Optimize closures with only required and rest arguments in eval
[bpt/guile.git] / libguile / vm-engine.c
CommitLineData
27c7c630 1/* Copyright (C) 2001, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
a98cef7e 2 *
560b9c25 3 * This library is free software; you can redistribute it and/or
53befeb7
NJ
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
a98cef7e 7 *
53befeb7
NJ
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
560b9c25
AW
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
a98cef7e 12 *
560b9c25
AW
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
53befeb7
NJ
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
560b9c25 17 */
a98cef7e 18
510ca126
AW
19/* This file is included in vm.c multiple times. */
20
21
22/* Virtual Machine
23
24 This file contains two virtual machines. First, the old one -- the
25 one that is currently used, and corresponds to Guile 2.0. It's a
26 stack machine, meaning that most instructions pop their operands from
27 the top of the stack, and push results there too.
28
29 Following it is the new virtual machine. It's a register machine,
30 meaning that intructions address their operands by index, and store
31 results in indexed slots as well. Those slots are on the stack.
32 It's somewhat confusing to call it a register machine, given that the
33 values are on the stack. Perhaps it needs a new name.
34
35 Anyway, things are in a transitional state. We're going to try to
36 avoid munging the old VM very much while we flesh out the new one.
37 We're also going to try to make them interoperable, as much as
38 possible -- to have the old VM be able to call procedures for the new
39 VM, and vice versa. This should ease the bootstrapping process. */
40
41
42/* The old VM. */
43static SCM VM_NAME (SCM, SCM, SCM*, int);
44/* The new VM. */
45static SCM RTL_VM_NAME (SCM, SCM, SCM*, size_t);
46
6d14383e
AW
47
48#if (VM_ENGINE == SCM_VM_REGULAR_ENGINE)
ff3968c2 49# define VM_USE_HOOKS 0 /* Various hooks */
6d14383e 50#elif (VM_ENGINE == SCM_VM_DEBUG_ENGINE)
ff3968c2 51# define VM_USE_HOOKS 1
6d14383e 52#else
ff3968c2 53# error unknown debug engine VM_ENGINE
6d14383e 54#endif
a98cef7e 55
8dd6bfa7
AW
56/* Assign some registers by hand. There used to be a bigger list here,
57 but it was never tested, and in the case of x86-32, was a source of
58 compilation failures. It can be revived if it's useful, but my naive
59 hope is that simply annotating the locals with "register" will be a
60 sufficient hint to the compiler. */
eac12024 61#ifdef __GNUC__
8dd6bfa7 62# if defined __x86_64__
eac12024
AW
63/* GCC 4.6 chooses %rbp for IP_REG and %rbx for SP_REG, which works
64 well. Tell it to keep the jump table in a r12, which is
65 callee-saved. */
8dd6bfa7
AW
66# define JT_REG asm ("r12")
67# endif
eac12024
AW
68#endif
69
70#ifndef IP_REG
8dd6bfa7 71# define IP_REG
eac12024
AW
72#endif
73#ifndef SP_REG
8dd6bfa7 74# define SP_REG
eac12024
AW
75#endif
76#ifndef FP_REG
8dd6bfa7 77# define FP_REG
eac12024
AW
78#endif
79#ifndef JT_REG
8dd6bfa7 80# define JT_REG
eac12024
AW
81#endif
82
27c7c630
AW
83#define VM_ASSERT(condition, handler) \
84 do { \
85 if (SCM_UNLIKELY (!(condition))) \
86 { \
87 SYNC_ALL(); \
88 handler; \
89 } \
90 } while (0)
eac12024
AW
91
92#ifdef VM_ENABLE_ASSERTIONS
93# define ASSERT(condition) VM_ASSERT (condition, abort())
94#else
95# define ASSERT(condition)
96#endif
97
c850a0ff
AW
98#if VM_USE_HOOKS
99#define RUN_HOOK(h, args, n) \
100 do { \
101 if (SCM_UNLIKELY (vp->trace_level > 0)) \
102 { \
103 SYNC_REGISTER (); \
104 vm_dispatch_hook (vm, h, args, n); \
105 } \
106 } while (0)
107#else
108#define RUN_HOOK(h, args, n)
109#endif
110#define RUN_HOOK0(h) RUN_HOOK(h, NULL, 0)
111
112#define APPLY_HOOK() \
113 RUN_HOOK0 (SCM_VM_APPLY_HOOK)
114#define PUSH_CONTINUATION_HOOK() \
115 RUN_HOOK0 (SCM_VM_PUSH_CONTINUATION_HOOK)
116#define POP_CONTINUATION_HOOK(vals, n) \
117 RUN_HOOK (SCM_VM_POP_CONTINUATION_HOOK, vals, n)
118#define NEXT_HOOK() \
119 RUN_HOOK0 (SCM_VM_NEXT_HOOK)
120#define ABORT_CONTINUATION_HOOK(vals, n) \
121 RUN_HOOK (SCM_VM_ABORT_CONTINUATION_HOOK, vals, n)
122#define RESTORE_CONTINUATION_HOOK() \
123 RUN_HOOK0 (SCM_VM_RESTORE_CONTINUATION_HOOK)
124
125#define VM_HANDLE_INTERRUPTS \
126 SCM_ASYNC_TICK_WITH_CODE (current_thread, SYNC_REGISTER ())
127
128
129\f
eac12024
AW
130
131/* Cache the VM's instruction, stack, and frame pointer in local variables. */
132#define CACHE_REGISTER() \
133{ \
134 ip = vp->ip; \
135 sp = vp->sp; \
136 fp = vp->fp; \
137}
138
139/* Update the registers in VP, a pointer to the current VM. This must be done
140 at least before any GC invocation so that `vp->sp' is up-to-date and the
141 whole stack gets marked. */
142#define SYNC_REGISTER() \
143{ \
144 vp->ip = ip; \
145 vp->sp = sp; \
146 vp->fp = fp; \
147}
148
149/* FIXME */
150#define ASSERT_VARIABLE(x) \
27c7c630 151 VM_ASSERT (SCM_VARIABLEP (x), abort())
eac12024 152#define ASSERT_BOUND_VARIABLE(x) \
27c7c630
AW
153 VM_ASSERT (SCM_VARIABLEP (x) \
154 && !scm_is_eq (SCM_VARIABLE_REF (x), SCM_UNDEFINED), \
155 abort())
eac12024
AW
156
157#ifdef VM_ENABLE_PARANOID_ASSERTIONS
158#define CHECK_IP() \
159 do { if (ip < bp->base || ip - bp->base > bp->len) abort (); } while (0)
160#define ASSERT_ALIGNED_PROCEDURE() \
161 do { if ((scm_t_bits)bp % 8) abort (); } while (0)
162#define ASSERT_BOUND(x) \
27c7c630 163 VM_ASSERT (!scm_is_eq ((x), SCM_UNDEFINED), abort())
eac12024
AW
164#else
165#define CHECK_IP()
166#define ASSERT_ALIGNED_PROCEDURE()
167#define ASSERT_BOUND(x)
168#endif
169
eac12024
AW
170/* Cache the object table and free variables. */
171#define CACHE_PROGRAM() \
172{ \
173 if (bp != SCM_PROGRAM_DATA (program)) { \
174 bp = SCM_PROGRAM_DATA (program); \
175 ASSERT_ALIGNED_PROCEDURE (); \
176 if (SCM_I_IS_VECTOR (SCM_PROGRAM_OBJTABLE (program))) { \
177 objects = SCM_I_VECTOR_WELTS (SCM_PROGRAM_OBJTABLE (program)); \
eac12024
AW
178 } else { \
179 objects = NULL; \
eac12024
AW
180 } \
181 } \
182}
183
184#define SYNC_BEFORE_GC() \
185{ \
186 SYNC_REGISTER (); \
187}
188
189#define SYNC_ALL() \
190{ \
191 SYNC_REGISTER (); \
192}
193
194\f
195/*
196 * Error check
197 */
198
199/* Accesses to a program's object table. */
eac12024 200#define CHECK_OBJECT(_num)
eac12024 201#define CHECK_FREE_VARIABLE(_num)
eac12024
AW
202
203\f
eac12024
AW
204/*
205 * Stack operation
206 */
207
208#ifdef VM_ENABLE_STACK_NULLING
209# define CHECK_STACK_LEAKN(_n) ASSERT (!sp[_n]);
210# define CHECK_STACK_LEAK() CHECK_STACK_LEAKN(1)
211# define NULLSTACK(_n) { int __x = _n; CHECK_STACK_LEAKN (_n+1); while (__x > 0) sp[__x--] = NULL; }
212/* If you have a nonlocal exit in a pre-wind proc while invoking a continuation
213 inside a dynwind (phew!), the stack is fully rewound but vm_reset_stack for
214 that continuation doesn't have a chance to run. It's not important on a
215 semantic level, but it does mess up our stack nulling -- so this macro is to
216 fix that. */
217# define NULLSTACK_FOR_NONLOCAL_EXIT() if (vp->sp > sp) NULLSTACK (vp->sp - sp);
218#else
219# define CHECK_STACK_LEAKN(_n)
220# define CHECK_STACK_LEAK()
221# define NULLSTACK(_n)
222# define NULLSTACK_FOR_NONLOCAL_EXIT()
223#endif
224
225/* For this check, we don't use VM_ASSERT, because that leads to a
226 per-site SYNC_ALL, which is too much code growth. The real problem
227 of course is having to check for overflow all the time... */
228#define CHECK_OVERFLOW() \
229 do { if (SCM_UNLIKELY (sp >= stack_limit)) goto handle_overflow; } while (0)
230
231#ifdef VM_CHECK_UNDERFLOW
232#define PRE_CHECK_UNDERFLOW(N) \
233 VM_ASSERT (sp - (N) > SCM_FRAME_UPPER_ADDRESS (fp), vm_error_stack_underflow ())
234#define CHECK_UNDERFLOW() PRE_CHECK_UNDERFLOW (0)
235#else
236#define PRE_CHECK_UNDERFLOW(N) /* nop */
237#define CHECK_UNDERFLOW() /* nop */
238#endif
239
240
241#define PUSH(x) do { sp++; CHECK_OVERFLOW (); *sp = x; } while (0)
242#define DROP() do { sp--; CHECK_UNDERFLOW (); NULLSTACK (1); } while (0)
243#define DROPN(_n) do { sp -= (_n); CHECK_UNDERFLOW (); NULLSTACK (_n); } while (0)
244#define POP(x) do { PRE_CHECK_UNDERFLOW (1); x = *sp--; NULLSTACK (1); } while (0)
245#define POP2(x,y) do { PRE_CHECK_UNDERFLOW (2); x = *sp--; y = *sp--; NULLSTACK (2); } while (0)
246#define POP3(x,y,z) do { PRE_CHECK_UNDERFLOW (3); x = *sp--; y = *sp--; z = *sp--; NULLSTACK (3); } while (0)
247
eac12024
AW
248/* Pop the N objects on top of the stack and push a list that contains
249 them. */
250#define POP_LIST(n) \
251do \
252{ \
253 int i; \
254 SCM l = SCM_EOL, x; \
52182d52 255 SYNC_BEFORE_GC (); \
eac12024
AW
256 for (i = n; i; i--) \
257 { \
258 POP (x); \
52182d52 259 l = scm_cons (x, l); \
eac12024
AW
260 } \
261 PUSH (l); \
262} while (0)
263
264/* The opposite: push all of the elements in L onto the list. */
265#define PUSH_LIST(l, NILP) \
266do \
267{ \
268 for (; scm_is_pair (l); l = SCM_CDR (l)) \
269 PUSH (SCM_CAR (l)); \
270 VM_ASSERT (NILP (l), vm_error_improper_list (l)); \
271} while (0)
272
273\f
eac12024
AW
274/*
275 * Instruction operation
276 */
277
278#define FETCH() (*ip++)
279#define FETCH_LENGTH(len) do { len=*ip++; len<<=8; len+=*ip++; len<<=8; len+=*ip++; } while (0)
280
281#undef NEXT_JUMP
282#ifdef HAVE_LABELS_AS_VALUES
27c7c630 283# define NEXT_JUMP() goto *jump_table[FETCH () & SCM_VM_INSTRUCTION_MASK]
eac12024 284#else
27c7c630 285# define NEXT_JUMP() goto vm_start
eac12024
AW
286#endif
287
288#define NEXT \
289{ \
290 NEXT_HOOK (); \
291 CHECK_STACK_LEAK (); \
292 NEXT_JUMP (); \
293}
294
295\f
296/* See frames.h for the layout of stack frames */
297/* When this is called, bp points to the new program data,
298 and the arguments are already on the stack */
299#define DROP_FRAME() \
300 { \
301 sp -= 3; \
302 NULLSTACK (3); \
303 CHECK_UNDERFLOW (); \
304 }
305
238e7a11 306
a98cef7e 307static SCM
7656f194 308VM_NAME (SCM vm, SCM program, SCM *argv, int nargs)
a98cef7e 309{
17e90c5e 310 /* VM registers */
2fb924f6 311 register scm_t_uint8 *ip IP_REG; /* instruction pointer */
17e90c5e
KN
312 register SCM *sp SP_REG; /* stack pointer */
313 register SCM *fp FP_REG; /* frame pointer */
7656f194 314 struct scm_vm *vp = SCM_VM_DATA (vm);
a98cef7e 315
d608d68d 316 /* Cache variables */
53e28ed9 317 struct scm_objcode *bp = NULL; /* program base pointer */
17e90c5e 318 SCM *objects = NULL; /* constant objects */
3d5ee0cd 319 SCM *stack_limit = vp->stack_limit; /* stack limit address */
2d026f04 320
a2a6c0e3 321 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
a98cef7e 322
d608d68d 323 /* Internal variables */
ef24c01b 324 int nvalues = 0;
9d381ba4
AW
325 scm_i_jmp_buf registers; /* used for prompts */
326
53e28ed9 327#ifdef HAVE_LABELS_AS_VALUES
37a5970c 328 static const void **jump_table_pointer = NULL;
e06e857c 329#endif
37a5970c 330
e06e857c 331#ifdef HAVE_LABELS_AS_VALUES
37a5970c
LC
332 register const void **jump_table JT_REG;
333
334 if (SCM_UNLIKELY (!jump_table_pointer))
53e28ed9
AW
335 {
336 int i;
37a5970c 337 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
53e28ed9 338 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
37a5970c 339 jump_table_pointer[i] = &&vm_error_bad_instruction;
53e28ed9 340#define VM_INSTRUCTION_TO_LABEL 1
37a5970c 341#define jump_table jump_table_pointer
aeeff258
AW
342#include <libguile/vm-expand.h>
343#include <libguile/vm-i-system.i>
344#include <libguile/vm-i-scheme.i>
345#include <libguile/vm-i-loader.i>
37a5970c 346#undef jump_table
53e28ed9
AW
347#undef VM_INSTRUCTION_TO_LABEL
348 }
37a5970c
LC
349
350 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
351 load instruction at each instruction dispatch. */
352 jump_table = jump_table_pointer;
53e28ed9 353#endif
9d381ba4
AW
354
355 if (SCM_I_SETJMP (registers))
356 {
357 /* Non-local return. Cache the VM registers back from the vp, and
358 go to the handler.
359
360 Note, at this point, we must assume that any variable local to
361 vm_engine that can be assigned *has* been assigned. So we need to pull
362 all our state back from the ip/fp/sp.
363 */
364 CACHE_REGISTER ();
365 program = SCM_FRAME_PROGRAM (fp);
366 CACHE_PROGRAM ();
367 /* The stack contains the values returned to this continuation,
368 along with a number-of-values marker -- like an MV return. */
c850a0ff 369 ABORT_CONTINUATION_HOOK (sp - SCM_I_INUM (*sp), SCM_I_INUM (*sp));
9d381ba4
AW
370 NEXT;
371 }
53e28ed9 372
67b699cc 373 CACHE_REGISTER ();
27319ffa
AW
374
375 /* Since it's possible to receive the arguments on the stack itself,
376 and indeed the RTL VM invokes us that way, shuffle up the
377 arguments first. */
378 VM_ASSERT (sp + 8 + nargs < stack_limit, vm_error_too_many_args (nargs));
379 {
380 int i;
381 for (i = nargs - 1; i >= 0; i--)
382 sp[9 + i] = argv[i];
383 }
384
385 /* Initial frame */
67b699cc
AW
386 PUSH (SCM_PACK (fp)); /* dynamic link */
387 PUSH (SCM_PACK (0)); /* mvra */
388 PUSH (SCM_PACK (ip)); /* ra */
389 PUSH (boot_continuation);
390 fp = sp + 1;
391 ip = SCM_C_OBJCODE_BASE (SCM_PROGRAM_DATA (boot_continuation));
392
393 /* MV-call frame, function & arguments */
394 PUSH (SCM_PACK (fp)); /* dynamic link */
395 PUSH (SCM_PACK (ip + 1)); /* mvra */
396 PUSH (SCM_PACK (ip)); /* ra */
397 PUSH (program);
398 fp = sp + 1;
27319ffa 399 sp += nargs;
67b699cc
AW
400
401 PUSH_CONTINUATION_HOOK ();
402
403 apply:
404 program = fp[-1];
405 if (!SCM_PROGRAM_P (program))
406 {
407 if (SCM_STRUCTP (program) && SCM_STRUCT_APPLICABLE_P (program))
408 fp[-1] = SCM_STRUCT_PROCEDURE (program);
510ca126
AW
409 else if (SCM_HAS_TYP7 (program, scm_tc7_rtl_program))
410 {
411 SCM ret;
412 SYNC_ALL ();
413
414 ret = RTL_VM_NAME (vm, program, fp, sp - fp + 1);
415
416 NULLSTACK_FOR_NONLOCAL_EXIT ();
417
418 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
419 {
420 /* multiple values returned to continuation */
421 ret = scm_struct_ref (ret, SCM_INUM0);
422 nvalues = scm_ilength (ret);
423 PUSH_LIST (ret, scm_is_null);
424 goto vm_return_values;
425 }
426 else
427 {
428 PUSH (ret);
429 goto vm_return;
430 }
431 }
968a9add 432 else if (SCM_HAS_TYP7 (program, scm_tc7_smob)
67b699cc
AW
433 && SCM_SMOB_APPLICABLE_P (program))
434 {
435 /* (smob arg0 ... argN) => (apply-smob smob arg0 ... argN) */
436 int i;
437 PUSH (SCM_BOOL_F);
438 for (i = sp - fp; i >= 0; i--)
439 fp[i] = fp[i - 1];
968a9add 440 fp[-1] = SCM_SMOB_DESCRIPTOR (program).apply_trampoline;
67b699cc
AW
441 }
442 else
443 {
444 SYNC_ALL();
445 vm_error_wrong_type_apply (program);
446 }
447 goto apply;
448 }
449
450 CACHE_PROGRAM ();
451 ip = SCM_C_OBJCODE_BASE (bp);
452
453 APPLY_HOOK ();
a98cef7e
KN
454
455 /* Let's go! */
53e28ed9 456 NEXT;
a98cef7e
KN
457
458#ifndef HAVE_LABELS_AS_VALUES
17e90c5e 459 vm_start:
53e28ed9 460 switch ((*ip++) & SCM_VM_INSTRUCTION_MASK) {
a98cef7e
KN
461#endif
462
83495480
AW
463#include "vm-expand.h"
464#include "vm-i-system.c"
465#include "vm-i-scheme.c"
466#include "vm-i-loader.c"
a98cef7e
KN
467
468#ifndef HAVE_LABELS_AS_VALUES
53e28ed9
AW
469 default:
470 goto vm_error_bad_instruction;
a98cef7e
KN
471 }
472#endif
473
53bdfcf0 474 abort (); /* never reached */
a52b2d3d 475
53bdfcf0
AW
476 vm_error_bad_instruction:
477 vm_error_bad_instruction (ip[-1]);
478 abort (); /* never reached */
17e90c5e 479
53bdfcf0
AW
480 handle_overflow:
481 SYNC_ALL ();
482 vm_error_stack_overflow (vp);
a98cef7e
KN
483 abort (); /* never reached */
484}
6d14383e 485
a0ec1ca1
AW
486#undef ALIGNED_P
487#undef CACHE_REGISTER
488#undef CHECK_OVERFLOW
a0ec1ca1
AW
489#undef FUNC2
490#undef INIT
491#undef INUM_MAX
492#undef INUM_MIN
d2295ba5 493#undef INUM_STEP
a0ec1ca1
AW
494#undef jump_table
495#undef LOCAL_REF
496#undef LOCAL_SET
497#undef NEXT
498#undef NEXT_JUMP
499#undef REL
500#undef RETURN
501#undef RETURN_ONE_VALUE
502#undef RETURN_VALUE_LIST
a0ec1ca1
AW
503#undef SYNC_ALL
504#undef SYNC_BEFORE_GC
505#undef SYNC_IP
506#undef SYNC_REGISTER
507#undef VARIABLE_BOUNDP
508#undef VARIABLE_REF
509#undef VARIABLE_SET
510#undef VM_DEFINE_OP
511#undef VM_INSTRUCTION_TO_LABEL
17e90c5e 512
510ca126
AW
513
514\f
515
516/* Virtual Machine
517
518 This is Guile's new virtual machine. When I say "new", I mean
519 relative to the current virtual machine. At some point it will
520 become "the" virtual machine, and we'll delete this paragraph. As
521 such, the rest of the comments speak as if there's only one VM.
7396d216
AW
522 In difference from the old VM, local 0 is the procedure, and the
523 first argument is local 1. At some point in the future we should
524 change the fp to point to the procedure and not to local 1.
510ca126
AW
525
526 <more overview here>
527 */
528
529
530/* The VM has three state bits: the instruction pointer (IP), the frame
531 pointer (FP), and the top-of-stack pointer (SP). We cache the first
532 two of these in machine registers, local to the VM, because they are
533 used extensively by the VM. As the SP is used more by code outside
534 the VM than by the VM itself, we don't bother caching it locally.
535
536 Since the FP changes infrequently, relative to the IP, we keep vp->fp
537 in sync with the local FP. This would be a big lose for the IP,
538 though, so instead of updating vp->ip all the time, we call SYNC_IP
539 whenever we would need to know the IP of the top frame. In practice,
540 we need to SYNC_IP whenever we call out of the VM to a function that
541 would like to walk the stack, perhaps as the result of an
542 exception. */
543
544#define SYNC_IP() \
545 vp->ip = (scm_t_uint8 *) (ip)
546
547#define SYNC_REGISTER() \
548 SYNC_IP()
549#define SYNC_BEFORE_GC() /* Only SP and FP needed to trace GC */
550#define SYNC_ALL() /* FP already saved */ \
551 SYNC_IP()
552
553#define CHECK_OVERFLOW(sp) \
554 do { \
555 if (SCM_UNLIKELY ((sp) >= stack_limit)) \
556 vm_error_stack_overflow (vp); \
557 } while (0)
558
559/* Reserve stack space for a frame. Will check that there is sufficient
7396d216
AW
560 stack space for N locals, including the procedure, in addition to
561 3 words to set up the next frame. Invoke after preparing the new
510ca126
AW
562 frame and setting the fp and ip. */
563#define ALLOC_FRAME(n) \
564 do { \
7396d216 565 SCM *new_sp = vp->sp = fp - 1 + n - 1; \
510ca126
AW
566 CHECK_OVERFLOW (new_sp + 4); \
567 } while (0)
568
569/* Reset the current frame to hold N locals. Used when we know that no
570 stack expansion is needed. */
571#define RESET_FRAME(n) \
572 do { \
7396d216 573 vp->sp = fp - 2 + n; \
510ca126
AW
574 } while (0)
575
576/* Compute the number of locals in the frame. This is equal to the
7396d216
AW
577 number of actual arguments when a function is first called, plus
578 one for the function. */
510ca126 579#define FRAME_LOCALS_COUNT() \
7396d216 580 (vp->sp + 1 - (fp - 1))
510ca126
AW
581
582/* Restore registers after returning from a frame. */
583#define RESTORE_FRAME() \
584 do { \
585 } while (0)
586
587
588#define CACHE_REGISTER() \
589 do { \
590 ip = (scm_t_uint32 *) vp->ip; \
591 fp = vp->fp; \
592 } while (0)
593
594#ifdef HAVE_LABELS_AS_VALUES
595# define BEGIN_DISPATCH_SWITCH /* */
596# define END_DISPATCH_SWITCH /* */
597# define NEXT(n) \
598 do \
599 { \
600 ip += n; \
601 NEXT_HOOK (); \
602 op = *ip; \
603 goto *jump_table[op & 0xff]; \
604 } \
605 while (0)
606# define VM_DEFINE_OP(opcode, tag, name, meta) \
607 op_##tag:
608#else
609# define BEGIN_DISPATCH_SWITCH \
610 vm_start: \
611 NEXT_HOOK (); \
612 op = *ip; \
613 switch (op & 0xff) \
614 {
615# define END_DISPATCH_SWITCH \
616 default: \
617 goto vm_error_bad_instruction; \
618 }
619# define NEXT(n) \
620 do \
621 { \
622 ip += n; \
623 goto vm_start; \
624 } \
625 while (0)
626# define VM_DEFINE_OP(opcode, tag, name, meta) \
627 op_##tag: \
628 case opcode:
629#endif
630
7396d216
AW
631#define LOCAL_REF(i) SCM_FRAME_VARIABLE (fp, (i) - 1)
632#define LOCAL_SET(i,o) SCM_FRAME_VARIABLE (fp, (i) - 1) = o
510ca126
AW
633
634#define VARIABLE_REF(v) SCM_VARIABLE_REF (v)
635#define VARIABLE_SET(v,o) SCM_VARIABLE_SET (v, o)
636#define VARIABLE_BOUNDP(v) (!scm_is_eq (VARIABLE_REF (v), SCM_UNDEFINED))
510ca126
AW
637
638#define RETURN_ONE_VALUE(ret) \
639 do { \
640 SCM val = ret; \
641 SCM *sp = SCM_FRAME_LOWER_ADDRESS (fp); \
642 VM_HANDLE_INTERRUPTS; \
643 ip = SCM_FRAME_RTL_RETURN_ADDRESS (fp); \
510ca126 644 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp); \
af95414f
AW
645 /* Clear frame. */ \
646 sp[0] = SCM_BOOL_F; \
647 sp[1] = SCM_BOOL_F; \
648 sp[2] = SCM_BOOL_F; \
649 /* Leave proc. */ \
650 sp[4] = val; \
651 vp->sp = sp + 4; \
510ca126
AW
652 POP_CONTINUATION_HOOK (sp, 1); \
653 NEXT (0); \
654 } while (0)
655
656/* While we could generate the list-unrolling code here, it's fine for
657 now to just tail-call (apply values vals). */
658#define RETURN_VALUE_LIST(vals_) \
659 do { \
660 SCM vals = vals_; \
661 VM_HANDLE_INTERRUPTS; \
662 fp[-1] = rtl_apply; \
663 fp[0] = rtl_values; \
664 fp[1] = vals; \
7396d216 665 RESET_FRAME (3); \
510ca126 666 ip = (scm_t_uint32 *) rtl_apply_code; \
adb8d905 667 goto op_tail_apply; \
510ca126
AW
668 } while (0)
669
670#define BR_NARGS(rel) \
671 scm_t_uint16 expected; \
672 SCM_UNPACK_RTL_24 (op, expected); \
673 if (FRAME_LOCALS_COUNT() rel expected) \
674 { \
675 scm_t_int32 offset = ip[1]; \
676 offset >>= 8; /* Sign-extending shift. */ \
677 NEXT (offset); \
678 } \
679 NEXT (2)
680
681#define BR_UNARY(x, exp) \
682 scm_t_uint32 test; \
683 SCM x; \
684 SCM_UNPACK_RTL_24 (op, test); \
685 x = LOCAL_REF (test); \
686 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
687 { \
688 scm_t_int32 offset = ip[1]; \
689 offset >>= 8; /* Sign-extending shift. */ \
690 if (offset < 0) \
691 VM_HANDLE_INTERRUPTS; \
692 NEXT (offset); \
693 } \
694 NEXT (2)
695
696#define BR_BINARY(x, y, exp) \
697 scm_t_uint16 a, b; \
698 SCM x, y; \
699 SCM_UNPACK_RTL_12_12 (op, a, b); \
700 x = LOCAL_REF (a); \
701 y = LOCAL_REF (b); \
702 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
703 { \
704 scm_t_int32 offset = ip[1]; \
705 offset >>= 8; /* Sign-extending shift. */ \
706 if (offset < 0) \
707 VM_HANDLE_INTERRUPTS; \
708 NEXT (offset); \
709 } \
710 NEXT (2)
711
712#define BR_ARITHMETIC(crel,srel) \
713 { \
714 scm_t_uint16 a, b; \
715 SCM x, y; \
716 SCM_UNPACK_RTL_12_12 (op, a, b); \
717 x = LOCAL_REF (a); \
718 y = LOCAL_REF (b); \
719 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
720 { \
721 scm_t_signed_bits x_bits = SCM_UNPACK (x); \
722 scm_t_signed_bits y_bits = SCM_UNPACK (y); \
af95414f 723 if ((ip[1] & 0x1) ? !(x_bits crel y_bits) : (x_bits crel y_bits)) \
510ca126
AW
724 { \
725 scm_t_int32 offset = ip[1]; \
726 offset >>= 8; /* Sign-extending shift. */ \
727 if (offset < 0) \
728 VM_HANDLE_INTERRUPTS; \
729 NEXT (offset); \
730 } \
731 NEXT (2); \
732 } \
733 else \
734 { \
af95414f 735 SCM res; \
510ca126 736 SYNC_IP (); \
af95414f
AW
737 res = srel (x, y); \
738 if ((ip[1] & 0x1) ? scm_is_false (res) : scm_is_true (res)) \
510ca126
AW
739 { \
740 scm_t_int32 offset = ip[1]; \
741 offset >>= 8; /* Sign-extending shift. */ \
742 if (offset < 0) \
743 VM_HANDLE_INTERRUPTS; \
744 NEXT (offset); \
745 } \
746 NEXT (2); \
747 } \
748 }
749
750#define ARGS1(a1) \
751 scm_t_uint16 dst, src; \
752 SCM a1; \
753 SCM_UNPACK_RTL_12_12 (op, dst, src); \
754 a1 = LOCAL_REF (src)
755#define ARGS2(a1, a2) \
756 scm_t_uint8 dst, src1, src2; \
757 SCM a1, a2; \
758 SCM_UNPACK_RTL_8_8_8 (op, dst, src1, src2); \
759 a1 = LOCAL_REF (src1); \
760 a2 = LOCAL_REF (src2)
761#define RETURN(x) \
762 do { LOCAL_SET (dst, x); NEXT (1); } while (0)
763
764/* The maximum/minimum tagged integers. */
d2295ba5
MW
765#define INUM_MAX \
766 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM)))
767#define INUM_MIN \
768 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM)))
769#define INUM_STEP \
770 ((scm_t_signed_bits) SCM_UNPACK (SCM_INUM1) \
771 - (scm_t_signed_bits) SCM_UNPACK (SCM_INUM0))
510ca126
AW
772
773#define BINARY_INTEGER_OP(CFUNC,SFUNC) \
774 { \
775 ARGS2 (x, y); \
776 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
777 { \
778 scm_t_int64 n = SCM_I_INUM (x) CFUNC SCM_I_INUM (y); \
779 if (SCM_FIXABLE (n)) \
780 RETURN (SCM_I_MAKINUM (n)); \
781 } \
782 SYNC_IP (); \
783 RETURN (SFUNC (x, y)); \
784 }
785
786#define VM_VALIDATE_PAIR(x, proc) \
787 VM_ASSERT (scm_is_pair (x), vm_error_not_a_pair (proc, x))
788
789#define VM_VALIDATE_STRUCT(obj, proc) \
790 VM_ASSERT (SCM_STRUCTP (obj), vm_error_not_a_pair (proc, obj))
791
792#define VM_VALIDATE_BYTEVECTOR(x, proc) \
793 VM_ASSERT (SCM_BYTEVECTOR_P (x), vm_error_not_a_bytevector (proc, x))
794
795/* Return true (non-zero) if PTR has suitable alignment for TYPE. */
796#define ALIGNED_P(ptr, type) \
797 ((scm_t_uintptr) (ptr) % alignof_type (type) == 0)
798
799static SCM
800RTL_VM_NAME (SCM vm, SCM program, SCM *argv, size_t nargs_)
801{
802 /* Instruction pointer: A pointer to the opcode that is currently
803 running. */
804 register scm_t_uint32 *ip IP_REG;
805
806 /* Frame pointer: A pointer into the stack, off of which we index
807 arguments and local variables. Pushed at function calls, popped on
808 returns. */
809 register SCM *fp FP_REG;
810
811 /* Current opcode: A cache of *ip. */
812 register scm_t_uint32 op;
813
814 /* Cached variables. */
815 struct scm_vm *vp = SCM_VM_DATA (vm);
816 SCM *stack_limit = vp->stack_limit; /* stack limit address */
817 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
818 scm_i_jmp_buf registers; /* used for prompts */
819
820#ifdef HAVE_LABELS_AS_VALUES
821 static const void **jump_table_pointer = NULL;
822 register const void **jump_table JT_REG;
823
824 if (SCM_UNLIKELY (!jump_table_pointer))
825 {
826 int i;
827 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
828 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
829 jump_table_pointer[i] = &&vm_error_bad_instruction;
830#define INIT(opcode, tag, name, meta) jump_table_pointer[opcode] = &&op_##tag;
831 FOR_EACH_VM_OPERATION(INIT);
832#undef INIT
833 }
834
835 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
836 load instruction at each instruction dispatch. */
837 jump_table = jump_table_pointer;
838#endif
839
840 if (SCM_I_SETJMP (registers))
841 {
842 /* Non-local return. The values are on the stack, on a new frame
843 set up to call `values' to return the values to the handler.
844 Cache the VM registers back from the vp, and dispatch to the
845 body of `values'.
846
847 Note, at this point, we must assume that any variable local to
848 vm_engine that can be assigned *has* been assigned. So we need
849 to pull all our state back from the ip/fp/sp.
850 */
851 CACHE_REGISTER ();
d691ac20 852 ABORT_CONTINUATION_HOOK (fp, FRAME_LOCALS_COUNT () - 1);
510ca126
AW
853 NEXT (0);
854 }
855
856 /* Load previous VM registers. */
857 CACHE_REGISTER ();
858
859 VM_HANDLE_INTERRUPTS;
860
861 /* Initialization */
862 {
863 SCM *base;
864
865 /* Check that we have enough space: 4 words for the boot
866 continuation, 4 + nargs for the procedure application, and 4 for
867 setting up a new frame. */
868 base = vp->sp + 1;
869 CHECK_OVERFLOW (vp->sp + 4 + 4 + nargs_ + 4);
870
871 /* Since it's possible to receive the arguments on the stack itself,
872 and indeed the regular VM invokes us that way, shuffle up the
873 arguments first. */
874 {
875 int i;
876 for (i = nargs_ - 1; i >= 0; i--)
877 base[8 + i] = argv[i];
878 }
879
880 /* Initial frame, saving previous fp and ip, with the boot
881 continuation. */
882 base[0] = SCM_PACK (fp); /* dynamic link */
883 base[1] = SCM_PACK (0); /* the boot continuation does not return to scheme */
884 base[2] = SCM_PACK (ip); /* ra */
885 base[3] = rtl_boot_continuation;
886 fp = &base[4];
af95414f 887 ip = (scm_t_uint32 *) rtl_boot_continuation_code;
510ca126
AW
888
889 /* MV-call frame, function & arguments */
890 base[4] = SCM_PACK (fp); /* dynamic link */
af95414f 891 base[5] = SCM_PACK (ip); /* in RTL programs, MVRA same as RA */
510ca126
AW
892 base[6] = SCM_PACK (ip); /* ra */
893 base[7] = program;
894 fp = vp->fp = &base[8];
7396d216 895 RESET_FRAME (nargs_ + 1);
510ca126
AW
896 }
897
898 apply:
899 while (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp)))
900 {
510ca126
AW
901 SCM proc = SCM_FRAME_PROGRAM (fp);
902
903 if (SCM_STRUCTP (proc) && SCM_STRUCT_APPLICABLE_P (proc))
904 {
905 fp[-1] = SCM_STRUCT_PROCEDURE (proc);
906 continue;
907 }
908 if (SCM_HAS_TYP7 (proc, scm_tc7_smob) && SCM_SMOB_APPLICABLE_P (proc))
909 {
910 scm_t_uint32 n = FRAME_LOCALS_COUNT();
911
9d87158f
AW
912 /* Shuffle args up. */
913 RESET_FRAME (n + 1);
510ca126
AW
914 while (n--)
915 LOCAL_SET (n + 1, LOCAL_REF (n));
510ca126 916
9d87158f 917 LOCAL_SET (0, SCM_SMOB_DESCRIPTOR (proc).apply_trampoline);
510ca126
AW
918 continue;
919 }
920
9d87158f 921#if 0
510ca126
AW
922 SYNC_IP();
923 vm_error_wrong_type_apply (proc);
924#else
9d87158f
AW
925 {
926 SCM ret;
927 SYNC_ALL ();
510ca126 928
9d87158f 929 ret = VM_NAME (vm, fp[-1], fp, FRAME_LOCALS_COUNT () - 1);
510ca126 930
9d87158f
AW
931 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
932 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
933 else
934 RETURN_ONE_VALUE (ret);
935 }
510ca126
AW
936#endif
937 }
938
939 /* Let's go! */
940 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
941 NEXT (0);
942
943 BEGIN_DISPATCH_SWITCH;
944
945
946 \f
947
948 /*
949 * Call and return
950 */
951
952 /* halt _:24
953 *
af95414f 954 * Bring the VM to a halt, returning all the values from the stack.
510ca126
AW
955 */
956 VM_DEFINE_OP (0, halt, "halt", OP1 (U8_X24))
957 {
af95414f
AW
958 scm_t_uint32 nvals = FRAME_LOCALS_COUNT() - 5;
959 SCM ret;
510ca126 960
af95414f 961 /* Boot closure in r0, empty frame in r1/r2/r3, proc in r4, values from r5. */
510ca126 962
af95414f
AW
963 if (nvals == 1)
964 ret = LOCAL_REF (5);
965 else
966 {
967 scm_t_uint32 n;
968 ret = SCM_EOL;
969 SYNC_BEFORE_GC();
970 for (n = nvals; n > 0; n--)
e79ed6b1 971 ret = scm_cons (LOCAL_REF (5 + n - 1), ret);
af95414f
AW
972 ret = scm_values (ret);
973 }
510ca126
AW
974
975 vp->ip = SCM_FRAME_RETURN_ADDRESS (fp);
976 vp->sp = SCM_FRAME_LOWER_ADDRESS (fp) - 1;
977 vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
978
af95414f 979 return ret;
286a0fb3
AW
980 }
981
af95414f 982 /* call proc:24 _:8 nlocals:24
286a0fb3 983 *
af95414f
AW
984 * Call a procedure. PROC is the local corresponding to a procedure.
985 * The three values below PROC will be overwritten by the saved call
986 * frame data. The new frame will have space for NLOCALS locals: one
987 * for the procedure, and the rest for the arguments which should
988 * already have been pushed on.
510ca126 989 *
af95414f
AW
990 * When the call returns, execution proceeds with the next
991 * instruction. There may be any number of values on the return
992 * stack; the precise number can be had by subtracting the address of
993 * PROC from the post-call SP.
510ca126 994 */
af95414f 995 VM_DEFINE_OP (1, call, "call", OP2 (U8_U24, X8_U24))
510ca126 996 {
af95414f 997 scm_t_uint32 proc, nlocals;
510ca126
AW
998 SCM *old_fp = fp;
999
af95414f
AW
1000 SCM_UNPACK_RTL_24 (op, proc);
1001 SCM_UNPACK_RTL_24 (ip[1], nlocals);
510ca126
AW
1002
1003 VM_HANDLE_INTERRUPTS;
1004
af95414f 1005 fp = vp->fp = old_fp + proc;
510ca126 1006 SCM_FRAME_SET_DYNAMIC_LINK (fp, old_fp);
af95414f 1007 SCM_FRAME_SET_RTL_MV_RETURN_ADDRESS (fp, ip + 2);
286a0fb3 1008 SCM_FRAME_SET_RTL_RETURN_ADDRESS (fp, ip + 2);
510ca126 1009
af95414f
AW
1010 RESET_FRAME (nlocals);
1011
510ca126
AW
1012 PUSH_CONTINUATION_HOOK ();
1013 APPLY_HOOK ();
1014
1015 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1016 goto apply;
1017
1018 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1019 NEXT (0);
1020 }
1021
af95414f 1022 /* tail-call nlocals:24
510ca126 1023 *
af95414f
AW
1024 * Tail-call a procedure. Requires that the procedure and all of the
1025 * arguments have already been shuffled into position.
510ca126 1026 */
af95414f 1027 VM_DEFINE_OP (2, tail_call, "tail-call", OP1 (U8_U24))
510ca126 1028 {
af95414f
AW
1029 scm_t_uint32 nlocals;
1030
1031 SCM_UNPACK_RTL_24 (op, nlocals);
510ca126
AW
1032
1033 VM_HANDLE_INTERRUPTS;
1034
af95414f 1035 RESET_FRAME (nlocals);
510ca126
AW
1036 APPLY_HOOK ();
1037
1038 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1039 goto apply;
1040
1041 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1042 NEXT (0);
1043 }
1044
af95414f 1045 /* receive dst:12 proc:12 _:8 nlocals:24
510ca126 1046 *
af95414f
AW
1047 * Receive a single return value from a call whose procedure was in
1048 * PROC, asserting that the call actually returned at least one
1049 * value. Afterwards, resets the frame to NLOCALS locals.
510ca126 1050 */
af95414f 1051 VM_DEFINE_OP (3, receive, "receive", OP2 (U8_U12_U12, X8_U24) | OP_DST)
510ca126 1052 {
af95414f
AW
1053 scm_t_uint16 dst, proc;
1054 scm_t_uint32 nlocals;
1055 SCM_UNPACK_RTL_12_12 (op, dst, proc);
1056 SCM_UNPACK_RTL_24 (ip[1], nlocals);
1057 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + 1, vm_error_no_values ());
1058 LOCAL_SET (dst, LOCAL_REF (proc + 1));
1059 RESET_FRAME (nlocals);
1060 NEXT (2);
1061 }
510ca126 1062
82f4bac4 1063 /* receive-values proc:24 allow-extra?:1 _:7 nvalues:24
af95414f
AW
1064 *
1065 * Receive a return of multiple values from a call whose procedure was
1066 * in PROC. If fewer than NVALUES values were returned, signal an
82f4bac4
AW
1067 * error. Unless ALLOW-EXTRA? is true, require that the number of
1068 * return values equals NVALUES exactly. After receive-values has
1069 * run, the values can be copied down via `mov'.
af95414f 1070 */
82f4bac4 1071 VM_DEFINE_OP (4, receive_values, "receive-values", OP2 (U8_U24, B1_X7_U24))
af95414f
AW
1072 {
1073 scm_t_uint32 proc, nvalues;
1074 SCM_UNPACK_RTL_24 (op, proc);
1075 SCM_UNPACK_RTL_24 (ip[1], nvalues);
82f4bac4
AW
1076 if (ip[1] & 0x1)
1077 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + nvalues,
1078 vm_error_not_enough_values ());
1079 else
1080 VM_ASSERT (FRAME_LOCALS_COUNT () == proc + nvalues,
1081 vm_error_wrong_number_of_values (nvalues));
af95414f 1082 NEXT (2);
510ca126
AW
1083 }
1084
1085 /* return src:24
1086 *
1087 * Return a value.
1088 */
af95414f 1089 VM_DEFINE_OP (5, return, "return", OP1 (U8_U24))
510ca126
AW
1090 {
1091 scm_t_uint32 src;
1092 SCM_UNPACK_RTL_24 (op, src);
1093 RETURN_ONE_VALUE (LOCAL_REF (src));
1094 }
1095
84cc4127 1096 /* return-values _:24
510ca126
AW
1097 *
1098 * Return a number of values from a call frame. This opcode
1099 * corresponds to an application of `values' in tail position. As
af95414f
AW
1100 * with tail calls, we expect that the values have already been
1101 * shuffled down to a contiguous array starting at slot 1.
84cc4127 1102 * We also expect the frame has already been reset.
510ca126 1103 */
84cc4127 1104 VM_DEFINE_OP (6, return_values, "return-values", OP1 (U8_X24))
510ca126 1105 {
84cc4127 1106 scm_t_uint32 nvalues _GL_UNUSED = FRAME_LOCALS_COUNT();
af95414f
AW
1107 SCM *base = fp;
1108
af95414f
AW
1109 VM_HANDLE_INTERRUPTS;
1110 ip = SCM_FRAME_RTL_MV_RETURN_ADDRESS (fp);
1111 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
1112
1113 /* Clear stack frame. */
1114 base[-2] = SCM_BOOL_F;
1115 base[-3] = SCM_BOOL_F;
1116 base[-4] = SCM_BOOL_F;
1117
1118 POP_CONTINUATION_HOOK (base, nvalues);
1119
1120 NEXT (0);
510ca126
AW
1121 }
1122
1123
1124 \f
1125
1126 /*
1127 * Specialized call stubs
1128 */
1129
1130 /* subr-call ptr-idx:24
1131 *
1132 * Call a subr, passing all locals in this frame as arguments. Fetch
1133 * the foreign pointer from PTR-IDX, a free variable. Return from the
1134 * calling frame. This instruction is part of the trampolines
1135 * created in gsubr.c, and is not generated by the compiler.
1136 */
af95414f 1137 VM_DEFINE_OP (7, subr_call, "subr-call", OP1 (U8_U24))
510ca126
AW
1138 {
1139 scm_t_uint32 ptr_idx;
1140 SCM pointer, ret;
1141 SCM (*subr)();
1142
1143 SCM_UNPACK_RTL_24 (op, ptr_idx);
1144
7396d216 1145 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), ptr_idx);
510ca126
AW
1146 subr = SCM_POINTER_VALUE (pointer);
1147
1148 VM_HANDLE_INTERRUPTS;
1149 SYNC_IP ();
1150
8d23c436 1151 switch (FRAME_LOCALS_COUNT () - 1)
510ca126
AW
1152 {
1153 case 0:
1154 ret = subr ();
1155 break;
1156 case 1:
1157 ret = subr (fp[0]);
1158 break;
1159 case 2:
1160 ret = subr (fp[0], fp[1]);
1161 break;
1162 case 3:
1163 ret = subr (fp[0], fp[1], fp[2]);
1164 break;
1165 case 4:
1166 ret = subr (fp[0], fp[1], fp[2], fp[3]);
1167 break;
1168 case 5:
1169 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4]);
1170 break;
1171 case 6:
1172 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5]);
1173 break;
1174 case 7:
1175 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6]);
1176 break;
1177 case 8:
1178 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7]);
1179 break;
1180 case 9:
1181 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8]);
1182 break;
1183 case 10:
1184 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8], fp[9]);
1185 break;
1186 default:
1187 abort ();
1188 }
1189
1190 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1191
1192 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1193 /* multiple values returned to continuation */
1194 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1195 else
1196 RETURN_ONE_VALUE (ret);
1197 }
1198
1199 /* foreign-call cif-idx:12 ptr-idx:12
1200 *
1201 * Call a foreign function. Fetch the CIF and foreign pointer from
1202 * CIF-IDX and PTR-IDX, both free variables. Return from the calling
1203 * frame. Arguments are taken from the stack. This instruction is
1204 * part of the trampolines created by the FFI, and is not generated by
1205 * the compiler.
1206 */
af95414f 1207 VM_DEFINE_OP (8, foreign_call, "foreign-call", OP1 (U8_U12_U12))
510ca126
AW
1208 {
1209 scm_t_uint16 cif_idx, ptr_idx;
7396d216 1210 SCM closure, cif, pointer, ret;
510ca126
AW
1211
1212 SCM_UNPACK_RTL_12_12 (op, cif_idx, ptr_idx);
1213
7396d216
AW
1214 closure = LOCAL_REF (0);
1215 cif = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, cif_idx);
1216 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, ptr_idx);
510ca126
AW
1217
1218 SYNC_IP ();
1219 VM_HANDLE_INTERRUPTS;
1220
1221 // FIXME: separate args
1222 ret = scm_i_foreign_call (scm_cons (cif, pointer), fp);
1223
1224 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1225
1226 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1227 /* multiple values returned to continuation */
1228 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1229 else
1230 RETURN_ONE_VALUE (ret);
1231 }
1232
1233 /* continuation-call contregs:24
1234 *
1235 * Return to a continuation, nonlocally. The arguments to the
1236 * continuation are taken from the stack. CONTREGS is a free variable
1237 * containing the reified continuation. This instruction is part of
1238 * the implementation of undelimited continuations, and is not
1239 * generated by the compiler.
1240 */
af95414f 1241 VM_DEFINE_OP (9, continuation_call, "continuation-call", OP1 (U8_U24))
510ca126
AW
1242 {
1243 SCM contregs;
1244 scm_t_uint32 contregs_idx;
1245
1246 SCM_UNPACK_RTL_24 (op, contregs_idx);
1247
7396d216
AW
1248 contregs =
1249 SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), contregs_idx);
510ca126
AW
1250
1251 SYNC_IP ();
1252 scm_i_check_continuation (contregs);
1253 vm_return_to_continuation (scm_i_contregs_vm (contregs),
1254 scm_i_contregs_vm_cont (contregs),
d691ac20 1255 FRAME_LOCALS_COUNT () - 1, fp);
510ca126
AW
1256 scm_i_reinstate_continuation (contregs);
1257
1258 /* no NEXT */
1259 abort ();
1260 }
1261
1262 /* compose-continuation cont:24
1263 *
1264 * Compose a partial continution with the current continuation. The
1265 * arguments to the continuation are taken from the stack. CONT is a
1266 * free variable containing the reified continuation. This
1267 * instruction is part of the implementation of partial continuations,
1268 * and is not generated by the compiler.
1269 */
af95414f 1270 VM_DEFINE_OP (10, compose_continuation, "compose-continuation", OP1 (U8_U24))
510ca126
AW
1271 {
1272 SCM vmcont;
1273 scm_t_uint32 cont_idx;
1274
1275 SCM_UNPACK_RTL_24 (op, cont_idx);
1276 vmcont = LOCAL_REF (cont_idx);
1277
1278 SYNC_IP ();
1279 VM_ASSERT (SCM_VM_CONT_REWINDABLE_P (vmcont),
1280 vm_error_continuation_not_rewindable (vmcont));
d691ac20 1281 vm_reinstate_partial_continuation (vm, vmcont, FRAME_LOCALS_COUNT () - 1, fp,
510ca126
AW
1282 &current_thread->dynstack,
1283 &registers);
1284 CACHE_REGISTER ();
1285 NEXT (0);
1286 }
1287
adb8d905 1288 /* tail-apply _:24
510ca126
AW
1289 *
1290 * Tail-apply the procedure in local slot 0 to the rest of the
1291 * arguments. This instruction is part of the implementation of
1292 * `apply', and is not generated by the compiler.
1293 */
adb8d905 1294 VM_DEFINE_OP (11, tail_apply, "tail-apply", OP1 (U8_X24))
510ca126 1295 {
e93c0430 1296 int i, list_idx, list_len, nlocals;
510ca126
AW
1297 SCM list;
1298
1299 VM_HANDLE_INTERRUPTS;
1300
e93c0430
AW
1301 nlocals = FRAME_LOCALS_COUNT ();
1302 // At a minimum, there should be apply, f, and the list.
1303 VM_ASSERT (nlocals >= 3, abort ());
1304 list_idx = nlocals - 1;
510ca126
AW
1305 list = LOCAL_REF (list_idx);
1306 list_len = scm_ilength (list);
1307
1308 VM_ASSERT (list_len >= 0, vm_error_apply_to_non_list (list));
1309
e93c0430
AW
1310 nlocals = nlocals - 2 + list_len;
1311 ALLOC_FRAME (nlocals);
510ca126 1312
e93c0430
AW
1313 for (i = 1; i < list_idx; i++)
1314 LOCAL_SET (i - 1, LOCAL_REF (i));
510ca126
AW
1315
1316 /* Null out these slots, just in case there are less than 2 elements
1317 in the list. */
7396d216
AW
1318 LOCAL_SET (list_idx - 1, SCM_UNDEFINED);
1319 LOCAL_SET (list_idx, SCM_UNDEFINED);
510ca126
AW
1320
1321 for (i = 0; i < list_len; i++, list = SCM_CDR (list))
7396d216 1322 LOCAL_SET (list_idx - 1 + i, SCM_CAR (list));
510ca126
AW
1323
1324 APPLY_HOOK ();
1325
1326 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1327 goto apply;
1328
1329 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1330 NEXT (0);
1331 }
1332
1333 /* call/cc _:24
1334 *
1335 * Capture the current continuation, and tail-apply the procedure in
d691ac20 1336 * local slot 1 to it. This instruction is part of the implementation
510ca126
AW
1337 * of `call/cc', and is not generated by the compiler.
1338 */
af95414f 1339 VM_DEFINE_OP (12, call_cc, "call/cc", OP1 (U8_X24))
510ca126
AW
1340 {
1341 SCM vm_cont, cont;
1342 scm_t_dynstack *dynstack;
d691ac20 1343 int first;
510ca126
AW
1344
1345 VM_HANDLE_INTERRUPTS;
1346
1347 SYNC_IP ();
1348 dynstack = scm_dynstack_capture_all (&current_thread->dynstack);
1349 vm_cont = scm_i_vm_capture_stack (vp->stack_base,
1350 SCM_FRAME_DYNAMIC_LINK (fp),
1351 SCM_FRAME_LOWER_ADDRESS (fp) - 1,
1352 SCM_FRAME_RETURN_ADDRESS (fp),
1353 SCM_FRAME_MV_RETURN_ADDRESS (fp),
1354 dynstack,
1355 0);
d691ac20
AW
1356 /* FIXME: Seems silly to capture the registers here, when they are
1357 already captured in the registers local, which here we are
1358 copying out to the heap; and likewise, the setjmp(&registers)
1359 code already has the non-local return handler. But oh
1360 well! */
1361 cont = scm_i_make_continuation (&first, vm, vm_cont);
1362
1363 if (first)
1364 {
1365 LOCAL_SET (0, LOCAL_REF (1));
1366 LOCAL_SET (1, cont);
1367 RESET_FRAME (2);
510ca126 1368
d691ac20 1369 APPLY_HOOK ();
510ca126 1370
d691ac20
AW
1371 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1372 goto apply;
510ca126 1373
d691ac20
AW
1374 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1375 NEXT (0);
1376 }
1377 else
1378 {
1379 CACHE_REGISTER ();
1380 ABORT_CONTINUATION_HOOK (fp, FRAME_LOCALS_COUNT () - 1);
1381 NEXT (0);
1382 }
510ca126 1383 }
510ca126 1384
510ca126
AW
1385
1386 \f
1387
1388 /*
1389 * Function prologues
1390 */
1391
1392 /* br-if-nargs-ne expected:24 _:8 offset:24
1393 * br-if-nargs-lt expected:24 _:8 offset:24
1394 * br-if-nargs-gt expected:24 _:8 offset:24
1395 *
1396 * If the number of actual arguments is not equal, less than, or greater
1397 * than EXPECTED, respectively, add OFFSET, a signed 24-bit number, to
1398 * the current instruction pointer.
1399 */
af95414f 1400 VM_DEFINE_OP (13, br_if_nargs_ne, "br-if-nargs-ne", OP2 (U8_U24, X8_L24))
510ca126
AW
1401 {
1402 BR_NARGS (!=);
1403 }
af95414f 1404 VM_DEFINE_OP (14, br_if_nargs_lt, "br-if-nargs-lt", OP2 (U8_U24, X8_L24))
510ca126
AW
1405 {
1406 BR_NARGS (<);
1407 }
af95414f 1408 VM_DEFINE_OP (15, br_if_nargs_gt, "br-if-nargs-gt", OP2 (U8_U24, X8_L24))
510ca126
AW
1409 {
1410 BR_NARGS (>);
1411 }
1412
1413 /* assert-nargs-ee expected:24
1414 * assert-nargs-ge expected:24
1415 * assert-nargs-le expected:24
1416 *
1417 * If the number of actual arguments is not ==, >=, or <= EXPECTED,
1418 * respectively, signal an error.
1419 */
af95414f 1420 VM_DEFINE_OP (16, assert_nargs_ee, "assert-nargs-ee", OP1 (U8_U24))
510ca126
AW
1421 {
1422 scm_t_uint32 expected;
1423 SCM_UNPACK_RTL_24 (op, expected);
1424 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1425 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1426 NEXT (1);
1427 }
af95414f 1428 VM_DEFINE_OP (17, assert_nargs_ge, "assert-nargs-ge", OP1 (U8_U24))
510ca126
AW
1429 {
1430 scm_t_uint32 expected;
1431 SCM_UNPACK_RTL_24 (op, expected);
1432 VM_ASSERT (FRAME_LOCALS_COUNT () >= expected,
1433 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1434 NEXT (1);
1435 }
af95414f 1436 VM_DEFINE_OP (18, assert_nargs_le, "assert-nargs-le", OP1 (U8_U24))
510ca126
AW
1437 {
1438 scm_t_uint32 expected;
1439 SCM_UNPACK_RTL_24 (op, expected);
1440 VM_ASSERT (FRAME_LOCALS_COUNT () <= expected,
1441 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1442 NEXT (1);
1443 }
1444
af95414f 1445 /* alloc-frame nlocals:24
510ca126
AW
1446 *
1447 * Ensure that there is space on the stack for NLOCALS local variables,
1448 * setting them all to SCM_UNDEFINED, except those nargs values that
7396d216 1449 * were passed as arguments and procedure.
510ca126 1450 */
af95414f 1451 VM_DEFINE_OP (19, alloc_frame, "alloc-frame", OP1 (U8_U24))
510ca126
AW
1452 {
1453 scm_t_uint32 nlocals, nargs;
1454 SCM_UNPACK_RTL_24 (op, nlocals);
1455
1456 nargs = FRAME_LOCALS_COUNT ();
1457 ALLOC_FRAME (nlocals);
1458 while (nlocals-- > nargs)
1459 LOCAL_SET (nlocals, SCM_UNDEFINED);
1460
1461 NEXT (1);
1462 }
1463
af95414f
AW
1464 /* reset-frame nlocals:24
1465 *
1466 * Like alloc-frame, but doesn't check that the stack is big enough.
1467 * Used to reset the frame size to something less than the size that
1468 * was previously set via alloc-frame.
1469 */
1470 VM_DEFINE_OP (20, reset_frame, "reset-frame", OP1 (U8_U24))
1471 {
1472 scm_t_uint32 nlocals;
1473 SCM_UNPACK_RTL_24 (op, nlocals);
1474 RESET_FRAME (nlocals);
1475 NEXT (1);
1476 }
1477
510ca126
AW
1478 /* assert-nargs-ee/locals expected:12 nlocals:12
1479 *
1480 * Equivalent to a sequence of assert-nargs-ee and reserve-locals. The
1481 * number of locals reserved is EXPECTED + NLOCALS.
1482 */
af95414f 1483 VM_DEFINE_OP (21, assert_nargs_ee_locals, "assert-nargs-ee/locals", OP1 (U8_U12_U12))
510ca126
AW
1484 {
1485 scm_t_uint16 expected, nlocals;
1486 SCM_UNPACK_RTL_12_12 (op, expected, nlocals);
1487 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1488 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1489 ALLOC_FRAME (expected + nlocals);
1490 while (nlocals--)
1491 LOCAL_SET (expected + nlocals, SCM_UNDEFINED);
1492
1493 NEXT (1);
1494 }
1495
1496 /* bind-kwargs nreq:24 allow-other-keys:1 has-rest:1 _:6 nreq-and-opt:24
1497 * _:8 ntotal:24 kw-offset:32
1498 *
1499 * Find the last positional argument, and shuffle all the rest above
1500 * NTOTAL. Initialize the intervening locals to SCM_UNDEFINED. Then
1501 * load the constant at KW-OFFSET words from the current IP, and use it
1502 * to bind keyword arguments. If HAS-REST, collect all shuffled
1503 * arguments into a list, and store it in NREQ-AND-OPT. Finally, clear
1504 * the arguments that we shuffled up.
1505 *
1506 * A macro-mega-instruction.
1507 */
af95414f 1508 VM_DEFINE_OP (22, bind_kwargs, "bind-kwargs", OP4 (U8_U24, U8_U24, X8_U24, N32))
510ca126
AW
1509 {
1510 scm_t_uint32 nreq, nreq_and_opt, ntotal, npositional, nkw, n, nargs;
1511 scm_t_int32 kw_offset;
1512 scm_t_bits kw_bits;
1513 SCM kw;
1514 char allow_other_keys, has_rest;
1515
1516 SCM_UNPACK_RTL_24 (op, nreq);
1517 allow_other_keys = ip[1] & 0x1;
1518 has_rest = ip[1] & 0x2;
1519 SCM_UNPACK_RTL_24 (ip[1], nreq_and_opt);
1520 SCM_UNPACK_RTL_24 (ip[2], ntotal);
1521 kw_offset = ip[3];
1522 kw_bits = (scm_t_bits) (ip + kw_offset);
1523 VM_ASSERT (!(kw_bits & 0x7), abort());
1524 kw = SCM_PACK (kw_bits);
1525
1526 nargs = FRAME_LOCALS_COUNT ();
1527
1528 /* look in optionals for first keyword or last positional */
1529 /* starting after the last required positional arg */
1530 npositional = nreq;
1531 while (/* while we have args */
1532 npositional < nargs
1533 /* and we still have positionals to fill */
1534 && npositional < nreq_and_opt
1535 /* and we haven't reached a keyword yet */
1536 && !scm_is_keyword (LOCAL_REF (npositional)))
1537 /* bind this optional arg (by leaving it in place) */
1538 npositional++;
1539 nkw = nargs - npositional;
1540 /* shuffle non-positional arguments above ntotal */
1541 ALLOC_FRAME (ntotal + nkw);
1542 n = nkw;
1543 while (n--)
1544 LOCAL_SET (ntotal + n, LOCAL_REF (npositional + n));
1545 /* and fill optionals & keyword args with SCM_UNDEFINED */
1546 n = npositional;
1547 while (n < ntotal)
1548 LOCAL_SET (n++, SCM_UNDEFINED);
1549
1550 VM_ASSERT (has_rest || (nkw % 2) == 0,
1551 vm_error_kwargs_length_not_even (SCM_FRAME_PROGRAM (fp)));
1552
1553 /* Now bind keywords, in the order given. */
1554 for (n = 0; n < nkw; n++)
1555 if (scm_is_keyword (LOCAL_REF (ntotal + n)))
1556 {
1557 SCM walk;
1558 for (walk = kw; scm_is_pair (walk); walk = SCM_CDR (walk))
1559 if (scm_is_eq (SCM_CAAR (walk), LOCAL_REF (ntotal + n)))
1560 {
1561 SCM si = SCM_CDAR (walk);
1562 LOCAL_SET (SCM_I_INUMP (si) ? SCM_I_INUM (si) : scm_to_uint32 (si),
1563 LOCAL_REF (ntotal + n + 1));
1564 break;
1565 }
1566 VM_ASSERT (scm_is_pair (walk) || allow_other_keys,
28d5d253
MW
1567 vm_error_kwargs_unrecognized_keyword (SCM_FRAME_PROGRAM (fp),
1568 LOCAL_REF (ntotal + n)));
510ca126
AW
1569 n++;
1570 }
1571 else
28d5d253
MW
1572 VM_ASSERT (has_rest, vm_error_kwargs_invalid_keyword (SCM_FRAME_PROGRAM (fp),
1573 LOCAL_REF (ntotal + n)));
510ca126
AW
1574
1575 if (has_rest)
1576 {
1577 SCM rest = SCM_EOL;
1578 n = nkw;
1579 while (n--)
1580 rest = scm_cons (LOCAL_REF (ntotal + n), rest);
1581 LOCAL_SET (nreq_and_opt, rest);
1582 }
1583
1584 RESET_FRAME (ntotal);
1585
1586 NEXT (4);
1587 }
1588
1589 /* bind-rest dst:24
1590 *
1591 * Collect any arguments at or above DST into a list, and store that
1592 * list at DST.
1593 */
af95414f 1594 VM_DEFINE_OP (23, bind_rest, "bind-rest", OP1 (U8_U24) | OP_DST)
510ca126
AW
1595 {
1596 scm_t_uint32 dst, nargs;
1597 SCM rest = SCM_EOL;
1598
1599 SCM_UNPACK_RTL_24 (op, dst);
1600 nargs = FRAME_LOCALS_COUNT ();
1601
234155e3 1602 if (nargs <= dst)
510ca126 1603 {
234155e3
AW
1604 ALLOC_FRAME (dst + 1);
1605 while (nargs < dst)
1606 LOCAL_SET (nargs++, SCM_UNDEFINED);
510ca126 1607 }
234155e3
AW
1608 else
1609 {
1610 while (nargs-- > dst)
1611 {
1612 rest = scm_cons (LOCAL_REF (nargs), rest);
1613 LOCAL_SET (nargs, SCM_UNDEFINED);
1614 }
510ca126 1615
234155e3
AW
1616 RESET_FRAME (dst + 1);
1617 }
510ca126 1618
234155e3 1619 LOCAL_SET (dst, rest);
510ca126
AW
1620
1621 NEXT (1);
1622 }
1623
510ca126
AW
1624
1625 \f
1626
1627 /*
1628 * Branching instructions
1629 */
1630
1631 /* br offset:24
1632 *
1633 * Add OFFSET, a signed 24-bit number, to the current instruction
1634 * pointer.
1635 */
af95414f 1636 VM_DEFINE_OP (24, br, "br", OP1 (U8_L24))
510ca126
AW
1637 {
1638 scm_t_int32 offset = op;
1639 offset >>= 8; /* Sign-extending shift. */
1640 NEXT (offset);
1641 }
1642
1643 /* br-if-true test:24 invert:1 _:7 offset:24
1644 *
1645 * If the value in TEST is true for the purposes of Scheme, add
1646 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1647 */
af95414f 1648 VM_DEFINE_OP (25, br_if_true, "br-if-true", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1649 {
1650 BR_UNARY (x, scm_is_true (x));
1651 }
1652
1653 /* br-if-null test:24 invert:1 _:7 offset:24
1654 *
1655 * If the value in TEST is the end-of-list or Lisp nil, add OFFSET, a
1656 * signed 24-bit number, to the current instruction pointer.
1657 */
af95414f 1658 VM_DEFINE_OP (26, br_if_null, "br-if-null", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1659 {
1660 BR_UNARY (x, scm_is_null (x));
1661 }
1662
1663 /* br-if-nil test:24 invert:1 _:7 offset:24
1664 *
1665 * If the value in TEST is false to Lisp, add OFFSET, a signed 24-bit
1666 * number, to the current instruction pointer.
1667 */
af95414f 1668 VM_DEFINE_OP (27, br_if_nil, "br-if-nil", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1669 {
1670 BR_UNARY (x, scm_is_lisp_false (x));
1671 }
1672
1673 /* br-if-pair test:24 invert:1 _:7 offset:24
1674 *
1675 * If the value in TEST is a pair, add OFFSET, a signed 24-bit number,
1676 * to the current instruction pointer.
1677 */
af95414f 1678 VM_DEFINE_OP (28, br_if_pair, "br-if-pair", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1679 {
1680 BR_UNARY (x, scm_is_pair (x));
1681 }
1682
1683 /* br-if-struct test:24 invert:1 _:7 offset:24
1684 *
1685 * If the value in TEST is a struct, add OFFSET, a signed 24-bit
1686 * number, to the current instruction pointer.
1687 */
af95414f 1688 VM_DEFINE_OP (29, br_if_struct, "br-if-struct", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1689 {
1690 BR_UNARY (x, SCM_STRUCTP (x));
1691 }
1692
1693 /* br-if-char test:24 invert:1 _:7 offset:24
1694 *
1695 * If the value in TEST is a char, add OFFSET, a signed 24-bit number,
1696 * to the current instruction pointer.
1697 */
af95414f 1698 VM_DEFINE_OP (30, br_if_char, "br-if-char", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1699 {
1700 BR_UNARY (x, SCM_CHARP (x));
1701 }
1702
1703 /* br-if-tc7 test:24 invert:1 tc7:7 offset:24
1704 *
1705 * If the value in TEST has the TC7 given in the second word, add
1706 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1707 */
af95414f 1708 VM_DEFINE_OP (31, br_if_tc7, "br-if-tc7", OP2 (U8_U24, B1_U7_L24))
510ca126
AW
1709 {
1710 BR_UNARY (x, SCM_HAS_TYP7 (x, (ip[1] >> 1) & 0x7f));
1711 }
1712
1713 /* br-if-eq a:12 b:12 invert:1 _:7 offset:24
1714 *
1715 * If the value in A is eq? to the value in B, add OFFSET, a signed
1716 * 24-bit number, to the current instruction pointer.
1717 */
af95414f 1718 VM_DEFINE_OP (32, br_if_eq, "br-if-eq", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1719 {
1720 BR_BINARY (x, y, scm_is_eq (x, y));
1721 }
1722
1723 /* br-if-eqv a:12 b:12 invert:1 _:7 offset:24
1724 *
1725 * If the value in A is eqv? to the value in B, add OFFSET, a signed
1726 * 24-bit number, to the current instruction pointer.
1727 */
af95414f 1728 VM_DEFINE_OP (33, br_if_eqv, "br-if-eqv", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1729 {
1730 BR_BINARY (x, y,
1731 scm_is_eq (x, y)
1732 || (SCM_NIMP (x) && SCM_NIMP (y)
1733 && scm_is_true (scm_eqv_p (x, y))));
1734 }
1735
af95414f 1736 // FIXME: remove, have compiler inline eqv test instead
510ca126
AW
1737 /* br-if-equal a:12 b:12 invert:1 _:7 offset:24
1738 *
1739 * If the value in A is equal? to the value in B, add OFFSET, a signed
1740 * 24-bit number, to the current instruction pointer.
1741 */
1742 // FIXME: should sync_ip before calling out?
af95414f 1743 VM_DEFINE_OP (34, br_if_equal, "br-if-equal", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1744 {
1745 BR_BINARY (x, y,
1746 scm_is_eq (x, y)
1747 || (SCM_NIMP (x) && SCM_NIMP (y)
1748 && scm_is_true (scm_equal_p (x, y))));
1749 }
1750
af95414f 1751 /* br-if-= a:12 b:12 invert:1 _:7 offset:24
510ca126
AW
1752 *
1753 * If the value in A is = to the value in B, add OFFSET, a signed
1754 * 24-bit number, to the current instruction pointer.
1755 */
af95414f 1756 VM_DEFINE_OP (35, br_if_ee, "br-if-=", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1757 {
1758 BR_ARITHMETIC (==, scm_num_eq_p);
1759 }
1760
1761 /* br-if-< a:12 b:12 _:8 offset:24
1762 *
1763 * If the value in A is < to the value in B, add OFFSET, a signed
1764 * 24-bit number, to the current instruction pointer.
1765 */
af95414f 1766 VM_DEFINE_OP (36, br_if_lt, "br-if-<", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1767 {
1768 BR_ARITHMETIC (<, scm_less_p);
1769 }
1770
1771 /* br-if-<= a:12 b:12 _:8 offset:24
1772 *
1773 * If the value in A is <= to the value in B, add OFFSET, a signed
1774 * 24-bit number, to the current instruction pointer.
1775 */
af95414f 1776 VM_DEFINE_OP (37, br_if_le, "br-if-<=", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1777 {
1778 BR_ARITHMETIC (<=, scm_leq_p);
1779 }
1780
510ca126
AW
1781
1782 \f
1783
1784 /*
1785 * Lexical binding instructions
1786 */
1787
1788 /* mov dst:12 src:12
1789 *
1790 * Copy a value from one local slot to another.
1791 */
af95414f 1792 VM_DEFINE_OP (38, mov, "mov", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1793 {
1794 scm_t_uint16 dst;
1795 scm_t_uint16 src;
1796
1797 SCM_UNPACK_RTL_12_12 (op, dst, src);
1798 LOCAL_SET (dst, LOCAL_REF (src));
1799
1800 NEXT (1);
1801 }
1802
1803 /* long-mov dst:24 _:8 src:24
1804 *
1805 * Copy a value from one local slot to another.
1806 */
af95414f 1807 VM_DEFINE_OP (39, long_mov, "long-mov", OP2 (U8_U24, X8_U24) | OP_DST)
510ca126
AW
1808 {
1809 scm_t_uint32 dst;
1810 scm_t_uint32 src;
1811
1812 SCM_UNPACK_RTL_24 (op, dst);
1813 SCM_UNPACK_RTL_24 (ip[1], src);
1814 LOCAL_SET (dst, LOCAL_REF (src));
1815
1816 NEXT (2);
1817 }
1818
1819 /* box dst:12 src:12
1820 *
1821 * Create a new variable holding SRC, and place it in DST.
1822 */
af95414f 1823 VM_DEFINE_OP (40, box, "box", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1824 {
1825 scm_t_uint16 dst, src;
1826 SCM_UNPACK_RTL_12_12 (op, dst, src);
1827 LOCAL_SET (dst, scm_cell (scm_tc7_variable, SCM_UNPACK (LOCAL_REF (src))));
1828 NEXT (1);
1829 }
1830
510ca126
AW
1831 /* box-ref dst:12 src:12
1832 *
1833 * Unpack the variable at SRC into DST, asserting that the variable is
1834 * actually bound.
1835 */
af95414f 1836 VM_DEFINE_OP (41, box_ref, "box-ref", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1837 {
1838 scm_t_uint16 dst, src;
1839 SCM var;
1840 SCM_UNPACK_RTL_12_12 (op, dst, src);
1841 var = LOCAL_REF (src);
1842 VM_ASSERT (SCM_VARIABLEP (var), abort ());
af95414f
AW
1843 VM_ASSERT (VARIABLE_BOUNDP (var),
1844 vm_error_unbound (SCM_FRAME_PROGRAM (fp), var));
510ca126
AW
1845 LOCAL_SET (dst, VARIABLE_REF (var));
1846 NEXT (1);
1847 }
1848
1849 /* box-set! dst:12 src:12
1850 *
1851 * Set the contents of the variable at DST to SET.
1852 */
e063995d 1853 VM_DEFINE_OP (42, box_set, "box-set!", OP1 (U8_U12_U12))
510ca126
AW
1854 {
1855 scm_t_uint16 dst, src;
1856 SCM var;
1857 SCM_UNPACK_RTL_12_12 (op, dst, src);
1858 var = LOCAL_REF (dst);
1859 VM_ASSERT (SCM_VARIABLEP (var), abort ());
1860 VARIABLE_SET (var, LOCAL_REF (src));
1861 NEXT (1);
1862 }
1863
7396d216 1864 /* make-closure dst:24 offset:32 _:8 nfree:24
510ca126
AW
1865 *
1866 * Make a new closure, and write it to DST. The code for the closure
1867 * will be found at OFFSET words from the current IP. OFFSET is a
7396d216
AW
1868 * signed 32-bit integer. Space for NFREE free variables will be
1869 * allocated.
510ca126 1870 */
af95414f 1871 VM_DEFINE_OP (43, make_closure, "make-closure", OP3 (U8_U24, L32, X8_U24) | OP_DST)
510ca126
AW
1872 {
1873 scm_t_uint32 dst, nfree, n;
1874 scm_t_int32 offset;
1875 SCM closure;
1876
1877 SCM_UNPACK_RTL_24 (op, dst);
1878 offset = ip[1];
1879 SCM_UNPACK_RTL_24 (ip[2], nfree);
1880
1881 // FIXME: Assert range of nfree?
1882 closure = scm_words (scm_tc7_rtl_program | (nfree << 16), nfree + 2);
1883 SCM_SET_CELL_WORD_1 (closure, ip + offset);
7396d216 1884 // FIXME: Elide these initializations?
510ca126 1885 for (n = 0; n < nfree; n++)
7396d216 1886 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (closure, n, SCM_BOOL_F);
510ca126 1887 LOCAL_SET (dst, closure);
7396d216 1888 NEXT (3);
510ca126
AW
1889 }
1890
7396d216 1891 /* free-ref dst:12 src:12 _:8 idx:24
510ca126 1892 *
7396d216 1893 * Load free variable IDX from the closure SRC into local slot DST.
510ca126 1894 */
af95414f 1895 VM_DEFINE_OP (44, free_ref, "free-ref", OP2 (U8_U12_U12, X8_U24) | OP_DST)
510ca126 1896 {
7396d216
AW
1897 scm_t_uint16 dst, src;
1898 scm_t_uint32 idx;
1899 SCM_UNPACK_RTL_12_12 (op, dst, src);
1900 SCM_UNPACK_RTL_24 (ip[1], idx);
1901 /* CHECK_FREE_VARIABLE (src); */
1902 LOCAL_SET (dst, SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (src), idx));
1903 NEXT (2);
1904 }
510ca126 1905
7396d216
AW
1906 /* free-set! dst:12 src:12 _8 idx:24
1907 *
1908 * Set free variable IDX from the closure DST to SRC.
1909 */
af95414f 1910 VM_DEFINE_OP (45, free_set, "free-set!", OP2 (U8_U12_U12, X8_U24))
7396d216
AW
1911 {
1912 scm_t_uint16 dst, src;
1913 scm_t_uint32 idx;
1914 SCM_UNPACK_RTL_12_12 (op, dst, src);
1915 SCM_UNPACK_RTL_24 (ip[1], idx);
1916 /* CHECK_FREE_VARIABLE (src); */
1917 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (LOCAL_REF (dst), idx, LOCAL_REF (src));
1918 NEXT (2);
510ca126
AW
1919 }
1920
1921
1922 \f
1923
1924 /*
1925 * Immediates and statically allocated non-immediates
1926 */
1927
1928 /* make-short-immediate dst:8 low-bits:16
1929 *
1930 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
1931 * 0.
1932 */
af95414f 1933 VM_DEFINE_OP (46, make_short_immediate, "make-short-immediate", OP1 (U8_U8_I16) | OP_DST)
510ca126
AW
1934 {
1935 scm_t_uint8 dst;
1936 scm_t_bits val;
1937
1938 SCM_UNPACK_RTL_8_16 (op, dst, val);
1939 LOCAL_SET (dst, SCM_PACK (val));
1940 NEXT (1);
1941 }
1942
1943 /* make-long-immediate dst:24 low-bits:32
1944 *
1945 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
1946 * 0.
1947 */
af95414f 1948 VM_DEFINE_OP (47, make_long_immediate, "make-long-immediate", OP2 (U8_U24, I32))
510ca126
AW
1949 {
1950 scm_t_uint8 dst;
1951 scm_t_bits val;
1952
1953 SCM_UNPACK_RTL_24 (op, dst);
1954 val = ip[1];
1955 LOCAL_SET (dst, SCM_PACK (val));
1956 NEXT (2);
1957 }
1958
1959 /* make-long-long-immediate dst:24 high-bits:32 low-bits:32
1960 *
1961 * Make an immediate with HIGH-BITS and LOW-BITS.
1962 */
af95414f 1963 VM_DEFINE_OP (48, make_long_long_immediate, "make-long-long-immediate", OP3 (U8_U24, A32, B32) | OP_DST)
510ca126
AW
1964 {
1965 scm_t_uint8 dst;
1966 scm_t_bits val;
1967
1968 SCM_UNPACK_RTL_24 (op, dst);
1969#if SIZEOF_SCM_T_BITS > 4
1970 val = ip[1];
1971 val <<= 32;
1972 val |= ip[2];
1973#else
1974 ASSERT (ip[1] == 0);
1975 val = ip[2];
1976#endif
1977 LOCAL_SET (dst, SCM_PACK (val));
1978 NEXT (3);
1979 }
1980
1981 /* make-non-immediate dst:24 offset:32
1982 *
1983 * Load a pointer to statically allocated memory into DST. The
1984 * object's memory is will be found OFFSET 32-bit words away from the
1985 * current instruction pointer. OFFSET is a signed value. The
1986 * intention here is that the compiler would produce an object file
1987 * containing the words of a non-immediate object, and this
1988 * instruction creates a pointer to that memory, effectively
1989 * resurrecting that object.
1990 *
1991 * Whether the object is mutable or immutable depends on where it was
1992 * allocated by the compiler, and loaded by the loader.
1993 */
af95414f 1994 VM_DEFINE_OP (49, make_non_immediate, "make-non-immediate", OP2 (U8_U24, N32) | OP_DST)
510ca126
AW
1995 {
1996 scm_t_uint32 dst;
1997 scm_t_int32 offset;
1998 scm_t_uint32* loc;
1999 scm_t_bits unpacked;
2000
2001 SCM_UNPACK_RTL_24 (op, dst);
2002 offset = ip[1];
2003 loc = ip + offset;
2004 unpacked = (scm_t_bits) loc;
2005
2006 VM_ASSERT (!(unpacked & 0x7), abort());
2007
2008 LOCAL_SET (dst, SCM_PACK (unpacked));
2009
2010 NEXT (2);
2011 }
2012
2013 /* static-ref dst:24 offset:32
2014 *
2015 * Load a SCM value into DST. The SCM value will be fetched from
2016 * memory, OFFSET 32-bit words away from the current instruction
2017 * pointer. OFFSET is a signed value.
2018 *
2019 * The intention is for this instruction to be used to load constants
2020 * that the compiler is unable to statically allocate, like symbols.
2021 * These values would be initialized when the object file loads.
2022 */
af95414f 2023 VM_DEFINE_OP (50, static_ref, "static-ref", OP2 (U8_U24, S32))
510ca126
AW
2024 {
2025 scm_t_uint32 dst;
2026 scm_t_int32 offset;
2027 scm_t_uint32* loc;
2028 scm_t_uintptr loc_bits;
2029
2030 SCM_UNPACK_RTL_24 (op, dst);
2031 offset = ip[1];
2032 loc = ip + offset;
2033 loc_bits = (scm_t_uintptr) loc;
2034 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2035
2036 LOCAL_SET (dst, *((SCM *) loc_bits));
2037
2038 NEXT (2);
2039 }
2040
2041 /* static-set! src:24 offset:32
2042 *
2043 * Store a SCM value into memory, OFFSET 32-bit words away from the
2044 * current instruction pointer. OFFSET is a signed value.
2045 */
af95414f 2046 VM_DEFINE_OP (51, static_set, "static-set!", OP2 (U8_U24, LO32))
510ca126
AW
2047 {
2048 scm_t_uint32 src;
2049 scm_t_int32 offset;
2050 scm_t_uint32* loc;
2051
2052 SCM_UNPACK_RTL_24 (op, src);
2053 offset = ip[1];
2054 loc = ip + offset;
2055 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2056
2057 *((SCM *) loc) = LOCAL_REF (src);
2058
2059 NEXT (2);
2060 }
2061
2062 /* link-procedure! src:24 offset:32
2063 *
2064 * Set the code pointer of the procedure in SRC to point OFFSET 32-bit
2065 * words away from the current instruction pointer. OFFSET is a
2066 * signed value.
2067 */
af95414f 2068 VM_DEFINE_OP (52, link_procedure, "link-procedure!", OP2 (U8_U24, L32))
510ca126
AW
2069 {
2070 scm_t_uint32 src;
2071 scm_t_int32 offset;
2072 scm_t_uint32* loc;
2073
2074 SCM_UNPACK_RTL_24 (op, src);
2075 offset = ip[1];
2076 loc = ip + offset;
2077
2078 SCM_SET_CELL_WORD_1 (LOCAL_REF (src), (scm_t_bits) loc);
2079
2080 NEXT (2);
2081 }
2082
2083 \f
2084
2085 /*
2086 * Mutable top-level bindings
2087 */
2088
2089 /* There are three slightly different ways to resolve toplevel
2090 variables.
2091
2092 1. A toplevel reference outside of a function. These need to be
2093 looked up when the expression is evaluated -- no later, and no
2094 before. They are looked up relative to the module that is
2095 current when the expression is evaluated. For example:
2096
2097 (if (foo) a b)
2098
2099 The "resolve" instruction resolves the variable (box), and then
2100 access is via box-ref or box-set!.
2101
2102 2. A toplevel reference inside a function. These are looked up
2103 relative to the module that was current when the function was
2104 defined. Unlike code at the toplevel, which is usually run only
2105 once, these bindings benefit from memoized lookup, in which the
2106 variable resulting from the lookup is cached in the function.
2107
2108 (lambda () (if (foo) a b))
2109
af95414f
AW
2110 The toplevel-box instruction is equivalent to "resolve", but
2111 caches the resulting variable in statically allocated memory.
510ca126
AW
2112
2113 3. A reference to an identifier with respect to a particular
2114 module. This can happen for primitive references, and
af95414f
AW
2115 references residualized by macro expansions. These can always
2116 be cached. Use module-box for these.
510ca126
AW
2117 */
2118
2119 /* current-module dst:24
2120 *
2121 * Store the current module in DST.
2122 */
af95414f 2123 VM_DEFINE_OP (53, current_module, "current-module", OP1 (U8_U24) | OP_DST)
510ca126
AW
2124 {
2125 scm_t_uint32 dst;
2126
2127 SCM_UNPACK_RTL_24 (op, dst);
2128
2129 SYNC_IP ();
2130 LOCAL_SET (dst, scm_current_module ());
2131
2132 NEXT (1);
2133 }
2134
af95414f 2135 /* resolve dst:24 bound?:1 _:7 sym:24
510ca126 2136 *
af95414f
AW
2137 * Resolve SYM in the current module, and place the resulting variable
2138 * in DST.
510ca126 2139 */
af95414f 2140 VM_DEFINE_OP (54, resolve, "resolve", OP2 (U8_U24, B1_X7_U24) | OP_DST)
510ca126 2141 {
af95414f
AW
2142 scm_t_uint32 dst;
2143 scm_t_uint32 sym;
2144 SCM var;
510ca126 2145
af95414f
AW
2146 SCM_UNPACK_RTL_24 (op, dst);
2147 SCM_UNPACK_RTL_24 (ip[1], sym);
510ca126
AW
2148
2149 SYNC_IP ();
af95414f
AW
2150 var = scm_lookup (LOCAL_REF (sym));
2151 if (ip[1] & 0x1)
2152 VM_ASSERT (VARIABLE_BOUNDP (var),
2153 vm_error_unbound (fp[-1], LOCAL_REF (sym)));
2154 LOCAL_SET (dst, var);
510ca126 2155
af95414f 2156 NEXT (2);
510ca126
AW
2157 }
2158
2159 /* define sym:12 val:12
2160 *
2161 * Look up a binding for SYM in the current module, creating it if
2162 * necessary. Set its value to VAL.
2163 */
af95414f 2164 VM_DEFINE_OP (55, define, "define", OP1 (U8_U12_U12))
510ca126
AW
2165 {
2166 scm_t_uint16 sym, val;
2167 SCM_UNPACK_RTL_12_12 (op, sym, val);
2168 SYNC_IP ();
2169 scm_define (LOCAL_REF (sym), LOCAL_REF (val));
2170 NEXT (1);
2171 }
2172
af95414f 2173 /* toplevel-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
510ca126
AW
2174 *
2175 * Load a SCM value. The SCM value will be fetched from memory,
2176 * VAR-OFFSET 32-bit words away from the current instruction pointer.
af95414f 2177 * VAR-OFFSET is a signed value. Up to here, toplevel-box is like
510ca126
AW
2178 * static-ref.
2179 *
af95414f
AW
2180 * Then, if the loaded value is a variable, it is placed in DST, and control
2181 * flow continues.
510ca126
AW
2182 *
2183 * Otherwise, we have to resolve the variable. In that case we load
2184 * the module from MOD-OFFSET, just as we loaded the variable.
2185 * Usually the module gets set when the closure is created. The name
2186 * is an offset to a symbol.
2187 *
af95414f
AW
2188 * We use the module and the symbol to resolve the variable, placing it in
2189 * DST, and caching the resolved variable so that we will hit the cache next
2190 * time.
510ca126 2191 */
af95414f 2192 VM_DEFINE_OP (56, toplevel_box, "toplevel-box", OP5 (U8_U24, S32, S32, N32, B1_X31) | OP_DST)
510ca126
AW
2193 {
2194 scm_t_uint32 dst;
2195 scm_t_int32 var_offset;
2196 scm_t_uint32* var_loc_u32;
2197 SCM *var_loc;
2198 SCM var;
2199
2200 SCM_UNPACK_RTL_24 (op, dst);
2201 var_offset = ip[1];
2202 var_loc_u32 = ip + var_offset;
2203 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2204 var_loc = (SCM *) var_loc_u32;
2205 var = *var_loc;
2206
2207 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2208 {
2209 SCM mod, sym;
2210 scm_t_int32 mod_offset = ip[2]; /* signed */
2211 scm_t_int32 sym_offset = ip[3]; /* signed */
2212 scm_t_uint32 *mod_loc = ip + mod_offset;
2213 scm_t_uint32 *sym_loc = ip + sym_offset;
2214
2215 SYNC_IP ();
2216
2217 VM_ASSERT (ALIGNED_P (mod_loc, SCM), abort());
2218 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2219
2220 mod = *((SCM *) mod_loc);
2221 sym = *((SCM *) sym_loc);
2222
2223 var = scm_module_lookup (mod, sym);
af95414f
AW
2224 if (ip[4] & 0x1)
2225 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
510ca126
AW
2226
2227 *var_loc = var;
2228 }
2229
af95414f
AW
2230 LOCAL_SET (dst, var);
2231 NEXT (5);
510ca126
AW
2232 }
2233
af95414f 2234 /* module-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
510ca126 2235 *
af95414f 2236 * Like toplevel-box, except MOD-OFFSET points at the name of a module
510ca126
AW
2237 * instead of the module itself.
2238 */
af95414f 2239 VM_DEFINE_OP (57, module_box, "module-box", OP5 (U8_U24, S32, N32, N32, B1_X31) | OP_DST)
510ca126
AW
2240 {
2241 scm_t_uint32 dst;
2242 scm_t_int32 var_offset;
2243 scm_t_uint32* var_loc_u32;
2244 SCM *var_loc;
2245 SCM var;
2246
2247 SCM_UNPACK_RTL_24 (op, dst);
2248 var_offset = ip[1];
2249 var_loc_u32 = ip + var_offset;
2250 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2251 var_loc = (SCM *) var_loc_u32;
2252 var = *var_loc;
2253
2254 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2255 {
2256 SCM modname, sym;
2257 scm_t_int32 modname_offset = ip[2]; /* signed */
2258 scm_t_int32 sym_offset = ip[3]; /* signed */
2259 scm_t_uint32 *modname_words = ip + modname_offset;
2260 scm_t_uint32 *sym_loc = ip + sym_offset;
2261
2262 SYNC_IP ();
2263
2264 VM_ASSERT (!(((scm_t_uintptr) modname_words) & 0x7), abort());
2265 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2266
2267 modname = SCM_PACK ((scm_t_bits) modname_words);
2268 sym = *((SCM *) sym_loc);
2269
2270 if (scm_is_true (SCM_CAR (modname)))
2271 var = scm_public_lookup (SCM_CDR (modname), sym);
2272 else
2273 var = scm_private_lookup (SCM_CDR (modname), sym);
2274
af95414f
AW
2275 if (ip[4] & 0x1)
2276 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
510ca126
AW
2277
2278 *var_loc = var;
2279 }
2280
af95414f
AW
2281 LOCAL_SET (dst, var);
2282 NEXT (5);
510ca126
AW
2283 }
2284
2285 \f
2286
2287 /*
2288 * The dynamic environment
2289 */
2290
8d59d55e 2291 /* prompt tag:24 escape-only?:1 _:7 proc-slot:24 _:8 handler-offset:24
510ca126
AW
2292 *
2293 * Push a new prompt on the dynamic stack, with a tag from TAG and a
2294 * handler at HANDLER-OFFSET words from the current IP. The handler
8d59d55e
AW
2295 * will expect a multiple-value return as if from a call with the
2296 * procedure at PROC-SLOT.
510ca126 2297 */
8d59d55e 2298 VM_DEFINE_OP (58, prompt, "prompt", OP3 (U8_U24, B1_X7_U24, X8_L24))
510ca126 2299 {
8d59d55e 2300 scm_t_uint32 tag, proc_slot;
510ca126
AW
2301 scm_t_int32 offset;
2302 scm_t_uint8 escape_only_p;
2303 scm_t_dynstack_prompt_flags flags;
2304
2305 SCM_UNPACK_RTL_24 (op, tag);
8d59d55e
AW
2306 escape_only_p = ip[1] & 0x1;
2307 SCM_UNPACK_RTL_24 (ip[1], proc_slot);
2308 offset = ip[2];
510ca126
AW
2309 offset >>= 8; /* Sign extension */
2310
2311 /* Push the prompt onto the dynamic stack. */
2312 flags = escape_only_p ? SCM_F_DYNSTACK_PROMPT_ESCAPE_ONLY : 0;
2313 scm_dynstack_push_prompt (&current_thread->dynstack, flags,
2314 LOCAL_REF (tag),
8d59d55e
AW
2315 fp,
2316 &LOCAL_REF (proc_slot),
2317 (scm_t_uint8 *)(ip + offset),
2318 &registers);
2319 NEXT (3);
510ca126 2320 }
510ca126
AW
2321
2322 /* wind winder:12 unwinder:12
2323 *
2324 * Push wind and unwind procedures onto the dynamic stack. Note that
2325 * neither are actually called; the compiler should emit calls to wind
2326 * and unwind for the normal dynamic-wind control flow. Also note that
2327 * the compiler should have inserted checks that they wind and unwind
2328 * procs are thunks, if it could not prove that to be the case.
2329 */
af95414f 2330 VM_DEFINE_OP (59, wind, "wind", OP1 (U8_U12_U12))
510ca126
AW
2331 {
2332 scm_t_uint16 winder, unwinder;
2333 SCM_UNPACK_RTL_12_12 (op, winder, unwinder);
2334 scm_dynstack_push_dynwind (&current_thread->dynstack,
2335 LOCAL_REF (winder), LOCAL_REF (unwinder));
2336 NEXT (1);
2337 }
2338
af95414f 2339 /* abort tag:24 _:8 proc:24
510ca126 2340 *
b2171312 2341 * Return a number of values to a prompt handler. The values are
af95414f 2342 * expected in a frame pushed on at PROC.
510ca126 2343 */
af95414f 2344 VM_DEFINE_OP (60, abort, "abort", OP2 (U8_U24, X8_U24))
510ca126
AW
2345#if 0
2346 {
b2171312
AW
2347 scm_t_uint32 tag, from, nvalues;
2348 SCM *base;
510ca126
AW
2349
2350 SCM_UNPACK_RTL_24 (op, tag);
b2171312
AW
2351 SCM_UNPACK_RTL_24 (ip[1], from);
2352 base = (fp - 1) + from + 3;
2353 nvalues = FRAME_LOCALS_COUNT () - from - 3;
510ca126
AW
2354
2355 SYNC_IP ();
b2171312 2356 vm_abort (vm, LOCAL_REF (tag), base, nvalues, &registers);
510ca126
AW
2357
2358 /* vm_abort should not return */
2359 abort ();
2360 }
2361#else
2362 abort();
2363#endif
2364
2365 /* unwind _:24
2366 *
2367 * A normal exit from the dynamic extent of an expression. Pop the top
2368 * entry off of the dynamic stack.
2369 */
af95414f 2370 VM_DEFINE_OP (61, unwind, "unwind", OP1 (U8_X24))
510ca126
AW
2371 {
2372 scm_dynstack_pop (&current_thread->dynstack);
2373 NEXT (1);
2374 }
2375
98eaef1b 2376 /* push-fluid fluid:12 value:12
510ca126
AW
2377 *
2378 * Dynamically bind N fluids to values. The fluids are expected to be
2379 * allocated in a continguous range on the stack, starting from
2380 * FLUID-BASE. The values do not have this restriction.
2381 */
af95414f 2382 VM_DEFINE_OP (62, push_fluid, "push-fluid", OP1 (U8_U12_U12))
510ca126 2383 {
98eaef1b 2384 scm_t_uint32 fluid, value;
510ca126 2385
98eaef1b 2386 SCM_UNPACK_RTL_12_12 (op, fluid, value);
510ca126 2387
98eaef1b
AW
2388 scm_dynstack_push_fluid (&current_thread->dynstack,
2389 fp[fluid], fp[value],
2390 current_thread->dynamic_state);
2391 NEXT (1);
510ca126 2392 }
510ca126 2393
98eaef1b 2394 /* pop-fluid _:24
510ca126
AW
2395 *
2396 * Leave the dynamic extent of a with-fluids expression, restoring the
2397 * fluids to their previous values.
2398 */
af95414f 2399 VM_DEFINE_OP (63, pop_fluid, "pop-fluid", OP1 (U8_X24))
510ca126
AW
2400 {
2401 /* This function must not allocate. */
98eaef1b
AW
2402 scm_dynstack_unwind_fluid (&current_thread->dynstack,
2403 current_thread->dynamic_state);
510ca126
AW
2404 NEXT (1);
2405 }
2406
2407 /* fluid-ref dst:12 src:12
2408 *
2409 * Reference the fluid in SRC, and place the value in DST.
2410 */
af95414f 2411 VM_DEFINE_OP (64, fluid_ref, "fluid-ref", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2412 {
2413 scm_t_uint16 dst, src;
2414 size_t num;
2415 SCM fluid, fluids;
2416
2417 SCM_UNPACK_RTL_12_12 (op, dst, src);
2418 fluid = LOCAL_REF (src);
2419 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2420 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2421 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2422 {
2423 /* Punt dynstate expansion and error handling to the C proc. */
2424 SYNC_IP ();
2425 LOCAL_SET (dst, scm_fluid_ref (fluid));
2426 }
2427 else
2428 {
2429 SCM val = SCM_SIMPLE_VECTOR_REF (fluids, num);
2430 if (scm_is_eq (val, SCM_UNDEFINED))
2431 val = SCM_I_FLUID_DEFAULT (fluid);
2432 VM_ASSERT (!scm_is_eq (val, SCM_UNDEFINED),
2433 vm_error_unbound_fluid (program, fluid));
2434 LOCAL_SET (dst, val);
2435 }
2436
2437 NEXT (1);
2438 }
2439
2440 /* fluid-set fluid:12 val:12
2441 *
2442 * Set the value of the fluid in DST to the value in SRC.
2443 */
af95414f 2444 VM_DEFINE_OP (65, fluid_set, "fluid-set", OP1 (U8_U12_U12))
510ca126
AW
2445 {
2446 scm_t_uint16 a, b;
2447 size_t num;
2448 SCM fluid, fluids;
2449
2450 SCM_UNPACK_RTL_12_12 (op, a, b);
2451 fluid = LOCAL_REF (a);
2452 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2453 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2454 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2455 {
2456 /* Punt dynstate expansion and error handling to the C proc. */
2457 SYNC_IP ();
2458 scm_fluid_set_x (fluid, LOCAL_REF (b));
2459 }
2460 else
2461 SCM_SIMPLE_VECTOR_SET (fluids, num, LOCAL_REF (b));
2462
2463 NEXT (1);
2464 }
2465
2466
2467 \f
2468
2469 /*
2470 * Strings, symbols, and keywords
2471 */
2472
2473 /* string-length dst:12 src:12
2474 *
2475 * Store the length of the string in SRC in DST.
2476 */
af95414f 2477 VM_DEFINE_OP (66, string_length, "string-length", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2478 {
2479 ARGS1 (str);
2480 if (SCM_LIKELY (scm_is_string (str)))
2481 RETURN (SCM_I_MAKINUM (scm_i_string_length (str)));
2482 else
2483 {
2484 SYNC_IP ();
2485 RETURN (scm_string_length (str));
2486 }
2487 }
2488
2489 /* string-ref dst:8 src:8 idx:8
2490 *
2491 * Fetch the character at position IDX in the string in SRC, and store
2492 * it in DST.
2493 */
af95414f 2494 VM_DEFINE_OP (67, string_ref, "string-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2495 {
2496 scm_t_signed_bits i = 0;
2497 ARGS2 (str, idx);
2498 if (SCM_LIKELY (scm_is_string (str)
2499 && SCM_I_INUMP (idx)
2500 && ((i = SCM_I_INUM (idx)) >= 0)
2501 && i < scm_i_string_length (str)))
2502 RETURN (SCM_MAKE_CHAR (scm_i_string_ref (str, i)));
2503 else
2504 {
2505 SYNC_IP ();
2506 RETURN (scm_string_ref (str, idx));
2507 }
2508 }
2509
2510 /* No string-set! instruction, as there is no good fast path there. */
2511
2512 /* string-to-number dst:12 src:12
2513 *
2514 * Parse a string in SRC to a number, and store in DST.
2515 */
af95414f 2516 VM_DEFINE_OP (68, string_to_number, "string->number", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2517 {
2518 scm_t_uint16 dst, src;
2519
2520 SCM_UNPACK_RTL_12_12 (op, dst, src);
2521 SYNC_IP ();
2522 LOCAL_SET (dst,
2523 scm_string_to_number (LOCAL_REF (src),
2524 SCM_UNDEFINED /* radix = 10 */));
2525 NEXT (1);
2526 }
2527
2528 /* string-to-symbol dst:12 src:12
2529 *
2530 * Parse a string in SRC to a symbol, and store in DST.
2531 */
af95414f 2532 VM_DEFINE_OP (69, string_to_symbol, "string->symbol", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2533 {
2534 scm_t_uint16 dst, src;
2535
2536 SCM_UNPACK_RTL_12_12 (op, dst, src);
2537 SYNC_IP ();
2538 LOCAL_SET (dst, scm_string_to_symbol (LOCAL_REF (src)));
2539 NEXT (1);
2540 }
2541
2542 /* symbol->keyword dst:12 src:12
2543 *
2544 * Make a keyword from the symbol in SRC, and store it in DST.
2545 */
af95414f 2546 VM_DEFINE_OP (70, symbol_to_keyword, "symbol->keyword", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2547 {
2548 scm_t_uint16 dst, src;
2549 SCM_UNPACK_RTL_12_12 (op, dst, src);
2550 SYNC_IP ();
2551 LOCAL_SET (dst, scm_symbol_to_keyword (LOCAL_REF (src)));
2552 NEXT (1);
2553 }
2554
2555 \f
2556
2557 /*
2558 * Pairs
2559 */
2560
2561 /* cons dst:8 car:8 cdr:8
2562 *
2563 * Cons CAR and CDR, and store the result in DST.
2564 */
af95414f 2565 VM_DEFINE_OP (71, cons, "cons", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2566 {
2567 ARGS2 (x, y);
2568 RETURN (scm_cons (x, y));
2569 }
2570
2571 /* car dst:12 src:12
2572 *
2573 * Place the car of SRC in DST.
2574 */
af95414f 2575 VM_DEFINE_OP (72, car, "car", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2576 {
2577 ARGS1 (x);
2578 VM_VALIDATE_PAIR (x, "car");
2579 RETURN (SCM_CAR (x));
2580 }
2581
2582 /* cdr dst:12 src:12
2583 *
2584 * Place the cdr of SRC in DST.
2585 */
af95414f 2586 VM_DEFINE_OP (73, cdr, "cdr", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2587 {
2588 ARGS1 (x);
2589 VM_VALIDATE_PAIR (x, "cdr");
2590 RETURN (SCM_CDR (x));
2591 }
2592
2593 /* set-car! pair:12 car:12
2594 *
2595 * Set the car of DST to SRC.
2596 */
af95414f 2597 VM_DEFINE_OP (74, set_car, "set-car!", OP1 (U8_U12_U12))
510ca126
AW
2598 {
2599 scm_t_uint16 a, b;
2600 SCM x, y;
2601 SCM_UNPACK_RTL_12_12 (op, a, b);
2602 x = LOCAL_REF (a);
2603 y = LOCAL_REF (b);
2604 VM_VALIDATE_PAIR (x, "set-car!");
2605 SCM_SETCAR (x, y);
2606 NEXT (1);
2607 }
2608
2609 /* set-cdr! pair:12 cdr:12
2610 *
2611 * Set the cdr of DST to SRC.
2612 */
af95414f 2613 VM_DEFINE_OP (75, set_cdr, "set-cdr!", OP1 (U8_U12_U12))
510ca126
AW
2614 {
2615 scm_t_uint16 a, b;
2616 SCM x, y;
2617 SCM_UNPACK_RTL_12_12 (op, a, b);
2618 x = LOCAL_REF (a);
2619 y = LOCAL_REF (b);
2620 VM_VALIDATE_PAIR (x, "set-car!");
2621 SCM_SETCDR (x, y);
2622 NEXT (1);
2623 }
2624
2625
2626 \f
2627
2628 /*
2629 * Numeric operations
2630 */
2631
2632 /* add dst:8 a:8 b:8
2633 *
2634 * Add A to B, and place the result in DST.
2635 */
af95414f 2636 VM_DEFINE_OP (76, add, "add", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2637 {
2638 BINARY_INTEGER_OP (+, scm_sum);
2639 }
2640
2641 /* add1 dst:12 src:12
2642 *
2643 * Add 1 to the value in SRC, and place the result in DST.
2644 */
af95414f 2645 VM_DEFINE_OP (77, add1, "add1", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2646 {
2647 ARGS1 (x);
2648
d2295ba5
MW
2649 /* Check for overflow. We must avoid overflow in the signed
2650 addition below, even if X is not an inum. */
2651 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) <= INUM_MAX - INUM_STEP))
510ca126
AW
2652 {
2653 SCM result;
2654
d2295ba5
MW
2655 /* Add 1 to the integer without untagging. */
2656 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) + INUM_STEP);
510ca126
AW
2657
2658 if (SCM_LIKELY (SCM_I_INUMP (result)))
2659 RETURN (result);
2660 }
2661
2662 SYNC_IP ();
2663 RETURN (scm_sum (x, SCM_I_MAKINUM (1)));
2664 }
2665
2666 /* sub dst:8 a:8 b:8
2667 *
2668 * Subtract B from A, and place the result in DST.
2669 */
af95414f 2670 VM_DEFINE_OP (78, sub, "sub", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2671 {
2672 BINARY_INTEGER_OP (-, scm_difference);
2673 }
2674
2675 /* sub1 dst:12 src:12
2676 *
2677 * Subtract 1 from SRC, and place the result in DST.
2678 */
af95414f 2679 VM_DEFINE_OP (79, sub1, "sub1", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2680 {
2681 ARGS1 (x);
2682
d2295ba5
MW
2683 /* Check for overflow. We must avoid overflow in the signed
2684 subtraction below, even if X is not an inum. */
2685 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) >= INUM_MIN + INUM_STEP))
510ca126
AW
2686 {
2687 SCM result;
2688
d2295ba5
MW
2689 /* Substract 1 from the integer without untagging. */
2690 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) - INUM_STEP);
510ca126
AW
2691
2692 if (SCM_LIKELY (SCM_I_INUMP (result)))
2693 RETURN (result);
2694 }
2695
2696 SYNC_IP ();
2697 RETURN (scm_difference (x, SCM_I_MAKINUM (1)));
2698 }
2699
2700 /* mul dst:8 a:8 b:8
2701 *
2702 * Multiply A and B, and place the result in DST.
2703 */
af95414f 2704 VM_DEFINE_OP (80, mul, "mul", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2705 {
2706 ARGS2 (x, y);
2707 SYNC_IP ();
2708 RETURN (scm_product (x, y));
2709 }
2710
2711 /* div dst:8 a:8 b:8
2712 *
2713 * Divide A by B, and place the result in DST.
2714 */
af95414f 2715 VM_DEFINE_OP (81, div, "div", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2716 {
2717 ARGS2 (x, y);
2718 SYNC_IP ();
2719 RETURN (scm_divide (x, y));
2720 }
2721
2722 /* quo dst:8 a:8 b:8
2723 *
2724 * Divide A by B, and place the quotient in DST.
2725 */
af95414f 2726 VM_DEFINE_OP (82, quo, "quo", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2727 {
2728 ARGS2 (x, y);
2729 SYNC_IP ();
2730 RETURN (scm_quotient (x, y));
2731 }
2732
2733 /* rem dst:8 a:8 b:8
2734 *
2735 * Divide A by B, and place the remainder in DST.
2736 */
af95414f 2737 VM_DEFINE_OP (83, rem, "rem", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2738 {
2739 ARGS2 (x, y);
2740 SYNC_IP ();
2741 RETURN (scm_remainder (x, y));
2742 }
2743
2744 /* mod dst:8 a:8 b:8
2745 *
2746 * Place the modulo of A by B in DST.
2747 */
af95414f 2748 VM_DEFINE_OP (84, mod, "mod", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2749 {
2750 ARGS2 (x, y);
2751 SYNC_IP ();
2752 RETURN (scm_modulo (x, y));
2753 }
2754
2755 /* ash dst:8 a:8 b:8
2756 *
2757 * Shift A arithmetically by B bits, and place the result in DST.
2758 */
af95414f 2759 VM_DEFINE_OP (85, ash, "ash", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2760 {
2761 ARGS2 (x, y);
2762 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2763 {
2764 if (SCM_I_INUM (y) < 0)
2765 /* Right shift, will be a fixnum. */
0bd65965
MW
2766 RETURN (SCM_I_MAKINUM
2767 (SCM_SRS (SCM_I_INUM (x),
2768 (-SCM_I_INUM (y) <= SCM_I_FIXNUM_BIT-1)
2769 ? -SCM_I_INUM (y) : SCM_I_FIXNUM_BIT-1)));
510ca126
AW
2770 else
2771 /* Left shift. See comments in scm_ash. */
2772 {
2773 scm_t_signed_bits nn, bits_to_shift;
2774
2775 nn = SCM_I_INUM (x);
2776 bits_to_shift = SCM_I_INUM (y);
2777
2778 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
2779 && ((scm_t_bits)
2780 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
2781 <= 1))
2782 RETURN (SCM_I_MAKINUM (nn << bits_to_shift));
2783 /* fall through */
2784 }
2785 /* fall through */
2786 }
2787 SYNC_IP ();
2788 RETURN (scm_ash (x, y));
2789 }
2790
2791 /* logand dst:8 a:8 b:8
2792 *
2793 * Place the bitwise AND of A and B into DST.
2794 */
af95414f 2795 VM_DEFINE_OP (86, logand, "logand", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2796 {
2797 ARGS2 (x, y);
2798 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
e7f64971
MW
2799 /* Compute bitwise AND without untagging */
2800 RETURN (SCM_PACK (SCM_UNPACK (x) & SCM_UNPACK (y)));
510ca126
AW
2801 SYNC_IP ();
2802 RETURN (scm_logand (x, y));
2803 }
2804
2805 /* logior dst:8 a:8 b:8
2806 *
2807 * Place the bitwise inclusive OR of A with B in DST.
2808 */
af95414f 2809 VM_DEFINE_OP (87, logior, "logior", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2810 {
2811 ARGS2 (x, y);
2812 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
e7f64971
MW
2813 /* Compute bitwise OR without untagging */
2814 RETURN (SCM_PACK (SCM_UNPACK (x) | SCM_UNPACK (y)));
510ca126
AW
2815 SYNC_IP ();
2816 RETURN (scm_logior (x, y));
2817 }
2818
2819 /* logxor dst:8 a:8 b:8
2820 *
2821 * Place the bitwise exclusive OR of A with B in DST.
2822 */
af95414f 2823 VM_DEFINE_OP (88, logxor, "logxor", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2824 {
2825 ARGS2 (x, y);
2826 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2827 RETURN (SCM_I_MAKINUM (SCM_I_INUM (x) ^ SCM_I_INUM (y)));
2828 SYNC_IP ();
2829 RETURN (scm_logxor (x, y));
2830 }
2831
2832 /* vector-length dst:12 src:12
2833 *
2834 * Store the length of the vector in SRC in DST.
2835 */
af95414f 2836 VM_DEFINE_OP (89, vector_length, "vector-length", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2837 {
2838 ARGS1 (vect);
2839 if (SCM_LIKELY (SCM_I_IS_VECTOR (vect)))
2840 RETURN (SCM_I_MAKINUM (SCM_I_VECTOR_LENGTH (vect)));
2841 else
2842 {
2843 SYNC_IP ();
2844 RETURN (scm_vector_length (vect));
2845 }
2846 }
2847
2848 /* vector-ref dst:8 src:8 idx:8
2849 *
2850 * Fetch the item at position IDX in the vector in SRC, and store it
2851 * in DST.
2852 */
af95414f 2853 VM_DEFINE_OP (90, vector_ref, "vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2854 {
2855 scm_t_signed_bits i = 0;
2856 ARGS2 (vect, idx);
2857 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2858 && SCM_I_INUMP (idx)
2859 && ((i = SCM_I_INUM (idx)) >= 0)
2860 && i < SCM_I_VECTOR_LENGTH (vect)))
2861 RETURN (SCM_I_VECTOR_ELTS (vect)[i]);
2862 else
2863 {
2864 SYNC_IP ();
2865 RETURN (scm_vector_ref (vect, idx));
2866 }
2867 }
2868
2869 /* constant-vector-ref dst:8 src:8 idx:8
2870 *
2871 * Fill DST with the item IDX elements into the vector at SRC. Useful
2872 * for building data types using vectors.
2873 */
af95414f 2874 VM_DEFINE_OP (91, constant_vector_ref, "constant-vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2875 {
2876 scm_t_uint8 dst, src, idx;
2877 SCM v;
2878
2879 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
2880 v = LOCAL_REF (src);
2881 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (v)
2882 && idx < SCM_I_VECTOR_LENGTH (v)))
2883 LOCAL_SET (dst, SCM_I_VECTOR_ELTS (LOCAL_REF (src))[idx]);
2884 else
2885 LOCAL_SET (dst, scm_c_vector_ref (v, idx));
2886 NEXT (1);
2887 }
2888
2889 /* vector-set! dst:8 idx:8 src:8
2890 *
2891 * Store SRC into the vector DST at index IDX.
2892 */
af95414f 2893 VM_DEFINE_OP (92, vector_set, "vector-set", OP1 (U8_U8_U8_U8))
510ca126
AW
2894 {
2895 scm_t_uint8 dst, idx_var, src;
2896 SCM vect, idx, val;
2897 scm_t_signed_bits i = 0;
2898
2899 SCM_UNPACK_RTL_8_8_8 (op, dst, idx_var, src);
2900 vect = LOCAL_REF (dst);
2901 idx = LOCAL_REF (idx_var);
2902 val = LOCAL_REF (src);
2903
2904 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2905 && SCM_I_INUMP (idx)
2906 && ((i = SCM_I_INUM (idx)) >= 0)
2907 && i < SCM_I_VECTOR_LENGTH (vect)))
2908 SCM_I_VECTOR_WELTS (vect)[i] = val;
2909 else
2910 {
2911 SYNC_IP ();
2912 scm_vector_set_x (vect, idx, val);
2913 }
2914 NEXT (1);
2915 }
2916
2917
2918 \f
2919
2920 /*
2921 * Structs and GOOPS
2922 */
2923
2924 /* struct-vtable dst:12 src:12
2925 *
2926 * Store the vtable of SRC into DST.
2927 */
af95414f 2928 VM_DEFINE_OP (93, struct_vtable, "struct-vtable", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2929 {
2930 ARGS1 (obj);
2931 VM_VALIDATE_STRUCT (obj, "struct_vtable");
2932 RETURN (SCM_STRUCT_VTABLE (obj));
2933 }
2934
14d10292 2935 /* allocate-struct dst:8 vtable:8 nfields:8
510ca126 2936 *
14d10292
AW
2937 * Allocate a new struct with VTABLE, and place it in DST. The struct
2938 * will be constructed with space for NFIELDS fields, which should
2939 * correspond to the field count of the VTABLE.
510ca126 2940 */
af95414f 2941 VM_DEFINE_OP (94, allocate_struct, "allocate-struct", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126 2942 {
14d10292
AW
2943 scm_t_uint8 dst, vtable, nfields;
2944 SCM ret;
510ca126 2945
14d10292 2946 SCM_UNPACK_RTL_8_8_8 (op, dst, vtable, nfields);
510ca126
AW
2947
2948 SYNC_IP ();
14d10292 2949 ret = scm_allocate_struct (LOCAL_REF (vtable), SCM_I_MAKINUM (nfields));
510ca126 2950 LOCAL_SET (dst, ret);
14d10292
AW
2951
2952 NEXT (1);
510ca126 2953 }
510ca126
AW
2954
2955 /* struct-ref dst:8 src:8 idx:8
2956 *
2957 * Fetch the item at slot IDX in the struct in SRC, and store it
2958 * in DST.
2959 */
af95414f 2960 VM_DEFINE_OP (95, struct_ref, "struct-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2961 {
2962 ARGS2 (obj, pos);
2963
2964 if (SCM_LIKELY (SCM_STRUCTP (obj)
2965 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
2966 SCM_VTABLE_FLAG_SIMPLE)
2967 && SCM_I_INUMP (pos)))
2968 {
2969 SCM vtable;
2970 scm_t_bits index, len;
2971
2972 /* True, an inum is a signed value, but cast to unsigned it will
2973 certainly be more than the length, so we will fall through if
2974 index is negative. */
2975 index = SCM_I_INUM (pos);
2976 vtable = SCM_STRUCT_VTABLE (obj);
2977 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
2978
2979 if (SCM_LIKELY (index < len))
2980 {
2981 scm_t_bits *data = SCM_STRUCT_DATA (obj);
2982 RETURN (SCM_PACK (data[index]));
2983 }
2984 }
2985
2986 SYNC_IP ();
2987 RETURN (scm_struct_ref (obj, pos));
2988 }
2989
2990 /* struct-set! dst:8 idx:8 src:8
2991 *
2992 * Store SRC into the struct DST at slot IDX.
2993 */
af95414f 2994 VM_DEFINE_OP (96, struct_set, "struct-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
2995 {
2996 scm_t_uint8 dst, idx, src;
2997 SCM obj, pos, val;
2998
2999 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
3000 obj = LOCAL_REF (dst);
3001 pos = LOCAL_REF (idx);
3002 val = LOCAL_REF (src);
3003
3004 if (SCM_LIKELY (SCM_STRUCTP (obj)
3005 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
3006 SCM_VTABLE_FLAG_SIMPLE)
3007 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
3008 SCM_VTABLE_FLAG_SIMPLE_RW)
3009 && SCM_I_INUMP (pos)))
3010 {
3011 SCM vtable;
3012 scm_t_bits index, len;
3013
3014 /* See above regarding index being >= 0. */
3015 index = SCM_I_INUM (pos);
3016 vtable = SCM_STRUCT_VTABLE (obj);
3017 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
3018 if (SCM_LIKELY (index < len))
3019 {
3020 scm_t_bits *data = SCM_STRUCT_DATA (obj);
3021 data[index] = SCM_UNPACK (val);
3022 NEXT (1);
3023 }
3024 }
3025
3026 SYNC_IP ();
3027 scm_struct_set_x (obj, pos, val);
3028 NEXT (1);
3029 }
3030
3031 /* class-of dst:12 type:12
3032 *
3033 * Store the vtable of SRC into DST.
3034 */
af95414f 3035 VM_DEFINE_OP (97, class_of, "class-of", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
3036 {
3037 ARGS1 (obj);
3038 if (SCM_INSTANCEP (obj))
3039 RETURN (SCM_CLASS_OF (obj));
3040 SYNC_IP ();
3041 RETURN (scm_class_of (obj));
3042 }
3043
3044 /* slot-ref dst:8 src:8 idx:8
3045 *
3046 * Fetch the item at slot IDX in the struct in SRC, and store it in
3047 * DST. Unlike struct-ref, IDX is an 8-bit immediate value, not an
3048 * index into the stack.
3049 */
af95414f 3050 VM_DEFINE_OP (98, slot_ref, "slot-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3051 {
3052 scm_t_uint8 dst, src, idx;
3053 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
3054 LOCAL_SET (dst,
3055 SCM_PACK (SCM_STRUCT_DATA (LOCAL_REF (src))[idx]));
3056 NEXT (1);
3057 }
3058
3059 /* slot-set! dst:8 idx:8 src:8
3060 *
3061 * Store SRC into slot IDX of the struct in DST. Unlike struct-set!,
3062 * IDX is an 8-bit immediate value, not an index into the stack.
3063 */
af95414f 3064 VM_DEFINE_OP (99, slot_set, "slot-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3065 {
3066 scm_t_uint8 dst, idx, src;
3067 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
3068 SCM_STRUCT_DATA (LOCAL_REF (dst))[idx] = SCM_UNPACK (LOCAL_REF (src));
3069 NEXT (1);
3070 }
3071
3072
3073 \f
3074
3075 /*
3076 * Arrays, packed uniform arrays, and bytevectors.
3077 */
3078
3079 /* load-typed-array dst:8 type:8 shape:8 offset:32 len:32
3080 *
3081 * Load the contiguous typed array located at OFFSET 32-bit words away
3082 * from the instruction pointer, and store into DST. LEN is a byte
3083 * length. OFFSET is signed.
3084 */
af95414f 3085 VM_DEFINE_OP (100, load_typed_array, "load-typed-array", OP3 (U8_U8_U8_U8, N32, U32) | OP_DST)
510ca126
AW
3086 {
3087 scm_t_uint8 dst, type, shape;
3088 scm_t_int32 offset;
3089 scm_t_uint32 len;
3090
3091 SCM_UNPACK_RTL_8_8_8 (op, dst, type, shape);
3092 offset = ip[1];
3093 len = ip[2];
3094 SYNC_IP ();
3095 LOCAL_SET (dst, scm_from_contiguous_typed_array (LOCAL_REF (type),
3096 LOCAL_REF (shape),
3097 ip + offset, len));
3098 NEXT (3);
3099 }
3100
3101 /* make-array dst:12 type:12 _:8 fill:12 bounds:12
3102 *
3103 * Make a new array with TYPE, FILL, and BOUNDS, storing it in DST.
3104 */
af95414f 3105 VM_DEFINE_OP (101, make_array, "make-array", OP2 (U8_U12_U12, X8_U12_U12) | OP_DST)
510ca126
AW
3106 {
3107 scm_t_uint16 dst, type, fill, bounds;
3108 SCM_UNPACK_RTL_12_12 (op, dst, type);
3109 SCM_UNPACK_RTL_12_12 (ip[1], fill, bounds);
3110 SYNC_IP ();
3111 LOCAL_SET (dst, scm_make_typed_array (LOCAL_REF (type), LOCAL_REF (fill),
3112 LOCAL_REF (bounds)));
3113 NEXT (2);
3114 }
3115
3116 /* bv-u8-ref dst:8 src:8 idx:8
3117 * bv-s8-ref dst:8 src:8 idx:8
3118 * bv-u16-ref dst:8 src:8 idx:8
3119 * bv-s16-ref dst:8 src:8 idx:8
3120 * bv-u32-ref dst:8 src:8 idx:8
3121 * bv-s32-ref dst:8 src:8 idx:8
3122 * bv-u64-ref dst:8 src:8 idx:8
3123 * bv-s64-ref dst:8 src:8 idx:8
3124 * bv-f32-ref dst:8 src:8 idx:8
3125 * bv-f64-ref dst:8 src:8 idx:8
3126 *
3127 * Fetch the item at byte offset IDX in the bytevector SRC, and store
3128 * it in DST. All accesses use native endianness.
3129 */
3130#define BV_FIXABLE_INT_REF(stem, fn_stem, type, size) \
3131 do { \
3132 scm_t_signed_bits i; \
3133 const scm_t_ ## type *int_ptr; \
3134 ARGS2 (bv, idx); \
3135 \
3136 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3137 i = SCM_I_INUM (idx); \
3138 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3139 \
3140 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3141 && (i >= 0) \
3142 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3143 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3144 RETURN (SCM_I_MAKINUM (*int_ptr)); \
3145 else \
3146 { \
3147 SYNC_IP (); \
3148 RETURN (scm_bytevector_ ## fn_stem ## _ref (bv, idx)); \
3149 } \
3150 } while (0)
3151
3152#define BV_INT_REF(stem, type, size) \
3153 do { \
3154 scm_t_signed_bits i; \
3155 const scm_t_ ## type *int_ptr; \
3156 ARGS2 (bv, idx); \
3157 \
3158 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3159 i = SCM_I_INUM (idx); \
3160 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3161 \
3162 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3163 && (i >= 0) \
3164 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3165 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3166 { \
3167 scm_t_ ## type x = *int_ptr; \
3168 if (SCM_FIXABLE (x)) \
3169 RETURN (SCM_I_MAKINUM (x)); \
3170 else \
3171 { \
3172 SYNC_IP (); \
3173 RETURN (scm_from_ ## type (x)); \
3174 } \
3175 } \
3176 else \
3177 { \
3178 SYNC_IP (); \
3179 RETURN (scm_bytevector_ ## stem ## _native_ref (bv, idx)); \
3180 } \
3181 } while (0)
3182
3183#define BV_FLOAT_REF(stem, fn_stem, type, size) \
3184 do { \
3185 scm_t_signed_bits i; \
3186 const type *float_ptr; \
3187 ARGS2 (bv, idx); \
3188 \
3189 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3190 i = SCM_I_INUM (idx); \
3191 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3192 \
3193 SYNC_IP (); \
3194 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3195 && (i >= 0) \
3196 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3197 && (ALIGNED_P (float_ptr, type)))) \
3198 RETURN (scm_from_double (*float_ptr)); \
3199 else \
3200 RETURN (scm_bytevector_ ## fn_stem ## _native_ref (bv, idx)); \
3201 } while (0)
3202
af95414f 3203 VM_DEFINE_OP (102, bv_u8_ref, "bv-u8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3204 BV_FIXABLE_INT_REF (u8, u8, uint8, 1);
3205
af95414f 3206 VM_DEFINE_OP (103, bv_s8_ref, "bv-s8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3207 BV_FIXABLE_INT_REF (s8, s8, int8, 1);
3208
af95414f 3209 VM_DEFINE_OP (104, bv_u16_ref, "bv-u16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3210 BV_FIXABLE_INT_REF (u16, u16_native, uint16, 2);
3211
af95414f 3212 VM_DEFINE_OP (105, bv_s16_ref, "bv-s16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3213 BV_FIXABLE_INT_REF (s16, s16_native, int16, 2);
3214
af95414f 3215 VM_DEFINE_OP (106, bv_u32_ref, "bv-u32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3216#if SIZEOF_VOID_P > 4
3217 BV_FIXABLE_INT_REF (u32, u32_native, uint32, 4);
3218#else
3219 BV_INT_REF (u32, uint32, 4);
3220#endif
3221
af95414f 3222 VM_DEFINE_OP (107, bv_s32_ref, "bv-s32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3223#if SIZEOF_VOID_P > 4
3224 BV_FIXABLE_INT_REF (s32, s32_native, int32, 4);
3225#else
3226 BV_INT_REF (s32, int32, 4);
3227#endif
3228
af95414f 3229 VM_DEFINE_OP (108, bv_u64_ref, "bv-u64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3230 BV_INT_REF (u64, uint64, 8);
3231
af95414f 3232 VM_DEFINE_OP (109, bv_s64_ref, "bv-s64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3233 BV_INT_REF (s64, int64, 8);
3234
af95414f 3235 VM_DEFINE_OP (110, bv_f32_ref, "bv-f32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3236 BV_FLOAT_REF (f32, ieee_single, float, 4);
3237
af95414f 3238 VM_DEFINE_OP (111, bv_f64_ref, "bv-f64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3239 BV_FLOAT_REF (f64, ieee_double, double, 8);
3240
3241 /* bv-u8-set! dst:8 idx:8 src:8
3242 * bv-s8-set! dst:8 idx:8 src:8
3243 * bv-u16-set! dst:8 idx:8 src:8
3244 * bv-s16-set! dst:8 idx:8 src:8
3245 * bv-u32-set! dst:8 idx:8 src:8
3246 * bv-s32-set! dst:8 idx:8 src:8
3247 * bv-u64-set! dst:8 idx:8 src:8
3248 * bv-s64-set! dst:8 idx:8 src:8
3249 * bv-f32-set! dst:8 idx:8 src:8
3250 * bv-f64-set! dst:8 idx:8 src:8
3251 *
3252 * Store SRC into the bytevector DST at byte offset IDX. Multibyte
3253 * values are written using native endianness.
3254 */
3255#define BV_FIXABLE_INT_SET(stem, fn_stem, type, min, max, size) \
3256 do { \
3257 scm_t_uint8 dst, idx, src; \
3258 scm_t_signed_bits i, j = 0; \
3259 SCM bv, scm_idx, val; \
3260 scm_t_ ## type *int_ptr; \
3261 \
3262 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3263 bv = LOCAL_REF (dst); \
3264 scm_idx = LOCAL_REF (idx); \
3265 val = LOCAL_REF (src); \
3266 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3267 i = SCM_I_INUM (scm_idx); \
3268 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3269 \
3270 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3271 && (i >= 0) \
3272 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3273 && (ALIGNED_P (int_ptr, scm_t_ ## type)) \
3274 && (SCM_I_INUMP (val)) \
3275 && ((j = SCM_I_INUM (val)) >= min) \
3276 && (j <= max))) \
3277 *int_ptr = (scm_t_ ## type) j; \
3278 else \
3279 { \
3280 SYNC_IP (); \
3281 scm_bytevector_ ## fn_stem ## _set_x (bv, scm_idx, val); \
3282 } \
3283 NEXT (1); \
3284 } while (0)
3285
3286#define BV_INT_SET(stem, type, size) \
3287 do { \
3288 scm_t_uint8 dst, idx, src; \
3289 scm_t_signed_bits i; \
3290 SCM bv, scm_idx, val; \
3291 scm_t_ ## type *int_ptr; \
3292 \
3293 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3294 bv = LOCAL_REF (dst); \
3295 scm_idx = LOCAL_REF (idx); \
3296 val = LOCAL_REF (src); \
3297 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3298 i = SCM_I_INUM (scm_idx); \
3299 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3300 \
3301 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3302 && (i >= 0) \
3303 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3304 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3305 *int_ptr = scm_to_ ## type (val); \
3306 else \
3307 { \
3308 SYNC_IP (); \
3309 scm_bytevector_ ## stem ## _native_set_x (bv, scm_idx, val); \
3310 } \
3311 NEXT (1); \
3312 } while (0)
3313
3314#define BV_FLOAT_SET(stem, fn_stem, type, size) \
3315 do { \
3316 scm_t_uint8 dst, idx, src; \
3317 scm_t_signed_bits i; \
3318 SCM bv, scm_idx, val; \
3319 type *float_ptr; \
3320 \
3321 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3322 bv = LOCAL_REF (dst); \
3323 scm_idx = LOCAL_REF (idx); \
3324 val = LOCAL_REF (src); \
3325 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3326 i = SCM_I_INUM (scm_idx); \
3327 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3328 \
3329 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3330 && (i >= 0) \
3331 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3332 && (ALIGNED_P (float_ptr, type)))) \
3333 *float_ptr = scm_to_double (val); \
3334 else \
3335 { \
3336 SYNC_IP (); \
3337 scm_bytevector_ ## fn_stem ## _native_set_x (bv, scm_idx, val); \
3338 } \
3339 NEXT (1); \
3340 } while (0)
3341
af95414f 3342 VM_DEFINE_OP (112, bv_u8_set, "bv-u8-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3343 BV_FIXABLE_INT_SET (u8, u8, uint8, 0, SCM_T_UINT8_MAX, 1);
3344
af95414f 3345 VM_DEFINE_OP (113, bv_s8_set, "bv-s8-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3346 BV_FIXABLE_INT_SET (s8, s8, int8, SCM_T_INT8_MIN, SCM_T_INT8_MAX, 1);
3347
af95414f 3348 VM_DEFINE_OP (114, bv_u16_set, "bv-u16-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3349 BV_FIXABLE_INT_SET (u16, u16_native, uint16, 0, SCM_T_UINT16_MAX, 2);
3350
af95414f 3351 VM_DEFINE_OP (115, bv_s16_set, "bv-s16-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3352 BV_FIXABLE_INT_SET (s16, s16_native, int16, SCM_T_INT16_MIN, SCM_T_INT16_MAX, 2);
3353
af95414f 3354 VM_DEFINE_OP (116, bv_u32_set, "bv-u32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3355#if SIZEOF_VOID_P > 4
3356 BV_FIXABLE_INT_SET (u32, u32_native, uint32, 0, SCM_T_UINT32_MAX, 4);
3357#else
3358 BV_INT_SET (u32, uint32, 4);
3359#endif
3360
af95414f 3361 VM_DEFINE_OP (117, bv_s32_set, "bv-s32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3362#if SIZEOF_VOID_P > 4
3363 BV_FIXABLE_INT_SET (s32, s32_native, int32, SCM_T_INT32_MIN, SCM_T_INT32_MAX, 4);
3364#else
3365 BV_INT_SET (s32, int32, 4);
3366#endif
3367
af95414f 3368 VM_DEFINE_OP (118, bv_u64_set, "bv-u64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3369 BV_INT_SET (u64, uint64, 8);
3370
af95414f 3371 VM_DEFINE_OP (119, bv_s64_set, "bv-s64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3372 BV_INT_SET (s64, int64, 8);
3373
af95414f 3374 VM_DEFINE_OP (120, bv_f32_set, "bv-f32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3375 BV_FLOAT_SET (f32, ieee_single, float, 4);
3376
af95414f 3377 VM_DEFINE_OP (121, bv_f64_set, "bv-f64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3378 BV_FLOAT_SET (f64, ieee_double, double, 8);
3379
3380 END_DISPATCH_SWITCH;
3381
3382 vm_error_bad_instruction:
3383 vm_error_bad_instruction (op);
3384
3385 abort (); /* never reached */
3386}
3387
3388
3389#undef ABORT_CONTINUATION_HOOK
3390#undef ALIGNED_P
3391#undef APPLY_HOOK
3392#undef ARGS1
3393#undef ARGS2
3394#undef BEGIN_DISPATCH_SWITCH
3395#undef BINARY_INTEGER_OP
3396#undef BR_ARITHMETIC
3397#undef BR_BINARY
3398#undef BR_NARGS
3399#undef BR_UNARY
3400#undef BV_FIXABLE_INT_REF
3401#undef BV_FIXABLE_INT_SET
3402#undef BV_FLOAT_REF
3403#undef BV_FLOAT_SET
3404#undef BV_INT_REF
3405#undef BV_INT_SET
3406#undef CACHE_REGISTER
3407#undef CHECK_OVERFLOW
3408#undef END_DISPATCH_SWITCH
3409#undef FREE_VARIABLE_REF
3410#undef INIT
3411#undef INUM_MAX
3412#undef INUM_MIN
3413#undef LOCAL_REF
3414#undef LOCAL_SET
3415#undef NEXT
3416#undef NEXT_HOOK
3417#undef NEXT_JUMP
3418#undef POP_CONTINUATION_HOOK
3419#undef PUSH_CONTINUATION_HOOK
3420#undef RESTORE_CONTINUATION_HOOK
3421#undef RETURN
3422#undef RETURN_ONE_VALUE
3423#undef RETURN_VALUE_LIST
3424#undef RUN_HOOK
3425#undef RUN_HOOK0
3426#undef SYNC_ALL
3427#undef SYNC_BEFORE_GC
3428#undef SYNC_IP
3429#undef SYNC_REGISTER
3430#undef VARIABLE_BOUNDP
3431#undef VARIABLE_REF
3432#undef VARIABLE_SET
3433#undef VM_CHECK_FREE_VARIABLE
3434#undef VM_CHECK_OBJECT
3435#undef VM_CHECK_UNDERFLOW
3436#undef VM_DEFINE_OP
3437#undef VM_INSTRUCTION_TO_LABEL
3438#undef VM_USE_HOOKS
3439#undef VM_VALIDATE_BYTEVECTOR
3440#undef VM_VALIDATE_PAIR
3441#undef VM_VALIDATE_STRUCT
3442
3443/*
3444(defun renumber-ops ()
3445 "start from top of buffer and renumber 'VM_DEFINE_FOO (\n' sequences"
3446 (interactive "")
3447 (save-excursion
3448 (let ((counter -1)) (goto-char (point-min))
3449 (while (re-search-forward "^ *VM_DEFINE_[^ ]+ (\\([^,]+\\)," (point-max) t)
3450 (replace-match
3451 (number-to-string (setq counter (1+ counter)))
3452 t t nil 1)))))
3453(renumber-ops)
3454*/
17e90c5e
KN
3455/*
3456 Local Variables:
3457 c-file-style: "gnu"
3458 End:
3459*/