* boot-9.scm (file-set-position): use seek, not fseek. Make
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 ;;;;
5 ;;;; This program is free software; you can redistribute it and/or modify
6 ;;;; it under the terms of the GNU General Public License as published by
7 ;;;; the Free Software Foundation; either version 2, or (at your option)
8 ;;;; any later version.
9 ;;;;
10 ;;;; This program is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ;;;; GNU General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU General Public License
16 ;;;; along with this software; see the file COPYING. If not, write to
17 ;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18 ;;;; Boston, MA 02111-1307 USA
19 ;;;;
20 ;;;; As a special exception, the Free Software Foundation gives permission
21 ;;;; for additional uses of the text contained in its release of GUILE.
22 ;;;;
23 ;;;; The exception is that, if you link the GUILE library with other files
24 ;;;; to produce an executable, this does not by itself cause the
25 ;;;; resulting executable to be covered by the GNU General Public License.
26 ;;;; Your use of that executable is in no way restricted on account of
27 ;;;; linking the GUILE library code into it.
28 ;;;;
29 ;;;; This exception does not however invalidate any other reasons why
30 ;;;; the executable file might be covered by the GNU General Public License.
31 ;;;;
32 ;;;; This exception applies only to the code released by the
33 ;;;; Free Software Foundation under the name GUILE. If you copy
34 ;;;; code from other Free Software Foundation releases into a copy of
35 ;;;; GUILE, as the General Public License permits, the exception does
36 ;;;; not apply to the code that you add in this way. To avoid misleading
37 ;;;; anyone as to the status of such modified files, you must delete
38 ;;;; this exception notice from them.
39 ;;;;
40 ;;;; If you write modifications of your own for GUILE, it is your choice
41 ;;;; whether to permit this exception to apply to your modifications.
42 ;;;; If you do not wish that, delete this exception notice.
43 ;;;;
44 \f
45
46 ;;; Commentary:
47
48 ;;; This file is the first thing loaded into Guile. It adds many mundane
49 ;;; definitions and a few that are interesting.
50 ;;;
51 ;;; The module system (hence the hierarchical namespace) are defined in this
52 ;;; file.
53 ;;;
54
55 ;;; Code:
56
57 \f
58 ;;; {Deprecation}
59 ;;;
60
61 ;; We don't have macros here, but we do want to define
62 ;; `begin-deprecated' early.
63
64 (define begin-deprecated
65 (procedure->memoizing-macro
66 (lambda (exp env)
67 (if (include-deprecated-features)
68 `(begin ,@(cdr exp))
69 `#f))))
70
71 \f
72 ;;; {Features}
73 ;;
74
75 (define (provide sym)
76 (if (not (memq sym *features*))
77 (set! *features* (cons sym *features*))))
78
79 ;;; Return #t iff FEATURE is available to this Guile interpreter.
80 ;;; In SLIB, provided? also checks to see if the module is available.
81 ;;; We should do that too, but don't.
82 (define (provided? feature)
83 (and (memq feature *features*) #t))
84
85 (begin-deprecated
86 (define feature? provided?))
87
88 ;;; let format alias simple-format until the more complete version is loaded
89 (define format simple-format)
90
91 \f
92 ;;; {R4RS compliance}
93
94 (primitive-load-path "ice-9/r4rs.scm")
95
96 \f
97 ;;; {Simple Debugging Tools}
98 ;;
99
100
101 ;; peek takes any number of arguments, writes them to the
102 ;; current ouput port, and returns the last argument.
103 ;; It is handy to wrap around an expression to look at
104 ;; a value each time is evaluated, e.g.:
105 ;;
106 ;; (+ 10 (troublesome-fn))
107 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
108 ;;
109
110 (define (peek . stuff)
111 (newline)
112 (display ";;; ")
113 (write stuff)
114 (newline)
115 (car (last-pair stuff)))
116
117 (define pk peek)
118
119 (define (warn . stuff)
120 (with-output-to-port (current-error-port)
121 (lambda ()
122 (newline)
123 (display ";;; WARNING ")
124 (display stuff)
125 (newline)
126 (car (last-pair stuff)))))
127
128 \f
129 ;;; {Trivial Functions}
130 ;;;
131
132 (define (identity x) x)
133 (define (1+ n) (+ n 1))
134 (define (1- n) (+ n -1))
135 (define (and=> value procedure) (and value (procedure value)))
136 (define (make-hash-table k) (make-vector k '()))
137
138 ;;; apply-to-args is functionally redundant with apply and, worse,
139 ;;; is less general than apply since it only takes two arguments.
140 ;;;
141 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
142 ;;; perform binding in many circumstances when the "let" family of
143 ;;; of forms don't cut it. E.g.:
144 ;;;
145 ;;; (apply-to-args (return-3d-mouse-coords)
146 ;;; (lambda (x y z)
147 ;;; ...))
148 ;;;
149
150 (define (apply-to-args args fn) (apply fn args))
151
152 \f
153
154 ;;; {Integer Math}
155 ;;;
156
157 (define (ipow-by-squaring x k acc proc)
158 (cond ((zero? k) acc)
159 ((= 1 k) (proc acc x))
160 (else (ipow-by-squaring (proc x x)
161 (quotient k 2)
162 (if (even? k) acc (proc acc x))
163 proc))))
164
165 \f
166 ;;; {Symbol Properties}
167 ;;;
168
169 (define (symbol-property sym prop)
170 (let ((pair (assoc prop (symbol-pref sym))))
171 (and pair (cdr pair))))
172
173 (define (set-symbol-property! sym prop val)
174 (let ((pair (assoc prop (symbol-pref sym))))
175 (if pair
176 (set-cdr! pair val)
177 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
178
179 (define (symbol-property-remove! sym prop)
180 (let ((pair (assoc prop (symbol-pref sym))))
181 (if pair
182 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
183
184 ;;; {General Properties}
185 ;;;
186
187 ;; This is a more modern interface to properties. It will replace all
188 ;; other property-like things eventually.
189
190 (define (make-object-property)
191 (let ((prop (primitive-make-property #f)))
192 (make-procedure-with-setter
193 (lambda (obj) (primitive-property-ref prop obj))
194 (lambda (obj val) (primitive-property-set! prop obj val)))))
195
196 \f
197
198 ;;; {Arrays}
199 ;;;
200
201 (if (provided? 'array)
202 (primitive-load-path "ice-9/arrays.scm"))
203
204 \f
205 ;;; {Keywords}
206 ;;;
207
208 (define (symbol->keyword symbol)
209 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
210
211 (define (keyword->symbol kw)
212 (let ((sym (symbol->string (keyword-dash-symbol kw))))
213 (string->symbol (substring sym 1 (string-length sym)))))
214
215 (define (kw-arg-ref args kw)
216 (let ((rem (member kw args)))
217 (and rem (pair? (cdr rem)) (cadr rem))))
218
219 \f
220
221 ;;; {Structs}
222
223 (define (struct-layout s)
224 (struct-ref (struct-vtable s) vtable-index-layout))
225
226 \f
227
228 ;;; Environments
229
230 (define the-environment
231 (procedure->syntax
232 (lambda (x e)
233 e)))
234
235 (define the-root-environment (the-environment))
236
237 (define (environment-module env)
238 (let ((closure (and (pair? env) (car (last-pair env)))))
239 (and closure (procedure-property closure 'module))))
240
241 \f
242 ;;; {Records}
243 ;;;
244
245 ;; Printing records: by default, records are printed as
246 ;;
247 ;; #<type-name field1: val1 field2: val2 ...>
248 ;;
249 ;; You can change that by giving a custom printing function to
250 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
251 ;; will be called like
252 ;;
253 ;; (<printer> object port)
254 ;;
255 ;; It should print OBJECT to PORT.
256
257 (define (inherit-print-state old-port new-port)
258 (if (get-print-state old-port)
259 (port-with-print-state new-port (get-print-state old-port))
260 new-port))
261
262 ;; 0: type-name, 1: fields
263 (define record-type-vtable
264 (make-vtable-vtable "prpr" 0
265 (lambda (s p)
266 (cond ((eq? s record-type-vtable)
267 (display "#<record-type-vtable>" p))
268 (else
269 (display "#<record-type " p)
270 (display (record-type-name s) p)
271 (display ">" p))))))
272
273 (define (record-type? obj)
274 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
275
276 (define (make-record-type type-name fields . opt)
277 (let ((printer-fn (and (pair? opt) (car opt))))
278 (let ((struct (make-struct record-type-vtable 0
279 (make-struct-layout
280 (apply string-append
281 (map (lambda (f) "pw") fields)))
282 (or printer-fn
283 (lambda (s p)
284 (display "#<" p)
285 (display type-name p)
286 (let loop ((fields fields)
287 (off 0))
288 (cond
289 ((not (null? fields))
290 (display " " p)
291 (display (car fields) p)
292 (display ": " p)
293 (display (struct-ref s off) p)
294 (loop (cdr fields) (+ 1 off)))))
295 (display ">" p)))
296 type-name
297 (copy-tree fields))))
298 ;; Temporary solution: Associate a name to the record type descriptor
299 ;; so that the object system can create a wrapper class for it.
300 (set-struct-vtable-name! struct (if (symbol? type-name)
301 type-name
302 (string->symbol type-name)))
303 struct)))
304
305 (define (record-type-name obj)
306 (if (record-type? obj)
307 (struct-ref obj vtable-offset-user)
308 (error 'not-a-record-type obj)))
309
310 (define (record-type-fields obj)
311 (if (record-type? obj)
312 (struct-ref obj (+ 1 vtable-offset-user))
313 (error 'not-a-record-type obj)))
314
315 (define (record-constructor rtd . opt)
316 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
317 (local-eval `(lambda ,field-names
318 (make-struct ',rtd 0 ,@(map (lambda (f)
319 (if (memq f field-names)
320 f
321 #f))
322 (record-type-fields rtd))))
323 the-root-environment)))
324
325 (define (record-predicate rtd)
326 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
327
328 (define (record-accessor rtd field-name)
329 (let* ((pos (list-index (record-type-fields rtd) field-name)))
330 (if (not pos)
331 (error 'no-such-field field-name))
332 (local-eval `(lambda (obj)
333 (and (eq? ',rtd (record-type-descriptor obj))
334 (struct-ref obj ,pos)))
335 the-root-environment)))
336
337 (define (record-modifier rtd field-name)
338 (let* ((pos (list-index (record-type-fields rtd) field-name)))
339 (if (not pos)
340 (error 'no-such-field field-name))
341 (local-eval `(lambda (obj val)
342 (and (eq? ',rtd (record-type-descriptor obj))
343 (struct-set! obj ,pos val)))
344 the-root-environment)))
345
346
347 (define (record? obj)
348 (and (struct? obj) (record-type? (struct-vtable obj))))
349
350 (define (record-type-descriptor obj)
351 (if (struct? obj)
352 (struct-vtable obj)
353 (error 'not-a-record obj)))
354
355 (provide 'record)
356
357 \f
358 ;;; {Booleans}
359 ;;;
360
361 (define (->bool x) (not (not x)))
362
363 \f
364 ;;; {Symbols}
365 ;;;
366
367 (define (symbol-append . args)
368 (string->symbol (apply string-append (map symbol->string args))))
369
370 (define (list->symbol . args)
371 (string->symbol (apply list->string args)))
372
373 (define (symbol . args)
374 (string->symbol (apply string args)))
375
376 \f
377 ;;; {Lists}
378 ;;;
379
380 (define (list-index l k)
381 (let loop ((n 0)
382 (l l))
383 (and (not (null? l))
384 (if (eq? (car l) k)
385 n
386 (loop (+ n 1) (cdr l))))))
387
388 (define (make-list n . init)
389 (if (pair? init) (set! init (car init)))
390 (let loop ((answer '())
391 (n n))
392 (if (<= n 0)
393 answer
394 (loop (cons init answer) (- n 1)))))
395
396 \f
397 ;;; {and-map and or-map}
398 ;;;
399 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
400 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
401 ;;;
402
403 ;; and-map f l
404 ;;
405 ;; Apply f to successive elements of l until exhaustion or f returns #f.
406 ;; If returning early, return #f. Otherwise, return the last value returned
407 ;; by f. If f has never been called because l is empty, return #t.
408 ;;
409 (define (and-map f lst)
410 (let loop ((result #t)
411 (l lst))
412 (and result
413 (or (and (null? l)
414 result)
415 (loop (f (car l)) (cdr l))))))
416
417 ;; or-map f l
418 ;;
419 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
420 ;; If returning early, return the return value of f.
421 ;;
422 (define (or-map f lst)
423 (let loop ((result #f)
424 (l lst))
425 (or result
426 (and (not (null? l))
427 (loop (f (car l)) (cdr l))))))
428
429 \f
430
431 (if (provided? 'posix)
432 (primitive-load-path "ice-9/posix.scm"))
433
434 (if (provided? 'socket)
435 (primitive-load-path "ice-9/networking.scm"))
436
437 (define file-exists?
438 (if (provided? 'posix)
439 (lambda (str)
440 (access? str F_OK))
441 (lambda (str)
442 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
443 (lambda args #f))))
444 (if port (begin (close-port port) #t)
445 #f)))))
446
447 (define file-is-directory?
448 (if (provided? 'posix)
449 (lambda (str)
450 (eq? (stat:type (stat str)) 'directory))
451 (lambda (str)
452 (let ((port (catch 'system-error
453 (lambda () (open-file (string-append str "/.")
454 OPEN_READ))
455 (lambda args #f))))
456 (if port (begin (close-port port) #t)
457 #f)))))
458
459 (define (has-suffix? str suffix)
460 (let ((sufl (string-length suffix))
461 (sl (string-length str)))
462 (and (> sl sufl)
463 (string=? (substring str (- sl sufl) sl) suffix))))
464
465 (define (system-error-errno args)
466 (if (eq? (car args) 'system-error)
467 (car (list-ref args 4))
468 #f))
469
470 \f
471 ;;; {Error Handling}
472 ;;;
473
474 (define (error . args)
475 (save-stack)
476 (if (null? args)
477 (scm-error 'misc-error #f "?" #f #f)
478 (let loop ((msg "~A")
479 (rest (cdr args)))
480 (if (not (null? rest))
481 (loop (string-append msg " ~S")
482 (cdr rest))
483 (scm-error 'misc-error #f msg args #f)))))
484
485 ;; bad-throw is the hook that is called upon a throw to a an unhandled
486 ;; key (unless the throw has four arguments, in which case
487 ;; it's usually interpreted as an error throw.)
488 ;; If the key has a default handler (a throw-handler-default property),
489 ;; it is applied to the throw.
490 ;;
491 (define (bad-throw key . args)
492 (let ((default (symbol-property key 'throw-handler-default)))
493 (or (and default (apply default key args))
494 (apply error "unhandled-exception:" key args))))
495
496 \f
497
498 (define (tm:sec obj) (vector-ref obj 0))
499 (define (tm:min obj) (vector-ref obj 1))
500 (define (tm:hour obj) (vector-ref obj 2))
501 (define (tm:mday obj) (vector-ref obj 3))
502 (define (tm:mon obj) (vector-ref obj 4))
503 (define (tm:year obj) (vector-ref obj 5))
504 (define (tm:wday obj) (vector-ref obj 6))
505 (define (tm:yday obj) (vector-ref obj 7))
506 (define (tm:isdst obj) (vector-ref obj 8))
507 (define (tm:gmtoff obj) (vector-ref obj 9))
508 (define (tm:zone obj) (vector-ref obj 10))
509
510 (define (set-tm:sec obj val) (vector-set! obj 0 val))
511 (define (set-tm:min obj val) (vector-set! obj 1 val))
512 (define (set-tm:hour obj val) (vector-set! obj 2 val))
513 (define (set-tm:mday obj val) (vector-set! obj 3 val))
514 (define (set-tm:mon obj val) (vector-set! obj 4 val))
515 (define (set-tm:year obj val) (vector-set! obj 5 val))
516 (define (set-tm:wday obj val) (vector-set! obj 6 val))
517 (define (set-tm:yday obj val) (vector-set! obj 7 val))
518 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
519 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
520 (define (set-tm:zone obj val) (vector-set! obj 10 val))
521
522 (define (tms:clock obj) (vector-ref obj 0))
523 (define (tms:utime obj) (vector-ref obj 1))
524 (define (tms:stime obj) (vector-ref obj 2))
525 (define (tms:cutime obj) (vector-ref obj 3))
526 (define (tms:cstime obj) (vector-ref obj 4))
527
528 (define file-position ftell)
529 (define (file-set-position port offset . whence)
530 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
531 (seek port offset whence)))
532
533 (define (move->fdes fd/port fd)
534 (cond ((integer? fd/port)
535 (dup->fdes fd/port fd)
536 (close fd/port)
537 fd)
538 (else
539 (primitive-move->fdes fd/port fd)
540 (set-port-revealed! fd/port 1)
541 fd/port)))
542
543 (define (release-port-handle port)
544 (let ((revealed (port-revealed port)))
545 (if (> revealed 0)
546 (set-port-revealed! port (- revealed 1)))))
547
548 (define (dup->port port/fd mode . maybe-fd)
549 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
550 mode)))
551 (if (pair? maybe-fd)
552 (set-port-revealed! port 1))
553 port))
554
555 (define (dup->inport port/fd . maybe-fd)
556 (apply dup->port port/fd "r" maybe-fd))
557
558 (define (dup->outport port/fd . maybe-fd)
559 (apply dup->port port/fd "w" maybe-fd))
560
561 (define (dup port/fd . maybe-fd)
562 (if (integer? port/fd)
563 (apply dup->fdes port/fd maybe-fd)
564 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
565
566 (define (duplicate-port port modes)
567 (dup->port port modes))
568
569 (define (fdes->inport fdes)
570 (let loop ((rest-ports (fdes->ports fdes)))
571 (cond ((null? rest-ports)
572 (let ((result (fdopen fdes "r")))
573 (set-port-revealed! result 1)
574 result))
575 ((input-port? (car rest-ports))
576 (set-port-revealed! (car rest-ports)
577 (+ (port-revealed (car rest-ports)) 1))
578 (car rest-ports))
579 (else
580 (loop (cdr rest-ports))))))
581
582 (define (fdes->outport fdes)
583 (let loop ((rest-ports (fdes->ports fdes)))
584 (cond ((null? rest-ports)
585 (let ((result (fdopen fdes "w")))
586 (set-port-revealed! result 1)
587 result))
588 ((output-port? (car rest-ports))
589 (set-port-revealed! (car rest-ports)
590 (+ (port-revealed (car rest-ports)) 1))
591 (car rest-ports))
592 (else
593 (loop (cdr rest-ports))))))
594
595 (define (port->fdes port)
596 (set-port-revealed! port (+ (port-revealed port) 1))
597 (fileno port))
598
599 (define (setenv name value)
600 (if value
601 (putenv (string-append name "=" value))
602 (putenv name)))
603
604 (define (unsetenv name)
605 "Remove the entry for NAME from the environment."
606 (putenv name))
607
608 \f
609 ;;; {Load Paths}
610 ;;;
611
612 ;;; Here for backward compatability
613 ;;
614 (define scheme-file-suffix (lambda () ".scm"))
615
616 (define (in-vicinity vicinity file)
617 (let ((tail (let ((len (string-length vicinity)))
618 (if (zero? len)
619 #f
620 (string-ref vicinity (- len 1))))))
621 (string-append vicinity
622 (if (or (not tail)
623 (eq? tail #\/))
624 ""
625 "/")
626 file)))
627
628 \f
629 ;;; {Help for scm_shell}
630 ;;; The argument-processing code used by Guile-based shells generates
631 ;;; Scheme code based on the argument list. This page contains help
632 ;;; functions for the code it generates.
633
634 (define (command-line) (program-arguments))
635
636 ;; This is mostly for the internal use of the code generated by
637 ;; scm_compile_shell_switches.
638
639 (define (turn-on-debugging)
640 (debug-enable 'debug)
641 (debug-enable 'backtrace)
642 (read-enable 'positions))
643
644 (define (load-user-init)
645 (let* ((home (or (getenv "HOME")
646 (false-if-exception (passwd:dir (getpwuid (getuid))))
647 "/")) ;; fallback for cygwin etc.
648 (init-file (in-vicinity home ".guile")))
649 (if (file-exists? init-file)
650 (primitive-load init-file))))
651
652 \f
653 ;;; {Loading by paths}
654
655 ;;; Load a Scheme source file named NAME, searching for it in the
656 ;;; directories listed in %load-path, and applying each of the file
657 ;;; name extensions listed in %load-extensions.
658 (define (load-from-path name)
659 (start-stack 'load-stack
660 (primitive-load-path name)))
661
662
663 \f
664 ;;; {Transcendental Functions}
665 ;;;
666 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
667 ;;; Written by Jerry D. Hedden, (C) FSF.
668 ;;; See the file `COPYING' for terms applying to this program.
669 ;;;
670
671 (define (exp z)
672 (if (real? z) ($exp z)
673 (make-polar ($exp (real-part z)) (imag-part z))))
674
675 (define (log z)
676 (if (and (real? z) (>= z 0))
677 ($log z)
678 (make-rectangular ($log (magnitude z)) (angle z))))
679
680 (define (sqrt z)
681 (if (real? z)
682 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
683 ($sqrt z))
684 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
685
686 (define expt
687 (let ((integer-expt integer-expt))
688 (lambda (z1 z2)
689 (cond ((integer? z2)
690 (if (>= z2 0)
691 (integer-expt z1 z2)
692 (/ 1 (integer-expt z1 (- z2)))))
693 ((and (real? z2) (real? z1) (>= z1 0))
694 ($expt z1 z2))
695 (else
696 (exp (* z2 (log z1))))))))
697
698 (define (sinh z)
699 (if (real? z) ($sinh z)
700 (let ((x (real-part z)) (y (imag-part z)))
701 (make-rectangular (* ($sinh x) ($cos y))
702 (* ($cosh x) ($sin y))))))
703 (define (cosh z)
704 (if (real? z) ($cosh z)
705 (let ((x (real-part z)) (y (imag-part z)))
706 (make-rectangular (* ($cosh x) ($cos y))
707 (* ($sinh x) ($sin y))))))
708 (define (tanh z)
709 (if (real? z) ($tanh z)
710 (let* ((x (* 2 (real-part z)))
711 (y (* 2 (imag-part z)))
712 (w (+ ($cosh x) ($cos y))))
713 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
714
715 (define (asinh z)
716 (if (real? z) ($asinh z)
717 (log (+ z (sqrt (+ (* z z) 1))))))
718
719 (define (acosh z)
720 (if (and (real? z) (>= z 1))
721 ($acosh z)
722 (log (+ z (sqrt (- (* z z) 1))))))
723
724 (define (atanh z)
725 (if (and (real? z) (> z -1) (< z 1))
726 ($atanh z)
727 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
728
729 (define (sin z)
730 (if (real? z) ($sin z)
731 (let ((x (real-part z)) (y (imag-part z)))
732 (make-rectangular (* ($sin x) ($cosh y))
733 (* ($cos x) ($sinh y))))))
734 (define (cos z)
735 (if (real? z) ($cos z)
736 (let ((x (real-part z)) (y (imag-part z)))
737 (make-rectangular (* ($cos x) ($cosh y))
738 (- (* ($sin x) ($sinh y)))))))
739 (define (tan z)
740 (if (real? z) ($tan z)
741 (let* ((x (* 2 (real-part z)))
742 (y (* 2 (imag-part z)))
743 (w (+ ($cos x) ($cosh y))))
744 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
745
746 (define (asin z)
747 (if (and (real? z) (>= z -1) (<= z 1))
748 ($asin z)
749 (* -i (asinh (* +i z)))))
750
751 (define (acos z)
752 (if (and (real? z) (>= z -1) (<= z 1))
753 ($acos z)
754 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
755
756 (define (atan z . y)
757 (if (null? y)
758 (if (real? z) ($atan z)
759 (/ (log (/ (- +i z) (+ +i z))) +2i))
760 ($atan2 z (car y))))
761
762 (define (log10 arg)
763 (/ (log arg) (log 10)))
764
765 \f
766
767 ;;; {Reader Extensions}
768 ;;;
769
770 ;;; Reader code for various "#c" forms.
771 ;;;
772
773 (read-hash-extend #\' (lambda (c port)
774 (read port)))
775
776 (define read-eval? (make-fluid))
777 (fluid-set! read-eval? #f)
778 (read-hash-extend #\.
779 (lambda (c port)
780 (if (fluid-ref read-eval?)
781 (eval (read port) (interaction-environment))
782 (error
783 "#. read expansion found and read-eval? is #f."))))
784
785 \f
786 ;;; {Command Line Options}
787 ;;;
788
789 (define (get-option argv kw-opts kw-args return)
790 (cond
791 ((null? argv)
792 (return #f #f argv))
793
794 ((or (not (eq? #\- (string-ref (car argv) 0)))
795 (eq? (string-length (car argv)) 1))
796 (return 'normal-arg (car argv) (cdr argv)))
797
798 ((eq? #\- (string-ref (car argv) 1))
799 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
800 (string-length (car argv))))
801 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
802 (kw-opt? (member kw kw-opts))
803 (kw-arg? (member kw kw-args))
804 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
805 (substring (car argv)
806 (+ kw-arg-pos 1)
807 (string-length (car argv))))
808 (and kw-arg?
809 (begin (set! argv (cdr argv)) (car argv))))))
810 (if (or kw-opt? kw-arg?)
811 (return kw arg (cdr argv))
812 (return 'usage-error kw (cdr argv)))))
813
814 (else
815 (let* ((char (substring (car argv) 1 2))
816 (kw (symbol->keyword char)))
817 (cond
818
819 ((member kw kw-opts)
820 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
821 (new-argv (if (= 0 (string-length rest-car))
822 (cdr argv)
823 (cons (string-append "-" rest-car) (cdr argv)))))
824 (return kw #f new-argv)))
825
826 ((member kw kw-args)
827 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
828 (arg (if (= 0 (string-length rest-car))
829 (cadr argv)
830 rest-car))
831 (new-argv (if (= 0 (string-length rest-car))
832 (cddr argv)
833 (cdr argv))))
834 (return kw arg new-argv)))
835
836 (else (return 'usage-error kw argv)))))))
837
838 (define (for-next-option proc argv kw-opts kw-args)
839 (let loop ((argv argv))
840 (get-option argv kw-opts kw-args
841 (lambda (opt opt-arg argv)
842 (and opt (proc opt opt-arg argv loop))))))
843
844 (define (display-usage-report kw-desc)
845 (for-each
846 (lambda (kw)
847 (or (eq? (car kw) #t)
848 (eq? (car kw) 'else)
849 (let* ((opt-desc kw)
850 (help (cadr opt-desc))
851 (opts (car opt-desc))
852 (opts-proper (if (string? (car opts)) (cdr opts) opts))
853 (arg-name (if (string? (car opts))
854 (string-append "<" (car opts) ">")
855 ""))
856 (left-part (string-append
857 (with-output-to-string
858 (lambda ()
859 (map (lambda (x) (display (keyword-symbol x)) (display " "))
860 opts-proper)))
861 arg-name))
862 (middle-part (if (and (< (string-length left-part) 30)
863 (< (string-length help) 40))
864 (make-string (- 30 (string-length left-part)) #\ )
865 "\n\t")))
866 (display left-part)
867 (display middle-part)
868 (display help)
869 (newline))))
870 kw-desc))
871
872
873
874 (define (transform-usage-lambda cases)
875 (let* ((raw-usage (delq! 'else (map car cases)))
876 (usage-sans-specials (map (lambda (x)
877 (or (and (not (list? x)) x)
878 (and (symbol? (car x)) #t)
879 (and (boolean? (car x)) #t)
880 x))
881 raw-usage))
882 (usage-desc (delq! #t usage-sans-specials))
883 (kw-desc (map car usage-desc))
884 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
885 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
886 (transmogrified-cases (map (lambda (case)
887 (cons (let ((opts (car case)))
888 (if (or (boolean? opts) (eq? 'else opts))
889 opts
890 (cond
891 ((symbol? (car opts)) opts)
892 ((boolean? (car opts)) opts)
893 ((string? (caar opts)) (cdar opts))
894 (else (car opts)))))
895 (cdr case)))
896 cases)))
897 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
898 (lambda (%argv)
899 (let %next-arg ((%argv %argv))
900 (get-option %argv
901 ',kw-opts
902 ',kw-args
903 (lambda (%opt %arg %new-argv)
904 (case %opt
905 ,@ transmogrified-cases))))))))
906
907
908 \f
909
910 ;;; {Low Level Modules}
911 ;;;
912 ;;; These are the low level data structures for modules.
913 ;;;
914 ;;; !!! warning: The interface to lazy binder procedures is going
915 ;;; to be changed in an incompatible way to permit all the basic
916 ;;; module ops to be virtualized.
917 ;;;
918 ;;; (make-module size use-list lazy-binding-proc) => module
919 ;;; module-{obarray,uses,binder}[|-set!]
920 ;;; (module? obj) => [#t|#f]
921 ;;; (module-locally-bound? module symbol) => [#t|#f]
922 ;;; (module-bound? module symbol) => [#t|#f]
923 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
924 ;;; (module-symbol-interned? module symbol) => [#t|#f]
925 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
926 ;;; (module-variable module symbol) => [#<variable ...> | #f]
927 ;;; (module-symbol-binding module symbol opt-value)
928 ;;; => [ <obj> | opt-value | an error occurs ]
929 ;;; (module-make-local-var! module symbol) => #<variable...>
930 ;;; (module-add! module symbol var) => unspecified
931 ;;; (module-remove! module symbol) => unspecified
932 ;;; (module-for-each proc module) => unspecified
933 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
934 ;;; (set-current-module module) => unspecified
935 ;;; (current-module) => #<module...>
936 ;;;
937 ;;;
938
939 \f
940 ;;; {Printing Modules}
941 ;; This is how modules are printed. You can re-define it.
942 ;; (Redefining is actually more complicated than simply redefining
943 ;; %print-module because that would only change the binding and not
944 ;; the value stored in the vtable that determines how record are
945 ;; printed. Sigh.)
946
947 (define (%print-module mod port) ; unused args: depth length style table)
948 (display "#<" port)
949 (display (or (module-kind mod) "module") port)
950 (let ((name (module-name mod)))
951 (if name
952 (begin
953 (display " " port)
954 (display name port))))
955 (display " " port)
956 (display (number->string (object-address mod) 16) port)
957 (display ">" port))
958
959 ;; module-type
960 ;;
961 ;; A module is characterized by an obarray in which local symbols
962 ;; are interned, a list of modules, "uses", from which non-local
963 ;; bindings can be inherited, and an optional lazy-binder which
964 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
965 ;; bindings that would otherwise not be found locally in the module.
966 ;;
967 ;; NOTE: If you change here, you also need to change libguile/modules.h.
968 ;;
969 (define module-type
970 (make-record-type 'module
971 '(obarray uses binder eval-closure transformer name kind
972 observers weak-observers observer-id)
973 %print-module))
974
975 ;; make-module &opt size uses binder
976 ;;
977 ;; Create a new module, perhaps with a particular size of obarray,
978 ;; initial uses list, or binding procedure.
979 ;;
980 (define make-module
981 (lambda args
982
983 (define (parse-arg index default)
984 (if (> (length args) index)
985 (list-ref args index)
986 default))
987
988 (if (> (length args) 3)
989 (error "Too many args to make-module." args))
990
991 (let ((size (parse-arg 0 1021))
992 (uses (parse-arg 1 '()))
993 (binder (parse-arg 2 #f)))
994
995 (if (not (integer? size))
996 (error "Illegal size to make-module." size))
997 (if (not (and (list? uses)
998 (and-map module? uses)))
999 (error "Incorrect use list." uses))
1000 (if (and binder (not (procedure? binder)))
1001 (error
1002 "Lazy-binder expected to be a procedure or #f." binder))
1003
1004 (let ((module (module-constructor (make-vector size '())
1005 uses binder #f #f #f #f
1006 '()
1007 (make-weak-value-hash-table 31)
1008 0)))
1009
1010 ;; We can't pass this as an argument to module-constructor,
1011 ;; because we need it to close over a pointer to the module
1012 ;; itself.
1013 (set-module-eval-closure! module (standard-eval-closure module))
1014
1015 module))))
1016
1017 (define module-constructor (record-constructor module-type))
1018 (define module-obarray (record-accessor module-type 'obarray))
1019 (define set-module-obarray! (record-modifier module-type 'obarray))
1020 (define module-uses (record-accessor module-type 'uses))
1021 (define set-module-uses! (record-modifier module-type 'uses))
1022 (define module-binder (record-accessor module-type 'binder))
1023 (define set-module-binder! (record-modifier module-type 'binder))
1024
1025 ;; NOTE: This binding is used in libguile/modules.c.
1026 (define module-eval-closure (record-accessor module-type 'eval-closure))
1027
1028 (define module-transformer (record-accessor module-type 'transformer))
1029 (define set-module-transformer! (record-modifier module-type 'transformer))
1030 (define module-name (record-accessor module-type 'name))
1031 (define set-module-name! (record-modifier module-type 'name))
1032 (define module-kind (record-accessor module-type 'kind))
1033 (define set-module-kind! (record-modifier module-type 'kind))
1034 (define module-observers (record-accessor module-type 'observers))
1035 (define set-module-observers! (record-modifier module-type 'observers))
1036 (define module-weak-observers (record-accessor module-type 'weak-observers))
1037 (define module-observer-id (record-accessor module-type 'observer-id))
1038 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1039 (define module? (record-predicate module-type))
1040
1041 (define set-module-eval-closure!
1042 (let ((setter (record-modifier module-type 'eval-closure)))
1043 (lambda (module closure)
1044 (setter module closure)
1045 ;; Make it possible to lookup the module from the environment.
1046 ;; This implementation is correct since an eval closure can belong
1047 ;; to maximally one module.
1048 (set-procedure-property! closure 'module module))))
1049
1050 \f
1051 ;;; {Observer protocol}
1052 ;;;
1053
1054 (define (module-observe module proc)
1055 (set-module-observers! module (cons proc (module-observers module)))
1056 (cons module proc))
1057
1058 (define (module-observe-weak module proc)
1059 (let ((id (module-observer-id module)))
1060 (hash-set! (module-weak-observers module) id proc)
1061 (set-module-observer-id! module (+ 1 id))
1062 (cons module id)))
1063
1064 (define (module-unobserve token)
1065 (let ((module (car token))
1066 (id (cdr token)))
1067 (if (integer? id)
1068 (hash-remove! (module-weak-observers module) id)
1069 (set-module-observers! module (delq1! id (module-observers module)))))
1070 *unspecified*)
1071
1072 (define (module-modified m)
1073 (for-each (lambda (proc) (proc m)) (module-observers m))
1074 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1075
1076 \f
1077 ;;; {Module Searching in General}
1078 ;;;
1079 ;;; We sometimes want to look for properties of a symbol
1080 ;;; just within the obarray of one module. If the property
1081 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1082 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1083 ;;;
1084 ;;;
1085 ;;; Other times, we want to test for a symbol property in the obarray
1086 ;;; of M and, if it is not found there, try each of the modules in the
1087 ;;; uses list of M. This is the normal way of testing for some
1088 ;;; property, so we state these properties without qualification as
1089 ;;; in: ``The symbol 'fnord is interned in module M because it is
1090 ;;; interned locally in module M2 which is a member of the uses list
1091 ;;; of M.''
1092 ;;;
1093
1094 ;; module-search fn m
1095 ;;
1096 ;; return the first non-#f result of FN applied to M and then to
1097 ;; the modules in the uses of m, and so on recursively. If all applications
1098 ;; return #f, then so does this function.
1099 ;;
1100 (define (module-search fn m v)
1101 (define (loop pos)
1102 (and (pair? pos)
1103 (or (module-search fn (car pos) v)
1104 (loop (cdr pos)))))
1105 (or (fn m v)
1106 (loop (module-uses m))))
1107
1108
1109 ;;; {Is a symbol bound in a module?}
1110 ;;;
1111 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1112 ;;; of S in M has been set to some well-defined value.
1113 ;;;
1114
1115 ;; module-locally-bound? module symbol
1116 ;;
1117 ;; Is a symbol bound (interned and defined) locally in a given module?
1118 ;;
1119 (define (module-locally-bound? m v)
1120 (let ((var (module-local-variable m v)))
1121 (and var
1122 (variable-bound? var))))
1123
1124 ;; module-bound? module symbol
1125 ;;
1126 ;; Is a symbol bound (interned and defined) anywhere in a given module
1127 ;; or its uses?
1128 ;;
1129 (define (module-bound? m v)
1130 (module-search module-locally-bound? m v))
1131
1132 ;;; {Is a symbol interned in a module?}
1133 ;;;
1134 ;;; Symbol S in Module M is interned if S occurs in
1135 ;;; of S in M has been set to some well-defined value.
1136 ;;;
1137 ;;; It is possible to intern a symbol in a module without providing
1138 ;;; an initial binding for the corresponding variable. This is done
1139 ;;; with:
1140 ;;; (module-add! module symbol (make-undefined-variable))
1141 ;;;
1142 ;;; In that case, the symbol is interned in the module, but not
1143 ;;; bound there. The unbound symbol shadows any binding for that
1144 ;;; symbol that might otherwise be inherited from a member of the uses list.
1145 ;;;
1146
1147 (define (module-obarray-get-handle ob key)
1148 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1149
1150 (define (module-obarray-ref ob key)
1151 ((if (symbol? key) hashq-ref hash-ref) ob key))
1152
1153 (define (module-obarray-set! ob key val)
1154 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1155
1156 (define (module-obarray-remove! ob key)
1157 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1158
1159 ;; module-symbol-locally-interned? module symbol
1160 ;;
1161 ;; is a symbol interned (not neccessarily defined) locally in a given module
1162 ;; or its uses? Interned symbols shadow inherited bindings even if
1163 ;; they are not themselves bound to a defined value.
1164 ;;
1165 (define (module-symbol-locally-interned? m v)
1166 (not (not (module-obarray-get-handle (module-obarray m) v))))
1167
1168 ;; module-symbol-interned? module symbol
1169 ;;
1170 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1171 ;; or its uses? Interned symbols shadow inherited bindings even if
1172 ;; they are not themselves bound to a defined value.
1173 ;;
1174 (define (module-symbol-interned? m v)
1175 (module-search module-symbol-locally-interned? m v))
1176
1177
1178 ;;; {Mapping modules x symbols --> variables}
1179 ;;;
1180
1181 ;; module-local-variable module symbol
1182 ;; return the local variable associated with a MODULE and SYMBOL.
1183 ;;
1184 ;;; This function is very important. It is the only function that can
1185 ;;; return a variable from a module other than the mutators that store
1186 ;;; new variables in modules. Therefore, this function is the location
1187 ;;; of the "lazy binder" hack.
1188 ;;;
1189 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1190 ;;; to a variable, return that variable object.
1191 ;;;
1192 ;;; If the symbols is not found at first, but the module has a lazy binder,
1193 ;;; then try the binder.
1194 ;;;
1195 ;;; If the symbol is not found at all, return #f.
1196 ;;;
1197 (define (module-local-variable m v)
1198 ; (caddr
1199 ; (list m v
1200 (let ((b (module-obarray-ref (module-obarray m) v)))
1201 (or (and (variable? b) b)
1202 (and (module-binder m)
1203 ((module-binder m) m v #f)))))
1204 ;))
1205
1206 ;; module-variable module symbol
1207 ;;
1208 ;; like module-local-variable, except search the uses in the
1209 ;; case V is not found in M.
1210 ;;
1211 ;; NOTE: This function is superseded with C code (see modules.c)
1212 ;;; when using the standard eval closure.
1213 ;;
1214 (define (module-variable m v)
1215 (module-search module-local-variable m v))
1216
1217
1218 ;;; {Mapping modules x symbols --> bindings}
1219 ;;;
1220 ;;; These are similar to the mapping to variables, except that the
1221 ;;; variable is dereferenced.
1222 ;;;
1223
1224 ;; module-symbol-binding module symbol opt-value
1225 ;;
1226 ;; return the binding of a variable specified by name within
1227 ;; a given module, signalling an error if the variable is unbound.
1228 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1229 ;; return OPT-VALUE.
1230 ;;
1231 (define (module-symbol-local-binding m v . opt-val)
1232 (let ((var (module-local-variable m v)))
1233 (if var
1234 (variable-ref var)
1235 (if (not (null? opt-val))
1236 (car opt-val)
1237 (error "Locally unbound variable." v)))))
1238
1239 ;; module-symbol-binding module symbol opt-value
1240 ;;
1241 ;; return the binding of a variable specified by name within
1242 ;; a given module, signalling an error if the variable is unbound.
1243 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1244 ;; return OPT-VALUE.
1245 ;;
1246 (define (module-symbol-binding m v . opt-val)
1247 (let ((var (module-variable m v)))
1248 (if var
1249 (variable-ref var)
1250 (if (not (null? opt-val))
1251 (car opt-val)
1252 (error "Unbound variable." v)))))
1253
1254
1255 \f
1256 ;;; {Adding Variables to Modules}
1257 ;;;
1258 ;;;
1259
1260
1261 ;; module-make-local-var! module symbol
1262 ;;
1263 ;; ensure a variable for V in the local namespace of M.
1264 ;; If no variable was already there, then create a new and uninitialzied
1265 ;; variable.
1266 ;;
1267 (define (module-make-local-var! m v)
1268 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1269 (and (variable? b)
1270 (begin
1271 (module-modified m)
1272 b)))
1273 (and (module-binder m)
1274 ((module-binder m) m v #t))
1275 (begin
1276 (let ((answer (make-undefined-variable)))
1277 (module-obarray-set! (module-obarray m) v answer)
1278 (module-modified m)
1279 answer))))
1280
1281 ;; module-ensure-local-variable! module symbol
1282 ;;
1283 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1284 ;; there is no binding for SYMBOL, create a new uninitialized
1285 ;; variable. Return the local variable.
1286 ;;
1287 (define (module-ensure-local-variable! module symbol)
1288 (or (module-local-variable module symbol)
1289 (let ((var (make-undefined-variable)))
1290 (module-add! module symbol var)
1291 var)))
1292
1293 ;; module-add! module symbol var
1294 ;;
1295 ;; ensure a particular variable for V in the local namespace of M.
1296 ;;
1297 (define (module-add! m v var)
1298 (if (not (variable? var))
1299 (error "Bad variable to module-add!" var))
1300 (module-obarray-set! (module-obarray m) v var)
1301 (module-modified m))
1302
1303 ;; module-remove!
1304 ;;
1305 ;; make sure that a symbol is undefined in the local namespace of M.
1306 ;;
1307 (define (module-remove! m v)
1308 (module-obarray-remove! (module-obarray m) v)
1309 (module-modified m))
1310
1311 (define (module-clear! m)
1312 (vector-fill! (module-obarray m) '())
1313 (module-modified m))
1314
1315 ;; MODULE-FOR-EACH -- exported
1316 ;;
1317 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1318 ;;
1319 (define (module-for-each proc module)
1320 (let ((obarray (module-obarray module)))
1321 (do ((index 0 (+ index 1))
1322 (end (vector-length obarray)))
1323 ((= index end))
1324 (for-each
1325 (lambda (bucket)
1326 (proc (car bucket) (cdr bucket)))
1327 (vector-ref obarray index)))))
1328
1329
1330 (define (module-map proc module)
1331 (let* ((obarray (module-obarray module))
1332 (end (vector-length obarray)))
1333
1334 (let loop ((i 0)
1335 (answer '()))
1336 (if (= i end)
1337 answer
1338 (loop (+ 1 i)
1339 (append!
1340 (map (lambda (bucket)
1341 (proc (car bucket) (cdr bucket)))
1342 (vector-ref obarray i))
1343 answer))))))
1344 \f
1345
1346 ;;; {Low Level Bootstrapping}
1347 ;;;
1348
1349 ;; make-root-module
1350
1351 ;; A root module uses the pre-modules-obarray as its obarray. This
1352 ;; special obarray accumulates all bindings that have been established
1353 ;; before the module system is fully booted.
1354 ;;
1355 ;; (The obarray continues to be used by code that has been closed over
1356 ;; before the module system has been booted.)
1357
1358 (define (make-root-module)
1359 (let ((m (make-module 0)))
1360 (set-module-obarray! m (%get-pre-modules-obarray))
1361 m))
1362
1363 ;; make-scm-module
1364
1365 ;; The root interface is a module that uses the same obarray as the
1366 ;; root module. It does not allow new definitions, tho.
1367
1368 (define (make-scm-module)
1369 (let ((m (make-module 0)))
1370 (set-module-obarray! m (%get-pre-modules-obarray))
1371 (set-module-eval-closure! m (standard-interface-eval-closure m))
1372 m))
1373
1374
1375 \f
1376 ;;; {Module-based Loading}
1377 ;;;
1378
1379 (define (save-module-excursion thunk)
1380 (let ((inner-module (current-module))
1381 (outer-module #f))
1382 (dynamic-wind (lambda ()
1383 (set! outer-module (current-module))
1384 (set-current-module inner-module)
1385 (set! inner-module #f))
1386 thunk
1387 (lambda ()
1388 (set! inner-module (current-module))
1389 (set-current-module outer-module)
1390 (set! outer-module #f)))))
1391
1392 (define basic-load load)
1393
1394 (define (load-module filename)
1395 (save-module-excursion
1396 (lambda ()
1397 (let ((oldname (and (current-load-port)
1398 (port-filename (current-load-port)))))
1399 (basic-load (if (and oldname
1400 (> (string-length filename) 0)
1401 (not (char=? (string-ref filename 0) #\/))
1402 (not (string=? (dirname oldname) ".")))
1403 (string-append (dirname oldname) "/" filename)
1404 filename))))))
1405
1406
1407 \f
1408 ;;; {MODULE-REF -- exported}
1409 ;;
1410 ;; Returns the value of a variable called NAME in MODULE or any of its
1411 ;; used modules. If there is no such variable, then if the optional third
1412 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1413 ;;
1414 (define (module-ref module name . rest)
1415 (let ((variable (module-variable module name)))
1416 (if (and variable (variable-bound? variable))
1417 (variable-ref variable)
1418 (if (null? rest)
1419 (error "No variable named" name 'in module)
1420 (car rest) ; default value
1421 ))))
1422
1423 ;; MODULE-SET! -- exported
1424 ;;
1425 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1426 ;; to VALUE; if there is no such variable, an error is signaled.
1427 ;;
1428 (define (module-set! module name value)
1429 (let ((variable (module-variable module name)))
1430 (if variable
1431 (variable-set! variable value)
1432 (error "No variable named" name 'in module))))
1433
1434 ;; MODULE-DEFINE! -- exported
1435 ;;
1436 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1437 ;; variable, it is added first.
1438 ;;
1439 (define (module-define! module name value)
1440 (let ((variable (module-local-variable module name)))
1441 (if variable
1442 (begin
1443 (variable-set! variable value)
1444 (module-modified module))
1445 (let ((variable (make-variable value)))
1446 (module-add! module name variable)))))
1447
1448 ;; MODULE-DEFINED? -- exported
1449 ;;
1450 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1451 ;; uses)
1452 ;;
1453 (define (module-defined? module name)
1454 (let ((variable (module-variable module name)))
1455 (and variable (variable-bound? variable))))
1456
1457 ;; MODULE-USE! module interface
1458 ;;
1459 ;; Add INTERFACE to the list of interfaces used by MODULE.
1460 ;;
1461 (define (module-use! module interface)
1462 (set-module-uses! module
1463 (cons interface (delq! interface (module-uses module))))
1464 (module-modified module))
1465
1466 \f
1467 ;;; {Recursive Namespaces}
1468 ;;;
1469 ;;;
1470 ;;; A hierarchical namespace emerges if we consider some module to be
1471 ;;; root, and variables bound to modules as nested namespaces.
1472 ;;;
1473 ;;; The routines in this file manage variable names in hierarchical namespace.
1474 ;;; Each variable name is a list of elements, looked up in successively nested
1475 ;;; modules.
1476 ;;;
1477 ;;; (nested-ref some-root-module '(foo bar baz))
1478 ;;; => <value of a variable named baz in the module bound to bar in
1479 ;;; the module bound to foo in some-root-module>
1480 ;;;
1481 ;;;
1482 ;;; There are:
1483 ;;;
1484 ;;; ;; a-root is a module
1485 ;;; ;; name is a list of symbols
1486 ;;;
1487 ;;; nested-ref a-root name
1488 ;;; nested-set! a-root name val
1489 ;;; nested-define! a-root name val
1490 ;;; nested-remove! a-root name
1491 ;;;
1492 ;;;
1493 ;;; (current-module) is a natural choice for a-root so for convenience there are
1494 ;;; also:
1495 ;;;
1496 ;;; local-ref name == nested-ref (current-module) name
1497 ;;; local-set! name val == nested-set! (current-module) name val
1498 ;;; local-define! name val == nested-define! (current-module) name val
1499 ;;; local-remove! name == nested-remove! (current-module) name
1500 ;;;
1501
1502
1503 (define (nested-ref root names)
1504 (let loop ((cur root)
1505 (elts names))
1506 (cond
1507 ((null? elts) cur)
1508 ((not (module? cur)) #f)
1509 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1510
1511 (define (nested-set! root names val)
1512 (let loop ((cur root)
1513 (elts names))
1514 (if (null? (cdr elts))
1515 (module-set! cur (car elts) val)
1516 (loop (module-ref cur (car elts)) (cdr elts)))))
1517
1518 (define (nested-define! root names val)
1519 (let loop ((cur root)
1520 (elts names))
1521 (if (null? (cdr elts))
1522 (module-define! cur (car elts) val)
1523 (loop (module-ref cur (car elts)) (cdr elts)))))
1524
1525 (define (nested-remove! root names)
1526 (let loop ((cur root)
1527 (elts names))
1528 (if (null? (cdr elts))
1529 (module-remove! cur (car elts))
1530 (loop (module-ref cur (car elts)) (cdr elts)))))
1531
1532 (define (local-ref names) (nested-ref (current-module) names))
1533 (define (local-set! names val) (nested-set! (current-module) names val))
1534 (define (local-define names val) (nested-define! (current-module) names val))
1535 (define (local-remove names) (nested-remove! (current-module) names))
1536
1537
1538 \f
1539 ;;; {The (app) module}
1540 ;;;
1541 ;;; The root of conventionally named objects not directly in the top level.
1542 ;;;
1543 ;;; (app modules)
1544 ;;; (app modules guile)
1545 ;;;
1546 ;;; The directory of all modules and the standard root module.
1547 ;;;
1548
1549 (define (module-public-interface m)
1550 (module-ref m '%module-public-interface #f))
1551 (define (set-module-public-interface! m i)
1552 (module-define! m '%module-public-interface i))
1553 (define (set-system-module! m s)
1554 (set-procedure-property! (module-eval-closure m) 'system-module s))
1555 (define the-root-module (make-root-module))
1556 (define the-scm-module (make-scm-module))
1557 (set-module-public-interface! the-root-module the-scm-module)
1558 (set-module-name! the-root-module '(guile))
1559 (set-module-name! the-scm-module '(guile))
1560 (set-module-kind! the-scm-module 'interface)
1561 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1562
1563 ;; NOTE: This binding is used in libguile/modules.c.
1564 ;;
1565 (define (make-modules-in module name)
1566 (if (null? name)
1567 module
1568 (cond
1569 ((module-ref module (car name) #f)
1570 => (lambda (m) (make-modules-in m (cdr name))))
1571 (else (let ((m (make-module 31)))
1572 (set-module-kind! m 'directory)
1573 (set-module-name! m (append (or (module-name module)
1574 '())
1575 (list (car name))))
1576 (module-define! module (car name) m)
1577 (make-modules-in m (cdr name)))))))
1578
1579 (define (beautify-user-module! module)
1580 (let ((interface (module-public-interface module)))
1581 (if (or (not interface)
1582 (eq? interface module))
1583 (let ((interface (make-module 31)))
1584 (set-module-name! interface (module-name module))
1585 (set-module-kind! interface 'interface)
1586 (set-module-public-interface! module interface))))
1587 (if (and (not (memq the-scm-module (module-uses module)))
1588 (not (eq? module the-root-module)))
1589 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1590
1591 ;; NOTE: This binding is used in libguile/modules.c.
1592 ;;
1593 (define (resolve-module name . maybe-autoload)
1594 (let ((full-name (append '(app modules) name)))
1595 (let ((already (local-ref full-name)))
1596 (if already
1597 ;; The module already exists...
1598 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1599 (not (module-public-interface already)))
1600 ;; ...but we are told to load and it doesn't contain source, so
1601 (begin
1602 (try-load-module name)
1603 already)
1604 ;; simply return it.
1605 already)
1606 (begin
1607 ;; Try to autoload it if we are told so
1608 (if (or (null? maybe-autoload) (car maybe-autoload))
1609 (try-load-module name))
1610 ;; Get/create it.
1611 (make-modules-in (current-module) full-name))))))
1612
1613 ;; Cheat. These bindings are needed by modules.c, but we don't want
1614 ;; to move their real definition here because that would be unnatural.
1615 ;;
1616 (define try-module-autoload #f)
1617 (define process-define-module #f)
1618 (define process-use-modules #f)
1619 (define module-export! #f)
1620
1621 ;; This boots the module system. All bindings needed by modules.c
1622 ;; must have been defined by now.
1623 ;;
1624 (set-current-module the-root-module)
1625
1626 (define app (make-module 31))
1627 (local-define '(app modules) (make-module 31))
1628 (local-define '(app modules guile) the-root-module)
1629
1630 ;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1631
1632 (define (try-load-module name)
1633 (try-module-autoload name))
1634
1635 (define (purify-module! module)
1636 "Removes bindings in MODULE which are inherited from the (guile) module."
1637 (let ((use-list (module-uses module)))
1638 (if (and (pair? use-list)
1639 (eq? (car (last-pair use-list)) the-scm-module))
1640 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1641
1642 ;; Return a module that is an interface to the module designated by
1643 ;; NAME.
1644 ;;
1645 ;; `resolve-interface' takes two keyword arguments:
1646 ;;
1647 ;; #:select SELECTION
1648 ;;
1649 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1650 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1651 ;; is the name in the used module and SEEN is the name in the using
1652 ;; module. Note that SEEN is also passed through RENAMER, below. The
1653 ;; default is to select all bindings. If you specify no selection but
1654 ;; a renamer, only the bindings that already exist in the used module
1655 ;; are made available in the interface. Bindings that are added later
1656 ;; are not picked up.
1657 ;;
1658 ;; #:renamer RENAMER
1659 ;;
1660 ;; RENAMER is a procedure that takes a symbol and returns its new
1661 ;; name. The default is to not perform any renaming.
1662 ;;
1663 ;; Signal "no code for module" error if module name is not resolvable
1664 ;; or its public interface is not available. Signal "no binding"
1665 ;; error if selected binding does not exist in the used module.
1666 ;;
1667 (define (resolve-interface name . args)
1668
1669 (define (get-keyword-arg args kw def)
1670 (cond ((memq kw args)
1671 => (lambda (kw-arg)
1672 (if (null? (cdr kw-arg))
1673 (error "keyword without value: " kw))
1674 (cadr kw-arg)))
1675 (else
1676 def)))
1677
1678 (let* ((select (get-keyword-arg args #:select #f))
1679 (renamer (get-keyword-arg args #:renamer identity))
1680 (module (resolve-module name))
1681 (public-i (and module (module-public-interface module))))
1682 (and (or (not module) (not public-i))
1683 (error "no code for module" name))
1684 (if (and (not select) (eq? renamer identity))
1685 public-i
1686 (let ((selection (or select (module-map (lambda (sym var) sym)
1687 public-i)))
1688 (custom-i (make-module 31)))
1689 (set-module-kind! custom-i 'interface)
1690 ;; XXX - should use a lazy binder so that changes to the
1691 ;; used module are picked up automatically.
1692 (for-each (lambda (bspec)
1693 (let* ((direct? (symbol? bspec))
1694 (orig (if direct? bspec (car bspec)))
1695 (seen (if direct? bspec (cdr bspec))))
1696 (module-add! custom-i (renamer seen)
1697 (or (module-local-variable public-i orig)
1698 (module-local-variable module orig)
1699 (error
1700 ;; fixme: format manually for now
1701 (simple-format
1702 #f "no binding `~A' in module ~A"
1703 orig name))))))
1704 selection)
1705 custom-i))))
1706
1707 (define (symbol-prefix-proc prefix)
1708 (lambda (symbol)
1709 (symbol-append prefix symbol)))
1710
1711 ;; This function is called from "modules.c". If you change it, be
1712 ;; sure to update "modules.c" as well.
1713
1714 (define (process-define-module args)
1715 (let* ((module-id (car args))
1716 (module (resolve-module module-id #f))
1717 (kws (cdr args))
1718 (unrecognized (lambda (arg)
1719 (error "unrecognized define-module argument" arg))))
1720 (beautify-user-module! module)
1721 (let loop ((kws kws)
1722 (reversed-interfaces '())
1723 (exports '())
1724 (re-exports '()))
1725 (if (null? kws)
1726 (begin
1727 (for-each (lambda (interface)
1728 (module-use! module interface))
1729 (reverse reversed-interfaces))
1730 (module-export! module exports)
1731 (module-re-export! module re-exports))
1732 (case (car kws)
1733 ((#:use-module #:use-syntax)
1734 (or (pair? (cdr kws))
1735 (unrecognized kws))
1736 (let* ((interface-args (cadr kws))
1737 (interface (apply resolve-interface interface-args)))
1738 (and (eq? (car kws) #:use-syntax)
1739 (or (symbol? (caar interface-args))
1740 (error "invalid module name for use-syntax"
1741 (car interface-args)))
1742 (set-module-transformer!
1743 module
1744 (module-ref interface
1745 (car (last-pair (car interface-args)))
1746 #f)))
1747 (loop (cddr kws)
1748 (cons interface reversed-interfaces)
1749 exports
1750 re-exports)))
1751 ((#:autoload)
1752 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
1753 (unrecognized kws))
1754 (loop (cdddr kws)
1755 (cons (make-autoload-interface module
1756 (cadr kws)
1757 (caddr kws))
1758 reversed-interfaces)
1759 exports
1760 re-exports))
1761 ((#:no-backtrace)
1762 (set-system-module! module #t)
1763 (loop (cdr kws) reversed-interfaces exports re-exports))
1764 ((#:pure)
1765 (purify-module! module)
1766 (loop (cdr kws) reversed-interfaces exports re-exports))
1767 ((#:export #:export-syntax)
1768 (or (pair? (cdr kws))
1769 (unrecognized kws))
1770 (loop (cddr kws)
1771 reversed-interfaces
1772 (append (cadr kws) exports)
1773 re-exports))
1774 ((#:re-export #:re-export-syntax)
1775 (or (pair? (cdr kws))
1776 (unrecognized kws))
1777 (loop (cddr kws)
1778 reversed-interfaces
1779 exports
1780 (append (cadr kws) re-exports)))
1781 (else
1782 (unrecognized kws)))))
1783 module))
1784
1785 ;;; {Autoload}
1786
1787 (define (make-autoload-interface module name bindings)
1788 (let ((b (lambda (a sym definep)
1789 (and (memq sym bindings)
1790 (let ((i (module-public-interface (resolve-module name))))
1791 (if (not i)
1792 (error "missing interface for module" name))
1793 ;; Replace autoload-interface with interface
1794 (set-car! (memq a (module-uses module)) i)
1795 (module-local-variable i sym))))))
1796 (module-constructor #() '() b #f #f name 'autoload
1797 '() (make-weak-value-hash-table 31) 0)))
1798
1799 ;;; {Compiled module}
1800
1801 (define load-compiled #f)
1802
1803 \f
1804 ;;; {Autoloading modules}
1805
1806 (define autoloads-in-progress '())
1807
1808 ;; This function is called from "modules.c". If you change it, be
1809 ;; sure to update "modules.c" as well.
1810
1811 (define (try-module-autoload module-name)
1812 (let* ((reverse-name (reverse module-name))
1813 (name (symbol->string (car reverse-name)))
1814 (dir-hint-module-name (reverse (cdr reverse-name)))
1815 (dir-hint (apply string-append
1816 (map (lambda (elt)
1817 (string-append (symbol->string elt) "/"))
1818 dir-hint-module-name))))
1819 (resolve-module dir-hint-module-name #f)
1820 (and (not (autoload-done-or-in-progress? dir-hint name))
1821 (let ((didit #f))
1822 (define (load-file proc file)
1823 (save-module-excursion (lambda () (proc file)))
1824 (set! didit #t))
1825 (dynamic-wind
1826 (lambda () (autoload-in-progress! dir-hint name))
1827 (lambda ()
1828 (let ((file (in-vicinity dir-hint name)))
1829 (cond ((and load-compiled
1830 (%search-load-path (string-append file ".go")))
1831 => (lambda (full)
1832 (load-file load-compiled full)))
1833 ((%search-load-path file)
1834 => (lambda (full)
1835 (load-file primitive-load full))))))
1836 (lambda () (set-autoloaded! dir-hint name didit)))
1837 didit))))
1838
1839 \f
1840 ;;; Dynamic linking of modules
1841
1842 (define autoloads-done '((guile . guile)))
1843
1844 (define (autoload-done-or-in-progress? p m)
1845 (let ((n (cons p m)))
1846 (->bool (or (member n autoloads-done)
1847 (member n autoloads-in-progress)))))
1848
1849 (define (autoload-done! p m)
1850 (let ((n (cons p m)))
1851 (set! autoloads-in-progress
1852 (delete! n autoloads-in-progress))
1853 (or (member n autoloads-done)
1854 (set! autoloads-done (cons n autoloads-done)))))
1855
1856 (define (autoload-in-progress! p m)
1857 (let ((n (cons p m)))
1858 (set! autoloads-done
1859 (delete! n autoloads-done))
1860 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1861
1862 (define (set-autoloaded! p m done?)
1863 (if done?
1864 (autoload-done! p m)
1865 (let ((n (cons p m)))
1866 (set! autoloads-done (delete! n autoloads-done))
1867 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1868
1869
1870
1871 \f
1872 ;; {EVAL-CASE}
1873 ;;
1874 ;; (eval-case ((situation*) forms)* (else forms)?)
1875 ;;
1876 ;; Evaluate certain code based on the situation that eval-case is used
1877 ;; in. The only defined situation right now is `load-toplevel' which
1878 ;; triggers for code evaluated at the top-level, for example from the
1879 ;; REPL or when loading a file.
1880
1881 (define eval-case
1882 (procedure->memoizing-macro
1883 (lambda (exp env)
1884 (define (toplevel-env? env)
1885 (or (not (pair? env)) (not (pair? (car env)))))
1886 (define (syntax)
1887 (error "syntax error in eval-case"))
1888 (let loop ((clauses (cdr exp)))
1889 (cond
1890 ((null? clauses)
1891 #f)
1892 ((not (list? (car clauses)))
1893 (syntax))
1894 ((eq? 'else (caar clauses))
1895 (or (null? (cdr clauses))
1896 (syntax))
1897 (cons 'begin (cdar clauses)))
1898 ((not (list? (caar clauses)))
1899 (syntax))
1900 ((and (toplevel-env? env)
1901 (memq 'load-toplevel (caar clauses)))
1902 (cons 'begin (cdar clauses)))
1903 (else
1904 (loop (cdr clauses))))))))
1905
1906 \f
1907 ;;; {Macros}
1908 ;;;
1909
1910 (define (primitive-macro? m)
1911 (and (macro? m)
1912 (not (macro-transformer m))))
1913
1914 ;;; {Defmacros}
1915 ;;;
1916 (define macro-table (make-weak-key-hash-table 523))
1917 (define xformer-table (make-weak-key-hash-table 523))
1918
1919 (define (defmacro? m) (hashq-ref macro-table m))
1920 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
1921 (define (defmacro-transformer m) (hashq-ref xformer-table m))
1922 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
1923
1924 (define defmacro:transformer
1925 (lambda (f)
1926 (let* ((xform (lambda (exp env)
1927 (copy-tree (apply f (cdr exp)))))
1928 (a (procedure->memoizing-macro xform)))
1929 (assert-defmacro?! a)
1930 (set-defmacro-transformer! a f)
1931 a)))
1932
1933
1934 (define defmacro
1935 (let ((defmacro-transformer
1936 (lambda (name parms . body)
1937 (let ((transformer `(lambda ,parms ,@body)))
1938 `(eval-case
1939 ((load-toplevel)
1940 (define ,name (defmacro:transformer ,transformer)))
1941 (else
1942 (error "defmacro can only be used at the top level")))))))
1943 (defmacro:transformer defmacro-transformer)))
1944
1945 (define defmacro:syntax-transformer
1946 (lambda (f)
1947 (procedure->syntax
1948 (lambda (exp env)
1949 (copy-tree (apply f (cdr exp)))))))
1950
1951
1952 ;; XXX - should the definition of the car really be looked up in the
1953 ;; current module?
1954
1955 (define (macroexpand-1 e)
1956 (cond
1957 ((pair? e) (let* ((a (car e))
1958 (val (and (symbol? a) (local-ref (list a)))))
1959 (if (defmacro? val)
1960 (apply (defmacro-transformer val) (cdr e))
1961 e)))
1962 (#t e)))
1963
1964 (define (macroexpand e)
1965 (cond
1966 ((pair? e) (let* ((a (car e))
1967 (val (and (symbol? a) (local-ref (list a)))))
1968 (if (defmacro? val)
1969 (macroexpand (apply (defmacro-transformer val) (cdr e)))
1970 e)))
1971 (#t e)))
1972
1973 (provide 'defmacro)
1974
1975 \f
1976
1977 ;;; {Run-time options}
1978
1979 (define define-option-interface
1980 (let* ((option-name car)
1981 (option-value cadr)
1982 (option-documentation caddr)
1983
1984 (print-option (lambda (option)
1985 (display (option-name option))
1986 (if (< (string-length
1987 (symbol->string (option-name option)))
1988 8)
1989 (display #\tab))
1990 (display #\tab)
1991 (display (option-value option))
1992 (display #\tab)
1993 (display (option-documentation option))
1994 (newline)))
1995
1996 ;; Below follow the macros defining the run-time option interfaces.
1997
1998 (make-options (lambda (interface)
1999 `(lambda args
2000 (cond ((null? args) (,interface))
2001 ((list? (car args))
2002 (,interface (car args)) (,interface))
2003 (else (for-each ,print-option
2004 (,interface #t)))))))
2005
2006 (make-enable (lambda (interface)
2007 `(lambda flags
2008 (,interface (append flags (,interface)))
2009 (,interface))))
2010
2011 (make-disable (lambda (interface)
2012 `(lambda flags
2013 (let ((options (,interface)))
2014 (for-each (lambda (flag)
2015 (set! options (delq! flag options)))
2016 flags)
2017 (,interface options)
2018 (,interface)))))
2019
2020 (make-set! (lambda (interface)
2021 `((name exp)
2022 (,'quasiquote
2023 (begin (,interface (append (,interface)
2024 (list '(,'unquote name)
2025 (,'unquote exp))))
2026 (,interface)))))))
2027 (procedure->macro
2028 (lambda (exp env)
2029 (cons 'begin
2030 (let* ((option-group (cadr exp))
2031 (interface (car option-group)))
2032 (append (map (lambda (name constructor)
2033 `(define ,name
2034 ,(constructor interface)))
2035 (cadr option-group)
2036 (list make-options
2037 make-enable
2038 make-disable))
2039 (map (lambda (name constructor)
2040 `(defmacro ,name
2041 ,@(constructor interface)))
2042 (caddr option-group)
2043 (list make-set!)))))))))
2044
2045 (define-option-interface
2046 (eval-options-interface
2047 (eval-options eval-enable eval-disable)
2048 (eval-set!)))
2049
2050 (define-option-interface
2051 (debug-options-interface
2052 (debug-options debug-enable debug-disable)
2053 (debug-set!)))
2054
2055 (define-option-interface
2056 (evaluator-traps-interface
2057 (traps trap-enable trap-disable)
2058 (trap-set!)))
2059
2060 (define-option-interface
2061 (read-options-interface
2062 (read-options read-enable read-disable)
2063 (read-set!)))
2064
2065 (define-option-interface
2066 (print-options-interface
2067 (print-options print-enable print-disable)
2068 (print-set!)))
2069
2070 \f
2071
2072 ;;; {Running Repls}
2073 ;;;
2074
2075 (define (repl read evaler print)
2076 (let loop ((source (read (current-input-port))))
2077 (print (evaler source))
2078 (loop (read (current-input-port)))))
2079
2080 ;; A provisional repl that acts like the SCM repl:
2081 ;;
2082 (define scm-repl-silent #f)
2083 (define (assert-repl-silence v) (set! scm-repl-silent v))
2084
2085 (define *unspecified* (if #f #f))
2086 (define (unspecified? v) (eq? v *unspecified*))
2087
2088 (define scm-repl-print-unspecified #f)
2089 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2090
2091 (define scm-repl-verbose #f)
2092 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2093
2094 (define scm-repl-prompt "guile> ")
2095
2096 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2097
2098 (define (default-lazy-handler key . args)
2099 (save-stack lazy-handler-dispatch)
2100 (apply throw key args))
2101
2102 (define (lazy-handler-dispatch key . args)
2103 (apply default-lazy-handler key args))
2104
2105 (define abort-hook (make-hook))
2106
2107 ;; these definitions are used if running a script.
2108 ;; otherwise redefined in error-catching-loop.
2109 (define (set-batch-mode?! arg) #t)
2110 (define (batch-mode?) #t)
2111
2112 (define (error-catching-loop thunk)
2113 (let ((status #f)
2114 (interactive #t))
2115 (define (loop first)
2116 (let ((next
2117 (catch #t
2118
2119 (lambda ()
2120 (lazy-catch #t
2121 (lambda ()
2122 (dynamic-wind
2123 (lambda () (unmask-signals))
2124 (lambda ()
2125 (with-traps
2126 (lambda ()
2127 (first)
2128
2129 ;; This line is needed because mark
2130 ;; doesn't do closures quite right.
2131 ;; Unreferenced locals should be
2132 ;; collected.
2133 ;;
2134 (set! first #f)
2135 (let loop ((v (thunk)))
2136 (loop (thunk)))
2137 #f)))
2138 (lambda () (mask-signals))))
2139
2140 lazy-handler-dispatch))
2141
2142 (lambda (key . args)
2143 (case key
2144 ((quit)
2145 (set! status args)
2146 #f)
2147
2148 ((switch-repl)
2149 (apply throw 'switch-repl args))
2150
2151 ((abort)
2152 ;; This is one of the closures that require
2153 ;; (set! first #f) above
2154 ;;
2155 (lambda ()
2156 (run-hook abort-hook)
2157 (force-output (current-output-port))
2158 (display "ABORT: " (current-error-port))
2159 (write args (current-error-port))
2160 (newline (current-error-port))
2161 (if interactive
2162 (begin
2163 (if (and
2164 (not has-shown-debugger-hint?)
2165 (not (memq 'backtrace
2166 (debug-options-interface)))
2167 (stack? (fluid-ref the-last-stack)))
2168 (begin
2169 (newline (current-error-port))
2170 (display
2171 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2172 (current-error-port))
2173 (set! has-shown-debugger-hint? #t)))
2174 (force-output (current-error-port)))
2175 (begin
2176 (primitive-exit 1)))
2177 (set! stack-saved? #f)))
2178
2179 (else
2180 ;; This is the other cons-leak closure...
2181 (lambda ()
2182 (cond ((= (length args) 4)
2183 (apply handle-system-error key args))
2184 (else
2185 (apply bad-throw key args))))))))))
2186 (if next (loop next) status)))
2187 (set! set-batch-mode?! (lambda (arg)
2188 (cond (arg
2189 (set! interactive #f)
2190 (restore-signals))
2191 (#t
2192 (error "sorry, not implemented")))))
2193 (set! batch-mode? (lambda () (not interactive)))
2194 (loop (lambda () #t))))
2195
2196 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2197 (define before-signal-stack (make-fluid))
2198 (define stack-saved? #f)
2199
2200 (define (save-stack . narrowing)
2201 (or stack-saved?
2202 (cond ((not (memq 'debug (debug-options-interface)))
2203 (fluid-set! the-last-stack #f)
2204 (set! stack-saved? #t))
2205 (else
2206 (fluid-set!
2207 the-last-stack
2208 (case (stack-id #t)
2209 ((repl-stack)
2210 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2211 ((load-stack)
2212 (apply make-stack #t save-stack 0 #t 0 narrowing))
2213 ((tk-stack)
2214 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2215 ((#t)
2216 (apply make-stack #t save-stack 0 1 narrowing))
2217 (else
2218 (let ((id (stack-id #t)))
2219 (and (procedure? id)
2220 (apply make-stack #t save-stack id #t 0 narrowing))))))
2221 (set! stack-saved? #t)))))
2222
2223 (define before-error-hook (make-hook))
2224 (define after-error-hook (make-hook))
2225 (define before-backtrace-hook (make-hook))
2226 (define after-backtrace-hook (make-hook))
2227
2228 (define has-shown-debugger-hint? #f)
2229
2230 (define (handle-system-error key . args)
2231 (let ((cep (current-error-port)))
2232 (cond ((not (stack? (fluid-ref the-last-stack))))
2233 ((memq 'backtrace (debug-options-interface))
2234 (run-hook before-backtrace-hook)
2235 (newline cep)
2236 (display "Backtrace:\n")
2237 (display-backtrace (fluid-ref the-last-stack) cep)
2238 (newline cep)
2239 (run-hook after-backtrace-hook)))
2240 (run-hook before-error-hook)
2241 (apply display-error (fluid-ref the-last-stack) cep args)
2242 (run-hook after-error-hook)
2243 (force-output cep)
2244 (throw 'abort key)))
2245
2246 (define (quit . args)
2247 (apply throw 'quit args))
2248
2249 (define exit quit)
2250
2251 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2252
2253 ;; Replaced by C code:
2254 ;;(define (backtrace)
2255 ;; (if (fluid-ref the-last-stack)
2256 ;; (begin
2257 ;; (newline)
2258 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2259 ;; (newline)
2260 ;; (if (and (not has-shown-backtrace-hint?)
2261 ;; (not (memq 'backtrace (debug-options-interface))))
2262 ;; (begin
2263 ;; (display
2264 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2265 ;;automatically if an error occurs in the future.\n")
2266 ;; (set! has-shown-backtrace-hint? #t))))
2267 ;; (display "No backtrace available.\n")))
2268
2269 (define (error-catching-repl r e p)
2270 (error-catching-loop
2271 (lambda ()
2272 (call-with-values (lambda () (e (r)))
2273 (lambda the-values (for-each p the-values))))))
2274
2275 (define (gc-run-time)
2276 (cdr (assq 'gc-time-taken (gc-stats))))
2277
2278 (define before-read-hook (make-hook))
2279 (define after-read-hook (make-hook))
2280 (define before-eval-hook (make-hook 1))
2281 (define after-eval-hook (make-hook 1))
2282 (define before-print-hook (make-hook 1))
2283 (define after-print-hook (make-hook 1))
2284
2285 ;;; The default repl-reader function. We may override this if we've
2286 ;;; the readline library.
2287 (define repl-reader
2288 (lambda (prompt)
2289 (display prompt)
2290 (force-output)
2291 (run-hook before-read-hook)
2292 (read (current-input-port))))
2293
2294 (define (scm-style-repl)
2295
2296 (letrec (
2297 (start-gc-rt #f)
2298 (start-rt #f)
2299 (repl-report-start-timing (lambda ()
2300 (set! start-gc-rt (gc-run-time))
2301 (set! start-rt (get-internal-run-time))))
2302 (repl-report (lambda ()
2303 (display ";;; ")
2304 (display (inexact->exact
2305 (* 1000 (/ (- (get-internal-run-time) start-rt)
2306 internal-time-units-per-second))))
2307 (display " msec (")
2308 (display (inexact->exact
2309 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2310 internal-time-units-per-second))))
2311 (display " msec in gc)\n")))
2312
2313 (consume-trailing-whitespace
2314 (lambda ()
2315 (let ((ch (peek-char)))
2316 (cond
2317 ((eof-object? ch))
2318 ((or (char=? ch #\space) (char=? ch #\tab))
2319 (read-char)
2320 (consume-trailing-whitespace))
2321 ((char=? ch #\newline)
2322 (read-char))))))
2323 (-read (lambda ()
2324 (let ((val
2325 (let ((prompt (cond ((string? scm-repl-prompt)
2326 scm-repl-prompt)
2327 ((thunk? scm-repl-prompt)
2328 (scm-repl-prompt))
2329 (scm-repl-prompt "> ")
2330 (else ""))))
2331 (repl-reader prompt))))
2332
2333 ;; As described in R4RS, the READ procedure updates the
2334 ;; port to point to the first character past the end of
2335 ;; the external representation of the object. This
2336 ;; means that it doesn't consume the newline typically
2337 ;; found after an expression. This means that, when
2338 ;; debugging Guile with GDB, GDB gets the newline, which
2339 ;; it often interprets as a "continue" command, making
2340 ;; breakpoints kind of useless. So, consume any
2341 ;; trailing newline here, as well as any whitespace
2342 ;; before it.
2343 ;; But not if EOF, for control-D.
2344 (if (not (eof-object? val))
2345 (consume-trailing-whitespace))
2346 (run-hook after-read-hook)
2347 (if (eof-object? val)
2348 (begin
2349 (repl-report-start-timing)
2350 (if scm-repl-verbose
2351 (begin
2352 (newline)
2353 (display ";;; EOF -- quitting")
2354 (newline)))
2355 (quit 0)))
2356 val)))
2357
2358 (-eval (lambda (sourc)
2359 (repl-report-start-timing)
2360 (run-hook before-eval-hook sourc)
2361 (let ((val (start-stack 'repl-stack
2362 ;; If you change this procedure
2363 ;; (primitive-eval), please also
2364 ;; modify the repl-stack case in
2365 ;; save-stack so that stack cutting
2366 ;; continues to work.
2367 (primitive-eval sourc))))
2368 (run-hook after-eval-hook sourc)
2369 val)))
2370
2371
2372 (-print (let ((maybe-print (lambda (result)
2373 (if (or scm-repl-print-unspecified
2374 (not (unspecified? result)))
2375 (begin
2376 (write result)
2377 (newline))))))
2378 (lambda (result)
2379 (if (not scm-repl-silent)
2380 (begin
2381 (run-hook before-print-hook result)
2382 (maybe-print result)
2383 (run-hook after-print-hook result)
2384 (if scm-repl-verbose
2385 (repl-report))
2386 (force-output))))))
2387
2388 (-quit (lambda (args)
2389 (if scm-repl-verbose
2390 (begin
2391 (display ";;; QUIT executed, repl exitting")
2392 (newline)
2393 (repl-report)))
2394 args))
2395
2396 (-abort (lambda ()
2397 (if scm-repl-verbose
2398 (begin
2399 (display ";;; ABORT executed.")
2400 (newline)
2401 (repl-report)))
2402 (repl -read -eval -print))))
2403
2404 (let ((status (error-catching-repl -read
2405 -eval
2406 -print)))
2407 (-quit status))))
2408
2409
2410 \f
2411 ;;; {IOTA functions: generating lists of numbers}
2412
2413 (define (iota n)
2414 (let loop ((count (1- n)) (result '()))
2415 (if (< count 0) result
2416 (loop (1- count) (cons count result)))))
2417
2418 \f
2419 ;;; {While}
2420 ;;;
2421 ;;; with `continue' and `break'.
2422 ;;;
2423
2424 (defmacro while (cond . body)
2425 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2426 (break (lambda val (apply throw 'break val))))
2427 (catch 'break
2428 (lambda () (continue))
2429 (lambda v (cadr v)))))
2430
2431 ;;; {collect}
2432 ;;;
2433 ;;; Similar to `begin' but returns a list of the results of all constituent
2434 ;;; forms instead of the result of the last form.
2435 ;;; (The definition relies on the current left-to-right
2436 ;;; order of evaluation of operands in applications.)
2437
2438 (defmacro collect forms
2439 (cons 'list forms))
2440
2441 ;;; {with-fluids}
2442
2443 ;; with-fluids is a convenience wrapper for the builtin procedure
2444 ;; `with-fluids*'. The syntax is just like `let':
2445 ;;
2446 ;; (with-fluids ((fluid val)
2447 ;; ...)
2448 ;; body)
2449
2450 (defmacro with-fluids (bindings . body)
2451 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2452 (lambda () ,@body)))
2453
2454 \f
2455
2456 ;;; {Macros}
2457 ;;;
2458
2459 ;; actually....hobbit might be able to hack these with a little
2460 ;; coaxing
2461 ;;
2462
2463 (defmacro define-macro (first . rest)
2464 (let ((name (if (symbol? first) first (car first)))
2465 (transformer
2466 (if (symbol? first)
2467 (car rest)
2468 `(lambda ,(cdr first) ,@rest))))
2469 `(eval-case
2470 ((load-toplevel)
2471 (define ,name (defmacro:transformer ,transformer)))
2472 (else
2473 (error "define-macro can only be used at the top level")))))
2474
2475
2476 (defmacro define-syntax-macro (first . rest)
2477 (let ((name (if (symbol? first) first (car first)))
2478 (transformer
2479 (if (symbol? first)
2480 (car rest)
2481 `(lambda ,(cdr first) ,@rest))))
2482 `(eval-case
2483 ((load-toplevel)
2484 (define ,name (defmacro:syntax-transformer ,transformer)))
2485 (else
2486 (error "define-syntax-macro can only be used at the top level")))))
2487
2488 \f
2489 ;;; {Module System Macros}
2490 ;;;
2491
2492 ;; Return a list of expressions that evaluate to the appropriate
2493 ;; arguments for resolve-interface according to SPEC.
2494
2495 (define (compile-interface-spec spec)
2496 (define (make-keyarg sym key quote?)
2497 (cond ((or (memq sym spec)
2498 (memq key spec))
2499 => (lambda (rest)
2500 (if quote?
2501 (list key (list 'quote (cadr rest)))
2502 (list key (cadr rest)))))
2503 (else
2504 '())))
2505 (define (map-apply func list)
2506 (map (lambda (args) (apply func args)) list))
2507 (define keys
2508 ;; sym key quote?
2509 '((:select #:select #t)
2510 (:renamer #:renamer #f)))
2511 (if (not (pair? (car spec)))
2512 `(',spec)
2513 `(',(car spec)
2514 ,@(apply append (map-apply make-keyarg keys)))))
2515
2516 (define (keyword-like-symbol->keyword sym)
2517 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2518
2519 (define (compile-define-module-args args)
2520 ;; Just quote everything except #:use-module and #:use-syntax. We
2521 ;; need to know about all arguments regardless since we want to turn
2522 ;; symbols that look like keywords into real keywords, and the
2523 ;; keyword args in a define-module form are not regular
2524 ;; (i.e. no-backtrace doesn't take a value).
2525 (let loop ((compiled-args `((quote ,(car args))))
2526 (args (cdr args)))
2527 (cond ((null? args)
2528 (reverse! compiled-args))
2529 ;; symbol in keyword position
2530 ((symbol? (car args))
2531 (loop compiled-args
2532 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2533 ((memq (car args) '(#:no-backtrace #:pure))
2534 (loop (cons (car args) compiled-args)
2535 (cdr args)))
2536 ((null? (cdr args))
2537 (error "keyword without value:" (car args)))
2538 ((memq (car args) '(#:use-module #:use-syntax))
2539 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2540 (car args)
2541 compiled-args)
2542 (cddr args)))
2543 ((eq? (car args) #:autoload)
2544 (loop (cons* `(quote ,(caddr args))
2545 `(quote ,(cadr args))
2546 (car args)
2547 compiled-args)
2548 (cdddr args)))
2549 (else
2550 (loop (cons* `(quote ,(cadr args))
2551 (car args)
2552 compiled-args)
2553 (cddr args))))))
2554
2555 (defmacro define-module args
2556 `(eval-case
2557 ((load-toplevel)
2558 (let ((m (process-define-module
2559 (list ,@(compile-define-module-args args)))))
2560 (set-current-module m)
2561 m))
2562 (else
2563 (error "define-module can only be used at the top level"))))
2564
2565 ;; The guts of the use-modules macro. Add the interfaces of the named
2566 ;; modules to the use-list of the current module, in order.
2567
2568 ;; This function is called by "modules.c". If you change it, be sure
2569 ;; to change scm_c_use_module as well.
2570
2571 (define (process-use-modules module-interface-args)
2572 (for-each (lambda (mif-args)
2573 (let ((mod-iface (apply resolve-interface mif-args)))
2574 (or mod-iface
2575 (error "no such module" mif-args))
2576 (module-use! (current-module) mod-iface)))
2577 module-interface-args))
2578
2579 (defmacro use-modules modules
2580 `(eval-case
2581 ((load-toplevel)
2582 (process-use-modules
2583 (list ,@(map (lambda (m)
2584 `(list ,@(compile-interface-spec m)))
2585 modules))))
2586 (else
2587 (error "use-modules can only be used at the top level"))))
2588
2589 (defmacro use-syntax (spec)
2590 `(eval-case
2591 ((load-toplevel)
2592 ,@(if (pair? spec)
2593 `((process-use-modules (list
2594 (list ,@(compile-interface-spec spec))))
2595 (set-module-transformer! (current-module)
2596 ,(car (last-pair spec))))
2597 `((set-module-transformer! (current-module) ,spec))))
2598 (else
2599 (error "use-syntax can only be used at the top level"))))
2600
2601 (define define-private define)
2602
2603 (defmacro define-public args
2604 (define (syntax)
2605 (error "bad syntax" (list 'define-public args)))
2606 (define (defined-name n)
2607 (cond
2608 ((symbol? n) n)
2609 ((pair? n) (defined-name (car n)))
2610 (else (syntax))))
2611 (cond
2612 ((null? args)
2613 (syntax))
2614 (#t
2615 (let ((name (defined-name (car args))))
2616 `(begin
2617 (define-private ,@args)
2618 (eval-case ((load-toplevel) (export ,name))))))))
2619
2620 (defmacro defmacro-public args
2621 (define (syntax)
2622 (error "bad syntax" (list 'defmacro-public args)))
2623 (define (defined-name n)
2624 (cond
2625 ((symbol? n) n)
2626 (else (syntax))))
2627 (cond
2628 ((null? args)
2629 (syntax))
2630 (#t
2631 (let ((name (defined-name (car args))))
2632 `(begin
2633 (eval-case ((load-toplevel) (export ,name)))
2634 (defmacro ,@args))))))
2635
2636 ;; Export a local variable
2637
2638 ;; This function is called from "modules.c". If you change it, be
2639 ;; sure to update "modules.c" as well.
2640
2641 (define (module-export! m names)
2642 (let ((public-i (module-public-interface m)))
2643 (for-each (lambda (name)
2644 (let ((var (module-ensure-local-variable! m name)))
2645 (module-add! public-i name var)))
2646 names)))
2647
2648 ;; Re-export a imported variable
2649 ;;
2650 (define (module-re-export! m names)
2651 (let ((public-i (module-public-interface m)))
2652 (for-each (lambda (name)
2653 (let ((var (module-variable m name)))
2654 (cond ((not var)
2655 (error "Undefined variable:" name))
2656 ((eq? var (module-local-variable m name))
2657 (error "re-exporting local variable:" name))
2658 (else
2659 (module-add! public-i name var)))))
2660 names)))
2661
2662 (defmacro export names
2663 `(eval-case
2664 ((load-toplevel)
2665 (module-export! (current-module) ',names))
2666 (else
2667 (error "export can only be used at the top level"))))
2668
2669 (defmacro re-export names
2670 `(eval-case
2671 ((load-toplevel)
2672 (module-re-export! (current-module) ',names))
2673 (else
2674 (error "re-export can only be used at the top level"))))
2675
2676 (define export-syntax export)
2677 (define re-export-syntax re-export)
2678
2679
2680 (define load load-module)
2681
2682 \f
2683
2684 ;;; {`cond-expand' for SRFI-0 support.}
2685 ;;;
2686 ;;; This syntactic form expands into different commands or
2687 ;;; definitions, depending on the features provided by the Scheme
2688 ;;; implementation.
2689 ;;;
2690 ;;; Syntax:
2691 ;;;
2692 ;;; <cond-expand>
2693 ;;; --> (cond-expand <cond-expand-clause>+)
2694 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
2695 ;;; <cond-expand-clause>
2696 ;;; --> (<feature-requirement> <command-or-definition>*)
2697 ;;; <feature-requirement>
2698 ;;; --> <feature-identifier>
2699 ;;; | (and <feature-requirement>*)
2700 ;;; | (or <feature-requirement>*)
2701 ;;; | (not <feature-requirement>)
2702 ;;; <feature-identifier>
2703 ;;; --> <a symbol which is the name or alias of a SRFI>
2704 ;;;
2705 ;;; Additionally, this implementation provides the
2706 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
2707 ;;; determine the implementation type and the supported standard.
2708 ;;;
2709 ;;; Currently, the following feature identifiers are supported:
2710 ;;;
2711 ;;; guile r5rs srfi-0
2712 ;;;
2713 ;;; Remember to update the features list when adding more SRFIs.
2714
2715 (define %cond-expand-features
2716 ;; Adjust the above comment when changing this.
2717 '(guile r5rs srfi-0))
2718
2719 ;; This table maps module public interfaces to the list of features.
2720 ;;
2721 (define %cond-expand-table (make-hash-table 31))
2722
2723 ;; Add one or more features to the `cond-expand' feature list of the
2724 ;; module `module'.
2725 ;;
2726 (define (cond-expand-provide module features)
2727 (let ((mod (module-public-interface module)))
2728 (and mod
2729 (hashq-set! %cond-expand-table mod
2730 (append (hashq-ref %cond-expand-table mod '())
2731 features)))))
2732
2733 (define cond-expand
2734 (procedure->memoizing-macro
2735 (lambda (exp env)
2736 (let ((clauses (cdr exp))
2737 (syntax-error (lambda (cl)
2738 (error "invalid clause in `cond-expand'" cl))))
2739 (letrec
2740 ((test-clause
2741 (lambda (clause)
2742 (cond
2743 ((symbol? clause)
2744 (or (memq clause %cond-expand-features)
2745 (let lp ((uses (module-uses (env-module env))))
2746 (if (pair? uses)
2747 (or (memq clause
2748 (hashq-ref %cond-expand-table
2749 (car uses) '()))
2750 (lp (cdr uses)))
2751 #f))))
2752 ((pair? clause)
2753 (cond
2754 ((eq? 'and (car clause))
2755 (let lp ((l (cdr clause)))
2756 (cond ((null? l)
2757 #t)
2758 ((pair? l)
2759 (and (test-clause (car l)) (lp (cdr l))))
2760 (else
2761 (syntax-error clause)))))
2762 ((eq? 'or (car clause))
2763 (let lp ((l (cdr clause)))
2764 (cond ((null? l)
2765 #f)
2766 ((pair? l)
2767 (or (test-clause (car l)) (lp (cdr l))))
2768 (else
2769 (syntax-error clause)))))
2770 ((eq? 'not (car clause))
2771 (cond ((not (pair? (cdr clause)))
2772 (syntax-error clause))
2773 ((pair? (cddr clause))
2774 ((syntax-error clause))))
2775 (not (test-clause (cadr clause))))
2776 (else
2777 (syntax-error clause))))
2778 (else
2779 (syntax-error clause))))))
2780 (let lp ((c clauses))
2781 (cond
2782 ((null? c)
2783 (error "Unfulfilled `cond-expand'"))
2784 ((not (pair? c))
2785 (syntax-error c))
2786 ((not (pair? (car c)))
2787 (syntax-error (car c)))
2788 ((test-clause (caar c))
2789 `(begin ,@(cdar c)))
2790 ((eq? (caar c) 'else)
2791 (if (pair? (cdr c))
2792 (syntax-error c))
2793 `(begin ,@(cdar c)))
2794 (else
2795 (lp (cdr c))))))))))
2796
2797 ;; This procedure gets called from the startup code with a list of
2798 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
2799 ;;
2800 (define (use-srfis srfis)
2801 (let lp ((s srfis))
2802 (if (pair? s)
2803 (let* ((srfi (string->symbol
2804 (string-append "srfi-" (number->string (car s)))))
2805 (mod-i (resolve-interface (list 'srfi srfi))))
2806 (module-use! (current-module) mod-i)
2807 (lp (cdr s))))))
2808
2809 \f
2810
2811 ;;; {Load emacs interface support if emacs option is given.}
2812
2813 (define (named-module-use! user usee)
2814 (module-use! (resolve-module user) (resolve-interface usee)))
2815
2816 (define (load-emacs-interface)
2817 (and (provided? 'debug-extensions)
2818 (debug-enable 'backtrace))
2819 (named-module-use! '(guile-user) '(ice-9 emacs)))
2820
2821 \f
2822
2823 (define using-readline?
2824 (let ((using-readline? (make-fluid)))
2825 (make-procedure-with-setter
2826 (lambda () (fluid-ref using-readline?))
2827 (lambda (v) (fluid-set! using-readline? v)))))
2828
2829 (define (top-repl)
2830 (let ((guile-user-module (resolve-module '(guile-user))))
2831
2832 ;; Load emacs interface support if emacs option is given.
2833 (if (and (module-defined? the-root-module 'use-emacs-interface)
2834 (module-ref the-root-module 'use-emacs-interface))
2835 (load-emacs-interface))
2836
2837 ;; Use some convenient modules (in reverse order)
2838
2839 (if (provided? 'regex)
2840 (module-use! guile-user-module (resolve-interface '(ice-9 regex))))
2841 (if (provided? 'threads)
2842 (module-use! guile-user-module (resolve-interface '(ice-9 threads))))
2843 ;; load debugger on demand
2844 (module-use! guile-user-module
2845 (make-autoload-interface guile-user-module
2846 '(ice-9 debugger) '(debug)))
2847 (module-use! guile-user-module (resolve-interface '(ice-9 session)))
2848 (module-use! guile-user-module (resolve-interface '(ice-9 debug)))
2849 ;; so that builtin bindings will be checked first
2850 (module-use! guile-user-module (resolve-interface '(guile)))
2851
2852 (set-current-module guile-user-module)
2853
2854 (let ((old-handlers #f)
2855 (signals (if (provided? 'posix)
2856 `((,SIGINT . "User interrupt")
2857 (,SIGFPE . "Arithmetic error")
2858 (,SIGBUS . "Bad memory access (bus error)")
2859 (,SIGSEGV
2860 . "Bad memory access (Segmentation violation)"))
2861 '())))
2862
2863 (dynamic-wind
2864
2865 ;; call at entry
2866 (lambda ()
2867 (let ((make-handler (lambda (msg)
2868 (lambda (sig)
2869 ;; Make a backup copy of the stack
2870 (fluid-set! before-signal-stack
2871 (fluid-ref the-last-stack))
2872 (save-stack %deliver-signals)
2873 (scm-error 'signal
2874 #f
2875 msg
2876 #f
2877 (list sig))))))
2878 (set! old-handlers
2879 (map (lambda (sig-msg)
2880 (sigaction (car sig-msg)
2881 (make-handler (cdr sig-msg))))
2882 signals))))
2883
2884 ;; the protected thunk.
2885 (lambda ()
2886 (let ((status (scm-style-repl)))
2887 (run-hook exit-hook)
2888 status))
2889
2890 ;; call at exit.
2891 (lambda ()
2892 (map (lambda (sig-msg old-handler)
2893 (if (not (car old-handler))
2894 ;; restore original C handler.
2895 (sigaction (car sig-msg) #f)
2896 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
2897 (sigaction (car sig-msg)
2898 (car old-handler)
2899 (cdr old-handler))))
2900 signals old-handlers))))))
2901
2902 (defmacro false-if-exception (expr)
2903 `(catch #t (lambda () ,expr)
2904 (lambda args #f)))
2905
2906 ;;; This hook is run at the very end of an interactive session.
2907 ;;;
2908 (define exit-hook (make-hook))
2909
2910 \f
2911 (append! %load-path (list "."))
2912
2913 ;; Place the user in the guile-user module.
2914 ;;
2915
2916 (define-module (guile-user))
2917
2918 ;;; boot-9.scm ends here