define* in repl-reader
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 \f
44
45 ;;; {Error handling}
46 ;;;
47
48 ;; Define delimited continuation operators, and implement catch and throw in
49 ;; terms of them.
50
51 (define make-prompt-tag
52 (lambda* (#:optional (stem "prompt"))
53 (gensym stem)))
54
55 (define default-prompt-tag
56 ;; not sure if we should expose this to the user as a fluid
57 (let ((%default-prompt-tag (make-prompt-tag)))
58 (lambda ()
59 %default-prompt-tag)))
60
61 (define (call-with-prompt tag thunk handler)
62 (@prompt tag (thunk) handler))
63 (define (abort-to-prompt tag . args)
64 (@abort tag args))
65
66
67 ;; Define catch and with-throw-handler, using some common helper routines and a
68 ;; shared fluid. Hide the helpers in a lexical contour.
69
70 (let ()
71 ;; Ideally we'd like to be able to give these default values for all threads,
72 ;; even threads not created by Guile; but alack, that does not currently seem
73 ;; possible. So wrap the getters in thunks.
74 (define %running-exception-handlers (make-fluid))
75 (define %exception-handler (make-fluid))
76
77 (define (running-exception-handlers)
78 (or (fluid-ref %running-exception-handlers)
79 (begin
80 (fluid-set! %running-exception-handlers '())
81 '())))
82 (define (exception-handler)
83 (or (fluid-ref %exception-handler)
84 (begin
85 (fluid-set! %exception-handler default-exception-handler)
86 default-exception-handler)))
87
88 (define (default-exception-handler k . args)
89 (cond
90 ((eq? k 'quit)
91 (primitive-exit (cond
92 ((not (pair? args)) 0)
93 ((integer? (car args)) (car args))
94 ((not (car args)) 1)
95 (else 0))))
96 (else
97 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
98 (primitive-exit 1))))
99
100 (define (default-throw-handler prompt-tag catch-k)
101 (let ((prev (exception-handler)))
102 (lambda (thrown-k . args)
103 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
104 (apply abort-to-prompt prompt-tag thrown-k args)
105 (apply prev thrown-k args)))))
106
107 (define (custom-throw-handler prompt-tag catch-k pre)
108 (let ((prev (exception-handler)))
109 (lambda (thrown-k . args)
110 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
111 (let ((running (running-exception-handlers)))
112 (with-fluids ((%running-exception-handlers (cons pre running)))
113 (if (not (memq pre running))
114 (apply pre thrown-k args))
115 ;; fall through
116 (if prompt-tag
117 (apply abort-to-prompt prompt-tag thrown-k args)
118 (apply prev thrown-k args))))
119 (apply prev thrown-k args)))))
120
121 (define! 'catch
122 (lambda* (k thunk handler #:optional pre-unwind-handler)
123 "Invoke @var{thunk} in the dynamic context of @var{handler} for
124 exceptions matching @var{key}. If thunk throws to the symbol
125 @var{key}, then @var{handler} is invoked this way:
126 @lisp
127 (handler key args ...)
128 @end lisp
129
130 @var{key} is a symbol or @code{#t}.
131
132 @var{thunk} takes no arguments. If @var{thunk} returns
133 normally, that is the return value of @code{catch}.
134
135 Handler is invoked outside the scope of its own @code{catch}.
136 If @var{handler} again throws to the same key, a new handler
137 from further up the call chain is invoked.
138
139 If the key is @code{#t}, then a throw to @emph{any} symbol will
140 match this call to @code{catch}.
141
142 If a @var{pre-unwind-handler} is given and @var{thunk} throws
143 an exception that matches @var{key}, Guile calls the
144 @var{pre-unwind-handler} before unwinding the dynamic state and
145 invoking the main @var{handler}. @var{pre-unwind-handler} should
146 be a procedure with the same signature as @var{handler}, that
147 is @code{(lambda (key . args))}. It is typically used to save
148 the stack at the point where the exception occurred, but can also
149 query other parts of the dynamic state at that point, such as
150 fluid values.
151
152 A @var{pre-unwind-handler} can exit either normally or non-locally.
153 If it exits normally, Guile unwinds the stack and dynamic context
154 and then calls the normal (third argument) handler. If it exits
155 non-locally, that exit determines the continuation."
156 (if (not (or (symbol? k) (eqv? k #t)))
157 (scm-error "catch" 'wrong-type-arg
158 "Wrong type argument in position ~a: ~a"
159 (list 1 k) (list k)))
160 (let ((tag (make-prompt-tag "catch")))
161 (call-with-prompt
162 tag
163 (lambda ()
164 (with-fluids
165 ((%exception-handler
166 (if pre-unwind-handler
167 (custom-throw-handler tag k pre-unwind-handler)
168 (default-throw-handler tag k))))
169 (thunk)))
170 (lambda (cont k . args)
171 (apply handler k args))))))
172
173 (define! 'with-throw-handler
174 (lambda (k thunk pre-unwind-handler)
175 "Add @var{handler} to the dynamic context as a throw handler
176 for key @var{key}, then invoke @var{thunk}."
177 (if (not (or (symbol? k) (eqv? k #t)))
178 (scm-error "with-throw-handler" 'wrong-type-arg
179 "Wrong type argument in position ~a: ~a"
180 (list 1 k) (list k)))
181 (with-fluids ((%exception-handler
182 (custom-throw-handler #f k pre-unwind-handler)))
183 (thunk))))
184
185 (define! 'throw
186 (lambda (key . args)
187 "Invoke the catch form matching @var{key}, passing @var{args} to the
188 @var{handler}.
189
190 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
191
192 If there is no handler at all, Guile prints an error and then exits."
193 (if (not (symbol? key))
194 ((exception-handler) 'wrong-type-arg "throw"
195 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
196 (apply (exception-handler) key args)))))
197
198
199 \f
200
201 ;;; {R4RS compliance}
202 ;;;
203
204 (primitive-load-path "ice-9/r4rs")
205
206 \f
207
208 ;;; {Simple Debugging Tools}
209 ;;;
210
211 ;; peek takes any number of arguments, writes them to the
212 ;; current ouput port, and returns the last argument.
213 ;; It is handy to wrap around an expression to look at
214 ;; a value each time is evaluated, e.g.:
215 ;;
216 ;; (+ 10 (troublesome-fn))
217 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
218 ;;
219
220 (define (peek . stuff)
221 (newline)
222 (display ";;; ")
223 (write stuff)
224 (newline)
225 (car (last-pair stuff)))
226
227 (define pk peek)
228
229
230 (define (warn . stuff)
231 (with-output-to-port (current-error-port)
232 (lambda ()
233 (newline)
234 (display ";;; WARNING ")
235 (display stuff)
236 (newline)
237 (car (last-pair stuff)))))
238
239 \f
240
241 ;;; {Features}
242 ;;;
243
244 (define (provide sym)
245 (if (not (memq sym *features*))
246 (set! *features* (cons sym *features*))))
247
248 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
249 ;; provided? also checks to see if the module is available. We should do that
250 ;; too, but don't.
251
252 (define (provided? feature)
253 (and (memq feature *features*) #t))
254
255 \f
256
257 ;;; {and-map and or-map}
258 ;;;
259 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
260 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
261 ;;;
262
263 ;; and-map f l
264 ;;
265 ;; Apply f to successive elements of l until exhaustion or f returns #f.
266 ;; If returning early, return #f. Otherwise, return the last value returned
267 ;; by f. If f has never been called because l is empty, return #t.
268 ;;
269 (define (and-map f lst)
270 (let loop ((result #t)
271 (l lst))
272 (and result
273 (or (and (null? l)
274 result)
275 (loop (f (car l)) (cdr l))))))
276
277 ;; or-map f l
278 ;;
279 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
280 ;; If returning early, return the return value of f.
281 ;;
282 (define (or-map f lst)
283 (let loop ((result #f)
284 (l lst))
285 (or result
286 (and (not (null? l))
287 (loop (f (car l)) (cdr l))))))
288
289 \f
290
291 ;; let format alias simple-format until the more complete version is loaded
292
293 (define format simple-format)
294
295 ;; this is scheme wrapping the C code so the final pred call is a tail call,
296 ;; per SRFI-13 spec
297 (define string-any
298 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
299 (if (and (procedure? char_pred)
300 (> end start)
301 (<= end (string-length s))) ;; let c-code handle range error
302 (or (string-any-c-code char_pred s start (1- end))
303 (char_pred (string-ref s (1- end))))
304 (string-any-c-code char_pred s start end))))
305
306 ;; this is scheme wrapping the C code so the final pred call is a tail call,
307 ;; per SRFI-13 spec
308 (define string-every
309 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
310 (if (and (procedure? char_pred)
311 (> end start)
312 (<= end (string-length s))) ;; let c-code handle range error
313 (and (string-every-c-code char_pred s start (1- end))
314 (char_pred (string-ref s (1- end))))
315 (string-every-c-code char_pred s start end))))
316
317 ;; A variant of string-fill! that we keep for compatability
318 ;;
319 (define (substring-fill! str start end fill)
320 (string-fill! str fill start end))
321
322 \f
323
324 ;; Define a minimal stub of the module API for psyntax, before modules
325 ;; have booted.
326 (define (module-name x)
327 '(guile))
328 (define (module-define! module sym val)
329 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
330 (if v
331 (variable-set! v val)
332 (hashq-set! (%get-pre-modules-obarray) sym
333 (make-variable val)))))
334 (define (module-ref module sym)
335 (let ((v (module-variable module sym)))
336 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
337 (define (resolve-module . args)
338 #f)
339
340 ;; Input hook to syncase -- so that we might be able to pass annotated
341 ;; expressions in. Currently disabled. Maybe we should just use
342 ;; source-properties directly.
343 (define (annotation? x) #f)
344
345 ;; API provided by psyntax
346 (define syntax-violation #f)
347 (define datum->syntax #f)
348 (define syntax->datum #f)
349 (define identifier? #f)
350 (define generate-temporaries #f)
351 (define bound-identifier=? #f)
352 (define free-identifier=? #f)
353
354 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
355 ;; expanded macros, to dispatch an input against a set of patterns.
356 (define $sc-dispatch #f)
357
358 ;; Load it up!
359 (primitive-load-path "ice-9/psyntax-pp")
360 ;; The binding for `macroexpand' has now been overridden, making psyntax the
361 ;; expander now.
362
363 (define-syntax and
364 (syntax-rules ()
365 ((_) #t)
366 ((_ x) x)
367 ((_ x y ...) (if x (and y ...) #f))))
368
369 (define-syntax or
370 (syntax-rules ()
371 ((_) #f)
372 ((_ x) x)
373 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
374
375 ;; The "maybe-more" bits are something of a hack, so that we can support
376 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
377 ;; appreciated.
378 (define-syntax cond
379 (syntax-rules (=> else)
380 ((_ "maybe-more" test consequent)
381 (if test consequent))
382
383 ((_ "maybe-more" test consequent clause ...)
384 (if test consequent (cond clause ...)))
385
386 ((_ (else else1 else2 ...))
387 (begin else1 else2 ...))
388
389 ((_ (test => receiver) more-clause ...)
390 (let ((t test))
391 (cond "maybe-more" t (receiver t) more-clause ...)))
392
393 ((_ (generator guard => receiver) more-clause ...)
394 (call-with-values (lambda () generator)
395 (lambda t
396 (cond "maybe-more"
397 (apply guard t) (apply receiver t) more-clause ...))))
398
399 ((_ (test => receiver ...) more-clause ...)
400 (syntax-violation 'cond "wrong number of receiver expressions"
401 '(test => receiver ...)))
402 ((_ (generator guard => receiver ...) more-clause ...)
403 (syntax-violation 'cond "wrong number of receiver expressions"
404 '(generator guard => receiver ...)))
405
406 ((_ (test) more-clause ...)
407 (let ((t test))
408 (cond "maybe-more" t t more-clause ...)))
409
410 ((_ (test body1 body2 ...) more-clause ...)
411 (cond "maybe-more"
412 test (begin body1 body2 ...) more-clause ...))))
413
414 (define-syntax case
415 (syntax-rules (else)
416 ((case (key ...)
417 clauses ...)
418 (let ((atom-key (key ...)))
419 (case atom-key clauses ...)))
420 ((case key
421 (else result1 result2 ...))
422 (begin result1 result2 ...))
423 ((case key
424 ((atoms ...) result1 result2 ...))
425 (if (memv key '(atoms ...))
426 (begin result1 result2 ...)))
427 ((case key
428 ((atoms ...) result1 result2 ...)
429 clause clauses ...)
430 (if (memv key '(atoms ...))
431 (begin result1 result2 ...)
432 (case key clause clauses ...)))))
433
434 (define-syntax do
435 (syntax-rules ()
436 ((do ((var init step ...) ...)
437 (test expr ...)
438 command ...)
439 (letrec
440 ((loop
441 (lambda (var ...)
442 (if test
443 (begin
444 (if #f #f)
445 expr ...)
446 (begin
447 command
448 ...
449 (loop (do "step" var step ...)
450 ...))))))
451 (loop init ...)))
452 ((do "step" x)
453 x)
454 ((do "step" x y)
455 y)))
456
457 (define-syntax delay
458 (syntax-rules ()
459 ((_ exp) (make-promise (lambda () exp)))))
460
461 (include-from-path "ice-9/quasisyntax")
462
463 \f
464
465 ;;; {Defmacros}
466 ;;;
467
468 (define-syntax define-macro
469 (lambda (x)
470 "Define a defmacro."
471 (syntax-case x ()
472 ((_ (macro . args) doc body1 body ...)
473 (string? (syntax->datum #'doc))
474 #'(define-macro macro doc (lambda args body1 body ...)))
475 ((_ (macro . args) body ...)
476 #'(define-macro macro #f (lambda args body ...)))
477 ((_ macro doc transformer)
478 (or (string? (syntax->datum #'doc))
479 (not (syntax->datum #'doc)))
480 #'(define-syntax macro
481 (lambda (y)
482 doc
483 #((macro-type . defmacro)
484 (defmacro-args args))
485 (syntax-case y ()
486 ((_ . args)
487 (let ((v (syntax->datum #'args)))
488 (datum->syntax y (apply transformer v)))))))))))
489
490 (define-syntax defmacro
491 (lambda (x)
492 "Define a defmacro, with the old lispy defun syntax."
493 (syntax-case x ()
494 ((_ macro args doc body1 body ...)
495 (string? (syntax->datum #'doc))
496 #'(define-macro macro doc (lambda args body1 body ...)))
497 ((_ macro args body ...)
498 #'(define-macro macro #f (lambda args body ...))))))
499
500 (provide 'defmacro)
501
502 \f
503
504 ;;; {Deprecation}
505 ;;;
506 ;;; Depends on: defmacro
507 ;;;
508
509 (defmacro begin-deprecated forms
510 (if (include-deprecated-features)
511 `(begin ,@forms)
512 `(begin)))
513
514 \f
515
516 ;;; {Trivial Functions}
517 ;;;
518
519 (define (identity x) x)
520 (define (and=> value procedure) (and value (procedure value)))
521 (define call/cc call-with-current-continuation)
522
523 ;;; apply-to-args is functionally redundant with apply and, worse,
524 ;;; is less general than apply since it only takes two arguments.
525 ;;;
526 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
527 ;;; perform binding in many circumstances when the "let" family of
528 ;;; of forms don't cut it. E.g.:
529 ;;;
530 ;;; (apply-to-args (return-3d-mouse-coords)
531 ;;; (lambda (x y z)
532 ;;; ...))
533 ;;;
534
535 (define (apply-to-args args fn) (apply fn args))
536
537 (defmacro false-if-exception (expr)
538 `(catch #t
539 (lambda ()
540 ;; avoid saving backtraces inside false-if-exception
541 (with-fluids ((the-last-stack (fluid-ref the-last-stack)))
542 ,expr))
543 (lambda args #f)))
544
545 \f
546
547 ;;; {General Properties}
548 ;;;
549
550 ;; This is a more modern interface to properties. It will replace all
551 ;; other property-like things eventually.
552
553 (define (make-object-property)
554 (let ((prop (primitive-make-property #f)))
555 (make-procedure-with-setter
556 (lambda (obj) (primitive-property-ref prop obj))
557 (lambda (obj val) (primitive-property-set! prop obj val)))))
558
559 \f
560
561 ;;; {Symbol Properties}
562 ;;;
563
564 (define (symbol-property sym prop)
565 (let ((pair (assoc prop (symbol-pref sym))))
566 (and pair (cdr pair))))
567
568 (define (set-symbol-property! sym prop val)
569 (let ((pair (assoc prop (symbol-pref sym))))
570 (if pair
571 (set-cdr! pair val)
572 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
573
574 (define (symbol-property-remove! sym prop)
575 (let ((pair (assoc prop (symbol-pref sym))))
576 (if pair
577 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
578
579 \f
580
581 ;;; {Arrays}
582 ;;;
583
584 (define (array-shape a)
585 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
586 (array-dimensions a)))
587
588 \f
589
590 ;;; {Keywords}
591 ;;;
592
593 (define (kw-arg-ref args kw)
594 (let ((rem (member kw args)))
595 (and rem (pair? (cdr rem)) (cadr rem))))
596
597 \f
598
599 ;;; {Structs}
600 ;;;
601
602 (define (struct-layout s)
603 (struct-ref (struct-vtable s) vtable-index-layout))
604
605 \f
606
607 ;;; {Records}
608 ;;;
609
610 ;; Printing records: by default, records are printed as
611 ;;
612 ;; #<type-name field1: val1 field2: val2 ...>
613 ;;
614 ;; You can change that by giving a custom printing function to
615 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
616 ;; will be called like
617 ;;
618 ;; (<printer> object port)
619 ;;
620 ;; It should print OBJECT to PORT.
621
622 (define (inherit-print-state old-port new-port)
623 (if (get-print-state old-port)
624 (port-with-print-state new-port (get-print-state old-port))
625 new-port))
626
627 ;; 0: type-name, 1: fields, 2: constructor
628 (define record-type-vtable
629 ;; FIXME: This should just call make-vtable, not make-vtable-vtable; but for
630 ;; that we need to expose the bare vtable-vtable to Scheme.
631 (make-vtable-vtable "prprpw" 0
632 (lambda (s p)
633 (cond ((eq? s record-type-vtable)
634 (display "#<record-type-vtable>" p))
635 (else
636 (display "#<record-type " p)
637 (display (record-type-name s) p)
638 (display ">" p))))))
639
640 (define (record-type? obj)
641 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
642
643 (define* (make-record-type type-name fields #:optional printer)
644 ;; Pre-generate constructors for nfields < 20.
645 (define-syntax make-constructor
646 (lambda (x)
647 (define *max-static-argument-count* 20)
648 (define (make-formals n)
649 (let lp ((i 0))
650 (if (< i n)
651 (cons (datum->syntax
652 x
653 (string->symbol
654 (string (integer->char (+ (char->integer #\a) i)))))
655 (lp (1+ i)))
656 '())))
657 (syntax-case x ()
658 ((_ rtd exp) (not (identifier? #'exp))
659 #'(let ((n exp))
660 (make-constructor rtd n)))
661 ((_ rtd nfields)
662 #`(case nfields
663 #,@(let lp ((n 0))
664 (if (< n *max-static-argument-count*)
665 (cons (with-syntax (((formal ...) (make-formals n))
666 (n n))
667 #'((n)
668 (lambda (formal ...)
669 (make-struct rtd 0 formal ...))))
670 (lp (1+ n)))
671 '()))
672 (else
673 (lambda args
674 (if (= (length args) nfields)
675 (apply make-struct rtd 0 args)
676 (scm-error 'wrong-number-of-args
677 (format #f "make-~a" type-name)
678 "Wrong number of arguments" '() #f)))))))))
679
680 (define (default-record-printer s p)
681 (display "#<" p)
682 (display (record-type-name (record-type-descriptor s)) p)
683 (let loop ((fields (record-type-fields (record-type-descriptor s)))
684 (off 0))
685 (cond
686 ((not (null? fields))
687 (display " " p)
688 (display (car fields) p)
689 (display ": " p)
690 (display (struct-ref s off) p)
691 (loop (cdr fields) (+ 1 off)))))
692 (display ">" p))
693
694 (let ((rtd (make-struct record-type-vtable 0
695 (make-struct-layout
696 (apply string-append
697 (map (lambda (f) "pw") fields)))
698 (or printer default-record-printer)
699 type-name
700 (copy-tree fields))))
701 (struct-set! rtd (+ vtable-offset-user 2)
702 (make-constructor rtd (length fields)))
703 ;; Temporary solution: Associate a name to the record type descriptor
704 ;; so that the object system can create a wrapper class for it.
705 (set-struct-vtable-name! rtd (if (symbol? type-name)
706 type-name
707 (string->symbol type-name)))
708 rtd))
709
710 (define (record-type-name obj)
711 (if (record-type? obj)
712 (struct-ref obj vtable-offset-user)
713 (error 'not-a-record-type obj)))
714
715 (define (record-type-fields obj)
716 (if (record-type? obj)
717 (struct-ref obj (+ 1 vtable-offset-user))
718 (error 'not-a-record-type obj)))
719
720 (define* (record-constructor rtd #:optional field-names)
721 (if (not field-names)
722 (struct-ref rtd (+ 2 vtable-offset-user))
723 (primitive-eval
724 `(lambda ,field-names
725 (make-struct ',rtd 0 ,@(map (lambda (f)
726 (if (memq f field-names)
727 f
728 #f))
729 (record-type-fields rtd)))))))
730
731 (define (record-predicate rtd)
732 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
733
734 (define (%record-type-error rtd obj) ;; private helper
735 (or (eq? rtd (record-type-descriptor obj))
736 (scm-error 'wrong-type-arg "%record-type-check"
737 "Wrong type record (want `~S'): ~S"
738 (list (record-type-name rtd) obj)
739 #f)))
740
741 (define (record-accessor rtd field-name)
742 (let ((pos (list-index (record-type-fields rtd) field-name)))
743 (if (not pos)
744 (error 'no-such-field field-name))
745 (lambda (obj)
746 (if (eq? (struct-vtable obj) rtd)
747 (struct-ref obj pos)
748 (%record-type-error rtd obj)))))
749
750 (define (record-modifier rtd field-name)
751 (let ((pos (list-index (record-type-fields rtd) field-name)))
752 (if (not pos)
753 (error 'no-such-field field-name))
754 (lambda (obj val)
755 (if (eq? (struct-vtable obj) rtd)
756 (struct-set! obj pos val)
757 (%record-type-error rtd obj)))))
758
759 (define (record? obj)
760 (and (struct? obj) (record-type? (struct-vtable obj))))
761
762 (define (record-type-descriptor obj)
763 (if (struct? obj)
764 (struct-vtable obj)
765 (error 'not-a-record obj)))
766
767 (provide 'record)
768
769 \f
770
771 ;;; {Booleans}
772 ;;;
773
774 (define (->bool x) (not (not x)))
775
776 \f
777
778 ;;; {Symbols}
779 ;;;
780
781 (define (symbol-append . args)
782 (string->symbol (apply string-append (map symbol->string args))))
783
784 (define (list->symbol . args)
785 (string->symbol (apply list->string args)))
786
787 (define (symbol . args)
788 (string->symbol (apply string args)))
789
790 \f
791
792 ;;; {Lists}
793 ;;;
794
795 (define (list-index l k)
796 (let loop ((n 0)
797 (l l))
798 (and (not (null? l))
799 (if (eq? (car l) k)
800 n
801 (loop (+ n 1) (cdr l))))))
802
803 \f
804
805 (if (provided? 'posix)
806 (primitive-load-path "ice-9/posix"))
807
808 (if (provided? 'socket)
809 (primitive-load-path "ice-9/networking"))
810
811 ;; For reference, Emacs file-exists-p uses stat in this same way.
812 (define file-exists?
813 (if (provided? 'posix)
814 (lambda (str)
815 (->bool (stat str #f)))
816 (lambda (str)
817 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
818 (lambda args #f))))
819 (if port (begin (close-port port) #t)
820 #f)))))
821
822 (define file-is-directory?
823 (if (provided? 'posix)
824 (lambda (str)
825 (eq? (stat:type (stat str)) 'directory))
826 (lambda (str)
827 (let ((port (catch 'system-error
828 (lambda () (open-file (string-append str "/.")
829 OPEN_READ))
830 (lambda args #f))))
831 (if port (begin (close-port port) #t)
832 #f)))))
833
834 (define (has-suffix? str suffix)
835 (string-suffix? suffix str))
836
837 (define (system-error-errno args)
838 (if (eq? (car args) 'system-error)
839 (car (list-ref args 4))
840 #f))
841
842 \f
843
844 ;;; {Error Handling}
845 ;;;
846
847 (define (error . args)
848 (save-stack)
849 (if (null? args)
850 (scm-error 'misc-error #f "?" #f #f)
851 (let loop ((msg "~A")
852 (rest (cdr args)))
853 (if (not (null? rest))
854 (loop (string-append msg " ~S")
855 (cdr rest))
856 (scm-error 'misc-error #f msg args #f)))))
857
858 ;; bad-throw is the hook that is called upon a throw to a an unhandled
859 ;; key (unless the throw has four arguments, in which case
860 ;; it's usually interpreted as an error throw.)
861 ;; If the key has a default handler (a throw-handler-default property),
862 ;; it is applied to the throw.
863 ;;
864 (define (bad-throw key . args)
865 (let ((default (symbol-property key 'throw-handler-default)))
866 (or (and default (apply default key args))
867 (apply error "unhandled-exception:" key args))))
868
869 \f
870
871 (define (tm:sec obj) (vector-ref obj 0))
872 (define (tm:min obj) (vector-ref obj 1))
873 (define (tm:hour obj) (vector-ref obj 2))
874 (define (tm:mday obj) (vector-ref obj 3))
875 (define (tm:mon obj) (vector-ref obj 4))
876 (define (tm:year obj) (vector-ref obj 5))
877 (define (tm:wday obj) (vector-ref obj 6))
878 (define (tm:yday obj) (vector-ref obj 7))
879 (define (tm:isdst obj) (vector-ref obj 8))
880 (define (tm:gmtoff obj) (vector-ref obj 9))
881 (define (tm:zone obj) (vector-ref obj 10))
882
883 (define (set-tm:sec obj val) (vector-set! obj 0 val))
884 (define (set-tm:min obj val) (vector-set! obj 1 val))
885 (define (set-tm:hour obj val) (vector-set! obj 2 val))
886 (define (set-tm:mday obj val) (vector-set! obj 3 val))
887 (define (set-tm:mon obj val) (vector-set! obj 4 val))
888 (define (set-tm:year obj val) (vector-set! obj 5 val))
889 (define (set-tm:wday obj val) (vector-set! obj 6 val))
890 (define (set-tm:yday obj val) (vector-set! obj 7 val))
891 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
892 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
893 (define (set-tm:zone obj val) (vector-set! obj 10 val))
894
895 (define (tms:clock obj) (vector-ref obj 0))
896 (define (tms:utime obj) (vector-ref obj 1))
897 (define (tms:stime obj) (vector-ref obj 2))
898 (define (tms:cutime obj) (vector-ref obj 3))
899 (define (tms:cstime obj) (vector-ref obj 4))
900
901 (define file-position ftell)
902 (define* (file-set-position port offset #:optional (whence SEEK_SET))
903 (seek port offset whence))
904
905 (define (move->fdes fd/port fd)
906 (cond ((integer? fd/port)
907 (dup->fdes fd/port fd)
908 (close fd/port)
909 fd)
910 (else
911 (primitive-move->fdes fd/port fd)
912 (set-port-revealed! fd/port 1)
913 fd/port)))
914
915 (define (release-port-handle port)
916 (let ((revealed (port-revealed port)))
917 (if (> revealed 0)
918 (set-port-revealed! port (- revealed 1)))))
919
920 (define dup->port
921 (case-lambda
922 ((port/fd mode)
923 (fdopen (dup->fdes port/fd) mode))
924 ((port/fd mode new-fd)
925 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
926 (set-port-revealed! port 1)
927 port))))
928
929 (define dup->inport
930 (case-lambda
931 ((port/fd)
932 (dup->port port/fd "r"))
933 ((port/fd new-fd)
934 (dup->port port/fd "r" new-fd))))
935
936 (define dup->outport
937 (case-lambda
938 ((port/fd)
939 (dup->port port/fd "w"))
940 ((port/fd new-fd)
941 (dup->port port/fd "w" new-fd))))
942
943 (define dup
944 (case-lambda
945 ((port/fd)
946 (if (integer? port/fd)
947 (dup->fdes port/fd)
948 (dup->port port/fd (port-mode port/fd))))
949 ((port/fd new-fd)
950 (if (integer? port/fd)
951 (dup->fdes port/fd new-fd)
952 (dup->port port/fd (port-mode port/fd) new-fd)))))
953
954 (define (duplicate-port port modes)
955 (dup->port port modes))
956
957 (define (fdes->inport fdes)
958 (let loop ((rest-ports (fdes->ports fdes)))
959 (cond ((null? rest-ports)
960 (let ((result (fdopen fdes "r")))
961 (set-port-revealed! result 1)
962 result))
963 ((input-port? (car rest-ports))
964 (set-port-revealed! (car rest-ports)
965 (+ (port-revealed (car rest-ports)) 1))
966 (car rest-ports))
967 (else
968 (loop (cdr rest-ports))))))
969
970 (define (fdes->outport fdes)
971 (let loop ((rest-ports (fdes->ports fdes)))
972 (cond ((null? rest-ports)
973 (let ((result (fdopen fdes "w")))
974 (set-port-revealed! result 1)
975 result))
976 ((output-port? (car rest-ports))
977 (set-port-revealed! (car rest-ports)
978 (+ (port-revealed (car rest-ports)) 1))
979 (car rest-ports))
980 (else
981 (loop (cdr rest-ports))))))
982
983 (define (port->fdes port)
984 (set-port-revealed! port (+ (port-revealed port) 1))
985 (fileno port))
986
987 (define (setenv name value)
988 (if value
989 (putenv (string-append name "=" value))
990 (putenv name)))
991
992 (define (unsetenv name)
993 "Remove the entry for NAME from the environment."
994 (putenv name))
995
996 \f
997
998 ;;; {Load Paths}
999 ;;;
1000
1001 ;;; Here for backward compatability
1002 ;;
1003 (define scheme-file-suffix (lambda () ".scm"))
1004
1005 (define (in-vicinity vicinity file)
1006 (let ((tail (let ((len (string-length vicinity)))
1007 (if (zero? len)
1008 #f
1009 (string-ref vicinity (- len 1))))))
1010 (string-append vicinity
1011 (if (or (not tail)
1012 (eq? tail #\/))
1013 ""
1014 "/")
1015 file)))
1016
1017 \f
1018
1019 ;;; {Help for scm_shell}
1020 ;;;
1021 ;;; The argument-processing code used by Guile-based shells generates
1022 ;;; Scheme code based on the argument list. This page contains help
1023 ;;; functions for the code it generates.
1024 ;;;
1025
1026 (define (command-line) (program-arguments))
1027
1028 ;; This is mostly for the internal use of the code generated by
1029 ;; scm_compile_shell_switches.
1030
1031 (define (turn-on-debugging)
1032 (debug-enable 'debug)
1033 (debug-enable 'backtrace)
1034 (read-enable 'positions))
1035
1036 (define (load-user-init)
1037 (let* ((home (or (getenv "HOME")
1038 (false-if-exception (passwd:dir (getpwuid (getuid))))
1039 "/")) ;; fallback for cygwin etc.
1040 (init-file (in-vicinity home ".guile")))
1041 (if (file-exists? init-file)
1042 (primitive-load init-file))))
1043
1044 \f
1045
1046 ;;; {The interpreter stack}
1047 ;;;
1048
1049 ;; %stacks defined in stacks.c
1050 (define (%start-stack tag thunk)
1051 (let ((prompt-tag (make-prompt-tag "start-stack")))
1052 (call-with-prompt
1053 prompt-tag
1054 (lambda ()
1055 (with-fluids ((%stacks (acons tag prompt-tag
1056 (or (fluid-ref %stacks) '()))))
1057 (thunk)))
1058 (lambda (k . args)
1059 (%start-stack tag (lambda () (apply k args)))))))
1060 (define-syntax start-stack
1061 (syntax-rules ()
1062 ((_ tag exp)
1063 (%start-stack tag (lambda () exp)))))
1064
1065 \f
1066
1067 ;;; {Loading by paths}
1068 ;;;
1069
1070 ;;; Load a Scheme source file named NAME, searching for it in the
1071 ;;; directories listed in %load-path, and applying each of the file
1072 ;;; name extensions listed in %load-extensions.
1073 (define (load-from-path name)
1074 (start-stack 'load-stack
1075 (primitive-load-path name)))
1076
1077 (define %load-verbosely #f)
1078 (define (assert-load-verbosity v) (set! %load-verbosely v))
1079
1080 (define (%load-announce file)
1081 (if %load-verbosely
1082 (with-output-to-port (current-error-port)
1083 (lambda ()
1084 (display ";;; ")
1085 (display "loading ")
1086 (display file)
1087 (newline)
1088 (force-output)))))
1089
1090 (set! %load-hook %load-announce)
1091
1092 (define* (load name #:optional reader)
1093 ;; Returns the .go file corresponding to `name'. Does not search load
1094 ;; paths, only the fallback path. If the .go file is missing or out of
1095 ;; date, and autocompilation is enabled, will try autocompilation, just
1096 ;; as primitive-load-path does internally. primitive-load is
1097 ;; unaffected. Returns #f if autocompilation failed or was disabled.
1098 ;;
1099 ;; NB: Unless we need to compile the file, this function should not cause
1100 ;; (system base compile) to be loaded up. For that reason compiled-file-name
1101 ;; partially duplicates functionality from (system base compile).
1102 (define (compiled-file-name canon-path)
1103 (and %compile-fallback-path
1104 (string-append
1105 %compile-fallback-path
1106 ;; no need for '/' separator here, canon-path is absolute
1107 canon-path
1108 (cond ((or (null? %load-compiled-extensions)
1109 (string-null? (car %load-compiled-extensions)))
1110 (warn "invalid %load-compiled-extensions"
1111 %load-compiled-extensions)
1112 ".go")
1113 (else (car %load-compiled-extensions))))))
1114 (define (fresh-compiled-file-name go-path)
1115 (catch #t
1116 (lambda ()
1117 (let* ((scmstat (stat name))
1118 (gostat (stat go-path #f)))
1119 (if (and gostat (= (stat:mtime gostat) (stat:mtime scmstat)))
1120 go-path
1121 (begin
1122 (if gostat
1123 (format (current-error-port)
1124 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
1125 name go-path))
1126 (cond
1127 (%load-should-autocompile
1128 (%warn-autocompilation-enabled)
1129 (format (current-error-port) ";;; compiling ~a\n" name)
1130 (let ((cfn ((@ (system base compile) compile-file) name
1131 #:env (current-module))))
1132 (format (current-error-port) ";;; compiled ~a\n" cfn)
1133 cfn))
1134 (else #f))))))
1135 (lambda (k . args)
1136 (format (current-error-port)
1137 ";;; WARNING: compilation of ~a failed:\n;;; key ~a, throw_args ~s\n"
1138 name k args)
1139 #f)))
1140 (with-fluids ((current-reader reader))
1141 (let ((cfn (and=> (and=> (false-if-exception (canonicalize-path name))
1142 compiled-file-name)
1143 fresh-compiled-file-name)))
1144 (if cfn
1145 (load-compiled cfn)
1146 (start-stack 'load-stack
1147 (primitive-load name))))))
1148
1149 \f
1150
1151 ;;; {Reader Extensions}
1152 ;;;
1153 ;;; Reader code for various "#c" forms.
1154 ;;;
1155
1156 (define read-eval? (make-fluid))
1157 (fluid-set! read-eval? #f)
1158 (read-hash-extend #\.
1159 (lambda (c port)
1160 (if (fluid-ref read-eval?)
1161 (eval (read port) (interaction-environment))
1162 (error
1163 "#. read expansion found and read-eval? is #f."))))
1164
1165 \f
1166
1167 ;;; {Command Line Options}
1168 ;;;
1169
1170 (define (get-option argv kw-opts kw-args return)
1171 (cond
1172 ((null? argv)
1173 (return #f #f argv))
1174
1175 ((or (not (eq? #\- (string-ref (car argv) 0)))
1176 (eq? (string-length (car argv)) 1))
1177 (return 'normal-arg (car argv) (cdr argv)))
1178
1179 ((eq? #\- (string-ref (car argv) 1))
1180 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
1181 (string-length (car argv))))
1182 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
1183 (kw-opt? (member kw kw-opts))
1184 (kw-arg? (member kw kw-args))
1185 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
1186 (substring (car argv)
1187 (+ kw-arg-pos 1)
1188 (string-length (car argv))))
1189 (and kw-arg?
1190 (begin (set! argv (cdr argv)) (car argv))))))
1191 (if (or kw-opt? kw-arg?)
1192 (return kw arg (cdr argv))
1193 (return 'usage-error kw (cdr argv)))))
1194
1195 (else
1196 (let* ((char (substring (car argv) 1 2))
1197 (kw (symbol->keyword char)))
1198 (cond
1199
1200 ((member kw kw-opts)
1201 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1202 (new-argv (if (= 0 (string-length rest-car))
1203 (cdr argv)
1204 (cons (string-append "-" rest-car) (cdr argv)))))
1205 (return kw #f new-argv)))
1206
1207 ((member kw kw-args)
1208 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1209 (arg (if (= 0 (string-length rest-car))
1210 (cadr argv)
1211 rest-car))
1212 (new-argv (if (= 0 (string-length rest-car))
1213 (cddr argv)
1214 (cdr argv))))
1215 (return kw arg new-argv)))
1216
1217 (else (return 'usage-error kw argv)))))))
1218
1219 (define (for-next-option proc argv kw-opts kw-args)
1220 (let loop ((argv argv))
1221 (get-option argv kw-opts kw-args
1222 (lambda (opt opt-arg argv)
1223 (and opt (proc opt opt-arg argv loop))))))
1224
1225 (define (display-usage-report kw-desc)
1226 (for-each
1227 (lambda (kw)
1228 (or (eq? (car kw) #t)
1229 (eq? (car kw) 'else)
1230 (let* ((opt-desc kw)
1231 (help (cadr opt-desc))
1232 (opts (car opt-desc))
1233 (opts-proper (if (string? (car opts)) (cdr opts) opts))
1234 (arg-name (if (string? (car opts))
1235 (string-append "<" (car opts) ">")
1236 ""))
1237 (left-part (string-append
1238 (with-output-to-string
1239 (lambda ()
1240 (map (lambda (x) (display (keyword->symbol x)) (display " "))
1241 opts-proper)))
1242 arg-name))
1243 (middle-part (if (and (< (string-length left-part) 30)
1244 (< (string-length help) 40))
1245 (make-string (- 30 (string-length left-part)) #\ )
1246 "\n\t")))
1247 (display left-part)
1248 (display middle-part)
1249 (display help)
1250 (newline))))
1251 kw-desc))
1252
1253
1254
1255 (define (transform-usage-lambda cases)
1256 (let* ((raw-usage (delq! 'else (map car cases)))
1257 (usage-sans-specials (map (lambda (x)
1258 (or (and (not (list? x)) x)
1259 (and (symbol? (car x)) #t)
1260 (and (boolean? (car x)) #t)
1261 x))
1262 raw-usage))
1263 (usage-desc (delq! #t usage-sans-specials))
1264 (kw-desc (map car usage-desc))
1265 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
1266 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1267 (transmogrified-cases (map (lambda (case)
1268 (cons (let ((opts (car case)))
1269 (if (or (boolean? opts) (eq? 'else opts))
1270 opts
1271 (cond
1272 ((symbol? (car opts)) opts)
1273 ((boolean? (car opts)) opts)
1274 ((string? (caar opts)) (cdar opts))
1275 (else (car opts)))))
1276 (cdr case)))
1277 cases)))
1278 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1279 (lambda (%argv)
1280 (let %next-arg ((%argv %argv))
1281 (get-option %argv
1282 ',kw-opts
1283 ',kw-args
1284 (lambda (%opt %arg %new-argv)
1285 (case %opt
1286 ,@ transmogrified-cases))))))))
1287
1288
1289 \f
1290
1291 ;;; {Low Level Modules}
1292 ;;;
1293 ;;; These are the low level data structures for modules.
1294 ;;;
1295 ;;; Every module object is of the type 'module-type', which is a record
1296 ;;; consisting of the following members:
1297 ;;;
1298 ;;; - eval-closure: the function that defines for its module the strategy that
1299 ;;; shall be followed when looking up symbols in the module.
1300 ;;;
1301 ;;; An eval-closure is a function taking two arguments: the symbol to be
1302 ;;; looked up and a boolean value telling whether a binding for the symbol
1303 ;;; should be created if it does not exist yet. If the symbol lookup
1304 ;;; succeeded (either because an existing binding was found or because a new
1305 ;;; binding was created), a variable object representing the binding is
1306 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1307 ;;; closure does not take the module to be searched as an argument: During
1308 ;;; construction of the eval-closure, the eval-closure has to store the
1309 ;;; module it belongs to in its environment. This means, that any
1310 ;;; eval-closure can belong to only one module.
1311 ;;;
1312 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1313 ;;; special cases of eval-closures are to be distinguished: During startup
1314 ;;; the module system is not yet activated. In this phase, no modules are
1315 ;;; defined and all bindings are automatically stored by the system in the
1316 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1317 ;;; functions which require an eval-closure as their argument need to be
1318 ;;; passed the value #f.
1319 ;;;
1320 ;;; The other two special cases of eval-closures are the
1321 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1322 ;;; behave equally for the case that no new binding is to be created. The
1323 ;;; difference between the two comes in, when the boolean argument to the
1324 ;;; eval-closure indicates that a new binding shall be created if it is not
1325 ;;; found.
1326 ;;;
1327 ;;; Given that no new binding shall be created, both standard eval-closures
1328 ;;; define the following standard strategy of searching bindings in the
1329 ;;; module: First, the module's obarray is searched for the symbol. Second,
1330 ;;; if no binding for the symbol was found in the module's obarray, the
1331 ;;; module's binder procedure is exececuted. If this procedure did not
1332 ;;; return a binding for the symbol, the modules referenced in the module's
1333 ;;; uses list are recursively searched for a binding of the symbol. If the
1334 ;;; binding can not be found in these modules also, the symbol lookup has
1335 ;;; failed.
1336 ;;;
1337 ;;; If a new binding shall be created, the standard-interface-eval-closure
1338 ;;; immediately returns indicating failure. That is, it does not even try
1339 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1340 ;;; first search the obarray, and if no binding was found there, would
1341 ;;; create a new binding in the obarray, therefore not calling the binder
1342 ;;; procedure or searching the modules in the uses list.
1343 ;;;
1344 ;;; The explanation of the following members obarray, binder and uses
1345 ;;; assumes that the symbol lookup follows the strategy that is defined in
1346 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1347 ;;;
1348 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1349 ;;; hash table, the definitions are found that are local to the module (that
1350 ;;; is, not imported from other modules). When looking up bindings in the
1351 ;;; module, this hash table is searched first.
1352 ;;;
1353 ;;; - binder: either #f or a function taking a module and a symbol argument.
1354 ;;; If it is a function it is called after the obarray has been
1355 ;;; unsuccessfully searched for a binding. It then can provide bindings
1356 ;;; that would otherwise not be found locally in the module.
1357 ;;;
1358 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1359 ;;; These modules are the third place queried for bindings after the obarray
1360 ;;; has been unsuccessfully searched and the binder function did not deliver
1361 ;;; a result either.
1362 ;;;
1363 ;;; - transformer: either #f or a function taking a scheme expression as
1364 ;;; delivered by read. If it is a function, it will be called to perform
1365 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1366 ;;; expression. The output of the transformer function will then be passed
1367 ;;; to Guile's internal memoizer. This means that the output must be valid
1368 ;;; scheme code. The only exception is, that the output may make use of the
1369 ;;; syntax extensions provided to identify the modules that a binding
1370 ;;; belongs to.
1371 ;;;
1372 ;;; - name: the name of the module. This is used for all kinds of printing
1373 ;;; outputs. In certain places the module name also serves as a way of
1374 ;;; identification. When adding a module to the uses list of another
1375 ;;; module, it is made sure that the new uses list will not contain two
1376 ;;; modules of the same name.
1377 ;;;
1378 ;;; - kind: classification of the kind of module. The value is (currently?)
1379 ;;; only used for printing. It has no influence on how a module is treated.
1380 ;;; Currently the following values are used when setting the module kind:
1381 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1382 ;;; is set, it defaults to 'module.
1383 ;;;
1384 ;;; - duplicates-handlers: a list of procedures that get called to make a
1385 ;;; choice between two duplicate bindings when name clashes occur. See the
1386 ;;; `duplicate-handlers' global variable below.
1387 ;;;
1388 ;;; - observers: a list of procedures that get called when the module is
1389 ;;; modified.
1390 ;;;
1391 ;;; - weak-observers: a weak-key hash table of procedures that get called
1392 ;;; when the module is modified. See `module-observe-weak' for details.
1393 ;;;
1394 ;;; In addition, the module may (must?) contain a binding for
1395 ;;; `%module-public-interface'. This variable should be bound to a module
1396 ;;; representing the exported interface of a module. See the
1397 ;;; `module-public-interface' and `module-export!' procedures.
1398 ;;;
1399 ;;; !!! warning: The interface to lazy binder procedures is going
1400 ;;; to be changed in an incompatible way to permit all the basic
1401 ;;; module ops to be virtualized.
1402 ;;;
1403 ;;; (make-module size use-list lazy-binding-proc) => module
1404 ;;; module-{obarray,uses,binder}[|-set!]
1405 ;;; (module? obj) => [#t|#f]
1406 ;;; (module-locally-bound? module symbol) => [#t|#f]
1407 ;;; (module-bound? module symbol) => [#t|#f]
1408 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1409 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1410 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1411 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1412 ;;; (module-symbol-binding module symbol opt-value)
1413 ;;; => [ <obj> | opt-value | an error occurs ]
1414 ;;; (module-make-local-var! module symbol) => #<variable...>
1415 ;;; (module-add! module symbol var) => unspecified
1416 ;;; (module-remove! module symbol) => unspecified
1417 ;;; (module-for-each proc module) => unspecified
1418 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1419 ;;; (set-current-module module) => unspecified
1420 ;;; (current-module) => #<module...>
1421 ;;;
1422 ;;;
1423
1424 \f
1425
1426 ;;; {Printing Modules}
1427 ;;;
1428
1429 ;; This is how modules are printed. You can re-define it.
1430 (define (%print-module mod port)
1431 (display "#<" port)
1432 (display (or (module-kind mod) "module") port)
1433 (display " " port)
1434 (display (module-name mod) port)
1435 (display " " port)
1436 (display (number->string (object-address mod) 16) port)
1437 (display ">" port))
1438
1439 (letrec-syntax
1440 ;; Locally extend the syntax to allow record accessors to be defined at
1441 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1442 ;; the setters, in order to allow for redefinition of the record type; not
1443 ;; relevant in the case of modules, but perhaps if we make this public, it
1444 ;; could matter.
1445
1446 ((define-record-type
1447 (lambda (x)
1448 (define (make-id scope . fragments)
1449 (datum->syntax #'scope
1450 (apply symbol-append
1451 (map (lambda (x)
1452 (if (symbol? x) x (syntax->datum x)))
1453 fragments))))
1454
1455 (define (getter rtd type-name field slot)
1456 #`(define #,(make-id rtd type-name '- field)
1457 (let ((rtd #,rtd))
1458 (lambda (#,type-name)
1459 (if (eq? (struct-vtable #,type-name) rtd)
1460 (struct-ref #,type-name #,slot)
1461 (%record-type-error rtd #,type-name))))))
1462
1463 (define (setter rtd type-name field slot)
1464 #`(define #,(make-id rtd 'set- type-name '- field '!)
1465 (let ((rtd #,rtd))
1466 (lambda (#,type-name val)
1467 (if (eq? (struct-vtable #,type-name) rtd)
1468 (struct-set! #,type-name #,slot val)
1469 (%record-type-error rtd #,type-name))))))
1470
1471 (define (accessors rtd type-name fields n exp)
1472 (syntax-case fields ()
1473 (() exp)
1474 (((field #:no-accessors) field* ...) (identifier? #'field)
1475 (accessors rtd type-name #'(field* ...) (1+ n)
1476 exp))
1477 (((field #:no-setter) field* ...) (identifier? #'field)
1478 (accessors rtd type-name #'(field* ...) (1+ n)
1479 #`(begin #,exp
1480 #,(getter rtd type-name #'field n))))
1481 (((field #:no-getter) field* ...) (identifier? #'field)
1482 (accessors rtd type-name #'(field* ...) (1+ n)
1483 #`(begin #,exp
1484 #,(setter rtd type-name #'field n))))
1485 ((field field* ...) (identifier? #'field)
1486 (accessors rtd type-name #'(field* ...) (1+ n)
1487 #`(begin #,exp
1488 #,(getter rtd type-name #'field n)
1489 #,(setter rtd type-name #'field n))))))
1490
1491 (define (predicate rtd type-name fields exp)
1492 (accessors
1493 rtd type-name fields 0
1494 #`(begin
1495 #,exp
1496 (define (#,(make-id rtd type-name '?) obj)
1497 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1498
1499 (define (field-list fields)
1500 (syntax-case fields ()
1501 (() '())
1502 (((f . opts) . rest) (identifier? #'f)
1503 (cons #'f (field-list #'rest)))
1504 ((f . rest) (identifier? #'f)
1505 (cons #'f (field-list #'rest)))))
1506
1507 (define (constructor rtd type-name fields exp)
1508 (let ((ctor (make-id rtd type-name '-constructor))
1509 (args (field-list fields)))
1510 (predicate rtd type-name fields
1511 #`(begin #,exp
1512 (define #,ctor
1513 (let ((rtd #,rtd))
1514 (lambda #,args
1515 (make-struct rtd 0 #,@args))))
1516 (struct-set! #,rtd (+ vtable-offset-user 2)
1517 #,ctor)))))
1518
1519 (define (type type-name printer fields)
1520 (define (make-layout)
1521 (let lp ((fields fields) (slots '()))
1522 (syntax-case fields ()
1523 (() (datum->syntax #'here
1524 (make-struct-layout
1525 (apply string-append slots))))
1526 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1527
1528 (let ((rtd (make-id type-name type-name '-type)))
1529 (constructor rtd type-name fields
1530 #`(begin
1531 (define #,rtd
1532 (make-struct record-type-vtable 0
1533 '#,(make-layout)
1534 #,printer
1535 '#,type-name
1536 '#,(field-list fields)))
1537 (set-struct-vtable-name! #,rtd '#,type-name)))))
1538
1539 (syntax-case x ()
1540 ((_ type-name printer (field ...))
1541 (type #'type-name #'printer #'(field ...)))))))
1542
1543 ;; module-type
1544 ;;
1545 ;; A module is characterized by an obarray in which local symbols
1546 ;; are interned, a list of modules, "uses", from which non-local
1547 ;; bindings can be inherited, and an optional lazy-binder which
1548 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1549 ;; bindings that would otherwise not be found locally in the module.
1550 ;;
1551 ;; NOTE: If you change the set of fields or their order, you also need to
1552 ;; change the constants in libguile/modules.h.
1553 ;;
1554 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1555 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1556 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1557 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1558 ;;
1559 (define-record-type module
1560 (lambda (obj port) (%print-module obj port))
1561 (obarray
1562 uses
1563 binder
1564 eval-closure
1565 (transformer #:no-getter)
1566 (name #:no-getter)
1567 kind
1568 duplicates-handlers
1569 (import-obarray #:no-setter)
1570 observers
1571 (weak-observers #:no-setter)
1572 version
1573 submodules
1574 submodule-binder
1575 public-interface)))
1576
1577
1578 ;; make-module &opt size uses binder
1579 ;;
1580 ;; Create a new module, perhaps with a particular size of obarray,
1581 ;; initial uses list, or binding procedure.
1582 ;;
1583 (define make-module
1584 (lambda args
1585
1586 (define (parse-arg index default)
1587 (if (> (length args) index)
1588 (list-ref args index)
1589 default))
1590
1591 (define %default-import-size
1592 ;; Typical number of imported bindings actually used by a module.
1593 600)
1594
1595 (if (> (length args) 3)
1596 (error "Too many args to make-module." args))
1597
1598 (let ((size (parse-arg 0 31))
1599 (uses (parse-arg 1 '()))
1600 (binder (parse-arg 2 #f)))
1601
1602 (if (not (integer? size))
1603 (error "Illegal size to make-module." size))
1604 (if (not (and (list? uses)
1605 (and-map module? uses)))
1606 (error "Incorrect use list." uses))
1607 (if (and binder (not (procedure? binder)))
1608 (error
1609 "Lazy-binder expected to be a procedure or #f." binder))
1610
1611 (let ((module (module-constructor (make-hash-table size)
1612 uses binder #f macroexpand
1613 #f #f #f
1614 (make-hash-table %default-import-size)
1615 '()
1616 (make-weak-key-hash-table 31) #f
1617 (make-hash-table 7) #f #f)))
1618
1619 ;; We can't pass this as an argument to module-constructor,
1620 ;; because we need it to close over a pointer to the module
1621 ;; itself.
1622 (set-module-eval-closure! module (standard-eval-closure module))
1623
1624 module))))
1625
1626
1627 \f
1628
1629 ;;; {Observer protocol}
1630 ;;;
1631
1632 (define (module-observe module proc)
1633 (set-module-observers! module (cons proc (module-observers module)))
1634 (cons module proc))
1635
1636 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
1637 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1638 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1639 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1640 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1641 ;; for instance).
1642
1643 ;; The two-argument version is kept for backward compatibility: when called
1644 ;; with two arguments, the observer gets unregistered when closure PROC
1645 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1646 (hashq-set! (module-weak-observers module) observer-id proc))
1647
1648 (define (module-unobserve token)
1649 (let ((module (car token))
1650 (id (cdr token)))
1651 (if (integer? id)
1652 (hash-remove! (module-weak-observers module) id)
1653 (set-module-observers! module (delq1! id (module-observers module)))))
1654 *unspecified*)
1655
1656 (define module-defer-observers #f)
1657 (define module-defer-observers-mutex (make-mutex 'recursive))
1658 (define module-defer-observers-table (make-hash-table))
1659
1660 (define (module-modified m)
1661 (if module-defer-observers
1662 (hash-set! module-defer-observers-table m #t)
1663 (module-call-observers m)))
1664
1665 ;;; This function can be used to delay calls to observers so that they
1666 ;;; can be called once only in the face of massive updating of modules.
1667 ;;;
1668 (define (call-with-deferred-observers thunk)
1669 (dynamic-wind
1670 (lambda ()
1671 (lock-mutex module-defer-observers-mutex)
1672 (set! module-defer-observers #t))
1673 thunk
1674 (lambda ()
1675 (set! module-defer-observers #f)
1676 (hash-for-each (lambda (m dummy)
1677 (module-call-observers m))
1678 module-defer-observers-table)
1679 (hash-clear! module-defer-observers-table)
1680 (unlock-mutex module-defer-observers-mutex))))
1681
1682 (define (module-call-observers m)
1683 (for-each (lambda (proc) (proc m)) (module-observers m))
1684
1685 ;; We assume that weak observers don't (un)register themselves as they are
1686 ;; called since this would preclude proper iteration over the hash table
1687 ;; elements.
1688 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1689
1690 \f
1691
1692 ;;; {Module Searching in General}
1693 ;;;
1694 ;;; We sometimes want to look for properties of a symbol
1695 ;;; just within the obarray of one module. If the property
1696 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1697 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1698 ;;;
1699 ;;;
1700 ;;; Other times, we want to test for a symbol property in the obarray
1701 ;;; of M and, if it is not found there, try each of the modules in the
1702 ;;; uses list of M. This is the normal way of testing for some
1703 ;;; property, so we state these properties without qualification as
1704 ;;; in: ``The symbol 'fnord is interned in module M because it is
1705 ;;; interned locally in module M2 which is a member of the uses list
1706 ;;; of M.''
1707 ;;;
1708
1709 ;; module-search fn m
1710 ;;
1711 ;; return the first non-#f result of FN applied to M and then to
1712 ;; the modules in the uses of m, and so on recursively. If all applications
1713 ;; return #f, then so does this function.
1714 ;;
1715 (define (module-search fn m v)
1716 (define (loop pos)
1717 (and (pair? pos)
1718 (or (module-search fn (car pos) v)
1719 (loop (cdr pos)))))
1720 (or (fn m v)
1721 (loop (module-uses m))))
1722
1723
1724 ;;; {Is a symbol bound in a module?}
1725 ;;;
1726 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1727 ;;; of S in M has been set to some well-defined value.
1728 ;;;
1729
1730 ;; module-locally-bound? module symbol
1731 ;;
1732 ;; Is a symbol bound (interned and defined) locally in a given module?
1733 ;;
1734 (define (module-locally-bound? m v)
1735 (let ((var (module-local-variable m v)))
1736 (and var
1737 (variable-bound? var))))
1738
1739 ;; module-bound? module symbol
1740 ;;
1741 ;; Is a symbol bound (interned and defined) anywhere in a given module
1742 ;; or its uses?
1743 ;;
1744 (define (module-bound? m v)
1745 (let ((var (module-variable m v)))
1746 (and var
1747 (variable-bound? var))))
1748
1749 ;;; {Is a symbol interned in a module?}
1750 ;;;
1751 ;;; Symbol S in Module M is interned if S occurs in
1752 ;;; of S in M has been set to some well-defined value.
1753 ;;;
1754 ;;; It is possible to intern a symbol in a module without providing
1755 ;;; an initial binding for the corresponding variable. This is done
1756 ;;; with:
1757 ;;; (module-add! module symbol (make-undefined-variable))
1758 ;;;
1759 ;;; In that case, the symbol is interned in the module, but not
1760 ;;; bound there. The unbound symbol shadows any binding for that
1761 ;;; symbol that might otherwise be inherited from a member of the uses list.
1762 ;;;
1763
1764 (define (module-obarray-get-handle ob key)
1765 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1766
1767 (define (module-obarray-ref ob key)
1768 ((if (symbol? key) hashq-ref hash-ref) ob key))
1769
1770 (define (module-obarray-set! ob key val)
1771 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1772
1773 (define (module-obarray-remove! ob key)
1774 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1775
1776 ;; module-symbol-locally-interned? module symbol
1777 ;;
1778 ;; is a symbol interned (not neccessarily defined) locally in a given module
1779 ;; or its uses? Interned symbols shadow inherited bindings even if
1780 ;; they are not themselves bound to a defined value.
1781 ;;
1782 (define (module-symbol-locally-interned? m v)
1783 (not (not (module-obarray-get-handle (module-obarray m) v))))
1784
1785 ;; module-symbol-interned? module symbol
1786 ;;
1787 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1788 ;; or its uses? Interned symbols shadow inherited bindings even if
1789 ;; they are not themselves bound to a defined value.
1790 ;;
1791 (define (module-symbol-interned? m v)
1792 (module-search module-symbol-locally-interned? m v))
1793
1794
1795 ;;; {Mapping modules x symbols --> variables}
1796 ;;;
1797
1798 ;; module-local-variable module symbol
1799 ;; return the local variable associated with a MODULE and SYMBOL.
1800 ;;
1801 ;;; This function is very important. It is the only function that can
1802 ;;; return a variable from a module other than the mutators that store
1803 ;;; new variables in modules. Therefore, this function is the location
1804 ;;; of the "lazy binder" hack.
1805 ;;;
1806 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1807 ;;; to a variable, return that variable object.
1808 ;;;
1809 ;;; If the symbols is not found at first, but the module has a lazy binder,
1810 ;;; then try the binder.
1811 ;;;
1812 ;;; If the symbol is not found at all, return #f.
1813 ;;;
1814 ;;; (This is now written in C, see `modules.c'.)
1815 ;;;
1816
1817 ;;; {Mapping modules x symbols --> bindings}
1818 ;;;
1819 ;;; These are similar to the mapping to variables, except that the
1820 ;;; variable is dereferenced.
1821 ;;;
1822
1823 ;; module-symbol-binding module symbol opt-value
1824 ;;
1825 ;; return the binding of a variable specified by name within
1826 ;; a given module, signalling an error if the variable is unbound.
1827 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1828 ;; return OPT-VALUE.
1829 ;;
1830 (define (module-symbol-local-binding m v . opt-val)
1831 (let ((var (module-local-variable m v)))
1832 (if (and var (variable-bound? var))
1833 (variable-ref var)
1834 (if (not (null? opt-val))
1835 (car opt-val)
1836 (error "Locally unbound variable." v)))))
1837
1838 ;; module-symbol-binding module symbol opt-value
1839 ;;
1840 ;; return the binding of a variable specified by name within
1841 ;; a given module, signalling an error if the variable is unbound.
1842 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1843 ;; return OPT-VALUE.
1844 ;;
1845 (define (module-symbol-binding m v . opt-val)
1846 (let ((var (module-variable m v)))
1847 (if (and var (variable-bound? var))
1848 (variable-ref var)
1849 (if (not (null? opt-val))
1850 (car opt-val)
1851 (error "Unbound variable." v)))))
1852
1853
1854 \f
1855
1856 ;;; {Adding Variables to Modules}
1857 ;;;
1858
1859 ;; module-make-local-var! module symbol
1860 ;;
1861 ;; ensure a variable for V in the local namespace of M.
1862 ;; If no variable was already there, then create a new and uninitialzied
1863 ;; variable.
1864 ;;
1865 ;; This function is used in modules.c.
1866 ;;
1867 (define (module-make-local-var! m v)
1868 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1869 (and (variable? b)
1870 (begin
1871 ;; Mark as modified since this function is called when
1872 ;; the standard eval closure defines a binding
1873 (module-modified m)
1874 b)))
1875
1876 ;; Create a new local variable.
1877 (let ((local-var (make-undefined-variable)))
1878 (module-add! m v local-var)
1879 local-var)))
1880
1881 ;; module-ensure-local-variable! module symbol
1882 ;;
1883 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1884 ;; there is no binding for SYMBOL, create a new uninitialized
1885 ;; variable. Return the local variable.
1886 ;;
1887 (define (module-ensure-local-variable! module symbol)
1888 (or (module-local-variable module symbol)
1889 (let ((var (make-undefined-variable)))
1890 (module-add! module symbol var)
1891 var)))
1892
1893 ;; module-add! module symbol var
1894 ;;
1895 ;; ensure a particular variable for V in the local namespace of M.
1896 ;;
1897 (define (module-add! m v var)
1898 (if (not (variable? var))
1899 (error "Bad variable to module-add!" var))
1900 (module-obarray-set! (module-obarray m) v var)
1901 (module-modified m))
1902
1903 ;; module-remove!
1904 ;;
1905 ;; make sure that a symbol is undefined in the local namespace of M.
1906 ;;
1907 (define (module-remove! m v)
1908 (module-obarray-remove! (module-obarray m) v)
1909 (module-modified m))
1910
1911 (define (module-clear! m)
1912 (hash-clear! (module-obarray m))
1913 (module-modified m))
1914
1915 ;; MODULE-FOR-EACH -- exported
1916 ;;
1917 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1918 ;;
1919 (define (module-for-each proc module)
1920 (hash-for-each proc (module-obarray module)))
1921
1922 (define (module-map proc module)
1923 (hash-map->list proc (module-obarray module)))
1924
1925 ;; Submodules
1926 ;;
1927 ;; Modules exist in a separate namespace from values, because you generally do
1928 ;; not want the name of a submodule, which you might not even use, to collide
1929 ;; with local variables that happen to be named the same as the submodule.
1930 ;;
1931 (define (module-ref-submodule module name)
1932 (or (hashq-ref (module-submodules module) name)
1933 (and (module-submodule-binder module)
1934 ((module-submodule-binder module) module name))))
1935
1936 (define (module-define-submodule! module name submodule)
1937 (hashq-set! (module-submodules module) name submodule))
1938
1939 \f
1940
1941 ;;; {Low Level Bootstrapping}
1942 ;;;
1943
1944 ;; make-root-module
1945
1946 ;; A root module uses the pre-modules-obarray as its obarray. This
1947 ;; special obarray accumulates all bindings that have been established
1948 ;; before the module system is fully booted.
1949 ;;
1950 ;; (The obarray continues to be used by code that has been closed over
1951 ;; before the module system has been booted.)
1952
1953 (define (make-root-module)
1954 (let ((m (make-module 0)))
1955 (set-module-obarray! m (%get-pre-modules-obarray))
1956 m))
1957
1958 ;; make-scm-module
1959
1960 ;; The root interface is a module that uses the same obarray as the
1961 ;; root module. It does not allow new definitions, tho.
1962
1963 (define (make-scm-module)
1964 (let ((m (make-module 0)))
1965 (set-module-obarray! m (%get-pre-modules-obarray))
1966 (set-module-eval-closure! m (standard-interface-eval-closure m))
1967 m))
1968
1969
1970 \f
1971
1972 ;;; {Module-based Loading}
1973 ;;;
1974
1975 (define (save-module-excursion thunk)
1976 (let ((inner-module (current-module))
1977 (outer-module #f))
1978 (dynamic-wind (lambda ()
1979 (set! outer-module (current-module))
1980 (set-current-module inner-module)
1981 (set! inner-module #f))
1982 thunk
1983 (lambda ()
1984 (set! inner-module (current-module))
1985 (set-current-module outer-module)
1986 (set! outer-module #f)))))
1987
1988 (define basic-load load)
1989
1990 (define* (load-module filename #:optional reader)
1991 (save-module-excursion
1992 (lambda ()
1993 (let ((oldname (and (current-load-port)
1994 (port-filename (current-load-port)))))
1995 (basic-load (if (and oldname
1996 (> (string-length filename) 0)
1997 (not (char=? (string-ref filename 0) #\/))
1998 (not (string=? (dirname oldname) ".")))
1999 (string-append (dirname oldname) "/" filename)
2000 filename)
2001 reader)))))
2002
2003
2004 \f
2005
2006 ;;; {MODULE-REF -- exported}
2007 ;;;
2008
2009 ;; Returns the value of a variable called NAME in MODULE or any of its
2010 ;; used modules. If there is no such variable, then if the optional third
2011 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
2012 ;;
2013 (define (module-ref module name . rest)
2014 (let ((variable (module-variable module name)))
2015 (if (and variable (variable-bound? variable))
2016 (variable-ref variable)
2017 (if (null? rest)
2018 (error "No variable named" name 'in module)
2019 (car rest) ; default value
2020 ))))
2021
2022 ;; MODULE-SET! -- exported
2023 ;;
2024 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
2025 ;; to VALUE; if there is no such variable, an error is signaled.
2026 ;;
2027 (define (module-set! module name value)
2028 (let ((variable (module-variable module name)))
2029 (if variable
2030 (variable-set! variable value)
2031 (error "No variable named" name 'in module))))
2032
2033 ;; MODULE-DEFINE! -- exported
2034 ;;
2035 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
2036 ;; variable, it is added first.
2037 ;;
2038 (define (module-define! module name value)
2039 (let ((variable (module-local-variable module name)))
2040 (if variable
2041 (begin
2042 (variable-set! variable value)
2043 (module-modified module))
2044 (let ((variable (make-variable value)))
2045 (module-add! module name variable)))))
2046
2047 ;; MODULE-DEFINED? -- exported
2048 ;;
2049 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
2050 ;; uses)
2051 ;;
2052 (define (module-defined? module name)
2053 (let ((variable (module-variable module name)))
2054 (and variable (variable-bound? variable))))
2055
2056 ;; MODULE-USE! module interface
2057 ;;
2058 ;; Add INTERFACE to the list of interfaces used by MODULE.
2059 ;;
2060 (define (module-use! module interface)
2061 (if (not (or (eq? module interface)
2062 (memq interface (module-uses module))))
2063 (begin
2064 ;; Newly used modules must be appended rather than consed, so that
2065 ;; `module-variable' traverses the use list starting from the first
2066 ;; used module.
2067 (set-module-uses! module
2068 (append (filter (lambda (m)
2069 (not
2070 (equal? (module-name m)
2071 (module-name interface))))
2072 (module-uses module))
2073 (list interface)))
2074 (hash-clear! (module-import-obarray module))
2075 (module-modified module))))
2076
2077 ;; MODULE-USE-INTERFACES! module interfaces
2078 ;;
2079 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
2080 ;;
2081 (define (module-use-interfaces! module interfaces)
2082 (set-module-uses! module
2083 (append (module-uses module) interfaces))
2084 (hash-clear! (module-import-obarray module))
2085 (module-modified module))
2086
2087 \f
2088
2089 ;;; {Recursive Namespaces}
2090 ;;;
2091 ;;; A hierarchical namespace emerges if we consider some module to be
2092 ;;; root, and submodules of that module to be nested namespaces.
2093 ;;;
2094 ;;; The routines here manage variable names in hierarchical namespace.
2095 ;;; Each variable name is a list of elements, looked up in successively nested
2096 ;;; modules.
2097 ;;;
2098 ;;; (nested-ref some-root-module '(foo bar baz))
2099 ;;; => <value of a variable named baz in the submodule bar of
2100 ;;; the submodule foo of some-root-module>
2101 ;;;
2102 ;;;
2103 ;;; There are:
2104 ;;;
2105 ;;; ;; a-root is a module
2106 ;;; ;; name is a list of symbols
2107 ;;;
2108 ;;; nested-ref a-root name
2109 ;;; nested-set! a-root name val
2110 ;;; nested-define! a-root name val
2111 ;;; nested-remove! a-root name
2112 ;;;
2113 ;;; These functions manipulate values in namespaces. For referencing the
2114 ;;; namespaces themselves, use the following:
2115 ;;;
2116 ;;; nested-ref-module a-root name
2117 ;;; nested-define-module! a-root name mod
2118 ;;;
2119 ;;; (current-module) is a natural choice for a root so for convenience there are
2120 ;;; also:
2121 ;;;
2122 ;;; local-ref name == nested-ref (current-module) name
2123 ;;; local-set! name val == nested-set! (current-module) name val
2124 ;;; local-define name val == nested-define! (current-module) name val
2125 ;;; local-remove name == nested-remove! (current-module) name
2126 ;;; local-ref-module name == nested-ref-module (current-module) name
2127 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2128 ;;;
2129
2130
2131 (define (nested-ref root names)
2132 (if (null? names)
2133 root
2134 (let loop ((cur root)
2135 (head (car names))
2136 (tail (cdr names)))
2137 (if (null? tail)
2138 (module-ref cur head #f)
2139 (let ((cur (module-ref-submodule cur head)))
2140 (and cur
2141 (loop cur (car tail) (cdr tail))))))))
2142
2143 (define (nested-set! root names val)
2144 (let loop ((cur root)
2145 (head (car names))
2146 (tail (cdr names)))
2147 (if (null? tail)
2148 (module-set! cur head val)
2149 (let ((cur (module-ref-submodule cur head)))
2150 (if (not cur)
2151 (error "failed to resolve module" names)
2152 (loop cur (car tail) (cdr tail)))))))
2153
2154 (define (nested-define! root names val)
2155 (let loop ((cur root)
2156 (head (car names))
2157 (tail (cdr names)))
2158 (if (null? tail)
2159 (module-define! cur head val)
2160 (let ((cur (module-ref-submodule cur head)))
2161 (if (not cur)
2162 (error "failed to resolve module" names)
2163 (loop cur (car tail) (cdr tail)))))))
2164
2165 (define (nested-remove! root names)
2166 (let loop ((cur root)
2167 (head (car names))
2168 (tail (cdr names)))
2169 (if (null? tail)
2170 (module-remove! cur head)
2171 (let ((cur (module-ref-submodule cur head)))
2172 (if (not cur)
2173 (error "failed to resolve module" names)
2174 (loop cur (car tail) (cdr tail)))))))
2175
2176
2177 (define (nested-ref-module root names)
2178 (let loop ((cur root)
2179 (names names))
2180 (if (null? names)
2181 cur
2182 (let ((cur (module-ref-submodule cur (car names))))
2183 (and cur
2184 (loop cur (cdr names)))))))
2185
2186 (define (nested-define-module! root names module)
2187 (if (null? names)
2188 (error "can't redefine root module" root module)
2189 (let loop ((cur root)
2190 (head (car names))
2191 (tail (cdr names)))
2192 (if (null? tail)
2193 (module-define-submodule! cur head module)
2194 (let ((cur (or (module-ref-submodule cur head)
2195 (let ((m (make-module 31)))
2196 (set-module-kind! m 'directory)
2197 (set-module-name! m (append (module-name cur)
2198 (list head)))
2199 (module-define-submodule! cur head m)
2200 m))))
2201 (loop cur (car tail) (cdr tail)))))))
2202
2203
2204 (define (local-ref names) (nested-ref (current-module) names))
2205 (define (local-set! names val) (nested-set! (current-module) names val))
2206 (define (local-define names val) (nested-define! (current-module) names val))
2207 (define (local-remove names) (nested-remove! (current-module) names))
2208 (define (local-ref-module names) (nested-ref-module (current-module) names))
2209 (define (local-define-module names mod) (nested-define-module! (current-module) names mod))
2210
2211
2212
2213 \f
2214
2215 ;;; {The (guile) module}
2216 ;;;
2217 ;;; The standard module, which has the core Guile bindings. Also called the
2218 ;;; "root module", as it is imported by many other modules, but it is not
2219 ;;; necessarily the root of anything; and indeed, the module named '() might be
2220 ;;; better thought of as a root.
2221 ;;;
2222
2223 (define (set-system-module! m s)
2224 (set-procedure-property! (module-eval-closure m) 'system-module s))
2225 (define the-root-module (make-root-module))
2226 (define the-scm-module (make-scm-module))
2227 (set-module-public-interface! the-root-module the-scm-module)
2228 (set-module-name! the-root-module '(guile))
2229 (set-module-name! the-scm-module '(guile))
2230 (set-module-kind! the-scm-module 'interface)
2231 (set-system-module! the-root-module #t)
2232 (set-system-module! the-scm-module #t)
2233
2234
2235 \f
2236
2237 ;; Now that we have a root module, even though modules aren't fully booted,
2238 ;; expand the definition of resolve-module.
2239 ;;
2240 (define (resolve-module name . args)
2241 (if (equal? name '(guile))
2242 the-root-module
2243 (error "unexpected module to resolve during module boot" name)))
2244
2245 ;; Cheat. These bindings are needed by modules.c, but we don't want
2246 ;; to move their real definition here because that would be unnatural.
2247 ;;
2248 (define process-define-module #f)
2249 (define process-use-modules #f)
2250 (define module-export! #f)
2251 (define default-duplicate-binding-procedures #f)
2252
2253 ;; This boots the module system. All bindings needed by modules.c
2254 ;; must have been defined by now.
2255 ;;
2256 (set-current-module the-root-module)
2257
2258
2259 \f
2260
2261 ;; Now that modules are booted, give module-name its final definition.
2262 ;;
2263 (define module-name
2264 (let ((accessor (record-accessor module-type 'name)))
2265 (lambda (mod)
2266 (or (accessor mod)
2267 (let ((name (list (gensym))))
2268 ;; Name MOD and bind it in the module root so that it's visible to
2269 ;; `resolve-module'. This is important as `psyntax' stores module
2270 ;; names and relies on being able to `resolve-module' them.
2271 (set-module-name! mod name)
2272 (nested-define-module! (resolve-module '() #f) name mod)
2273 (accessor mod))))))
2274
2275 (define (make-modules-in module name)
2276 (or (nested-ref-module module name)
2277 (let ((m (make-module 31)))
2278 (set-module-kind! m 'directory)
2279 (set-module-name! m (append (module-name module) name))
2280 (nested-define-module! module name m)
2281 m)))
2282
2283 (define (beautify-user-module! module)
2284 (let ((interface (module-public-interface module)))
2285 (if (or (not interface)
2286 (eq? interface module))
2287 (let ((interface (make-module 31)))
2288 (set-module-name! interface (module-name module))
2289 (set-module-version! interface (module-version module))
2290 (set-module-kind! interface 'interface)
2291 (set-module-public-interface! module interface))))
2292 (if (and (not (memq the-scm-module (module-uses module)))
2293 (not (eq? module the-root-module)))
2294 ;; Import the default set of bindings (from the SCM module) in MODULE.
2295 (module-use! module the-scm-module)))
2296
2297 (define (version-matches? version-ref target)
2298 (define (any pred lst)
2299 (and (not (null? lst)) (or (pred (car lst)) (any pred (cdr lst)))))
2300 (define (every pred lst)
2301 (or (null? lst) (and (pred (car lst)) (every pred (cdr lst)))))
2302 (define (sub-versions-match? v-refs t)
2303 (define (sub-version-matches? v-ref t)
2304 (define (curried-sub-version-matches? v)
2305 (sub-version-matches? v t))
2306 (cond ((number? v-ref) (eqv? v-ref t))
2307 ((list? v-ref)
2308 (let ((cv (car v-ref)))
2309 (cond ((eq? cv '>=) (>= t (cadr v-ref)))
2310 ((eq? cv '<=) (<= t (cadr v-ref)))
2311 ((eq? cv 'and)
2312 (every curried-sub-version-matches? (cdr v-ref)))
2313 ((eq? cv 'or)
2314 (any curried-sub-version-matches? (cdr v-ref)))
2315 ((eq? cv 'not) (not (sub-version-matches? (cadr v-ref) t)))
2316 (else (error "Incompatible sub-version reference" cv)))))
2317 (else (error "Incompatible sub-version reference" v-ref))))
2318 (or (null? v-refs)
2319 (and (not (null? t))
2320 (sub-version-matches? (car v-refs) (car t))
2321 (sub-versions-match? (cdr v-refs) (cdr t)))))
2322 (define (curried-version-matches? v)
2323 (version-matches? v target))
2324 (or (null? version-ref)
2325 (let ((cv (car version-ref)))
2326 (cond ((eq? cv 'and) (every curried-version-matches? (cdr version-ref)))
2327 ((eq? cv 'or) (any curried-version-matches? (cdr version-ref)))
2328 ((eq? cv 'not) (not (version-matches? (cadr version-ref) target)))
2329 (else (sub-versions-match? version-ref target))))))
2330
2331 (define (find-versioned-module dir-hint name version-ref roots)
2332 (define (subdir-pair-less pair1 pair2)
2333 (define (numlist-less lst1 lst2)
2334 (or (null? lst2)
2335 (and (not (null? lst1))
2336 (cond ((> (car lst1) (car lst2)) #t)
2337 ((< (car lst1) (car lst2)) #f)
2338 (else (numlist-less (cdr lst1) (cdr lst2)))))))
2339 (numlist-less (car pair1) (car pair2)))
2340 (define (match-version-and-file pair)
2341 (and (version-matches? version-ref (car pair))
2342 (let ((filenames
2343 (filter (lambda (file)
2344 (let ((s (false-if-exception (stat file))))
2345 (and s (eq? (stat:type s) 'regular))))
2346 (map (lambda (ext)
2347 (string-append (cdr pair) "/" name ext))
2348 %load-extensions))))
2349 (and (not (null? filenames))
2350 (cons (car pair) (car filenames))))))
2351
2352 (define (match-version-recursive root-pairs leaf-pairs)
2353 (define (filter-subdirs root-pairs ret)
2354 (define (filter-subdir root-pair dstrm subdir-pairs)
2355 (let ((entry (readdir dstrm)))
2356 (if (eof-object? entry)
2357 subdir-pairs
2358 (let* ((subdir (string-append (cdr root-pair) "/" entry))
2359 (num (string->number entry))
2360 (num (and num (append (car root-pair) (list num)))))
2361 (if (and num (eq? (stat:type (stat subdir)) 'directory))
2362 (filter-subdir
2363 root-pair dstrm (cons (cons num subdir) subdir-pairs))
2364 (filter-subdir root-pair dstrm subdir-pairs))))))
2365
2366 (or (and (null? root-pairs) ret)
2367 (let* ((rp (car root-pairs))
2368 (dstrm (false-if-exception (opendir (cdr rp)))))
2369 (if dstrm
2370 (let ((subdir-pairs (filter-subdir rp dstrm '())))
2371 (closedir dstrm)
2372 (filter-subdirs (cdr root-pairs)
2373 (or (and (null? subdir-pairs) ret)
2374 (append ret subdir-pairs))))
2375 (filter-subdirs (cdr root-pairs) ret)))))
2376
2377 (or (and (null? root-pairs) leaf-pairs)
2378 (let ((matching-subdir-pairs (filter-subdirs root-pairs '())))
2379 (match-version-recursive
2380 matching-subdir-pairs
2381 (append leaf-pairs (filter pair? (map match-version-and-file
2382 matching-subdir-pairs)))))))
2383 (define (make-root-pair root)
2384 (cons '() (string-append root "/" dir-hint)))
2385
2386 (let* ((root-pairs (map make-root-pair roots))
2387 (matches (if (null? version-ref)
2388 (filter pair? (map match-version-and-file root-pairs))
2389 '()))
2390 (matches (append matches (match-version-recursive root-pairs '()))))
2391 (and (null? matches) (error "No matching modules found."))
2392 (cdar (sort matches subdir-pair-less))))
2393
2394 (define (make-fresh-user-module)
2395 (let ((m (make-module)))
2396 (beautify-user-module! m)
2397 m))
2398
2399 ;; NOTE: This binding is used in libguile/modules.c.
2400 ;;
2401 (define resolve-module
2402 (let ((root (make-module)))
2403 (set-module-name! root '())
2404 ;; Define the-root-module as '(guile).
2405 (module-define-submodule! root 'guile the-root-module)
2406
2407 (lambda* (name #:optional (autoload #t) (version #f))
2408 (let ((already (nested-ref-module root name)))
2409 (cond
2410 ((and already
2411 (or (not autoload) (module-public-interface already)))
2412 ;; A hit, a palpable hit.
2413 (if (and version
2414 (not (version-matches? version (module-version already))))
2415 (error "incompatible module version already loaded" name))
2416 already)
2417 (autoload
2418 ;; Try to autoload the module, and recurse.
2419 (try-load-module name version)
2420 (resolve-module name #f))
2421 (else
2422 ;; No module found (or if one was, it had no public interface), and
2423 ;; we're not autoloading. Here's the weird semantics: we ensure
2424 ;; there's an empty module.
2425 (or already (make-modules-in root name))))))))
2426
2427
2428 (define (try-load-module name version)
2429 (try-module-autoload name version))
2430
2431 (define (purify-module! module)
2432 "Removes bindings in MODULE which are inherited from the (guile) module."
2433 (let ((use-list (module-uses module)))
2434 (if (and (pair? use-list)
2435 (eq? (car (last-pair use-list)) the-scm-module))
2436 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2437
2438 ;; Return a module that is an interface to the module designated by
2439 ;; NAME.
2440 ;;
2441 ;; `resolve-interface' takes four keyword arguments:
2442 ;;
2443 ;; #:select SELECTION
2444 ;;
2445 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2446 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2447 ;; is the name in the used module and SEEN is the name in the using
2448 ;; module. Note that SEEN is also passed through RENAMER, below. The
2449 ;; default is to select all bindings. If you specify no selection but
2450 ;; a renamer, only the bindings that already exist in the used module
2451 ;; are made available in the interface. Bindings that are added later
2452 ;; are not picked up.
2453 ;;
2454 ;; #:hide BINDINGS
2455 ;;
2456 ;; BINDINGS is a list of bindings which should not be imported.
2457 ;;
2458 ;; #:prefix PREFIX
2459 ;;
2460 ;; PREFIX is a symbol that will be appended to each exported name.
2461 ;; The default is to not perform any renaming.
2462 ;;
2463 ;; #:renamer RENAMER
2464 ;;
2465 ;; RENAMER is a procedure that takes a symbol and returns its new
2466 ;; name. The default is not perform any renaming.
2467 ;;
2468 ;; Signal "no code for module" error if module name is not resolvable
2469 ;; or its public interface is not available. Signal "no binding"
2470 ;; error if selected binding does not exist in the used module.
2471 ;;
2472 (define* (resolve-interface name #:key
2473 (select #f)
2474 (hide '())
2475 (prefix #f)
2476 (renamer (if prefix
2477 (symbol-prefix-proc prefix)
2478 identity))
2479 version)
2480 (let* ((module (resolve-module name #t version))
2481 (public-i (and module (module-public-interface module))))
2482 (and (or (not module) (not public-i))
2483 (error "no code for module" name))
2484 (if (and (not select) (null? hide) (eq? renamer identity))
2485 public-i
2486 (let ((selection (or select (module-map (lambda (sym var) sym)
2487 public-i)))
2488 (custom-i (make-module 31)))
2489 (set-module-kind! custom-i 'custom-interface)
2490 (set-module-name! custom-i name)
2491 ;; XXX - should use a lazy binder so that changes to the
2492 ;; used module are picked up automatically.
2493 (for-each (lambda (bspec)
2494 (let* ((direct? (symbol? bspec))
2495 (orig (if direct? bspec (car bspec)))
2496 (seen (if direct? bspec (cdr bspec)))
2497 (var (or (module-local-variable public-i orig)
2498 (module-local-variable module orig)
2499 (error
2500 ;; fixme: format manually for now
2501 (simple-format
2502 #f "no binding `~A' in module ~A"
2503 orig name)))))
2504 (if (memq orig hide)
2505 (set! hide (delq! orig hide))
2506 (module-add! custom-i
2507 (renamer seen)
2508 var))))
2509 selection)
2510 ;; Check that we are not hiding bindings which don't exist
2511 (for-each (lambda (binding)
2512 (if (not (module-local-variable public-i binding))
2513 (error
2514 (simple-format
2515 #f "no binding `~A' to hide in module ~A"
2516 binding name))))
2517 hide)
2518 custom-i))))
2519
2520 (define (symbol-prefix-proc prefix)
2521 (lambda (symbol)
2522 (symbol-append prefix symbol)))
2523
2524 ;; This function is called from "modules.c". If you change it, be
2525 ;; sure to update "modules.c" as well.
2526
2527 (define (process-define-module args)
2528 (let* ((module-id (car args))
2529 (module (resolve-module module-id #f))
2530 (kws (cdr args))
2531 (unrecognized (lambda (arg)
2532 (error "unrecognized define-module argument" arg))))
2533 (beautify-user-module! module)
2534 (let loop ((kws kws)
2535 (reversed-interfaces '())
2536 (exports '())
2537 (re-exports '())
2538 (replacements '())
2539 (autoloads '()))
2540
2541 (if (null? kws)
2542 (call-with-deferred-observers
2543 (lambda ()
2544 (module-use-interfaces! module (reverse reversed-interfaces))
2545 (module-export! module exports)
2546 (module-replace! module replacements)
2547 (module-re-export! module re-exports)
2548 (if (not (null? autoloads))
2549 (apply module-autoload! module autoloads))))
2550 (case (car kws)
2551 ((#:use-module #:use-syntax)
2552 (or (pair? (cdr kws))
2553 (unrecognized kws))
2554 (cond
2555 ((equal? (caadr kws) '(ice-9 syncase))
2556 (issue-deprecation-warning
2557 "(ice-9 syncase) is deprecated. Support for syntax-case is now in Guile core.")
2558 (loop (cddr kws)
2559 reversed-interfaces
2560 exports
2561 re-exports
2562 replacements
2563 autoloads))
2564 (else
2565 (let* ((interface-args (cadr kws))
2566 (interface (apply resolve-interface interface-args)))
2567 (and (eq? (car kws) #:use-syntax)
2568 (or (symbol? (caar interface-args))
2569 (error "invalid module name for use-syntax"
2570 (car interface-args)))
2571 (set-module-transformer!
2572 module
2573 (module-ref interface
2574 (car (last-pair (car interface-args)))
2575 #f)))
2576 (loop (cddr kws)
2577 (cons interface reversed-interfaces)
2578 exports
2579 re-exports
2580 replacements
2581 autoloads)))))
2582 ((#:autoload)
2583 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2584 (unrecognized kws))
2585 (loop (cdddr kws)
2586 reversed-interfaces
2587 exports
2588 re-exports
2589 replacements
2590 (let ((name (cadr kws))
2591 (bindings (caddr kws)))
2592 (cons* name bindings autoloads))))
2593 ((#:no-backtrace)
2594 (set-system-module! module #t)
2595 (loop (cdr kws) reversed-interfaces exports re-exports
2596 replacements autoloads))
2597 ((#:pure)
2598 (purify-module! module)
2599 (loop (cdr kws) reversed-interfaces exports re-exports
2600 replacements autoloads))
2601 ((#:version)
2602 (or (pair? (cdr kws))
2603 (unrecognized kws))
2604 (let ((version (cadr kws)))
2605 (set-module-version! module version)
2606 (set-module-version! (module-public-interface module) version))
2607 (loop (cddr kws) reversed-interfaces exports re-exports
2608 replacements autoloads))
2609 ((#:duplicates)
2610 (if (not (pair? (cdr kws)))
2611 (unrecognized kws))
2612 (set-module-duplicates-handlers!
2613 module
2614 (lookup-duplicates-handlers (cadr kws)))
2615 (loop (cddr kws) reversed-interfaces exports re-exports
2616 replacements autoloads))
2617 ((#:export #:export-syntax)
2618 (or (pair? (cdr kws))
2619 (unrecognized kws))
2620 (loop (cddr kws)
2621 reversed-interfaces
2622 (append (cadr kws) exports)
2623 re-exports
2624 replacements
2625 autoloads))
2626 ((#:re-export #:re-export-syntax)
2627 (or (pair? (cdr kws))
2628 (unrecognized kws))
2629 (loop (cddr kws)
2630 reversed-interfaces
2631 exports
2632 (append (cadr kws) re-exports)
2633 replacements
2634 autoloads))
2635 ((#:replace #:replace-syntax)
2636 (or (pair? (cdr kws))
2637 (unrecognized kws))
2638 (loop (cddr kws)
2639 reversed-interfaces
2640 exports
2641 re-exports
2642 (append (cadr kws) replacements)
2643 autoloads))
2644 (else
2645 (unrecognized kws)))))
2646 (run-hook module-defined-hook module)
2647 module))
2648
2649 ;; `module-defined-hook' is a hook that is run whenever a new module
2650 ;; is defined. Its members are called with one argument, the new
2651 ;; module.
2652 (define module-defined-hook (make-hook 1))
2653
2654 \f
2655
2656 ;;; {Autoload}
2657 ;;;
2658
2659 (define (make-autoload-interface module name bindings)
2660 (let ((b (lambda (a sym definep)
2661 (and (memq sym bindings)
2662 (let ((i (module-public-interface (resolve-module name))))
2663 (if (not i)
2664 (error "missing interface for module" name))
2665 (let ((autoload (memq a (module-uses module))))
2666 ;; Replace autoload-interface with actual interface if
2667 ;; that has not happened yet.
2668 (if (pair? autoload)
2669 (set-car! autoload i)))
2670 (module-local-variable i sym))))))
2671 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2672 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2673 (make-hash-table 0) #f #f)))
2674
2675 (define (module-autoload! module . args)
2676 "Have @var{module} automatically load the module named @var{name} when one
2677 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2678 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2679 module '(ice-9 q) '(make-q q-length))}."
2680 (let loop ((args args))
2681 (cond ((null? args)
2682 #t)
2683 ((null? (cdr args))
2684 (error "invalid name+binding autoload list" args))
2685 (else
2686 (let ((name (car args))
2687 (bindings (cadr args)))
2688 (module-use! module (make-autoload-interface module
2689 name bindings))
2690 (loop (cddr args)))))))
2691
2692
2693 \f
2694
2695 ;;; {Autoloading modules}
2696 ;;;
2697
2698 (define autoloads-in-progress '())
2699
2700 ;; This function is called from "modules.c". If you change it, be
2701 ;; sure to update "modules.c" as well.
2702
2703 (define* (try-module-autoload module-name #:optional version)
2704 (let* ((reverse-name (reverse module-name))
2705 (name (symbol->string (car reverse-name)))
2706 (dir-hint-module-name (reverse (cdr reverse-name)))
2707 (dir-hint (apply string-append
2708 (map (lambda (elt)
2709 (string-append (symbol->string elt) "/"))
2710 dir-hint-module-name))))
2711 (resolve-module dir-hint-module-name #f)
2712 (and (not (autoload-done-or-in-progress? dir-hint name))
2713 (let ((didit #f))
2714 (dynamic-wind
2715 (lambda () (autoload-in-progress! dir-hint name))
2716 (lambda ()
2717 (with-fluids ((current-reader #f))
2718 (save-module-excursion
2719 (lambda ()
2720 (if version
2721 (load (find-versioned-module
2722 dir-hint name version %load-path))
2723 (primitive-load-path (in-vicinity dir-hint name) #f))
2724 (set! didit #t)))))
2725 (lambda () (set-autoloaded! dir-hint name didit)))
2726 didit))))
2727
2728 \f
2729
2730 ;;; {Dynamic linking of modules}
2731 ;;;
2732
2733 (define autoloads-done '((guile . guile)))
2734
2735 (define (autoload-done-or-in-progress? p m)
2736 (let ((n (cons p m)))
2737 (->bool (or (member n autoloads-done)
2738 (member n autoloads-in-progress)))))
2739
2740 (define (autoload-done! p m)
2741 (let ((n (cons p m)))
2742 (set! autoloads-in-progress
2743 (delete! n autoloads-in-progress))
2744 (or (member n autoloads-done)
2745 (set! autoloads-done (cons n autoloads-done)))))
2746
2747 (define (autoload-in-progress! p m)
2748 (let ((n (cons p m)))
2749 (set! autoloads-done
2750 (delete! n autoloads-done))
2751 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2752
2753 (define (set-autoloaded! p m done?)
2754 (if done?
2755 (autoload-done! p m)
2756 (let ((n (cons p m)))
2757 (set! autoloads-done (delete! n autoloads-done))
2758 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2759
2760 \f
2761
2762 ;;; {Run-time options}
2763 ;;;
2764
2765 (defmacro define-option-interface (option-group)
2766 (let* ((option-name 'car)
2767 (option-value 'cadr)
2768 (option-documentation 'caddr)
2769
2770 ;; Below follow the macros defining the run-time option interfaces.
2771
2772 (make-options (lambda (interface)
2773 `(lambda args
2774 (cond ((null? args) (,interface))
2775 ((list? (car args))
2776 (,interface (car args)) (,interface))
2777 (else (for-each
2778 (lambda (option)
2779 (display (,option-name option))
2780 (if (< (string-length
2781 (symbol->string (,option-name option)))
2782 8)
2783 (display #\tab))
2784 (display #\tab)
2785 (display (,option-value option))
2786 (display #\tab)
2787 (display (,option-documentation option))
2788 (newline))
2789 (,interface #t)))))))
2790
2791 (make-enable (lambda (interface)
2792 `(lambda flags
2793 (,interface (append flags (,interface)))
2794 (,interface))))
2795
2796 (make-disable (lambda (interface)
2797 `(lambda flags
2798 (let ((options (,interface)))
2799 (for-each (lambda (flag)
2800 (set! options (delq! flag options)))
2801 flags)
2802 (,interface options)
2803 (,interface))))))
2804 (let* ((interface (car option-group))
2805 (options/enable/disable (cadr option-group)))
2806 `(begin
2807 (define ,(car options/enable/disable)
2808 ,(make-options interface))
2809 (define ,(cadr options/enable/disable)
2810 ,(make-enable interface))
2811 (define ,(caddr options/enable/disable)
2812 ,(make-disable interface))
2813 (defmacro ,(caaddr option-group) (opt val)
2814 `(,',(car options/enable/disable)
2815 (append (,',(car options/enable/disable))
2816 (list ',opt ,val))))))))
2817
2818 (define-option-interface
2819 (eval-options-interface
2820 (eval-options eval-enable eval-disable)
2821 (eval-set!)))
2822
2823 (define-option-interface
2824 (debug-options-interface
2825 (debug-options debug-enable debug-disable)
2826 (debug-set!)))
2827
2828 (define-option-interface
2829 (evaluator-traps-interface
2830 (traps trap-enable trap-disable)
2831 (trap-set!)))
2832
2833 (define-option-interface
2834 (read-options-interface
2835 (read-options read-enable read-disable)
2836 (read-set!)))
2837
2838 (define-option-interface
2839 (print-options-interface
2840 (print-options print-enable print-disable)
2841 (print-set!)))
2842
2843 \f
2844
2845 ;;; {Running Repls}
2846 ;;;
2847
2848 (define (repl read evaler print)
2849 (let loop ((source (read (current-input-port))))
2850 (print (evaler source))
2851 (loop (read (current-input-port)))))
2852
2853 ;; A provisional repl that acts like the SCM repl:
2854 ;;
2855 (define scm-repl-silent #f)
2856 (define (assert-repl-silence v) (set! scm-repl-silent v))
2857
2858 (define *unspecified* (if #f #f))
2859 (define (unspecified? v) (eq? v *unspecified*))
2860
2861 (define scm-repl-print-unspecified #f)
2862 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2863
2864 (define scm-repl-verbose #f)
2865 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2866
2867 (define scm-repl-prompt "guile> ")
2868
2869 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2870
2871 (define (default-pre-unwind-handler key . args)
2872 ;; Narrow by two more frames: this one, and the throw handler.
2873 (save-stack 2)
2874 (apply throw key args))
2875
2876 (begin-deprecated
2877 (define (pre-unwind-handler-dispatch key . args)
2878 (apply default-pre-unwind-handler key args)))
2879
2880 (define abort-hook (make-hook))
2881
2882 ;; these definitions are used if running a script.
2883 ;; otherwise redefined in error-catching-loop.
2884 (define (set-batch-mode?! arg) #t)
2885 (define (batch-mode?) #t)
2886
2887 (define (error-catching-loop thunk)
2888 (let ((status #f)
2889 (interactive #t))
2890 (define (loop first)
2891 (let ((next
2892 (catch #t
2893
2894 (lambda ()
2895 (call-with-unblocked-asyncs
2896 (lambda ()
2897 (with-traps
2898 (lambda ()
2899 (first)
2900
2901 ;; This line is needed because mark
2902 ;; doesn't do closures quite right.
2903 ;; Unreferenced locals should be
2904 ;; collected.
2905 (set! first #f)
2906 (let loop ((v (thunk)))
2907 (loop (thunk)))
2908 #f)))))
2909
2910 (lambda (key . args)
2911 (case key
2912 ((quit)
2913 (set! status args)
2914 #f)
2915
2916 ((switch-repl)
2917 (apply throw 'switch-repl args))
2918
2919 ((abort)
2920 ;; This is one of the closures that require
2921 ;; (set! first #f) above
2922 ;;
2923 (lambda ()
2924 (run-hook abort-hook)
2925 (force-output (current-output-port))
2926 (display "ABORT: " (current-error-port))
2927 (write args (current-error-port))
2928 (newline (current-error-port))
2929 (if interactive
2930 (begin
2931 (if (and
2932 (not has-shown-debugger-hint?)
2933 (not (memq 'backtrace
2934 (debug-options-interface)))
2935 (stack? (fluid-ref the-last-stack)))
2936 (begin
2937 (newline (current-error-port))
2938 (display
2939 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2940 (current-error-port))
2941 (set! has-shown-debugger-hint? #t)))
2942 (force-output (current-error-port)))
2943 (begin
2944 (primitive-exit 1)))
2945 (set! stack-saved? #f)))
2946
2947 (else
2948 ;; This is the other cons-leak closure...
2949 (lambda ()
2950 (cond ((= (length args) 4)
2951 (apply handle-system-error key args))
2952 (else
2953 (apply bad-throw key args)))))))
2954
2955 default-pre-unwind-handler)))
2956
2957 (if next (loop next) status)))
2958 (set! set-batch-mode?! (lambda (arg)
2959 (cond (arg
2960 (set! interactive #f)
2961 (restore-signals))
2962 (#t
2963 (error "sorry, not implemented")))))
2964 (set! batch-mode? (lambda () (not interactive)))
2965 (call-with-blocked-asyncs
2966 (lambda () (loop (lambda () #t))))))
2967
2968 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2969 (define before-signal-stack (make-fluid))
2970 ;; FIXME: stack-saved? is broken in the presence of threads.
2971 (define stack-saved? #f)
2972
2973 (define (save-stack . narrowing)
2974 (if (not stack-saved?)
2975 (begin
2976 (let ((stacks (fluid-ref %stacks)))
2977 (fluid-set! the-last-stack
2978 ;; (make-stack obj inner outer inner outer ...)
2979 ;;
2980 ;; In this case, cut away the make-stack frame, the
2981 ;; save-stack frame, and then narrow as specified by the
2982 ;; user, delimited by the nearest start-stack invocation,
2983 ;; if any.
2984 (apply make-stack #t
2985 2
2986 (if (pair? stacks) (cdar stacks) 0)
2987 narrowing)))
2988 (set! stack-saved? #t))))
2989
2990 (define before-error-hook (make-hook))
2991 (define after-error-hook (make-hook))
2992 (define before-backtrace-hook (make-hook))
2993 (define after-backtrace-hook (make-hook))
2994
2995 (define has-shown-debugger-hint? #f)
2996
2997 (define (handle-system-error key . args)
2998 (let ((cep (current-error-port)))
2999 (cond ((not (stack? (fluid-ref the-last-stack))))
3000 ((memq 'backtrace (debug-options-interface))
3001 (let ((highlights (if (or (eq? key 'wrong-type-arg)
3002 (eq? key 'out-of-range))
3003 (list-ref args 3)
3004 '())))
3005 (run-hook before-backtrace-hook)
3006 (newline cep)
3007 (display "Backtrace:\n")
3008 (display-backtrace (fluid-ref the-last-stack) cep
3009 #f #f highlights)
3010 (newline cep)
3011 (run-hook after-backtrace-hook))))
3012 (run-hook before-error-hook)
3013 (apply display-error (fluid-ref the-last-stack) cep args)
3014 (run-hook after-error-hook)
3015 (force-output cep)
3016 (throw 'abort key)))
3017
3018 (define (quit . args)
3019 (apply throw 'quit args))
3020
3021 (define exit quit)
3022
3023 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
3024
3025 ;; Replaced by C code:
3026 ;;(define (backtrace)
3027 ;; (if (fluid-ref the-last-stack)
3028 ;; (begin
3029 ;; (newline)
3030 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
3031 ;; (newline)
3032 ;; (if (and (not has-shown-backtrace-hint?)
3033 ;; (not (memq 'backtrace (debug-options-interface))))
3034 ;; (begin
3035 ;; (display
3036 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
3037 ;;automatically if an error occurs in the future.\n")
3038 ;; (set! has-shown-backtrace-hint? #t))))
3039 ;; (display "No backtrace available.\n")))
3040
3041 (define (error-catching-repl r e p)
3042 (error-catching-loop
3043 (lambda ()
3044 (call-with-values (lambda () (e (r)))
3045 (lambda the-values (for-each p the-values))))))
3046
3047 (define (gc-run-time)
3048 (cdr (assq 'gc-time-taken (gc-stats))))
3049
3050 (define before-read-hook (make-hook))
3051 (define after-read-hook (make-hook))
3052 (define before-eval-hook (make-hook 1))
3053 (define after-eval-hook (make-hook 1))
3054 (define before-print-hook (make-hook 1))
3055 (define after-print-hook (make-hook 1))
3056
3057 ;;; The default repl-reader function. We may override this if we've
3058 ;;; the readline library.
3059 (define repl-reader
3060 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
3061 (if (not (char-ready?))
3062 (display (if (string? prompt) prompt (prompt))))
3063 (force-output)
3064 (run-hook before-read-hook)
3065 ((or reader read) (current-input-port))))
3066
3067 (define (scm-style-repl)
3068
3069 (letrec (
3070 (start-gc-rt #f)
3071 (start-rt #f)
3072 (repl-report-start-timing (lambda ()
3073 (set! start-gc-rt (gc-run-time))
3074 (set! start-rt (get-internal-run-time))))
3075 (repl-report (lambda ()
3076 (display ";;; ")
3077 (display (inexact->exact
3078 (* 1000 (/ (- (get-internal-run-time) start-rt)
3079 internal-time-units-per-second))))
3080 (display " msec (")
3081 (display (inexact->exact
3082 (* 1000 (/ (- (gc-run-time) start-gc-rt)
3083 internal-time-units-per-second))))
3084 (display " msec in gc)\n")))
3085
3086 (consume-trailing-whitespace
3087 (lambda ()
3088 (let ((ch (peek-char)))
3089 (cond
3090 ((eof-object? ch))
3091 ((or (char=? ch #\space) (char=? ch #\tab))
3092 (read-char)
3093 (consume-trailing-whitespace))
3094 ((char=? ch #\newline)
3095 (read-char))))))
3096 (-read (lambda ()
3097 (let ((val
3098 (let ((prompt (cond ((string? scm-repl-prompt)
3099 scm-repl-prompt)
3100 ((thunk? scm-repl-prompt)
3101 (scm-repl-prompt))
3102 (scm-repl-prompt "> ")
3103 (else ""))))
3104 (repl-reader prompt))))
3105
3106 ;; As described in R4RS, the READ procedure updates the
3107 ;; port to point to the first character past the end of
3108 ;; the external representation of the object. This
3109 ;; means that it doesn't consume the newline typically
3110 ;; found after an expression. This means that, when
3111 ;; debugging Guile with GDB, GDB gets the newline, which
3112 ;; it often interprets as a "continue" command, making
3113 ;; breakpoints kind of useless. So, consume any
3114 ;; trailing newline here, as well as any whitespace
3115 ;; before it.
3116 ;; But not if EOF, for control-D.
3117 (if (not (eof-object? val))
3118 (consume-trailing-whitespace))
3119 (run-hook after-read-hook)
3120 (if (eof-object? val)
3121 (begin
3122 (repl-report-start-timing)
3123 (if scm-repl-verbose
3124 (begin
3125 (newline)
3126 (display ";;; EOF -- quitting")
3127 (newline)))
3128 (quit 0)))
3129 val)))
3130
3131 (-eval (lambda (sourc)
3132 (repl-report-start-timing)
3133 (run-hook before-eval-hook sourc)
3134 (let ((val (start-stack 'repl-stack
3135 ;; If you change this procedure
3136 ;; (primitive-eval), please also
3137 ;; modify the repl-stack case in
3138 ;; save-stack so that stack cutting
3139 ;; continues to work.
3140 (primitive-eval sourc))))
3141 (run-hook after-eval-hook sourc)
3142 val)))
3143
3144
3145 (-print (let ((maybe-print (lambda (result)
3146 (if (or scm-repl-print-unspecified
3147 (not (unspecified? result)))
3148 (begin
3149 (write result)
3150 (newline))))))
3151 (lambda (result)
3152 (if (not scm-repl-silent)
3153 (begin
3154 (run-hook before-print-hook result)
3155 (maybe-print result)
3156 (run-hook after-print-hook result)
3157 (if scm-repl-verbose
3158 (repl-report))
3159 (force-output))))))
3160
3161 (-quit (lambda (args)
3162 (if scm-repl-verbose
3163 (begin
3164 (display ";;; QUIT executed, repl exitting")
3165 (newline)
3166 (repl-report)))
3167 args)))
3168
3169 (let ((status (error-catching-repl -read
3170 -eval
3171 -print)))
3172 (-quit status))))
3173
3174
3175 \f
3176
3177 ;;; {IOTA functions: generating lists of numbers}
3178 ;;;
3179
3180 (define (iota n)
3181 (let loop ((count (1- n)) (result '()))
3182 (if (< count 0) result
3183 (loop (1- count) (cons count result)))))
3184
3185 \f
3186
3187 ;;; {collect}
3188 ;;;
3189 ;;; Similar to `begin' but returns a list of the results of all constituent
3190 ;;; forms instead of the result of the last form.
3191 ;;; (The definition relies on the current left-to-right
3192 ;;; order of evaluation of operands in applications.)
3193 ;;;
3194
3195 (defmacro collect forms
3196 (cons 'list forms))
3197
3198 \f
3199
3200 ;;; {While}
3201 ;;;
3202 ;;; with `continue' and `break'.
3203 ;;;
3204
3205 ;; The inner `do' loop avoids re-establishing a catch every iteration,
3206 ;; that's only necessary if continue is actually used. A new key is
3207 ;; generated every time, so break and continue apply to their originating
3208 ;; `while' even when recursing.
3209 ;;
3210 ;; FIXME: This macro is unintentionally unhygienic with respect to let,
3211 ;; make-symbol, do, throw, catch, lambda, and not.
3212 ;;
3213 (define-macro (while cond . body)
3214 (let ((keyvar (make-symbol "while-keyvar")))
3215 `(let ((,keyvar (make-symbol "while-key")))
3216 (do ()
3217 ((catch ,keyvar
3218 (lambda ()
3219 (let ((break (lambda () (throw ,keyvar #t)))
3220 (continue (lambda () (throw ,keyvar #f))))
3221 (do ()
3222 ((not ,cond))
3223 ,@body)
3224 #t))
3225 (lambda (key arg)
3226 arg)))))))
3227
3228
3229 \f
3230
3231 ;;; {Module System Macros}
3232 ;;;
3233
3234 ;; Return a list of expressions that evaluate to the appropriate
3235 ;; arguments for resolve-interface according to SPEC.
3236
3237 (eval-when
3238 (compile)
3239 (if (memq 'prefix (read-options))
3240 (error "boot-9 must be compiled with #:kw, not :kw")))
3241
3242 (define (keyword-like-symbol->keyword sym)
3243 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3244
3245 ;; FIXME: we really need to clean up the guts of the module system.
3246 ;; We can compile to something better than process-define-module.
3247 (define-syntax define-module
3248 (lambda (x)
3249 (define (keyword-like? stx)
3250 (let ((dat (syntax->datum stx)))
3251 (and (symbol? dat)
3252 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3253 (define (->keyword sym)
3254 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3255
3256 (define (quotify-iface args)
3257 (let loop ((in args) (out '()))
3258 (syntax-case in ()
3259 (() (reverse! out))
3260 ;; The user wanted #:foo, but wrote :foo. Fix it.
3261 ((sym . in) (keyword-like? #'sym)
3262 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3263 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3264 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3265 ((#:renamer renamer . in)
3266 (loop #'in (cons* #'renamer #:renamer out)))
3267 ((kw val . in)
3268 (loop #'in (cons* #''val #'kw out))))))
3269
3270 (define (quotify args)
3271 ;; Just quote everything except #:use-module and #:use-syntax. We
3272 ;; need to know about all arguments regardless since we want to turn
3273 ;; symbols that look like keywords into real keywords, and the
3274 ;; keyword args in a define-module form are not regular
3275 ;; (i.e. no-backtrace doesn't take a value).
3276 (let loop ((in args) (out '()))
3277 (syntax-case in ()
3278 (() (reverse! out))
3279 ;; The user wanted #:foo, but wrote :foo. Fix it.
3280 ((sym . in) (keyword-like? #'sym)
3281 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3282 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3283 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3284 ((#:no-backtrace . in)
3285 (loop #'in (cons #:no-backtrace out)))
3286 ((#:pure . in)
3287 (loop #'in (cons #:pure out)))
3288 ((kw)
3289 (syntax-violation 'define-module "keyword arg without value" x #'kw))
3290 ((use-module (name name* ...) . in)
3291 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
3292 (and-map symbol? (syntax->datum #'(name name* ...))))
3293 (loop #'in
3294 (cons* #''((name name* ...))
3295 #'use-module
3296 out)))
3297 ((use-module ((name name* ...) arg ...) . in)
3298 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
3299 (and-map symbol? (syntax->datum #'(name name* ...))))
3300 (loop #'in
3301 (cons* #`(list '(name name* ...) #,@(quotify-iface #'(arg ...)))
3302 #'use-module
3303 out)))
3304 ((#:autoload name bindings . in)
3305 (loop #'in (cons* #''bindings #''name #:autoload out)))
3306 ((kw val . in)
3307 (loop #'in (cons* #''val #'kw out))))))
3308
3309 (syntax-case x ()
3310 ((_ (name name* ...) arg ...)
3311 (with-syntax (((quoted-arg ...) (quotify #'(arg ...))))
3312 #'(eval-when (eval load compile expand)
3313 (let ((m (process-define-module
3314 (list '(name name* ...) quoted-arg ...))))
3315 (set-current-module m)
3316 m)))))))
3317
3318 ;; The guts of the use-modules macro. Add the interfaces of the named
3319 ;; modules to the use-list of the current module, in order.
3320
3321 ;; This function is called by "modules.c". If you change it, be sure
3322 ;; to change scm_c_use_module as well.
3323
3324 (define (process-use-modules module-interface-args)
3325 (let ((interfaces (map (lambda (mif-args)
3326 (or (apply resolve-interface mif-args)
3327 (error "no such module" mif-args)))
3328 module-interface-args)))
3329 (call-with-deferred-observers
3330 (lambda ()
3331 (module-use-interfaces! (current-module) interfaces)))))
3332
3333 (define-syntax use-modules
3334 (lambda (x)
3335 (define (keyword-like? stx)
3336 (let ((dat (syntax->datum stx)))
3337 (and (symbol? dat)
3338 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3339 (define (->keyword sym)
3340 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3341
3342 (define (quotify-iface args)
3343 (let loop ((in args) (out '()))
3344 (syntax-case in ()
3345 (() (reverse! out))
3346 ;; The user wanted #:foo, but wrote :foo. Fix it.
3347 ((sym . in) (keyword-like? #'sym)
3348 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3349 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3350 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3351 ((#:renamer renamer . in)
3352 (loop #'in (cons* #'renamer #:renamer out)))
3353 ((kw val . in)
3354 (loop #'in (cons* #''val #'kw out))))))
3355
3356 (define (quotify specs)
3357 (let lp ((in specs) (out '()))
3358 (syntax-case in ()
3359 (() (reverse out))
3360 (((name name* ...) . in)
3361 (and-map symbol? (syntax->datum #'(name name* ...)))
3362 (lp #'in (cons #''((name name* ...)) out)))
3363 ((((name name* ...) arg ...) . in)
3364 (and-map symbol? (syntax->datum #'(name name* ...)))
3365 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
3366 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
3367 out)))))))
3368
3369 (syntax-case x ()
3370 ((_ spec ...)
3371 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
3372 #'(eval-when (eval load compile expand)
3373 (process-use-modules (list quoted-args ...))
3374 *unspecified*))))))
3375
3376 (define-syntax use-syntax
3377 (syntax-rules ()
3378 ((_ spec ...)
3379 (begin
3380 (eval-when (eval load compile expand)
3381 (issue-deprecation-warning
3382 "`use-syntax' is deprecated. Please contact guile-devel for more info."))
3383 (use-modules spec ...)))))
3384
3385 (include-from-path "ice-9/r6rs-libraries")
3386
3387 (define-syntax define-private
3388 (syntax-rules ()
3389 ((_ foo bar)
3390 (define foo bar))))
3391
3392 (define-syntax define-public
3393 (syntax-rules ()
3394 ((_ (name . args) . body)
3395 (define-public name (lambda args . body)))
3396 ((_ name val)
3397 (begin
3398 (define name val)
3399 (export name)))))
3400
3401 (define-syntax defmacro-public
3402 (syntax-rules ()
3403 ((_ name args . body)
3404 (begin
3405 (defmacro name args . body)
3406 (export-syntax name)))))
3407
3408 ;; And now for the most important macro.
3409 (define-syntax λ
3410 (syntax-rules ()
3411 ((_ formals body ...)
3412 (lambda formals body ...))))
3413
3414 \f
3415 ;; Export a local variable
3416
3417 ;; This function is called from "modules.c". If you change it, be
3418 ;; sure to update "modules.c" as well.
3419
3420 (define (module-export! m names)
3421 (let ((public-i (module-public-interface m)))
3422 (for-each (lambda (name)
3423 (let* ((internal-name (if (pair? name) (car name) name))
3424 (external-name (if (pair? name) (cdr name) name))
3425 (var (module-ensure-local-variable! m internal-name)))
3426 (module-add! public-i external-name var)))
3427 names)))
3428
3429 (define (module-replace! m names)
3430 (let ((public-i (module-public-interface m)))
3431 (for-each (lambda (name)
3432 (let* ((internal-name (if (pair? name) (car name) name))
3433 (external-name (if (pair? name) (cdr name) name))
3434 (var (module-ensure-local-variable! m internal-name)))
3435 (set-object-property! var 'replace #t)
3436 (module-add! public-i external-name var)))
3437 names)))
3438
3439 ;; Export all local variables from a module
3440 ;;
3441 (define (module-export-all! mod)
3442 (define (fresh-interface!)
3443 (let ((iface (make-module)))
3444 (set-module-name! iface (module-name mod))
3445 ;; for guile 2: (set-module-version! iface (module-version mod))
3446 (set-module-kind! iface 'interface)
3447 (set-module-public-interface! mod iface)
3448 iface))
3449 (let ((iface (or (module-public-interface mod)
3450 (fresh-interface!))))
3451 (set-module-obarray! iface (module-obarray mod))))
3452
3453 ;; Re-export a imported variable
3454 ;;
3455 (define (module-re-export! m names)
3456 (let ((public-i (module-public-interface m)))
3457 (for-each (lambda (name)
3458 (let* ((internal-name (if (pair? name) (car name) name))
3459 (external-name (if (pair? name) (cdr name) name))
3460 (var (module-variable m internal-name)))
3461 (cond ((not var)
3462 (error "Undefined variable:" internal-name))
3463 ((eq? var (module-local-variable m internal-name))
3464 (error "re-exporting local variable:" internal-name))
3465 (else
3466 (module-add! public-i external-name var)))))
3467 names)))
3468
3469 (define-syntax export
3470 (syntax-rules ()
3471 ((_ name ...)
3472 (eval-when (eval load compile expand)
3473 (call-with-deferred-observers
3474 (lambda ()
3475 (module-export! (current-module) '(name ...))))))))
3476
3477 (define-syntax re-export
3478 (syntax-rules ()
3479 ((_ name ...)
3480 (eval-when (eval load compile expand)
3481 (call-with-deferred-observers
3482 (lambda ()
3483 (module-re-export! (current-module) '(name ...))))))))
3484
3485 (define-syntax export-syntax
3486 (syntax-rules ()
3487 ((_ name ...)
3488 (export name ...))))
3489
3490 (define-syntax re-export-syntax
3491 (syntax-rules ()
3492 ((_ name ...)
3493 (re-export name ...))))
3494
3495 (define load load-module)
3496
3497 \f
3498
3499 ;;; {Parameters}
3500 ;;;
3501
3502 (define make-mutable-parameter
3503 (let ((make (lambda (fluid converter)
3504 (lambda args
3505 (if (null? args)
3506 (fluid-ref fluid)
3507 (fluid-set! fluid (converter (car args))))))))
3508 (lambda (init . converter)
3509 (let ((fluid (make-fluid))
3510 (converter (if (null? converter)
3511 identity
3512 (car converter))))
3513 (fluid-set! fluid (converter init))
3514 (make fluid converter)))))
3515
3516 \f
3517
3518 ;;; {Handling of duplicate imported bindings}
3519 ;;;
3520
3521 ;; Duplicate handlers take the following arguments:
3522 ;;
3523 ;; module importing module
3524 ;; name conflicting name
3525 ;; int1 old interface where name occurs
3526 ;; val1 value of binding in old interface
3527 ;; int2 new interface where name occurs
3528 ;; val2 value of binding in new interface
3529 ;; var previous resolution or #f
3530 ;; val value of previous resolution
3531 ;;
3532 ;; A duplicate handler can take three alternative actions:
3533 ;;
3534 ;; 1. return #f => leave responsibility to next handler
3535 ;; 2. exit with an error
3536 ;; 3. return a variable resolving the conflict
3537 ;;
3538
3539 (define duplicate-handlers
3540 (let ((m (make-module 7)))
3541
3542 (define (check module name int1 val1 int2 val2 var val)
3543 (scm-error 'misc-error
3544 #f
3545 "~A: `~A' imported from both ~A and ~A"
3546 (list (module-name module)
3547 name
3548 (module-name int1)
3549 (module-name int2))
3550 #f))
3551
3552 (define (warn module name int1 val1 int2 val2 var val)
3553 (format (current-error-port)
3554 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3555 (module-name module)
3556 name
3557 (module-name int1)
3558 (module-name int2))
3559 #f)
3560
3561 (define (replace module name int1 val1 int2 val2 var val)
3562 (let ((old (or (and var (object-property var 'replace) var)
3563 (module-variable int1 name)))
3564 (new (module-variable int2 name)))
3565 (if (object-property old 'replace)
3566 (and (or (eq? old new)
3567 (not (object-property new 'replace)))
3568 old)
3569 (and (object-property new 'replace)
3570 new))))
3571
3572 (define (warn-override-core module name int1 val1 int2 val2 var val)
3573 (and (eq? int1 the-scm-module)
3574 (begin
3575 (format (current-error-port)
3576 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3577 (module-name module)
3578 (module-name int2)
3579 name)
3580 (module-local-variable int2 name))))
3581
3582 (define (first module name int1 val1 int2 val2 var val)
3583 (or var (module-local-variable int1 name)))
3584
3585 (define (last module name int1 val1 int2 val2 var val)
3586 (module-local-variable int2 name))
3587
3588 (define (noop module name int1 val1 int2 val2 var val)
3589 #f)
3590
3591 (set-module-name! m 'duplicate-handlers)
3592 (set-module-kind! m 'interface)
3593 (module-define! m 'check check)
3594 (module-define! m 'warn warn)
3595 (module-define! m 'replace replace)
3596 (module-define! m 'warn-override-core warn-override-core)
3597 (module-define! m 'first first)
3598 (module-define! m 'last last)
3599 (module-define! m 'merge-generics noop)
3600 (module-define! m 'merge-accessors noop)
3601 m))
3602
3603 (define (lookup-duplicates-handlers handler-names)
3604 (and handler-names
3605 (map (lambda (handler-name)
3606 (or (module-symbol-local-binding
3607 duplicate-handlers handler-name #f)
3608 (error "invalid duplicate handler name:"
3609 handler-name)))
3610 (if (list? handler-names)
3611 handler-names
3612 (list handler-names)))))
3613
3614 (define default-duplicate-binding-procedures
3615 (make-mutable-parameter #f))
3616
3617 (define default-duplicate-binding-handler
3618 (make-mutable-parameter '(replace warn-override-core warn last)
3619 (lambda (handler-names)
3620 (default-duplicate-binding-procedures
3621 (lookup-duplicates-handlers handler-names))
3622 handler-names)))
3623
3624 \f
3625
3626 ;;; {`cond-expand' for SRFI-0 support.}
3627 ;;;
3628 ;;; This syntactic form expands into different commands or
3629 ;;; definitions, depending on the features provided by the Scheme
3630 ;;; implementation.
3631 ;;;
3632 ;;; Syntax:
3633 ;;;
3634 ;;; <cond-expand>
3635 ;;; --> (cond-expand <cond-expand-clause>+)
3636 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3637 ;;; <cond-expand-clause>
3638 ;;; --> (<feature-requirement> <command-or-definition>*)
3639 ;;; <feature-requirement>
3640 ;;; --> <feature-identifier>
3641 ;;; | (and <feature-requirement>*)
3642 ;;; | (or <feature-requirement>*)
3643 ;;; | (not <feature-requirement>)
3644 ;;; <feature-identifier>
3645 ;;; --> <a symbol which is the name or alias of a SRFI>
3646 ;;;
3647 ;;; Additionally, this implementation provides the
3648 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3649 ;;; determine the implementation type and the supported standard.
3650 ;;;
3651 ;;; Currently, the following feature identifiers are supported:
3652 ;;;
3653 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3654 ;;;
3655 ;;; Remember to update the features list when adding more SRFIs.
3656 ;;;
3657
3658 (define %cond-expand-features
3659 ;; Adjust the above comment when changing this.
3660 '(guile
3661 guile-2
3662 r5rs
3663 srfi-0 ;; cond-expand itself
3664 srfi-4 ;; homogenous numeric vectors
3665 srfi-6 ;; open-input-string etc, in the guile core
3666 srfi-13 ;; string library
3667 srfi-14 ;; character sets
3668 srfi-55 ;; require-extension
3669 srfi-61 ;; general cond clause
3670 ))
3671
3672 ;; This table maps module public interfaces to the list of features.
3673 ;;
3674 (define %cond-expand-table (make-hash-table 31))
3675
3676 ;; Add one or more features to the `cond-expand' feature list of the
3677 ;; module `module'.
3678 ;;
3679 (define (cond-expand-provide module features)
3680 (let ((mod (module-public-interface module)))
3681 (and mod
3682 (hashq-set! %cond-expand-table mod
3683 (append (hashq-ref %cond-expand-table mod '())
3684 features)))))
3685
3686 (define-macro (cond-expand . clauses)
3687 (let ((syntax-error (lambda (cl)
3688 (error "invalid clause in `cond-expand'" cl))))
3689 (letrec
3690 ((test-clause
3691 (lambda (clause)
3692 (cond
3693 ((symbol? clause)
3694 (or (memq clause %cond-expand-features)
3695 (let lp ((uses (module-uses (current-module))))
3696 (if (pair? uses)
3697 (or (memq clause
3698 (hashq-ref %cond-expand-table
3699 (car uses) '()))
3700 (lp (cdr uses)))
3701 #f))))
3702 ((pair? clause)
3703 (cond
3704 ((eq? 'and (car clause))
3705 (let lp ((l (cdr clause)))
3706 (cond ((null? l)
3707 #t)
3708 ((pair? l)
3709 (and (test-clause (car l)) (lp (cdr l))))
3710 (else
3711 (syntax-error clause)))))
3712 ((eq? 'or (car clause))
3713 (let lp ((l (cdr clause)))
3714 (cond ((null? l)
3715 #f)
3716 ((pair? l)
3717 (or (test-clause (car l)) (lp (cdr l))))
3718 (else
3719 (syntax-error clause)))))
3720 ((eq? 'not (car clause))
3721 (cond ((not (pair? (cdr clause)))
3722 (syntax-error clause))
3723 ((pair? (cddr clause))
3724 ((syntax-error clause))))
3725 (not (test-clause (cadr clause))))
3726 (else
3727 (syntax-error clause))))
3728 (else
3729 (syntax-error clause))))))
3730 (let lp ((c clauses))
3731 (cond
3732 ((null? c)
3733 (error "Unfulfilled `cond-expand'"))
3734 ((not (pair? c))
3735 (syntax-error c))
3736 ((not (pair? (car c)))
3737 (syntax-error (car c)))
3738 ((test-clause (caar c))
3739 `(begin ,@(cdar c)))
3740 ((eq? (caar c) 'else)
3741 (if (pair? (cdr c))
3742 (syntax-error c))
3743 `(begin ,@(cdar c)))
3744 (else
3745 (lp (cdr c))))))))
3746
3747 ;; This procedure gets called from the startup code with a list of
3748 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3749 ;;
3750 (define (use-srfis srfis)
3751 (process-use-modules
3752 (map (lambda (num)
3753 (list (list 'srfi (string->symbol
3754 (string-append "srfi-" (number->string num))))))
3755 srfis)))
3756
3757 \f
3758
3759 ;;; srfi-55: require-extension
3760 ;;;
3761
3762 (define-macro (require-extension extension-spec)
3763 ;; This macro only handles the srfi extension, which, at present, is
3764 ;; the only one defined by the standard.
3765 (if (not (pair? extension-spec))
3766 (scm-error 'wrong-type-arg "require-extension"
3767 "Not an extension: ~S" (list extension-spec) #f))
3768 (let ((extension (car extension-spec))
3769 (extension-args (cdr extension-spec)))
3770 (case extension
3771 ((srfi)
3772 (let ((use-list '()))
3773 (for-each
3774 (lambda (i)
3775 (if (not (integer? i))
3776 (scm-error 'wrong-type-arg "require-extension"
3777 "Invalid srfi name: ~S" (list i) #f))
3778 (let ((srfi-sym (string->symbol
3779 (string-append "srfi-" (number->string i)))))
3780 (if (not (memq srfi-sym %cond-expand-features))
3781 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3782 use-list)))))
3783 extension-args)
3784 (if (pair? use-list)
3785 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3786 `(begin ,@(reverse! use-list)))))
3787 (else
3788 (scm-error
3789 'wrong-type-arg "require-extension"
3790 "Not a recognized extension type: ~S" (list extension) #f)))))
3791
3792 \f
3793
3794 ;;; {Load emacs interface support if emacs option is given.}
3795 ;;;
3796
3797 (define (named-module-use! user usee)
3798 (module-use! (resolve-module user) (resolve-interface usee)))
3799
3800 (define (load-emacs-interface)
3801 (and (provided? 'debug-extensions)
3802 (debug-enable 'backtrace))
3803 (named-module-use! '(guile-user) '(ice-9 emacs)))
3804
3805 \f
3806
3807 (define using-readline?
3808 (let ((using-readline? (make-fluid)))
3809 (make-procedure-with-setter
3810 (lambda () (fluid-ref using-readline?))
3811 (lambda (v) (fluid-set! using-readline? v)))))
3812
3813 (define (top-repl)
3814 (let ((guile-user-module (resolve-module '(guile-user))))
3815
3816 ;; Load emacs interface support if emacs option is given.
3817 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3818 (module-ref guile-user-module 'use-emacs-interface))
3819 (load-emacs-interface))
3820
3821 ;; Use some convenient modules (in reverse order)
3822
3823 (set-current-module guile-user-module)
3824 (process-use-modules
3825 (append
3826 '(((ice-9 r5rs))
3827 ((ice-9 session))
3828 ((ice-9 debug)))
3829 (if (provided? 'regex)
3830 '(((ice-9 regex)))
3831 '())
3832 (if (provided? 'threads)
3833 '(((ice-9 threads)))
3834 '())))
3835 ;; load debugger on demand
3836 (module-autoload! guile-user-module '(system vm debug) '(debug))
3837
3838 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3839 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3840 ;; no effect.
3841 (let ((old-handlers #f)
3842 (start-repl (module-ref (resolve-interface '(system repl repl))
3843 'start-repl))
3844 (signals (if (provided? 'posix)
3845 `((,SIGINT . "User interrupt")
3846 (,SIGFPE . "Arithmetic error")
3847 (,SIGSEGV
3848 . "Bad memory access (Segmentation violation)"))
3849 '())))
3850 ;; no SIGBUS on mingw
3851 (if (defined? 'SIGBUS)
3852 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3853 signals)))
3854
3855 (dynamic-wind
3856
3857 ;; call at entry
3858 (lambda ()
3859 (let ((make-handler (lambda (msg)
3860 (lambda (sig)
3861 ;; Make a backup copy of the stack
3862 (fluid-set! before-signal-stack
3863 (fluid-ref the-last-stack))
3864 (save-stack 2)
3865 (scm-error 'signal
3866 #f
3867 msg
3868 #f
3869 (list sig))))))
3870 (set! old-handlers
3871 (map (lambda (sig-msg)
3872 (sigaction (car sig-msg)
3873 (make-handler (cdr sig-msg))))
3874 signals))))
3875
3876 ;; the protected thunk.
3877 (lambda ()
3878 (let ((status (start-repl 'scheme)))
3879 (run-hook exit-hook)
3880 status))
3881
3882 ;; call at exit.
3883 (lambda ()
3884 (map (lambda (sig-msg old-handler)
3885 (if (not (car old-handler))
3886 ;; restore original C handler.
3887 (sigaction (car sig-msg) #f)
3888 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3889 (sigaction (car sig-msg)
3890 (car old-handler)
3891 (cdr old-handler))))
3892 signals old-handlers))))))
3893
3894 ;;; This hook is run at the very end of an interactive session.
3895 ;;;
3896 (define exit-hook (make-hook))
3897
3898 \f
3899
3900 ;;; {Deprecated stuff}
3901 ;;;
3902
3903 (begin-deprecated
3904 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3905
3906 \f
3907
3908 ;;; Place the user in the guile-user module.
3909 ;;;
3910
3911 ;;; FIXME: annotate ?
3912 ;; (define (syncase exp)
3913 ;; (with-fluids ((expansion-eval-closure
3914 ;; (module-eval-closure (current-module))))
3915 ;; (deannotate/source-properties (macroexpand (annotate exp)))))
3916
3917 ;; FIXME:
3918 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3919
3920 (define-module (guile-user)
3921 #:autoload (system base compile) (compile))
3922
3923 ;; Remain in the `(guile)' module at compilation-time so that the
3924 ;; `-Wunused-toplevel' warning works as expected.
3925 (eval-when (compile) (set-current-module the-root-module))
3926
3927 ;;; boot-9.scm ends here