Better vm.c support for RTL programs
[bpt/guile.git] / libguile / vm-engine.c
CommitLineData
27c7c630 1/* Copyright (C) 2001, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
a98cef7e 2 *
560b9c25 3 * This library is free software; you can redistribute it and/or
53befeb7
NJ
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
a98cef7e 7 *
53befeb7
NJ
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
560b9c25
AW
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
a98cef7e 12 *
560b9c25
AW
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
53befeb7
NJ
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
560b9c25 17 */
a98cef7e 18
510ca126
AW
19/* This file is included in vm.c multiple times. */
20
21
22/* Virtual Machine
23
24 This file contains two virtual machines. First, the old one -- the
25 one that is currently used, and corresponds to Guile 2.0. It's a
26 stack machine, meaning that most instructions pop their operands from
27 the top of the stack, and push results there too.
28
29 Following it is the new virtual machine. It's a register machine,
30 meaning that intructions address their operands by index, and store
31 results in indexed slots as well. Those slots are on the stack.
32 It's somewhat confusing to call it a register machine, given that the
33 values are on the stack. Perhaps it needs a new name.
34
35 Anyway, things are in a transitional state. We're going to try to
36 avoid munging the old VM very much while we flesh out the new one.
37 We're also going to try to make them interoperable, as much as
38 possible -- to have the old VM be able to call procedures for the new
39 VM, and vice versa. This should ease the bootstrapping process. */
40
41
42/* The old VM. */
43static SCM VM_NAME (SCM, SCM, SCM*, int);
44/* The new VM. */
45static SCM RTL_VM_NAME (SCM, SCM, SCM*, size_t);
46
6d14383e
AW
47
48#if (VM_ENGINE == SCM_VM_REGULAR_ENGINE)
ff3968c2 49# define VM_USE_HOOKS 0 /* Various hooks */
6d14383e 50#elif (VM_ENGINE == SCM_VM_DEBUG_ENGINE)
ff3968c2 51# define VM_USE_HOOKS 1
6d14383e 52#else
ff3968c2 53# error unknown debug engine VM_ENGINE
6d14383e 54#endif
a98cef7e 55
8dd6bfa7
AW
56/* Assign some registers by hand. There used to be a bigger list here,
57 but it was never tested, and in the case of x86-32, was a source of
58 compilation failures. It can be revived if it's useful, but my naive
59 hope is that simply annotating the locals with "register" will be a
60 sufficient hint to the compiler. */
eac12024 61#ifdef __GNUC__
8dd6bfa7 62# if defined __x86_64__
eac12024
AW
63/* GCC 4.6 chooses %rbp for IP_REG and %rbx for SP_REG, which works
64 well. Tell it to keep the jump table in a r12, which is
65 callee-saved. */
8dd6bfa7
AW
66# define JT_REG asm ("r12")
67# endif
eac12024
AW
68#endif
69
70#ifndef IP_REG
8dd6bfa7 71# define IP_REG
eac12024
AW
72#endif
73#ifndef SP_REG
8dd6bfa7 74# define SP_REG
eac12024
AW
75#endif
76#ifndef FP_REG
8dd6bfa7 77# define FP_REG
eac12024
AW
78#endif
79#ifndef JT_REG
8dd6bfa7 80# define JT_REG
eac12024
AW
81#endif
82
27c7c630
AW
83#define VM_ASSERT(condition, handler) \
84 do { \
85 if (SCM_UNLIKELY (!(condition))) \
86 { \
87 SYNC_ALL(); \
88 handler; \
89 } \
90 } while (0)
eac12024
AW
91
92#ifdef VM_ENABLE_ASSERTIONS
93# define ASSERT(condition) VM_ASSERT (condition, abort())
94#else
95# define ASSERT(condition)
96#endif
97
c850a0ff
AW
98#if VM_USE_HOOKS
99#define RUN_HOOK(h, args, n) \
100 do { \
101 if (SCM_UNLIKELY (vp->trace_level > 0)) \
102 { \
103 SYNC_REGISTER (); \
104 vm_dispatch_hook (vm, h, args, n); \
105 } \
106 } while (0)
107#else
108#define RUN_HOOK(h, args, n)
109#endif
110#define RUN_HOOK0(h) RUN_HOOK(h, NULL, 0)
111
112#define APPLY_HOOK() \
113 RUN_HOOK0 (SCM_VM_APPLY_HOOK)
114#define PUSH_CONTINUATION_HOOK() \
115 RUN_HOOK0 (SCM_VM_PUSH_CONTINUATION_HOOK)
116#define POP_CONTINUATION_HOOK(vals, n) \
117 RUN_HOOK (SCM_VM_POP_CONTINUATION_HOOK, vals, n)
118#define NEXT_HOOK() \
119 RUN_HOOK0 (SCM_VM_NEXT_HOOK)
120#define ABORT_CONTINUATION_HOOK(vals, n) \
121 RUN_HOOK (SCM_VM_ABORT_CONTINUATION_HOOK, vals, n)
122#define RESTORE_CONTINUATION_HOOK() \
123 RUN_HOOK0 (SCM_VM_RESTORE_CONTINUATION_HOOK)
124
125#define VM_HANDLE_INTERRUPTS \
126 SCM_ASYNC_TICK_WITH_CODE (current_thread, SYNC_REGISTER ())
127
128
129\f
eac12024
AW
130
131/* Cache the VM's instruction, stack, and frame pointer in local variables. */
132#define CACHE_REGISTER() \
133{ \
134 ip = vp->ip; \
135 sp = vp->sp; \
136 fp = vp->fp; \
137}
138
139/* Update the registers in VP, a pointer to the current VM. This must be done
140 at least before any GC invocation so that `vp->sp' is up-to-date and the
141 whole stack gets marked. */
142#define SYNC_REGISTER() \
143{ \
144 vp->ip = ip; \
145 vp->sp = sp; \
146 vp->fp = fp; \
147}
148
149/* FIXME */
150#define ASSERT_VARIABLE(x) \
27c7c630 151 VM_ASSERT (SCM_VARIABLEP (x), abort())
eac12024 152#define ASSERT_BOUND_VARIABLE(x) \
27c7c630
AW
153 VM_ASSERT (SCM_VARIABLEP (x) \
154 && !scm_is_eq (SCM_VARIABLE_REF (x), SCM_UNDEFINED), \
155 abort())
eac12024
AW
156
157#ifdef VM_ENABLE_PARANOID_ASSERTIONS
158#define CHECK_IP() \
159 do { if (ip < bp->base || ip - bp->base > bp->len) abort (); } while (0)
160#define ASSERT_ALIGNED_PROCEDURE() \
161 do { if ((scm_t_bits)bp % 8) abort (); } while (0)
162#define ASSERT_BOUND(x) \
27c7c630 163 VM_ASSERT (!scm_is_eq ((x), SCM_UNDEFINED), abort())
eac12024
AW
164#else
165#define CHECK_IP()
166#define ASSERT_ALIGNED_PROCEDURE()
167#define ASSERT_BOUND(x)
168#endif
169
eac12024
AW
170/* Cache the object table and free variables. */
171#define CACHE_PROGRAM() \
172{ \
173 if (bp != SCM_PROGRAM_DATA (program)) { \
174 bp = SCM_PROGRAM_DATA (program); \
175 ASSERT_ALIGNED_PROCEDURE (); \
176 if (SCM_I_IS_VECTOR (SCM_PROGRAM_OBJTABLE (program))) { \
177 objects = SCM_I_VECTOR_WELTS (SCM_PROGRAM_OBJTABLE (program)); \
eac12024
AW
178 } else { \
179 objects = NULL; \
eac12024
AW
180 } \
181 } \
182}
183
184#define SYNC_BEFORE_GC() \
185{ \
186 SYNC_REGISTER (); \
187}
188
189#define SYNC_ALL() \
190{ \
191 SYNC_REGISTER (); \
192}
193
194\f
195/*
196 * Error check
197 */
198
199/* Accesses to a program's object table. */
eac12024 200#define CHECK_OBJECT(_num)
eac12024 201#define CHECK_FREE_VARIABLE(_num)
eac12024
AW
202
203\f
eac12024
AW
204/*
205 * Stack operation
206 */
207
208#ifdef VM_ENABLE_STACK_NULLING
209# define CHECK_STACK_LEAKN(_n) ASSERT (!sp[_n]);
210# define CHECK_STACK_LEAK() CHECK_STACK_LEAKN(1)
211# define NULLSTACK(_n) { int __x = _n; CHECK_STACK_LEAKN (_n+1); while (__x > 0) sp[__x--] = NULL; }
212/* If you have a nonlocal exit in a pre-wind proc while invoking a continuation
213 inside a dynwind (phew!), the stack is fully rewound but vm_reset_stack for
214 that continuation doesn't have a chance to run. It's not important on a
215 semantic level, but it does mess up our stack nulling -- so this macro is to
216 fix that. */
217# define NULLSTACK_FOR_NONLOCAL_EXIT() if (vp->sp > sp) NULLSTACK (vp->sp - sp);
218#else
219# define CHECK_STACK_LEAKN(_n)
220# define CHECK_STACK_LEAK()
221# define NULLSTACK(_n)
222# define NULLSTACK_FOR_NONLOCAL_EXIT()
223#endif
224
225/* For this check, we don't use VM_ASSERT, because that leads to a
226 per-site SYNC_ALL, which is too much code growth. The real problem
227 of course is having to check for overflow all the time... */
228#define CHECK_OVERFLOW() \
229 do { if (SCM_UNLIKELY (sp >= stack_limit)) goto handle_overflow; } while (0)
230
231#ifdef VM_CHECK_UNDERFLOW
232#define PRE_CHECK_UNDERFLOW(N) \
233 VM_ASSERT (sp - (N) > SCM_FRAME_UPPER_ADDRESS (fp), vm_error_stack_underflow ())
234#define CHECK_UNDERFLOW() PRE_CHECK_UNDERFLOW (0)
235#else
236#define PRE_CHECK_UNDERFLOW(N) /* nop */
237#define CHECK_UNDERFLOW() /* nop */
238#endif
239
240
241#define PUSH(x) do { sp++; CHECK_OVERFLOW (); *sp = x; } while (0)
242#define DROP() do { sp--; CHECK_UNDERFLOW (); NULLSTACK (1); } while (0)
243#define DROPN(_n) do { sp -= (_n); CHECK_UNDERFLOW (); NULLSTACK (_n); } while (0)
244#define POP(x) do { PRE_CHECK_UNDERFLOW (1); x = *sp--; NULLSTACK (1); } while (0)
245#define POP2(x,y) do { PRE_CHECK_UNDERFLOW (2); x = *sp--; y = *sp--; NULLSTACK (2); } while (0)
246#define POP3(x,y,z) do { PRE_CHECK_UNDERFLOW (3); x = *sp--; y = *sp--; z = *sp--; NULLSTACK (3); } while (0)
247
eac12024
AW
248/* Pop the N objects on top of the stack and push a list that contains
249 them. */
250#define POP_LIST(n) \
251do \
252{ \
253 int i; \
254 SCM l = SCM_EOL, x; \
52182d52 255 SYNC_BEFORE_GC (); \
eac12024
AW
256 for (i = n; i; i--) \
257 { \
258 POP (x); \
52182d52 259 l = scm_cons (x, l); \
eac12024
AW
260 } \
261 PUSH (l); \
262} while (0)
263
264/* The opposite: push all of the elements in L onto the list. */
265#define PUSH_LIST(l, NILP) \
266do \
267{ \
268 for (; scm_is_pair (l); l = SCM_CDR (l)) \
269 PUSH (SCM_CAR (l)); \
270 VM_ASSERT (NILP (l), vm_error_improper_list (l)); \
271} while (0)
272
273\f
eac12024
AW
274/*
275 * Instruction operation
276 */
277
278#define FETCH() (*ip++)
279#define FETCH_LENGTH(len) do { len=*ip++; len<<=8; len+=*ip++; len<<=8; len+=*ip++; } while (0)
280
281#undef NEXT_JUMP
282#ifdef HAVE_LABELS_AS_VALUES
27c7c630 283# define NEXT_JUMP() goto *jump_table[FETCH () & SCM_VM_INSTRUCTION_MASK]
eac12024 284#else
27c7c630 285# define NEXT_JUMP() goto vm_start
eac12024
AW
286#endif
287
288#define NEXT \
289{ \
290 NEXT_HOOK (); \
291 CHECK_STACK_LEAK (); \
292 NEXT_JUMP (); \
293}
294
295\f
296/* See frames.h for the layout of stack frames */
297/* When this is called, bp points to the new program data,
298 and the arguments are already on the stack */
299#define DROP_FRAME() \
300 { \
301 sp -= 3; \
302 NULLSTACK (3); \
303 CHECK_UNDERFLOW (); \
304 }
305
238e7a11 306
a98cef7e 307static SCM
7656f194 308VM_NAME (SCM vm, SCM program, SCM *argv, int nargs)
a98cef7e 309{
17e90c5e 310 /* VM registers */
2fb924f6 311 register scm_t_uint8 *ip IP_REG; /* instruction pointer */
17e90c5e
KN
312 register SCM *sp SP_REG; /* stack pointer */
313 register SCM *fp FP_REG; /* frame pointer */
7656f194 314 struct scm_vm *vp = SCM_VM_DATA (vm);
a98cef7e 315
d608d68d 316 /* Cache variables */
53e28ed9 317 struct scm_objcode *bp = NULL; /* program base pointer */
17e90c5e 318 SCM *objects = NULL; /* constant objects */
3d5ee0cd 319 SCM *stack_limit = vp->stack_limit; /* stack limit address */
2d026f04 320
a2a6c0e3 321 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
a98cef7e 322
d608d68d 323 /* Internal variables */
ef24c01b 324 int nvalues = 0;
9d381ba4
AW
325 scm_i_jmp_buf registers; /* used for prompts */
326
53e28ed9 327#ifdef HAVE_LABELS_AS_VALUES
37a5970c 328 static const void **jump_table_pointer = NULL;
e06e857c 329#endif
37a5970c 330
e06e857c 331#ifdef HAVE_LABELS_AS_VALUES
37a5970c
LC
332 register const void **jump_table JT_REG;
333
334 if (SCM_UNLIKELY (!jump_table_pointer))
53e28ed9
AW
335 {
336 int i;
37a5970c 337 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
53e28ed9 338 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
37a5970c 339 jump_table_pointer[i] = &&vm_error_bad_instruction;
53e28ed9 340#define VM_INSTRUCTION_TO_LABEL 1
37a5970c 341#define jump_table jump_table_pointer
aeeff258
AW
342#include <libguile/vm-expand.h>
343#include <libguile/vm-i-system.i>
344#include <libguile/vm-i-scheme.i>
345#include <libguile/vm-i-loader.i>
37a5970c 346#undef jump_table
53e28ed9
AW
347#undef VM_INSTRUCTION_TO_LABEL
348 }
37a5970c
LC
349
350 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
351 load instruction at each instruction dispatch. */
352 jump_table = jump_table_pointer;
53e28ed9 353#endif
9d381ba4
AW
354
355 if (SCM_I_SETJMP (registers))
356 {
357 /* Non-local return. Cache the VM registers back from the vp, and
358 go to the handler.
359
360 Note, at this point, we must assume that any variable local to
361 vm_engine that can be assigned *has* been assigned. So we need to pull
362 all our state back from the ip/fp/sp.
363 */
364 CACHE_REGISTER ();
365 program = SCM_FRAME_PROGRAM (fp);
366 CACHE_PROGRAM ();
367 /* The stack contains the values returned to this continuation,
368 along with a number-of-values marker -- like an MV return. */
c850a0ff 369 ABORT_CONTINUATION_HOOK (sp - SCM_I_INUM (*sp), SCM_I_INUM (*sp));
9d381ba4
AW
370 NEXT;
371 }
53e28ed9 372
67b699cc 373 CACHE_REGISTER ();
27319ffa
AW
374
375 /* Since it's possible to receive the arguments on the stack itself,
376 and indeed the RTL VM invokes us that way, shuffle up the
377 arguments first. */
378 VM_ASSERT (sp + 8 + nargs < stack_limit, vm_error_too_many_args (nargs));
379 {
380 int i;
381 for (i = nargs - 1; i >= 0; i--)
382 sp[9 + i] = argv[i];
383 }
384
385 /* Initial frame */
67b699cc
AW
386 PUSH (SCM_PACK (fp)); /* dynamic link */
387 PUSH (SCM_PACK (0)); /* mvra */
388 PUSH (SCM_PACK (ip)); /* ra */
389 PUSH (boot_continuation);
390 fp = sp + 1;
391 ip = SCM_C_OBJCODE_BASE (SCM_PROGRAM_DATA (boot_continuation));
392
393 /* MV-call frame, function & arguments */
394 PUSH (SCM_PACK (fp)); /* dynamic link */
395 PUSH (SCM_PACK (ip + 1)); /* mvra */
396 PUSH (SCM_PACK (ip)); /* ra */
397 PUSH (program);
398 fp = sp + 1;
27319ffa 399 sp += nargs;
67b699cc
AW
400
401 PUSH_CONTINUATION_HOOK ();
402
403 apply:
404 program = fp[-1];
405 if (!SCM_PROGRAM_P (program))
406 {
407 if (SCM_STRUCTP (program) && SCM_STRUCT_APPLICABLE_P (program))
408 fp[-1] = SCM_STRUCT_PROCEDURE (program);
510ca126
AW
409 else if (SCM_HAS_TYP7 (program, scm_tc7_rtl_program))
410 {
411 SCM ret;
412 SYNC_ALL ();
413
414 ret = RTL_VM_NAME (vm, program, fp, sp - fp + 1);
415
416 NULLSTACK_FOR_NONLOCAL_EXIT ();
417
418 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
419 {
420 /* multiple values returned to continuation */
421 ret = scm_struct_ref (ret, SCM_INUM0);
422 nvalues = scm_ilength (ret);
423 PUSH_LIST (ret, scm_is_null);
424 goto vm_return_values;
425 }
426 else
427 {
428 PUSH (ret);
429 goto vm_return;
430 }
431 }
968a9add 432 else if (SCM_HAS_TYP7 (program, scm_tc7_smob)
67b699cc
AW
433 && SCM_SMOB_APPLICABLE_P (program))
434 {
435 /* (smob arg0 ... argN) => (apply-smob smob arg0 ... argN) */
436 int i;
437 PUSH (SCM_BOOL_F);
438 for (i = sp - fp; i >= 0; i--)
439 fp[i] = fp[i - 1];
968a9add 440 fp[-1] = SCM_SMOB_DESCRIPTOR (program).apply_trampoline;
67b699cc
AW
441 }
442 else
443 {
444 SYNC_ALL();
445 vm_error_wrong_type_apply (program);
446 }
447 goto apply;
448 }
449
450 CACHE_PROGRAM ();
451 ip = SCM_C_OBJCODE_BASE (bp);
452
453 APPLY_HOOK ();
a98cef7e
KN
454
455 /* Let's go! */
53e28ed9 456 NEXT;
a98cef7e
KN
457
458#ifndef HAVE_LABELS_AS_VALUES
17e90c5e 459 vm_start:
53e28ed9 460 switch ((*ip++) & SCM_VM_INSTRUCTION_MASK) {
a98cef7e
KN
461#endif
462
83495480
AW
463#include "vm-expand.h"
464#include "vm-i-system.c"
465#include "vm-i-scheme.c"
466#include "vm-i-loader.c"
a98cef7e
KN
467
468#ifndef HAVE_LABELS_AS_VALUES
53e28ed9
AW
469 default:
470 goto vm_error_bad_instruction;
a98cef7e
KN
471 }
472#endif
473
53bdfcf0 474 abort (); /* never reached */
a52b2d3d 475
53bdfcf0
AW
476 vm_error_bad_instruction:
477 vm_error_bad_instruction (ip[-1]);
478 abort (); /* never reached */
17e90c5e 479
53bdfcf0
AW
480 handle_overflow:
481 SYNC_ALL ();
482 vm_error_stack_overflow (vp);
a98cef7e
KN
483 abort (); /* never reached */
484}
6d14383e 485
a0ec1ca1
AW
486#undef ALIGNED_P
487#undef CACHE_REGISTER
488#undef CHECK_OVERFLOW
a0ec1ca1
AW
489#undef FUNC2
490#undef INIT
491#undef INUM_MAX
492#undef INUM_MIN
d2295ba5 493#undef INUM_STEP
a0ec1ca1
AW
494#undef jump_table
495#undef LOCAL_REF
496#undef LOCAL_SET
497#undef NEXT
498#undef NEXT_JUMP
499#undef REL
500#undef RETURN
501#undef RETURN_ONE_VALUE
502#undef RETURN_VALUE_LIST
a0ec1ca1
AW
503#undef SYNC_ALL
504#undef SYNC_BEFORE_GC
505#undef SYNC_IP
506#undef SYNC_REGISTER
507#undef VARIABLE_BOUNDP
508#undef VARIABLE_REF
509#undef VARIABLE_SET
510#undef VM_DEFINE_OP
511#undef VM_INSTRUCTION_TO_LABEL
17e90c5e 512
510ca126
AW
513
514\f
515
516/* Virtual Machine
517
518 This is Guile's new virtual machine. When I say "new", I mean
519 relative to the current virtual machine. At some point it will
520 become "the" virtual machine, and we'll delete this paragraph. As
521 such, the rest of the comments speak as if there's only one VM.
7396d216
AW
522 In difference from the old VM, local 0 is the procedure, and the
523 first argument is local 1. At some point in the future we should
524 change the fp to point to the procedure and not to local 1.
510ca126
AW
525
526 <more overview here>
527 */
528
529
530/* The VM has three state bits: the instruction pointer (IP), the frame
531 pointer (FP), and the top-of-stack pointer (SP). We cache the first
532 two of these in machine registers, local to the VM, because they are
533 used extensively by the VM. As the SP is used more by code outside
534 the VM than by the VM itself, we don't bother caching it locally.
535
536 Since the FP changes infrequently, relative to the IP, we keep vp->fp
537 in sync with the local FP. This would be a big lose for the IP,
538 though, so instead of updating vp->ip all the time, we call SYNC_IP
539 whenever we would need to know the IP of the top frame. In practice,
540 we need to SYNC_IP whenever we call out of the VM to a function that
541 would like to walk the stack, perhaps as the result of an
542 exception. */
543
544#define SYNC_IP() \
545 vp->ip = (scm_t_uint8 *) (ip)
546
547#define SYNC_REGISTER() \
548 SYNC_IP()
549#define SYNC_BEFORE_GC() /* Only SP and FP needed to trace GC */
550#define SYNC_ALL() /* FP already saved */ \
551 SYNC_IP()
552
553#define CHECK_OVERFLOW(sp) \
554 do { \
555 if (SCM_UNLIKELY ((sp) >= stack_limit)) \
556 vm_error_stack_overflow (vp); \
557 } while (0)
558
559/* Reserve stack space for a frame. Will check that there is sufficient
7396d216
AW
560 stack space for N locals, including the procedure, in addition to
561 3 words to set up the next frame. Invoke after preparing the new
510ca126
AW
562 frame and setting the fp and ip. */
563#define ALLOC_FRAME(n) \
564 do { \
7396d216 565 SCM *new_sp = vp->sp = fp - 1 + n - 1; \
510ca126
AW
566 CHECK_OVERFLOW (new_sp + 4); \
567 } while (0)
568
569/* Reset the current frame to hold N locals. Used when we know that no
570 stack expansion is needed. */
571#define RESET_FRAME(n) \
572 do { \
7396d216 573 vp->sp = fp - 2 + n; \
510ca126
AW
574 } while (0)
575
576/* Compute the number of locals in the frame. This is equal to the
7396d216
AW
577 number of actual arguments when a function is first called, plus
578 one for the function. */
510ca126 579#define FRAME_LOCALS_COUNT() \
7396d216 580 (vp->sp + 1 - (fp - 1))
510ca126
AW
581
582/* Restore registers after returning from a frame. */
583#define RESTORE_FRAME() \
584 do { \
585 } while (0)
586
587
588#define CACHE_REGISTER() \
589 do { \
590 ip = (scm_t_uint32 *) vp->ip; \
591 fp = vp->fp; \
592 } while (0)
593
594#ifdef HAVE_LABELS_AS_VALUES
595# define BEGIN_DISPATCH_SWITCH /* */
596# define END_DISPATCH_SWITCH /* */
597# define NEXT(n) \
598 do \
599 { \
600 ip += n; \
601 NEXT_HOOK (); \
602 op = *ip; \
603 goto *jump_table[op & 0xff]; \
604 } \
605 while (0)
606# define VM_DEFINE_OP(opcode, tag, name, meta) \
607 op_##tag:
608#else
609# define BEGIN_DISPATCH_SWITCH \
610 vm_start: \
611 NEXT_HOOK (); \
612 op = *ip; \
613 switch (op & 0xff) \
614 {
615# define END_DISPATCH_SWITCH \
616 default: \
617 goto vm_error_bad_instruction; \
618 }
619# define NEXT(n) \
620 do \
621 { \
622 ip += n; \
623 goto vm_start; \
624 } \
625 while (0)
626# define VM_DEFINE_OP(opcode, tag, name, meta) \
627 op_##tag: \
628 case opcode:
629#endif
630
7396d216
AW
631#define LOCAL_REF(i) SCM_FRAME_VARIABLE (fp, (i) - 1)
632#define LOCAL_SET(i,o) SCM_FRAME_VARIABLE (fp, (i) - 1) = o
510ca126
AW
633
634#define VARIABLE_REF(v) SCM_VARIABLE_REF (v)
635#define VARIABLE_SET(v,o) SCM_VARIABLE_SET (v, o)
636#define VARIABLE_BOUNDP(v) (!scm_is_eq (VARIABLE_REF (v), SCM_UNDEFINED))
510ca126
AW
637
638#define RETURN_ONE_VALUE(ret) \
639 do { \
640 SCM val = ret; \
641 SCM *sp = SCM_FRAME_LOWER_ADDRESS (fp); \
642 VM_HANDLE_INTERRUPTS; \
643 ip = SCM_FRAME_RTL_RETURN_ADDRESS (fp); \
510ca126 644 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp); \
af95414f
AW
645 /* Clear frame. */ \
646 sp[0] = SCM_BOOL_F; \
647 sp[1] = SCM_BOOL_F; \
648 sp[2] = SCM_BOOL_F; \
649 /* Leave proc. */ \
650 sp[4] = val; \
651 vp->sp = sp + 4; \
510ca126
AW
652 POP_CONTINUATION_HOOK (sp, 1); \
653 NEXT (0); \
654 } while (0)
655
656/* While we could generate the list-unrolling code here, it's fine for
657 now to just tail-call (apply values vals). */
658#define RETURN_VALUE_LIST(vals_) \
659 do { \
660 SCM vals = vals_; \
661 VM_HANDLE_INTERRUPTS; \
662 fp[-1] = rtl_apply; \
663 fp[0] = rtl_values; \
664 fp[1] = vals; \
7396d216 665 RESET_FRAME (3); \
510ca126 666 ip = (scm_t_uint32 *) rtl_apply_code; \
adb8d905 667 goto op_tail_apply; \
510ca126
AW
668 } while (0)
669
670#define BR_NARGS(rel) \
671 scm_t_uint16 expected; \
672 SCM_UNPACK_RTL_24 (op, expected); \
673 if (FRAME_LOCALS_COUNT() rel expected) \
674 { \
675 scm_t_int32 offset = ip[1]; \
676 offset >>= 8; /* Sign-extending shift. */ \
677 NEXT (offset); \
678 } \
679 NEXT (2)
680
681#define BR_UNARY(x, exp) \
682 scm_t_uint32 test; \
683 SCM x; \
684 SCM_UNPACK_RTL_24 (op, test); \
685 x = LOCAL_REF (test); \
686 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
687 { \
688 scm_t_int32 offset = ip[1]; \
689 offset >>= 8; /* Sign-extending shift. */ \
690 if (offset < 0) \
691 VM_HANDLE_INTERRUPTS; \
692 NEXT (offset); \
693 } \
694 NEXT (2)
695
696#define BR_BINARY(x, y, exp) \
697 scm_t_uint16 a, b; \
698 SCM x, y; \
699 SCM_UNPACK_RTL_12_12 (op, a, b); \
700 x = LOCAL_REF (a); \
701 y = LOCAL_REF (b); \
702 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
703 { \
704 scm_t_int32 offset = ip[1]; \
705 offset >>= 8; /* Sign-extending shift. */ \
706 if (offset < 0) \
707 VM_HANDLE_INTERRUPTS; \
708 NEXT (offset); \
709 } \
710 NEXT (2)
711
712#define BR_ARITHMETIC(crel,srel) \
713 { \
714 scm_t_uint16 a, b; \
715 SCM x, y; \
716 SCM_UNPACK_RTL_12_12 (op, a, b); \
717 x = LOCAL_REF (a); \
718 y = LOCAL_REF (b); \
719 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
720 { \
721 scm_t_signed_bits x_bits = SCM_UNPACK (x); \
722 scm_t_signed_bits y_bits = SCM_UNPACK (y); \
af95414f 723 if ((ip[1] & 0x1) ? !(x_bits crel y_bits) : (x_bits crel y_bits)) \
510ca126
AW
724 { \
725 scm_t_int32 offset = ip[1]; \
726 offset >>= 8; /* Sign-extending shift. */ \
727 if (offset < 0) \
728 VM_HANDLE_INTERRUPTS; \
729 NEXT (offset); \
730 } \
731 NEXT (2); \
732 } \
733 else \
734 { \
af95414f 735 SCM res; \
510ca126 736 SYNC_IP (); \
af95414f
AW
737 res = srel (x, y); \
738 if ((ip[1] & 0x1) ? scm_is_false (res) : scm_is_true (res)) \
510ca126
AW
739 { \
740 scm_t_int32 offset = ip[1]; \
741 offset >>= 8; /* Sign-extending shift. */ \
742 if (offset < 0) \
743 VM_HANDLE_INTERRUPTS; \
744 NEXT (offset); \
745 } \
746 NEXT (2); \
747 } \
748 }
749
750#define ARGS1(a1) \
751 scm_t_uint16 dst, src; \
752 SCM a1; \
753 SCM_UNPACK_RTL_12_12 (op, dst, src); \
754 a1 = LOCAL_REF (src)
755#define ARGS2(a1, a2) \
756 scm_t_uint8 dst, src1, src2; \
757 SCM a1, a2; \
758 SCM_UNPACK_RTL_8_8_8 (op, dst, src1, src2); \
759 a1 = LOCAL_REF (src1); \
760 a2 = LOCAL_REF (src2)
761#define RETURN(x) \
762 do { LOCAL_SET (dst, x); NEXT (1); } while (0)
763
764/* The maximum/minimum tagged integers. */
d2295ba5
MW
765#define INUM_MAX \
766 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM)))
767#define INUM_MIN \
768 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM)))
769#define INUM_STEP \
770 ((scm_t_signed_bits) SCM_UNPACK (SCM_INUM1) \
771 - (scm_t_signed_bits) SCM_UNPACK (SCM_INUM0))
510ca126
AW
772
773#define BINARY_INTEGER_OP(CFUNC,SFUNC) \
774 { \
775 ARGS2 (x, y); \
776 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
777 { \
778 scm_t_int64 n = SCM_I_INUM (x) CFUNC SCM_I_INUM (y); \
779 if (SCM_FIXABLE (n)) \
780 RETURN (SCM_I_MAKINUM (n)); \
781 } \
782 SYNC_IP (); \
783 RETURN (SFUNC (x, y)); \
784 }
785
786#define VM_VALIDATE_PAIR(x, proc) \
787 VM_ASSERT (scm_is_pair (x), vm_error_not_a_pair (proc, x))
788
789#define VM_VALIDATE_STRUCT(obj, proc) \
790 VM_ASSERT (SCM_STRUCTP (obj), vm_error_not_a_pair (proc, obj))
791
792#define VM_VALIDATE_BYTEVECTOR(x, proc) \
793 VM_ASSERT (SCM_BYTEVECTOR_P (x), vm_error_not_a_bytevector (proc, x))
794
795/* Return true (non-zero) if PTR has suitable alignment for TYPE. */
796#define ALIGNED_P(ptr, type) \
797 ((scm_t_uintptr) (ptr) % alignof_type (type) == 0)
798
799static SCM
800RTL_VM_NAME (SCM vm, SCM program, SCM *argv, size_t nargs_)
801{
802 /* Instruction pointer: A pointer to the opcode that is currently
803 running. */
804 register scm_t_uint32 *ip IP_REG;
805
806 /* Frame pointer: A pointer into the stack, off of which we index
807 arguments and local variables. Pushed at function calls, popped on
808 returns. */
809 register SCM *fp FP_REG;
810
811 /* Current opcode: A cache of *ip. */
812 register scm_t_uint32 op;
813
814 /* Cached variables. */
815 struct scm_vm *vp = SCM_VM_DATA (vm);
816 SCM *stack_limit = vp->stack_limit; /* stack limit address */
817 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
818 scm_i_jmp_buf registers; /* used for prompts */
819
820#ifdef HAVE_LABELS_AS_VALUES
821 static const void **jump_table_pointer = NULL;
822 register const void **jump_table JT_REG;
823
824 if (SCM_UNLIKELY (!jump_table_pointer))
825 {
826 int i;
827 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
828 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
829 jump_table_pointer[i] = &&vm_error_bad_instruction;
830#define INIT(opcode, tag, name, meta) jump_table_pointer[opcode] = &&op_##tag;
831 FOR_EACH_VM_OPERATION(INIT);
832#undef INIT
833 }
834
835 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
836 load instruction at each instruction dispatch. */
837 jump_table = jump_table_pointer;
838#endif
839
840 if (SCM_I_SETJMP (registers))
841 {
842 /* Non-local return. The values are on the stack, on a new frame
843 set up to call `values' to return the values to the handler.
844 Cache the VM registers back from the vp, and dispatch to the
845 body of `values'.
846
847 Note, at this point, we must assume that any variable local to
848 vm_engine that can be assigned *has* been assigned. So we need
849 to pull all our state back from the ip/fp/sp.
850 */
851 CACHE_REGISTER ();
852 ABORT_CONTINUATION_HOOK (fp, FRAME_LOCALS_COUNT());
853 NEXT (0);
854 }
855
856 /* Load previous VM registers. */
857 CACHE_REGISTER ();
858
859 VM_HANDLE_INTERRUPTS;
860
861 /* Initialization */
862 {
863 SCM *base;
864
865 /* Check that we have enough space: 4 words for the boot
866 continuation, 4 + nargs for the procedure application, and 4 for
867 setting up a new frame. */
868 base = vp->sp + 1;
869 CHECK_OVERFLOW (vp->sp + 4 + 4 + nargs_ + 4);
870
871 /* Since it's possible to receive the arguments on the stack itself,
872 and indeed the regular VM invokes us that way, shuffle up the
873 arguments first. */
874 {
875 int i;
876 for (i = nargs_ - 1; i >= 0; i--)
877 base[8 + i] = argv[i];
878 }
879
880 /* Initial frame, saving previous fp and ip, with the boot
881 continuation. */
882 base[0] = SCM_PACK (fp); /* dynamic link */
883 base[1] = SCM_PACK (0); /* the boot continuation does not return to scheme */
884 base[2] = SCM_PACK (ip); /* ra */
885 base[3] = rtl_boot_continuation;
886 fp = &base[4];
af95414f 887 ip = (scm_t_uint32 *) rtl_boot_continuation_code;
510ca126
AW
888
889 /* MV-call frame, function & arguments */
890 base[4] = SCM_PACK (fp); /* dynamic link */
af95414f 891 base[5] = SCM_PACK (ip); /* in RTL programs, MVRA same as RA */
510ca126
AW
892 base[6] = SCM_PACK (ip); /* ra */
893 base[7] = program;
894 fp = vp->fp = &base[8];
7396d216 895 RESET_FRAME (nargs_ + 1);
510ca126
AW
896 }
897
898 apply:
899 while (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp)))
900 {
901#if 0
902 SCM proc = SCM_FRAME_PROGRAM (fp);
903
904 if (SCM_STRUCTP (proc) && SCM_STRUCT_APPLICABLE_P (proc))
905 {
906 fp[-1] = SCM_STRUCT_PROCEDURE (proc);
907 continue;
908 }
909 if (SCM_HAS_TYP7 (proc, scm_tc7_smob) && SCM_SMOB_APPLICABLE_P (proc))
910 {
911 scm_t_uint32 n = FRAME_LOCALS_COUNT();
912
913 /* Shuffle args up, place smob in local 0. */
914 CHECK_OVERFLOW (vp->sp + 1);
915 vp->sp++;
916 while (n--)
917 LOCAL_SET (n + 1, LOCAL_REF (n));
510ca126
AW
918
919 fp[-1] = SCM_SMOB_DESCRIPTOR (proc).apply_trampoline;
920 continue;
921 }
922
923 SYNC_IP();
924 vm_error_wrong_type_apply (proc);
925#else
926 SCM ret;
927 SYNC_ALL ();
928
7396d216 929 ret = VM_NAME (vm, fp[-1], fp, FRAME_LOCALS_COUNT () - 1);
510ca126
AW
930
931 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
932 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
933 else
934 RETURN_ONE_VALUE (ret);
935#endif
936 }
937
938 /* Let's go! */
939 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
940 NEXT (0);
941
942 BEGIN_DISPATCH_SWITCH;
943
944
945 \f
946
947 /*
948 * Call and return
949 */
950
951 /* halt _:24
952 *
af95414f 953 * Bring the VM to a halt, returning all the values from the stack.
510ca126
AW
954 */
955 VM_DEFINE_OP (0, halt, "halt", OP1 (U8_X24))
956 {
af95414f
AW
957 scm_t_uint32 nvals = FRAME_LOCALS_COUNT() - 5;
958 SCM ret;
510ca126 959
af95414f 960 /* Boot closure in r0, empty frame in r1/r2/r3, proc in r4, values from r5. */
510ca126 961
af95414f
AW
962 if (nvals == 1)
963 ret = LOCAL_REF (5);
964 else
965 {
966 scm_t_uint32 n;
967 ret = SCM_EOL;
968 SYNC_BEFORE_GC();
969 for (n = nvals; n > 0; n--)
e79ed6b1 970 ret = scm_cons (LOCAL_REF (5 + n - 1), ret);
af95414f
AW
971 ret = scm_values (ret);
972 }
510ca126
AW
973
974 vp->ip = SCM_FRAME_RETURN_ADDRESS (fp);
975 vp->sp = SCM_FRAME_LOWER_ADDRESS (fp) - 1;
976 vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
977
af95414f 978 return ret;
286a0fb3
AW
979 }
980
af95414f 981 /* call proc:24 _:8 nlocals:24
286a0fb3 982 *
af95414f
AW
983 * Call a procedure. PROC is the local corresponding to a procedure.
984 * The three values below PROC will be overwritten by the saved call
985 * frame data. The new frame will have space for NLOCALS locals: one
986 * for the procedure, and the rest for the arguments which should
987 * already have been pushed on.
510ca126 988 *
af95414f
AW
989 * When the call returns, execution proceeds with the next
990 * instruction. There may be any number of values on the return
991 * stack; the precise number can be had by subtracting the address of
992 * PROC from the post-call SP.
510ca126 993 */
af95414f 994 VM_DEFINE_OP (1, call, "call", OP2 (U8_U24, X8_U24))
510ca126 995 {
af95414f 996 scm_t_uint32 proc, nlocals;
510ca126
AW
997 SCM *old_fp = fp;
998
af95414f
AW
999 SCM_UNPACK_RTL_24 (op, proc);
1000 SCM_UNPACK_RTL_24 (ip[1], nlocals);
510ca126
AW
1001
1002 VM_HANDLE_INTERRUPTS;
1003
af95414f 1004 fp = vp->fp = old_fp + proc;
510ca126 1005 SCM_FRAME_SET_DYNAMIC_LINK (fp, old_fp);
af95414f 1006 SCM_FRAME_SET_RTL_MV_RETURN_ADDRESS (fp, ip + 2);
286a0fb3 1007 SCM_FRAME_SET_RTL_RETURN_ADDRESS (fp, ip + 2);
510ca126 1008
af95414f
AW
1009 RESET_FRAME (nlocals);
1010
510ca126
AW
1011 PUSH_CONTINUATION_HOOK ();
1012 APPLY_HOOK ();
1013
1014 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1015 goto apply;
1016
1017 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1018 NEXT (0);
1019 }
1020
af95414f 1021 /* tail-call nlocals:24
510ca126 1022 *
af95414f
AW
1023 * Tail-call a procedure. Requires that the procedure and all of the
1024 * arguments have already been shuffled into position.
510ca126 1025 */
af95414f 1026 VM_DEFINE_OP (2, tail_call, "tail-call", OP1 (U8_U24))
510ca126 1027 {
af95414f
AW
1028 scm_t_uint32 nlocals;
1029
1030 SCM_UNPACK_RTL_24 (op, nlocals);
510ca126
AW
1031
1032 VM_HANDLE_INTERRUPTS;
1033
af95414f 1034 RESET_FRAME (nlocals);
510ca126
AW
1035 APPLY_HOOK ();
1036
1037 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1038 goto apply;
1039
1040 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1041 NEXT (0);
1042 }
1043
af95414f 1044 /* receive dst:12 proc:12 _:8 nlocals:24
510ca126 1045 *
af95414f
AW
1046 * Receive a single return value from a call whose procedure was in
1047 * PROC, asserting that the call actually returned at least one
1048 * value. Afterwards, resets the frame to NLOCALS locals.
510ca126 1049 */
af95414f 1050 VM_DEFINE_OP (3, receive, "receive", OP2 (U8_U12_U12, X8_U24) | OP_DST)
510ca126 1051 {
af95414f
AW
1052 scm_t_uint16 dst, proc;
1053 scm_t_uint32 nlocals;
1054 SCM_UNPACK_RTL_12_12 (op, dst, proc);
1055 SCM_UNPACK_RTL_24 (ip[1], nlocals);
1056 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + 1, vm_error_no_values ());
1057 LOCAL_SET (dst, LOCAL_REF (proc + 1));
1058 RESET_FRAME (nlocals);
1059 NEXT (2);
1060 }
510ca126 1061
82f4bac4 1062 /* receive-values proc:24 allow-extra?:1 _:7 nvalues:24
af95414f
AW
1063 *
1064 * Receive a return of multiple values from a call whose procedure was
1065 * in PROC. If fewer than NVALUES values were returned, signal an
82f4bac4
AW
1066 * error. Unless ALLOW-EXTRA? is true, require that the number of
1067 * return values equals NVALUES exactly. After receive-values has
1068 * run, the values can be copied down via `mov'.
af95414f 1069 */
82f4bac4 1070 VM_DEFINE_OP (4, receive_values, "receive-values", OP2 (U8_U24, B1_X7_U24))
af95414f
AW
1071 {
1072 scm_t_uint32 proc, nvalues;
1073 SCM_UNPACK_RTL_24 (op, proc);
1074 SCM_UNPACK_RTL_24 (ip[1], nvalues);
82f4bac4
AW
1075 if (ip[1] & 0x1)
1076 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + nvalues,
1077 vm_error_not_enough_values ());
1078 else
1079 VM_ASSERT (FRAME_LOCALS_COUNT () == proc + nvalues,
1080 vm_error_wrong_number_of_values (nvalues));
af95414f 1081 NEXT (2);
510ca126
AW
1082 }
1083
1084 /* return src:24
1085 *
1086 * Return a value.
1087 */
af95414f 1088 VM_DEFINE_OP (5, return, "return", OP1 (U8_U24))
510ca126
AW
1089 {
1090 scm_t_uint32 src;
1091 SCM_UNPACK_RTL_24 (op, src);
1092 RETURN_ONE_VALUE (LOCAL_REF (src));
1093 }
1094
84cc4127 1095 /* return-values _:24
510ca126
AW
1096 *
1097 * Return a number of values from a call frame. This opcode
1098 * corresponds to an application of `values' in tail position. As
af95414f
AW
1099 * with tail calls, we expect that the values have already been
1100 * shuffled down to a contiguous array starting at slot 1.
84cc4127 1101 * We also expect the frame has already been reset.
510ca126 1102 */
84cc4127 1103 VM_DEFINE_OP (6, return_values, "return-values", OP1 (U8_X24))
510ca126 1104 {
84cc4127 1105 scm_t_uint32 nvalues _GL_UNUSED = FRAME_LOCALS_COUNT();
af95414f
AW
1106 SCM *base = fp;
1107
af95414f
AW
1108 VM_HANDLE_INTERRUPTS;
1109 ip = SCM_FRAME_RTL_MV_RETURN_ADDRESS (fp);
1110 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
1111
1112 /* Clear stack frame. */
1113 base[-2] = SCM_BOOL_F;
1114 base[-3] = SCM_BOOL_F;
1115 base[-4] = SCM_BOOL_F;
1116
1117 POP_CONTINUATION_HOOK (base, nvalues);
1118
1119 NEXT (0);
510ca126
AW
1120 }
1121
1122
1123 \f
1124
1125 /*
1126 * Specialized call stubs
1127 */
1128
1129 /* subr-call ptr-idx:24
1130 *
1131 * Call a subr, passing all locals in this frame as arguments. Fetch
1132 * the foreign pointer from PTR-IDX, a free variable. Return from the
1133 * calling frame. This instruction is part of the trampolines
1134 * created in gsubr.c, and is not generated by the compiler.
1135 */
af95414f 1136 VM_DEFINE_OP (7, subr_call, "subr-call", OP1 (U8_U24))
510ca126
AW
1137 {
1138 scm_t_uint32 ptr_idx;
1139 SCM pointer, ret;
1140 SCM (*subr)();
1141
1142 SCM_UNPACK_RTL_24 (op, ptr_idx);
1143
7396d216 1144 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), ptr_idx);
510ca126
AW
1145 subr = SCM_POINTER_VALUE (pointer);
1146
1147 VM_HANDLE_INTERRUPTS;
1148 SYNC_IP ();
1149
1150 switch (FRAME_LOCALS_COUNT ())
1151 {
1152 case 0:
1153 ret = subr ();
1154 break;
1155 case 1:
1156 ret = subr (fp[0]);
1157 break;
1158 case 2:
1159 ret = subr (fp[0], fp[1]);
1160 break;
1161 case 3:
1162 ret = subr (fp[0], fp[1], fp[2]);
1163 break;
1164 case 4:
1165 ret = subr (fp[0], fp[1], fp[2], fp[3]);
1166 break;
1167 case 5:
1168 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4]);
1169 break;
1170 case 6:
1171 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5]);
1172 break;
1173 case 7:
1174 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6]);
1175 break;
1176 case 8:
1177 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7]);
1178 break;
1179 case 9:
1180 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8]);
1181 break;
1182 case 10:
1183 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8], fp[9]);
1184 break;
1185 default:
1186 abort ();
1187 }
1188
1189 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1190
1191 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1192 /* multiple values returned to continuation */
1193 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1194 else
1195 RETURN_ONE_VALUE (ret);
1196 }
1197
1198 /* foreign-call cif-idx:12 ptr-idx:12
1199 *
1200 * Call a foreign function. Fetch the CIF and foreign pointer from
1201 * CIF-IDX and PTR-IDX, both free variables. Return from the calling
1202 * frame. Arguments are taken from the stack. This instruction is
1203 * part of the trampolines created by the FFI, and is not generated by
1204 * the compiler.
1205 */
af95414f 1206 VM_DEFINE_OP (8, foreign_call, "foreign-call", OP1 (U8_U12_U12))
510ca126
AW
1207 {
1208 scm_t_uint16 cif_idx, ptr_idx;
7396d216 1209 SCM closure, cif, pointer, ret;
510ca126
AW
1210
1211 SCM_UNPACK_RTL_12_12 (op, cif_idx, ptr_idx);
1212
7396d216
AW
1213 closure = LOCAL_REF (0);
1214 cif = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, cif_idx);
1215 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, ptr_idx);
510ca126
AW
1216
1217 SYNC_IP ();
1218 VM_HANDLE_INTERRUPTS;
1219
1220 // FIXME: separate args
1221 ret = scm_i_foreign_call (scm_cons (cif, pointer), fp);
1222
1223 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1224
1225 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1226 /* multiple values returned to continuation */
1227 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1228 else
1229 RETURN_ONE_VALUE (ret);
1230 }
1231
1232 /* continuation-call contregs:24
1233 *
1234 * Return to a continuation, nonlocally. The arguments to the
1235 * continuation are taken from the stack. CONTREGS is a free variable
1236 * containing the reified continuation. This instruction is part of
1237 * the implementation of undelimited continuations, and is not
1238 * generated by the compiler.
1239 */
af95414f 1240 VM_DEFINE_OP (9, continuation_call, "continuation-call", OP1 (U8_U24))
510ca126
AW
1241 {
1242 SCM contregs;
1243 scm_t_uint32 contregs_idx;
1244
1245 SCM_UNPACK_RTL_24 (op, contregs_idx);
1246
7396d216
AW
1247 contregs =
1248 SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), contregs_idx);
510ca126
AW
1249
1250 SYNC_IP ();
1251 scm_i_check_continuation (contregs);
1252 vm_return_to_continuation (scm_i_contregs_vm (contregs),
1253 scm_i_contregs_vm_cont (contregs),
1254 FRAME_LOCALS_COUNT (), fp);
1255 scm_i_reinstate_continuation (contregs);
1256
1257 /* no NEXT */
1258 abort ();
1259 }
1260
1261 /* compose-continuation cont:24
1262 *
1263 * Compose a partial continution with the current continuation. The
1264 * arguments to the continuation are taken from the stack. CONT is a
1265 * free variable containing the reified continuation. This
1266 * instruction is part of the implementation of partial continuations,
1267 * and is not generated by the compiler.
1268 */
af95414f 1269 VM_DEFINE_OP (10, compose_continuation, "compose-continuation", OP1 (U8_U24))
510ca126
AW
1270 {
1271 SCM vmcont;
1272 scm_t_uint32 cont_idx;
1273
1274 SCM_UNPACK_RTL_24 (op, cont_idx);
1275 vmcont = LOCAL_REF (cont_idx);
1276
1277 SYNC_IP ();
1278 VM_ASSERT (SCM_VM_CONT_REWINDABLE_P (vmcont),
1279 vm_error_continuation_not_rewindable (vmcont));
1280 vm_reinstate_partial_continuation (vm, vmcont, FRAME_LOCALS_COUNT (), fp,
1281 &current_thread->dynstack,
1282 &registers);
1283 CACHE_REGISTER ();
1284 NEXT (0);
1285 }
1286
adb8d905 1287 /* tail-apply _:24
510ca126
AW
1288 *
1289 * Tail-apply the procedure in local slot 0 to the rest of the
1290 * arguments. This instruction is part of the implementation of
1291 * `apply', and is not generated by the compiler.
1292 */
adb8d905 1293 VM_DEFINE_OP (11, tail_apply, "tail-apply", OP1 (U8_X24))
510ca126
AW
1294 {
1295 int i, list_idx, list_len, nargs;
1296 SCM list;
1297
1298 VM_HANDLE_INTERRUPTS;
1299
1300 VM_ASSERT (FRAME_LOCALS_COUNT () >= 2, abort ());
1301 nargs = FRAME_LOCALS_COUNT ();
1302 list_idx = nargs - 1;
1303 list = LOCAL_REF (list_idx);
1304 list_len = scm_ilength (list);
1305
1306 VM_ASSERT (list_len >= 0, vm_error_apply_to_non_list (list));
1307
1308 nargs = nargs - 2 + list_len;
1309 ALLOC_FRAME (nargs);
1310
1311 for (i = 0; i < list_idx; i++)
7396d216 1312 LOCAL_SET(i - 1, LOCAL_REF (i));
510ca126
AW
1313
1314 /* Null out these slots, just in case there are less than 2 elements
1315 in the list. */
7396d216
AW
1316 LOCAL_SET (list_idx - 1, SCM_UNDEFINED);
1317 LOCAL_SET (list_idx, SCM_UNDEFINED);
510ca126
AW
1318
1319 for (i = 0; i < list_len; i++, list = SCM_CDR (list))
7396d216 1320 LOCAL_SET (list_idx - 1 + i, SCM_CAR (list));
510ca126
AW
1321
1322 APPLY_HOOK ();
1323
1324 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1325 goto apply;
1326
1327 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1328 NEXT (0);
1329 }
1330
1331 /* call/cc _:24
1332 *
1333 * Capture the current continuation, and tail-apply the procedure in
1334 * local slot 0 to it. This instruction is part of the implementation
1335 * of `call/cc', and is not generated by the compiler.
1336 */
af95414f 1337 VM_DEFINE_OP (12, call_cc, "call/cc", OP1 (U8_X24))
510ca126
AW
1338#if 0
1339 {
1340 SCM vm_cont, cont;
1341 scm_t_dynstack *dynstack;
1342
1343 VM_HANDLE_INTERRUPTS;
1344
1345 SYNC_IP ();
1346 dynstack = scm_dynstack_capture_all (&current_thread->dynstack);
1347 vm_cont = scm_i_vm_capture_stack (vp->stack_base,
1348 SCM_FRAME_DYNAMIC_LINK (fp),
1349 SCM_FRAME_LOWER_ADDRESS (fp) - 1,
1350 SCM_FRAME_RETURN_ADDRESS (fp),
1351 SCM_FRAME_MV_RETURN_ADDRESS (fp),
1352 dynstack,
1353 0);
1354 cont = scm_i_make_continuation (&registers, vm, vm_cont);
1355
1356 fp[-1] = fp[0];
1357 fp[0] = cont;
7396d216 1358 RESET_FRAME (2);
510ca126
AW
1359
1360 APPLY_HOOK ();
1361
1362 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1363 goto apply;
1364
1365 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1366 NEXT (0);
1367 }
1368#else
1369 abort();
1370#endif
1371
510ca126
AW
1372
1373 \f
1374
1375 /*
1376 * Function prologues
1377 */
1378
1379 /* br-if-nargs-ne expected:24 _:8 offset:24
1380 * br-if-nargs-lt expected:24 _:8 offset:24
1381 * br-if-nargs-gt expected:24 _:8 offset:24
1382 *
1383 * If the number of actual arguments is not equal, less than, or greater
1384 * than EXPECTED, respectively, add OFFSET, a signed 24-bit number, to
1385 * the current instruction pointer.
1386 */
af95414f 1387 VM_DEFINE_OP (13, br_if_nargs_ne, "br-if-nargs-ne", OP2 (U8_U24, X8_L24))
510ca126
AW
1388 {
1389 BR_NARGS (!=);
1390 }
af95414f 1391 VM_DEFINE_OP (14, br_if_nargs_lt, "br-if-nargs-lt", OP2 (U8_U24, X8_L24))
510ca126
AW
1392 {
1393 BR_NARGS (<);
1394 }
af95414f 1395 VM_DEFINE_OP (15, br_if_nargs_gt, "br-if-nargs-gt", OP2 (U8_U24, X8_L24))
510ca126
AW
1396 {
1397 BR_NARGS (>);
1398 }
1399
1400 /* assert-nargs-ee expected:24
1401 * assert-nargs-ge expected:24
1402 * assert-nargs-le expected:24
1403 *
1404 * If the number of actual arguments is not ==, >=, or <= EXPECTED,
1405 * respectively, signal an error.
1406 */
af95414f 1407 VM_DEFINE_OP (16, assert_nargs_ee, "assert-nargs-ee", OP1 (U8_U24))
510ca126
AW
1408 {
1409 scm_t_uint32 expected;
1410 SCM_UNPACK_RTL_24 (op, expected);
1411 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1412 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1413 NEXT (1);
1414 }
af95414f 1415 VM_DEFINE_OP (17, assert_nargs_ge, "assert-nargs-ge", OP1 (U8_U24))
510ca126
AW
1416 {
1417 scm_t_uint32 expected;
1418 SCM_UNPACK_RTL_24 (op, expected);
1419 VM_ASSERT (FRAME_LOCALS_COUNT () >= expected,
1420 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1421 NEXT (1);
1422 }
af95414f 1423 VM_DEFINE_OP (18, assert_nargs_le, "assert-nargs-le", OP1 (U8_U24))
510ca126
AW
1424 {
1425 scm_t_uint32 expected;
1426 SCM_UNPACK_RTL_24 (op, expected);
1427 VM_ASSERT (FRAME_LOCALS_COUNT () <= expected,
1428 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1429 NEXT (1);
1430 }
1431
af95414f 1432 /* alloc-frame nlocals:24
510ca126
AW
1433 *
1434 * Ensure that there is space on the stack for NLOCALS local variables,
1435 * setting them all to SCM_UNDEFINED, except those nargs values that
7396d216 1436 * were passed as arguments and procedure.
510ca126 1437 */
af95414f 1438 VM_DEFINE_OP (19, alloc_frame, "alloc-frame", OP1 (U8_U24))
510ca126
AW
1439 {
1440 scm_t_uint32 nlocals, nargs;
1441 SCM_UNPACK_RTL_24 (op, nlocals);
1442
1443 nargs = FRAME_LOCALS_COUNT ();
1444 ALLOC_FRAME (nlocals);
1445 while (nlocals-- > nargs)
1446 LOCAL_SET (nlocals, SCM_UNDEFINED);
1447
1448 NEXT (1);
1449 }
1450
af95414f
AW
1451 /* reset-frame nlocals:24
1452 *
1453 * Like alloc-frame, but doesn't check that the stack is big enough.
1454 * Used to reset the frame size to something less than the size that
1455 * was previously set via alloc-frame.
1456 */
1457 VM_DEFINE_OP (20, reset_frame, "reset-frame", OP1 (U8_U24))
1458 {
1459 scm_t_uint32 nlocals;
1460 SCM_UNPACK_RTL_24 (op, nlocals);
1461 RESET_FRAME (nlocals);
1462 NEXT (1);
1463 }
1464
510ca126
AW
1465 /* assert-nargs-ee/locals expected:12 nlocals:12
1466 *
1467 * Equivalent to a sequence of assert-nargs-ee and reserve-locals. The
1468 * number of locals reserved is EXPECTED + NLOCALS.
1469 */
af95414f 1470 VM_DEFINE_OP (21, assert_nargs_ee_locals, "assert-nargs-ee/locals", OP1 (U8_U12_U12))
510ca126
AW
1471 {
1472 scm_t_uint16 expected, nlocals;
1473 SCM_UNPACK_RTL_12_12 (op, expected, nlocals);
1474 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1475 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1476 ALLOC_FRAME (expected + nlocals);
1477 while (nlocals--)
1478 LOCAL_SET (expected + nlocals, SCM_UNDEFINED);
1479
1480 NEXT (1);
1481 }
1482
1483 /* bind-kwargs nreq:24 allow-other-keys:1 has-rest:1 _:6 nreq-and-opt:24
1484 * _:8 ntotal:24 kw-offset:32
1485 *
1486 * Find the last positional argument, and shuffle all the rest above
1487 * NTOTAL. Initialize the intervening locals to SCM_UNDEFINED. Then
1488 * load the constant at KW-OFFSET words from the current IP, and use it
1489 * to bind keyword arguments. If HAS-REST, collect all shuffled
1490 * arguments into a list, and store it in NREQ-AND-OPT. Finally, clear
1491 * the arguments that we shuffled up.
1492 *
1493 * A macro-mega-instruction.
1494 */
af95414f 1495 VM_DEFINE_OP (22, bind_kwargs, "bind-kwargs", OP4 (U8_U24, U8_U24, X8_U24, N32))
510ca126
AW
1496 {
1497 scm_t_uint32 nreq, nreq_and_opt, ntotal, npositional, nkw, n, nargs;
1498 scm_t_int32 kw_offset;
1499 scm_t_bits kw_bits;
1500 SCM kw;
1501 char allow_other_keys, has_rest;
1502
1503 SCM_UNPACK_RTL_24 (op, nreq);
1504 allow_other_keys = ip[1] & 0x1;
1505 has_rest = ip[1] & 0x2;
1506 SCM_UNPACK_RTL_24 (ip[1], nreq_and_opt);
1507 SCM_UNPACK_RTL_24 (ip[2], ntotal);
1508 kw_offset = ip[3];
1509 kw_bits = (scm_t_bits) (ip + kw_offset);
1510 VM_ASSERT (!(kw_bits & 0x7), abort());
1511 kw = SCM_PACK (kw_bits);
1512
1513 nargs = FRAME_LOCALS_COUNT ();
1514
1515 /* look in optionals for first keyword or last positional */
1516 /* starting after the last required positional arg */
1517 npositional = nreq;
1518 while (/* while we have args */
1519 npositional < nargs
1520 /* and we still have positionals to fill */
1521 && npositional < nreq_and_opt
1522 /* and we haven't reached a keyword yet */
1523 && !scm_is_keyword (LOCAL_REF (npositional)))
1524 /* bind this optional arg (by leaving it in place) */
1525 npositional++;
1526 nkw = nargs - npositional;
1527 /* shuffle non-positional arguments above ntotal */
1528 ALLOC_FRAME (ntotal + nkw);
1529 n = nkw;
1530 while (n--)
1531 LOCAL_SET (ntotal + n, LOCAL_REF (npositional + n));
1532 /* and fill optionals & keyword args with SCM_UNDEFINED */
1533 n = npositional;
1534 while (n < ntotal)
1535 LOCAL_SET (n++, SCM_UNDEFINED);
1536
1537 VM_ASSERT (has_rest || (nkw % 2) == 0,
1538 vm_error_kwargs_length_not_even (SCM_FRAME_PROGRAM (fp)));
1539
1540 /* Now bind keywords, in the order given. */
1541 for (n = 0; n < nkw; n++)
1542 if (scm_is_keyword (LOCAL_REF (ntotal + n)))
1543 {
1544 SCM walk;
1545 for (walk = kw; scm_is_pair (walk); walk = SCM_CDR (walk))
1546 if (scm_is_eq (SCM_CAAR (walk), LOCAL_REF (ntotal + n)))
1547 {
1548 SCM si = SCM_CDAR (walk);
1549 LOCAL_SET (SCM_I_INUMP (si) ? SCM_I_INUM (si) : scm_to_uint32 (si),
1550 LOCAL_REF (ntotal + n + 1));
1551 break;
1552 }
1553 VM_ASSERT (scm_is_pair (walk) || allow_other_keys,
28d5d253
MW
1554 vm_error_kwargs_unrecognized_keyword (SCM_FRAME_PROGRAM (fp),
1555 LOCAL_REF (ntotal + n)));
510ca126
AW
1556 n++;
1557 }
1558 else
28d5d253
MW
1559 VM_ASSERT (has_rest, vm_error_kwargs_invalid_keyword (SCM_FRAME_PROGRAM (fp),
1560 LOCAL_REF (ntotal + n)));
510ca126
AW
1561
1562 if (has_rest)
1563 {
1564 SCM rest = SCM_EOL;
1565 n = nkw;
1566 while (n--)
1567 rest = scm_cons (LOCAL_REF (ntotal + n), rest);
1568 LOCAL_SET (nreq_and_opt, rest);
1569 }
1570
1571 RESET_FRAME (ntotal);
1572
1573 NEXT (4);
1574 }
1575
1576 /* bind-rest dst:24
1577 *
1578 * Collect any arguments at or above DST into a list, and store that
1579 * list at DST.
1580 */
af95414f 1581 VM_DEFINE_OP (23, bind_rest, "bind-rest", OP1 (U8_U24) | OP_DST)
510ca126
AW
1582 {
1583 scm_t_uint32 dst, nargs;
1584 SCM rest = SCM_EOL;
1585
1586 SCM_UNPACK_RTL_24 (op, dst);
1587 nargs = FRAME_LOCALS_COUNT ();
1588
234155e3 1589 if (nargs <= dst)
510ca126 1590 {
234155e3
AW
1591 ALLOC_FRAME (dst + 1);
1592 while (nargs < dst)
1593 LOCAL_SET (nargs++, SCM_UNDEFINED);
510ca126 1594 }
234155e3
AW
1595 else
1596 {
1597 while (nargs-- > dst)
1598 {
1599 rest = scm_cons (LOCAL_REF (nargs), rest);
1600 LOCAL_SET (nargs, SCM_UNDEFINED);
1601 }
510ca126 1602
234155e3
AW
1603 RESET_FRAME (dst + 1);
1604 }
510ca126 1605
234155e3 1606 LOCAL_SET (dst, rest);
510ca126
AW
1607
1608 NEXT (1);
1609 }
1610
510ca126
AW
1611
1612 \f
1613
1614 /*
1615 * Branching instructions
1616 */
1617
1618 /* br offset:24
1619 *
1620 * Add OFFSET, a signed 24-bit number, to the current instruction
1621 * pointer.
1622 */
af95414f 1623 VM_DEFINE_OP (24, br, "br", OP1 (U8_L24))
510ca126
AW
1624 {
1625 scm_t_int32 offset = op;
1626 offset >>= 8; /* Sign-extending shift. */
1627 NEXT (offset);
1628 }
1629
1630 /* br-if-true test:24 invert:1 _:7 offset:24
1631 *
1632 * If the value in TEST is true for the purposes of Scheme, add
1633 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1634 */
af95414f 1635 VM_DEFINE_OP (25, br_if_true, "br-if-true", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1636 {
1637 BR_UNARY (x, scm_is_true (x));
1638 }
1639
1640 /* br-if-null test:24 invert:1 _:7 offset:24
1641 *
1642 * If the value in TEST is the end-of-list or Lisp nil, add OFFSET, a
1643 * signed 24-bit number, to the current instruction pointer.
1644 */
af95414f 1645 VM_DEFINE_OP (26, br_if_null, "br-if-null", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1646 {
1647 BR_UNARY (x, scm_is_null (x));
1648 }
1649
1650 /* br-if-nil test:24 invert:1 _:7 offset:24
1651 *
1652 * If the value in TEST is false to Lisp, add OFFSET, a signed 24-bit
1653 * number, to the current instruction pointer.
1654 */
af95414f 1655 VM_DEFINE_OP (27, br_if_nil, "br-if-nil", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1656 {
1657 BR_UNARY (x, scm_is_lisp_false (x));
1658 }
1659
1660 /* br-if-pair test:24 invert:1 _:7 offset:24
1661 *
1662 * If the value in TEST is a pair, add OFFSET, a signed 24-bit number,
1663 * to the current instruction pointer.
1664 */
af95414f 1665 VM_DEFINE_OP (28, br_if_pair, "br-if-pair", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1666 {
1667 BR_UNARY (x, scm_is_pair (x));
1668 }
1669
1670 /* br-if-struct test:24 invert:1 _:7 offset:24
1671 *
1672 * If the value in TEST is a struct, add OFFSET, a signed 24-bit
1673 * number, to the current instruction pointer.
1674 */
af95414f 1675 VM_DEFINE_OP (29, br_if_struct, "br-if-struct", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1676 {
1677 BR_UNARY (x, SCM_STRUCTP (x));
1678 }
1679
1680 /* br-if-char test:24 invert:1 _:7 offset:24
1681 *
1682 * If the value in TEST is a char, add OFFSET, a signed 24-bit number,
1683 * to the current instruction pointer.
1684 */
af95414f 1685 VM_DEFINE_OP (30, br_if_char, "br-if-char", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1686 {
1687 BR_UNARY (x, SCM_CHARP (x));
1688 }
1689
1690 /* br-if-tc7 test:24 invert:1 tc7:7 offset:24
1691 *
1692 * If the value in TEST has the TC7 given in the second word, add
1693 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1694 */
af95414f 1695 VM_DEFINE_OP (31, br_if_tc7, "br-if-tc7", OP2 (U8_U24, B1_U7_L24))
510ca126
AW
1696 {
1697 BR_UNARY (x, SCM_HAS_TYP7 (x, (ip[1] >> 1) & 0x7f));
1698 }
1699
1700 /* br-if-eq a:12 b:12 invert:1 _:7 offset:24
1701 *
1702 * If the value in A is eq? to the value in B, add OFFSET, a signed
1703 * 24-bit number, to the current instruction pointer.
1704 */
af95414f 1705 VM_DEFINE_OP (32, br_if_eq, "br-if-eq", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1706 {
1707 BR_BINARY (x, y, scm_is_eq (x, y));
1708 }
1709
1710 /* br-if-eqv a:12 b:12 invert:1 _:7 offset:24
1711 *
1712 * If the value in A is eqv? to the value in B, add OFFSET, a signed
1713 * 24-bit number, to the current instruction pointer.
1714 */
af95414f 1715 VM_DEFINE_OP (33, br_if_eqv, "br-if-eqv", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1716 {
1717 BR_BINARY (x, y,
1718 scm_is_eq (x, y)
1719 || (SCM_NIMP (x) && SCM_NIMP (y)
1720 && scm_is_true (scm_eqv_p (x, y))));
1721 }
1722
af95414f 1723 // FIXME: remove, have compiler inline eqv test instead
510ca126
AW
1724 /* br-if-equal a:12 b:12 invert:1 _:7 offset:24
1725 *
1726 * If the value in A is equal? to the value in B, add OFFSET, a signed
1727 * 24-bit number, to the current instruction pointer.
1728 */
1729 // FIXME: should sync_ip before calling out?
af95414f 1730 VM_DEFINE_OP (34, br_if_equal, "br-if-equal", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1731 {
1732 BR_BINARY (x, y,
1733 scm_is_eq (x, y)
1734 || (SCM_NIMP (x) && SCM_NIMP (y)
1735 && scm_is_true (scm_equal_p (x, y))));
1736 }
1737
af95414f 1738 /* br-if-= a:12 b:12 invert:1 _:7 offset:24
510ca126
AW
1739 *
1740 * If the value in A is = to the value in B, add OFFSET, a signed
1741 * 24-bit number, to the current instruction pointer.
1742 */
af95414f 1743 VM_DEFINE_OP (35, br_if_ee, "br-if-=", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1744 {
1745 BR_ARITHMETIC (==, scm_num_eq_p);
1746 }
1747
1748 /* br-if-< a:12 b:12 _:8 offset:24
1749 *
1750 * If the value in A is < to the value in B, add OFFSET, a signed
1751 * 24-bit number, to the current instruction pointer.
1752 */
af95414f 1753 VM_DEFINE_OP (36, br_if_lt, "br-if-<", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1754 {
1755 BR_ARITHMETIC (<, scm_less_p);
1756 }
1757
1758 /* br-if-<= a:12 b:12 _:8 offset:24
1759 *
1760 * If the value in A is <= to the value in B, add OFFSET, a signed
1761 * 24-bit number, to the current instruction pointer.
1762 */
af95414f 1763 VM_DEFINE_OP (37, br_if_le, "br-if-<=", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1764 {
1765 BR_ARITHMETIC (<=, scm_leq_p);
1766 }
1767
510ca126
AW
1768
1769 \f
1770
1771 /*
1772 * Lexical binding instructions
1773 */
1774
1775 /* mov dst:12 src:12
1776 *
1777 * Copy a value from one local slot to another.
1778 */
af95414f 1779 VM_DEFINE_OP (38, mov, "mov", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1780 {
1781 scm_t_uint16 dst;
1782 scm_t_uint16 src;
1783
1784 SCM_UNPACK_RTL_12_12 (op, dst, src);
1785 LOCAL_SET (dst, LOCAL_REF (src));
1786
1787 NEXT (1);
1788 }
1789
1790 /* long-mov dst:24 _:8 src:24
1791 *
1792 * Copy a value from one local slot to another.
1793 */
af95414f 1794 VM_DEFINE_OP (39, long_mov, "long-mov", OP2 (U8_U24, X8_U24) | OP_DST)
510ca126
AW
1795 {
1796 scm_t_uint32 dst;
1797 scm_t_uint32 src;
1798
1799 SCM_UNPACK_RTL_24 (op, dst);
1800 SCM_UNPACK_RTL_24 (ip[1], src);
1801 LOCAL_SET (dst, LOCAL_REF (src));
1802
1803 NEXT (2);
1804 }
1805
1806 /* box dst:12 src:12
1807 *
1808 * Create a new variable holding SRC, and place it in DST.
1809 */
af95414f 1810 VM_DEFINE_OP (40, box, "box", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1811 {
1812 scm_t_uint16 dst, src;
1813 SCM_UNPACK_RTL_12_12 (op, dst, src);
1814 LOCAL_SET (dst, scm_cell (scm_tc7_variable, SCM_UNPACK (LOCAL_REF (src))));
1815 NEXT (1);
1816 }
1817
510ca126
AW
1818 /* box-ref dst:12 src:12
1819 *
1820 * Unpack the variable at SRC into DST, asserting that the variable is
1821 * actually bound.
1822 */
af95414f 1823 VM_DEFINE_OP (41, box_ref, "box-ref", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1824 {
1825 scm_t_uint16 dst, src;
1826 SCM var;
1827 SCM_UNPACK_RTL_12_12 (op, dst, src);
1828 var = LOCAL_REF (src);
1829 VM_ASSERT (SCM_VARIABLEP (var), abort ());
af95414f
AW
1830 VM_ASSERT (VARIABLE_BOUNDP (var),
1831 vm_error_unbound (SCM_FRAME_PROGRAM (fp), var));
510ca126
AW
1832 LOCAL_SET (dst, VARIABLE_REF (var));
1833 NEXT (1);
1834 }
1835
1836 /* box-set! dst:12 src:12
1837 *
1838 * Set the contents of the variable at DST to SET.
1839 */
e063995d 1840 VM_DEFINE_OP (42, box_set, "box-set!", OP1 (U8_U12_U12))
510ca126
AW
1841 {
1842 scm_t_uint16 dst, src;
1843 SCM var;
1844 SCM_UNPACK_RTL_12_12 (op, dst, src);
1845 var = LOCAL_REF (dst);
1846 VM_ASSERT (SCM_VARIABLEP (var), abort ());
1847 VARIABLE_SET (var, LOCAL_REF (src));
1848 NEXT (1);
1849 }
1850
7396d216 1851 /* make-closure dst:24 offset:32 _:8 nfree:24
510ca126
AW
1852 *
1853 * Make a new closure, and write it to DST. The code for the closure
1854 * will be found at OFFSET words from the current IP. OFFSET is a
7396d216
AW
1855 * signed 32-bit integer. Space for NFREE free variables will be
1856 * allocated.
510ca126 1857 */
af95414f 1858 VM_DEFINE_OP (43, make_closure, "make-closure", OP3 (U8_U24, L32, X8_U24) | OP_DST)
510ca126
AW
1859 {
1860 scm_t_uint32 dst, nfree, n;
1861 scm_t_int32 offset;
1862 SCM closure;
1863
1864 SCM_UNPACK_RTL_24 (op, dst);
1865 offset = ip[1];
1866 SCM_UNPACK_RTL_24 (ip[2], nfree);
1867
1868 // FIXME: Assert range of nfree?
1869 closure = scm_words (scm_tc7_rtl_program | (nfree << 16), nfree + 2);
1870 SCM_SET_CELL_WORD_1 (closure, ip + offset);
7396d216 1871 // FIXME: Elide these initializations?
510ca126 1872 for (n = 0; n < nfree; n++)
7396d216 1873 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (closure, n, SCM_BOOL_F);
510ca126 1874 LOCAL_SET (dst, closure);
7396d216 1875 NEXT (3);
510ca126
AW
1876 }
1877
7396d216 1878 /* free-ref dst:12 src:12 _:8 idx:24
510ca126 1879 *
7396d216 1880 * Load free variable IDX from the closure SRC into local slot DST.
510ca126 1881 */
af95414f 1882 VM_DEFINE_OP (44, free_ref, "free-ref", OP2 (U8_U12_U12, X8_U24) | OP_DST)
510ca126 1883 {
7396d216
AW
1884 scm_t_uint16 dst, src;
1885 scm_t_uint32 idx;
1886 SCM_UNPACK_RTL_12_12 (op, dst, src);
1887 SCM_UNPACK_RTL_24 (ip[1], idx);
1888 /* CHECK_FREE_VARIABLE (src); */
1889 LOCAL_SET (dst, SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (src), idx));
1890 NEXT (2);
1891 }
510ca126 1892
7396d216
AW
1893 /* free-set! dst:12 src:12 _8 idx:24
1894 *
1895 * Set free variable IDX from the closure DST to SRC.
1896 */
af95414f 1897 VM_DEFINE_OP (45, free_set, "free-set!", OP2 (U8_U12_U12, X8_U24))
7396d216
AW
1898 {
1899 scm_t_uint16 dst, src;
1900 scm_t_uint32 idx;
1901 SCM_UNPACK_RTL_12_12 (op, dst, src);
1902 SCM_UNPACK_RTL_24 (ip[1], idx);
1903 /* CHECK_FREE_VARIABLE (src); */
1904 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (LOCAL_REF (dst), idx, LOCAL_REF (src));
1905 NEXT (2);
510ca126
AW
1906 }
1907
1908
1909 \f
1910
1911 /*
1912 * Immediates and statically allocated non-immediates
1913 */
1914
1915 /* make-short-immediate dst:8 low-bits:16
1916 *
1917 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
1918 * 0.
1919 */
af95414f 1920 VM_DEFINE_OP (46, make_short_immediate, "make-short-immediate", OP1 (U8_U8_I16) | OP_DST)
510ca126
AW
1921 {
1922 scm_t_uint8 dst;
1923 scm_t_bits val;
1924
1925 SCM_UNPACK_RTL_8_16 (op, dst, val);
1926 LOCAL_SET (dst, SCM_PACK (val));
1927 NEXT (1);
1928 }
1929
1930 /* make-long-immediate dst:24 low-bits:32
1931 *
1932 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
1933 * 0.
1934 */
af95414f 1935 VM_DEFINE_OP (47, make_long_immediate, "make-long-immediate", OP2 (U8_U24, I32))
510ca126
AW
1936 {
1937 scm_t_uint8 dst;
1938 scm_t_bits val;
1939
1940 SCM_UNPACK_RTL_24 (op, dst);
1941 val = ip[1];
1942 LOCAL_SET (dst, SCM_PACK (val));
1943 NEXT (2);
1944 }
1945
1946 /* make-long-long-immediate dst:24 high-bits:32 low-bits:32
1947 *
1948 * Make an immediate with HIGH-BITS and LOW-BITS.
1949 */
af95414f 1950 VM_DEFINE_OP (48, make_long_long_immediate, "make-long-long-immediate", OP3 (U8_U24, A32, B32) | OP_DST)
510ca126
AW
1951 {
1952 scm_t_uint8 dst;
1953 scm_t_bits val;
1954
1955 SCM_UNPACK_RTL_24 (op, dst);
1956#if SIZEOF_SCM_T_BITS > 4
1957 val = ip[1];
1958 val <<= 32;
1959 val |= ip[2];
1960#else
1961 ASSERT (ip[1] == 0);
1962 val = ip[2];
1963#endif
1964 LOCAL_SET (dst, SCM_PACK (val));
1965 NEXT (3);
1966 }
1967
1968 /* make-non-immediate dst:24 offset:32
1969 *
1970 * Load a pointer to statically allocated memory into DST. The
1971 * object's memory is will be found OFFSET 32-bit words away from the
1972 * current instruction pointer. OFFSET is a signed value. The
1973 * intention here is that the compiler would produce an object file
1974 * containing the words of a non-immediate object, and this
1975 * instruction creates a pointer to that memory, effectively
1976 * resurrecting that object.
1977 *
1978 * Whether the object is mutable or immutable depends on where it was
1979 * allocated by the compiler, and loaded by the loader.
1980 */
af95414f 1981 VM_DEFINE_OP (49, make_non_immediate, "make-non-immediate", OP2 (U8_U24, N32) | OP_DST)
510ca126
AW
1982 {
1983 scm_t_uint32 dst;
1984 scm_t_int32 offset;
1985 scm_t_uint32* loc;
1986 scm_t_bits unpacked;
1987
1988 SCM_UNPACK_RTL_24 (op, dst);
1989 offset = ip[1];
1990 loc = ip + offset;
1991 unpacked = (scm_t_bits) loc;
1992
1993 VM_ASSERT (!(unpacked & 0x7), abort());
1994
1995 LOCAL_SET (dst, SCM_PACK (unpacked));
1996
1997 NEXT (2);
1998 }
1999
2000 /* static-ref dst:24 offset:32
2001 *
2002 * Load a SCM value into DST. The SCM value will be fetched from
2003 * memory, OFFSET 32-bit words away from the current instruction
2004 * pointer. OFFSET is a signed value.
2005 *
2006 * The intention is for this instruction to be used to load constants
2007 * that the compiler is unable to statically allocate, like symbols.
2008 * These values would be initialized when the object file loads.
2009 */
af95414f 2010 VM_DEFINE_OP (50, static_ref, "static-ref", OP2 (U8_U24, S32))
510ca126
AW
2011 {
2012 scm_t_uint32 dst;
2013 scm_t_int32 offset;
2014 scm_t_uint32* loc;
2015 scm_t_uintptr loc_bits;
2016
2017 SCM_UNPACK_RTL_24 (op, dst);
2018 offset = ip[1];
2019 loc = ip + offset;
2020 loc_bits = (scm_t_uintptr) loc;
2021 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2022
2023 LOCAL_SET (dst, *((SCM *) loc_bits));
2024
2025 NEXT (2);
2026 }
2027
2028 /* static-set! src:24 offset:32
2029 *
2030 * Store a SCM value into memory, OFFSET 32-bit words away from the
2031 * current instruction pointer. OFFSET is a signed value.
2032 */
af95414f 2033 VM_DEFINE_OP (51, static_set, "static-set!", OP2 (U8_U24, LO32))
510ca126
AW
2034 {
2035 scm_t_uint32 src;
2036 scm_t_int32 offset;
2037 scm_t_uint32* loc;
2038
2039 SCM_UNPACK_RTL_24 (op, src);
2040 offset = ip[1];
2041 loc = ip + offset;
2042 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2043
2044 *((SCM *) loc) = LOCAL_REF (src);
2045
2046 NEXT (2);
2047 }
2048
2049 /* link-procedure! src:24 offset:32
2050 *
2051 * Set the code pointer of the procedure in SRC to point OFFSET 32-bit
2052 * words away from the current instruction pointer. OFFSET is a
2053 * signed value.
2054 */
af95414f 2055 VM_DEFINE_OP (52, link_procedure, "link-procedure!", OP2 (U8_U24, L32))
510ca126
AW
2056 {
2057 scm_t_uint32 src;
2058 scm_t_int32 offset;
2059 scm_t_uint32* loc;
2060
2061 SCM_UNPACK_RTL_24 (op, src);
2062 offset = ip[1];
2063 loc = ip + offset;
2064
2065 SCM_SET_CELL_WORD_1 (LOCAL_REF (src), (scm_t_bits) loc);
2066
2067 NEXT (2);
2068 }
2069
2070 \f
2071
2072 /*
2073 * Mutable top-level bindings
2074 */
2075
2076 /* There are three slightly different ways to resolve toplevel
2077 variables.
2078
2079 1. A toplevel reference outside of a function. These need to be
2080 looked up when the expression is evaluated -- no later, and no
2081 before. They are looked up relative to the module that is
2082 current when the expression is evaluated. For example:
2083
2084 (if (foo) a b)
2085
2086 The "resolve" instruction resolves the variable (box), and then
2087 access is via box-ref or box-set!.
2088
2089 2. A toplevel reference inside a function. These are looked up
2090 relative to the module that was current when the function was
2091 defined. Unlike code at the toplevel, which is usually run only
2092 once, these bindings benefit from memoized lookup, in which the
2093 variable resulting from the lookup is cached in the function.
2094
2095 (lambda () (if (foo) a b))
2096
af95414f
AW
2097 The toplevel-box instruction is equivalent to "resolve", but
2098 caches the resulting variable in statically allocated memory.
510ca126
AW
2099
2100 3. A reference to an identifier with respect to a particular
2101 module. This can happen for primitive references, and
af95414f
AW
2102 references residualized by macro expansions. These can always
2103 be cached. Use module-box for these.
510ca126
AW
2104 */
2105
2106 /* current-module dst:24
2107 *
2108 * Store the current module in DST.
2109 */
af95414f 2110 VM_DEFINE_OP (53, current_module, "current-module", OP1 (U8_U24) | OP_DST)
510ca126
AW
2111 {
2112 scm_t_uint32 dst;
2113
2114 SCM_UNPACK_RTL_24 (op, dst);
2115
2116 SYNC_IP ();
2117 LOCAL_SET (dst, scm_current_module ());
2118
2119 NEXT (1);
2120 }
2121
af95414f 2122 /* resolve dst:24 bound?:1 _:7 sym:24
510ca126 2123 *
af95414f
AW
2124 * Resolve SYM in the current module, and place the resulting variable
2125 * in DST.
510ca126 2126 */
af95414f 2127 VM_DEFINE_OP (54, resolve, "resolve", OP2 (U8_U24, B1_X7_U24) | OP_DST)
510ca126 2128 {
af95414f
AW
2129 scm_t_uint32 dst;
2130 scm_t_uint32 sym;
2131 SCM var;
510ca126 2132
af95414f
AW
2133 SCM_UNPACK_RTL_24 (op, dst);
2134 SCM_UNPACK_RTL_24 (ip[1], sym);
510ca126
AW
2135
2136 SYNC_IP ();
af95414f
AW
2137 var = scm_lookup (LOCAL_REF (sym));
2138 if (ip[1] & 0x1)
2139 VM_ASSERT (VARIABLE_BOUNDP (var),
2140 vm_error_unbound (fp[-1], LOCAL_REF (sym)));
2141 LOCAL_SET (dst, var);
510ca126 2142
af95414f 2143 NEXT (2);
510ca126
AW
2144 }
2145
2146 /* define sym:12 val:12
2147 *
2148 * Look up a binding for SYM in the current module, creating it if
2149 * necessary. Set its value to VAL.
2150 */
af95414f 2151 VM_DEFINE_OP (55, define, "define", OP1 (U8_U12_U12))
510ca126
AW
2152 {
2153 scm_t_uint16 sym, val;
2154 SCM_UNPACK_RTL_12_12 (op, sym, val);
2155 SYNC_IP ();
2156 scm_define (LOCAL_REF (sym), LOCAL_REF (val));
2157 NEXT (1);
2158 }
2159
af95414f 2160 /* toplevel-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
510ca126
AW
2161 *
2162 * Load a SCM value. The SCM value will be fetched from memory,
2163 * VAR-OFFSET 32-bit words away from the current instruction pointer.
af95414f 2164 * VAR-OFFSET is a signed value. Up to here, toplevel-box is like
510ca126
AW
2165 * static-ref.
2166 *
af95414f
AW
2167 * Then, if the loaded value is a variable, it is placed in DST, and control
2168 * flow continues.
510ca126
AW
2169 *
2170 * Otherwise, we have to resolve the variable. In that case we load
2171 * the module from MOD-OFFSET, just as we loaded the variable.
2172 * Usually the module gets set when the closure is created. The name
2173 * is an offset to a symbol.
2174 *
af95414f
AW
2175 * We use the module and the symbol to resolve the variable, placing it in
2176 * DST, and caching the resolved variable so that we will hit the cache next
2177 * time.
510ca126 2178 */
af95414f 2179 VM_DEFINE_OP (56, toplevel_box, "toplevel-box", OP5 (U8_U24, S32, S32, N32, B1_X31) | OP_DST)
510ca126
AW
2180 {
2181 scm_t_uint32 dst;
2182 scm_t_int32 var_offset;
2183 scm_t_uint32* var_loc_u32;
2184 SCM *var_loc;
2185 SCM var;
2186
2187 SCM_UNPACK_RTL_24 (op, dst);
2188 var_offset = ip[1];
2189 var_loc_u32 = ip + var_offset;
2190 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2191 var_loc = (SCM *) var_loc_u32;
2192 var = *var_loc;
2193
2194 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2195 {
2196 SCM mod, sym;
2197 scm_t_int32 mod_offset = ip[2]; /* signed */
2198 scm_t_int32 sym_offset = ip[3]; /* signed */
2199 scm_t_uint32 *mod_loc = ip + mod_offset;
2200 scm_t_uint32 *sym_loc = ip + sym_offset;
2201
2202 SYNC_IP ();
2203
2204 VM_ASSERT (ALIGNED_P (mod_loc, SCM), abort());
2205 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2206
2207 mod = *((SCM *) mod_loc);
2208 sym = *((SCM *) sym_loc);
2209
2210 var = scm_module_lookup (mod, sym);
af95414f
AW
2211 if (ip[4] & 0x1)
2212 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
510ca126
AW
2213
2214 *var_loc = var;
2215 }
2216
af95414f
AW
2217 LOCAL_SET (dst, var);
2218 NEXT (5);
510ca126
AW
2219 }
2220
af95414f 2221 /* module-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
510ca126 2222 *
af95414f 2223 * Like toplevel-box, except MOD-OFFSET points at the name of a module
510ca126
AW
2224 * instead of the module itself.
2225 */
af95414f 2226 VM_DEFINE_OP (57, module_box, "module-box", OP5 (U8_U24, S32, N32, N32, B1_X31) | OP_DST)
510ca126
AW
2227 {
2228 scm_t_uint32 dst;
2229 scm_t_int32 var_offset;
2230 scm_t_uint32* var_loc_u32;
2231 SCM *var_loc;
2232 SCM var;
2233
2234 SCM_UNPACK_RTL_24 (op, dst);
2235 var_offset = ip[1];
2236 var_loc_u32 = ip + var_offset;
2237 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2238 var_loc = (SCM *) var_loc_u32;
2239 var = *var_loc;
2240
2241 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2242 {
2243 SCM modname, sym;
2244 scm_t_int32 modname_offset = ip[2]; /* signed */
2245 scm_t_int32 sym_offset = ip[3]; /* signed */
2246 scm_t_uint32 *modname_words = ip + modname_offset;
2247 scm_t_uint32 *sym_loc = ip + sym_offset;
2248
2249 SYNC_IP ();
2250
2251 VM_ASSERT (!(((scm_t_uintptr) modname_words) & 0x7), abort());
2252 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2253
2254 modname = SCM_PACK ((scm_t_bits) modname_words);
2255 sym = *((SCM *) sym_loc);
2256
2257 if (scm_is_true (SCM_CAR (modname)))
2258 var = scm_public_lookup (SCM_CDR (modname), sym);
2259 else
2260 var = scm_private_lookup (SCM_CDR (modname), sym);
2261
af95414f
AW
2262 if (ip[4] & 0x1)
2263 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
510ca126
AW
2264
2265 *var_loc = var;
2266 }
2267
af95414f
AW
2268 LOCAL_SET (dst, var);
2269 NEXT (5);
510ca126
AW
2270 }
2271
2272 \f
2273
2274 /*
2275 * The dynamic environment
2276 */
2277
8d59d55e 2278 /* prompt tag:24 escape-only?:1 _:7 proc-slot:24 _:8 handler-offset:24
510ca126
AW
2279 *
2280 * Push a new prompt on the dynamic stack, with a tag from TAG and a
2281 * handler at HANDLER-OFFSET words from the current IP. The handler
8d59d55e
AW
2282 * will expect a multiple-value return as if from a call with the
2283 * procedure at PROC-SLOT.
510ca126 2284 */
8d59d55e 2285 VM_DEFINE_OP (58, prompt, "prompt", OP3 (U8_U24, B1_X7_U24, X8_L24))
510ca126 2286 {
8d59d55e 2287 scm_t_uint32 tag, proc_slot;
510ca126
AW
2288 scm_t_int32 offset;
2289 scm_t_uint8 escape_only_p;
2290 scm_t_dynstack_prompt_flags flags;
2291
2292 SCM_UNPACK_RTL_24 (op, tag);
8d59d55e
AW
2293 escape_only_p = ip[1] & 0x1;
2294 SCM_UNPACK_RTL_24 (ip[1], proc_slot);
2295 offset = ip[2];
510ca126
AW
2296 offset >>= 8; /* Sign extension */
2297
2298 /* Push the prompt onto the dynamic stack. */
2299 flags = escape_only_p ? SCM_F_DYNSTACK_PROMPT_ESCAPE_ONLY : 0;
2300 scm_dynstack_push_prompt (&current_thread->dynstack, flags,
2301 LOCAL_REF (tag),
8d59d55e
AW
2302 fp,
2303 &LOCAL_REF (proc_slot),
2304 (scm_t_uint8 *)(ip + offset),
2305 &registers);
2306 NEXT (3);
510ca126 2307 }
510ca126
AW
2308
2309 /* wind winder:12 unwinder:12
2310 *
2311 * Push wind and unwind procedures onto the dynamic stack. Note that
2312 * neither are actually called; the compiler should emit calls to wind
2313 * and unwind for the normal dynamic-wind control flow. Also note that
2314 * the compiler should have inserted checks that they wind and unwind
2315 * procs are thunks, if it could not prove that to be the case.
2316 */
af95414f 2317 VM_DEFINE_OP (59, wind, "wind", OP1 (U8_U12_U12))
510ca126
AW
2318 {
2319 scm_t_uint16 winder, unwinder;
2320 SCM_UNPACK_RTL_12_12 (op, winder, unwinder);
2321 scm_dynstack_push_dynwind (&current_thread->dynstack,
2322 LOCAL_REF (winder), LOCAL_REF (unwinder));
2323 NEXT (1);
2324 }
2325
af95414f 2326 /* abort tag:24 _:8 proc:24
510ca126 2327 *
b2171312 2328 * Return a number of values to a prompt handler. The values are
af95414f 2329 * expected in a frame pushed on at PROC.
510ca126 2330 */
af95414f 2331 VM_DEFINE_OP (60, abort, "abort", OP2 (U8_U24, X8_U24))
510ca126
AW
2332#if 0
2333 {
b2171312
AW
2334 scm_t_uint32 tag, from, nvalues;
2335 SCM *base;
510ca126
AW
2336
2337 SCM_UNPACK_RTL_24 (op, tag);
b2171312
AW
2338 SCM_UNPACK_RTL_24 (ip[1], from);
2339 base = (fp - 1) + from + 3;
2340 nvalues = FRAME_LOCALS_COUNT () - from - 3;
510ca126
AW
2341
2342 SYNC_IP ();
b2171312 2343 vm_abort (vm, LOCAL_REF (tag), base, nvalues, &registers);
510ca126
AW
2344
2345 /* vm_abort should not return */
2346 abort ();
2347 }
2348#else
2349 abort();
2350#endif
2351
2352 /* unwind _:24
2353 *
2354 * A normal exit from the dynamic extent of an expression. Pop the top
2355 * entry off of the dynamic stack.
2356 */
af95414f 2357 VM_DEFINE_OP (61, unwind, "unwind", OP1 (U8_X24))
510ca126
AW
2358 {
2359 scm_dynstack_pop (&current_thread->dynstack);
2360 NEXT (1);
2361 }
2362
98eaef1b 2363 /* push-fluid fluid:12 value:12
510ca126
AW
2364 *
2365 * Dynamically bind N fluids to values. The fluids are expected to be
2366 * allocated in a continguous range on the stack, starting from
2367 * FLUID-BASE. The values do not have this restriction.
2368 */
af95414f 2369 VM_DEFINE_OP (62, push_fluid, "push-fluid", OP1 (U8_U12_U12))
510ca126 2370 {
98eaef1b 2371 scm_t_uint32 fluid, value;
510ca126 2372
98eaef1b 2373 SCM_UNPACK_RTL_12_12 (op, fluid, value);
510ca126 2374
98eaef1b
AW
2375 scm_dynstack_push_fluid (&current_thread->dynstack,
2376 fp[fluid], fp[value],
2377 current_thread->dynamic_state);
2378 NEXT (1);
510ca126 2379 }
510ca126 2380
98eaef1b 2381 /* pop-fluid _:24
510ca126
AW
2382 *
2383 * Leave the dynamic extent of a with-fluids expression, restoring the
2384 * fluids to their previous values.
2385 */
af95414f 2386 VM_DEFINE_OP (63, pop_fluid, "pop-fluid", OP1 (U8_X24))
510ca126
AW
2387 {
2388 /* This function must not allocate. */
98eaef1b
AW
2389 scm_dynstack_unwind_fluid (&current_thread->dynstack,
2390 current_thread->dynamic_state);
510ca126
AW
2391 NEXT (1);
2392 }
2393
2394 /* fluid-ref dst:12 src:12
2395 *
2396 * Reference the fluid in SRC, and place the value in DST.
2397 */
af95414f 2398 VM_DEFINE_OP (64, fluid_ref, "fluid-ref", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2399 {
2400 scm_t_uint16 dst, src;
2401 size_t num;
2402 SCM fluid, fluids;
2403
2404 SCM_UNPACK_RTL_12_12 (op, dst, src);
2405 fluid = LOCAL_REF (src);
2406 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2407 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2408 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2409 {
2410 /* Punt dynstate expansion and error handling to the C proc. */
2411 SYNC_IP ();
2412 LOCAL_SET (dst, scm_fluid_ref (fluid));
2413 }
2414 else
2415 {
2416 SCM val = SCM_SIMPLE_VECTOR_REF (fluids, num);
2417 if (scm_is_eq (val, SCM_UNDEFINED))
2418 val = SCM_I_FLUID_DEFAULT (fluid);
2419 VM_ASSERT (!scm_is_eq (val, SCM_UNDEFINED),
2420 vm_error_unbound_fluid (program, fluid));
2421 LOCAL_SET (dst, val);
2422 }
2423
2424 NEXT (1);
2425 }
2426
2427 /* fluid-set fluid:12 val:12
2428 *
2429 * Set the value of the fluid in DST to the value in SRC.
2430 */
af95414f 2431 VM_DEFINE_OP (65, fluid_set, "fluid-set", OP1 (U8_U12_U12))
510ca126
AW
2432 {
2433 scm_t_uint16 a, b;
2434 size_t num;
2435 SCM fluid, fluids;
2436
2437 SCM_UNPACK_RTL_12_12 (op, a, b);
2438 fluid = LOCAL_REF (a);
2439 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2440 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2441 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2442 {
2443 /* Punt dynstate expansion and error handling to the C proc. */
2444 SYNC_IP ();
2445 scm_fluid_set_x (fluid, LOCAL_REF (b));
2446 }
2447 else
2448 SCM_SIMPLE_VECTOR_SET (fluids, num, LOCAL_REF (b));
2449
2450 NEXT (1);
2451 }
2452
2453
2454 \f
2455
2456 /*
2457 * Strings, symbols, and keywords
2458 */
2459
2460 /* string-length dst:12 src:12
2461 *
2462 * Store the length of the string in SRC in DST.
2463 */
af95414f 2464 VM_DEFINE_OP (66, string_length, "string-length", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2465 {
2466 ARGS1 (str);
2467 if (SCM_LIKELY (scm_is_string (str)))
2468 RETURN (SCM_I_MAKINUM (scm_i_string_length (str)));
2469 else
2470 {
2471 SYNC_IP ();
2472 RETURN (scm_string_length (str));
2473 }
2474 }
2475
2476 /* string-ref dst:8 src:8 idx:8
2477 *
2478 * Fetch the character at position IDX in the string in SRC, and store
2479 * it in DST.
2480 */
af95414f 2481 VM_DEFINE_OP (67, string_ref, "string-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2482 {
2483 scm_t_signed_bits i = 0;
2484 ARGS2 (str, idx);
2485 if (SCM_LIKELY (scm_is_string (str)
2486 && SCM_I_INUMP (idx)
2487 && ((i = SCM_I_INUM (idx)) >= 0)
2488 && i < scm_i_string_length (str)))
2489 RETURN (SCM_MAKE_CHAR (scm_i_string_ref (str, i)));
2490 else
2491 {
2492 SYNC_IP ();
2493 RETURN (scm_string_ref (str, idx));
2494 }
2495 }
2496
2497 /* No string-set! instruction, as there is no good fast path there. */
2498
2499 /* string-to-number dst:12 src:12
2500 *
2501 * Parse a string in SRC to a number, and store in DST.
2502 */
af95414f 2503 VM_DEFINE_OP (68, string_to_number, "string->number", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2504 {
2505 scm_t_uint16 dst, src;
2506
2507 SCM_UNPACK_RTL_12_12 (op, dst, src);
2508 SYNC_IP ();
2509 LOCAL_SET (dst,
2510 scm_string_to_number (LOCAL_REF (src),
2511 SCM_UNDEFINED /* radix = 10 */));
2512 NEXT (1);
2513 }
2514
2515 /* string-to-symbol dst:12 src:12
2516 *
2517 * Parse a string in SRC to a symbol, and store in DST.
2518 */
af95414f 2519 VM_DEFINE_OP (69, string_to_symbol, "string->symbol", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2520 {
2521 scm_t_uint16 dst, src;
2522
2523 SCM_UNPACK_RTL_12_12 (op, dst, src);
2524 SYNC_IP ();
2525 LOCAL_SET (dst, scm_string_to_symbol (LOCAL_REF (src)));
2526 NEXT (1);
2527 }
2528
2529 /* symbol->keyword dst:12 src:12
2530 *
2531 * Make a keyword from the symbol in SRC, and store it in DST.
2532 */
af95414f 2533 VM_DEFINE_OP (70, symbol_to_keyword, "symbol->keyword", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2534 {
2535 scm_t_uint16 dst, src;
2536 SCM_UNPACK_RTL_12_12 (op, dst, src);
2537 SYNC_IP ();
2538 LOCAL_SET (dst, scm_symbol_to_keyword (LOCAL_REF (src)));
2539 NEXT (1);
2540 }
2541
2542 \f
2543
2544 /*
2545 * Pairs
2546 */
2547
2548 /* cons dst:8 car:8 cdr:8
2549 *
2550 * Cons CAR and CDR, and store the result in DST.
2551 */
af95414f 2552 VM_DEFINE_OP (71, cons, "cons", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2553 {
2554 ARGS2 (x, y);
2555 RETURN (scm_cons (x, y));
2556 }
2557
2558 /* car dst:12 src:12
2559 *
2560 * Place the car of SRC in DST.
2561 */
af95414f 2562 VM_DEFINE_OP (72, car, "car", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2563 {
2564 ARGS1 (x);
2565 VM_VALIDATE_PAIR (x, "car");
2566 RETURN (SCM_CAR (x));
2567 }
2568
2569 /* cdr dst:12 src:12
2570 *
2571 * Place the cdr of SRC in DST.
2572 */
af95414f 2573 VM_DEFINE_OP (73, cdr, "cdr", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2574 {
2575 ARGS1 (x);
2576 VM_VALIDATE_PAIR (x, "cdr");
2577 RETURN (SCM_CDR (x));
2578 }
2579
2580 /* set-car! pair:12 car:12
2581 *
2582 * Set the car of DST to SRC.
2583 */
af95414f 2584 VM_DEFINE_OP (74, set_car, "set-car!", OP1 (U8_U12_U12))
510ca126
AW
2585 {
2586 scm_t_uint16 a, b;
2587 SCM x, y;
2588 SCM_UNPACK_RTL_12_12 (op, a, b);
2589 x = LOCAL_REF (a);
2590 y = LOCAL_REF (b);
2591 VM_VALIDATE_PAIR (x, "set-car!");
2592 SCM_SETCAR (x, y);
2593 NEXT (1);
2594 }
2595
2596 /* set-cdr! pair:12 cdr:12
2597 *
2598 * Set the cdr of DST to SRC.
2599 */
af95414f 2600 VM_DEFINE_OP (75, set_cdr, "set-cdr!", OP1 (U8_U12_U12))
510ca126
AW
2601 {
2602 scm_t_uint16 a, b;
2603 SCM x, y;
2604 SCM_UNPACK_RTL_12_12 (op, a, b);
2605 x = LOCAL_REF (a);
2606 y = LOCAL_REF (b);
2607 VM_VALIDATE_PAIR (x, "set-car!");
2608 SCM_SETCDR (x, y);
2609 NEXT (1);
2610 }
2611
2612
2613 \f
2614
2615 /*
2616 * Numeric operations
2617 */
2618
2619 /* add dst:8 a:8 b:8
2620 *
2621 * Add A to B, and place the result in DST.
2622 */
af95414f 2623 VM_DEFINE_OP (76, add, "add", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2624 {
2625 BINARY_INTEGER_OP (+, scm_sum);
2626 }
2627
2628 /* add1 dst:12 src:12
2629 *
2630 * Add 1 to the value in SRC, and place the result in DST.
2631 */
af95414f 2632 VM_DEFINE_OP (77, add1, "add1", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2633 {
2634 ARGS1 (x);
2635
d2295ba5
MW
2636 /* Check for overflow. We must avoid overflow in the signed
2637 addition below, even if X is not an inum. */
2638 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) <= INUM_MAX - INUM_STEP))
510ca126
AW
2639 {
2640 SCM result;
2641
d2295ba5
MW
2642 /* Add 1 to the integer without untagging. */
2643 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) + INUM_STEP);
510ca126
AW
2644
2645 if (SCM_LIKELY (SCM_I_INUMP (result)))
2646 RETURN (result);
2647 }
2648
2649 SYNC_IP ();
2650 RETURN (scm_sum (x, SCM_I_MAKINUM (1)));
2651 }
2652
2653 /* sub dst:8 a:8 b:8
2654 *
2655 * Subtract B from A, and place the result in DST.
2656 */
af95414f 2657 VM_DEFINE_OP (78, sub, "sub", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2658 {
2659 BINARY_INTEGER_OP (-, scm_difference);
2660 }
2661
2662 /* sub1 dst:12 src:12
2663 *
2664 * Subtract 1 from SRC, and place the result in DST.
2665 */
af95414f 2666 VM_DEFINE_OP (79, sub1, "sub1", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2667 {
2668 ARGS1 (x);
2669
d2295ba5
MW
2670 /* Check for overflow. We must avoid overflow in the signed
2671 subtraction below, even if X is not an inum. */
2672 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) >= INUM_MIN + INUM_STEP))
510ca126
AW
2673 {
2674 SCM result;
2675
d2295ba5
MW
2676 /* Substract 1 from the integer without untagging. */
2677 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) - INUM_STEP);
510ca126
AW
2678
2679 if (SCM_LIKELY (SCM_I_INUMP (result)))
2680 RETURN (result);
2681 }
2682
2683 SYNC_IP ();
2684 RETURN (scm_difference (x, SCM_I_MAKINUM (1)));
2685 }
2686
2687 /* mul dst:8 a:8 b:8
2688 *
2689 * Multiply A and B, and place the result in DST.
2690 */
af95414f 2691 VM_DEFINE_OP (80, mul, "mul", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2692 {
2693 ARGS2 (x, y);
2694 SYNC_IP ();
2695 RETURN (scm_product (x, y));
2696 }
2697
2698 /* div dst:8 a:8 b:8
2699 *
2700 * Divide A by B, and place the result in DST.
2701 */
af95414f 2702 VM_DEFINE_OP (81, div, "div", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2703 {
2704 ARGS2 (x, y);
2705 SYNC_IP ();
2706 RETURN (scm_divide (x, y));
2707 }
2708
2709 /* quo dst:8 a:8 b:8
2710 *
2711 * Divide A by B, and place the quotient in DST.
2712 */
af95414f 2713 VM_DEFINE_OP (82, quo, "quo", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2714 {
2715 ARGS2 (x, y);
2716 SYNC_IP ();
2717 RETURN (scm_quotient (x, y));
2718 }
2719
2720 /* rem dst:8 a:8 b:8
2721 *
2722 * Divide A by B, and place the remainder in DST.
2723 */
af95414f 2724 VM_DEFINE_OP (83, rem, "rem", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2725 {
2726 ARGS2 (x, y);
2727 SYNC_IP ();
2728 RETURN (scm_remainder (x, y));
2729 }
2730
2731 /* mod dst:8 a:8 b:8
2732 *
2733 * Place the modulo of A by B in DST.
2734 */
af95414f 2735 VM_DEFINE_OP (84, mod, "mod", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2736 {
2737 ARGS2 (x, y);
2738 SYNC_IP ();
2739 RETURN (scm_modulo (x, y));
2740 }
2741
2742 /* ash dst:8 a:8 b:8
2743 *
2744 * Shift A arithmetically by B bits, and place the result in DST.
2745 */
af95414f 2746 VM_DEFINE_OP (85, ash, "ash", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2747 {
2748 ARGS2 (x, y);
2749 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2750 {
2751 if (SCM_I_INUM (y) < 0)
2752 /* Right shift, will be a fixnum. */
0bd65965
MW
2753 RETURN (SCM_I_MAKINUM
2754 (SCM_SRS (SCM_I_INUM (x),
2755 (-SCM_I_INUM (y) <= SCM_I_FIXNUM_BIT-1)
2756 ? -SCM_I_INUM (y) : SCM_I_FIXNUM_BIT-1)));
510ca126
AW
2757 else
2758 /* Left shift. See comments in scm_ash. */
2759 {
2760 scm_t_signed_bits nn, bits_to_shift;
2761
2762 nn = SCM_I_INUM (x);
2763 bits_to_shift = SCM_I_INUM (y);
2764
2765 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
2766 && ((scm_t_bits)
2767 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
2768 <= 1))
2769 RETURN (SCM_I_MAKINUM (nn << bits_to_shift));
2770 /* fall through */
2771 }
2772 /* fall through */
2773 }
2774 SYNC_IP ();
2775 RETURN (scm_ash (x, y));
2776 }
2777
2778 /* logand dst:8 a:8 b:8
2779 *
2780 * Place the bitwise AND of A and B into DST.
2781 */
af95414f 2782 VM_DEFINE_OP (86, logand, "logand", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2783 {
2784 ARGS2 (x, y);
2785 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
e7f64971
MW
2786 /* Compute bitwise AND without untagging */
2787 RETURN (SCM_PACK (SCM_UNPACK (x) & SCM_UNPACK (y)));
510ca126
AW
2788 SYNC_IP ();
2789 RETURN (scm_logand (x, y));
2790 }
2791
2792 /* logior dst:8 a:8 b:8
2793 *
2794 * Place the bitwise inclusive OR of A with B in DST.
2795 */
af95414f 2796 VM_DEFINE_OP (87, logior, "logior", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2797 {
2798 ARGS2 (x, y);
2799 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
e7f64971
MW
2800 /* Compute bitwise OR without untagging */
2801 RETURN (SCM_PACK (SCM_UNPACK (x) | SCM_UNPACK (y)));
510ca126
AW
2802 SYNC_IP ();
2803 RETURN (scm_logior (x, y));
2804 }
2805
2806 /* logxor dst:8 a:8 b:8
2807 *
2808 * Place the bitwise exclusive OR of A with B in DST.
2809 */
af95414f 2810 VM_DEFINE_OP (88, logxor, "logxor", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2811 {
2812 ARGS2 (x, y);
2813 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2814 RETURN (SCM_I_MAKINUM (SCM_I_INUM (x) ^ SCM_I_INUM (y)));
2815 SYNC_IP ();
2816 RETURN (scm_logxor (x, y));
2817 }
2818
2819 /* vector-length dst:12 src:12
2820 *
2821 * Store the length of the vector in SRC in DST.
2822 */
af95414f 2823 VM_DEFINE_OP (89, vector_length, "vector-length", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2824 {
2825 ARGS1 (vect);
2826 if (SCM_LIKELY (SCM_I_IS_VECTOR (vect)))
2827 RETURN (SCM_I_MAKINUM (SCM_I_VECTOR_LENGTH (vect)));
2828 else
2829 {
2830 SYNC_IP ();
2831 RETURN (scm_vector_length (vect));
2832 }
2833 }
2834
2835 /* vector-ref dst:8 src:8 idx:8
2836 *
2837 * Fetch the item at position IDX in the vector in SRC, and store it
2838 * in DST.
2839 */
af95414f 2840 VM_DEFINE_OP (90, vector_ref, "vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2841 {
2842 scm_t_signed_bits i = 0;
2843 ARGS2 (vect, idx);
2844 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2845 && SCM_I_INUMP (idx)
2846 && ((i = SCM_I_INUM (idx)) >= 0)
2847 && i < SCM_I_VECTOR_LENGTH (vect)))
2848 RETURN (SCM_I_VECTOR_ELTS (vect)[i]);
2849 else
2850 {
2851 SYNC_IP ();
2852 RETURN (scm_vector_ref (vect, idx));
2853 }
2854 }
2855
2856 /* constant-vector-ref dst:8 src:8 idx:8
2857 *
2858 * Fill DST with the item IDX elements into the vector at SRC. Useful
2859 * for building data types using vectors.
2860 */
af95414f 2861 VM_DEFINE_OP (91, constant_vector_ref, "constant-vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2862 {
2863 scm_t_uint8 dst, src, idx;
2864 SCM v;
2865
2866 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
2867 v = LOCAL_REF (src);
2868 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (v)
2869 && idx < SCM_I_VECTOR_LENGTH (v)))
2870 LOCAL_SET (dst, SCM_I_VECTOR_ELTS (LOCAL_REF (src))[idx]);
2871 else
2872 LOCAL_SET (dst, scm_c_vector_ref (v, idx));
2873 NEXT (1);
2874 }
2875
2876 /* vector-set! dst:8 idx:8 src:8
2877 *
2878 * Store SRC into the vector DST at index IDX.
2879 */
af95414f 2880 VM_DEFINE_OP (92, vector_set, "vector-set", OP1 (U8_U8_U8_U8))
510ca126
AW
2881 {
2882 scm_t_uint8 dst, idx_var, src;
2883 SCM vect, idx, val;
2884 scm_t_signed_bits i = 0;
2885
2886 SCM_UNPACK_RTL_8_8_8 (op, dst, idx_var, src);
2887 vect = LOCAL_REF (dst);
2888 idx = LOCAL_REF (idx_var);
2889 val = LOCAL_REF (src);
2890
2891 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2892 && SCM_I_INUMP (idx)
2893 && ((i = SCM_I_INUM (idx)) >= 0)
2894 && i < SCM_I_VECTOR_LENGTH (vect)))
2895 SCM_I_VECTOR_WELTS (vect)[i] = val;
2896 else
2897 {
2898 SYNC_IP ();
2899 scm_vector_set_x (vect, idx, val);
2900 }
2901 NEXT (1);
2902 }
2903
2904
2905 \f
2906
2907 /*
2908 * Structs and GOOPS
2909 */
2910
2911 /* struct-vtable dst:12 src:12
2912 *
2913 * Store the vtable of SRC into DST.
2914 */
af95414f 2915 VM_DEFINE_OP (93, struct_vtable, "struct-vtable", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2916 {
2917 ARGS1 (obj);
2918 VM_VALIDATE_STRUCT (obj, "struct_vtable");
2919 RETURN (SCM_STRUCT_VTABLE (obj));
2920 }
2921
14d10292 2922 /* allocate-struct dst:8 vtable:8 nfields:8
510ca126 2923 *
14d10292
AW
2924 * Allocate a new struct with VTABLE, and place it in DST. The struct
2925 * will be constructed with space for NFIELDS fields, which should
2926 * correspond to the field count of the VTABLE.
510ca126 2927 */
af95414f 2928 VM_DEFINE_OP (94, allocate_struct, "allocate-struct", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126 2929 {
14d10292
AW
2930 scm_t_uint8 dst, vtable, nfields;
2931 SCM ret;
510ca126 2932
14d10292 2933 SCM_UNPACK_RTL_8_8_8 (op, dst, vtable, nfields);
510ca126
AW
2934
2935 SYNC_IP ();
14d10292 2936 ret = scm_allocate_struct (LOCAL_REF (vtable), SCM_I_MAKINUM (nfields));
510ca126 2937 LOCAL_SET (dst, ret);
14d10292
AW
2938
2939 NEXT (1);
510ca126 2940 }
510ca126
AW
2941
2942 /* struct-ref dst:8 src:8 idx:8
2943 *
2944 * Fetch the item at slot IDX in the struct in SRC, and store it
2945 * in DST.
2946 */
af95414f 2947 VM_DEFINE_OP (95, struct_ref, "struct-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2948 {
2949 ARGS2 (obj, pos);
2950
2951 if (SCM_LIKELY (SCM_STRUCTP (obj)
2952 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
2953 SCM_VTABLE_FLAG_SIMPLE)
2954 && SCM_I_INUMP (pos)))
2955 {
2956 SCM vtable;
2957 scm_t_bits index, len;
2958
2959 /* True, an inum is a signed value, but cast to unsigned it will
2960 certainly be more than the length, so we will fall through if
2961 index is negative. */
2962 index = SCM_I_INUM (pos);
2963 vtable = SCM_STRUCT_VTABLE (obj);
2964 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
2965
2966 if (SCM_LIKELY (index < len))
2967 {
2968 scm_t_bits *data = SCM_STRUCT_DATA (obj);
2969 RETURN (SCM_PACK (data[index]));
2970 }
2971 }
2972
2973 SYNC_IP ();
2974 RETURN (scm_struct_ref (obj, pos));
2975 }
2976
2977 /* struct-set! dst:8 idx:8 src:8
2978 *
2979 * Store SRC into the struct DST at slot IDX.
2980 */
af95414f 2981 VM_DEFINE_OP (96, struct_set, "struct-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
2982 {
2983 scm_t_uint8 dst, idx, src;
2984 SCM obj, pos, val;
2985
2986 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
2987 obj = LOCAL_REF (dst);
2988 pos = LOCAL_REF (idx);
2989 val = LOCAL_REF (src);
2990
2991 if (SCM_LIKELY (SCM_STRUCTP (obj)
2992 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
2993 SCM_VTABLE_FLAG_SIMPLE)
2994 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
2995 SCM_VTABLE_FLAG_SIMPLE_RW)
2996 && SCM_I_INUMP (pos)))
2997 {
2998 SCM vtable;
2999 scm_t_bits index, len;
3000
3001 /* See above regarding index being >= 0. */
3002 index = SCM_I_INUM (pos);
3003 vtable = SCM_STRUCT_VTABLE (obj);
3004 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
3005 if (SCM_LIKELY (index < len))
3006 {
3007 scm_t_bits *data = SCM_STRUCT_DATA (obj);
3008 data[index] = SCM_UNPACK (val);
3009 NEXT (1);
3010 }
3011 }
3012
3013 SYNC_IP ();
3014 scm_struct_set_x (obj, pos, val);
3015 NEXT (1);
3016 }
3017
3018 /* class-of dst:12 type:12
3019 *
3020 * Store the vtable of SRC into DST.
3021 */
af95414f 3022 VM_DEFINE_OP (97, class_of, "class-of", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
3023 {
3024 ARGS1 (obj);
3025 if (SCM_INSTANCEP (obj))
3026 RETURN (SCM_CLASS_OF (obj));
3027 SYNC_IP ();
3028 RETURN (scm_class_of (obj));
3029 }
3030
3031 /* slot-ref dst:8 src:8 idx:8
3032 *
3033 * Fetch the item at slot IDX in the struct in SRC, and store it in
3034 * DST. Unlike struct-ref, IDX is an 8-bit immediate value, not an
3035 * index into the stack.
3036 */
af95414f 3037 VM_DEFINE_OP (98, slot_ref, "slot-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3038 {
3039 scm_t_uint8 dst, src, idx;
3040 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
3041 LOCAL_SET (dst,
3042 SCM_PACK (SCM_STRUCT_DATA (LOCAL_REF (src))[idx]));
3043 NEXT (1);
3044 }
3045
3046 /* slot-set! dst:8 idx:8 src:8
3047 *
3048 * Store SRC into slot IDX of the struct in DST. Unlike struct-set!,
3049 * IDX is an 8-bit immediate value, not an index into the stack.
3050 */
af95414f 3051 VM_DEFINE_OP (99, slot_set, "slot-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3052 {
3053 scm_t_uint8 dst, idx, src;
3054 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
3055 SCM_STRUCT_DATA (LOCAL_REF (dst))[idx] = SCM_UNPACK (LOCAL_REF (src));
3056 NEXT (1);
3057 }
3058
3059
3060 \f
3061
3062 /*
3063 * Arrays, packed uniform arrays, and bytevectors.
3064 */
3065
3066 /* load-typed-array dst:8 type:8 shape:8 offset:32 len:32
3067 *
3068 * Load the contiguous typed array located at OFFSET 32-bit words away
3069 * from the instruction pointer, and store into DST. LEN is a byte
3070 * length. OFFSET is signed.
3071 */
af95414f 3072 VM_DEFINE_OP (100, load_typed_array, "load-typed-array", OP3 (U8_U8_U8_U8, N32, U32) | OP_DST)
510ca126
AW
3073 {
3074 scm_t_uint8 dst, type, shape;
3075 scm_t_int32 offset;
3076 scm_t_uint32 len;
3077
3078 SCM_UNPACK_RTL_8_8_8 (op, dst, type, shape);
3079 offset = ip[1];
3080 len = ip[2];
3081 SYNC_IP ();
3082 LOCAL_SET (dst, scm_from_contiguous_typed_array (LOCAL_REF (type),
3083 LOCAL_REF (shape),
3084 ip + offset, len));
3085 NEXT (3);
3086 }
3087
3088 /* make-array dst:12 type:12 _:8 fill:12 bounds:12
3089 *
3090 * Make a new array with TYPE, FILL, and BOUNDS, storing it in DST.
3091 */
af95414f 3092 VM_DEFINE_OP (101, make_array, "make-array", OP2 (U8_U12_U12, X8_U12_U12) | OP_DST)
510ca126
AW
3093 {
3094 scm_t_uint16 dst, type, fill, bounds;
3095 SCM_UNPACK_RTL_12_12 (op, dst, type);
3096 SCM_UNPACK_RTL_12_12 (ip[1], fill, bounds);
3097 SYNC_IP ();
3098 LOCAL_SET (dst, scm_make_typed_array (LOCAL_REF (type), LOCAL_REF (fill),
3099 LOCAL_REF (bounds)));
3100 NEXT (2);
3101 }
3102
3103 /* bv-u8-ref dst:8 src:8 idx:8
3104 * bv-s8-ref dst:8 src:8 idx:8
3105 * bv-u16-ref dst:8 src:8 idx:8
3106 * bv-s16-ref dst:8 src:8 idx:8
3107 * bv-u32-ref dst:8 src:8 idx:8
3108 * bv-s32-ref dst:8 src:8 idx:8
3109 * bv-u64-ref dst:8 src:8 idx:8
3110 * bv-s64-ref dst:8 src:8 idx:8
3111 * bv-f32-ref dst:8 src:8 idx:8
3112 * bv-f64-ref dst:8 src:8 idx:8
3113 *
3114 * Fetch the item at byte offset IDX in the bytevector SRC, and store
3115 * it in DST. All accesses use native endianness.
3116 */
3117#define BV_FIXABLE_INT_REF(stem, fn_stem, type, size) \
3118 do { \
3119 scm_t_signed_bits i; \
3120 const scm_t_ ## type *int_ptr; \
3121 ARGS2 (bv, idx); \
3122 \
3123 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3124 i = SCM_I_INUM (idx); \
3125 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3126 \
3127 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3128 && (i >= 0) \
3129 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3130 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3131 RETURN (SCM_I_MAKINUM (*int_ptr)); \
3132 else \
3133 { \
3134 SYNC_IP (); \
3135 RETURN (scm_bytevector_ ## fn_stem ## _ref (bv, idx)); \
3136 } \
3137 } while (0)
3138
3139#define BV_INT_REF(stem, type, size) \
3140 do { \
3141 scm_t_signed_bits i; \
3142 const scm_t_ ## type *int_ptr; \
3143 ARGS2 (bv, idx); \
3144 \
3145 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3146 i = SCM_I_INUM (idx); \
3147 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3148 \
3149 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3150 && (i >= 0) \
3151 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3152 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3153 { \
3154 scm_t_ ## type x = *int_ptr; \
3155 if (SCM_FIXABLE (x)) \
3156 RETURN (SCM_I_MAKINUM (x)); \
3157 else \
3158 { \
3159 SYNC_IP (); \
3160 RETURN (scm_from_ ## type (x)); \
3161 } \
3162 } \
3163 else \
3164 { \
3165 SYNC_IP (); \
3166 RETURN (scm_bytevector_ ## stem ## _native_ref (bv, idx)); \
3167 } \
3168 } while (0)
3169
3170#define BV_FLOAT_REF(stem, fn_stem, type, size) \
3171 do { \
3172 scm_t_signed_bits i; \
3173 const type *float_ptr; \
3174 ARGS2 (bv, idx); \
3175 \
3176 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3177 i = SCM_I_INUM (idx); \
3178 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3179 \
3180 SYNC_IP (); \
3181 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3182 && (i >= 0) \
3183 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3184 && (ALIGNED_P (float_ptr, type)))) \
3185 RETURN (scm_from_double (*float_ptr)); \
3186 else \
3187 RETURN (scm_bytevector_ ## fn_stem ## _native_ref (bv, idx)); \
3188 } while (0)
3189
af95414f 3190 VM_DEFINE_OP (102, bv_u8_ref, "bv-u8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3191 BV_FIXABLE_INT_REF (u8, u8, uint8, 1);
3192
af95414f 3193 VM_DEFINE_OP (103, bv_s8_ref, "bv-s8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3194 BV_FIXABLE_INT_REF (s8, s8, int8, 1);
3195
af95414f 3196 VM_DEFINE_OP (104, bv_u16_ref, "bv-u16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3197 BV_FIXABLE_INT_REF (u16, u16_native, uint16, 2);
3198
af95414f 3199 VM_DEFINE_OP (105, bv_s16_ref, "bv-s16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3200 BV_FIXABLE_INT_REF (s16, s16_native, int16, 2);
3201
af95414f 3202 VM_DEFINE_OP (106, bv_u32_ref, "bv-u32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3203#if SIZEOF_VOID_P > 4
3204 BV_FIXABLE_INT_REF (u32, u32_native, uint32, 4);
3205#else
3206 BV_INT_REF (u32, uint32, 4);
3207#endif
3208
af95414f 3209 VM_DEFINE_OP (107, bv_s32_ref, "bv-s32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3210#if SIZEOF_VOID_P > 4
3211 BV_FIXABLE_INT_REF (s32, s32_native, int32, 4);
3212#else
3213 BV_INT_REF (s32, int32, 4);
3214#endif
3215
af95414f 3216 VM_DEFINE_OP (108, bv_u64_ref, "bv-u64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3217 BV_INT_REF (u64, uint64, 8);
3218
af95414f 3219 VM_DEFINE_OP (109, bv_s64_ref, "bv-s64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3220 BV_INT_REF (s64, int64, 8);
3221
af95414f 3222 VM_DEFINE_OP (110, bv_f32_ref, "bv-f32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3223 BV_FLOAT_REF (f32, ieee_single, float, 4);
3224
af95414f 3225 VM_DEFINE_OP (111, bv_f64_ref, "bv-f64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3226 BV_FLOAT_REF (f64, ieee_double, double, 8);
3227
3228 /* bv-u8-set! dst:8 idx:8 src:8
3229 * bv-s8-set! dst:8 idx:8 src:8
3230 * bv-u16-set! dst:8 idx:8 src:8
3231 * bv-s16-set! dst:8 idx:8 src:8
3232 * bv-u32-set! dst:8 idx:8 src:8
3233 * bv-s32-set! dst:8 idx:8 src:8
3234 * bv-u64-set! dst:8 idx:8 src:8
3235 * bv-s64-set! dst:8 idx:8 src:8
3236 * bv-f32-set! dst:8 idx:8 src:8
3237 * bv-f64-set! dst:8 idx:8 src:8
3238 *
3239 * Store SRC into the bytevector DST at byte offset IDX. Multibyte
3240 * values are written using native endianness.
3241 */
3242#define BV_FIXABLE_INT_SET(stem, fn_stem, type, min, max, size) \
3243 do { \
3244 scm_t_uint8 dst, idx, src; \
3245 scm_t_signed_bits i, j = 0; \
3246 SCM bv, scm_idx, val; \
3247 scm_t_ ## type *int_ptr; \
3248 \
3249 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3250 bv = LOCAL_REF (dst); \
3251 scm_idx = LOCAL_REF (idx); \
3252 val = LOCAL_REF (src); \
3253 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3254 i = SCM_I_INUM (scm_idx); \
3255 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3256 \
3257 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3258 && (i >= 0) \
3259 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3260 && (ALIGNED_P (int_ptr, scm_t_ ## type)) \
3261 && (SCM_I_INUMP (val)) \
3262 && ((j = SCM_I_INUM (val)) >= min) \
3263 && (j <= max))) \
3264 *int_ptr = (scm_t_ ## type) j; \
3265 else \
3266 { \
3267 SYNC_IP (); \
3268 scm_bytevector_ ## fn_stem ## _set_x (bv, scm_idx, val); \
3269 } \
3270 NEXT (1); \
3271 } while (0)
3272
3273#define BV_INT_SET(stem, type, size) \
3274 do { \
3275 scm_t_uint8 dst, idx, src; \
3276 scm_t_signed_bits i; \
3277 SCM bv, scm_idx, val; \
3278 scm_t_ ## type *int_ptr; \
3279 \
3280 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3281 bv = LOCAL_REF (dst); \
3282 scm_idx = LOCAL_REF (idx); \
3283 val = LOCAL_REF (src); \
3284 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3285 i = SCM_I_INUM (scm_idx); \
3286 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3287 \
3288 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3289 && (i >= 0) \
3290 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3291 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3292 *int_ptr = scm_to_ ## type (val); \
3293 else \
3294 { \
3295 SYNC_IP (); \
3296 scm_bytevector_ ## stem ## _native_set_x (bv, scm_idx, val); \
3297 } \
3298 NEXT (1); \
3299 } while (0)
3300
3301#define BV_FLOAT_SET(stem, fn_stem, type, size) \
3302 do { \
3303 scm_t_uint8 dst, idx, src; \
3304 scm_t_signed_bits i; \
3305 SCM bv, scm_idx, val; \
3306 type *float_ptr; \
3307 \
3308 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3309 bv = LOCAL_REF (dst); \
3310 scm_idx = LOCAL_REF (idx); \
3311 val = LOCAL_REF (src); \
3312 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3313 i = SCM_I_INUM (scm_idx); \
3314 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3315 \
3316 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3317 && (i >= 0) \
3318 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3319 && (ALIGNED_P (float_ptr, type)))) \
3320 *float_ptr = scm_to_double (val); \
3321 else \
3322 { \
3323 SYNC_IP (); \
3324 scm_bytevector_ ## fn_stem ## _native_set_x (bv, scm_idx, val); \
3325 } \
3326 NEXT (1); \
3327 } while (0)
3328
af95414f 3329 VM_DEFINE_OP (112, bv_u8_set, "bv-u8-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3330 BV_FIXABLE_INT_SET (u8, u8, uint8, 0, SCM_T_UINT8_MAX, 1);
3331
af95414f 3332 VM_DEFINE_OP (113, bv_s8_set, "bv-s8-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3333 BV_FIXABLE_INT_SET (s8, s8, int8, SCM_T_INT8_MIN, SCM_T_INT8_MAX, 1);
3334
af95414f 3335 VM_DEFINE_OP (114, bv_u16_set, "bv-u16-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3336 BV_FIXABLE_INT_SET (u16, u16_native, uint16, 0, SCM_T_UINT16_MAX, 2);
3337
af95414f 3338 VM_DEFINE_OP (115, bv_s16_set, "bv-s16-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3339 BV_FIXABLE_INT_SET (s16, s16_native, int16, SCM_T_INT16_MIN, SCM_T_INT16_MAX, 2);
3340
af95414f 3341 VM_DEFINE_OP (116, bv_u32_set, "bv-u32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3342#if SIZEOF_VOID_P > 4
3343 BV_FIXABLE_INT_SET (u32, u32_native, uint32, 0, SCM_T_UINT32_MAX, 4);
3344#else
3345 BV_INT_SET (u32, uint32, 4);
3346#endif
3347
af95414f 3348 VM_DEFINE_OP (117, bv_s32_set, "bv-s32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3349#if SIZEOF_VOID_P > 4
3350 BV_FIXABLE_INT_SET (s32, s32_native, int32, SCM_T_INT32_MIN, SCM_T_INT32_MAX, 4);
3351#else
3352 BV_INT_SET (s32, int32, 4);
3353#endif
3354
af95414f 3355 VM_DEFINE_OP (118, bv_u64_set, "bv-u64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3356 BV_INT_SET (u64, uint64, 8);
3357
af95414f 3358 VM_DEFINE_OP (119, bv_s64_set, "bv-s64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3359 BV_INT_SET (s64, int64, 8);
3360
af95414f 3361 VM_DEFINE_OP (120, bv_f32_set, "bv-f32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3362 BV_FLOAT_SET (f32, ieee_single, float, 4);
3363
af95414f 3364 VM_DEFINE_OP (121, bv_f64_set, "bv-f64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3365 BV_FLOAT_SET (f64, ieee_double, double, 8);
3366
3367 END_DISPATCH_SWITCH;
3368
3369 vm_error_bad_instruction:
3370 vm_error_bad_instruction (op);
3371
3372 abort (); /* never reached */
3373}
3374
3375
3376#undef ABORT_CONTINUATION_HOOK
3377#undef ALIGNED_P
3378#undef APPLY_HOOK
3379#undef ARGS1
3380#undef ARGS2
3381#undef BEGIN_DISPATCH_SWITCH
3382#undef BINARY_INTEGER_OP
3383#undef BR_ARITHMETIC
3384#undef BR_BINARY
3385#undef BR_NARGS
3386#undef BR_UNARY
3387#undef BV_FIXABLE_INT_REF
3388#undef BV_FIXABLE_INT_SET
3389#undef BV_FLOAT_REF
3390#undef BV_FLOAT_SET
3391#undef BV_INT_REF
3392#undef BV_INT_SET
3393#undef CACHE_REGISTER
3394#undef CHECK_OVERFLOW
3395#undef END_DISPATCH_SWITCH
3396#undef FREE_VARIABLE_REF
3397#undef INIT
3398#undef INUM_MAX
3399#undef INUM_MIN
3400#undef LOCAL_REF
3401#undef LOCAL_SET
3402#undef NEXT
3403#undef NEXT_HOOK
3404#undef NEXT_JUMP
3405#undef POP_CONTINUATION_HOOK
3406#undef PUSH_CONTINUATION_HOOK
3407#undef RESTORE_CONTINUATION_HOOK
3408#undef RETURN
3409#undef RETURN_ONE_VALUE
3410#undef RETURN_VALUE_LIST
3411#undef RUN_HOOK
3412#undef RUN_HOOK0
3413#undef SYNC_ALL
3414#undef SYNC_BEFORE_GC
3415#undef SYNC_IP
3416#undef SYNC_REGISTER
3417#undef VARIABLE_BOUNDP
3418#undef VARIABLE_REF
3419#undef VARIABLE_SET
3420#undef VM_CHECK_FREE_VARIABLE
3421#undef VM_CHECK_OBJECT
3422#undef VM_CHECK_UNDERFLOW
3423#undef VM_DEFINE_OP
3424#undef VM_INSTRUCTION_TO_LABEL
3425#undef VM_USE_HOOKS
3426#undef VM_VALIDATE_BYTEVECTOR
3427#undef VM_VALIDATE_PAIR
3428#undef VM_VALIDATE_STRUCT
3429
3430/*
3431(defun renumber-ops ()
3432 "start from top of buffer and renumber 'VM_DEFINE_FOO (\n' sequences"
3433 (interactive "")
3434 (save-excursion
3435 (let ((counter -1)) (goto-char (point-min))
3436 (while (re-search-forward "^ *VM_DEFINE_[^ ]+ (\\([^,]+\\)," (point-max) t)
3437 (replace-match
3438 (number-to-string (setq counter (1+ counter)))
3439 t t nil 1)))))
3440(renumber-ops)
3441*/
17e90c5e
KN
3442/*
3443 Local Variables:
3444 c-file-style: "gnu"
3445 End:
3446*/