build: Fix race between installing `guild' and the `guile-tools' symlink.
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 ;;;; 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 ;;;; Free Software Foundation, Inc.
6 ;;;;
7 ;;;; This library is free software; you can redistribute it and/or
8 ;;;; modify it under the terms of the GNU Lesser General Public
9 ;;;; License as published by the Free Software Foundation; either
10 ;;;; version 3 of the License, or (at your option) any later version.
11 ;;;;
12 ;;;; This library is distributed in the hope that it will be useful,
13 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 ;;;; Lesser General Public License for more details.
16 ;;;;
17 ;;;; You should have received a copy of the GNU Lesser General Public
18 ;;;; License along with this library; if not, write to the Free Software
19 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 ;;;;
21
22 \f
23
24 ;;; Commentary:
25
26 ;;; This file is the first thing loaded into Guile. It adds many mundane
27 ;;; definitions and a few that are interesting.
28 ;;;
29 ;;; The module system (hence the hierarchical namespace) are defined in this
30 ;;; file.
31 ;;;
32
33 ;;; Code:
34
35 \f
36
37 ;; Before compiling, make sure any symbols are resolved in the (guile)
38 ;; module, the primary location of those symbols, rather than in
39 ;; (guile-user), the default module that we compile in.
40
41 (eval-when (compile)
42 (set-current-module (resolve-module '(guile))))
43
44 \f
45
46 ;;; {Error handling}
47 ;;;
48
49 ;; Define delimited continuation operators, and implement catch and throw in
50 ;; terms of them.
51
52 (define make-prompt-tag
53 (lambda* (#:optional (stem "prompt"))
54 (gensym stem)))
55
56 (define default-prompt-tag
57 ;; not sure if we should expose this to the user as a fluid
58 (let ((%default-prompt-tag (make-prompt-tag)))
59 (lambda ()
60 %default-prompt-tag)))
61
62 (define (call-with-prompt tag thunk handler)
63 (@prompt tag (thunk) handler))
64 (define (abort-to-prompt tag . args)
65 (@abort tag args))
66
67
68 ;; Define catch and with-throw-handler, using some common helper routines and a
69 ;; shared fluid. Hide the helpers in a lexical contour.
70
71 (define with-throw-handler #f)
72 (let ()
73 (define (default-exception-handler k . args)
74 (cond
75 ((eq? k 'quit)
76 (primitive-exit (cond
77 ((not (pair? args)) 0)
78 ((integer? (car args)) (car args))
79 ((not (car args)) 1)
80 (else 0))))
81 (else
82 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
83 (primitive-exit 1))))
84
85 (define %running-exception-handlers (make-fluid '()))
86 (define %exception-handler (make-fluid default-exception-handler))
87
88 (define (default-throw-handler prompt-tag catch-k)
89 (let ((prev (fluid-ref %exception-handler)))
90 (lambda (thrown-k . args)
91 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
92 (apply abort-to-prompt prompt-tag thrown-k args)
93 (apply prev thrown-k args)))))
94
95 (define (custom-throw-handler prompt-tag catch-k pre)
96 (let ((prev (fluid-ref %exception-handler)))
97 (lambda (thrown-k . args)
98 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
99 (let ((running (fluid-ref %running-exception-handlers)))
100 (with-fluids ((%running-exception-handlers (cons pre running)))
101 (if (not (memq pre running))
102 (apply pre thrown-k args))
103 ;; fall through
104 (if prompt-tag
105 (apply abort-to-prompt prompt-tag thrown-k args)
106 (apply prev thrown-k args))))
107 (apply prev thrown-k args)))))
108
109 (set! catch
110 (lambda* (k thunk handler #:optional pre-unwind-handler)
111 "Invoke @var{thunk} in the dynamic context of @var{handler} for
112 exceptions matching @var{key}. If thunk throws to the symbol
113 @var{key}, then @var{handler} is invoked this way:
114 @lisp
115 (handler key args ...)
116 @end lisp
117
118 @var{key} is a symbol or @code{#t}.
119
120 @var{thunk} takes no arguments. If @var{thunk} returns
121 normally, that is the return value of @code{catch}.
122
123 Handler is invoked outside the scope of its own @code{catch}.
124 If @var{handler} again throws to the same key, a new handler
125 from further up the call chain is invoked.
126
127 If the key is @code{#t}, then a throw to @emph{any} symbol will
128 match this call to @code{catch}.
129
130 If a @var{pre-unwind-handler} is given and @var{thunk} throws
131 an exception that matches @var{key}, Guile calls the
132 @var{pre-unwind-handler} before unwinding the dynamic state and
133 invoking the main @var{handler}. @var{pre-unwind-handler} should
134 be a procedure with the same signature as @var{handler}, that
135 is @code{(lambda (key . args))}. It is typically used to save
136 the stack at the point where the exception occurred, but can also
137 query other parts of the dynamic state at that point, such as
138 fluid values.
139
140 A @var{pre-unwind-handler} can exit either normally or non-locally.
141 If it exits normally, Guile unwinds the stack and dynamic context
142 and then calls the normal (third argument) handler. If it exits
143 non-locally, that exit determines the continuation."
144 (if (not (or (symbol? k) (eqv? k #t)))
145 (scm-error 'wrong-type-arg "catch"
146 "Wrong type argument in position ~a: ~a"
147 (list 1 k) (list k)))
148 (let ((tag (make-prompt-tag "catch")))
149 (call-with-prompt
150 tag
151 (lambda ()
152 (with-fluids
153 ((%exception-handler
154 (if pre-unwind-handler
155 (custom-throw-handler tag k pre-unwind-handler)
156 (default-throw-handler tag k))))
157 (thunk)))
158 (lambda (cont k . args)
159 (apply handler k args))))))
160
161 (set! with-throw-handler
162 (lambda (k thunk pre-unwind-handler)
163 "Add @var{handler} to the dynamic context as a throw handler
164 for key @var{k}, then invoke @var{thunk}."
165 (if (not (or (symbol? k) (eqv? k #t)))
166 (scm-error 'wrong-type-arg "with-throw-handler"
167 "Wrong type argument in position ~a: ~a"
168 (list 1 k) (list k)))
169 (with-fluids ((%exception-handler
170 (custom-throw-handler #f k pre-unwind-handler)))
171 (thunk))))
172
173 (set! throw
174 (lambda (key . args)
175 "Invoke the catch form matching @var{key}, passing @var{args} to the
176 @var{handler}.
177
178 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
179
180 If there is no handler at all, Guile prints an error and then exits."
181 (if (not (symbol? key))
182 ((fluid-ref %exception-handler) 'wrong-type-arg "throw"
183 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
184 (apply (fluid-ref %exception-handler) key args)))))
185
186
187 \f
188
189 ;;; {R4RS compliance}
190 ;;;
191
192 (primitive-load-path "ice-9/r4rs")
193
194 \f
195
196 ;;; {Simple Debugging Tools}
197 ;;;
198
199 ;; peek takes any number of arguments, writes them to the
200 ;; current ouput port, and returns the last argument.
201 ;; It is handy to wrap around an expression to look at
202 ;; a value each time is evaluated, e.g.:
203 ;;
204 ;; (+ 10 (troublesome-fn))
205 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
206 ;;
207
208 (define (peek . stuff)
209 (newline)
210 (display ";;; ")
211 (write stuff)
212 (newline)
213 (car (last-pair stuff)))
214
215 (define pk peek)
216
217 ;; Temporary definition; replaced later.
218 (define current-warning-port current-error-port)
219
220 (define (warn . stuff)
221 (with-output-to-port (current-warning-port)
222 (lambda ()
223 (newline)
224 (display ";;; WARNING ")
225 (display stuff)
226 (newline)
227 (car (last-pair stuff)))))
228
229 \f
230
231 ;;; {Features}
232 ;;;
233
234 (define (provide sym)
235 (if (not (memq sym *features*))
236 (set! *features* (cons sym *features*))))
237
238 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
239 ;; provided? also checks to see if the module is available. We should do that
240 ;; too, but don't.
241
242 (define (provided? feature)
243 (and (memq feature *features*) #t))
244
245 \f
246
247 ;;; {Structs}
248 ;;;
249
250 (define (make-struct/no-tail vtable . args)
251 (apply make-struct vtable 0 args))
252
253 \f
254
255 ;;; Boot versions of `map' and `for-each', enough to get the expander
256 ;;; running.
257 ;;;
258 (define map
259 (case-lambda
260 ((f l)
261 (let map1 ((l l))
262 (if (null? l)
263 '()
264 (cons (f (car l)) (map1 (cdr l))))))
265 ((f l1 l2)
266 (let map2 ((l1 l1) (l2 l2))
267 (if (null? l1)
268 '()
269 (cons (f (car l1) (car l2))
270 (map2 (cdr l1) (cdr l2))))))
271 ((f l1 . rest)
272 (let lp ((l1 l1) (rest rest))
273 (if (null? l1)
274 '()
275 (cons (apply f (car l1) (map car rest))
276 (lp (cdr l1) (map cdr rest))))))))
277
278 (define for-each
279 (case-lambda
280 ((f l)
281 (let for-each1 ((l l))
282 (if (pair? l)
283 (begin
284 (f (car l))
285 (for-each1 (cdr l))))))
286 ((f l1 l2)
287 (let for-each2 ((l1 l1) (l2 l2))
288 (if (pair? l1)
289 (begin
290 (f (car l1) (car l2))
291 (for-each2 (cdr l1) (cdr l2))))))
292 ((f l1 . rest)
293 (let lp ((l1 l1) (rest rest))
294 (if (pair? l1)
295 (begin
296 (apply f (car l1) (map car rest))
297 (lp (cdr l1) (map cdr rest))))))))
298
299 ;;; {and-map and or-map}
300 ;;;
301 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
302 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
303 ;;;
304
305 ;; and-map f l
306 ;;
307 ;; Apply f to successive elements of l until exhaustion or f returns #f.
308 ;; If returning early, return #f. Otherwise, return the last value returned
309 ;; by f. If f has never been called because l is empty, return #t.
310 ;;
311 (define (and-map f lst)
312 (let loop ((result #t)
313 (l lst))
314 (and result
315 (or (and (null? l)
316 result)
317 (loop (f (car l)) (cdr l))))))
318
319 ;; or-map f l
320 ;;
321 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
322 ;; If returning early, return the return value of f.
323 ;;
324 (define (or-map f lst)
325 (let loop ((result #f)
326 (l lst))
327 (or result
328 (and (not (null? l))
329 (loop (f (car l)) (cdr l))))))
330
331 \f
332
333 ;; let format alias simple-format until the more complete version is loaded
334
335 (define format simple-format)
336
337 ;; this is scheme wrapping the C code so the final pred call is a tail call,
338 ;; per SRFI-13 spec
339 (define string-any
340 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
341 (if (and (procedure? char_pred)
342 (> end start)
343 (<= end (string-length s))) ;; let c-code handle range error
344 (or (string-any-c-code char_pred s start (1- end))
345 (char_pred (string-ref s (1- end))))
346 (string-any-c-code char_pred s start end))))
347
348 ;; this is scheme wrapping the C code so the final pred call is a tail call,
349 ;; per SRFI-13 spec
350 (define string-every
351 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
352 (if (and (procedure? char_pred)
353 (> end start)
354 (<= end (string-length s))) ;; let c-code handle range error
355 (and (string-every-c-code char_pred s start (1- end))
356 (char_pred (string-ref s (1- end))))
357 (string-every-c-code char_pred s start end))))
358
359 ;; A variant of string-fill! that we keep for compatability
360 ;;
361 (define (substring-fill! str start end fill)
362 (string-fill! str fill start end))
363
364 \f
365
366 ;; Define a minimal stub of the module API for psyntax, before modules
367 ;; have booted.
368 (define (module-name x)
369 '(guile))
370 (define (module-add! module sym var)
371 (hashq-set! (%get-pre-modules-obarray) sym var))
372 (define (module-define! module sym val)
373 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
374 (if v
375 (variable-set! v val)
376 (module-add! (current-module) sym (make-variable val)))))
377 (define (module-ref module sym)
378 (let ((v (module-variable module sym)))
379 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
380 (define (resolve-module . args)
381 #f)
382
383 ;; API provided by psyntax
384 (define syntax-violation #f)
385 (define datum->syntax #f)
386 (define syntax->datum #f)
387 (define syntax-source #f)
388 (define identifier? #f)
389 (define generate-temporaries #f)
390 (define bound-identifier=? #f)
391 (define free-identifier=? #f)
392
393 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
394 ;; expanded macros, to dispatch an input against a set of patterns.
395 (define $sc-dispatch #f)
396
397 ;; Load it up!
398 (primitive-load-path "ice-9/psyntax-pp")
399 ;; The binding for `macroexpand' has now been overridden, making psyntax the
400 ;; expander now.
401
402 (define-syntax and
403 (syntax-rules ()
404 ((_) #t)
405 ((_ x) x)
406 ((_ x y ...) (if x (and y ...) #f))))
407
408 (define-syntax or
409 (syntax-rules ()
410 ((_) #f)
411 ((_ x) x)
412 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
413
414 (include-from-path "ice-9/quasisyntax")
415
416 (define-syntax-rule (when test stmt stmt* ...)
417 (if test (begin stmt stmt* ...)))
418
419 (define-syntax-rule (unless test stmt stmt* ...)
420 (if (not test) (begin stmt stmt* ...)))
421
422 (define-syntax cond
423 (lambda (whole-expr)
424 (define (fold f seed xs)
425 (let loop ((xs xs) (seed seed))
426 (if (null? xs) seed
427 (loop (cdr xs) (f (car xs) seed)))))
428 (define (reverse-map f xs)
429 (fold (lambda (x seed) (cons (f x) seed))
430 '() xs))
431 (syntax-case whole-expr ()
432 ((_ clause clauses ...)
433 #`(begin
434 #,@(fold (lambda (clause-builder tail)
435 (clause-builder tail))
436 #'()
437 (reverse-map
438 (lambda (clause)
439 (define* (bad-clause #:optional (msg "invalid clause"))
440 (syntax-violation 'cond msg whole-expr clause))
441 (syntax-case clause (=> else)
442 ((else e e* ...)
443 (lambda (tail)
444 (if (null? tail)
445 #'((begin e e* ...))
446 (bad-clause "else must be the last clause"))))
447 ((else . _) (bad-clause))
448 ((test => receiver)
449 (lambda (tail)
450 #`((let ((t test))
451 (if t
452 (receiver t)
453 #,@tail)))))
454 ((test => receiver ...)
455 (bad-clause "wrong number of receiver expressions"))
456 ((generator guard => receiver)
457 (lambda (tail)
458 #`((call-with-values (lambda () generator)
459 (lambda vals
460 (if (apply guard vals)
461 (apply receiver vals)
462 #,@tail))))))
463 ((generator guard => receiver ...)
464 (bad-clause "wrong number of receiver expressions"))
465 ((test)
466 (lambda (tail)
467 #`((let ((t test))
468 (if t t #,@tail)))))
469 ((test e e* ...)
470 (lambda (tail)
471 #`((if test
472 (begin e e* ...)
473 #,@tail))))
474 (_ (bad-clause))))
475 #'(clause clauses ...))))))))
476
477 (define-syntax case
478 (lambda (whole-expr)
479 (define (fold f seed xs)
480 (let loop ((xs xs) (seed seed))
481 (if (null? xs) seed
482 (loop (cdr xs) (f (car xs) seed)))))
483 (define (fold2 f a b xs)
484 (let loop ((xs xs) (a a) (b b))
485 (if (null? xs) (values a b)
486 (call-with-values
487 (lambda () (f (car xs) a b))
488 (lambda (a b)
489 (loop (cdr xs) a b))))))
490 (define (reverse-map-with-seed f seed xs)
491 (fold2 (lambda (x ys seed)
492 (call-with-values
493 (lambda () (f x seed))
494 (lambda (y seed)
495 (values (cons y ys) seed))))
496 '() seed xs))
497 (syntax-case whole-expr ()
498 ((_ expr clause clauses ...)
499 (with-syntax ((key #'key))
500 #`(let ((key expr))
501 #,@(fold
502 (lambda (clause-builder tail)
503 (clause-builder tail))
504 #'()
505 (reverse-map-with-seed
506 (lambda (clause seen)
507 (define* (bad-clause #:optional (msg "invalid clause"))
508 (syntax-violation 'case msg whole-expr clause))
509 (syntax-case clause ()
510 ((test . rest)
511 (with-syntax
512 ((clause-expr
513 (syntax-case #'rest (=>)
514 ((=> receiver) #'(receiver key))
515 ((=> receiver ...)
516 (bad-clause
517 "wrong number of receiver expressions"))
518 ((e e* ...) #'(begin e e* ...))
519 (_ (bad-clause)))))
520 (syntax-case #'test (else)
521 ((datums ...)
522 (let ((seen
523 (fold
524 (lambda (datum seen)
525 (define (warn-datum type)
526 ((@ (system base message)
527 warning)
528 type
529 (append (source-properties datum)
530 (source-properties
531 (syntax->datum #'test)))
532 datum
533 (syntax->datum clause)
534 (syntax->datum whole-expr)))
535 (if (memv datum seen)
536 (warn-datum 'duplicate-case-datum))
537 (if (or (pair? datum)
538 (array? datum)
539 (generalized-vector? datum))
540 (warn-datum 'bad-case-datum))
541 (cons datum seen))
542 seen
543 (map syntax->datum #'(datums ...)))))
544 (values (lambda (tail)
545 #`((if (memv key '(datums ...))
546 clause-expr
547 #,@tail)))
548 seen)))
549 (else (values (lambda (tail)
550 (if (null? tail)
551 #'(clause-expr)
552 (bad-clause
553 "else must be the last clause")))
554 seen))
555 (_ (bad-clause)))))
556 (_ (bad-clause))))
557 '() #'(clause clauses ...)))))))))
558
559 (define-syntax do
560 (syntax-rules ()
561 ((do ((var init step ...) ...)
562 (test expr ...)
563 command ...)
564 (letrec
565 ((loop
566 (lambda (var ...)
567 (if test
568 (begin
569 (if #f #f)
570 expr ...)
571 (begin
572 command
573 ...
574 (loop (do "step" var step ...)
575 ...))))))
576 (loop init ...)))
577 ((do "step" x)
578 x)
579 ((do "step" x y)
580 y)))
581
582 (define-syntax-rule (delay exp)
583 (make-promise (lambda () exp)))
584
585 (define-syntax current-source-location
586 (lambda (x)
587 (syntax-case x ()
588 ((_)
589 (with-syntax ((s (datum->syntax x (syntax-source x))))
590 #''s)))))
591
592 ;; We provide this accessor out of convenience. current-line and
593 ;; current-column aren't so interesting, because they distort what they
594 ;; are measuring; better to use syntax-source from a macro.
595 ;;
596 (define-syntax current-filename
597 (lambda (x)
598 "A macro that expands to the current filename: the filename that
599 the (current-filename) form appears in. Expands to #f if this
600 information is unavailable."
601 (false-if-exception
602 (canonicalize-path (assq-ref (syntax-source x) 'filename)))))
603
604 (define-syntax-rule (define-once sym val)
605 (define sym
606 (if (module-locally-bound? (current-module) 'sym) sym val)))
607
608 ;;; The real versions of `map' and `for-each', with cycle detection, and
609 ;;; that use reverse! instead of recursion in the case of `map'.
610 ;;;
611 (define map
612 (case-lambda
613 ((f l)
614 (let map1 ((hare l) (tortoise l) (move? #f) (out '()))
615 (if (pair? hare)
616 (if move?
617 (if (eq? tortoise hare)
618 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
619 (list l) #f)
620 (map1 (cdr hare) (cdr tortoise) #f
621 (cons (f (car hare)) out)))
622 (map1 (cdr hare) tortoise #t
623 (cons (f (car hare)) out)))
624 (if (null? hare)
625 (reverse! out)
626 (scm-error 'wrong-type-arg "map" "Not a list: ~S"
627 (list l) #f)))))
628
629 ((f l1 l2)
630 (let map2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f) (out '()))
631 (cond
632 ((pair? h1)
633 (cond
634 ((not (pair? h2))
635 (scm-error 'wrong-type-arg "map"
636 (if (list? h2)
637 "List of wrong length: ~S"
638 "Not a list: ~S")
639 (list l2) #f))
640 ((not move?)
641 (map2 (cdr h1) (cdr h2) t1 t2 #t
642 (cons (f (car h1) (car h2)) out)))
643 ((eq? t1 h1)
644 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
645 (list l1) #f))
646 ((eq? t2 h2)
647 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
648 (list l2) #f))
649 (else
650 (map2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f
651 (cons (f (car h1) (car h2)) out)))))
652
653 ((and (null? h1) (null? h2))
654 (reverse! out))
655
656 ((null? h1)
657 (scm-error 'wrong-type-arg "map"
658 (if (list? h2)
659 "List of wrong length: ~S"
660 "Not a list: ~S")
661 (list l2) #f))
662 (else
663 (scm-error 'wrong-type-arg "map"
664 "Not a list: ~S"
665 (list l1) #f)))))
666
667 ((f l1 . rest)
668 (let ((len (length l1)))
669 (let mapn ((rest rest))
670 (or (null? rest)
671 (if (= (length (car rest)) len)
672 (mapn (cdr rest))
673 (scm-error 'wrong-type-arg "map" "List of wrong length: ~S"
674 (list (car rest)) #f)))))
675 (let mapn ((l1 l1) (rest rest) (out '()))
676 (if (null? l1)
677 (reverse! out)
678 (mapn (cdr l1) (map cdr rest)
679 (cons (apply f (car l1) (map car rest)) out)))))))
680
681 (define map-in-order map)
682
683 (define for-each
684 (case-lambda
685 ((f l)
686 (let for-each1 ((hare l) (tortoise l) (move? #f))
687 (if (pair? hare)
688 (if move?
689 (if (eq? tortoise hare)
690 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
691 (list l) #f)
692 (begin
693 (f (car hare))
694 (for-each1 (cdr hare) (cdr tortoise) #f)))
695 (begin
696 (f (car hare))
697 (for-each1 (cdr hare) tortoise #t)))
698
699 (if (not (null? hare))
700 (scm-error 'wrong-type-arg "for-each" "Not a list: ~S"
701 (list l) #f)))))
702
703 ((f l1 l2)
704 (let for-each2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f))
705 (cond
706 ((and (pair? h1) (pair? h2))
707 (cond
708 ((not move?)
709 (f (car h1) (car h2))
710 (for-each2 (cdr h1) (cdr h2) t1 t2 #t))
711 ((eq? t1 h1)
712 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
713 (list l1) #f))
714 ((eq? t2 h2)
715 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
716 (list l2) #f))
717 (else
718 (f (car h1) (car h2))
719 (for-each2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f))))
720
721 ((if (null? h1)
722 (or (null? h2) (pair? h2))
723 (and (pair? h1) (null? h2)))
724 (if #f #f))
725
726 ((list? h1)
727 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
728 (list h2) #f))
729 (else
730 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
731 (list h1) #f)))))
732
733 ((f l1 . rest)
734 (let ((len (length l1)))
735 (let for-eachn ((rest rest))
736 (or (null? rest)
737 (if (= (length (car rest)) len)
738 (for-eachn (cdr rest))
739 (scm-error 'wrong-type-arg "for-each" "List of wrong length: ~S"
740 (list (car rest)) #f)))))
741
742 (let for-eachn ((l1 l1) (rest rest))
743 (if (pair? l1)
744 (begin
745 (apply f (car l1) (map car rest))
746 (for-eachn (cdr l1) (map cdr rest))))))))
747
748
749 \f
750
751 ;;;
752 ;;; Extensible exception printing.
753 ;;;
754
755 (define set-exception-printer! #f)
756 ;; There is already a definition of print-exception from backtrace.c
757 ;; that we will override.
758
759 (let ((exception-printers '()))
760 (define (print-location frame port)
761 (let ((source (and=> frame frame-source)))
762 ;; source := (addr . (filename . (line . column)))
763 (if source
764 (let ((filename (or (cadr source) "<unnamed port>"))
765 (line (caddr source))
766 (col (cdddr source)))
767 (format port "~a:~a:~a: " filename (1+ line) col))
768 (format port "ERROR: "))))
769
770 (set! set-exception-printer!
771 (lambda (key proc)
772 (set! exception-printers (acons key proc exception-printers))))
773
774 (set! print-exception
775 (lambda (port frame key args)
776 (define (default-printer)
777 (format port "Throw to key `~a' with args `~s'." key args))
778
779 (if frame
780 (let ((proc (frame-procedure frame)))
781 (print-location frame port)
782 (format port "In procedure ~a:\n"
783 (or (false-if-exception (procedure-name proc))
784 proc))))
785
786 (print-location frame port)
787 (catch #t
788 (lambda ()
789 (let ((printer (assq-ref exception-printers key)))
790 (if printer
791 (printer port key args default-printer)
792 (default-printer))))
793 (lambda (k . args)
794 (format port "Error while printing exception.")))
795 (newline port)
796 (force-output port))))
797
798 ;;;
799 ;;; Printers for those keys thrown by Guile.
800 ;;;
801 (let ()
802 (define (scm-error-printer port key args default-printer)
803 ;; Abuse case-lambda as a pattern matcher, given that we don't have
804 ;; ice-9 match at this point.
805 (apply (case-lambda
806 ((subr msg args . rest)
807 (if subr
808 (format port "In procedure ~a: " subr))
809 (apply format port msg (or args '())))
810 (_ (default-printer)))
811 args))
812
813 (define (syntax-error-printer port key args default-printer)
814 (apply (case-lambda
815 ((who what where form subform . extra)
816 (format port "Syntax error:\n")
817 (if where
818 (let ((file (or (assq-ref where 'filename) "unknown file"))
819 (line (and=> (assq-ref where 'line) 1+))
820 (col (assq-ref where 'column)))
821 (format port "~a:~a:~a: " file line col))
822 (format port "unknown location: "))
823 (if who
824 (format port "~a: " who))
825 (format port "~a" what)
826 (if subform
827 (format port " in subform ~s of ~s" subform form)
828 (if form
829 (format port " in form ~s" form))))
830 (_ (default-printer)))
831 args))
832
833 (define (getaddrinfo-error-printer port key args default-printer)
834 (format port "In procedure getaddrinfo: ~a" (gai-strerror (car args))))
835
836 (set-exception-printer! 'goops-error scm-error-printer)
837 (set-exception-printer! 'host-not-found scm-error-printer)
838 (set-exception-printer! 'keyword-argument-error scm-error-printer)
839 (set-exception-printer! 'misc-error scm-error-printer)
840 (set-exception-printer! 'no-data scm-error-printer)
841 (set-exception-printer! 'no-recovery scm-error-printer)
842 (set-exception-printer! 'null-pointer-error scm-error-printer)
843 (set-exception-printer! 'out-of-range scm-error-printer)
844 (set-exception-printer! 'program-error scm-error-printer)
845 (set-exception-printer! 'read-error scm-error-printer)
846 (set-exception-printer! 'regular-expression-syntax scm-error-printer)
847 (set-exception-printer! 'signal scm-error-printer)
848 (set-exception-printer! 'stack-overflow scm-error-printer)
849 (set-exception-printer! 'system-error scm-error-printer)
850 (set-exception-printer! 'try-again scm-error-printer)
851 (set-exception-printer! 'unbound-variable scm-error-printer)
852 (set-exception-printer! 'wrong-number-of-args scm-error-printer)
853 (set-exception-printer! 'wrong-type-arg scm-error-printer)
854
855 (set-exception-printer! 'syntax-error syntax-error-printer)
856
857 (set-exception-printer! 'getaddrinfo-error getaddrinfo-error-printer))
858
859
860 \f
861
862 ;;; {Defmacros}
863 ;;;
864
865 (define-syntax define-macro
866 (lambda (x)
867 "Define a defmacro."
868 (syntax-case x ()
869 ((_ (macro . args) doc body1 body ...)
870 (string? (syntax->datum #'doc))
871 #'(define-macro macro doc (lambda args body1 body ...)))
872 ((_ (macro . args) body ...)
873 #'(define-macro macro #f (lambda args body ...)))
874 ((_ macro doc transformer)
875 (or (string? (syntax->datum #'doc))
876 (not (syntax->datum #'doc)))
877 #'(define-syntax macro
878 (lambda (y)
879 doc
880 #((macro-type . defmacro)
881 (defmacro-args args))
882 (syntax-case y ()
883 ((_ . args)
884 (let ((v (syntax->datum #'args)))
885 (datum->syntax y (apply transformer v)))))))))))
886
887 (define-syntax defmacro
888 (lambda (x)
889 "Define a defmacro, with the old lispy defun syntax."
890 (syntax-case x ()
891 ((_ macro args doc body1 body ...)
892 (string? (syntax->datum #'doc))
893 #'(define-macro macro doc (lambda args body1 body ...)))
894 ((_ macro args body ...)
895 #'(define-macro macro #f (lambda args body ...))))))
896
897 (provide 'defmacro)
898
899 \f
900
901 ;;; {Deprecation}
902 ;;;
903
904 (define-syntax begin-deprecated
905 (lambda (x)
906 (syntax-case x ()
907 ((_ form form* ...)
908 (if (include-deprecated-features)
909 #'(begin form form* ...)
910 #'(begin))))))
911
912 \f
913
914 ;;; {Trivial Functions}
915 ;;;
916
917 (define (identity x) x)
918
919 (define (compose proc . rest)
920 "Compose PROC with the procedures in REST, such that the last one in
921 REST is applied first and PROC last, and return the resulting procedure.
922 The given procedures must have compatible arity."
923 (if (null? rest)
924 proc
925 (let ((g (apply compose rest)))
926 (lambda args
927 (call-with-values (lambda () (apply g args)) proc)))))
928
929 (define (negate proc)
930 "Return a procedure with the same arity as PROC that returns the `not'
931 of PROC's result."
932 (lambda args
933 (not (apply proc args))))
934
935 (define (const value)
936 "Return a procedure that accepts any number of arguments and returns
937 VALUE."
938 (lambda _
939 value))
940
941 (define (and=> value procedure) (and value (procedure value)))
942 (define call/cc call-with-current-continuation)
943
944 (define-syntax-rule (false-if-exception expr)
945 (catch #t
946 (lambda () expr)
947 (lambda (k . args) #f)))
948
949 \f
950
951 ;;; {General Properties}
952 ;;;
953
954 ;; Properties are a lispy way to associate random info with random objects.
955 ;; Traditionally properties are implemented as an alist or a plist actually
956 ;; pertaining to the object in question.
957 ;;
958 ;; These "object properties" have the advantage that they can be associated with
959 ;; any object, even if the object has no plist. Object properties are good when
960 ;; you are extending pre-existing objects in unexpected ways. They also present
961 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
962 ;; type that always has properties, it's often still best to store those
963 ;; properties within the object itself.
964
965 (define (make-object-property)
966 (define-syntax-rule (with-mutex lock exp)
967 (dynamic-wind (lambda () (lock-mutex lock))
968 (lambda () exp)
969 (lambda () (unlock-mutex lock))))
970 (let ((prop (make-weak-key-hash-table))
971 (lock (make-mutex)))
972 (make-procedure-with-setter
973 (lambda (obj) (with-mutex lock (hashq-ref prop obj)))
974 (lambda (obj val) (with-mutex lock (hashq-set! prop obj val))))))
975
976
977 \f
978
979 ;;; {Symbol Properties}
980 ;;;
981
982 ;;; Symbol properties are something you see in old Lisp code. In most current
983 ;;; Guile code, symbols are not used as a data structure -- they are used as
984 ;;; keys into other data structures.
985
986 (define (symbol-property sym prop)
987 (let ((pair (assoc prop (symbol-pref sym))))
988 (and pair (cdr pair))))
989
990 (define (set-symbol-property! sym prop val)
991 (let ((pair (assoc prop (symbol-pref sym))))
992 (if pair
993 (set-cdr! pair val)
994 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
995
996 (define (symbol-property-remove! sym prop)
997 (let ((pair (assoc prop (symbol-pref sym))))
998 (if pair
999 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
1000
1001 \f
1002
1003 ;;; {Arrays}
1004 ;;;
1005
1006 (define (array-shape a)
1007 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
1008 (array-dimensions a)))
1009
1010 \f
1011
1012 ;;; {Keywords}
1013 ;;;
1014
1015 ;;; It's much better if you can use lambda* / define*, of course.
1016
1017 (define (kw-arg-ref args kw)
1018 (let ((rem (member kw args)))
1019 (and rem (pair? (cdr rem)) (cadr rem))))
1020
1021 \f
1022
1023 ;;; {Structs}
1024 ;;;
1025
1026 (define (struct-layout s)
1027 (struct-ref (struct-vtable s) vtable-index-layout))
1028
1029 \f
1030
1031 ;;; {Records}
1032 ;;;
1033
1034 ;; Printing records: by default, records are printed as
1035 ;;
1036 ;; #<type-name field1: val1 field2: val2 ...>
1037 ;;
1038 ;; You can change that by giving a custom printing function to
1039 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
1040 ;; will be called like
1041 ;;
1042 ;; (<printer> object port)
1043 ;;
1044 ;; It should print OBJECT to PORT.
1045
1046 (define (inherit-print-state old-port new-port)
1047 (if (get-print-state old-port)
1048 (port-with-print-state new-port (get-print-state old-port))
1049 new-port))
1050
1051 ;; 0: type-name, 1: fields, 2: constructor
1052 (define record-type-vtable
1053 (let ((s (make-vtable (string-append standard-vtable-fields "prprpw")
1054 (lambda (s p)
1055 (display "#<record-type " p)
1056 (display (record-type-name s) p)
1057 (display ">" p)))))
1058 (set-struct-vtable-name! s 'record-type)
1059 s))
1060
1061 (define (record-type? obj)
1062 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
1063
1064 (define* (make-record-type type-name fields #:optional printer)
1065 ;; Pre-generate constructors for nfields < 20.
1066 (define-syntax make-constructor
1067 (lambda (x)
1068 (define *max-static-argument-count* 20)
1069 (define (make-formals n)
1070 (let lp ((i 0))
1071 (if (< i n)
1072 (cons (datum->syntax
1073 x
1074 (string->symbol
1075 (string (integer->char (+ (char->integer #\a) i)))))
1076 (lp (1+ i)))
1077 '())))
1078 (syntax-case x ()
1079 ((_ rtd exp) (not (identifier? #'exp))
1080 #'(let ((n exp))
1081 (make-constructor rtd n)))
1082 ((_ rtd nfields)
1083 #`(case nfields
1084 #,@(let lp ((n 0))
1085 (if (< n *max-static-argument-count*)
1086 (cons (with-syntax (((formal ...) (make-formals n))
1087 (n n))
1088 #'((n)
1089 (lambda (formal ...)
1090 (make-struct rtd 0 formal ...))))
1091 (lp (1+ n)))
1092 '()))
1093 (else
1094 (lambda args
1095 (if (= (length args) nfields)
1096 (apply make-struct rtd 0 args)
1097 (scm-error 'wrong-number-of-args
1098 (format #f "make-~a" type-name)
1099 "Wrong number of arguments" '() #f)))))))))
1100
1101 (define (default-record-printer s p)
1102 (display "#<" p)
1103 (display (record-type-name (record-type-descriptor s)) p)
1104 (let loop ((fields (record-type-fields (record-type-descriptor s)))
1105 (off 0))
1106 (cond
1107 ((not (null? fields))
1108 (display " " p)
1109 (display (car fields) p)
1110 (display ": " p)
1111 (display (struct-ref s off) p)
1112 (loop (cdr fields) (+ 1 off)))))
1113 (display ">" p))
1114
1115 (let ((rtd (make-struct record-type-vtable 0
1116 (make-struct-layout
1117 (apply string-append
1118 (map (lambda (f) "pw") fields)))
1119 (or printer default-record-printer)
1120 type-name
1121 (copy-tree fields))))
1122 (struct-set! rtd (+ vtable-offset-user 2)
1123 (make-constructor rtd (length fields)))
1124 ;; Temporary solution: Associate a name to the record type descriptor
1125 ;; so that the object system can create a wrapper class for it.
1126 (set-struct-vtable-name! rtd (if (symbol? type-name)
1127 type-name
1128 (string->symbol type-name)))
1129 rtd))
1130
1131 (define (record-type-name obj)
1132 (if (record-type? obj)
1133 (struct-ref obj vtable-offset-user)
1134 (error 'not-a-record-type obj)))
1135
1136 (define (record-type-fields obj)
1137 (if (record-type? obj)
1138 (struct-ref obj (+ 1 vtable-offset-user))
1139 (error 'not-a-record-type obj)))
1140
1141 (define* (record-constructor rtd #:optional field-names)
1142 (if (not field-names)
1143 (struct-ref rtd (+ 2 vtable-offset-user))
1144 (primitive-eval
1145 `(lambda ,field-names
1146 (make-struct ',rtd 0 ,@(map (lambda (f)
1147 (if (memq f field-names)
1148 f
1149 #f))
1150 (record-type-fields rtd)))))))
1151
1152 (define (record-predicate rtd)
1153 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
1154
1155 (define (%record-type-error rtd obj) ;; private helper
1156 (or (eq? rtd (record-type-descriptor obj))
1157 (scm-error 'wrong-type-arg "%record-type-check"
1158 "Wrong type record (want `~S'): ~S"
1159 (list (record-type-name rtd) obj)
1160 #f)))
1161
1162 (define (record-accessor rtd field-name)
1163 (let ((pos (list-index (record-type-fields rtd) field-name)))
1164 (if (not pos)
1165 (error 'no-such-field field-name))
1166 (lambda (obj)
1167 (if (eq? (struct-vtable obj) rtd)
1168 (struct-ref obj pos)
1169 (%record-type-error rtd obj)))))
1170
1171 (define (record-modifier rtd field-name)
1172 (let ((pos (list-index (record-type-fields rtd) field-name)))
1173 (if (not pos)
1174 (error 'no-such-field field-name))
1175 (lambda (obj val)
1176 (if (eq? (struct-vtable obj) rtd)
1177 (struct-set! obj pos val)
1178 (%record-type-error rtd obj)))))
1179
1180 (define (record? obj)
1181 (and (struct? obj) (record-type? (struct-vtable obj))))
1182
1183 (define (record-type-descriptor obj)
1184 (if (struct? obj)
1185 (struct-vtable obj)
1186 (error 'not-a-record obj)))
1187
1188 (provide 'record)
1189
1190 \f
1191
1192 ;;; {Booleans}
1193 ;;;
1194
1195 (define (->bool x) (not (not x)))
1196
1197 \f
1198
1199 ;;; {Symbols}
1200 ;;;
1201
1202 (define (symbol-append . args)
1203 (string->symbol (apply string-append (map symbol->string args))))
1204
1205 (define (list->symbol . args)
1206 (string->symbol (apply list->string args)))
1207
1208 (define (symbol . args)
1209 (string->symbol (apply string args)))
1210
1211 \f
1212
1213 ;;; {Lists}
1214 ;;;
1215
1216 (define (list-index l k)
1217 (let loop ((n 0)
1218 (l l))
1219 (and (not (null? l))
1220 (if (eq? (car l) k)
1221 n
1222 (loop (+ n 1) (cdr l))))))
1223
1224 \f
1225
1226 ;; Load `posix.scm' even when not (provided? 'posix) so that we get the
1227 ;; `stat' accessors.
1228 (primitive-load-path "ice-9/posix")
1229
1230 (if (provided? 'socket)
1231 (primitive-load-path "ice-9/networking"))
1232
1233 ;; For reference, Emacs file-exists-p uses stat in this same way.
1234 (define file-exists?
1235 (if (provided? 'posix)
1236 (lambda (str)
1237 (->bool (stat str #f)))
1238 (lambda (str)
1239 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
1240 (lambda args #f))))
1241 (if port (begin (close-port port) #t)
1242 #f)))))
1243
1244 (define file-is-directory?
1245 (if (provided? 'posix)
1246 (lambda (str)
1247 (eq? (stat:type (stat str)) 'directory))
1248 (lambda (str)
1249 (let ((port (catch 'system-error
1250 (lambda () (open-file (string-append str "/.")
1251 OPEN_READ))
1252 (lambda args #f))))
1253 (if port (begin (close-port port) #t)
1254 #f)))))
1255
1256 (define (system-error-errno args)
1257 (if (eq? (car args) 'system-error)
1258 (car (list-ref args 4))
1259 #f))
1260
1261 \f
1262
1263 ;;; {Error Handling}
1264 ;;;
1265
1266 (define error
1267 (case-lambda
1268 (()
1269 (scm-error 'misc-error #f "?" #f #f))
1270 ((message . args)
1271 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
1272 (scm-error 'misc-error #f msg (cons message args) #f)))))
1273
1274 \f
1275
1276 ;;; {Time Structures}
1277 ;;;
1278
1279 (define (tm:sec obj) (vector-ref obj 0))
1280 (define (tm:min obj) (vector-ref obj 1))
1281 (define (tm:hour obj) (vector-ref obj 2))
1282 (define (tm:mday obj) (vector-ref obj 3))
1283 (define (tm:mon obj) (vector-ref obj 4))
1284 (define (tm:year obj) (vector-ref obj 5))
1285 (define (tm:wday obj) (vector-ref obj 6))
1286 (define (tm:yday obj) (vector-ref obj 7))
1287 (define (tm:isdst obj) (vector-ref obj 8))
1288 (define (tm:gmtoff obj) (vector-ref obj 9))
1289 (define (tm:zone obj) (vector-ref obj 10))
1290
1291 (define (set-tm:sec obj val) (vector-set! obj 0 val))
1292 (define (set-tm:min obj val) (vector-set! obj 1 val))
1293 (define (set-tm:hour obj val) (vector-set! obj 2 val))
1294 (define (set-tm:mday obj val) (vector-set! obj 3 val))
1295 (define (set-tm:mon obj val) (vector-set! obj 4 val))
1296 (define (set-tm:year obj val) (vector-set! obj 5 val))
1297 (define (set-tm:wday obj val) (vector-set! obj 6 val))
1298 (define (set-tm:yday obj val) (vector-set! obj 7 val))
1299 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
1300 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
1301 (define (set-tm:zone obj val) (vector-set! obj 10 val))
1302
1303 (define (tms:clock obj) (vector-ref obj 0))
1304 (define (tms:utime obj) (vector-ref obj 1))
1305 (define (tms:stime obj) (vector-ref obj 2))
1306 (define (tms:cutime obj) (vector-ref obj 3))
1307 (define (tms:cstime obj) (vector-ref obj 4))
1308
1309 \f
1310
1311 ;;; {File Descriptors and Ports}
1312 ;;;
1313
1314 (define file-position ftell)
1315 (define* (file-set-position port offset #:optional (whence SEEK_SET))
1316 (seek port offset whence))
1317
1318 (define (move->fdes fd/port fd)
1319 (cond ((integer? fd/port)
1320 (dup->fdes fd/port fd)
1321 (close fd/port)
1322 fd)
1323 (else
1324 (primitive-move->fdes fd/port fd)
1325 (set-port-revealed! fd/port 1)
1326 fd/port)))
1327
1328 (define (release-port-handle port)
1329 (let ((revealed (port-revealed port)))
1330 (if (> revealed 0)
1331 (set-port-revealed! port (- revealed 1)))))
1332
1333 (define dup->port
1334 (case-lambda
1335 ((port/fd mode)
1336 (fdopen (dup->fdes port/fd) mode))
1337 ((port/fd mode new-fd)
1338 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
1339 (set-port-revealed! port 1)
1340 port))))
1341
1342 (define dup->inport
1343 (case-lambda
1344 ((port/fd)
1345 (dup->port port/fd "r"))
1346 ((port/fd new-fd)
1347 (dup->port port/fd "r" new-fd))))
1348
1349 (define dup->outport
1350 (case-lambda
1351 ((port/fd)
1352 (dup->port port/fd "w"))
1353 ((port/fd new-fd)
1354 (dup->port port/fd "w" new-fd))))
1355
1356 (define dup
1357 (case-lambda
1358 ((port/fd)
1359 (if (integer? port/fd)
1360 (dup->fdes port/fd)
1361 (dup->port port/fd (port-mode port/fd))))
1362 ((port/fd new-fd)
1363 (if (integer? port/fd)
1364 (dup->fdes port/fd new-fd)
1365 (dup->port port/fd (port-mode port/fd) new-fd)))))
1366
1367 (define (duplicate-port port modes)
1368 (dup->port port modes))
1369
1370 (define (fdes->inport fdes)
1371 (let loop ((rest-ports (fdes->ports fdes)))
1372 (cond ((null? rest-ports)
1373 (let ((result (fdopen fdes "r")))
1374 (set-port-revealed! result 1)
1375 result))
1376 ((input-port? (car rest-ports))
1377 (set-port-revealed! (car rest-ports)
1378 (+ (port-revealed (car rest-ports)) 1))
1379 (car rest-ports))
1380 (else
1381 (loop (cdr rest-ports))))))
1382
1383 (define (fdes->outport fdes)
1384 (let loop ((rest-ports (fdes->ports fdes)))
1385 (cond ((null? rest-ports)
1386 (let ((result (fdopen fdes "w")))
1387 (set-port-revealed! result 1)
1388 result))
1389 ((output-port? (car rest-ports))
1390 (set-port-revealed! (car rest-ports)
1391 (+ (port-revealed (car rest-ports)) 1))
1392 (car rest-ports))
1393 (else
1394 (loop (cdr rest-ports))))))
1395
1396 (define (port->fdes port)
1397 (set-port-revealed! port (+ (port-revealed port) 1))
1398 (fileno port))
1399
1400 (define (setenv name value)
1401 (if value
1402 (putenv (string-append name "=" value))
1403 (putenv name)))
1404
1405 (define (unsetenv name)
1406 "Remove the entry for NAME from the environment."
1407 (putenv name))
1408
1409 \f
1410
1411 ;;; {Load Paths}
1412 ;;;
1413
1414 (define (in-vicinity vicinity file)
1415 (let ((tail (let ((len (string-length vicinity)))
1416 (if (zero? len)
1417 #f
1418 (string-ref vicinity (- len 1))))))
1419 (string-append vicinity
1420 (if (or (not tail)
1421 (eq? tail #\/))
1422 ""
1423 "/")
1424 file)))
1425
1426 \f
1427
1428 ;;; {Help for scm_shell}
1429 ;;;
1430 ;;; The argument-processing code used by Guile-based shells generates
1431 ;;; Scheme code based on the argument list. This page contains help
1432 ;;; functions for the code it generates.
1433 ;;;
1434
1435 (define (command-line) (program-arguments))
1436
1437 ;; This is mostly for the internal use of the code generated by
1438 ;; scm_compile_shell_switches.
1439
1440 (define (load-user-init)
1441 (let* ((home (or (getenv "HOME")
1442 (false-if-exception (passwd:dir (getpwuid (getuid))))
1443 "/")) ;; fallback for cygwin etc.
1444 (init-file (in-vicinity home ".guile")))
1445 (if (file-exists? init-file)
1446 (primitive-load init-file))))
1447
1448 \f
1449
1450 ;;; {The interpreter stack}
1451 ;;;
1452
1453 ;; %stacks defined in stacks.c
1454 (define (%start-stack tag thunk)
1455 (let ((prompt-tag (make-prompt-tag "start-stack")))
1456 (call-with-prompt
1457 prompt-tag
1458 (lambda ()
1459 (with-fluids ((%stacks (acons tag prompt-tag
1460 (or (fluid-ref %stacks) '()))))
1461 (thunk)))
1462 (lambda (k . args)
1463 (%start-stack tag (lambda () (apply k args)))))))
1464
1465 (define-syntax-rule (start-stack tag exp)
1466 (%start-stack tag (lambda () exp)))
1467
1468 \f
1469
1470 ;;; {Loading by paths}
1471 ;;;
1472
1473 ;;; Load a Scheme source file named NAME, searching for it in the
1474 ;;; directories listed in %load-path, and applying each of the file
1475 ;;; name extensions listed in %load-extensions.
1476 (define (load-from-path name)
1477 (start-stack 'load-stack
1478 (primitive-load-path name)))
1479
1480 (define-syntax-rule (add-to-load-path elt)
1481 "Add ELT to Guile's load path, at compile-time and at run-time."
1482 (eval-when (compile load eval)
1483 (set! %load-path (cons elt %load-path))))
1484
1485 (define %load-verbosely #f)
1486 (define (assert-load-verbosity v) (set! %load-verbosely v))
1487
1488 (define (%load-announce file)
1489 (if %load-verbosely
1490 (with-output-to-port (current-warning-port)
1491 (lambda ()
1492 (display ";;; ")
1493 (display "loading ")
1494 (display file)
1495 (newline)
1496 (force-output)))))
1497
1498 (set! %load-hook %load-announce)
1499
1500 \f
1501
1502 ;;; {Reader Extensions}
1503 ;;;
1504 ;;; Reader code for various "#c" forms.
1505 ;;;
1506
1507 (define read-eval? (make-fluid #f))
1508 (read-hash-extend #\.
1509 (lambda (c port)
1510 (if (fluid-ref read-eval?)
1511 (eval (read port) (interaction-environment))
1512 (error
1513 "#. read expansion found and read-eval? is #f."))))
1514
1515 \f
1516
1517 ;;; {Low Level Modules}
1518 ;;;
1519 ;;; These are the low level data structures for modules.
1520 ;;;
1521 ;;; Every module object is of the type 'module-type', which is a record
1522 ;;; consisting of the following members:
1523 ;;;
1524 ;;; - eval-closure: A deprecated field, to be removed in Guile 2.2.
1525 ;;;
1526 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1527 ;;; hash table, the definitions are found that are local to the module (that
1528 ;;; is, not imported from other modules). When looking up bindings in the
1529 ;;; module, this hash table is searched first.
1530 ;;;
1531 ;;; - binder: either #f or a function taking a module and a symbol argument.
1532 ;;; If it is a function it is called after the obarray has been
1533 ;;; unsuccessfully searched for a binding. It then can provide bindings
1534 ;;; that would otherwise not be found locally in the module.
1535 ;;;
1536 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1537 ;;; These modules are the third place queried for bindings after the obarray
1538 ;;; has been unsuccessfully searched and the binder function did not deliver
1539 ;;; a result either.
1540 ;;;
1541 ;;; - transformer: either #f or a function taking a scheme expression as
1542 ;;; delivered by read. If it is a function, it will be called to perform
1543 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1544 ;;; expression. The output of the transformer function will then be passed
1545 ;;; to Guile's internal memoizer. This means that the output must be valid
1546 ;;; scheme code. The only exception is, that the output may make use of the
1547 ;;; syntax extensions provided to identify the modules that a binding
1548 ;;; belongs to.
1549 ;;;
1550 ;;; - name: the name of the module. This is used for all kinds of printing
1551 ;;; outputs. In certain places the module name also serves as a way of
1552 ;;; identification. When adding a module to the uses list of another
1553 ;;; module, it is made sure that the new uses list will not contain two
1554 ;;; modules of the same name.
1555 ;;;
1556 ;;; - kind: classification of the kind of module. The value is (currently?)
1557 ;;; only used for printing. It has no influence on how a module is treated.
1558 ;;; Currently the following values are used when setting the module kind:
1559 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1560 ;;; is set, it defaults to 'module.
1561 ;;;
1562 ;;; - duplicates-handlers: a list of procedures that get called to make a
1563 ;;; choice between two duplicate bindings when name clashes occur. See the
1564 ;;; `duplicate-handlers' global variable below.
1565 ;;;
1566 ;;; - observers: a list of procedures that get called when the module is
1567 ;;; modified.
1568 ;;;
1569 ;;; - weak-observers: a weak-key hash table of procedures that get called
1570 ;;; when the module is modified. See `module-observe-weak' for details.
1571 ;;;
1572 ;;; In addition, the module may (must?) contain a binding for
1573 ;;; `%module-public-interface'. This variable should be bound to a module
1574 ;;; representing the exported interface of a module. See the
1575 ;;; `module-public-interface' and `module-export!' procedures.
1576 ;;;
1577 ;;; !!! warning: The interface to lazy binder procedures is going
1578 ;;; to be changed in an incompatible way to permit all the basic
1579 ;;; module ops to be virtualized.
1580 ;;;
1581 ;;; (make-module size use-list lazy-binding-proc) => module
1582 ;;; module-{obarray,uses,binder}[|-set!]
1583 ;;; (module? obj) => [#t|#f]
1584 ;;; (module-locally-bound? module symbol) => [#t|#f]
1585 ;;; (module-bound? module symbol) => [#t|#f]
1586 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1587 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1588 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1589 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1590 ;;; (module-symbol-binding module symbol opt-value)
1591 ;;; => [ <obj> | opt-value | an error occurs ]
1592 ;;; (module-make-local-var! module symbol) => #<variable...>
1593 ;;; (module-add! module symbol var) => unspecified
1594 ;;; (module-remove! module symbol) => unspecified
1595 ;;; (module-for-each proc module) => unspecified
1596 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1597 ;;; (set-current-module module) => unspecified
1598 ;;; (current-module) => #<module...>
1599 ;;;
1600 ;;;
1601
1602 \f
1603
1604 ;;; {Printing Modules}
1605 ;;;
1606
1607 ;; This is how modules are printed. You can re-define it.
1608 (define (%print-module mod port)
1609 (display "#<" port)
1610 (display (or (module-kind mod) "module") port)
1611 (display " " port)
1612 (display (module-name mod) port)
1613 (display " " port)
1614 (display (number->string (object-address mod) 16) port)
1615 (display ">" port))
1616
1617 (letrec-syntax
1618 ;; Locally extend the syntax to allow record accessors to be defined at
1619 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1620 ;; the setters, in order to allow for redefinition of the record type; not
1621 ;; relevant in the case of modules, but perhaps if we make this public, it
1622 ;; could matter.
1623
1624 ((define-record-type
1625 (lambda (x)
1626 (define (make-id scope . fragments)
1627 (datum->syntax #'scope
1628 (apply symbol-append
1629 (map (lambda (x)
1630 (if (symbol? x) x (syntax->datum x)))
1631 fragments))))
1632
1633 (define (getter rtd type-name field slot)
1634 #`(define #,(make-id rtd type-name '- field)
1635 (let ((rtd #,rtd))
1636 (lambda (#,type-name)
1637 (if (eq? (struct-vtable #,type-name) rtd)
1638 (struct-ref #,type-name #,slot)
1639 (%record-type-error rtd #,type-name))))))
1640
1641 (define (setter rtd type-name field slot)
1642 #`(define #,(make-id rtd 'set- type-name '- field '!)
1643 (let ((rtd #,rtd))
1644 (lambda (#,type-name val)
1645 (if (eq? (struct-vtable #,type-name) rtd)
1646 (struct-set! #,type-name #,slot val)
1647 (%record-type-error rtd #,type-name))))))
1648
1649 (define (accessors rtd type-name fields n exp)
1650 (syntax-case fields ()
1651 (() exp)
1652 (((field #:no-accessors) field* ...) (identifier? #'field)
1653 (accessors rtd type-name #'(field* ...) (1+ n)
1654 exp))
1655 (((field #:no-setter) field* ...) (identifier? #'field)
1656 (accessors rtd type-name #'(field* ...) (1+ n)
1657 #`(begin #,exp
1658 #,(getter rtd type-name #'field n))))
1659 (((field #:no-getter) field* ...) (identifier? #'field)
1660 (accessors rtd type-name #'(field* ...) (1+ n)
1661 #`(begin #,exp
1662 #,(setter rtd type-name #'field n))))
1663 ((field field* ...) (identifier? #'field)
1664 (accessors rtd type-name #'(field* ...) (1+ n)
1665 #`(begin #,exp
1666 #,(getter rtd type-name #'field n)
1667 #,(setter rtd type-name #'field n))))))
1668
1669 (define (predicate rtd type-name fields exp)
1670 (accessors
1671 rtd type-name fields 0
1672 #`(begin
1673 #,exp
1674 (define (#,(make-id rtd type-name '?) obj)
1675 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1676
1677 (define (field-list fields)
1678 (syntax-case fields ()
1679 (() '())
1680 (((f . opts) . rest) (identifier? #'f)
1681 (cons #'f (field-list #'rest)))
1682 ((f . rest) (identifier? #'f)
1683 (cons #'f (field-list #'rest)))))
1684
1685 (define (constructor rtd type-name fields exp)
1686 (let ((ctor (make-id rtd type-name '-constructor))
1687 (args (field-list fields)))
1688 (predicate rtd type-name fields
1689 #`(begin #,exp
1690 (define #,ctor
1691 (let ((rtd #,rtd))
1692 (lambda #,args
1693 (make-struct rtd 0 #,@args))))
1694 (struct-set! #,rtd (+ vtable-offset-user 2)
1695 #,ctor)))))
1696
1697 (define (type type-name printer fields)
1698 (define (make-layout)
1699 (let lp ((fields fields) (slots '()))
1700 (syntax-case fields ()
1701 (() (datum->syntax #'here
1702 (make-struct-layout
1703 (apply string-append slots))))
1704 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1705
1706 (let ((rtd (make-id type-name type-name '-type)))
1707 (constructor rtd type-name fields
1708 #`(begin
1709 (define #,rtd
1710 (make-struct record-type-vtable 0
1711 '#,(make-layout)
1712 #,printer
1713 '#,type-name
1714 '#,(field-list fields)))
1715 (set-struct-vtable-name! #,rtd '#,type-name)))))
1716
1717 (syntax-case x ()
1718 ((_ type-name printer (field ...))
1719 (type #'type-name #'printer #'(field ...)))))))
1720
1721 ;; module-type
1722 ;;
1723 ;; A module is characterized by an obarray in which local symbols
1724 ;; are interned, a list of modules, "uses", from which non-local
1725 ;; bindings can be inherited, and an optional lazy-binder which
1726 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1727 ;; bindings that would otherwise not be found locally in the module.
1728 ;;
1729 ;; NOTE: If you change the set of fields or their order, you also need to
1730 ;; change the constants in libguile/modules.h.
1731 ;;
1732 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1733 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1734 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1735 ;;
1736 (define-record-type module
1737 (lambda (obj port) (%print-module obj port))
1738 (obarray
1739 uses
1740 binder
1741 eval-closure
1742 (transformer #:no-getter)
1743 (name #:no-getter)
1744 kind
1745 duplicates-handlers
1746 (import-obarray #:no-setter)
1747 observers
1748 (weak-observers #:no-setter)
1749 version
1750 submodules
1751 submodule-binder
1752 public-interface
1753 filename)))
1754
1755
1756 ;; make-module &opt size uses binder
1757 ;;
1758 ;; Create a new module, perhaps with a particular size of obarray,
1759 ;; initial uses list, or binding procedure.
1760 ;;
1761 (define* (make-module #:optional (size 31) (uses '()) (binder #f))
1762 (define %default-import-size
1763 ;; Typical number of imported bindings actually used by a module.
1764 600)
1765
1766 (if (not (integer? size))
1767 (error "Illegal size to make-module." size))
1768 (if (not (and (list? uses)
1769 (and-map module? uses)))
1770 (error "Incorrect use list." uses))
1771 (if (and binder (not (procedure? binder)))
1772 (error
1773 "Lazy-binder expected to be a procedure or #f." binder))
1774
1775 (module-constructor (make-hash-table size)
1776 uses binder #f macroexpand
1777 #f #f #f
1778 (make-hash-table %default-import-size)
1779 '()
1780 (make-weak-key-hash-table 31) #f
1781 (make-hash-table 7) #f #f #f))
1782
1783
1784 \f
1785
1786 ;;; {Observer protocol}
1787 ;;;
1788
1789 (define (module-observe module proc)
1790 (set-module-observers! module (cons proc (module-observers module)))
1791 (cons module proc))
1792
1793 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
1794 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1795 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1796 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1797 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1798 ;; for instance).
1799
1800 ;; The two-argument version is kept for backward compatibility: when called
1801 ;; with two arguments, the observer gets unregistered when closure PROC
1802 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1803 (hashq-set! (module-weak-observers module) observer-id proc))
1804
1805 (define (module-unobserve token)
1806 (let ((module (car token))
1807 (id (cdr token)))
1808 (if (integer? id)
1809 (hash-remove! (module-weak-observers module) id)
1810 (set-module-observers! module (delq1! id (module-observers module)))))
1811 *unspecified*)
1812
1813 (define module-defer-observers #f)
1814 (define module-defer-observers-mutex (make-mutex 'recursive))
1815 (define module-defer-observers-table (make-hash-table))
1816
1817 (define (module-modified m)
1818 (if module-defer-observers
1819 (hash-set! module-defer-observers-table m #t)
1820 (module-call-observers m)))
1821
1822 ;;; This function can be used to delay calls to observers so that they
1823 ;;; can be called once only in the face of massive updating of modules.
1824 ;;;
1825 (define (call-with-deferred-observers thunk)
1826 (dynamic-wind
1827 (lambda ()
1828 (lock-mutex module-defer-observers-mutex)
1829 (set! module-defer-observers #t))
1830 thunk
1831 (lambda ()
1832 (set! module-defer-observers #f)
1833 (hash-for-each (lambda (m dummy)
1834 (module-call-observers m))
1835 module-defer-observers-table)
1836 (hash-clear! module-defer-observers-table)
1837 (unlock-mutex module-defer-observers-mutex))))
1838
1839 (define (module-call-observers m)
1840 (for-each (lambda (proc) (proc m)) (module-observers m))
1841
1842 ;; We assume that weak observers don't (un)register themselves as they are
1843 ;; called since this would preclude proper iteration over the hash table
1844 ;; elements.
1845 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1846
1847 \f
1848
1849 ;;; {Module Searching in General}
1850 ;;;
1851 ;;; We sometimes want to look for properties of a symbol
1852 ;;; just within the obarray of one module. If the property
1853 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1854 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1855 ;;;
1856 ;;;
1857 ;;; Other times, we want to test for a symbol property in the obarray
1858 ;;; of M and, if it is not found there, try each of the modules in the
1859 ;;; uses list of M. This is the normal way of testing for some
1860 ;;; property, so we state these properties without qualification as
1861 ;;; in: ``The symbol 'fnord is interned in module M because it is
1862 ;;; interned locally in module M2 which is a member of the uses list
1863 ;;; of M.''
1864 ;;;
1865
1866 ;; module-search fn m
1867 ;;
1868 ;; return the first non-#f result of FN applied to M and then to
1869 ;; the modules in the uses of m, and so on recursively. If all applications
1870 ;; return #f, then so does this function.
1871 ;;
1872 (define (module-search fn m v)
1873 (define (loop pos)
1874 (and (pair? pos)
1875 (or (module-search fn (car pos) v)
1876 (loop (cdr pos)))))
1877 (or (fn m v)
1878 (loop (module-uses m))))
1879
1880
1881 ;;; {Is a symbol bound in a module?}
1882 ;;;
1883 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1884 ;;; of S in M has been set to some well-defined value.
1885 ;;;
1886
1887 ;; module-locally-bound? module symbol
1888 ;;
1889 ;; Is a symbol bound (interned and defined) locally in a given module?
1890 ;;
1891 (define (module-locally-bound? m v)
1892 (let ((var (module-local-variable m v)))
1893 (and var
1894 (variable-bound? var))))
1895
1896 ;; module-bound? module symbol
1897 ;;
1898 ;; Is a symbol bound (interned and defined) anywhere in a given module
1899 ;; or its uses?
1900 ;;
1901 (define (module-bound? m v)
1902 (let ((var (module-variable m v)))
1903 (and var
1904 (variable-bound? var))))
1905
1906 ;;; {Is a symbol interned in a module?}
1907 ;;;
1908 ;;; Symbol S in Module M is interned if S occurs in
1909 ;;; of S in M has been set to some well-defined value.
1910 ;;;
1911 ;;; It is possible to intern a symbol in a module without providing
1912 ;;; an initial binding for the corresponding variable. This is done
1913 ;;; with:
1914 ;;; (module-add! module symbol (make-undefined-variable))
1915 ;;;
1916 ;;; In that case, the symbol is interned in the module, but not
1917 ;;; bound there. The unbound symbol shadows any binding for that
1918 ;;; symbol that might otherwise be inherited from a member of the uses list.
1919 ;;;
1920
1921 (define (module-obarray-get-handle ob key)
1922 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1923
1924 (define (module-obarray-ref ob key)
1925 ((if (symbol? key) hashq-ref hash-ref) ob key))
1926
1927 (define (module-obarray-set! ob key val)
1928 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1929
1930 (define (module-obarray-remove! ob key)
1931 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1932
1933 ;; module-symbol-locally-interned? module symbol
1934 ;;
1935 ;; is a symbol interned (not neccessarily defined) locally in a given module
1936 ;; or its uses? Interned symbols shadow inherited bindings even if
1937 ;; they are not themselves bound to a defined value.
1938 ;;
1939 (define (module-symbol-locally-interned? m v)
1940 (not (not (module-obarray-get-handle (module-obarray m) v))))
1941
1942 ;; module-symbol-interned? module symbol
1943 ;;
1944 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1945 ;; or its uses? Interned symbols shadow inherited bindings even if
1946 ;; they are not themselves bound to a defined value.
1947 ;;
1948 (define (module-symbol-interned? m v)
1949 (module-search module-symbol-locally-interned? m v))
1950
1951
1952 ;;; {Mapping modules x symbols --> variables}
1953 ;;;
1954
1955 ;; module-local-variable module symbol
1956 ;; return the local variable associated with a MODULE and SYMBOL.
1957 ;;
1958 ;;; This function is very important. It is the only function that can
1959 ;;; return a variable from a module other than the mutators that store
1960 ;;; new variables in modules. Therefore, this function is the location
1961 ;;; of the "lazy binder" hack.
1962 ;;;
1963 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1964 ;;; to a variable, return that variable object.
1965 ;;;
1966 ;;; If the symbols is not found at first, but the module has a lazy binder,
1967 ;;; then try the binder.
1968 ;;;
1969 ;;; If the symbol is not found at all, return #f.
1970 ;;;
1971 ;;; (This is now written in C, see `modules.c'.)
1972 ;;;
1973
1974 ;;; {Mapping modules x symbols --> bindings}
1975 ;;;
1976 ;;; These are similar to the mapping to variables, except that the
1977 ;;; variable is dereferenced.
1978 ;;;
1979
1980 ;; module-symbol-binding module symbol opt-value
1981 ;;
1982 ;; return the binding of a variable specified by name within
1983 ;; a given module, signalling an error if the variable is unbound.
1984 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1985 ;; return OPT-VALUE.
1986 ;;
1987 (define (module-symbol-local-binding m v . opt-val)
1988 (let ((var (module-local-variable m v)))
1989 (if (and var (variable-bound? var))
1990 (variable-ref var)
1991 (if (not (null? opt-val))
1992 (car opt-val)
1993 (error "Locally unbound variable." v)))))
1994
1995 ;; module-symbol-binding module symbol opt-value
1996 ;;
1997 ;; return the binding of a variable specified by name within
1998 ;; a given module, signalling an error if the variable is unbound.
1999 ;; If the OPT-VALUE is passed, then instead of signalling an error,
2000 ;; return OPT-VALUE.
2001 ;;
2002 (define (module-symbol-binding m v . opt-val)
2003 (let ((var (module-variable m v)))
2004 (if (and var (variable-bound? var))
2005 (variable-ref var)
2006 (if (not (null? opt-val))
2007 (car opt-val)
2008 (error "Unbound variable." v)))))
2009
2010
2011 \f
2012
2013 ;;; {Adding Variables to Modules}
2014 ;;;
2015
2016 ;; module-make-local-var! module symbol
2017 ;;
2018 ;; ensure a variable for V in the local namespace of M.
2019 ;; If no variable was already there, then create a new and uninitialzied
2020 ;; variable.
2021 ;;
2022 ;; This function is used in modules.c.
2023 ;;
2024 (define (module-make-local-var! m v)
2025 (or (let ((b (module-obarray-ref (module-obarray m) v)))
2026 (and (variable? b)
2027 (begin
2028 ;; Mark as modified since this function is called when
2029 ;; the standard eval closure defines a binding
2030 (module-modified m)
2031 b)))
2032
2033 ;; Create a new local variable.
2034 (let ((local-var (make-undefined-variable)))
2035 (module-add! m v local-var)
2036 local-var)))
2037
2038 ;; module-ensure-local-variable! module symbol
2039 ;;
2040 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
2041 ;; there is no binding for SYMBOL, create a new uninitialized
2042 ;; variable. Return the local variable.
2043 ;;
2044 (define (module-ensure-local-variable! module symbol)
2045 (or (module-local-variable module symbol)
2046 (let ((var (make-undefined-variable)))
2047 (module-add! module symbol var)
2048 var)))
2049
2050 ;; module-add! module symbol var
2051 ;;
2052 ;; ensure a particular variable for V in the local namespace of M.
2053 ;;
2054 (define (module-add! m v var)
2055 (if (not (variable? var))
2056 (error "Bad variable to module-add!" var))
2057 (module-obarray-set! (module-obarray m) v var)
2058 (module-modified m))
2059
2060 ;; module-remove!
2061 ;;
2062 ;; make sure that a symbol is undefined in the local namespace of M.
2063 ;;
2064 (define (module-remove! m v)
2065 (module-obarray-remove! (module-obarray m) v)
2066 (module-modified m))
2067
2068 (define (module-clear! m)
2069 (hash-clear! (module-obarray m))
2070 (module-modified m))
2071
2072 ;; MODULE-FOR-EACH -- exported
2073 ;;
2074 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
2075 ;;
2076 (define (module-for-each proc module)
2077 (hash-for-each proc (module-obarray module)))
2078
2079 (define (module-map proc module)
2080 (hash-map->list proc (module-obarray module)))
2081
2082 ;; Submodules
2083 ;;
2084 ;; Modules exist in a separate namespace from values, because you generally do
2085 ;; not want the name of a submodule, which you might not even use, to collide
2086 ;; with local variables that happen to be named the same as the submodule.
2087 ;;
2088 (define (module-ref-submodule module name)
2089 (or (hashq-ref (module-submodules module) name)
2090 (and (module-submodule-binder module)
2091 ((module-submodule-binder module) module name))))
2092
2093 (define (module-define-submodule! module name submodule)
2094 (hashq-set! (module-submodules module) name submodule))
2095
2096 ;; It used to be, however, that module names were also present in the
2097 ;; value namespace. When we enable deprecated code, we preserve this
2098 ;; legacy behavior.
2099 ;;
2100 ;; These shims are defined here instead of in deprecated.scm because we
2101 ;; need their definitions before loading other modules.
2102 ;;
2103 (begin-deprecated
2104 (define (module-ref-submodule module name)
2105 (or (hashq-ref (module-submodules module) name)
2106 (and (module-submodule-binder module)
2107 ((module-submodule-binder module) module name))
2108 (let ((var (module-local-variable module name)))
2109 (and var (variable-bound? var) (module? (variable-ref var))
2110 (begin
2111 (warn "module" module "not in submodules table")
2112 (variable-ref var))))))
2113
2114 (define (module-define-submodule! module name submodule)
2115 (let ((var (module-local-variable module name)))
2116 (if (and var
2117 (or (not (variable-bound? var))
2118 (not (module? (variable-ref var)))))
2119 (warn "defining module" module ": not overriding local definition" var)
2120 (module-define! module name submodule)))
2121 (hashq-set! (module-submodules module) name submodule)))
2122
2123 \f
2124
2125 ;;; {Module-based Loading}
2126 ;;;
2127
2128 (define (save-module-excursion thunk)
2129 (let ((inner-module (current-module))
2130 (outer-module #f))
2131 (dynamic-wind (lambda ()
2132 (set! outer-module (current-module))
2133 (set-current-module inner-module)
2134 (set! inner-module #f))
2135 thunk
2136 (lambda ()
2137 (set! inner-module (current-module))
2138 (set-current-module outer-module)
2139 (set! outer-module #f)))))
2140
2141 \f
2142
2143 ;;; {MODULE-REF -- exported}
2144 ;;;
2145
2146 ;; Returns the value of a variable called NAME in MODULE or any of its
2147 ;; used modules. If there is no such variable, then if the optional third
2148 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
2149 ;;
2150 (define (module-ref module name . rest)
2151 (let ((variable (module-variable module name)))
2152 (if (and variable (variable-bound? variable))
2153 (variable-ref variable)
2154 (if (null? rest)
2155 (error "No variable named" name 'in module)
2156 (car rest) ; default value
2157 ))))
2158
2159 ;; MODULE-SET! -- exported
2160 ;;
2161 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
2162 ;; to VALUE; if there is no such variable, an error is signaled.
2163 ;;
2164 (define (module-set! module name value)
2165 (let ((variable (module-variable module name)))
2166 (if variable
2167 (variable-set! variable value)
2168 (error "No variable named" name 'in module))))
2169
2170 ;; MODULE-DEFINE! -- exported
2171 ;;
2172 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
2173 ;; variable, it is added first.
2174 ;;
2175 (define (module-define! module name value)
2176 (let ((variable (module-local-variable module name)))
2177 (if variable
2178 (begin
2179 (variable-set! variable value)
2180 (module-modified module))
2181 (let ((variable (make-variable value)))
2182 (module-add! module name variable)))))
2183
2184 ;; MODULE-DEFINED? -- exported
2185 ;;
2186 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
2187 ;; uses)
2188 ;;
2189 (define (module-defined? module name)
2190 (let ((variable (module-variable module name)))
2191 (and variable (variable-bound? variable))))
2192
2193 ;; MODULE-USE! module interface
2194 ;;
2195 ;; Add INTERFACE to the list of interfaces used by MODULE.
2196 ;;
2197 (define (module-use! module interface)
2198 (if (not (or (eq? module interface)
2199 (memq interface (module-uses module))))
2200 (begin
2201 ;; Newly used modules must be appended rather than consed, so that
2202 ;; `module-variable' traverses the use list starting from the first
2203 ;; used module.
2204 (set-module-uses! module (append (module-uses module)
2205 (list interface)))
2206 (hash-clear! (module-import-obarray module))
2207 (module-modified module))))
2208
2209 ;; MODULE-USE-INTERFACES! module interfaces
2210 ;;
2211 ;; Same as MODULE-USE!, but only notifies module observers after all
2212 ;; interfaces are added to the inports list.
2213 ;;
2214 (define (module-use-interfaces! module interfaces)
2215 (let* ((cur (module-uses module))
2216 (new (let lp ((in interfaces) (out '()))
2217 (if (null? in)
2218 (reverse out)
2219 (lp (cdr in)
2220 (let ((iface (car in)))
2221 (if (or (memq iface cur) (memq iface out))
2222 out
2223 (cons iface out))))))))
2224 (set-module-uses! module (append cur new))
2225 (hash-clear! (module-import-obarray module))
2226 (module-modified module)))
2227
2228 \f
2229
2230 ;;; {Recursive Namespaces}
2231 ;;;
2232 ;;; A hierarchical namespace emerges if we consider some module to be
2233 ;;; root, and submodules of that module to be nested namespaces.
2234 ;;;
2235 ;;; The routines here manage variable names in hierarchical namespace.
2236 ;;; Each variable name is a list of elements, looked up in successively nested
2237 ;;; modules.
2238 ;;;
2239 ;;; (nested-ref some-root-module '(foo bar baz))
2240 ;;; => <value of a variable named baz in the submodule bar of
2241 ;;; the submodule foo of some-root-module>
2242 ;;;
2243 ;;;
2244 ;;; There are:
2245 ;;;
2246 ;;; ;; a-root is a module
2247 ;;; ;; name is a list of symbols
2248 ;;;
2249 ;;; nested-ref a-root name
2250 ;;; nested-set! a-root name val
2251 ;;; nested-define! a-root name val
2252 ;;; nested-remove! a-root name
2253 ;;;
2254 ;;; These functions manipulate values in namespaces. For referencing the
2255 ;;; namespaces themselves, use the following:
2256 ;;;
2257 ;;; nested-ref-module a-root name
2258 ;;; nested-define-module! a-root name mod
2259 ;;;
2260 ;;; (current-module) is a natural choice for a root so for convenience there are
2261 ;;; also:
2262 ;;;
2263 ;;; local-ref name == nested-ref (current-module) name
2264 ;;; local-set! name val == nested-set! (current-module) name val
2265 ;;; local-define name val == nested-define! (current-module) name val
2266 ;;; local-remove name == nested-remove! (current-module) name
2267 ;;; local-ref-module name == nested-ref-module (current-module) name
2268 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2269 ;;;
2270
2271
2272 (define (nested-ref root names)
2273 (if (null? names)
2274 root
2275 (let loop ((cur root)
2276 (head (car names))
2277 (tail (cdr names)))
2278 (if (null? tail)
2279 (module-ref cur head #f)
2280 (let ((cur (module-ref-submodule cur head)))
2281 (and cur
2282 (loop cur (car tail) (cdr tail))))))))
2283
2284 (define (nested-set! root names val)
2285 (let loop ((cur root)
2286 (head (car names))
2287 (tail (cdr names)))
2288 (if (null? tail)
2289 (module-set! cur head val)
2290 (let ((cur (module-ref-submodule cur head)))
2291 (if (not cur)
2292 (error "failed to resolve module" names)
2293 (loop cur (car tail) (cdr tail)))))))
2294
2295 (define (nested-define! root names val)
2296 (let loop ((cur root)
2297 (head (car names))
2298 (tail (cdr names)))
2299 (if (null? tail)
2300 (module-define! cur head val)
2301 (let ((cur (module-ref-submodule cur head)))
2302 (if (not cur)
2303 (error "failed to resolve module" names)
2304 (loop cur (car tail) (cdr tail)))))))
2305
2306 (define (nested-remove! root names)
2307 (let loop ((cur root)
2308 (head (car names))
2309 (tail (cdr names)))
2310 (if (null? tail)
2311 (module-remove! cur head)
2312 (let ((cur (module-ref-submodule cur head)))
2313 (if (not cur)
2314 (error "failed to resolve module" names)
2315 (loop cur (car tail) (cdr tail)))))))
2316
2317
2318 (define (nested-ref-module root names)
2319 (let loop ((cur root)
2320 (names names))
2321 (if (null? names)
2322 cur
2323 (let ((cur (module-ref-submodule cur (car names))))
2324 (and cur
2325 (loop cur (cdr names)))))))
2326
2327 (define (nested-define-module! root names module)
2328 (if (null? names)
2329 (error "can't redefine root module" root module)
2330 (let loop ((cur root)
2331 (head (car names))
2332 (tail (cdr names)))
2333 (if (null? tail)
2334 (module-define-submodule! cur head module)
2335 (let ((cur (or (module-ref-submodule cur head)
2336 (let ((m (make-module 31)))
2337 (set-module-kind! m 'directory)
2338 (set-module-name! m (append (module-name cur)
2339 (list head)))
2340 (module-define-submodule! cur head m)
2341 m))))
2342 (loop cur (car tail) (cdr tail)))))))
2343
2344
2345 (define (local-ref names)
2346 (nested-ref (current-module) names))
2347
2348 (define (local-set! names val)
2349 (nested-set! (current-module) names val))
2350
2351 (define (local-define names val)
2352 (nested-define! (current-module) names val))
2353
2354 (define (local-remove names)
2355 (nested-remove! (current-module) names))
2356
2357 (define (local-ref-module names)
2358 (nested-ref-module (current-module) names))
2359
2360 (define (local-define-module names mod)
2361 (nested-define-module! (current-module) names mod))
2362
2363
2364
2365 \f
2366
2367 ;;; {The (guile) module}
2368 ;;;
2369 ;;; The standard module, which has the core Guile bindings. Also called the
2370 ;;; "root module", as it is imported by many other modules, but it is not
2371 ;;; necessarily the root of anything; and indeed, the module named '() might be
2372 ;;; better thought of as a root.
2373 ;;;
2374
2375 ;; The root module uses the pre-modules-obarray as its obarray. This
2376 ;; special obarray accumulates all bindings that have been established
2377 ;; before the module system is fully booted.
2378 ;;
2379 ;; (The obarray continues to be used by code that has been closed over
2380 ;; before the module system has been booted.)
2381 ;;
2382 (define the-root-module
2383 (let ((m (make-module 0)))
2384 (set-module-obarray! m (%get-pre-modules-obarray))
2385 (set-module-name! m '(guile))
2386 m))
2387
2388 ;; The root interface is a module that uses the same obarray as the
2389 ;; root module. It does not allow new definitions, tho.
2390 ;;
2391 (define the-scm-module
2392 (let ((m (make-module 0)))
2393 (set-module-obarray! m (%get-pre-modules-obarray))
2394 (set-module-name! m '(guile))
2395 (set-module-kind! m 'interface)
2396
2397 ;; In Guile 1.8 and earlier M was its own public interface.
2398 (set-module-public-interface! m m)
2399
2400 m))
2401
2402 (set-module-public-interface! the-root-module the-scm-module)
2403
2404 \f
2405
2406 ;; Now that we have a root module, even though modules aren't fully booted,
2407 ;; expand the definition of resolve-module.
2408 ;;
2409 (define (resolve-module name . args)
2410 (if (equal? name '(guile))
2411 the-root-module
2412 (error "unexpected module to resolve during module boot" name)))
2413
2414 ;; Cheat. These bindings are needed by modules.c, but we don't want
2415 ;; to move their real definition here because that would be unnatural.
2416 ;;
2417 (define define-module* #f)
2418 (define process-use-modules #f)
2419 (define module-export! #f)
2420 (define default-duplicate-binding-procedures #f)
2421
2422 ;; This boots the module system. All bindings needed by modules.c
2423 ;; must have been defined by now.
2424 ;;
2425 (set-current-module the-root-module)
2426
2427
2428 \f
2429
2430 ;; Now that modules are booted, give module-name its final definition.
2431 ;;
2432 (define module-name
2433 (let ((accessor (record-accessor module-type 'name)))
2434 (lambda (mod)
2435 (or (accessor mod)
2436 (let ((name (list (gensym))))
2437 ;; Name MOD and bind it in the module root so that it's visible to
2438 ;; `resolve-module'. This is important as `psyntax' stores module
2439 ;; names and relies on being able to `resolve-module' them.
2440 (set-module-name! mod name)
2441 (nested-define-module! (resolve-module '() #f) name mod)
2442 (accessor mod))))))
2443
2444 (define (make-modules-in module name)
2445 (or (nested-ref-module module name)
2446 (let ((m (make-module 31)))
2447 (set-module-kind! m 'directory)
2448 (set-module-name! m (append (module-name module) name))
2449 (nested-define-module! module name m)
2450 m)))
2451
2452 (define (beautify-user-module! module)
2453 (let ((interface (module-public-interface module)))
2454 (if (or (not interface)
2455 (eq? interface module))
2456 (let ((interface (make-module 31)))
2457 (set-module-name! interface (module-name module))
2458 (set-module-version! interface (module-version module))
2459 (set-module-kind! interface 'interface)
2460 (set-module-public-interface! module interface))))
2461 (if (and (not (memq the-scm-module (module-uses module)))
2462 (not (eq? module the-root-module)))
2463 ;; Import the default set of bindings (from the SCM module) in MODULE.
2464 (module-use! module the-scm-module)))
2465
2466 (define (version-matches? version-ref target)
2467 (define (sub-versions-match? v-refs t)
2468 (define (sub-version-matches? v-ref t)
2469 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2470 (cond
2471 ((number? v-ref) (eqv? v-ref t))
2472 ((list? v-ref)
2473 (case (car v-ref)
2474 ((>=) (>= t (cadr v-ref)))
2475 ((<=) (<= t (cadr v-ref)))
2476 ((and) (and-map matches? (cdr v-ref)))
2477 ((or) (or-map matches? (cdr v-ref)))
2478 ((not) (not (matches? (cadr v-ref))))
2479 (else (error "Invalid sub-version reference" v-ref))))
2480 (else (error "Invalid sub-version reference" v-ref)))))
2481 (or (null? v-refs)
2482 (and (not (null? t))
2483 (sub-version-matches? (car v-refs) (car t))
2484 (sub-versions-match? (cdr v-refs) (cdr t)))))
2485
2486 (let ((matches? (lambda (v) (version-matches? v target))))
2487 (or (null? version-ref)
2488 (case (car version-ref)
2489 ((and) (and-map matches? (cdr version-ref)))
2490 ((or) (or-map matches? (cdr version-ref)))
2491 ((not) (not (matches? (cadr version-ref))))
2492 (else (sub-versions-match? version-ref target))))))
2493
2494 (define (make-fresh-user-module)
2495 (let ((m (make-module)))
2496 (beautify-user-module! m)
2497 m))
2498
2499 ;; NOTE: This binding is used in libguile/modules.c.
2500 ;;
2501 (define resolve-module
2502 (let ((root (make-module)))
2503 (set-module-name! root '())
2504 ;; Define the-root-module as '(guile).
2505 (module-define-submodule! root 'guile the-root-module)
2506
2507 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2508 (let ((already (nested-ref-module root name)))
2509 (cond
2510 ((and already
2511 (or (not autoload) (module-public-interface already)))
2512 ;; A hit, a palpable hit.
2513 (if (and version
2514 (not (version-matches? version (module-version already))))
2515 (error "incompatible module version already loaded" name))
2516 already)
2517 (autoload
2518 ;; Try to autoload the module, and recurse.
2519 (try-load-module name version)
2520 (resolve-module name #f #:ensure ensure))
2521 (else
2522 ;; No module found (or if one was, it had no public interface), and
2523 ;; we're not autoloading. Make an empty module if #:ensure is true.
2524 (or already
2525 (and ensure
2526 (make-modules-in root name)))))))))
2527
2528
2529 (define (try-load-module name version)
2530 (try-module-autoload name version))
2531
2532 (define (reload-module m)
2533 "Revisit the source file corresponding to the module @var{m}."
2534 (let ((f (module-filename m)))
2535 (if f
2536 (save-module-excursion
2537 (lambda ()
2538 ;; Re-set the initial environment, as in try-module-autoload.
2539 (set-current-module (make-fresh-user-module))
2540 (primitive-load-path f)
2541 m))
2542 ;; Though we could guess, we *should* know it.
2543 (error "unknown file name for module" m))))
2544
2545 (define (purify-module! module)
2546 "Removes bindings in MODULE which are inherited from the (guile) module."
2547 (let ((use-list (module-uses module)))
2548 (if (and (pair? use-list)
2549 (eq? (car (last-pair use-list)) the-scm-module))
2550 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2551
2552 ;; Return a module that is an interface to the module designated by
2553 ;; NAME.
2554 ;;
2555 ;; `resolve-interface' takes four keyword arguments:
2556 ;;
2557 ;; #:select SELECTION
2558 ;;
2559 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2560 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2561 ;; is the name in the used module and SEEN is the name in the using
2562 ;; module. Note that SEEN is also passed through RENAMER, below. The
2563 ;; default is to select all bindings. If you specify no selection but
2564 ;; a renamer, only the bindings that already exist in the used module
2565 ;; are made available in the interface. Bindings that are added later
2566 ;; are not picked up.
2567 ;;
2568 ;; #:hide BINDINGS
2569 ;;
2570 ;; BINDINGS is a list of bindings which should not be imported.
2571 ;;
2572 ;; #:prefix PREFIX
2573 ;;
2574 ;; PREFIX is a symbol that will be appended to each exported name.
2575 ;; The default is to not perform any renaming.
2576 ;;
2577 ;; #:renamer RENAMER
2578 ;;
2579 ;; RENAMER is a procedure that takes a symbol and returns its new
2580 ;; name. The default is not perform any renaming.
2581 ;;
2582 ;; Signal "no code for module" error if module name is not resolvable
2583 ;; or its public interface is not available. Signal "no binding"
2584 ;; error if selected binding does not exist in the used module.
2585 ;;
2586 (define* (resolve-interface name #:key
2587 (select #f)
2588 (hide '())
2589 (prefix #f)
2590 (renamer (if prefix
2591 (symbol-prefix-proc prefix)
2592 identity))
2593 version)
2594 (let* ((module (resolve-module name #t version #:ensure #f))
2595 (public-i (and module (module-public-interface module))))
2596 (and (or (not module) (not public-i))
2597 (error "no code for module" name))
2598 (if (and (not select) (null? hide) (eq? renamer identity))
2599 public-i
2600 (let ((selection (or select (module-map (lambda (sym var) sym)
2601 public-i)))
2602 (custom-i (make-module 31)))
2603 (set-module-kind! custom-i 'custom-interface)
2604 (set-module-name! custom-i name)
2605 ;; XXX - should use a lazy binder so that changes to the
2606 ;; used module are picked up automatically.
2607 (for-each (lambda (bspec)
2608 (let* ((direct? (symbol? bspec))
2609 (orig (if direct? bspec (car bspec)))
2610 (seen (if direct? bspec (cdr bspec)))
2611 (var (or (module-local-variable public-i orig)
2612 (module-local-variable module orig)
2613 (error
2614 ;; fixme: format manually for now
2615 (simple-format
2616 #f "no binding `~A' in module ~A"
2617 orig name)))))
2618 (if (memq orig hide)
2619 (set! hide (delq! orig hide))
2620 (module-add! custom-i
2621 (renamer seen)
2622 var))))
2623 selection)
2624 ;; Check that we are not hiding bindings which don't exist
2625 (for-each (lambda (binding)
2626 (if (not (module-local-variable public-i binding))
2627 (error
2628 (simple-format
2629 #f "no binding `~A' to hide in module ~A"
2630 binding name))))
2631 hide)
2632 custom-i))))
2633
2634 (define (symbol-prefix-proc prefix)
2635 (lambda (symbol)
2636 (symbol-append prefix symbol)))
2637
2638 ;; This function is called from "modules.c". If you change it, be
2639 ;; sure to update "modules.c" as well.
2640
2641 (define* (define-module* name
2642 #:key filename pure version (duplicates '())
2643 (imports '()) (exports '()) (replacements '())
2644 (re-exports '()) (autoloads '()) transformer)
2645 (define (list-of pred l)
2646 (or (null? l)
2647 (and (pair? l) (pred (car l)) (list-of pred (cdr l)))))
2648 (define (valid-export? x)
2649 (or (symbol? x) (and (pair? x) (symbol? (car x)) (symbol? (cdr x)))))
2650 (define (valid-autoload? x)
2651 (and (pair? x) (list-of symbol? (car x)) (list-of symbol? (cdr x))))
2652
2653 (define (resolve-imports imports)
2654 (define (resolve-import import-spec)
2655 (if (list? import-spec)
2656 (apply resolve-interface import-spec)
2657 (error "unexpected use-module specification" import-spec)))
2658 (let lp ((imports imports) (out '()))
2659 (cond
2660 ((null? imports) (reverse! out))
2661 ((pair? imports)
2662 (lp (cdr imports)
2663 (cons (resolve-import (car imports)) out)))
2664 (else (error "unexpected tail of imports list" imports)))))
2665
2666 ;; We could add a #:no-check arg, set by the define-module macro, if
2667 ;; these checks are taking too much time.
2668 ;;
2669 (let ((module (resolve-module name #f)))
2670 (beautify-user-module! module)
2671 (if filename
2672 (set-module-filename! module filename))
2673 (if pure
2674 (purify-module! module))
2675 (if version
2676 (begin
2677 (if (not (list-of integer? version))
2678 (error "expected list of integers for version"))
2679 (set-module-version! module version)
2680 (set-module-version! (module-public-interface module) version)))
2681 (let ((imports (resolve-imports imports)))
2682 (call-with-deferred-observers
2683 (lambda ()
2684 (if (pair? imports)
2685 (module-use-interfaces! module imports))
2686 (if (list-of valid-export? exports)
2687 (if (pair? exports)
2688 (module-export! module exports))
2689 (error "expected exports to be a list of symbols or symbol pairs"))
2690 (if (list-of valid-export? replacements)
2691 (if (pair? replacements)
2692 (module-replace! module replacements))
2693 (error "expected replacements to be a list of symbols or symbol pairs"))
2694 (if (list-of valid-export? re-exports)
2695 (if (pair? re-exports)
2696 (module-re-export! module re-exports))
2697 (error "expected re-exports to be a list of symbols or symbol pairs"))
2698 ;; FIXME
2699 (if (not (null? autoloads))
2700 (apply module-autoload! module autoloads))
2701 ;; Wait until modules have been loaded to resolve duplicates
2702 ;; handlers.
2703 (if (pair? duplicates)
2704 (let ((handlers (lookup-duplicates-handlers duplicates)))
2705 (set-module-duplicates-handlers! module handlers))))))
2706
2707 (if transformer
2708 (if (and (pair? transformer) (list-of symbol? transformer))
2709 (let ((iface (resolve-interface transformer))
2710 (sym (car (last-pair transformer))))
2711 (set-module-transformer! module (module-ref iface sym)))
2712 (error "expected transformer to be a module name" transformer)))
2713
2714 (run-hook module-defined-hook module)
2715 module))
2716
2717 ;; `module-defined-hook' is a hook that is run whenever a new module
2718 ;; is defined. Its members are called with one argument, the new
2719 ;; module.
2720 (define module-defined-hook (make-hook 1))
2721
2722 \f
2723
2724 ;;; {Autoload}
2725 ;;;
2726
2727 (define (make-autoload-interface module name bindings)
2728 (let ((b (lambda (a sym definep)
2729 (and (memq sym bindings)
2730 (let ((i (module-public-interface (resolve-module name))))
2731 (if (not i)
2732 (error "missing interface for module" name))
2733 (let ((autoload (memq a (module-uses module))))
2734 ;; Replace autoload-interface with actual interface if
2735 ;; that has not happened yet.
2736 (if (pair? autoload)
2737 (set-car! autoload i)))
2738 (module-local-variable i sym))))))
2739 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2740 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2741 (make-hash-table 0) #f #f #f)))
2742
2743 (define (module-autoload! module . args)
2744 "Have @var{module} automatically load the module named @var{name} when one
2745 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2746 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2747 module '(ice-9 q) '(make-q q-length))}."
2748 (let loop ((args args))
2749 (cond ((null? args)
2750 #t)
2751 ((null? (cdr args))
2752 (error "invalid name+binding autoload list" args))
2753 (else
2754 (let ((name (car args))
2755 (bindings (cadr args)))
2756 (module-use! module (make-autoload-interface module
2757 name bindings))
2758 (loop (cddr args)))))))
2759
2760
2761 \f
2762
2763 ;;; {Autoloading modules}
2764 ;;;
2765
2766 (define autoloads-in-progress '())
2767
2768 ;; This function is called from "modules.c". If you change it, be
2769 ;; sure to update "modules.c" as well.
2770
2771 (define* (try-module-autoload module-name #:optional version)
2772 (let* ((reverse-name (reverse module-name))
2773 (name (symbol->string (car reverse-name)))
2774 (dir-hint-module-name (reverse (cdr reverse-name)))
2775 (dir-hint (apply string-append
2776 (map (lambda (elt)
2777 (string-append (symbol->string elt) "/"))
2778 dir-hint-module-name))))
2779 (resolve-module dir-hint-module-name #f)
2780 (and (not (autoload-done-or-in-progress? dir-hint name))
2781 (let ((didit #f))
2782 (dynamic-wind
2783 (lambda () (autoload-in-progress! dir-hint name))
2784 (lambda ()
2785 (with-fluids ((current-reader #f))
2786 (save-module-excursion
2787 (lambda ()
2788 ;; The initial environment when loading a module is a fresh
2789 ;; user module.
2790 (set-current-module (make-fresh-user-module))
2791 ;; Here we could allow some other search strategy (other than
2792 ;; primitive-load-path), for example using versions encoded
2793 ;; into the file system -- but then we would have to figure
2794 ;; out how to locate the compiled file, do auto-compilation,
2795 ;; etc. Punt for now, and don't use versions when locating
2796 ;; the file.
2797 (primitive-load-path (in-vicinity dir-hint name) #f)
2798 (set! didit #t)))))
2799 (lambda () (set-autoloaded! dir-hint name didit)))
2800 didit))))
2801
2802 \f
2803
2804 ;;; {Dynamic linking of modules}
2805 ;;;
2806
2807 (define autoloads-done '((guile . guile)))
2808
2809 (define (autoload-done-or-in-progress? p m)
2810 (let ((n (cons p m)))
2811 (->bool (or (member n autoloads-done)
2812 (member n autoloads-in-progress)))))
2813
2814 (define (autoload-done! p m)
2815 (let ((n (cons p m)))
2816 (set! autoloads-in-progress
2817 (delete! n autoloads-in-progress))
2818 (or (member n autoloads-done)
2819 (set! autoloads-done (cons n autoloads-done)))))
2820
2821 (define (autoload-in-progress! p m)
2822 (let ((n (cons p m)))
2823 (set! autoloads-done
2824 (delete! n autoloads-done))
2825 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2826
2827 (define (set-autoloaded! p m done?)
2828 (if done?
2829 (autoload-done! p m)
2830 (let ((n (cons p m)))
2831 (set! autoloads-done (delete! n autoloads-done))
2832 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2833
2834 \f
2835
2836 ;;; {Run-time options}
2837 ;;;
2838
2839 (define-syntax define-option-interface
2840 (syntax-rules ()
2841 ((_ (interface (options enable disable) (option-set!)))
2842 (begin
2843 (define options
2844 (case-lambda
2845 (() (interface))
2846 ((arg)
2847 (if (list? arg)
2848 (begin (interface arg) (interface))
2849 (for-each
2850 (lambda (option)
2851 (apply (lambda (name value documentation)
2852 (display name)
2853 (if (< (string-length (symbol->string name)) 8)
2854 (display #\tab))
2855 (display #\tab)
2856 (display value)
2857 (display #\tab)
2858 (display documentation)
2859 (newline))
2860 option))
2861 (interface #t))))))
2862 (define (enable . flags)
2863 (interface (append flags (interface)))
2864 (interface))
2865 (define (disable . flags)
2866 (let ((options (interface)))
2867 (for-each (lambda (flag) (set! options (delq! flag options)))
2868 flags)
2869 (interface options)
2870 (interface)))
2871 (define-syntax-rule (option-set! opt val)
2872 (eval-when (eval load compile expand)
2873 (options (append (options) (list 'opt val)))))))))
2874
2875 (define-option-interface
2876 (debug-options-interface
2877 (debug-options debug-enable debug-disable)
2878 (debug-set!)))
2879
2880 (define-option-interface
2881 (read-options-interface
2882 (read-options read-enable read-disable)
2883 (read-set!)))
2884
2885 (define-option-interface
2886 (print-options-interface
2887 (print-options print-enable print-disable)
2888 (print-set!)))
2889
2890 \f
2891
2892 ;;; {The Unspecified Value}
2893 ;;;
2894 ;;; Currently Guile represents unspecified values via one particular value,
2895 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
2896 ;;; future if we could replace this with a return of 0 values, though.
2897 ;;;
2898
2899 (define-syntax *unspecified*
2900 (identifier-syntax (if #f #f)))
2901
2902 (define (unspecified? v) (eq? v *unspecified*))
2903
2904
2905 \f
2906
2907 ;;; {Parameters}
2908 ;;;
2909
2910 (define <parameter>
2911 ;; Three fields: the procedure itself, the fluid, and the converter.
2912 (make-struct <applicable-struct-vtable> 0 'pwprpr))
2913 (set-struct-vtable-name! <parameter> '<parameter>)
2914
2915 (define* (make-parameter init #:optional (conv (lambda (x) x)))
2916 (let ((fluid (make-fluid (conv init))))
2917 (make-struct <parameter> 0
2918 (case-lambda
2919 (() (fluid-ref fluid))
2920 ((x) (let ((prev (fluid-ref fluid)))
2921 (fluid-set! fluid (conv x))
2922 prev)))
2923 fluid conv)))
2924
2925 (define (parameter? x)
2926 (and (struct? x) (eq? (struct-vtable x) <parameter>)))
2927
2928 (define (parameter-fluid p)
2929 (if (parameter? p)
2930 (struct-ref p 1)
2931 (scm-error 'wrong-type-arg "parameter-fluid"
2932 "Not a parameter: ~S" (list p) #f)))
2933
2934 (define (parameter-converter p)
2935 (if (parameter? p)
2936 (struct-ref p 2)
2937 (scm-error 'wrong-type-arg "parameter-fluid"
2938 "Not a parameter: ~S" (list p) #f)))
2939
2940 (define-syntax parameterize
2941 (lambda (x)
2942 (syntax-case x ()
2943 ((_ ((param value) ...) body body* ...)
2944 (with-syntax (((p ...) (generate-temporaries #'(param ...))))
2945 #'(let ((p param) ...)
2946 (if (not (parameter? p))
2947 (scm-error 'wrong-type-arg "parameterize"
2948 "Not a parameter: ~S" (list p) #f))
2949 ...
2950 (with-fluids (((struct-ref p 1) ((struct-ref p 2) value))
2951 ...)
2952 body body* ...)))))))
2953
2954 \f
2955 ;;;
2956 ;;; Current ports as parameters.
2957 ;;;
2958
2959 (let ((fluid->parameter
2960 (lambda (fluid conv)
2961 (make-struct <parameter> 0
2962 (case-lambda
2963 (() (fluid-ref fluid))
2964 ((x) (let ((prev (fluid-ref fluid)))
2965 (fluid-set! fluid (conv x))
2966 prev)))
2967 fluid conv))))
2968 (define-syntax-rule (port-parameterize! binding fluid predicate msg)
2969 (begin
2970 (set! binding (fluid->parameter (module-ref (current-module) 'fluid)
2971 (lambda (x)
2972 (if (predicate x) x
2973 (error msg x)))))
2974 (module-remove! (current-module) 'fluid)))
2975
2976 (port-parameterize! current-input-port %current-input-port-fluid
2977 input-port? "expected an input port")
2978 (port-parameterize! current-output-port %current-output-port-fluid
2979 output-port? "expected an output port")
2980 (port-parameterize! current-error-port %current-error-port-fluid
2981 output-port? "expected an output port"))
2982
2983
2984 \f
2985 ;;;
2986 ;;; Warnings.
2987 ;;;
2988
2989 (define current-warning-port
2990 (make-parameter (current-error-port)
2991 (lambda (x)
2992 (if (output-port? x)
2993 x
2994 (error "expected an output port" x)))))
2995
2996
2997 \f
2998
2999 ;;; {Running Repls}
3000 ;;;
3001
3002 (define *repl-stack* (make-fluid '()))
3003
3004 ;; Programs can call `batch-mode?' to see if they are running as part of a
3005 ;; script or if they are running interactively. REPL implementations ensure that
3006 ;; `batch-mode?' returns #f during their extent.
3007 ;;
3008 (define (batch-mode?)
3009 (null? (fluid-ref *repl-stack*)))
3010
3011 ;; Programs can re-enter batch mode, for example after a fork, by calling
3012 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
3013 ;; to abort to the outermost prompt, and call a thunk there.
3014 ;;
3015 (define (ensure-batch-mode!)
3016 (set! batch-mode? (lambda () #t)))
3017
3018 (define (quit . args)
3019 (apply throw 'quit args))
3020
3021 (define exit quit)
3022
3023 (define (gc-run-time)
3024 (cdr (assq 'gc-time-taken (gc-stats))))
3025
3026 (define abort-hook (make-hook))
3027 (define before-error-hook (make-hook))
3028 (define after-error-hook (make-hook))
3029 (define before-backtrace-hook (make-hook))
3030 (define after-backtrace-hook (make-hook))
3031
3032 (define before-read-hook (make-hook))
3033 (define after-read-hook (make-hook))
3034 (define before-eval-hook (make-hook 1))
3035 (define after-eval-hook (make-hook 1))
3036 (define before-print-hook (make-hook 1))
3037 (define after-print-hook (make-hook 1))
3038
3039 ;;; This hook is run at the very end of an interactive session.
3040 ;;;
3041 (define exit-hook (make-hook))
3042
3043 ;;; The default repl-reader function. We may override this if we've
3044 ;;; the readline library.
3045 (define repl-reader
3046 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
3047 (if (not (char-ready?))
3048 (begin
3049 (display (if (string? prompt) prompt (prompt)))
3050 ;; An interesting situation. The printer resets the column to
3051 ;; 0 by printing a newline, but we then advance it by printing
3052 ;; the prompt. However the port-column of the output port
3053 ;; does not typically correspond with the actual column on the
3054 ;; screen, because the input is echoed back! Since the
3055 ;; input is line-buffered and thus ends with a newline, the
3056 ;; output will really start on column zero. So, here we zero
3057 ;; it out. See bug 9664.
3058 ;;
3059 ;; Note that for similar reasons, the output-line will not
3060 ;; reflect the actual line on the screen. But given the
3061 ;; possibility of multiline input, the fix is not as
3062 ;; straightforward, so we don't bother.
3063 ;;
3064 ;; Also note that the readline implementation papers over
3065 ;; these concerns, because it's readline itself printing the
3066 ;; prompt, and not Guile.
3067 (set-port-column! (current-output-port) 0)))
3068 (force-output)
3069 (run-hook before-read-hook)
3070 ((or reader read) (current-input-port))))
3071
3072
3073 \f
3074
3075 ;;; {IOTA functions: generating lists of numbers}
3076 ;;;
3077
3078 (define (iota n)
3079 (let loop ((count (1- n)) (result '()))
3080 (if (< count 0) result
3081 (loop (1- count) (cons count result)))))
3082
3083 \f
3084
3085 ;;; {While}
3086 ;;;
3087 ;;; with `continue' and `break'.
3088 ;;;
3089
3090 ;; The inliner will remove the prompts at compile-time if it finds that
3091 ;; `continue' or `break' are not used.
3092 ;;
3093 (define-syntax while
3094 (lambda (x)
3095 (syntax-case x ()
3096 ((while cond body ...)
3097 #`(let ((break-tag (make-prompt-tag "break"))
3098 (continue-tag (make-prompt-tag "continue")))
3099 (call-with-prompt
3100 break-tag
3101 (lambda ()
3102 (define-syntax #,(datum->syntax #'while 'break)
3103 (lambda (x)
3104 (syntax-case x ()
3105 ((_ arg (... ...))
3106 #'(abort-to-prompt break-tag arg (... ...)))
3107 (_
3108 #'(lambda args
3109 (apply abort-to-prompt break-tag args))))))
3110 (let lp ()
3111 (call-with-prompt
3112 continue-tag
3113 (lambda ()
3114 (define-syntax #,(datum->syntax #'while 'continue)
3115 (lambda (x)
3116 (syntax-case x ()
3117 ((_)
3118 #'(abort-to-prompt continue-tag))
3119 ((_ . args)
3120 (syntax-violation 'continue "too many arguments" x))
3121 (_
3122 #'(lambda ()
3123 (abort-to-prompt continue-tag))))))
3124 (do () ((not cond) #f) body ...))
3125 (lambda (k) (lp)))))
3126 (lambda (k . args)
3127 (if (null? args)
3128 #t
3129 (apply values args)))))))))
3130
3131
3132 \f
3133
3134 ;;; {Module System Macros}
3135 ;;;
3136
3137 ;; Return a list of expressions that evaluate to the appropriate
3138 ;; arguments for resolve-interface according to SPEC.
3139
3140 (eval-when (compile)
3141 (if (memq 'prefix (read-options))
3142 (error "boot-9 must be compiled with #:kw, not :kw")))
3143
3144 (define (keyword-like-symbol->keyword sym)
3145 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3146
3147 (define-syntax define-module
3148 (lambda (x)
3149 (define (keyword-like? stx)
3150 (let ((dat (syntax->datum stx)))
3151 (and (symbol? dat)
3152 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3153 (define (->keyword sym)
3154 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3155
3156 (define (parse-iface args)
3157 (let loop ((in args) (out '()))
3158 (syntax-case in ()
3159 (() (reverse! out))
3160 ;; The user wanted #:foo, but wrote :foo. Fix it.
3161 ((sym . in) (keyword-like? #'sym)
3162 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3163 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3164 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3165 ((#:renamer renamer . in)
3166 (loop #'in (cons* #',renamer #:renamer out)))
3167 ((kw val . in)
3168 (loop #'in (cons* #'val #'kw out))))))
3169
3170 (define (parse args imp exp rex rep aut)
3171 ;; Just quote everything except #:use-module and #:use-syntax. We
3172 ;; need to know about all arguments regardless since we want to turn
3173 ;; symbols that look like keywords into real keywords, and the
3174 ;; keyword args in a define-module form are not regular
3175 ;; (i.e. no-backtrace doesn't take a value).
3176 (syntax-case args ()
3177 (()
3178 (let ((imp (if (null? imp) '() #`(#:imports `#,imp)))
3179 (exp (if (null? exp) '() #`(#:exports '#,exp)))
3180 (rex (if (null? rex) '() #`(#:re-exports '#,rex)))
3181 (rep (if (null? rep) '() #`(#:replacements '#,rep)))
3182 (aut (if (null? aut) '() #`(#:autoloads '#,aut))))
3183 #`(#,@imp #,@exp #,@rex #,@rep #,@aut)))
3184 ;; The user wanted #:foo, but wrote :foo. Fix it.
3185 ((sym . args) (keyword-like? #'sym)
3186 (parse #`(#,(->keyword (syntax->datum #'sym)) . args)
3187 imp exp rex rep aut))
3188 ((kw . args) (not (keyword? (syntax->datum #'kw)))
3189 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3190 ((#:no-backtrace . args)
3191 ;; Ignore this one.
3192 (parse #'args imp exp rex rep aut))
3193 ((#:pure . args)
3194 #`(#:pure #t . #,(parse #'args imp exp rex rep aut)))
3195 ((kw)
3196 (syntax-violation 'define-module "keyword arg without value" x #'kw))
3197 ((#:version (v ...) . args)
3198 #`(#:version '(v ...) . #,(parse #'args imp exp rex rep aut)))
3199 ((#:duplicates (d ...) . args)
3200 #`(#:duplicates '(d ...) . #,(parse #'args imp exp rex rep aut)))
3201 ((#:filename f . args)
3202 #`(#:filename 'f . #,(parse #'args imp exp rex rep aut)))
3203 ((#:use-module (name name* ...) . args)
3204 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3205 (parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut))
3206 ((#:use-syntax (name name* ...) . args)
3207 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3208 #`(#:transformer '(name name* ...)
3209 . #,(parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut)))
3210 ((#:use-module ((name name* ...) arg ...) . args)
3211 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3212 (parse #'args
3213 #`(#,@imp ((name name* ...) #,@(parse-iface #'(arg ...))))
3214 exp rex rep aut))
3215 ((#:export (ex ...) . args)
3216 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3217 ((#:export-syntax (ex ...) . args)
3218 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3219 ((#:re-export (re ...) . args)
3220 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3221 ((#:re-export-syntax (re ...) . args)
3222 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3223 ((#:replace (r ...) . args)
3224 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3225 ((#:replace-syntax (r ...) . args)
3226 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3227 ((#:autoload name bindings . args)
3228 (parse #'args imp exp rex rep #`(#,@aut name bindings)))
3229 ((kw val . args)
3230 (syntax-violation 'define-module "unknown keyword or bad argument"
3231 #'kw #'val))))
3232
3233 (syntax-case x ()
3234 ((_ (name name* ...) arg ...)
3235 (and-map symbol? (syntax->datum #'(name name* ...)))
3236 (with-syntax (((quoted-arg ...)
3237 (parse #'(arg ...) '() '() '() '() '()))
3238 ;; Ideally the filename is either a string or #f;
3239 ;; this hack is to work around a case in which
3240 ;; port-filename returns a symbol (`socket') for
3241 ;; sockets.
3242 (filename (let ((f (assq-ref (or (syntax-source x) '())
3243 'filename)))
3244 (and (string? f) f))))
3245 #'(eval-when (eval load compile expand)
3246 (let ((m (define-module* '(name name* ...)
3247 #:filename filename quoted-arg ...)))
3248 (set-current-module m)
3249 m)))))))
3250
3251 ;; The guts of the use-modules macro. Add the interfaces of the named
3252 ;; modules to the use-list of the current module, in order.
3253
3254 ;; This function is called by "modules.c". If you change it, be sure
3255 ;; to change scm_c_use_module as well.
3256
3257 (define (process-use-modules module-interface-args)
3258 (let ((interfaces (map (lambda (mif-args)
3259 (or (apply resolve-interface mif-args)
3260 (error "no such module" mif-args)))
3261 module-interface-args)))
3262 (call-with-deferred-observers
3263 (lambda ()
3264 (module-use-interfaces! (current-module) interfaces)))))
3265
3266 (define-syntax use-modules
3267 (lambda (x)
3268 (define (keyword-like? stx)
3269 (let ((dat (syntax->datum stx)))
3270 (and (symbol? dat)
3271 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3272 (define (->keyword sym)
3273 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3274
3275 (define (quotify-iface args)
3276 (let loop ((in args) (out '()))
3277 (syntax-case in ()
3278 (() (reverse! out))
3279 ;; The user wanted #:foo, but wrote :foo. Fix it.
3280 ((sym . in) (keyword-like? #'sym)
3281 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3282 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3283 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3284 ((#:renamer renamer . in)
3285 (loop #'in (cons* #'renamer #:renamer out)))
3286 ((kw val . in)
3287 (loop #'in (cons* #''val #'kw out))))))
3288
3289 (define (quotify specs)
3290 (let lp ((in specs) (out '()))
3291 (syntax-case in ()
3292 (() (reverse out))
3293 (((name name* ...) . in)
3294 (and-map symbol? (syntax->datum #'(name name* ...)))
3295 (lp #'in (cons #''((name name* ...)) out)))
3296 ((((name name* ...) arg ...) . in)
3297 (and-map symbol? (syntax->datum #'(name name* ...)))
3298 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
3299 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
3300 out)))))))
3301
3302 (syntax-case x ()
3303 ((_ spec ...)
3304 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
3305 #'(eval-when (eval load compile expand)
3306 (process-use-modules (list quoted-args ...))
3307 *unspecified*))))))
3308
3309 (define-syntax-rule (use-syntax spec ...)
3310 (begin
3311 (eval-when (eval load compile expand)
3312 (issue-deprecation-warning
3313 "`use-syntax' is deprecated. Please contact guile-devel for more info."))
3314 (use-modules spec ...)))
3315
3316 (include-from-path "ice-9/r6rs-libraries")
3317
3318 (define-syntax-rule (define-private foo bar)
3319 (define foo bar))
3320
3321 (define-syntax define-public
3322 (syntax-rules ()
3323 ((_ (name . args) . body)
3324 (define-public name (lambda args . body)))
3325 ((_ name val)
3326 (begin
3327 (define name val)
3328 (export name)))))
3329
3330 (define-syntax-rule (defmacro-public name args body ...)
3331 (begin
3332 (defmacro name args body ...)
3333 (export-syntax name)))
3334
3335 ;; And now for the most important macro.
3336 (define-syntax-rule (λ formals body ...)
3337 (lambda formals body ...))
3338
3339 \f
3340 ;; Export a local variable
3341
3342 ;; This function is called from "modules.c". If you change it, be
3343 ;; sure to update "modules.c" as well.
3344
3345 (define (module-export! m names)
3346 (let ((public-i (module-public-interface m)))
3347 (for-each (lambda (name)
3348 (let* ((internal-name (if (pair? name) (car name) name))
3349 (external-name (if (pair? name) (cdr name) name))
3350 (var (module-ensure-local-variable! m internal-name)))
3351 (module-add! public-i external-name var)))
3352 names)))
3353
3354 (define (module-replace! m names)
3355 (let ((public-i (module-public-interface m)))
3356 (for-each (lambda (name)
3357 (let* ((internal-name (if (pair? name) (car name) name))
3358 (external-name (if (pair? name) (cdr name) name))
3359 (var (module-ensure-local-variable! m internal-name)))
3360 ;; FIXME: use a bit on variables instead of object
3361 ;; properties.
3362 (set-object-property! var 'replace #t)
3363 (module-add! public-i external-name var)))
3364 names)))
3365
3366 ;; Export all local variables from a module
3367 ;;
3368 (define (module-export-all! mod)
3369 (define (fresh-interface!)
3370 (let ((iface (make-module)))
3371 (set-module-name! iface (module-name mod))
3372 (set-module-version! iface (module-version mod))
3373 (set-module-kind! iface 'interface)
3374 (set-module-public-interface! mod iface)
3375 iface))
3376 (let ((iface (or (module-public-interface mod)
3377 (fresh-interface!))))
3378 (set-module-obarray! iface (module-obarray mod))))
3379
3380 ;; Re-export a imported variable
3381 ;;
3382 (define (module-re-export! m names)
3383 (let ((public-i (module-public-interface m)))
3384 (for-each (lambda (name)
3385 (let* ((internal-name (if (pair? name) (car name) name))
3386 (external-name (if (pair? name) (cdr name) name))
3387 (var (module-variable m internal-name)))
3388 (cond ((not var)
3389 (error "Undefined variable:" internal-name))
3390 ((eq? var (module-local-variable m internal-name))
3391 (error "re-exporting local variable:" internal-name))
3392 (else
3393 (module-add! public-i external-name var)))))
3394 names)))
3395
3396 (define-syntax-rule (export name ...)
3397 (eval-when (eval load compile expand)
3398 (call-with-deferred-observers
3399 (lambda ()
3400 (module-export! (current-module) '(name ...))))))
3401
3402 (define-syntax-rule (re-export name ...)
3403 (eval-when (eval load compile expand)
3404 (call-with-deferred-observers
3405 (lambda ()
3406 (module-re-export! (current-module) '(name ...))))))
3407
3408 (define-syntax-rule (export! name ...)
3409 (eval-when (eval load compile expand)
3410 (call-with-deferred-observers
3411 (lambda ()
3412 (module-replace! (current-module) '(name ...))))))
3413
3414 (define-syntax-rule (export-syntax name ...)
3415 (export name ...))
3416
3417 (define-syntax-rule (re-export-syntax name ...)
3418 (re-export name ...))
3419
3420 \f
3421
3422 ;;; {Parameters}
3423 ;;;
3424
3425 (define* (make-mutable-parameter init #:optional (converter identity))
3426 (let ((fluid (make-fluid (converter init))))
3427 (case-lambda
3428 (() (fluid-ref fluid))
3429 ((val) (fluid-set! fluid (converter val))))))
3430
3431
3432 \f
3433
3434 ;;; {Handling of duplicate imported bindings}
3435 ;;;
3436
3437 ;; Duplicate handlers take the following arguments:
3438 ;;
3439 ;; module importing module
3440 ;; name conflicting name
3441 ;; int1 old interface where name occurs
3442 ;; val1 value of binding in old interface
3443 ;; int2 new interface where name occurs
3444 ;; val2 value of binding in new interface
3445 ;; var previous resolution or #f
3446 ;; val value of previous resolution
3447 ;;
3448 ;; A duplicate handler can take three alternative actions:
3449 ;;
3450 ;; 1. return #f => leave responsibility to next handler
3451 ;; 2. exit with an error
3452 ;; 3. return a variable resolving the conflict
3453 ;;
3454
3455 (define duplicate-handlers
3456 (let ((m (make-module 7)))
3457
3458 (define (check module name int1 val1 int2 val2 var val)
3459 (scm-error 'misc-error
3460 #f
3461 "~A: `~A' imported from both ~A and ~A"
3462 (list (module-name module)
3463 name
3464 (module-name int1)
3465 (module-name int2))
3466 #f))
3467
3468 (define (warn module name int1 val1 int2 val2 var val)
3469 (format (current-warning-port)
3470 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3471 (module-name module)
3472 name
3473 (module-name int1)
3474 (module-name int2))
3475 #f)
3476
3477 (define (replace module name int1 val1 int2 val2 var val)
3478 (let ((old (or (and var (object-property var 'replace) var)
3479 (module-variable int1 name)))
3480 (new (module-variable int2 name)))
3481 (if (object-property old 'replace)
3482 (and (or (eq? old new)
3483 (not (object-property new 'replace)))
3484 old)
3485 (and (object-property new 'replace)
3486 new))))
3487
3488 (define (warn-override-core module name int1 val1 int2 val2 var val)
3489 (and (eq? int1 the-scm-module)
3490 (begin
3491 (format (current-warning-port)
3492 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3493 (module-name module)
3494 (module-name int2)
3495 name)
3496 (module-local-variable int2 name))))
3497
3498 (define (first module name int1 val1 int2 val2 var val)
3499 (or var (module-local-variable int1 name)))
3500
3501 (define (last module name int1 val1 int2 val2 var val)
3502 (module-local-variable int2 name))
3503
3504 (define (noop module name int1 val1 int2 val2 var val)
3505 #f)
3506
3507 (set-module-name! m 'duplicate-handlers)
3508 (set-module-kind! m 'interface)
3509 (module-define! m 'check check)
3510 (module-define! m 'warn warn)
3511 (module-define! m 'replace replace)
3512 (module-define! m 'warn-override-core warn-override-core)
3513 (module-define! m 'first first)
3514 (module-define! m 'last last)
3515 (module-define! m 'merge-generics noop)
3516 (module-define! m 'merge-accessors noop)
3517 m))
3518
3519 (define (lookup-duplicates-handlers handler-names)
3520 (and handler-names
3521 (map (lambda (handler-name)
3522 (or (module-symbol-local-binding
3523 duplicate-handlers handler-name #f)
3524 (error "invalid duplicate handler name:"
3525 handler-name)))
3526 (if (list? handler-names)
3527 handler-names
3528 (list handler-names)))))
3529
3530 (define default-duplicate-binding-procedures
3531 (make-mutable-parameter #f))
3532
3533 (define default-duplicate-binding-handler
3534 (make-mutable-parameter '(replace warn-override-core warn last)
3535 (lambda (handler-names)
3536 (default-duplicate-binding-procedures
3537 (lookup-duplicates-handlers handler-names))
3538 handler-names)))
3539
3540 \f
3541
3542 ;;; {`load'.}
3543 ;;;
3544 ;;; Load is tricky when combined with relative paths, compilation, and
3545 ;;; the file system. If a path is relative, what is it relative to? The
3546 ;;; path of the source file at the time it was compiled? The path of
3547 ;;; the compiled file? What if both or either were installed? And how
3548 ;;; do you get that information? Tricky, I say.
3549 ;;;
3550 ;;; To get around all of this, we're going to do something nasty, and
3551 ;;; turn `load' into a macro. That way it can know the path of the
3552 ;;; source file with respect to which it was invoked, so it can resolve
3553 ;;; relative paths with respect to the original source path.
3554 ;;;
3555 ;;; There is an exception, and that is that if the source file was in
3556 ;;; the load path when it was compiled, instead of looking up against
3557 ;;; the absolute source location, we load-from-path against the relative
3558 ;;; source location.
3559 ;;;
3560
3561 (define %auto-compilation-options
3562 ;; Default `compile-file' option when auto-compiling.
3563 '(#:warnings (unbound-variable arity-mismatch format)))
3564
3565 (define* (load-in-vicinity dir path #:optional reader)
3566 (define (canonical->suffix canon)
3567 (cond
3568 ((string-prefix? "/" canon) canon)
3569 ((and (> (string-length canon) 2)
3570 (eqv? (string-ref canon 1) #\:))
3571 ;; Paths like C:... transform to /C...
3572 (string-append "/" (substring canon 0 1) (substring canon 2)))
3573 (else canon)))
3574
3575 ;; Returns the .go file corresponding to `name'. Does not search load
3576 ;; paths, only the fallback path. If the .go file is missing or out of
3577 ;; date, and auto-compilation is enabled, will try auto-compilation, just
3578 ;; as primitive-load-path does internally. primitive-load is
3579 ;; unaffected. Returns #f if auto-compilation failed or was disabled.
3580 ;;
3581 ;; NB: Unless we need to compile the file, this function should not cause
3582 ;; (system base compile) to be loaded up. For that reason compiled-file-name
3583 ;; partially duplicates functionality from (system base compile).
3584 ;;
3585 (define (compiled-file-name canon-path)
3586 ;; FIXME: would probably be better just to append SHA1(canon-path)
3587 ;; to the %compile-fallback-path, to avoid deep directory stats.
3588 (and %compile-fallback-path
3589 (string-append
3590 %compile-fallback-path
3591 (canonical->suffix canon-path)
3592 (cond ((or (null? %load-compiled-extensions)
3593 (string-null? (car %load-compiled-extensions)))
3594 (warn "invalid %load-compiled-extensions"
3595 %load-compiled-extensions)
3596 ".go")
3597 (else (car %load-compiled-extensions))))))
3598
3599 (define (fresh-compiled-file-name name go-path)
3600 (catch #t
3601 (lambda ()
3602 (let* ((scmstat (stat name))
3603 (gostat (and (not %fresh-auto-compile)
3604 (stat go-path #f))))
3605 (if (and gostat
3606 (or (> (stat:mtime gostat) (stat:mtime scmstat))
3607 (and (= (stat:mtime gostat) (stat:mtime scmstat))
3608 (>= (stat:mtimensec gostat)
3609 (stat:mtimensec scmstat)))))
3610 go-path
3611 (begin
3612 (if gostat
3613 (format (current-warning-port)
3614 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
3615 name go-path))
3616 (cond
3617 (%load-should-auto-compile
3618 (%warn-auto-compilation-enabled)
3619 (format (current-warning-port) ";;; compiling ~a\n" name)
3620 (let ((cfn
3621 ((module-ref
3622 (resolve-interface '(system base compile))
3623 'compile-file)
3624 name
3625 #:opts %auto-compilation-options
3626 #:env (current-module))))
3627 (format (current-warning-port) ";;; compiled ~a\n" cfn)
3628 cfn))
3629 (else #f))))))
3630 (lambda (k . args)
3631 (format (current-warning-port)
3632 ";;; WARNING: compilation of ~a failed:\n" name)
3633 (for-each (lambda (s)
3634 (if (not (string-null? s))
3635 (format (current-warning-port) ";;; ~a\n" s)))
3636 (string-split
3637 (call-with-output-string
3638 (lambda (port) (print-exception port #f k args)))
3639 #\newline))
3640 #f)))
3641
3642 (define (absolute-path? path)
3643 (string-prefix? "/" path))
3644
3645 (define (load-absolute abs-path)
3646 (let ((cfn (let ((canon (false-if-exception (canonicalize-path abs-path))))
3647 (and canon
3648 (let ((go-path (compiled-file-name canon)))
3649 (and go-path
3650 (fresh-compiled-file-name abs-path go-path)))))))
3651 (if cfn
3652 (begin
3653 (if %load-hook
3654 (%load-hook abs-path))
3655 (load-compiled cfn))
3656 (start-stack 'load-stack
3657 (primitive-load abs-path)))))
3658
3659 (save-module-excursion
3660 (lambda ()
3661 (with-fluids ((current-reader reader)
3662 (%file-port-name-canonicalization 'relative))
3663 (cond
3664 ((or (absolute-path? path))
3665 (load-absolute path))
3666 ((absolute-path? dir)
3667 (load-absolute (in-vicinity dir path)))
3668 (else
3669 (load-from-path (in-vicinity dir path))))))))
3670
3671 (define-syntax load
3672 (make-variable-transformer
3673 (lambda (x)
3674 (let* ((src (syntax-source x))
3675 (file (and src (assq-ref src 'filename)))
3676 (dir (and (string? file) (dirname file))))
3677 (syntax-case x ()
3678 ((_ arg ...)
3679 #`(load-in-vicinity #,(or dir #'(getcwd)) arg ...))
3680 (id
3681 (identifier? #'id)
3682 #`(lambda args
3683 (apply load-in-vicinity #,(or dir #'(getcwd)) args))))))))
3684
3685 \f
3686
3687 ;;; {`cond-expand' for SRFI-0 support.}
3688 ;;;
3689 ;;; This syntactic form expands into different commands or
3690 ;;; definitions, depending on the features provided by the Scheme
3691 ;;; implementation.
3692 ;;;
3693 ;;; Syntax:
3694 ;;;
3695 ;;; <cond-expand>
3696 ;;; --> (cond-expand <cond-expand-clause>+)
3697 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3698 ;;; <cond-expand-clause>
3699 ;;; --> (<feature-requirement> <command-or-definition>*)
3700 ;;; <feature-requirement>
3701 ;;; --> <feature-identifier>
3702 ;;; | (and <feature-requirement>*)
3703 ;;; | (or <feature-requirement>*)
3704 ;;; | (not <feature-requirement>)
3705 ;;; <feature-identifier>
3706 ;;; --> <a symbol which is the name or alias of a SRFI>
3707 ;;;
3708 ;;; Additionally, this implementation provides the
3709 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3710 ;;; determine the implementation type and the supported standard.
3711 ;;;
3712 ;;; Currently, the following feature identifiers are supported:
3713 ;;;
3714 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3715 ;;;
3716 ;;; Remember to update the features list when adding more SRFIs.
3717 ;;;
3718
3719 (define %cond-expand-features
3720 ;; Adjust the above comment when changing this.
3721 '(guile
3722 guile-2
3723 r5rs
3724 srfi-0 ;; cond-expand itself
3725 srfi-4 ;; homogenous numeric vectors
3726 srfi-6 ;; open-input-string etc, in the guile core
3727 srfi-13 ;; string library
3728 srfi-14 ;; character sets
3729 srfi-23 ;; `error` procedure
3730 srfi-39 ;; parameterize
3731 srfi-55 ;; require-extension
3732 srfi-61 ;; general cond clause
3733 ))
3734
3735 ;; This table maps module public interfaces to the list of features.
3736 ;;
3737 (define %cond-expand-table (make-hash-table 31))
3738
3739 ;; Add one or more features to the `cond-expand' feature list of the
3740 ;; module `module'.
3741 ;;
3742 (define (cond-expand-provide module features)
3743 (let ((mod (module-public-interface module)))
3744 (and mod
3745 (hashq-set! %cond-expand-table mod
3746 (append (hashq-ref %cond-expand-table mod '())
3747 features)))))
3748
3749 (define-syntax cond-expand
3750 (lambda (x)
3751 (define (module-has-feature? mod sym)
3752 (or-map (lambda (mod)
3753 (memq sym (hashq-ref %cond-expand-table mod '())))
3754 (module-uses mod)))
3755
3756 (define (condition-matches? condition)
3757 (syntax-case condition (and or not)
3758 ((and c ...)
3759 (and-map condition-matches? #'(c ...)))
3760 ((or c ...)
3761 (or-map condition-matches? #'(c ...)))
3762 ((not c)
3763 (if (condition-matches? #'c) #f #t))
3764 (c
3765 (identifier? #'c)
3766 (let ((sym (syntax->datum #'c)))
3767 (if (memq sym %cond-expand-features)
3768 #t
3769 (module-has-feature? (current-module) sym))))))
3770
3771 (define (match clauses alternate)
3772 (syntax-case clauses ()
3773 (((condition form ...) . rest)
3774 (if (condition-matches? #'condition)
3775 #'(begin form ...)
3776 (match #'rest alternate)))
3777 (() (alternate))))
3778
3779 (syntax-case x (else)
3780 ((_ clause ... (else form ...))
3781 (match #'(clause ...)
3782 (lambda ()
3783 #'(begin form ...))))
3784 ((_ clause ...)
3785 (match #'(clause ...)
3786 (lambda ()
3787 (syntax-violation 'cond-expand "unfulfilled cond-expand" x)))))))
3788
3789 ;; This procedure gets called from the startup code with a list of
3790 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3791 ;;
3792 (define (use-srfis srfis)
3793 (process-use-modules
3794 (map (lambda (num)
3795 (list (list 'srfi (string->symbol
3796 (string-append "srfi-" (number->string num))))))
3797 srfis)))
3798
3799 \f
3800
3801 ;;; srfi-55: require-extension
3802 ;;;
3803
3804 (define-syntax require-extension
3805 (lambda (x)
3806 (syntax-case x (srfi)
3807 ((_ (srfi n ...))
3808 (and-map integer? (syntax->datum #'(n ...)))
3809 (with-syntax
3810 (((srfi-n ...)
3811 (map (lambda (n)
3812 (datum->syntax x (symbol-append 'srfi- n)))
3813 (map string->symbol
3814 (map number->string (syntax->datum #'(n ...)))))))
3815 #'(use-modules (srfi srfi-n) ...)))
3816 ((_ (type arg ...))
3817 (identifier? #'type)
3818 (syntax-violation 'require-extension "Not a recognized extension type"
3819 x)))))
3820
3821 \f
3822 ;;; Defining transparently inlinable procedures
3823 ;;;
3824
3825 (define-syntax define-inlinable
3826 ;; Define a macro and a procedure such that direct calls are inlined, via
3827 ;; the macro expansion, whereas references in non-call contexts refer to
3828 ;; the procedure. Inspired by the `define-integrable' macro by Dybvig et al.
3829 (lambda (x)
3830 ;; Use a space in the prefix to avoid potential -Wunused-toplevel
3831 ;; warning
3832 (define prefix (string->symbol "% "))
3833 (define (make-procedure-name name)
3834 (datum->syntax name
3835 (symbol-append prefix (syntax->datum name)
3836 '-procedure)))
3837
3838 (syntax-case x ()
3839 ((_ (name formals ...) body ...)
3840 (identifier? #'name)
3841 (with-syntax ((proc-name (make-procedure-name #'name))
3842 ((args ...) (generate-temporaries #'(formals ...))))
3843 #`(begin
3844 (define (proc-name formals ...)
3845 (syntax-parameterize ((name (identifier-syntax proc-name)))
3846 body ...))
3847 (define-syntax-parameter name
3848 (lambda (x)
3849 (syntax-case x ()
3850 ((_ args ...)
3851 #'((syntax-parameterize ((name (identifier-syntax proc-name)))
3852 (lambda (formals ...)
3853 body ...))
3854 args ...))
3855 (_
3856 (identifier? x)
3857 #'proc-name))))))))))
3858
3859 \f
3860
3861 (define using-readline?
3862 (let ((using-readline? (make-fluid)))
3863 (make-procedure-with-setter
3864 (lambda () (fluid-ref using-readline?))
3865 (lambda (v) (fluid-set! using-readline? v)))))
3866
3867 \f
3868
3869 ;;; {Deprecated stuff}
3870 ;;;
3871
3872 (begin-deprecated
3873 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3874
3875 \f
3876
3877 ;;; SRFI-4 in the default environment. FIXME: we should figure out how
3878 ;;; to deprecate this.
3879 ;;;
3880
3881 ;; FIXME:
3882 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3883
3884 \f
3885
3886 ;;; A few identifiers that need to be defined in this file are really
3887 ;;; internal implementation details. We shove them off into internal
3888 ;;; modules, removing them from the (guile) module.
3889 ;;;
3890
3891 (define-module (system syntax))
3892
3893 (let ()
3894 (define (steal-bindings! from to ids)
3895 (for-each
3896 (lambda (sym)
3897 (let ((v (module-local-variable from sym)))
3898 (module-remove! from sym)
3899 (module-add! to sym v)))
3900 ids)
3901 (module-export! to ids))
3902
3903 (steal-bindings! the-root-module (resolve-module '(system syntax))
3904 '(syntax-local-binding
3905 syntax-module
3906 syntax-locally-bound-identifiers
3907 syntax-session-id)))
3908
3909
3910 \f
3911
3912 ;;; Place the user in the guile-user module.
3913 ;;;
3914
3915 ;; Set filename to #f to prevent reload.
3916 (define-module (guile-user)
3917 #:autoload (system base compile) (compile compile-file)
3918 #:filename #f)
3919
3920 ;; Remain in the `(guile)' module at compilation-time so that the
3921 ;; `-Wunused-toplevel' warning works as expected.
3922 (eval-when (compile) (set-current-module the-root-module))
3923
3924 ;;; boot-9.scm ends here