Merge commit '58147d67806e1f54c447d7eabac35b1a5086c3a6'
[bpt/guile.git] / module / language / tree-il / fix-letrec.scm
1 ;;; transformation of letrec into simpler forms
2
3 ;; Copyright (C) 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4
5 ;;;; This library is free software; you can redistribute it and/or
6 ;;;; modify it under the terms of the GNU Lesser General Public
7 ;;;; License as published by the Free Software Foundation; either
8 ;;;; version 3 of the License, or (at your option) any later version.
9 ;;;;
10 ;;;; This library is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 ;;;; Lesser General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU Lesser General Public
16 ;;;; License along with this library; if not, write to the Free Software
17 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18
19 (define-module (language tree-il fix-letrec)
20 #:use-module (system base syntax)
21 #:use-module (srfi srfi-1)
22 #:use-module (srfi srfi-11)
23 #:use-module (language tree-il)
24 #:use-module (language tree-il effects)
25 #:export (fix-letrec))
26
27 ;; For a detailed discussion, see "Fixing Letrec: A Faithful Yet
28 ;; Efficient Implementation of Scheme's Recursive Binding Construct", by
29 ;; Oscar Waddell, Dipanwita Sarkar, and R. Kent Dybvig.
30
31 (define fix-fold
32 (make-tree-il-folder unref ref set simple lambda complex))
33
34 (define (simple-expression? x bound-vars simple-primcall?)
35 (record-case x
36 ((<void>) #t)
37 ((<const>) #t)
38 ((<lexical-ref> gensym)
39 (not (memq gensym bound-vars)))
40 ((<conditional> test consequent alternate)
41 (and (simple-expression? test bound-vars simple-primcall?)
42 (simple-expression? consequent bound-vars simple-primcall?)
43 (simple-expression? alternate bound-vars simple-primcall?)))
44 ((<seq> head tail)
45 (and (simple-expression? head bound-vars simple-primcall?)
46 (simple-expression? tail bound-vars simple-primcall?)))
47 ((<primcall> name args)
48 (and (simple-primcall? x)
49 (and-map (lambda (x)
50 (simple-expression? x bound-vars simple-primcall?))
51 args)))
52 (else #f)))
53
54 (define (partition-vars x)
55 (let-values
56 (((unref ref set simple lambda* complex)
57 (fix-fold x
58 (lambda (x unref ref set simple lambda* complex)
59 (record-case x
60 ((<lexical-ref> gensym)
61 (values (delq gensym unref)
62 (lset-adjoin eq? ref gensym)
63 set
64 simple
65 lambda*
66 complex))
67 ((<lexical-set> gensym)
68 (values unref
69 ref
70 (lset-adjoin eq? set gensym)
71 simple
72 lambda*
73 complex))
74 ((<letrec> gensyms)
75 (values (append gensyms unref)
76 ref
77 set
78 simple
79 lambda*
80 complex))
81 ((<let> gensyms)
82 (values (append gensyms unref)
83 ref
84 set
85 simple
86 lambda*
87 complex))
88 (else
89 (values unref ref set simple lambda* complex))))
90 (lambda (x unref ref set simple lambda* complex)
91 (record-case x
92 ((<letrec> in-order? (orig-gensyms gensyms) vals)
93 (define compute-effects
94 (make-effects-analyzer (lambda (x) (memq x set))))
95 (define (effect-free-primcall? x)
96 (let ((effects (compute-effects x)))
97 (effect-free?
98 (exclude-effects effects (logior &allocation
99 &type-check)))))
100 (define (effect+exception-free-primcall? x)
101 (let ((effects (compute-effects x)))
102 (effect-free?
103 (exclude-effects effects &allocation))))
104 (let lp ((gensyms orig-gensyms) (vals vals)
105 (s '()) (l '()) (c '()))
106 (cond
107 ((null? gensyms)
108 ;; Unreferenced complex vars are still
109 ;; complex for letrec*. We need to update
110 ;; our algorithm to "Fixing letrec reloaded"
111 ;; to fix this.
112 (values (if in-order?
113 (lset-difference eq? unref c)
114 unref)
115 ref
116 set
117 (append s simple)
118 (append l lambda*)
119 (append c complex)))
120 ((memq (car gensyms) unref)
121 ;; See above note about unref and letrec*.
122 (if (and in-order?
123 (not (lambda? (car vals)))
124 (not (simple-expression?
125 (car vals) orig-gensyms
126 effect+exception-free-primcall?)))
127 (lp (cdr gensyms) (cdr vals)
128 s l (cons (car gensyms) c))
129 (lp (cdr gensyms) (cdr vals)
130 s l c)))
131 ((memq (car gensyms) set)
132 (lp (cdr gensyms) (cdr vals)
133 s l (cons (car gensyms) c)))
134 ((lambda? (car vals))
135 (lp (cdr gensyms) (cdr vals)
136 s (cons (car gensyms) l) c))
137 ((simple-expression?
138 (car vals) orig-gensyms
139 (if in-order?
140 effect+exception-free-primcall?
141 effect-free-primcall?))
142 ;; For letrec*, we can't consider e.g. `car' to be
143 ;; "simple", as it could raise an exception. Hence
144 ;; effect+exception-free-primitive? above.
145 (lp (cdr gensyms) (cdr vals)
146 (cons (car gensyms) s) l c))
147 (else
148 (lp (cdr gensyms) (cdr vals)
149 s l (cons (car gensyms) c))))))
150 ((<let> (orig-gensyms gensyms) vals)
151 ;; The point is to compile let-bound lambdas as
152 ;; efficiently as we do letrec-bound lambdas, so
153 ;; we use the same algorithm for analyzing the
154 ;; gensyms. There is no problem recursing into the
155 ;; bindings after the let, because all variables
156 ;; have been renamed.
157 (let lp ((gensyms orig-gensyms) (vals vals)
158 (s '()) (l '()) (c '()))
159 (cond
160 ((null? gensyms)
161 (values unref
162 ref
163 set
164 (append s simple)
165 (append l lambda*)
166 (append c complex)))
167 ((memq (car gensyms) unref)
168 (lp (cdr gensyms) (cdr vals)
169 s l c))
170 ((memq (car gensyms) set)
171 (lp (cdr gensyms) (cdr vals)
172 s l (cons (car gensyms) c)))
173 ((and (lambda? (car vals))
174 (not (memq (car gensyms) set)))
175 (lp (cdr gensyms) (cdr vals)
176 s (cons (car gensyms) l) c))
177 ;; There is no difference between simple and
178 ;; complex, for the purposes of let. Just lump
179 ;; them all into complex.
180 (else
181 (lp (cdr gensyms) (cdr vals)
182 s l (cons (car gensyms) c))))))
183 (else
184 (values unref ref set simple lambda* complex))))
185 '()
186 '()
187 '()
188 '()
189 '()
190 '())))
191 (values unref simple lambda* complex)))
192
193 (define (make-seq* src head tail)
194 (record-case head
195 ((<lambda>) tail)
196 ((<const>) tail)
197 ((<lexical-ref>) tail)
198 ((<void>) tail)
199 (else (make-seq src head tail))))
200
201 (define (list->seq* loc exps)
202 (if (null? (cdr exps))
203 (car exps)
204 (let lp ((exps (cdr exps)) (effects (list (car exps))))
205 (if (null? (cdr exps))
206 (make-seq* loc
207 (fold (lambda (exp tail) (make-seq* #f exp tail))
208 (car effects)
209 (cdr effects))
210 (car exps))
211 (lp (cdr exps) (cons (car exps) effects))))))
212
213 (define (fix-letrec x)
214 (let-values (((unref simple lambda* complex) (partition-vars x)))
215 (post-order
216 (lambda (x)
217 (record-case x
218
219 ;; Sets to unreferenced variables may be replaced by their
220 ;; expression, called for effect.
221 ((<lexical-set> gensym exp)
222 (if (memq gensym unref)
223 (make-seq* #f exp (make-void #f))
224 x))
225
226 ((<letrec> src in-order? names gensyms vals body)
227 (let ((binds (map list gensyms names vals)))
228 ;; The bindings returned by this function need to appear in the same
229 ;; order that they appear in the letrec.
230 (define (lookup set)
231 (let lp ((binds binds))
232 (cond
233 ((null? binds) '())
234 ((memq (caar binds) set)
235 (cons (car binds) (lp (cdr binds))))
236 (else (lp (cdr binds))))))
237 (let ((u (lookup unref))
238 (s (lookup simple))
239 (l (lookup lambda*))
240 (c (lookup complex)))
241 ;; Bind "simple" bindings, and locations for complex
242 ;; bindings.
243 (make-let
244 src
245 (append (map cadr s) (map cadr c))
246 (append (map car s) (map car c))
247 (append (map caddr s) (map (lambda (x) (make-void #f)) c))
248 ;; Bind lambdas using the fixpoint operator.
249 (make-fix
250 src (map cadr l) (map car l) (map caddr l)
251 (list->seq*
252 src
253 (append
254 ;; The right-hand-sides of the unreferenced
255 ;; bindings, for effect.
256 (map caddr u)
257 (cond
258 ((null? c)
259 ;; No complex bindings, just emit the body.
260 (list body))
261 (in-order?
262 ;; For letrec*, assign complex bindings in order, then the
263 ;; body.
264 (append
265 (map (lambda (c)
266 (make-lexical-set #f (cadr c) (car c)
267 (caddr c)))
268 c)
269 (list body)))
270 (else
271 ;; Otherwise for plain letrec, evaluate the "complex"
272 ;; bindings, in a `let' to indicate that order doesn't
273 ;; matter, and bind to their variables.
274 (list
275 (let ((tmps (map (lambda (x) (gensym)) c)))
276 (make-let
277 #f (map cadr c) tmps (map caddr c)
278 (list->seq
279 #f
280 (map (lambda (x tmp)
281 (make-lexical-set
282 #f (cadr x) (car x)
283 (make-lexical-ref #f (cadr x) tmp)))
284 c tmps))))
285 body))))))))))
286
287 ((<let> src names gensyms vals body)
288 (let ((binds (map list gensyms names vals)))
289 (define (lookup set)
290 (map (lambda (v) (assq v binds))
291 (lset-intersection eq? gensyms set)))
292 (let ((u (lookup unref))
293 (l (lookup lambda*))
294 (c (lookup complex)))
295 (list->seq*
296 src
297 (append
298 ;; unreferenced bindings, called for effect.
299 (map caddr u)
300 (list
301 ;; unassigned lambdas use fix.
302 (make-fix src (map cadr l) (map car l) (map caddr l)
303 ;; and the "complex" bindings.
304 (make-let src (map cadr c) (map car c) (map caddr c)
305 body))))))))
306
307 (else x)))
308 x)))
309
310 ;;; Local Variables:
311 ;;; eval: (put 'record-case 'scheme-indent-function 1)
312 ;;; End: