in the set @var{char_pred}, if it is a character set.
3533 @end itemize
3534 @end deffn
3535
3536 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3537 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3538 Does string @var{s1} contain string @var{s2}? Return the index
3539 in @var{s1} where @var{s2} occurs as a substring, or false.
3540 The optional start/end indices restrict the operation to the
3541 indicated substrings.
3542 @end deffn
3543
3544 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3545 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3546 Does string @var{s1} contain string @var{s2}? Return the index
3547 in @var{s1} where @var{s2} occurs as a substring, or false.
3548 The optional start/end indices restrict the operation to the
3549 indicated substrings. Character comparison is done
3550 case-insensitively.
3551 @end deffn
3552
3553 @node Alphabetic Case Mapping
3554 @subsubsection Alphabetic Case Mapping
3555
3556 These are procedures for mapping strings to their upper- or lower-case
3557 equivalents, respectively, or for capitalizing strings.
3558
3559 They use the basic case mapping rules for Unicode characters. No
3560 special language or context rules are considered. The resulting strings
3561 are guaranteed to be the same length as the input strings.
3562
3563 @xref{Character Case Mapping, the @code{(ice-9
3564 i18n)} module}, for locale-dependent case conversions.
3565
3566 @deffn {Scheme Procedure} string-upcase str [start [end]]
3567 @deffnx {C Function} scm_substring_upcase (str, start, end)
3568 @deffnx {C Function} scm_string_upcase (str)
3569 Upcase every character in @code{str}.
3570 @end deffn
3571
3572 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3573 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3574 @deffnx {C Function} scm_string_upcase_x (str)
3575 Destructively upcase every character in @code{str}.
3576
3577 @lisp
3578 (string-upcase! y)
3579 @result{} "ARRDEFG"
3580 y
3581 @result{} "ARRDEFG"
3582 @end lisp
3583 @end deffn
3584
3585 @deffn {Scheme Procedure} string-downcase str [start [end]]
3586 @deffnx {C Function} scm_substring_downcase (str, start, end)
3587 @deffnx {C Function} scm_string_downcase (str)
3588 Downcase every character in @var{str}.
3589 @end deffn
3590
3591 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3592 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3593 @deffnx {C Function} scm_string_downcase_x (str)
3594 Destructively downcase every character in @var{str}.
3595
3596 @lisp
3597 y
3598 @result{} "ARRDEFG"
3599 (string-downcase! y)
3600 @result{} "arrdefg"
3601 y
3602 @result{} "arrdefg"
3603 @end lisp
3604 @end deffn
3605
3606 @deffn {Scheme Procedure} string-capitalize str
3607 @deffnx {C Function} scm_string_capitalize (str)
3608 Return a freshly allocated string with the characters in
3609 @var{str}, where the first character of every word is
3610 capitalized.
3611 @end deffn
3612
3613 @deffn {Scheme Procedure} string-capitalize! str
3614 @deffnx {C Function} scm_string_capitalize_x (str)
3615 Upcase the first character of every word in @var{str}
3616 destructively and return @var{str}.
3617
3618 @lisp
3619 y @result{} "hello world"
3620 (string-capitalize! y) @result{} "Hello World"
3621 y @result{} "Hello World"
3622 @end lisp
3623 @end deffn
3624
3625 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3626 @deffnx {C Function} scm_string_titlecase (str, start, end)
3627 Titlecase every first character in a word in @var{str}.
3628 @end deffn
3629
3630 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3631 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3632 Destructively titlecase every first character in a word in
3633 @var{str}.
3634 @end deffn
3635
3636 @node Reversing and Appending Strings
3637 @subsubsection Reversing and Appending Strings
3638
3639 @deffn {Scheme Procedure} string-reverse str [start [end]]
3640 @deffnx {C Function} scm_string_reverse (str, start, end)
3641 Reverse the string @var{str}. The optional arguments
3642 @var{start} and @var{end} delimit the region of @var{str} to
3643 operate on.
3644 @end deffn
3645
3646 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3647 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3648 Reverse the string @var{str} in-place. The optional arguments
3649 @var{start} and @var{end} delimit the region of @var{str} to
3650 operate on. The return value is unspecified.
3651 @end deffn
3652
3653 @rnindex string-append
3654 @deffn {Scheme Procedure} string-append . args
3655 @deffnx {C Function} scm_string_append (args)
3656 Return a newly allocated string whose characters form the
3657 concatenation of the given strings, @var{args}.
3658
3659 @example
3660 (let ((h "hello "))
3661 (string-append h "world"))
3662 @result{} "hello world"
3663 @end example
3664 @end deffn
3665
3666 @deffn {Scheme Procedure} string-append/shared . rest
3667 @deffnx {C Function} scm_string_append_shared (rest)
3668 Like @code{string-append}, but the result may share memory
3669 with the argument strings.
3670 @end deffn
3671
3672 @deffn {Scheme Procedure} string-concatenate ls
3673 @deffnx {C Function} scm_string_concatenate (ls)
3674 Append the elements of @var{ls} (which must be strings)
3675 together into a single string. Guaranteed to return a freshly
3676 allocated string.
3677 @end deffn
3678
3679 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3680 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3681 Without optional arguments, this procedure is equivalent to
3682
3683 @lisp
3684 (string-concatenate (reverse ls))
3685 @end lisp
3686
3687 If the optional argument @var{final_string} is specified, it is
3688 consed onto the beginning to @var{ls} before performing the
3689 list-reverse and string-concatenate operations. If @var{end}
3690 is given, only the characters of @var{final_string} up to index
3691 @var{end} are used.
3692
3693 Guaranteed to return a freshly allocated string.
3694 @end deffn
3695
3696 @deffn {Scheme Procedure} string-concatenate/shared ls
3697 @deffnx {C Function} scm_string_concatenate_shared (ls)
3698 Like @code{string-concatenate}, but the result may share memory
3699 with the strings in the list @var{ls}.
3700 @end deffn
3701
3702 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3703 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3704 Like @code{string-concatenate-reverse}, but the result may
3705 share memory with the strings in the @var{ls} arguments.
3706 @end deffn
3707
3708 @node Mapping Folding and Unfolding
3709 @subsubsection Mapping, Folding, and Unfolding
3710
3711 @deffn {Scheme Procedure} string-map proc s [start [end]]
3712 @deffnx {C Function} scm_string_map (proc, s, start, end)
3713 @var{proc} is a char->char procedure, it is mapped over
3714 @var{s}. The order in which the procedure is applied to the
3715 string elements is not specified.
3716 @end deffn
3717
3718 @deffn {Scheme Procedure} string-map! proc s [start [end]]
3719 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
3720 @var{proc} is a char->char procedure, it is mapped over
3721 @var{s}. The order in which the procedure is applied to the
3722 string elements is not specified. The string @var{s} is
3723 modified in-place, the return value is not specified.
3724 @end deffn
3725
3726 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
3727 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
3728 @var{proc} is mapped over @var{s} in left-to-right order. The
3729 return value is not specified.
3730 @end deffn
3731
3732 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3733 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
3734 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3735 right.
3736
3737 For example, to change characters to alternately upper and lower case,
3738
3739 @example
3740 (define str (string-copy "studly"))
3741 (string-for-each-index
3742 (lambda (i)
3743 (string-set! str i
3744 ((if (even? i) char-upcase char-downcase)
3745 (string-ref str i))))
3746 str)
3747 str @result{} "StUdLy"
3748 @end example
3749 @end deffn
3750
3751 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3752 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3753 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3754 as the terminating element, from left to right. @var{kons}
3755 must expect two arguments: The actual character and the last
3756 result of @var{kons}' application.
3757 @end deffn
3758
3759 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3760 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3761 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3762 as the terminating element, from right to left. @var{kons}
3763 must expect two arguments: The actual character and the last
3764 result of @var{kons}' application.
3765 @end deffn
3766
3767 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3768 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3769 @itemize @bullet
3770 @item @var{g} is used to generate a series of @emph{seed}
3771 values from the initial @var{seed}: @var{seed}, (@var{g}
3772 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3773 @dots{}
3774 @item @var{p} tells us when to stop -- when it returns true
3775 when applied to one of these seed values.
3776 @item @var{f} maps each seed value to the corresponding
3777 character in the result string. These chars are assembled
3778 into the string in a left-to-right order.
3779 @item @var{base} is the optional initial/leftmost portion
3780 of the constructed string; it default to the empty
3781 string.
3782 @item @var{make_final} is applied to the terminal seed
3783 value (on which @var{p} returns true) to produce
3784 the final/rightmost portion of the constructed string.
3785 The default is nothing extra.
3786 @end itemize
3787 @end deffn
3788
3789 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3790 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3791 @itemize @bullet
3792 @item @var{g} is used to generate a series of @emph{seed}
3793 values from the initial @var{seed}: @var{seed}, (@var{g}
3794 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3795 @dots{}
3796 @item @var{p} tells us when to stop -- when it returns true
3797 when applied to one of these seed values.
3798 @item @var{f} maps each seed value to the corresponding
3799 character in the result string. These chars are assembled
3800 into the string in a right-to-left order.
3801 @item @var{base} is the optional initial/rightmost portion
3802 of the constructed string; it default to the empty
3803 string.
3804 @item @var{make_final} is applied to the terminal seed
3805 value (on which @var{p} returns true) to produce
3806 the final/leftmost portion of the constructed string.
3807 It defaults to @code{(lambda (x) )}.
3808 @end itemize
3809 @end deffn
3810
3811 @node Miscellaneous String Operations
3812 @subsubsection Miscellaneous String Operations
3813
3814 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3815 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3816 This is the @emph{extended substring} procedure that implements
3817 replicated copying of a substring of some string.
3818
3819 @var{s} is a string, @var{start} and @var{end} are optional
3820 arguments that demarcate a substring of @var{s}, defaulting to
3821 0 and the length of @var{s}. Replicate this substring up and
3822 down index space, in both the positive and negative directions.
3823 @code{xsubstring} returns the substring of this string
3824 beginning at index @var{from}, and ending at @var{to}, which
3825 defaults to @var{from} + (@var{end} - @var{start}).
3826 @end deffn
3827
3828 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3829 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3830 Exactly the same as @code{xsubstring}, but the extracted text
3831 is written into the string @var{target} starting at index
3832 @var{tstart}. The operation is not defined if @code{(eq?
3833 @var{target} @var{s})} or these arguments share storage -- you
3834 cannot copy a string on top of itself.
3835 @end deffn
3836
3837 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3838 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3839 Return the string @var{s1}, but with the characters
3840 @var{start1} @dots{} @var{end1} replaced by the characters
3841 @var{start2} @dots{} @var{end2} from @var{s2}.
3842 @end deffn
3843
3844 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3845 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3846 Split the string @var{s} into a list of substrings, where each
3847 substring is a maximal non-empty contiguous sequence of
3848 characters from the character set @var{token_set}, which
3849 defaults to @code{char-set:graphic}.
3850 If @var{start} or @var{end} indices are provided, they restrict
3851 @code{string-tokenize} to operating on the indicated substring
3852 of @var{s}.
3853 @end deffn
3854
3855 @deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3856 @deffnx {C Function} scm_string_filter (s, char_pred, start, end)
3857 Filter the string @var{s}, retaining only those characters which
3858 satisfy @var{char_pred}.
3859
3860 If @var{char_pred} is a procedure, it is applied to each character as
3861 a predicate, if it is a character, it is tested for equality and if it
3862 is a character set, it is tested for membership.
3863 @end deffn
3864
3865 @deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3866 @deffnx {C Function} scm_string_delete (s, char_pred, start, end)
3867 Delete characters satisfying @var{char_pred} from @var{s}.
3868
3869 If @var{char_pred} is a procedure, it is applied to each character as
3870 a predicate, if it is a character, it is tested for equality and if it
3871 is a character set, it is tested for membership.
3872 @end deffn
3873
3874 @node Conversion to/from C
3875 @subsubsection Conversion to/from C
3876
3877 When creating a Scheme string from a C string or when converting a
3878 Scheme string to a C string, the concept of character encoding becomes
3879 important.
3880
3881 In C, a string is just a sequence of bytes, and the character encoding
3882 describes the relation between these bytes and the actual characters
3883 that make up the string. For Scheme strings, character encoding is
3884 not an issue (most of the time), since in Scheme you never get to see
3885 the bytes, only the characters.
3886
3887 Converting to C and converting from C each have their own challenges.
3888
3889 When converting from C to Scheme, it is important that the sequence of
3890 bytes in the C string be valid with respect to its encoding. ASCII
3891 strings, for example, can't have any bytes greater than 127. An ASCII
3892 byte greater than 127 is considered @emph{ill-formed} and cannot be
3893 converted into a Scheme character.
3894
3895 Problems can occur in the reverse operation as well. Not all character
3896 encodings can hold all possible Scheme characters. Some encodings, like
3897 ASCII for example, can only describe a small subset of all possible
3898 characters. So, when converting to C, one must first decide what to do
3899 with Scheme characters that can't be represented in the C string.
3900
3901 Converting a Scheme string to a C string will often allocate fresh
3902 memory to hold the result. You must take care that this memory is
3903 properly freed eventually. In many cases, this can be achieved by
3904 using @code{scm_dynwind_free} inside an appropriate dynwind context,
3905 @xref{Dynamic Wind}.
3906
3907 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3908 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3909 Creates a new Scheme string that has the same contents as @var{str} when
3910 interpreted in the locale character encoding of the
3911 @code{current-input-port}.
3912
3913 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3914
3915 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3916 @var{str} in bytes, and @var{str} does not need to be null-terminated.
3917 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3918 null-terminated and the real length will be found with @code{strlen}.
3919
3920 If the C string is ill-formed, an error will be raised.
3921 @end deftypefn
3922
3923 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
3924 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3925 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3926 respectively, but also frees @var{str} with @code{free} eventually.
3927 Thus, you can use this function when you would free @var{str} anyway
3928 immediately after creating the Scheme string. In certain cases, Guile
3929 can then use @var{str} directly as its internal representation.
3930 @end deftypefn
3931
3932 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3933 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
3934 Returns a C string with the same contents as @var{str} in the locale
3935 encoding of the @code{current-output-port}. The C string must be freed
3936 with @code{free} eventually, maybe by using @code{scm_dynwind_free},
3937 @xref{Dynamic Wind}.
3938
3939 For @code{scm_to_locale_string}, the returned string is
3940 null-terminated and an error is signalled when @var{str} contains
3941 @code{#\nul} characters.
3942
3943 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3944 @var{str} might contain @code{#\nul} characters and the length of the
3945 returned string in bytes is stored in @code{*@var{lenp}}. The
3946 returned string will not be null-terminated in this case. If
3947 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3948 @code{scm_to_locale_string}.
3949
3950 If a character in @var{str} cannot be represented in the locale encoding
3951 of the current output port, the port conversion strategy of the current
3952 output port will determine the result, @xref{Ports}. If output port's
3953 conversion strategy is @code{error}, an error will be raised. If it is
3954 @code{subsitute}, a replacement character, such as a question mark, will
3955 be inserted in its place. If it is @code{escape}, a hex escape will be
3956 inserted in its place.
3957 @end deftypefn
3958
3959 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3960 Puts @var{str} as a C string in the current locale encoding into the
3961 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3962 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3963 more than that. No terminating @code{'\0'} will be stored.
3964
3965 The return value of @code{scm_to_locale_stringbuf} is the number of
3966 bytes that are needed for all of @var{str}, regardless of whether
3967 @var{buf} was large enough to hold them. Thus, when the return value
3968 is larger than @var{max_len}, only @var{max_len} bytes have been
3969 stored and you probably need to try again with a larger buffer.
3970 @end deftypefn
3971
3972 @node String Internals
3973 @subsubsection String Internals
3974
3975 Guile stores each string in memory as a contiguous array of Unicode code
3976 points along with an associated set of attributes. If all of the code
3977 points of a string have an integer range between 0 and 255 inclusive,
3978 the code point array is stored as one byte per code point: it is stored
3979 as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
3980 string has an integer value greater that 255, the code point array is
3981 stored as four bytes per code point: it is stored as a UTF-32 string.
3982
3983 Conversion between the one-byte-per-code-point and
3984 four-bytes-per-code-point representations happens automatically as
3985 necessary.
3986
3987 No API is provided to set the internal representation of strings;
3988 however, there are pair of procedures available to query it. These are
3989 debugging procedures. Using them in production code is discouraged,
3990 since the details of Guile's internal representation of strings may
3991 change from release to release.
3992
3993 @deffn {Scheme Procedure} string-bytes-per-char str
3994 @deffnx {C Function} scm_string_bytes_per_char (str)
3995 Return the number of bytes used to encode a Unicode code point in string
3996 @var{str}. The result is one or four.
3997 @end deffn
3998
3999 @deffn {Scheme Procedure} %string-dump str
4000 @deffnx {C Function} scm_sys_string_dump (str)
4001 Returns an association list containing debugging information for
4002 @var{str}. The association list has the following entries.
4003 @table @code
4004
4005 @item string
4006 The string itself.
4007
4008 @item start
4009 The start index of the string into its stringbuf
4010
4011 @item length
4012 The length of the string
4013
4014 @item shared
4015 If this string is a substring, it returns its
4016 parent string. Otherwise, it returns @code{#f}
4017
4018 @item read-only
4019 @code{#t} if the string is read-only
4020
4021 @item stringbuf-chars
4022 A new string containing this string's stringbuf's characters
4023
4024 @item stringbuf-length
4025 The number of characters in this stringbuf
4026
4027 @item stringbuf-shared
4028 @code{#t} if this stringbuf is shared
4029
4030 @item stringbuf-wide
4031 @code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4032 or @code{#f} if they are stored in an 8-bit buffer
4033 @end table
4034 @end deffn
4035
4036
4037 @node Bytevectors
4038 @subsection Bytevectors
4039
4040 @cindex bytevector
4041 @cindex R6RS
4042
4043 A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
4044 module provides the programming interface specified by the
4045 @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
4046 Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4047 interpret their contents in a number of ways: bytevector contents can be
4048 accessed as signed or unsigned integer of various sizes and endianness,
4049 as IEEE-754 floating point numbers, or as strings. It is a useful tool
4050 to encode and decode binary data.
4051
4052 The R6RS (Section 4.3.4) specifies an external representation for
4053 bytevectors, whereby the octets (integers in the range 0--255) contained
4054 in the bytevector are represented as a list prefixed by @code{#vu8}:
4055
4056 @lisp
4057 #vu8(1 53 204)
4058 @end lisp
4059
4060 denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4061 string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4062 they do not need to be quoted:
4063
4064 @lisp
4065 #vu8(1 53 204)
4066 @result{} #vu8(1 53 204)
4067 @end lisp
4068
4069 Bytevectors can be used with the binary input/output primitives of the
4070 R6RS (@pxref{R6RS I/O Ports}).
4071
4072 @menu
4073 * Bytevector Endianness:: Dealing with byte order.
4074 * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4075 * Bytevectors as Integers:: Interpreting bytes as integers.
4076 * Bytevectors and Integer Lists:: Converting to/from an integer list.
4077 * Bytevectors as Floats:: Interpreting bytes as real numbers.
4078 * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
4079 * Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
4080 * Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
4081 @end menu
4082
4083 @node Bytevector Endianness
4084 @subsubsection Endianness
4085
4086 @cindex endianness
4087 @cindex byte order
4088 @cindex word order
4089
4090 Some of the following procedures take an @var{endianness} parameter.
4091 The @dfn{endianness} is defined as the order of bytes in multi-byte
4092 numbers: numbers encoded in @dfn{big endian} have their most
4093 significant bytes written first, whereas numbers encoded in
4094 @dfn{little endian} have their least significant bytes
4095 first@footnote{Big-endian and little-endian are the most common
4096 ``endiannesses'', but others do exist. For instance, the GNU MP
4097 library allows @dfn{word order} to be specified independently of
4098 @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4099 Multiple Precision Arithmetic Library Manual}).}.
4100
4101 Little-endian is the native endianness of the IA32 architecture and
4102 its derivatives, while big-endian is native to SPARC and PowerPC,
4103 among others. The @code{native-endianness} procedure returns the
4104 native endianness of the machine it runs on.
4105
4106 @deffn {Scheme Procedure} native-endianness
4107 @deffnx {C Function} scm_native_endianness ()
4108 Return a value denoting the native endianness of the host machine.
4109 @end deffn
4110
4111 @deffn {Scheme Macro} endianness symbol
4112 Return an object denoting the endianness specified by @var{symbol}. If
4113 @var{symbol} is neither @code{big} nor @code{little} then an error is
4114 raised at expand-time.
4115 @end deffn
4116
4117 @defvr {C Variable} scm_endianness_big
4118 @defvrx {C Variable} scm_endianness_little
4119 The objects denoting big- and little-endianness, respectively.
4120 @end defvr
4121
4122
4123 @node Bytevector Manipulation
4124 @subsubsection Manipulating Bytevectors
4125
4126 Bytevectors can be created, copied, and analyzed with the following
4127 procedures and C functions.
4128
4129 @deffn {Scheme Procedure} make-bytevector len [fill]
4130 @deffnx {C Function} scm_make_bytevector (len, fill)
4131 @deffnx {C Function} scm_c_make_bytevector (size_t len)
4132 Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
4133 is given, fill it with @var{fill}; @var{fill} must be in the range
4134 [-128,255].
4135 @end deffn
4136
4137 @deffn {Scheme Procedure} bytevector? obj
4138 @deffnx {C Function} scm_bytevector_p (obj)
4139 Return true if @var{obj} is a bytevector.
4140 @end deffn
4141
4142 @deftypefn {C Function} int scm_is_bytevector (SCM obj)
4143 Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4144 @end deftypefn
4145
4146 @deffn {Scheme Procedure} bytevector-length bv
4147 @deffnx {C Function} scm_bytevector_length (bv)
4148 Return the length in bytes of bytevector @var{bv}.
4149 @end deffn
4150
4151 @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4152 Likewise, return the length in bytes of bytevector @var{bv}.
4153 @end deftypefn
4154
4155 @deffn {Scheme Procedure} bytevector=? bv1 bv2
4156 @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4157 Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4158 length and contents.
4159 @end deffn
4160
4161 @deffn {Scheme Procedure} bytevector-fill! bv fill
4162 @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4163 Fill bytevector @var{bv} with @var{fill}, a byte.
4164 @end deffn
4165
4166 @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4167 @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4168 Copy @var{len} bytes from @var{source} into @var{target}, starting
4169 reading from @var{source-start} (a positive index within @var{source})
4170 and start writing at @var{target-start}.
4171 @end deffn
4172
4173 @deffn {Scheme Procedure} bytevector-copy bv
4174 @deffnx {C Function} scm_bytevector_copy (bv)
4175 Return a newly allocated copy of @var{bv}.
4176 @end deffn
4177
4178 @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4179 Return the byte at @var{index} in bytevector @var{bv}.
4180 @end deftypefn
4181
4182 @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4183 Set the byte at @var{index} in @var{bv} to @var{value}.
4184 @end deftypefn
4185
4186 Low-level C macros are available. They do not perform any
4187 type-checking; as such they should be used with care.
4188
4189 @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4190 Return the length in bytes of bytevector @var{bv}.
4191 @end deftypefn
4192
4193 @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4194 Return a pointer to the contents of bytevector @var{bv}.
4195 @end deftypefn
4196
4197
4198 @node Bytevectors as Integers
4199 @subsubsection Interpreting Bytevector Contents as Integers
4200
4201 The contents of a bytevector can be interpreted as a sequence of
4202 integers of any given size, sign, and endianness.
4203
4204 @lisp
4205 (let ((bv (make-bytevector 4)))
4206 (bytevector-u8-set! bv 0 #x12)
4207 (bytevector-u8-set! bv 1 #x34)
4208 (bytevector-u8-set! bv 2 #x56)
4209 (bytevector-u8-set! bv 3 #x78)
4210
4211 (map (lambda (number)
4212 (number->string number 16))
4213 (list (bytevector-u8-ref bv 0)
4214 (bytevector-u16-ref bv 0 (endianness big))
4215 (bytevector-u32-ref bv 0 (endianness little)))))
4216
4217 @result{} ("12" "1234" "78563412")
4218 @end lisp
4219
4220 The most generic procedures to interpret bytevector contents as integers
4221 are described below.
4222
4223 @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4224 @deffnx {Scheme Procedure} bytevector-sint-ref bv index endianness size
4225 @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4226 @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4227 Return the @var{size}-byte long unsigned (resp. signed) integer at
4228 index @var{index} in @var{bv}, decoded according to @var{endianness}.
4229 @end deffn
4230
4231 @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4232 @deffnx {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4233 @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4234 @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4235 Set the @var{size}-byte long unsigned (resp. signed) integer at
4236 @var{index} to @var{value}, encoded according to @var{endianness}.
4237 @end deffn
4238
4239 The following procedures are similar to the ones above, but specialized
4240 to a given integer size:
4241
4242 @deffn {Scheme Procedure} bytevector-u8-ref bv index
4243 @deffnx {Scheme Procedure} bytevector-s8-ref bv index
4244 @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4245 @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4246 @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4247 @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4248 @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4249 @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4250 @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4251 @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4252 @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4253 @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4254 @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4255 @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4256 @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4257 @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4258 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4259 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
4260 @var{endianness}.
4261 @end deffn
4262
4263 @deffn {Scheme Procedure} bytevector-u8-set! bv index value
4264 @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4265 @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4266 @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4267 @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4268 @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4269 @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4270 @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4271 @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4272 @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4273 @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4274 @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4275 @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4276 @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4277 @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4278 @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4279 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4280 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4281 @var{endianness}.
4282 @end deffn
4283
4284 Finally, a variant specialized for the host's endianness is available
4285 for each of these functions (with the exception of the @code{u8}
4286 accessors, for obvious reasons):
4287
4288 @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4289 @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4290 @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4291 @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4292 @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4293 @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4294 @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4295 @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4296 @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4297 @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4298 @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4299 @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4300 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4301 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4302 host's native endianness.
4303 @end deffn
4304
4305 @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4306 @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4307 @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4308 @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4309 @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4310 @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4311 @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4312 @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4313 @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4314 @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4315 @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4316 @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4317 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4318 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4319 host's native endianness.
4320 @end deffn
4321
4322
4323 @node Bytevectors and Integer Lists
4324 @subsubsection Converting Bytevectors to/from Integer Lists
4325
4326 Bytevector contents can readily be converted to/from lists of signed or
4327 unsigned integers:
4328
4329 @lisp
4330 (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4331 (endianness little) 2)
4332 @result{} (-1 -1)
4333 @end lisp
4334
4335 @deffn {Scheme Procedure} bytevector->u8-list bv
4336 @deffnx {C Function} scm_bytevector_to_u8_list (bv)
4337 Return a newly allocated list of unsigned 8-bit integers from the
4338 contents of @var{bv}.
4339 @end deffn
4340
4341 @deffn {Scheme Procedure} u8-list->bytevector lst
4342 @deffnx {C Function} scm_u8_list_to_bytevector (lst)
4343 Return a newly allocated bytevector consisting of the unsigned 8-bit
4344 integers listed in @var{lst}.
4345 @end deffn
4346
4347 @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4348 @deffnx {Scheme Procedure} bytevector->sint-list bv endianness size
4349 @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4350 @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4351 Return a list of unsigned (resp. signed) integers of @var{size} bytes
4352 representing the contents of @var{bv}, decoded according to
4353 @var{endianness}.
4354 @end deffn
4355
4356 @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4357 @deffnx {Scheme Procedure} sint-list->bytevector lst endianness size
4358 @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4359 @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4360 Return a new bytevector containing the unsigned (resp. signed) integers
4361 listed in @var{lst} and encoded on @var{size} bytes according to
4362 @var{endianness}.
4363 @end deffn
4364
4365 @node Bytevectors as Floats
4366 @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4367
4368 @cindex IEEE-754 floating point numbers
4369
4370 Bytevector contents can also be accessed as IEEE-754 single- or
4371 double-precision floating point numbers (respectively 32 and 64-bit
4372 long) using the procedures described here.
4373
4374 @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4375 @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4376 @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4377 @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4378 Return the IEEE-754 single-precision floating point number from @var{bv}
4379 at @var{index} according to @var{endianness}.
4380 @end deffn
4381
4382 @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4383 @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4384 @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4385 @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4386 Store real number @var{value} in @var{bv} at @var{index} according to
4387 @var{endianness}.
4388 @end deffn
4389
4390 Specialized procedures are also available:
4391
4392 @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4393 @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4394 @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4395 @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4396 Return the IEEE-754 single-precision floating point number from @var{bv}
4397 at @var{index} according to the host's native endianness.
4398 @end deffn
4399
4400 @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4401 @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4402 @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4403 @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4404 Store real number @var{value} in @var{bv} at @var{index} according to
4405 the host's native endianness.
4406 @end deffn
4407
4408
4409 @node Bytevectors as Strings
4410 @subsubsection Interpreting Bytevector Contents as Unicode Strings
4411
4412 @cindex Unicode string encoding
4413
4414 Bytevector contents can also be interpreted as Unicode strings encoded
4415 in one of the most commonly available encoding formats.
4416
4417 @lisp
4418 (utf8->string (u8-list->bytevector '(99 97 102 101)))
4419 @result{} "cafe"
4420
4421 (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4422 @result{} #vu8(99 97 102 195 169)
4423 @end lisp
4424
4425 @deffn {Scheme Procedure} string->utf8 str
4426 @deffnx {Scheme Procedure} string->utf16 str [endianness]
4427 @deffnx {Scheme Procedure} string->utf32 str [endianness]
4428 @deffnx {C Function} scm_string_to_utf8 (str)
4429 @deffnx {C Function} scm_string_to_utf16 (str, endianness)
4430 @deffnx {C Function} scm_string_to_utf32 (str, endianness)
4431 Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4432 UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4433 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4434 it defaults to big endian.
4435 @end deffn
4436
4437 @deffn {Scheme Procedure} utf8->string utf
4438 @deffnx {Scheme Procedure} utf16->string utf [endianness]
4439 @deffnx {Scheme Procedure} utf32->string utf [endianness]
4440 @deffnx {C Function} scm_utf8_to_string (utf)
4441 @deffnx {C Function} scm_utf16_to_string (utf, endianness)
4442 @deffnx {C Function} scm_utf32_to_string (utf, endianness)
4443 Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4444 or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4445 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4446 it defaults to big endian.
4447 @end deffn
4448
4449 @node Bytevectors as Generalized Vectors
4450 @subsubsection Accessing Bytevectors with the Generalized Vector API
4451
4452 As an extension to the R6RS, Guile allows bytevectors to be manipulated
4453 with the @dfn{generalized vector} procedures (@pxref{Generalized
4454 Vectors}). This also allows bytevectors to be accessed using the
4455 generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4456 these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4457
4458 @example
4459 (define bv #vu8(0 1 2 3))
4460
4461 (generalized-vector? bv)
4462 @result{} #t
4463
4464 (generalized-vector-ref bv 2)
4465 @result{} 2
4466
4467 (generalized-vector-set! bv 2 77)
4468 (array-ref bv 2)
4469 @result{} 77
4470
4471 (array-type bv)
4472 @result{} vu8
4473 @end example
4474
4475
4476 @node Bytevectors as Uniform Vectors
4477 @subsubsection Accessing Bytevectors with the SRFI-4 API
4478
4479 Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4480 Bytevectors}, for more information.
4481
4482
4483 @node Regular Expressions
4484 @subsection Regular Expressions
4485 @tpindex Regular expressions
4486
4487 @cindex regular expressions
4488 @cindex regex
4489 @cindex emacs regexp
4490
4491 A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
4492 describes a whole class of strings. A full description of regular
4493 expressions and their syntax is beyond the scope of this manual;
4494 an introduction can be found in the Emacs manual (@pxref{Regexps,
4495 , Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
4496 in many general Unix reference books.
4497
4498 If your system does not include a POSIX regular expression library,
4499 and you have not linked Guile with a third-party regexp library such
4500 as Rx, these functions will not be available. You can tell whether
4501 your Guile installation includes regular expression support by
4502 checking whether @code{(provided? 'regex)} returns true.
4503
4504 The following regexp and string matching features are provided by the
4505 @code{(ice-9 regex)} module. Before using the described functions,
4506 you should load this module by executing @code{(use-modules (ice-9
4507 regex))}.
4508
4509 @menu
4510 * Regexp Functions:: Functions that create and match regexps.
4511 * Match Structures:: Finding what was matched by a regexp.
4512 * Backslash Escapes:: Removing the special meaning of regexp
4513 meta-characters.
4514 @end menu
4515
4516
4517 @node Regexp Functions
4518 @subsubsection Regexp Functions
4519
4520 By default, Guile supports POSIX extended regular expressions.
4521 That means that the characters @samp{(}, @samp{)}, @samp{+} and
4522 @samp{?} are special, and must be escaped if you wish to match the
4523 literal characters.
4524
4525 This regular expression interface was modeled after that
4526 implemented by SCSH, the Scheme Shell. It is intended to be
4527 upwardly compatible with SCSH regular expressions.
4528
4529 Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
4530 strings, since the underlying C functions treat that as the end of
4531 string. If there's a zero byte an error is thrown.
4532
4533 Patterns and input strings are treated as being in the locale
4534 character set if @code{setlocale} has been called (@pxref{Locales}),
4535 and in a multibyte locale this includes treating multi-byte sequences
4536 as a single character. (Guile strings are currently merely bytes,
4537 though this may change in the future, @xref{Conversion to/from C}.)
4538
4539 @deffn {Scheme Procedure} string-match pattern str [start]
4540 Compile the string @var{pattern} into a regular expression and compare
4541 it with @var{str}. The optional numeric argument @var{start} specifies
4542 the position of @var{str} at which to begin matching.
4543
4544 @code{string-match} returns a @dfn{match structure} which
4545 describes what, if anything, was matched by the regular
4546 expression. @xref{Match Structures}. If @var{str} does not match
4547 @var{pattern} at all, @code{string-match} returns @code{#f}.
4548 @end deffn
4549
4550 Two examples of a match follow. In the first example, the pattern
4551 matches the four digits in the match string. In the second, the pattern
4552 matches nothing.
4553
4554 @example
4555 (string-match "[0-9][0-9][0-9][0-9]" "blah2002")
4556 @result{} #("blah2002" (4 . 8))
4557
4558 (string-match "[A-Za-z]" "123456")
4559 @result{} #f
4560 @end example
4561
4562 Each time @code{string-match} is called, it must compile its
4563 @var{pattern} argument into a regular expression structure. This
4564 operation is expensive, which makes @code{string-match} inefficient if
4565 the same regular expression is used several times (for example, in a
4566 loop). For better performance, you can compile a regular expression in
4567 advance and then match strings against the compiled regexp.
4568
4569 @deffn {Scheme Procedure} make-regexp pat flag@dots{}
4570 @deffnx {C Function} scm_make_regexp (pat, flaglst)
4571 Compile the regular expression described by @var{pat}, and
4572 return the compiled regexp structure. If @var{pat} does not
4573 describe a legal regular expression, @code{make-regexp} throws
4574 a @code{regular-expression-syntax} error.
4575
4576 The @var{flag} arguments change the behavior of the compiled
4577 regular expression. The following values may be supplied:
4578
4579 @defvar regexp/icase
4580 Consider uppercase and lowercase letters to be the same when
4581 matching.
4582 @end defvar
4583
4584 @defvar regexp/newline
4585 If a newline appears in the target string, then permit the
4586 @samp{^} and @samp{$} operators to match immediately after or
4587 immediately before the newline, respectively. Also, the
4588 @samp{.} and @samp{[^...]} operators will never match a newline
4589 character. The intent of this flag is to treat the target
4590 string as a buffer containing many lines of text, and the
4591 regular expression as a pattern that may match a single one of
4592 those lines.
4593 @end defvar
4594
4595 @defvar regexp/basic
4596 Compile a basic (``obsolete'') regexp instead of the extended
4597 (``modern'') regexps that are the default. Basic regexps do
4598 not consider @samp{|}, @samp{+} or @samp{?} to be special
4599 characters, and require the @samp{@{...@}} and @samp{(...)}
4600 metacharacters to be backslash-escaped (@pxref{Backslash
4601 Escapes}). There are several other differences between basic
4602 and extended regular expressions, but these are the most
4603 significant.
4604 @end defvar
4605
4606 @defvar regexp/extended
4607 Compile an extended regular expression rather than a basic
4608 regexp. This is the default behavior; this flag will not
4609 usually be needed. If a call to @code{make-regexp} includes
4610 both @code{regexp/basic} and @code{regexp/extended} flags, the
4611 one which comes last will override the earlier one.
4612 @end defvar
4613 @end deffn
4614
4615 @deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
4616 @deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
4617 Match the compiled regular expression @var{rx} against
4618 @code{str}. If the optional integer @var{start} argument is
4619 provided, begin matching from that position in the string.
4620 Return a match structure describing the results of the match,
4621 or @code{#f} if no match could be found.
4622
4623 The @var{flags} argument changes the matching behavior. The following
4624 flag values may be supplied, use @code{logior} (@pxref{Bitwise
4625 Operations}) to combine them,
4626
4627 @defvar regexp/notbol
4628 Consider that the @var{start} offset into @var{str} is not the
4629 beginning of a line and should not match operator @samp{^}.
4630
4631 If @var{rx} was created with the @code{regexp/newline} option above,
4632 @samp{^} will still match after a newline in @var{str}.
4633 @end defvar
4634
4635 @defvar regexp/noteol
4636 Consider that the end of @var{str} is not the end of a line and should
4637 not match operator @samp{$}.
4638
4639 If @var{rx} was created with the @code{regexp/newline} option above,
4640 @samp{$} will still match before a newline in @var{str}.
4641 @end defvar
4642 @end deffn
4643
4644 @lisp
4645 ;; Regexp to match uppercase letters
4646 (define r (make-regexp "[A-Z]*"))
4647
4648 ;; Regexp to match letters, ignoring case
4649 (define ri (make-regexp "[A-Z]*" regexp/icase))
4650
4651 ;; Search for bob using regexp r
4652 (match:substring (regexp-exec r "bob"))
4653 @result{} "" ; no match
4654
4655 ;; Search for bob using regexp ri
4656 (match:substring (regexp-exec ri "Bob"))
4657 @result{} "Bob" ; matched case insensitive
4658 @end lisp
4659
4660 @deffn {Scheme Procedure} regexp? obj
4661 @deffnx {C Function} scm_regexp_p (obj)
4662 Return @code{#t} if @var{obj} is a compiled regular expression,
4663 or @code{#f} otherwise.
4664 @end deffn
4665
4666 @sp 1
4667 @deffn {Scheme Procedure} list-matches regexp str [flags]
4668 Return a list of match structures which are the non-overlapping
4669 matches of @var{regexp} in @var{str}. @var{regexp} can be either a
4670 pattern string or a compiled regexp. The @var{flags} argument is as
4671 per @code{regexp-exec} above.
4672
4673 @example
4674 (map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
4675 @result{} ("abc" "def")
4676 @end example
4677 @end deffn
4678
4679 @deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
4680 Apply @var{proc} to the non-overlapping matches of @var{regexp} in
4681 @var{str}, to build a result. @var{regexp} can be either a pattern
4682 string or a compiled regexp. The @var{flags} argument is as per
4683 @code{regexp-exec} above.
4684
4685 @var{proc} is called as @code{(@var{proc} match prev)} where
4686 @var{match} is a match structure and @var{prev} is the previous return
4687 from @var{proc}. For the first call @var{prev} is the given
4688 @var{init} parameter. @code{fold-matches} returns the final value
4689 from @var{proc}.
4690
4691 For example to count matches,
4692
4693 @example
4694 (fold-matches "[a-z][0-9]" "abc x1 def y2" 0
4695 (lambda (match count)
4696 (1+ count)))
4697 @result{} 2
4698 @end example
4699 @end deffn
4700
4701 @sp 1
4702 Regular expressions are commonly used to find patterns in one string
4703 and replace them with the contents of another string. The following
4704 functions are convenient ways to do this.
4705
4706 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
4707 @deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
4708 Write to @var{port} selected parts of the match structure @var{match}.
4709 Or if @var{port} is @code{#f} then form a string from those parts and
4710 return that.
4711
4712 Each @var{item} specifies a part to be written, and may be one of the
4713 following,
4714
4715 @itemize @bullet
4716 @item
4717 A string. String arguments are written out verbatim.
4718
4719 @item
4720 An integer. The submatch with that number is written
4721 (@code{match:substring}). Zero is the entire match.
4722
4723 @item
4724 The symbol @samp{pre}. The portion of the matched string preceding
4725 the regexp match is written (@code{match:prefix}).
4726
4727 @item
4728 The symbol @samp{post}. The portion of the matched string following
4729 the regexp match is written (@code{match:suffix}).
4730 @end itemize
4731
4732 For example, changing a match and retaining the text before and after,
4733
4734 @example
4735 (regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
4736 'pre "37" 'post)
4737 @result{} "number 37 is good"
4738 @end example
4739
4740 Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
4741 re-ordering and hyphenating the fields.
4742
4743 @lisp
4744 (define date-regex
4745 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4746 (define s "Date 20020429 12am.")
4747 (regexp-substitute #f (string-match date-regex s)
4748 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4749 @result{} "Date 04-29-2002 12am. (20020429)"
4750 @end lisp
4751 @end deffn
4752
4753
4754 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
4755 @deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
4756 @cindex search and replace
4757 Write to @var{port} selected parts of matches of @var{regexp} in
4758 @var{target}. If @var{port} is @code{#f} then form a string from
4759 those parts and return that. @var{regexp} can be a string or a
4760 compiled regex.
4761
4762 This is similar to @code{regexp-substitute}, but allows global
4763 substitutions on @var{target}. Each @var{item} behaves as per
4764 @code{regexp-substitute}, with the following differences,
4765
4766 @itemize @bullet
4767 @item
4768 A function. Called as @code{(@var{item} match)} with the match
4769 structure for the @var{regexp} match, it should return a string to be
4770 written to @var{port}.
4771
4772 @item
4773 The symbol @samp{post}. This doesn't output anything, but instead
4774 causes @code{regexp-substitute/global} to recurse on the unmatched
4775 portion of @var{target}.
4776
4777 This @emph{must} be supplied to perform a global search and replace on
4778 @var{target}; without it @code{regexp-substitute/global} returns after
4779 a single match and output.
4780 @end itemize
4781
4782 For example, to collapse runs of tabs and spaces to a single hyphen
4783 each,
4784
4785 @example
4786 (regexp-substitute/global #f "[ \t]+" "this is the text"
4787 'pre "-" 'post)
4788 @result{} "this-is-the-text"
4789 @end example
4790
4791 Or using a function to reverse the letters in each word,
4792
4793 @example
4794 (regexp-substitute/global #f "[a-z]+" "to do and not-do"
4795 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4796 @result{} "ot od dna ton-od"
4797 @end example
4798
4799 Without the @code{post} symbol, just one regexp match is made. For
4800 example the following is the date example from
4801 @code{regexp-substitute} above, without the need for the separate
4802 @code{string-match} call.
4803
4804 @lisp
4805 (define date-regex
4806 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4807 (define s "Date 20020429 12am.")
4808 (regexp-substitute/global #f date-regex s
4809 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4810
4811 @result{} "Date 04-29-2002 12am. (20020429)"
4812 @end lisp
4813 @end deffn
4814
4815
4816 @node Match Structures
4817 @subsubsection Match Structures
4818
4819 @cindex match structures
4820
4821 A @dfn{match structure} is the object returned by @code{string-match} and
4822 @code{regexp-exec}. It describes which portion of a string, if any,
4823 matched the given regular expression. Match structures include: a
4824 reference to the string that was checked for matches; the starting and
4825 ending positions of the regexp match; and, if the regexp included any
4826 parenthesized subexpressions, the starting and ending positions of each
4827 submatch.
4828
4829 In each of the regexp match functions described below, the @code{match}
4830 argument must be a match structure returned by a previous call to
4831 @code{string-match} or @code{regexp-exec}. Most of these functions
4832 return some information about the original target string that was
4833 matched against a regular expression; we will call that string
4834 @var{target} for easy reference.
4835
4836 @c begin (scm-doc-string "regex.scm" "regexp-match?")
4837 @deffn {Scheme Procedure} regexp-match? obj
4838 Return @code{#t} if @var{obj} is a match structure returned by a
4839 previous call to @code{regexp-exec}, or @code{#f} otherwise.
4840 @end deffn
4841
4842 @c begin (scm-doc-string "regex.scm" "match:substring")
4843 @deffn {Scheme Procedure} match:substring match [n]
4844 Return the portion of @var{target} matched by subexpression number
4845 @var{n}. Submatch 0 (the default) represents the entire regexp match.
4846 If the regular expression as a whole matched, but the subexpression
4847 number @var{n} did not match, return @code{#f}.
4848 @end deffn
4849
4850 @lisp
4851 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4852 (match:substring s)
4853 @result{} "2002"
4854
4855 ;; match starting at offset 6 in the string
4856 (match:substring
4857 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4858 @result{} "7654"
4859 @end lisp
4860
4861 @c begin (scm-doc-string "regex.scm" "match:start")
4862 @deffn {Scheme Procedure} match:start match [n]
4863 Return the starting position of submatch number @var{n}.
4864 @end deffn
4865
4866 In the following example, the result is 4, since the match starts at
4867 character index 4:
4868
4869 @lisp
4870 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4871 (match:start s)
4872 @result{} 4
4873 @end lisp
4874
4875 @c begin (scm-doc-string "regex.scm" "match:end")
4876 @deffn {Scheme Procedure} match:end match [n]
4877 Return the ending position of submatch number @var{n}.
4878 @end deffn
4879
4880 In the following example, the result is 8, since the match runs between
4881 characters 4 and 8 (i.e. the ``2002'').
4882
4883 @lisp
4884 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4885 (match:end s)
4886 @result{} 8
4887 @end lisp
4888
4889 @c begin (scm-doc-string "regex.scm" "match:prefix")
4890 @deffn {Scheme Procedure} match:prefix match
4891 Return the unmatched portion of @var{target} preceding the regexp match.
4892
4893 @lisp
4894 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4895 (match:prefix s)
4896 @result{} "blah"
4897 @end lisp
4898 @end deffn
4899
4900 @c begin (scm-doc-string "regex.scm" "match:suffix")
4901 @deffn {Scheme Procedure} match:suffix match
4902 Return the unmatched portion of @var{target} following the regexp match.
4903 @end deffn
4904
4905 @lisp
4906 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4907 (match:suffix s)
4908 @result{} "foo"
4909 @end lisp
4910
4911 @c begin (scm-doc-string "regex.scm" "match:count")
4912 @deffn {Scheme Procedure} match:count match
4913 Return the number of parenthesized subexpressions from @var{match}.
4914 Note that the entire regular expression match itself counts as a
4915 subexpression, and failed submatches are included in the count.
4916 @end deffn
4917
4918 @c begin (scm-doc-string "regex.scm" "match:string")
4919 @deffn {Scheme Procedure} match:string match
4920 Return the original @var{target} string.
4921 @end deffn
4922
4923 @lisp
4924 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4925 (match:string s)
4926 @result{} "blah2002foo"
4927 @end lisp
4928
4929
4930 @node Backslash Escapes
4931 @subsubsection Backslash Escapes
4932
4933 Sometimes you will want a regexp to match characters like @samp{*} or
4934 @samp{$} exactly. For example, to check whether a particular string
4935 represents a menu entry from an Info node, it would be useful to match
4936 it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4937 because the asterisk is a metacharacter, it won't match the @samp{*} at
4938 the beginning of the string. In this case, we want to make the first
4939 asterisk un-magic.
4940
4941 You can do this by preceding the metacharacter with a backslash
4942 character @samp{\}. (This is also called @dfn{quoting} the
4943 metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4944 sees a backslash in a regular expression, it considers the following
4945 glyph to be an ordinary character, no matter what special meaning it
4946 would ordinarily have. Therefore, we can make the above example work by
4947 changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4948 the regular expression engine to match only a single asterisk in the
4949 target string.
4950
4951 Since the backslash is itself a metacharacter, you may force a regexp to
4952 match a backslash in the target string by preceding the backslash with
4953 itself. For example, to find variable references in a @TeX{} program,
4954 you might want to find occurrences of the string @samp{\let\} followed
4955 by any number of alphabetic characters. The regular expression
4956 @samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4957 regexp each match a single backslash in the target string.
4958
4959 @c begin (scm-doc-string "regex.scm" "regexp-quote")
4960 @deffn {Scheme Procedure} regexp-quote str
4961 Quote each special character found in @var{str} with a backslash, and
4962 return the resulting string.
4963 @end deffn
4964
4965 @strong{Very important:} Using backslash escapes in Guile source code
4966 (as in Emacs Lisp or C) can be tricky, because the backslash character
4967 has special meaning for the Guile reader. For example, if Guile
4968 encounters the character sequence @samp{\n} in the middle of a string
4969 while processing Scheme code, it replaces those characters with a
4970 newline character. Similarly, the character sequence @samp{\t} is
4971 replaced by a horizontal tab. Several of these @dfn{escape sequences}
4972 are processed by the Guile reader before your code is executed.
4973 Unrecognized escape sequences are ignored: if the characters @samp{\*}
4974 appear in a string, they will be translated to the single character
4975 @samp{*}.
4976
4977 This translation is obviously undesirable for regular expressions, since
4978 we want to be able to include backslashes in a string in order to
4979 escape regexp metacharacters. Therefore, to make sure that a backslash
4980 is preserved in a string in your Guile program, you must use @emph{two}
4981 consecutive backslashes:
4982
4983 @lisp
4984 (define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4985 @end lisp
4986
4987 The string in this example is preprocessed by the Guile reader before
4988 any code is executed. The resulting argument to @code{make-regexp} is
4989 the string @samp{^\* [^:]*}, which is what we really want.
4990
4991 This also means that in order to write a regular expression that matches
4992 a single backslash character, the regular expression string in the
4993 source code must include @emph{four} backslashes. Each consecutive pair
4994 of backslashes gets translated by the Guile reader to a single
4995 backslash, and the resulting double-backslash is interpreted by the
4996 regexp engine as matching a single backslash character. Hence:
4997
4998 @lisp
4999 (define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
5000 @end lisp
5001
5002 The reason for the unwieldiness of this syntax is historical. Both
5003 regular expression pattern matchers and Unix string processing systems
5004 have traditionally used backslashes with the special meanings
5005 described above. The POSIX regular expression specification and ANSI C
5006 standard both require these semantics. Attempting to abandon either
5007 convention would cause other kinds of compatibility problems, possibly
5008 more severe ones. Therefore, without extending the Scheme reader to
5009 support strings with different quoting conventions (an ungainly and
5010 confusing extension when implemented in other languages), we must adhere
5011 to this cumbersome escape syntax.
5012
5013
5014 @node Symbols
5015 @subsection Symbols
5016 @tpindex Symbols
5017
5018 Symbols in Scheme are widely used in three ways: as items of discrete
5019 data, as lookup keys for alists and hash tables, and to denote variable
5020 references.
5021
5022 A @dfn{symbol} is similar to a string in that it is defined by a
5023 sequence of characters. The sequence of characters is known as the
5024 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
5025 name doesn't include any characters that could be confused with other
5026 elements of Scheme syntax --- a symbol is written in a Scheme program by
5027 writing the sequence of characters that make up the name, @emph{without}
5028 any quotation marks or other special syntax. For example, the symbol
5029 whose name is ``multiply-by-2'' is written, simply:
5030
5031 @lisp
5032 multiply-by-2
5033 @end lisp
5034
5035 Notice how this differs from a @emph{string} with contents
5036 ``multiply-by-2'', which is written with double quotation marks, like
5037 this:
5038
5039 @lisp
5040 "multiply-by-2"
5041 @end lisp
5042
5043 Looking beyond how they are written, symbols are different from strings
5044 in two important respects.
5045
5046 The first important difference is uniqueness. If the same-looking
5047 string is read twice from two different places in a program, the result
5048 is two @emph{different} string objects whose contents just happen to be
5049 the same. If, on the other hand, the same-looking symbol is read twice
5050 from two different places in a program, the result is the @emph{same}
5051 symbol object both times.
5052
5053 Given two read symbols, you can use @code{eq?} to test whether they are
5054 the same (that is, have the same name). @code{eq?} is the most
5055 efficient comparison operator in Scheme, and comparing two symbols like
5056 this is as fast as comparing, for example, two numbers. Given two
5057 strings, on the other hand, you must use @code{equal?} or
5058 @code{string=?}, which are much slower comparison operators, to
5059 determine whether the strings have the same contents.
5060
5061 @lisp
5062 (define sym1 (quote hello))
5063 (define sym2 (quote hello))
5064 (eq? sym1 sym2) @result{} #t
5065
5066 (define str1 "hello")
5067 (define str2 "hello")
5068 (eq? str1 str2) @result{} #f
5069 (equal? str1 str2) @result{} #t
5070 @end lisp
5071
5072 The second important difference is that symbols, unlike strings, are not
5073 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5074 example above: @code{(quote hello)} evaluates to the symbol named
5075 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5076 symbol named "hello" and evaluated as a variable reference @dots{} about
5077 which more below (@pxref{Symbol Variables}).
5078
5079 @menu
5080 * Symbol Data:: Symbols as discrete data.
5081 * Symbol Keys:: Symbols as lookup keys.
5082 * Symbol Variables:: Symbols as denoting variables.
5083 * Symbol Primitives:: Operations related to symbols.
5084 * Symbol Props:: Function slots and property lists.
5085 * Symbol Read Syntax:: Extended read syntax for symbols.
5086 * Symbol Uninterned:: Uninterned symbols.
5087 @end menu
5088
5089
5090 @node Symbol Data
5091 @subsubsection Symbols as Discrete Data
5092
5093 Numbers and symbols are similar to the extent that they both lend
5094 themselves to @code{eq?} comparison. But symbols are more descriptive
5095 than numbers, because a symbol's name can be used directly to describe
5096 the concept for which that symbol stands.
5097
5098 For example, imagine that you need to represent some colours in a
5099 computer program. Using numbers, you would have to choose arbitrarily
5100 some mapping between numbers and colours, and then take care to use that
5101 mapping consistently:
5102
5103 @lisp
5104 ;; 1=red, 2=green, 3=purple
5105
5106 (if (eq? (colour-of car) 1)
5107 ...)
5108 @end lisp
5109
5110 @noindent
5111 You can make the mapping more explicit and the code more readable by
5112 defining constants:
5113
5114 @lisp
5115 (define red 1)
5116 (define green 2)
5117 (define purple 3)
5118
5119 (if (eq? (colour-of car) red)
5120 ...)
5121 @end lisp
5122
5123 @noindent
5124 But the simplest and clearest approach is not to use numbers at all, but
5125 symbols whose names specify the colours that they refer to:
5126
5127 @lisp
5128 (if (eq? (colour-of car) 'red)
5129 ...)
5130 @end lisp
5131
5132 The descriptive advantages of symbols over numbers increase as the set
5133 of concepts that you want to describe grows. Suppose that a car object
5134 can have other properties as well, such as whether it has or uses:
5135
5136 @itemize @bullet
5137 @item
5138 automatic or manual transmission
5139 @item
5140 leaded or unleaded fuel
5141 @item
5142 power steering (or not).
5143 @end itemize
5144
5145 @noindent
5146 Then a car's combined property set could be naturally represented and
5147 manipulated as a list of symbols:
5148
5149 @lisp
5150 (properties-of car1)
5151 @result{}
5152 (red manual unleaded power-steering)
5153
5154 (if (memq 'power-steering (properties-of car1))
5155 (display "Unfit people can drive this car.\n")
5156 (display "You'll need strong arms to drive this car!\n"))
5157 @print{}
5158 Unfit people can drive this car.
5159 @end lisp
5160
5161 Remember, the fundamental property of symbols that we are relying on
5162 here is that an occurrence of @code{'red} in one part of a program is an
5163 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
5164 another part of a program; this means that symbols can usefully be
5165 compared using @code{eq?}. At the same time, symbols have naturally
5166 descriptive names. This combination of efficiency and descriptive power
5167 makes them ideal for use as discrete data.
5168
5169
5170 @node Symbol Keys
5171 @subsubsection Symbols as Lookup Keys
5172
5173 Given their efficiency and descriptive power, it is natural to use
5174 symbols as the keys in an association list or hash table.
5175
5176 To illustrate this, consider a more structured representation of the car
5177 properties example from the preceding subsection. Rather than
5178 mixing all the properties up together in a flat list, we could use an
5179 association list like this:
5180
5181 @lisp
5182 (define car1-properties '((colour . red)
5183 (transmission . manual)
5184 (fuel . unleaded)
5185 (steering . power-assisted)))
5186 @end lisp
5187
5188 Notice how this structure is more explicit and extensible than the flat
5189 list. For example it makes clear that @code{manual} refers to the
5190 transmission rather than, say, the windows or the locking of the car.
5191 It also allows further properties to use the same symbols among their
5192 possible values without becoming ambiguous:
5193
5194 @lisp
5195 (define car1-properties '((colour . red)
5196 (transmission . manual)
5197 (fuel . unleaded)
5198 (steering . power-assisted)
5199 (seat-colour . red)
5200 (locking . manual)))
5201 @end lisp
5202
5203 With a representation like this, it is easy to use the efficient
5204 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5205 extract or change individual pieces of information:
5206
5207 @lisp
5208 (assq-ref car1-properties 'fuel) @result{} unleaded
5209 (assq-ref car1-properties 'transmission) @result{} manual
5210
5211 (assq-set! car1-properties 'seat-colour 'black)
5212 @result{}
5213 ((colour . red)
5214 (transmission . manual)
5215 (fuel . unleaded)
5216 (steering . power-assisted)
5217 (seat-colour . black)
5218 (locking . manual)))
5219 @end lisp
5220
5221 Hash tables also have keys, and exactly the same arguments apply to the
5222 use of symbols in hash tables as in association lists. The hash value
5223 that Guile uses to decide where to add a symbol-keyed entry to a hash
5224 table can be obtained by calling the @code{symbol-hash} procedure:
5225
5226 @deffn {Scheme Procedure} symbol-hash symbol
5227 @deffnx {C Function} scm_symbol_hash (symbol)
5228 Return a hash value for @var{symbol}.
5229 @end deffn
5230
5231 See @ref{Hash Tables} for information about hash tables in general, and
5232 for why you might choose to use a hash table rather than an association
5233 list.
5234
5235
5236 @node Symbol Variables
5237 @subsubsection Symbols as Denoting Variables
5238
5239 When an unquoted symbol in a Scheme program is evaluated, it is
5240 interpreted as a variable reference, and the result of the evaluation is
5241 the appropriate variable's value.
5242
5243 For example, when the expression @code{(string-length "abcd")} is read
5244 and evaluated, the sequence of characters @code{string-length} is read
5245 as the symbol whose name is "string-length". This symbol is associated
5246 with a variable whose value is the procedure that implements string
5247 length calculation. Therefore evaluation of the @code{string-length}
5248 symbol results in that procedure.
5249
5250 The details of the connection between an unquoted symbol and the
5251 variable to which it refers are explained elsewhere. See @ref{Binding
5252 Constructs}, for how associations between symbols and variables are
5253 created, and @ref{Modules}, for how those associations are affected by
5254 Guile's module system.
5255
5256
5257 @node Symbol Primitives
5258 @subsubsection Operations Related to Symbols
5259
5260 Given any Scheme value, you can determine whether it is a symbol using
5261 the @code{symbol?} primitive:
5262
5263 @rnindex symbol?
5264 @deffn {Scheme Procedure} symbol? obj
5265 @deffnx {C Function} scm_symbol_p (obj)
5266 Return @code{#t} if @var{obj} is a symbol, otherwise return
5267 @code{#f}.
5268 @end deffn
5269
5270 @deftypefn {C Function} int scm_is_symbol (SCM val)
5271 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5272 @end deftypefn
5273
5274 Once you know that you have a symbol, you can obtain its name as a
5275 string by calling @code{symbol->string}. Note that Guile differs by
5276 default from R5RS on the details of @code{symbol->string} as regards
5277 case-sensitivity:
5278
5279 @rnindex symbol->string
5280 @deffn {Scheme Procedure} symbol->string s
5281 @deffnx {C Function} scm_symbol_to_string (s)
5282 Return the name of symbol @var{s} as a string. By default, Guile reads
5283 symbols case-sensitively, so the string returned will have the same case
5284 variation as the sequence of characters that caused @var{s} to be
5285 created.
5286
5287 If Guile is set to read symbols case-insensitively (as specified by
5288 R5RS), and @var{s} comes into being as part of a literal expression
5289 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5290 by a call to the @code{read} or @code{string-ci->symbol} procedures,
5291 Guile converts any alphabetic characters in the symbol's name to
5292 lower case before creating the symbol object, so the string returned
5293 here will be in lower case.
5294
5295 If @var{s} was created by @code{string->symbol}, the case of characters
5296 in the string returned will be the same as that in the string that was
5297 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5298 setting at the time @var{s} was created.
5299
5300 It is an error to apply mutation procedures like @code{string-set!} to
5301 strings returned by this procedure.
5302 @end deffn
5303
5304 Most symbols are created by writing them literally in code. However it
5305 is also possible to create symbols programmatically using the following
5306 @code{string->symbol} and @code{string-ci->symbol} procedures:
5307
5308 @rnindex string->symbol
5309 @deffn {Scheme Procedure} string->symbol string
5310 @deffnx {C Function} scm_string_to_symbol (string)
5311 Return the symbol whose name is @var{string}. This procedure can create
5312 symbols with names containing special characters or letters in the
5313 non-standard case, but it is usually a bad idea to create such symbols
5314 because in some implementations of Scheme they cannot be read as
5315 themselves.
5316 @end deffn
5317
5318 @deffn {Scheme Procedure} string-ci->symbol str
5319 @deffnx {C Function} scm_string_ci_to_symbol (str)
5320 Return the symbol whose name is @var{str}. If Guile is currently
5321 reading symbols case-insensitively, @var{str} is converted to lowercase
5322 before the returned symbol is looked up or created.
5323 @end deffn
5324
5325 The following examples illustrate Guile's detailed behaviour as regards
5326 the case-sensitivity of symbols:
5327
5328 @lisp
5329 (read-enable 'case-insensitive) ; R5RS compliant behaviour
5330
5331 (symbol->string 'flying-fish) @result{} "flying-fish"
5332 (symbol->string 'Martin) @result{} "martin"
5333 (symbol->string
5334 (string->symbol "Malvina")) @result{} "Malvina"
5335
5336 (eq? 'mISSISSIppi 'mississippi) @result{} #t
5337 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5338 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5339 (eq? 'LolliPop
5340 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5341 (string=? "K. Harper, M.D."
5342 (symbol->string
5343 (string->symbol "K. Harper, M.D."))) @result{} #t
5344
5345 (read-disable 'case-insensitive) ; Guile default behaviour
5346
5347 (symbol->string 'flying-fish) @result{} "flying-fish"
5348 (symbol->string 'Martin) @result{} "Martin"
5349 (symbol->string
5350 (string->symbol "Malvina")) @result{} "Malvina"
5351
5352 (eq? 'mISSISSIppi 'mississippi) @result{} #f
5353 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5354 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5355 (eq? 'LolliPop
5356 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5357 (string=? "K. Harper, M.D."
5358 (symbol->string
5359 (string->symbol "K. Harper, M.D."))) @result{} #t
5360 @end lisp
5361
5362 From C, there are lower level functions that construct a Scheme symbol
5363 from a C string in the current locale encoding.
5364
5365 When you want to do more from C, you should convert between symbols
5366 and strings using @code{scm_symbol_to_string} and
5367 @code{scm_string_to_symbol} and work with the strings.
5368
5369 @deffn {C Function} scm_from_locale_symbol (const char *name)
5370 @deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
5371 Construct and return a Scheme symbol whose name is specified by
5372 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5373 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
5374 specified explicitly by @var{len}.
5375 @end deffn
5376
5377 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5378 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5379 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5380 respectively, but also frees @var{str} with @code{free} eventually.
5381 Thus, you can use this function when you would free @var{str} anyway
5382 immediately after creating the Scheme string. In certain cases, Guile
5383 can then use @var{str} directly as its internal representation.
5384 @end deftypefn
5385
5386 The size of a symbol can also be obtained from C:
5387
5388 @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5389 Return the number of characters in @var{sym}.
5390 @end deftypefn
5391
5392 Finally, some applications, especially those that generate new Scheme
5393 code dynamically, need to generate symbols for use in the generated
5394 code. The @code{gensym} primitive meets this need:
5395
5396 @deffn {Scheme Procedure} gensym [prefix]
5397 @deffnx {C Function} scm_gensym (prefix)
5398 Create a new symbol with a name constructed from a prefix and a counter
5399 value. The string @var{prefix} can be specified as an optional
5400 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5401 at each call. There is no provision for resetting the counter.
5402 @end deffn
5403
5404 The symbols generated by @code{gensym} are @emph{likely} to be unique,
5405 since their names begin with a space and it is only otherwise possible
5406 to generate such symbols if a programmer goes out of their way to do
5407 so. Uniqueness can be guaranteed by instead using uninterned symbols
5408 (@pxref{Symbol Uninterned}), though they can't be usefully written out
5409 and read back in.
5410
5411
5412 @node Symbol Props
5413 @subsubsection Function Slots and Property Lists
5414
5415 In traditional Lisp dialects, symbols are often understood as having
5416 three kinds of value at once:
5417
5418 @itemize @bullet
5419 @item
5420 a @dfn{variable} value, which is used when the symbol appears in
5421 code in a variable reference context
5422
5423 @item
5424 a @dfn{function} value, which is used when the symbol appears in
5425 code in a function name position (i.e. as the first element in an
5426 unquoted list)
5427
5428 @item
5429 a @dfn{property list} value, which is used when the symbol is given as
5430 the first argument to Lisp's @code{put} or @code{get} functions.
5431 @end itemize
5432
5433 Although Scheme (as one of its simplifications with respect to Lisp)
5434 does away with the distinction between variable and function namespaces,
5435 Guile currently retains some elements of the traditional structure in
5436 case they turn out to be useful when implementing translators for other
5437 languages, in particular Emacs Lisp.
5438
5439 Specifically, Guile symbols have two extra slots. for a symbol's
5440 property list, and for its ``function value.'' The following procedures
5441 are provided to access these slots.
5442
5443 @deffn {Scheme Procedure} symbol-fref symbol
5444 @deffnx {C Function} scm_symbol_fref (symbol)
5445 Return the contents of @var{symbol}'s @dfn{function slot}.
5446 @end deffn
5447
5448 @deffn {Scheme Procedure} symbol-fset! symbol value
5449 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
5450 Set the contents of @var{symbol}'s function slot to @var{value}.
5451 @end deffn
5452
5453 @deffn {Scheme Procedure} symbol-pref symbol
5454 @deffnx {C Function} scm_symbol_pref (symbol)
5455 Return the @dfn{property list} currently associated with @var{symbol}.
5456 @end deffn
5457
5458 @deffn {Scheme Procedure} symbol-pset! symbol value
5459 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
5460 Set @var{symbol}'s property list to @var{value}.
5461 @end deffn
5462
5463 @deffn {Scheme Procedure} symbol-property sym prop
5464 From @var{sym}'s property list, return the value for property
5465 @var{prop}. The assumption is that @var{sym}'s property list is an
5466 association list whose keys are distinguished from each other using
5467 @code{equal?}; @var{prop} should be one of the keys in that list. If
5468 the property list has no entry for @var{prop}, @code{symbol-property}
5469 returns @code{#f}.
5470 @end deffn
5471
5472 @deffn {Scheme Procedure} set-symbol-property! sym prop val
5473 In @var{sym}'s property list, set the value for property @var{prop} to
5474 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5475 none already exists. For the structure of the property list, see
5476 @code{symbol-property}.
5477 @end deffn
5478
5479 @deffn {Scheme Procedure} symbol-property-remove! sym prop
5480 From @var{sym}'s property list, remove the entry for property
5481 @var{prop}, if there is one. For the structure of the property list,
5482 see @code{symbol-property}.
5483 @end deffn
5484
5485 Support for these extra slots may be removed in a future release, and it
5486 is probably better to avoid using them. For a more modern and Schemely
5487 approach to properties, see @ref{Object Properties}.
5488
5489
5490 @node Symbol Read Syntax
5491 @subsubsection Extended Read Syntax for Symbols
5492
5493 The read syntax for a symbol is a sequence of letters, digits, and
5494 @dfn{extended alphabetic characters}, beginning with a character that
5495 cannot begin a number. In addition, the special cases of @code{+},
5496 @code{-}, and @code{...} are read as symbols even though numbers can
5497 begin with @code{+}, @code{-} or @code{.}.
5498
5499 Extended alphabetic characters may be used within identifiers as if
5500 they were letters. The set of extended alphabetic characters is:
5501
5502 @example
5503 ! $ % & * + - . / : < = > ? @@ ^ _ ~
5504 @end example
5505
5506 In addition to the standard read syntax defined above (which is taken
5507 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5508 Scheme})), Guile provides an extended symbol read syntax that allows the
5509 inclusion of unusual characters such as space characters, newlines and
5510 parentheses. If (for whatever reason) you need to write a symbol
5511 containing characters not mentioned above, you can do so as follows.
5512
5513 @itemize @bullet
5514 @item
5515 Begin the symbol with the characters @code{#@{},
5516
5517 @item
5518 write the characters of the symbol and
5519
5520 @item
5521 finish the symbol with the characters @code{@}#}.
5522 @end itemize
5523
5524 Here are a few examples of this form of read syntax. The first symbol
5525 needs to use extended syntax because it contains a space character, the
5526 second because it contains a line break, and the last because it looks
5527 like a number.
5528
5529 @lisp
5530 #@{foo bar@}#
5531
5532 #@{what
5533 ever@}#
5534
5535 #@{4242@}#
5536 @end lisp
5537
5538 Although Guile provides this extended read syntax for symbols,
5539 widespread usage of it is discouraged because it is not portable and not
5540 very readable.
5541
5542
5543 @node Symbol Uninterned
5544 @subsubsection Uninterned Symbols
5545
5546 What makes symbols useful is that they are automatically kept unique.
5547 There are no two symbols that are distinct objects but have the same
5548 name. But of course, there is no rule without exception. In addition
5549 to the normal symbols that have been discussed up to now, you can also
5550 create special @dfn{uninterned} symbols that behave slightly
5551 differently.
5552
5553 To understand what is different about them and why they might be useful,
5554 we look at how normal symbols are actually kept unique.
5555
5556 Whenever Guile wants to find the symbol with a specific name, for
5557 example during @code{read} or when executing @code{string->symbol}, it
5558 first looks into a table of all existing symbols to find out whether a
5559 symbol with the given name already exists. When this is the case, Guile
5560 just returns that symbol. When not, a new symbol with the name is
5561 created and entered into the table so that it can be found later.
5562
5563 Sometimes you might want to create a symbol that is guaranteed `fresh',
5564 i.e. a symbol that did not exist previously. You might also want to
5565 somehow guarantee that no one else will ever unintentionally stumble
5566 across your symbol in the future. These properties of a symbol are
5567 often needed when generating code during macro expansion. When
5568 introducing new temporary variables, you want to guarantee that they
5569 don't conflict with variables in other people's code.
5570
5571 The simplest way to arrange for this is to create a new symbol but
5572 not enter it into the global table of all symbols. That way, no one
5573 will ever get access to your symbol by chance. Symbols that are not in
5574 the table are called @dfn{uninterned}. Of course, symbols that
5575 @emph{are} in the table are called @dfn{interned}.
5576
5577 You create new uninterned symbols with the function @code{make-symbol}.
5578 You can test whether a symbol is interned or not with
5579 @code{symbol-interned?}.
5580
5581 Uninterned symbols break the rule that the name of a symbol uniquely
5582 identifies the symbol object. Because of this, they can not be written
5583 out and read back in like interned symbols. Currently, Guile has no
5584 support for reading uninterned symbols. Note that the function
5585 @code{gensym} does not return uninterned symbols for this reason.
5586
5587 @deffn {Scheme Procedure} make-symbol name
5588 @deffnx {C Function} scm_make_symbol (name)
5589 Return a new uninterned symbol with the name @var{name}. The returned
5590 symbol is guaranteed to be unique and future calls to
5591 @code{string->symbol} will not return it.
5592 @end deffn
5593
5594 @deffn {Scheme Procedure} symbol-interned? symbol
5595 @deffnx {C Function} scm_symbol_interned_p (symbol)
5596 Return @code{#t} if @var{symbol} is interned, otherwise return
5597 @code{#f}.
5598 @end deffn
5599
5600 For example:
5601
5602 @lisp
5603 (define foo-1 (string->symbol "foo"))
5604 (define foo-2 (string->symbol "foo"))
5605 (define foo-3 (make-symbol "foo"))
5606 (define foo-4 (make-symbol "foo"))
5607
5608 (eq? foo-1 foo-2)
5609 @result{} #t
5610 ; Two interned symbols with the same name are the same object,
5611
5612 (eq? foo-1 foo-3)
5613 @result{} #f
5614 ; but a call to make-symbol with the same name returns a
5615 ; distinct object.
5616
5617 (eq? foo-3 foo-4)
5618 @result{} #f
5619 ; A call to make-symbol always returns a new object, even for
5620 ; the same name.
5621
5622 foo-3
5623 @result{} #<uninterned-symbol foo 8085290>
5624 ; Uninterned symbols print differently from interned symbols,
5625
5626 (symbol? foo-3)
5627 @result{} #t
5628 ; but they are still symbols,
5629
5630 (symbol-interned? foo-3)
5631 @result{} #f
5632 ; just not interned.
5633 @end lisp
5634
5635
5636 @node Keywords
5637 @subsection Keywords
5638 @tpindex Keywords
5639
5640 Keywords are self-evaluating objects with a convenient read syntax that
5641 makes them easy to type.
5642
5643 Guile's keyword support conforms to R5RS, and adds a (switchable) read
5644 syntax extension to permit keywords to begin with @code{:} as well as
5645 @code{#:}, or to end with @code{:}.
5646
5647 @menu
5648 * Why Use Keywords?:: Motivation for keyword usage.
5649 * Coding With Keywords:: How to use keywords.
5650 * Keyword Read Syntax:: Read syntax for keywords.
5651 * Keyword Procedures:: Procedures for dealing with keywords.
5652 @end menu
5653
5654 @node Why Use Keywords?
5655 @subsubsection Why Use Keywords?
5656
5657 Keywords are useful in contexts where a program or procedure wants to be
5658 able to accept a large number of optional arguments without making its
5659 interface unmanageable.
5660
5661 To illustrate this, consider a hypothetical @code{make-window}
5662 procedure, which creates a new window on the screen for drawing into
5663 using some graphical toolkit. There are many parameters that the caller
5664 might like to specify, but which could also be sensibly defaulted, for
5665 example:
5666
5667 @itemize @bullet
5668 @item
5669 color depth -- Default: the color depth for the screen
5670
5671 @item
5672 background color -- Default: white
5673
5674 @item
5675 width -- Default: 600
5676
5677 @item
5678 height -- Default: 400
5679 @end itemize
5680
5681 If @code{make-window} did not use keywords, the caller would have to
5682 pass in a value for each possible argument, remembering the correct
5683 argument order and using a special value to indicate the default value
5684 for that argument:
5685
5686 @lisp
5687 (make-window 'default ;; Color depth
5688 'default ;; Background color
5689 800 ;; Width
5690 100 ;; Height
5691 @dots{}) ;; More make-window arguments
5692 @end lisp
5693
5694 With keywords, on the other hand, defaulted arguments are omitted, and
5695 non-default arguments are clearly tagged by the appropriate keyword. As
5696 a result, the invocation becomes much clearer:
5697
5698 @lisp
5699 (make-window #:width 800 #:height 100)
5700 @end lisp
5701
5702 On the other hand, for a simpler procedure with few arguments, the use
5703 of keywords would be a hindrance rather than a help. The primitive
5704 procedure @code{cons}, for example, would not be improved if it had to
5705 be invoked as
5706
5707 @lisp
5708 (cons #:car x #:cdr y)
5709 @end lisp
5710
5711 So the decision whether to use keywords or not is purely pragmatic: use
5712 them if they will clarify the procedure invocation at point of call.
5713
5714 @node Coding With Keywords
5715 @subsubsection Coding With Keywords
5716
5717 If a procedure wants to support keywords, it should take a rest argument
5718 and then use whatever means is convenient to extract keywords and their
5719 corresponding arguments from the contents of that rest argument.
5720
5721 The following example illustrates the principle: the code for
5722 @code{make-window} uses a helper procedure called
5723 @code{get-keyword-value} to extract individual keyword arguments from
5724 the rest argument.
5725
5726 @lisp
5727 (define (get-keyword-value args keyword default)
5728 (let ((kv (memq keyword args)))
5729 (if (and kv (>= (length kv) 2))
5730 (cadr kv)
5731 default)))
5732
5733 (define (make-window . args)
5734 (let ((depth (get-keyword-value args #:depth screen-depth))
5735 (bg (get-keyword-value args #:bg "white"))
5736 (width (get-keyword-value args #:width 800))
5737 (height (get-keyword-value args #:height 100))
5738 @dots{})
5739 @dots{}))
5740 @end lisp
5741
5742 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5743 optargs)} module provides a set of powerful macros that you can use to
5744 implement keyword-supporting procedures like this:
5745
5746 @lisp
5747 (use-modules (ice-9 optargs))
5748
5749 (define (make-window . args)
5750 (let-keywords args #f ((depth screen-depth)
5751 (bg "white")
5752 (width 800)
5753 (height 100))
5754 ...))
5755 @end lisp
5756
5757 @noindent
5758 Or, even more economically, like this:
5759
5760 @lisp
5761 (use-modules (ice-9 optargs))
5762
5763 (define* (make-window #:key (depth screen-depth)
5764 (bg "white")
5765 (width 800)
5766 (height 100))
5767 ...)
5768 @end lisp
5769
5770 For further details on @code{let-keywords}, @code{define*} and other
5771 facilities provided by the @code{(ice-9 optargs)} module, see
5772 @ref{Optional Arguments}.
5773
5774
5775 @node Keyword Read Syntax
5776 @subsubsection Keyword Read Syntax
5777
5778 Guile, by default, only recognizes a keyword syntax that is compatible
5779 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5780 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5781 external representation of the keyword named @code{NAME}. Keyword
5782 objects print using this syntax as well, so values containing keyword
5783 objects can be read back into Guile. When used in an expression,
5784 keywords are self-quoting objects.
5785
5786 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5787 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5788 of the form @code{:NAME} are read as symbols, as required by R5RS.
5789
5790 @cindex SRFI-88 keyword syntax
5791
5792 If the @code{keyword} read option is set to @code{'postfix}, Guile
5793 recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5794 Otherwise, tokens of this form are read as symbols.
5795
5796 To enable and disable the alternative non-R5RS keyword syntax, you use
5797 the @code{read-set!} procedure documented in @ref{User level options
5798 interfaces} and @ref{Reader options}. Note that the @code{prefix} and
5799 @code{postfix} syntax are mutually exclusive.
5800
5801 @lisp
5802 (read-set! keywords 'prefix)
5803
5804 #:type
5805 @result{}
5806 #:type
5807
5808 :type
5809 @result{}
5810 #:type
5811
5812 (read-set! keywords 'postfix)
5813
5814 type:
5815 @result{}
5816 #:type
5817
5818 :type
5819 @result{}
5820 :type
5821
5822 (read-set! keywords #f)
5823
5824 #:type
5825 @result{}
5826 #:type
5827
5828 :type
5829 @print{}
5830 ERROR: In expression :type:
5831 ERROR: Unbound variable: :type
5832 ABORT: (unbound-variable)
5833 @end lisp
5834
5835 @node Keyword Procedures
5836 @subsubsection Keyword Procedures
5837
5838 @deffn {Scheme Procedure} keyword? obj
5839 @deffnx {C Function} scm_keyword_p (obj)
5840 Return @code{#t} if the argument @var{obj} is a keyword, else
5841 @code{#f}.
5842 @end deffn
5843
5844 @deffn {Scheme Procedure} keyword->symbol keyword
5845 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5846 Return the symbol with the same name as @var{keyword}.
5847 @end deffn
5848
5849 @deffn {Scheme Procedure} symbol->keyword symbol
5850 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5851 Return the keyword with the same name as @var{symbol}.
5852 @end deffn
5853
5854 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5855 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5856 @end deftypefn
5857
5858 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5859 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5860 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5861 (@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5862 (@var{str}, @var{len}))}, respectively.
5863 @end deftypefn
5864
5865 @node Other Types
5866 @subsection ``Functionality-Centric'' Data Types
5867
5868 Procedures and macros are documented in their own chapter: see
5869 @ref{Procedures} and @ref{Macros}.
5870
5871 Variable objects are documented as part of the description of Guile's
5872 module system: see @ref{Variables}.
5873
5874 Asyncs, dynamic roots and fluids are described in the chapter on
5875 scheduling: see @ref{Scheduling}.
5876
5877 Hooks are documented in the chapter on general utility functions: see
5878 @ref{Hooks}.
5879
5880 Ports are described in the chapter on I/O: see @ref{Input and Output}.
5881
5882
5883 @c Local Variables:
5884 @c TeX-master: "guile.texi"
5885 @c End: