Fix GOOPS method compilation bug when no next-method exists
[bpt/guile.git] / libguile / numbers.c
CommitLineData
8e43ed5d 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e 7 * This library is free software; you can redistribute it and/or
53befeb7
NJ
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
0f2d19dd 11 *
53befeb7
NJ
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
73be1d9e
MV
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
53befeb7
NJ
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
73be1d9e 21 */
1bbd0b84 22
0f2d19dd 23\f
ca46fb90
RB
24/* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 29 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
30 */
31
32/* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
0f2d19dd 43
dbb605f5 44#ifdef HAVE_CONFIG_H
ee33d62a
RB
45# include <config.h>
46#endif
47
0f2d19dd 48#include <math.h>
fc194577 49#include <string.h>
3f47e526
MG
50#include <unicase.h>
51#include <unictype.h>
f92e85f7 52
8ab3d8a0
KR
53#if HAVE_COMPLEX_H
54#include <complex.h>
55#endif
56
a0599745 57#include "libguile/_scm.h"
a0599745
MD
58#include "libguile/feature.h"
59#include "libguile/ports.h"
60#include "libguile/root.h"
61#include "libguile/smob.h"
62#include "libguile/strings.h"
864e7d42 63#include "libguile/bdw-gc.h"
a0599745
MD
64
65#include "libguile/validate.h"
66#include "libguile/numbers.h"
1be6b49c 67#include "libguile/deprecation.h"
f4c627b3 68
f92e85f7
MV
69#include "libguile/eq.h"
70
8ab3d8a0
KR
71/* values per glibc, if not already defined */
72#ifndef M_LOG10E
73#define M_LOG10E 0.43429448190325182765
74#endif
75#ifndef M_PI
76#define M_PI 3.14159265358979323846
77#endif
78
e25f3727
AW
79typedef scm_t_signed_bits scm_t_inum;
80#define scm_from_inum(x) (scm_from_signed_integer (x))
81
7112615f
MW
82/* Tests to see if a C double is neither infinite nor a NaN.
83 TODO: if it's available, use C99's isfinite(x) instead */
84#define DOUBLE_IS_FINITE(x) (!isinf(x) && !isnan(x))
85
0f2d19dd 86\f
f4c627b3 87
ca46fb90
RB
88/*
89 Wonder if this might be faster for some of our code? A switch on
90 the numtag would jump directly to the right case, and the
91 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
92
93 #define SCM_I_NUMTAG_NOTNUM 0
94 #define SCM_I_NUMTAG_INUM 1
95 #define SCM_I_NUMTAG_BIG scm_tc16_big
96 #define SCM_I_NUMTAG_REAL scm_tc16_real
97 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
98 #define SCM_I_NUMTAG(x) \
e11e83f3 99 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 100 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 101 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
102 : SCM_I_NUMTAG_NOTNUM)))
103*/
f92e85f7 104/* the macro above will not work as is with fractions */
f4c627b3
DH
105
106
e7efe8e7
AW
107static SCM flo0;
108
34d19ef6 109#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 110
56e55ac7 111/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
112 * printed or scm_string representation of an inexact number.
113 */
0b799eea 114#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 115
b127c712 116
ad79736c
AW
117#if !defined (HAVE_ASINH)
118static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
119#endif
120#if !defined (HAVE_ACOSH)
121static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
122#endif
123#if !defined (HAVE_ATANH)
124static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
125#endif
126
f8a8200b
KR
127/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
128 an explicit check. In some future gmp (don't know what version number),
129 mpz_cmp_d is supposed to do this itself. */
130#if 1
b127c712 131#define xmpz_cmp_d(z, d) \
2e65b52f 132 (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
b127c712
KR
133#else
134#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
135#endif
136
f92e85f7 137
4b26c03e 138#if defined (GUILE_I)
bca69a9f 139#if HAVE_COMPLEX_DOUBLE
8ab3d8a0
KR
140
141/* For an SCM object Z which is a complex number (ie. satisfies
142 SCM_COMPLEXP), return its value as a C level "complex double". */
143#define SCM_COMPLEX_VALUE(z) \
4b26c03e 144 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
8ab3d8a0 145
7a35784c 146static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
8ab3d8a0
KR
147
148/* Convert a C "complex double" to an SCM value. */
7a35784c 149static inline SCM
8ab3d8a0
KR
150scm_from_complex_double (complex double z)
151{
152 return scm_c_make_rectangular (creal (z), cimag (z));
153}
bca69a9f 154
8ab3d8a0 155#endif /* HAVE_COMPLEX_DOUBLE */
bca69a9f 156#endif /* GUILE_I */
8ab3d8a0 157
0f2d19dd
JB
158\f
159
713a4259 160static mpz_t z_negative_one;
ac0c002c
DH
161
162\f
864e7d42
LC
163/* Clear the `mpz_t' embedded in bignum PTR. */
164static void
165finalize_bignum (GC_PTR ptr, GC_PTR data)
166{
167 SCM bignum;
168
169 bignum = PTR2SCM (ptr);
170 mpz_clear (SCM_I_BIG_MPZ (bignum));
171}
172
d017fcdf
LC
173/* Return a new uninitialized bignum. */
174static inline SCM
175make_bignum (void)
176{
177 scm_t_bits *p;
864e7d42
LC
178 GC_finalization_proc prev_finalizer;
179 GC_PTR prev_finalizer_data;
d017fcdf
LC
180
181 /* Allocate one word for the type tag and enough room for an `mpz_t'. */
182 p = scm_gc_malloc_pointerless (sizeof (scm_t_bits) + sizeof (mpz_t),
183 "bignum");
184 p[0] = scm_tc16_big;
185
864e7d42
LC
186 GC_REGISTER_FINALIZER_NO_ORDER (p, finalize_bignum, NULL,
187 &prev_finalizer,
188 &prev_finalizer_data);
189
d017fcdf
LC
190 return SCM_PACK (p);
191}
ac0c002c 192
864e7d42 193
189171c5 194SCM
ca46fb90
RB
195scm_i_mkbig ()
196{
197 /* Return a newly created bignum. */
d017fcdf 198 SCM z = make_bignum ();
ca46fb90
RB
199 mpz_init (SCM_I_BIG_MPZ (z));
200 return z;
201}
202
e25f3727
AW
203static SCM
204scm_i_inum2big (scm_t_inum x)
205{
206 /* Return a newly created bignum initialized to X. */
207 SCM z = make_bignum ();
208#if SIZEOF_VOID_P == SIZEOF_LONG
209 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
210#else
211 /* Note that in this case, you'll also have to check all mpz_*_ui and
212 mpz_*_si invocations in Guile. */
213#error creation of mpz not implemented for this inum size
214#endif
215 return z;
216}
217
189171c5 218SCM
c71b0706
MV
219scm_i_long2big (long x)
220{
221 /* Return a newly created bignum initialized to X. */
d017fcdf 222 SCM z = make_bignum ();
c71b0706
MV
223 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
224 return z;
225}
226
189171c5 227SCM
c71b0706
MV
228scm_i_ulong2big (unsigned long x)
229{
230 /* Return a newly created bignum initialized to X. */
d017fcdf 231 SCM z = make_bignum ();
c71b0706
MV
232 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
233 return z;
234}
235
189171c5 236SCM
ca46fb90
RB
237scm_i_clonebig (SCM src_big, int same_sign_p)
238{
239 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
d017fcdf 240 SCM z = make_bignum ();
ca46fb90 241 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
242 if (!same_sign_p)
243 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
244 return z;
245}
246
189171c5 247int
ca46fb90
RB
248scm_i_bigcmp (SCM x, SCM y)
249{
250 /* Return neg if x < y, pos if x > y, and 0 if x == y */
251 /* presume we already know x and y are bignums */
252 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
253 scm_remember_upto_here_2 (x, y);
254 return result;
255}
256
189171c5 257SCM
ca46fb90
RB
258scm_i_dbl2big (double d)
259{
260 /* results are only defined if d is an integer */
d017fcdf 261 SCM z = make_bignum ();
ca46fb90
RB
262 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
263 return z;
264}
265
f92e85f7
MV
266/* Convert a integer in double representation to a SCM number. */
267
189171c5 268SCM
f92e85f7
MV
269scm_i_dbl2num (double u)
270{
271 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
272 powers of 2, so there's no rounding when making "double" values
273 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
274 get rounded on a 64-bit machine, hence the "+1".
275
276 The use of floor() to force to an integer value ensures we get a
277 "numerically closest" value without depending on how a
278 double->long cast or how mpz_set_d will round. For reference,
279 double->long probably follows the hardware rounding mode,
280 mpz_set_d truncates towards zero. */
281
282 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
283 representable as a double? */
284
285 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
286 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
e25f3727 287 return SCM_I_MAKINUM ((scm_t_inum) u);
f92e85f7
MV
288 else
289 return scm_i_dbl2big (u);
290}
291
089c9a59
KR
292/* scm_i_big2dbl() rounds to the closest representable double, in accordance
293 with R5RS exact->inexact.
294
295 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
f8a8200b
KR
296 (ie. truncate towards zero), then adjust to get the closest double by
297 examining the next lower bit and adding 1 (to the absolute value) if
298 necessary.
299
300 Bignums exactly half way between representable doubles are rounded to the
301 next higher absolute value (ie. away from zero). This seems like an
302 adequate interpretation of R5RS "numerically closest", and it's easier
303 and faster than a full "nearest-even" style.
304
305 The bit test must be done on the absolute value of the mpz_t, which means
306 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
307 negatives as twos complement.
308
309 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
310 following the hardware rounding mode, but applied to the absolute value
311 of the mpz_t operand. This is not what we want so we put the high
312 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
313 mpz_get_d is supposed to always truncate towards zero.
314
315 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
316 is a slowdown. It'd be faster to pick out the relevant high bits with
317 mpz_getlimbn if we could be bothered coding that, and if the new
318 truncating gmp doesn't come out. */
089c9a59
KR
319
320double
ca46fb90
RB
321scm_i_big2dbl (SCM b)
322{
089c9a59
KR
323 double result;
324 size_t bits;
325
326 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
327
f8a8200b 328#if 1
089c9a59 329 {
f8a8200b 330 /* Current GMP, eg. 4.1.3, force truncation towards zero */
089c9a59
KR
331 mpz_t tmp;
332 if (bits > DBL_MANT_DIG)
333 {
334 size_t shift = bits - DBL_MANT_DIG;
335 mpz_init2 (tmp, DBL_MANT_DIG);
336 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
337 result = ldexp (mpz_get_d (tmp), shift);
338 mpz_clear (tmp);
339 }
340 else
341 {
342 result = mpz_get_d (SCM_I_BIG_MPZ (b));
343 }
344 }
345#else
f8a8200b 346 /* Future GMP */
089c9a59
KR
347 result = mpz_get_d (SCM_I_BIG_MPZ (b));
348#endif
349
350 if (bits > DBL_MANT_DIG)
351 {
352 unsigned long pos = bits - DBL_MANT_DIG - 1;
353 /* test bit number "pos" in absolute value */
354 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
355 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
356 {
357 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
358 }
359 }
360
ca46fb90
RB
361 scm_remember_upto_here_1 (b);
362 return result;
363}
364
189171c5 365SCM
ca46fb90
RB
366scm_i_normbig (SCM b)
367{
368 /* convert a big back to a fixnum if it'll fit */
369 /* presume b is a bignum */
370 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
371 {
e25f3727 372 scm_t_inum val = mpz_get_si (SCM_I_BIG_MPZ (b));
ca46fb90 373 if (SCM_FIXABLE (val))
d956fa6f 374 b = SCM_I_MAKINUM (val);
ca46fb90
RB
375 }
376 return b;
377}
f872b822 378
f92e85f7
MV
379static SCM_C_INLINE_KEYWORD SCM
380scm_i_mpz2num (mpz_t b)
381{
382 /* convert a mpz number to a SCM number. */
383 if (mpz_fits_slong_p (b))
384 {
e25f3727 385 scm_t_inum val = mpz_get_si (b);
f92e85f7 386 if (SCM_FIXABLE (val))
d956fa6f 387 return SCM_I_MAKINUM (val);
f92e85f7
MV
388 }
389
390 {
d017fcdf 391 SCM z = make_bignum ();
f92e85f7
MV
392 mpz_init_set (SCM_I_BIG_MPZ (z), b);
393 return z;
394 }
395}
396
397/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
398static SCM scm_divide2real (SCM x, SCM y);
399
cba42c93
MV
400static SCM
401scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 402#define FUNC_NAME "make-ratio"
f92e85f7 403{
c60e130c
MV
404 /* First make sure the arguments are proper.
405 */
e11e83f3 406 if (SCM_I_INUMP (denominator))
f92e85f7 407 {
bc36d050 408 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 409 scm_num_overflow ("make-ratio");
cff5fa33 410 if (scm_is_eq (denominator, SCM_INUM1))
f92e85f7
MV
411 return numerator;
412 }
413 else
414 {
415 if (!(SCM_BIGP(denominator)))
416 SCM_WRONG_TYPE_ARG (2, denominator);
417 }
e11e83f3 418 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
419 SCM_WRONG_TYPE_ARG (1, numerator);
420
421 /* Then flip signs so that the denominator is positive.
422 */
73e4de09 423 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
424 {
425 numerator = scm_difference (numerator, SCM_UNDEFINED);
426 denominator = scm_difference (denominator, SCM_UNDEFINED);
427 }
428
429 /* Now consider for each of the four fixnum/bignum combinations
430 whether the rational number is really an integer.
431 */
e11e83f3 432 if (SCM_I_INUMP (numerator))
f92e85f7 433 {
e25f3727 434 scm_t_inum x = SCM_I_INUM (numerator);
bc36d050 435 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 436 return SCM_INUM0;
e11e83f3 437 if (SCM_I_INUMP (denominator))
f92e85f7 438 {
e25f3727 439 scm_t_inum y;
e11e83f3 440 y = SCM_I_INUM (denominator);
f92e85f7 441 if (x == y)
cff5fa33 442 return SCM_INUM1;
f92e85f7 443 if ((x % y) == 0)
d956fa6f 444 return SCM_I_MAKINUM (x / y);
f92e85f7 445 }
dd5130ca
KR
446 else
447 {
448 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
449 of that value for the denominator, as a bignum. Apart from
450 that case, abs(bignum) > abs(inum) so inum/bignum is not an
451 integer. */
452 if (x == SCM_MOST_NEGATIVE_FIXNUM
453 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
454 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 455 return SCM_I_MAKINUM(-1);
dd5130ca 456 }
f92e85f7 457 }
c60e130c 458 else if (SCM_BIGP (numerator))
f92e85f7 459 {
e11e83f3 460 if (SCM_I_INUMP (denominator))
c60e130c 461 {
e25f3727 462 scm_t_inum yy = SCM_I_INUM (denominator);
c60e130c
MV
463 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
464 return scm_divide (numerator, denominator);
465 }
466 else
f92e85f7 467 {
bc36d050 468 if (scm_is_eq (numerator, denominator))
cff5fa33 469 return SCM_INUM1;
c60e130c
MV
470 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
471 SCM_I_BIG_MPZ (denominator)))
472 return scm_divide(numerator, denominator);
f92e85f7 473 }
f92e85f7 474 }
c60e130c
MV
475
476 /* No, it's a proper fraction.
477 */
e2bf3b19
HWN
478 {
479 SCM divisor = scm_gcd (numerator, denominator);
cff5fa33 480 if (!(scm_is_eq (divisor, SCM_INUM1)))
e2bf3b19
HWN
481 {
482 numerator = scm_divide (numerator, divisor);
483 denominator = scm_divide (denominator, divisor);
484 }
485
486 return scm_double_cell (scm_tc16_fraction,
487 SCM_UNPACK (numerator),
488 SCM_UNPACK (denominator), 0);
489 }
f92e85f7 490}
c60e130c 491#undef FUNC_NAME
f92e85f7 492
f92e85f7
MV
493double
494scm_i_fraction2double (SCM z)
495{
55f26379
MV
496 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
497 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
498}
499
a1ec6916 500SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 501 (SCM x),
942e5b91
MG
502 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
503 "otherwise.")
1bbd0b84 504#define FUNC_NAME s_scm_exact_p
0f2d19dd 505{
41df63cf
MW
506 if (SCM_INEXACTP (x))
507 return SCM_BOOL_F;
508 else if (SCM_NUMBERP (x))
0aacf84e 509 return SCM_BOOL_T;
41df63cf
MW
510 else
511 SCM_WRONG_TYPE_ARG (1, x);
512}
513#undef FUNC_NAME
514
515
516SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
517 (SCM x),
518 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
519 "else.")
520#define FUNC_NAME s_scm_inexact_p
521{
522 if (SCM_INEXACTP (x))
f92e85f7 523 return SCM_BOOL_T;
41df63cf 524 else if (SCM_NUMBERP (x))
eb927cb9 525 return SCM_BOOL_F;
41df63cf
MW
526 else
527 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 528}
1bbd0b84 529#undef FUNC_NAME
0f2d19dd 530
4219f20d 531
a1ec6916 532SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 533 (SCM n),
942e5b91
MG
534 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
535 "otherwise.")
1bbd0b84 536#define FUNC_NAME s_scm_odd_p
0f2d19dd 537{
e11e83f3 538 if (SCM_I_INUMP (n))
0aacf84e 539 {
e25f3727 540 scm_t_inum val = SCM_I_INUM (n);
73e4de09 541 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
542 }
543 else if (SCM_BIGP (n))
544 {
545 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
546 scm_remember_upto_here_1 (n);
73e4de09 547 return scm_from_bool (odd_p);
0aacf84e 548 }
73e4de09 549 else if (scm_is_true (scm_inf_p (n)))
8e43ed5d 550 SCM_WRONG_TYPE_ARG (1, n);
f92e85f7
MV
551 else if (SCM_REALP (n))
552 {
553 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
554 if (rem == 1.0)
555 return SCM_BOOL_T;
556 else if (rem == 0.0)
557 return SCM_BOOL_F;
558 else
559 SCM_WRONG_TYPE_ARG (1, n);
560 }
0aacf84e 561 else
a1a33b0f 562 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 563}
1bbd0b84 564#undef FUNC_NAME
0f2d19dd 565
4219f20d 566
a1ec6916 567SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 568 (SCM n),
942e5b91
MG
569 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
570 "otherwise.")
1bbd0b84 571#define FUNC_NAME s_scm_even_p
0f2d19dd 572{
e11e83f3 573 if (SCM_I_INUMP (n))
0aacf84e 574 {
e25f3727 575 scm_t_inum val = SCM_I_INUM (n);
73e4de09 576 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
577 }
578 else if (SCM_BIGP (n))
579 {
580 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
581 scm_remember_upto_here_1 (n);
73e4de09 582 return scm_from_bool (even_p);
0aacf84e 583 }
73e4de09 584 else if (scm_is_true (scm_inf_p (n)))
8e43ed5d 585 SCM_WRONG_TYPE_ARG (1, n);
f92e85f7
MV
586 else if (SCM_REALP (n))
587 {
588 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
589 if (rem == 1.0)
590 return SCM_BOOL_F;
591 else if (rem == 0.0)
592 return SCM_BOOL_T;
593 else
594 SCM_WRONG_TYPE_ARG (1, n);
595 }
0aacf84e 596 else
a1a33b0f 597 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 598}
1bbd0b84 599#undef FUNC_NAME
0f2d19dd 600
7112615f
MW
601SCM_DEFINE (scm_finite_p, "finite?", 1, 0, 0,
602 (SCM x),
10391e06
AW
603 "Return @code{#t} if the real number @var{x} is neither\n"
604 "infinite nor a NaN, @code{#f} otherwise.")
7112615f
MW
605#define FUNC_NAME s_scm_finite_p
606{
607 if (SCM_REALP (x))
608 return scm_from_bool (DOUBLE_IS_FINITE (SCM_REAL_VALUE (x)));
10391e06 609 else if (scm_is_real (x))
7112615f
MW
610 return SCM_BOOL_T;
611 else
612 SCM_WRONG_TYPE_ARG (1, x);
613}
614#undef FUNC_NAME
615
7351e207 616SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
b1092b3a 617 (SCM x),
10391e06
AW
618 "Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
619 "@samp{-inf.0}. Otherwise return @code{#f}.")
7351e207
MV
620#define FUNC_NAME s_scm_inf_p
621{
b1092b3a 622 if (SCM_REALP (x))
2e65b52f 623 return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
10391e06 624 else if (scm_is_real (x))
7351e207 625 return SCM_BOOL_F;
10391e06
AW
626 else
627 SCM_WRONG_TYPE_ARG (1, x);
7351e207
MV
628}
629#undef FUNC_NAME
630
631SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
10391e06
AW
632 (SCM x),
633 "Return @code{#t} if the real number @var{x} is a NaN,\n"
634 "or @code{#f} otherwise.")
7351e207
MV
635#define FUNC_NAME s_scm_nan_p
636{
10391e06
AW
637 if (SCM_REALP (x))
638 return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
639 else if (scm_is_real (x))
7351e207 640 return SCM_BOOL_F;
10391e06
AW
641 else
642 SCM_WRONG_TYPE_ARG (1, x);
7351e207
MV
643}
644#undef FUNC_NAME
645
646/* Guile's idea of infinity. */
647static double guile_Inf;
648
649/* Guile's idea of not a number. */
650static double guile_NaN;
651
652static void
653guile_ieee_init (void)
654{
7351e207
MV
655/* Some version of gcc on some old version of Linux used to crash when
656 trying to make Inf and NaN. */
657
240a27d2
KR
658#ifdef INFINITY
659 /* C99 INFINITY, when available.
660 FIXME: The standard allows for INFINITY to be something that overflows
661 at compile time. We ought to have a configure test to check for that
662 before trying to use it. (But in practice we believe this is not a
663 problem on any system guile is likely to target.) */
664 guile_Inf = INFINITY;
56a3dcd4 665#elif defined HAVE_DINFINITY
240a27d2 666 /* OSF */
7351e207 667 extern unsigned int DINFINITY[2];
eaa94eaa 668 guile_Inf = (*((double *) (DINFINITY)));
7351e207
MV
669#else
670 double tmp = 1e+10;
671 guile_Inf = tmp;
672 for (;;)
673 {
674 guile_Inf *= 1e+10;
675 if (guile_Inf == tmp)
676 break;
677 tmp = guile_Inf;
678 }
679#endif
680
240a27d2
KR
681#ifdef NAN
682 /* C99 NAN, when available */
683 guile_NaN = NAN;
56a3dcd4 684#elif defined HAVE_DQNAN
eaa94eaa
LC
685 {
686 /* OSF */
687 extern unsigned int DQNAN[2];
688 guile_NaN = (*((double *)(DQNAN)));
689 }
7351e207
MV
690#else
691 guile_NaN = guile_Inf / guile_Inf;
692#endif
7351e207
MV
693}
694
695SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
696 (void),
697 "Return Inf.")
698#define FUNC_NAME s_scm_inf
699{
700 static int initialized = 0;
701 if (! initialized)
702 {
703 guile_ieee_init ();
704 initialized = 1;
705 }
55f26379 706 return scm_from_double (guile_Inf);
7351e207
MV
707}
708#undef FUNC_NAME
709
710SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
711 (void),
712 "Return NaN.")
713#define FUNC_NAME s_scm_nan
714{
715 static int initialized = 0;
0aacf84e 716 if (!initialized)
7351e207
MV
717 {
718 guile_ieee_init ();
719 initialized = 1;
720 }
55f26379 721 return scm_from_double (guile_NaN);
7351e207
MV
722}
723#undef FUNC_NAME
724
4219f20d 725
a48d60b1
MD
726SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
727 (SCM x),
728 "Return the absolute value of @var{x}.")
729#define FUNC_NAME
0f2d19dd 730{
e11e83f3 731 if (SCM_I_INUMP (x))
0aacf84e 732 {
e25f3727 733 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
734 if (xx >= 0)
735 return x;
736 else if (SCM_POSFIXABLE (-xx))
d956fa6f 737 return SCM_I_MAKINUM (-xx);
0aacf84e 738 else
e25f3727 739 return scm_i_inum2big (-xx);
4219f20d 740 }
0aacf84e
MD
741 else if (SCM_BIGP (x))
742 {
743 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
744 if (sgn < 0)
745 return scm_i_clonebig (x, 0);
746 else
747 return x;
4219f20d 748 }
0aacf84e 749 else if (SCM_REALP (x))
ae38324d
KR
750 {
751 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
752 double xx = SCM_REAL_VALUE (x);
753 if (xx < 0.0)
55f26379 754 return scm_from_double (-xx);
ae38324d
KR
755 else
756 return x;
757 }
f92e85f7
MV
758 else if (SCM_FRACTIONP (x))
759 {
73e4de09 760 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 761 return x;
cba42c93 762 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
763 SCM_FRACTION_DENOMINATOR (x));
764 }
0aacf84e 765 else
a48d60b1 766 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 767}
a48d60b1 768#undef FUNC_NAME
0f2d19dd 769
4219f20d 770
9de33deb 771SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
772/* "Return the quotient of the numbers @var{x} and @var{y}."
773 */
0f2d19dd 774SCM
6e8d25a6 775scm_quotient (SCM x, SCM y)
0f2d19dd 776{
e11e83f3 777 if (SCM_I_INUMP (x))
0aacf84e 778 {
e25f3727 779 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 780 if (SCM_I_INUMP (y))
0aacf84e 781 {
e25f3727 782 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
783 if (yy == 0)
784 scm_num_overflow (s_quotient);
785 else
786 {
e25f3727 787 scm_t_inum z = xx / yy;
0aacf84e 788 if (SCM_FIXABLE (z))
d956fa6f 789 return SCM_I_MAKINUM (z);
0aacf84e 790 else
e25f3727 791 return scm_i_inum2big (z);
0aacf84e 792 }
828865c3 793 }
0aacf84e 794 else if (SCM_BIGP (y))
ac0c002c 795 {
e11e83f3 796 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
797 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
798 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
799 {
800 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
801 scm_remember_upto_here_1 (y);
d956fa6f 802 return SCM_I_MAKINUM (-1);
4dc09ee4 803 }
0aacf84e 804 else
cff5fa33 805 return SCM_INUM0;
ac0c002c
DH
806 }
807 else
0aacf84e 808 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 809 }
0aacf84e
MD
810 else if (SCM_BIGP (x))
811 {
e11e83f3 812 if (SCM_I_INUMP (y))
0aacf84e 813 {
e25f3727 814 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
815 if (yy == 0)
816 scm_num_overflow (s_quotient);
817 else if (yy == 1)
818 return x;
819 else
820 {
821 SCM result = scm_i_mkbig ();
822 if (yy < 0)
823 {
824 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
825 SCM_I_BIG_MPZ (x),
826 - yy);
827 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
828 }
829 else
830 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
831 scm_remember_upto_here_1 (x);
832 return scm_i_normbig (result);
833 }
834 }
835 else if (SCM_BIGP (y))
836 {
837 SCM result = scm_i_mkbig ();
838 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
839 SCM_I_BIG_MPZ (x),
840 SCM_I_BIG_MPZ (y));
841 scm_remember_upto_here_2 (x, y);
842 return scm_i_normbig (result);
843 }
844 else
845 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 846 }
0aacf84e 847 else
89a7e495 848 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
849}
850
9de33deb 851SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
852/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
853 * "@lisp\n"
854 * "(remainder 13 4) @result{} 1\n"
855 * "(remainder -13 4) @result{} -1\n"
856 * "@end lisp"
857 */
0f2d19dd 858SCM
6e8d25a6 859scm_remainder (SCM x, SCM y)
0f2d19dd 860{
e11e83f3 861 if (SCM_I_INUMP (x))
0aacf84e 862 {
e11e83f3 863 if (SCM_I_INUMP (y))
0aacf84e 864 {
e25f3727 865 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
866 if (yy == 0)
867 scm_num_overflow (s_remainder);
868 else
869 {
e25f3727 870 scm_t_inum z = SCM_I_INUM (x) % yy;
d956fa6f 871 return SCM_I_MAKINUM (z);
0aacf84e
MD
872 }
873 }
874 else if (SCM_BIGP (y))
ac0c002c 875 {
e11e83f3 876 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
877 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
878 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
879 {
880 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
881 scm_remember_upto_here_1 (y);
cff5fa33 882 return SCM_INUM0;
4dc09ee4 883 }
0aacf84e
MD
884 else
885 return x;
ac0c002c
DH
886 }
887 else
0aacf84e 888 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 889 }
0aacf84e
MD
890 else if (SCM_BIGP (x))
891 {
e11e83f3 892 if (SCM_I_INUMP (y))
0aacf84e 893 {
e25f3727 894 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
895 if (yy == 0)
896 scm_num_overflow (s_remainder);
897 else
898 {
899 SCM result = scm_i_mkbig ();
900 if (yy < 0)
901 yy = - yy;
902 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
903 scm_remember_upto_here_1 (x);
904 return scm_i_normbig (result);
905 }
906 }
907 else if (SCM_BIGP (y))
908 {
909 SCM result = scm_i_mkbig ();
910 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
911 SCM_I_BIG_MPZ (x),
912 SCM_I_BIG_MPZ (y));
913 scm_remember_upto_here_2 (x, y);
914 return scm_i_normbig (result);
915 }
916 else
917 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 918 }
0aacf84e 919 else
89a7e495 920 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
921}
922
89a7e495 923
9de33deb 924SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
925/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
926 * "@lisp\n"
927 * "(modulo 13 4) @result{} 1\n"
928 * "(modulo -13 4) @result{} 3\n"
929 * "@end lisp"
930 */
0f2d19dd 931SCM
6e8d25a6 932scm_modulo (SCM x, SCM y)
0f2d19dd 933{
e11e83f3 934 if (SCM_I_INUMP (x))
0aacf84e 935 {
e25f3727 936 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 937 if (SCM_I_INUMP (y))
0aacf84e 938 {
e25f3727 939 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
940 if (yy == 0)
941 scm_num_overflow (s_modulo);
942 else
943 {
66b1c775
KR
944 /* C99 specifies that "%" is the remainder corresponding to a
945 quotient rounded towards zero, and that's also traditional
946 for machine division, so z here should be well defined. */
e25f3727
AW
947 scm_t_inum z = xx % yy;
948 scm_t_inum result;
0aacf84e
MD
949
950 if (yy < 0)
951 {
952 if (z > 0)
953 result = z + yy;
954 else
955 result = z;
956 }
957 else
958 {
959 if (z < 0)
960 result = z + yy;
961 else
962 result = z;
963 }
d956fa6f 964 return SCM_I_MAKINUM (result);
0aacf84e
MD
965 }
966 }
967 else if (SCM_BIGP (y))
968 {
969 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
970 {
971 mpz_t z_x;
972 SCM result;
973
974 if (sgn_y < 0)
975 {
976 SCM pos_y = scm_i_clonebig (y, 0);
977 /* do this after the last scm_op */
978 mpz_init_set_si (z_x, xx);
979 result = pos_y; /* re-use this bignum */
980 mpz_mod (SCM_I_BIG_MPZ (result),
981 z_x,
982 SCM_I_BIG_MPZ (pos_y));
983 scm_remember_upto_here_1 (pos_y);
984 }
985 else
986 {
987 result = scm_i_mkbig ();
988 /* do this after the last scm_op */
989 mpz_init_set_si (z_x, xx);
990 mpz_mod (SCM_I_BIG_MPZ (result),
991 z_x,
992 SCM_I_BIG_MPZ (y));
993 scm_remember_upto_here_1 (y);
994 }
ca46fb90 995
0aacf84e
MD
996 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
997 mpz_add (SCM_I_BIG_MPZ (result),
998 SCM_I_BIG_MPZ (y),
999 SCM_I_BIG_MPZ (result));
1000 scm_remember_upto_here_1 (y);
1001 /* and do this before the next one */
1002 mpz_clear (z_x);
1003 return scm_i_normbig (result);
1004 }
1005 }
1006 else
1007 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 1008 }
0aacf84e
MD
1009 else if (SCM_BIGP (x))
1010 {
e11e83f3 1011 if (SCM_I_INUMP (y))
0aacf84e 1012 {
e25f3727 1013 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
1014 if (yy == 0)
1015 scm_num_overflow (s_modulo);
1016 else
1017 {
1018 SCM result = scm_i_mkbig ();
1019 mpz_mod_ui (SCM_I_BIG_MPZ (result),
1020 SCM_I_BIG_MPZ (x),
1021 (yy < 0) ? - yy : yy);
1022 scm_remember_upto_here_1 (x);
1023 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1024 mpz_sub_ui (SCM_I_BIG_MPZ (result),
1025 SCM_I_BIG_MPZ (result),
1026 - yy);
1027 return scm_i_normbig (result);
1028 }
1029 }
1030 else if (SCM_BIGP (y))
1031 {
0aacf84e
MD
1032 {
1033 SCM result = scm_i_mkbig ();
1034 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1035 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1036 mpz_mod (SCM_I_BIG_MPZ (result),
1037 SCM_I_BIG_MPZ (x),
1038 SCM_I_BIG_MPZ (pos_y));
ca46fb90 1039
0aacf84e
MD
1040 scm_remember_upto_here_1 (x);
1041 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1042 mpz_add (SCM_I_BIG_MPZ (result),
1043 SCM_I_BIG_MPZ (y),
1044 SCM_I_BIG_MPZ (result));
1045 scm_remember_upto_here_2 (y, pos_y);
1046 return scm_i_normbig (result);
1047 }
1048 }
1049 else
1050 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 1051 }
0aacf84e 1052 else
09fb7599 1053 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
1054}
1055
78d3deb1
AW
1056SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
1057 (SCM x, SCM y, SCM rest),
1058 "Return the greatest common divisor of all parameter values.\n"
1059 "If called without arguments, 0 is returned.")
1060#define FUNC_NAME s_scm_i_gcd
1061{
1062 while (!scm_is_null (rest))
1063 { x = scm_gcd (x, y);
1064 y = scm_car (rest);
1065 rest = scm_cdr (rest);
1066 }
1067 return scm_gcd (x, y);
1068}
1069#undef FUNC_NAME
1070
1071#define s_gcd s_scm_i_gcd
1072#define g_gcd g_scm_i_gcd
1073
0f2d19dd 1074SCM
6e8d25a6 1075scm_gcd (SCM x, SCM y)
0f2d19dd 1076{
ca46fb90 1077 if (SCM_UNBNDP (y))
1dd79792 1078 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
ca46fb90 1079
e11e83f3 1080 if (SCM_I_INUMP (x))
ca46fb90 1081 {
e11e83f3 1082 if (SCM_I_INUMP (y))
ca46fb90 1083 {
e25f3727
AW
1084 scm_t_inum xx = SCM_I_INUM (x);
1085 scm_t_inum yy = SCM_I_INUM (y);
1086 scm_t_inum u = xx < 0 ? -xx : xx;
1087 scm_t_inum v = yy < 0 ? -yy : yy;
1088 scm_t_inum result;
0aacf84e
MD
1089 if (xx == 0)
1090 result = v;
1091 else if (yy == 0)
1092 result = u;
1093 else
1094 {
e25f3727
AW
1095 scm_t_inum k = 1;
1096 scm_t_inum t;
0aacf84e
MD
1097 /* Determine a common factor 2^k */
1098 while (!(1 & (u | v)))
1099 {
1100 k <<= 1;
1101 u >>= 1;
1102 v >>= 1;
1103 }
1104 /* Now, any factor 2^n can be eliminated */
1105 if (u & 1)
1106 t = -v;
1107 else
1108 {
1109 t = u;
1110 b3:
1111 t = SCM_SRS (t, 1);
1112 }
1113 if (!(1 & t))
1114 goto b3;
1115 if (t > 0)
1116 u = t;
1117 else
1118 v = -t;
1119 t = u - v;
1120 if (t != 0)
1121 goto b3;
1122 result = u * k;
1123 }
1124 return (SCM_POSFIXABLE (result)
d956fa6f 1125 ? SCM_I_MAKINUM (result)
e25f3727 1126 : scm_i_inum2big (result));
ca46fb90
RB
1127 }
1128 else if (SCM_BIGP (y))
1129 {
0bff4dce
KR
1130 SCM_SWAP (x, y);
1131 goto big_inum;
ca46fb90
RB
1132 }
1133 else
1134 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1135 }
ca46fb90
RB
1136 else if (SCM_BIGP (x))
1137 {
e11e83f3 1138 if (SCM_I_INUMP (y))
ca46fb90 1139 {
e25f3727
AW
1140 scm_t_bits result;
1141 scm_t_inum yy;
0bff4dce 1142 big_inum:
e11e83f3 1143 yy = SCM_I_INUM (y);
8c5b0afc
KR
1144 if (yy == 0)
1145 return scm_abs (x);
0aacf84e
MD
1146 if (yy < 0)
1147 yy = -yy;
ca46fb90
RB
1148 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1149 scm_remember_upto_here_1 (x);
0aacf84e 1150 return (SCM_POSFIXABLE (result)
d956fa6f 1151 ? SCM_I_MAKINUM (result)
e25f3727 1152 : scm_from_unsigned_integer (result));
ca46fb90
RB
1153 }
1154 else if (SCM_BIGP (y))
1155 {
1156 SCM result = scm_i_mkbig ();
0aacf84e
MD
1157 mpz_gcd (SCM_I_BIG_MPZ (result),
1158 SCM_I_BIG_MPZ (x),
1159 SCM_I_BIG_MPZ (y));
1160 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1161 return scm_i_normbig (result);
1162 }
1163 else
1164 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1165 }
ca46fb90 1166 else
09fb7599 1167 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1168}
1169
78d3deb1
AW
1170SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
1171 (SCM x, SCM y, SCM rest),
1172 "Return the least common multiple of the arguments.\n"
1173 "If called without arguments, 1 is returned.")
1174#define FUNC_NAME s_scm_i_lcm
1175{
1176 while (!scm_is_null (rest))
1177 { x = scm_lcm (x, y);
1178 y = scm_car (rest);
1179 rest = scm_cdr (rest);
1180 }
1181 return scm_lcm (x, y);
1182}
1183#undef FUNC_NAME
1184
1185#define s_lcm s_scm_i_lcm
1186#define g_lcm g_scm_i_lcm
1187
0f2d19dd 1188SCM
6e8d25a6 1189scm_lcm (SCM n1, SCM n2)
0f2d19dd 1190{
ca46fb90
RB
1191 if (SCM_UNBNDP (n2))
1192 {
1193 if (SCM_UNBNDP (n1))
d956fa6f
MV
1194 return SCM_I_MAKINUM (1L);
1195 n2 = SCM_I_MAKINUM (1L);
09fb7599 1196 }
09fb7599 1197
e11e83f3 1198 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1199 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1200 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1201 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1202
e11e83f3 1203 if (SCM_I_INUMP (n1))
ca46fb90 1204 {
e11e83f3 1205 if (SCM_I_INUMP (n2))
ca46fb90
RB
1206 {
1207 SCM d = scm_gcd (n1, n2);
bc36d050 1208 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1209 return d;
1210 else
1211 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1212 }
1213 else
1214 {
1215 /* inum n1, big n2 */
1216 inumbig:
1217 {
1218 SCM result = scm_i_mkbig ();
e25f3727 1219 scm_t_inum nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1220 if (nn1 == 0) return SCM_INUM0;
1221 if (nn1 < 0) nn1 = - nn1;
1222 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1223 scm_remember_upto_here_1 (n2);
1224 return result;
1225 }
1226 }
1227 }
1228 else
1229 {
1230 /* big n1 */
e11e83f3 1231 if (SCM_I_INUMP (n2))
ca46fb90
RB
1232 {
1233 SCM_SWAP (n1, n2);
1234 goto inumbig;
1235 }
1236 else
1237 {
1238 SCM result = scm_i_mkbig ();
1239 mpz_lcm(SCM_I_BIG_MPZ (result),
1240 SCM_I_BIG_MPZ (n1),
1241 SCM_I_BIG_MPZ (n2));
1242 scm_remember_upto_here_2(n1, n2);
1243 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1244 return result;
1245 }
f872b822 1246 }
0f2d19dd
JB
1247}
1248
8a525303
GB
1249/* Emulating 2's complement bignums with sign magnitude arithmetic:
1250
1251 Logand:
1252 X Y Result Method:
1253 (len)
1254 + + + x (map digit:logand X Y)
1255 + - + x (map digit:logand X (lognot (+ -1 Y)))
1256 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1257 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1258
1259 Logior:
1260 X Y Result Method:
1261
1262 + + + (map digit:logior X Y)
1263 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1264 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1265 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1266
1267 Logxor:
1268 X Y Result Method:
1269
1270 + + + (map digit:logxor X Y)
1271 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1272 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1273 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1274
1275 Logtest:
1276 X Y Result
1277
1278 + + (any digit:logand X Y)
1279 + - (any digit:logand X (lognot (+ -1 Y)))
1280 - + (any digit:logand (lognot (+ -1 X)) Y)
1281 - - #t
1282
1283*/
1284
78d3deb1
AW
1285SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
1286 (SCM x, SCM y, SCM rest),
1287 "Return the bitwise AND of the integer arguments.\n\n"
1288 "@lisp\n"
1289 "(logand) @result{} -1\n"
1290 "(logand 7) @result{} 7\n"
1291 "(logand #b111 #b011 #b001) @result{} 1\n"
1292 "@end lisp")
1293#define FUNC_NAME s_scm_i_logand
1294{
1295 while (!scm_is_null (rest))
1296 { x = scm_logand (x, y);
1297 y = scm_car (rest);
1298 rest = scm_cdr (rest);
1299 }
1300 return scm_logand (x, y);
1301}
1302#undef FUNC_NAME
1303
1304#define s_scm_logand s_scm_i_logand
1305
1306SCM scm_logand (SCM n1, SCM n2)
1bbd0b84 1307#define FUNC_NAME s_scm_logand
0f2d19dd 1308{
e25f3727 1309 scm_t_inum nn1;
9a00c9fc 1310
0aacf84e
MD
1311 if (SCM_UNBNDP (n2))
1312 {
1313 if (SCM_UNBNDP (n1))
d956fa6f 1314 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1315 else if (!SCM_NUMBERP (n1))
1316 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1317 else if (SCM_NUMBERP (n1))
1318 return n1;
1319 else
1320 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1321 }
09fb7599 1322
e11e83f3 1323 if (SCM_I_INUMP (n1))
0aacf84e 1324 {
e11e83f3
MV
1325 nn1 = SCM_I_INUM (n1);
1326 if (SCM_I_INUMP (n2))
0aacf84e 1327 {
e25f3727 1328 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 1329 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1330 }
1331 else if SCM_BIGP (n2)
1332 {
1333 intbig:
1334 if (n1 == 0)
1335 return SCM_INUM0;
1336 {
1337 SCM result_z = scm_i_mkbig ();
1338 mpz_t nn1_z;
1339 mpz_init_set_si (nn1_z, nn1);
1340 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1341 scm_remember_upto_here_1 (n2);
1342 mpz_clear (nn1_z);
1343 return scm_i_normbig (result_z);
1344 }
1345 }
1346 else
1347 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1348 }
1349 else if (SCM_BIGP (n1))
1350 {
e11e83f3 1351 if (SCM_I_INUMP (n2))
0aacf84e
MD
1352 {
1353 SCM_SWAP (n1, n2);
e11e83f3 1354 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1355 goto intbig;
1356 }
1357 else if (SCM_BIGP (n2))
1358 {
1359 SCM result_z = scm_i_mkbig ();
1360 mpz_and (SCM_I_BIG_MPZ (result_z),
1361 SCM_I_BIG_MPZ (n1),
1362 SCM_I_BIG_MPZ (n2));
1363 scm_remember_upto_here_2 (n1, n2);
1364 return scm_i_normbig (result_z);
1365 }
1366 else
1367 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1368 }
0aacf84e 1369 else
09fb7599 1370 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1371}
1bbd0b84 1372#undef FUNC_NAME
0f2d19dd 1373
09fb7599 1374
78d3deb1
AW
1375SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
1376 (SCM x, SCM y, SCM rest),
1377 "Return the bitwise OR of the integer arguments.\n\n"
1378 "@lisp\n"
1379 "(logior) @result{} 0\n"
1380 "(logior 7) @result{} 7\n"
1381 "(logior #b000 #b001 #b011) @result{} 3\n"
1382 "@end lisp")
1383#define FUNC_NAME s_scm_i_logior
1384{
1385 while (!scm_is_null (rest))
1386 { x = scm_logior (x, y);
1387 y = scm_car (rest);
1388 rest = scm_cdr (rest);
1389 }
1390 return scm_logior (x, y);
1391}
1392#undef FUNC_NAME
1393
1394#define s_scm_logior s_scm_i_logior
1395
1396SCM scm_logior (SCM n1, SCM n2)
1bbd0b84 1397#define FUNC_NAME s_scm_logior
0f2d19dd 1398{
e25f3727 1399 scm_t_inum nn1;
9a00c9fc 1400
0aacf84e
MD
1401 if (SCM_UNBNDP (n2))
1402 {
1403 if (SCM_UNBNDP (n1))
1404 return SCM_INUM0;
1405 else if (SCM_NUMBERP (n1))
1406 return n1;
1407 else
1408 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1409 }
09fb7599 1410
e11e83f3 1411 if (SCM_I_INUMP (n1))
0aacf84e 1412 {
e11e83f3
MV
1413 nn1 = SCM_I_INUM (n1);
1414 if (SCM_I_INUMP (n2))
0aacf84e 1415 {
e11e83f3 1416 long nn2 = SCM_I_INUM (n2);
d956fa6f 1417 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1418 }
1419 else if (SCM_BIGP (n2))
1420 {
1421 intbig:
1422 if (nn1 == 0)
1423 return n2;
1424 {
1425 SCM result_z = scm_i_mkbig ();
1426 mpz_t nn1_z;
1427 mpz_init_set_si (nn1_z, nn1);
1428 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1429 scm_remember_upto_here_1 (n2);
1430 mpz_clear (nn1_z);
9806de0d 1431 return scm_i_normbig (result_z);
0aacf84e
MD
1432 }
1433 }
1434 else
1435 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1436 }
1437 else if (SCM_BIGP (n1))
1438 {
e11e83f3 1439 if (SCM_I_INUMP (n2))
0aacf84e
MD
1440 {
1441 SCM_SWAP (n1, n2);
e11e83f3 1442 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1443 goto intbig;
1444 }
1445 else if (SCM_BIGP (n2))
1446 {
1447 SCM result_z = scm_i_mkbig ();
1448 mpz_ior (SCM_I_BIG_MPZ (result_z),
1449 SCM_I_BIG_MPZ (n1),
1450 SCM_I_BIG_MPZ (n2));
1451 scm_remember_upto_here_2 (n1, n2);
9806de0d 1452 return scm_i_normbig (result_z);
0aacf84e
MD
1453 }
1454 else
1455 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1456 }
0aacf84e 1457 else
09fb7599 1458 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1459}
1bbd0b84 1460#undef FUNC_NAME
0f2d19dd 1461
09fb7599 1462
78d3deb1
AW
1463SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
1464 (SCM x, SCM y, SCM rest),
3c3db128
GH
1465 "Return the bitwise XOR of the integer arguments. A bit is\n"
1466 "set in the result if it is set in an odd number of arguments.\n"
1467 "@lisp\n"
1468 "(logxor) @result{} 0\n"
1469 "(logxor 7) @result{} 7\n"
1470 "(logxor #b000 #b001 #b011) @result{} 2\n"
1471 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1472 "@end lisp")
78d3deb1
AW
1473#define FUNC_NAME s_scm_i_logxor
1474{
1475 while (!scm_is_null (rest))
1476 { x = scm_logxor (x, y);
1477 y = scm_car (rest);
1478 rest = scm_cdr (rest);
1479 }
1480 return scm_logxor (x, y);
1481}
1482#undef FUNC_NAME
1483
1484#define s_scm_logxor s_scm_i_logxor
1485
1486SCM scm_logxor (SCM n1, SCM n2)
1bbd0b84 1487#define FUNC_NAME s_scm_logxor
0f2d19dd 1488{
e25f3727 1489 scm_t_inum nn1;
9a00c9fc 1490
0aacf84e
MD
1491 if (SCM_UNBNDP (n2))
1492 {
1493 if (SCM_UNBNDP (n1))
1494 return SCM_INUM0;
1495 else if (SCM_NUMBERP (n1))
1496 return n1;
1497 else
1498 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1499 }
09fb7599 1500
e11e83f3 1501 if (SCM_I_INUMP (n1))
0aacf84e 1502 {
e11e83f3
MV
1503 nn1 = SCM_I_INUM (n1);
1504 if (SCM_I_INUMP (n2))
0aacf84e 1505 {
e25f3727 1506 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 1507 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1508 }
1509 else if (SCM_BIGP (n2))
1510 {
1511 intbig:
1512 {
1513 SCM result_z = scm_i_mkbig ();
1514 mpz_t nn1_z;
1515 mpz_init_set_si (nn1_z, nn1);
1516 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1517 scm_remember_upto_here_1 (n2);
1518 mpz_clear (nn1_z);
1519 return scm_i_normbig (result_z);
1520 }
1521 }
1522 else
1523 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1524 }
1525 else if (SCM_BIGP (n1))
1526 {
e11e83f3 1527 if (SCM_I_INUMP (n2))
0aacf84e
MD
1528 {
1529 SCM_SWAP (n1, n2);
e11e83f3 1530 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1531 goto intbig;
1532 }
1533 else if (SCM_BIGP (n2))
1534 {
1535 SCM result_z = scm_i_mkbig ();
1536 mpz_xor (SCM_I_BIG_MPZ (result_z),
1537 SCM_I_BIG_MPZ (n1),
1538 SCM_I_BIG_MPZ (n2));
1539 scm_remember_upto_here_2 (n1, n2);
1540 return scm_i_normbig (result_z);
1541 }
1542 else
1543 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1544 }
0aacf84e 1545 else
09fb7599 1546 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1547}
1bbd0b84 1548#undef FUNC_NAME
0f2d19dd 1549
09fb7599 1550
a1ec6916 1551SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 1552 (SCM j, SCM k),
ba6e7231
KR
1553 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1554 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1555 "without actually calculating the @code{logand}, just testing\n"
1556 "for non-zero.\n"
1557 "\n"
1e6808ea 1558 "@lisp\n"
b380b885
MD
1559 "(logtest #b0100 #b1011) @result{} #f\n"
1560 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1561 "@end lisp")
1bbd0b84 1562#define FUNC_NAME s_scm_logtest
0f2d19dd 1563{
e25f3727 1564 scm_t_inum nj;
9a00c9fc 1565
e11e83f3 1566 if (SCM_I_INUMP (j))
0aacf84e 1567 {
e11e83f3
MV
1568 nj = SCM_I_INUM (j);
1569 if (SCM_I_INUMP (k))
0aacf84e 1570 {
e25f3727 1571 scm_t_inum nk = SCM_I_INUM (k);
73e4de09 1572 return scm_from_bool (nj & nk);
0aacf84e
MD
1573 }
1574 else if (SCM_BIGP (k))
1575 {
1576 intbig:
1577 if (nj == 0)
1578 return SCM_BOOL_F;
1579 {
1580 SCM result;
1581 mpz_t nj_z;
1582 mpz_init_set_si (nj_z, nj);
1583 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1584 scm_remember_upto_here_1 (k);
73e4de09 1585 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1586 mpz_clear (nj_z);
1587 return result;
1588 }
1589 }
1590 else
1591 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1592 }
1593 else if (SCM_BIGP (j))
1594 {
e11e83f3 1595 if (SCM_I_INUMP (k))
0aacf84e
MD
1596 {
1597 SCM_SWAP (j, k);
e11e83f3 1598 nj = SCM_I_INUM (j);
0aacf84e
MD
1599 goto intbig;
1600 }
1601 else if (SCM_BIGP (k))
1602 {
1603 SCM result;
1604 mpz_t result_z;
1605 mpz_init (result_z);
1606 mpz_and (result_z,
1607 SCM_I_BIG_MPZ (j),
1608 SCM_I_BIG_MPZ (k));
1609 scm_remember_upto_here_2 (j, k);
73e4de09 1610 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1611 mpz_clear (result_z);
1612 return result;
1613 }
1614 else
1615 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1616 }
1617 else
1618 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1619}
1bbd0b84 1620#undef FUNC_NAME
0f2d19dd 1621
c1bfcf60 1622
a1ec6916 1623SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1624 (SCM index, SCM j),
ba6e7231
KR
1625 "Test whether bit number @var{index} in @var{j} is set.\n"
1626 "@var{index} starts from 0 for the least significant bit.\n"
1627 "\n"
1e6808ea 1628 "@lisp\n"
b380b885
MD
1629 "(logbit? 0 #b1101) @result{} #t\n"
1630 "(logbit? 1 #b1101) @result{} #f\n"
1631 "(logbit? 2 #b1101) @result{} #t\n"
1632 "(logbit? 3 #b1101) @result{} #t\n"
1633 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1634 "@end lisp")
1bbd0b84 1635#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1636{
78166ad5 1637 unsigned long int iindex;
5efd3c7d 1638 iindex = scm_to_ulong (index);
78166ad5 1639
e11e83f3 1640 if (SCM_I_INUMP (j))
0d75f6d8
KR
1641 {
1642 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1643 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1644 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1645 }
0aacf84e
MD
1646 else if (SCM_BIGP (j))
1647 {
1648 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1649 scm_remember_upto_here_1 (j);
73e4de09 1650 return scm_from_bool (val);
0aacf84e
MD
1651 }
1652 else
78166ad5 1653 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1654}
1bbd0b84 1655#undef FUNC_NAME
0f2d19dd 1656
78166ad5 1657
a1ec6916 1658SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1659 (SCM n),
4d814788 1660 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1661 "argument.\n"
1662 "\n"
b380b885
MD
1663 "@lisp\n"
1664 "(number->string (lognot #b10000000) 2)\n"
1665 " @result{} \"-10000001\"\n"
1666 "(number->string (lognot #b0) 2)\n"
1667 " @result{} \"-1\"\n"
1e6808ea 1668 "@end lisp")
1bbd0b84 1669#define FUNC_NAME s_scm_lognot
0f2d19dd 1670{
e11e83f3 1671 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1672 /* No overflow here, just need to toggle all the bits making up the inum.
1673 Enhancement: No need to strip the tag and add it back, could just xor
1674 a block of 1 bits, if that worked with the various debug versions of
1675 the SCM typedef. */
e11e83f3 1676 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1677
1678 } else if (SCM_BIGP (n)) {
1679 SCM result = scm_i_mkbig ();
1680 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1681 scm_remember_upto_here_1 (n);
1682 return result;
1683
1684 } else {
1685 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1686 }
0f2d19dd 1687}
1bbd0b84 1688#undef FUNC_NAME
0f2d19dd 1689
518b7508
KR
1690/* returns 0 if IN is not an integer. OUT must already be
1691 initialized. */
1692static int
1693coerce_to_big (SCM in, mpz_t out)
1694{
1695 if (SCM_BIGP (in))
1696 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1697 else if (SCM_I_INUMP (in))
1698 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1699 else
1700 return 0;
1701
1702 return 1;
1703}
1704
d885e204 1705SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1706 (SCM n, SCM k, SCM m),
1707 "Return @var{n} raised to the integer exponent\n"
1708 "@var{k}, modulo @var{m}.\n"
1709 "\n"
1710 "@lisp\n"
1711 "(modulo-expt 2 3 5)\n"
1712 " @result{} 3\n"
1713 "@end lisp")
d885e204 1714#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1715{
1716 mpz_t n_tmp;
1717 mpz_t k_tmp;
1718 mpz_t m_tmp;
1719
1720 /* There are two classes of error we might encounter --
1721 1) Math errors, which we'll report by calling scm_num_overflow,
1722 and
1723 2) wrong-type errors, which of course we'll report by calling
1724 SCM_WRONG_TYPE_ARG.
1725 We don't report those errors immediately, however; instead we do
1726 some cleanup first. These variables tell us which error (if
1727 any) we should report after cleaning up.
1728 */
1729 int report_overflow = 0;
1730
1731 int position_of_wrong_type = 0;
1732 SCM value_of_wrong_type = SCM_INUM0;
1733
1734 SCM result = SCM_UNDEFINED;
1735
1736 mpz_init (n_tmp);
1737 mpz_init (k_tmp);
1738 mpz_init (m_tmp);
1739
bc36d050 1740 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1741 {
1742 report_overflow = 1;
1743 goto cleanup;
1744 }
1745
1746 if (!coerce_to_big (n, n_tmp))
1747 {
1748 value_of_wrong_type = n;
1749 position_of_wrong_type = 1;
1750 goto cleanup;
1751 }
1752
1753 if (!coerce_to_big (k, k_tmp))
1754 {
1755 value_of_wrong_type = k;
1756 position_of_wrong_type = 2;
1757 goto cleanup;
1758 }
1759
1760 if (!coerce_to_big (m, m_tmp))
1761 {
1762 value_of_wrong_type = m;
1763 position_of_wrong_type = 3;
1764 goto cleanup;
1765 }
1766
1767 /* if the exponent K is negative, and we simply call mpz_powm, we
1768 will get a divide-by-zero exception when an inverse 1/n mod m
1769 doesn't exist (or is not unique). Since exceptions are hard to
1770 handle, we'll attempt the inversion "by hand" -- that way, we get
1771 a simple failure code, which is easy to handle. */
1772
1773 if (-1 == mpz_sgn (k_tmp))
1774 {
1775 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1776 {
1777 report_overflow = 1;
1778 goto cleanup;
1779 }
1780 mpz_neg (k_tmp, k_tmp);
1781 }
1782
1783 result = scm_i_mkbig ();
1784 mpz_powm (SCM_I_BIG_MPZ (result),
1785 n_tmp,
1786 k_tmp,
1787 m_tmp);
b7b8c575
KR
1788
1789 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1790 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1791
518b7508
KR
1792 cleanup:
1793 mpz_clear (m_tmp);
1794 mpz_clear (k_tmp);
1795 mpz_clear (n_tmp);
1796
1797 if (report_overflow)
1798 scm_num_overflow (FUNC_NAME);
1799
1800 if (position_of_wrong_type)
1801 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1802 value_of_wrong_type);
1803
1804 return scm_i_normbig (result);
1805}
1806#undef FUNC_NAME
1807
a1ec6916 1808SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1809 (SCM n, SCM k),
ba6e7231
KR
1810 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1811 "exact integer, @var{n} can be any number.\n"
1812 "\n"
1813 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1814 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1815 "includes @math{0^0} is 1.\n"
1e6808ea 1816 "\n"
b380b885 1817 "@lisp\n"
ba6e7231
KR
1818 "(integer-expt 2 5) @result{} 32\n"
1819 "(integer-expt -3 3) @result{} -27\n"
1820 "(integer-expt 5 -3) @result{} 1/125\n"
1821 "(integer-expt 0 0) @result{} 1\n"
b380b885 1822 "@end lisp")
1bbd0b84 1823#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1824{
e25f3727 1825 scm_t_inum i2 = 0;
1c35cb19
RB
1826 SCM z_i2 = SCM_BOOL_F;
1827 int i2_is_big = 0;
d956fa6f 1828 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1829
5a8fc758 1830 SCM_VALIDATE_NUMBER (SCM_ARG1, n);
01c7284a
MW
1831 if (!SCM_I_INUMP (k) && !SCM_BIGP (k))
1832 SCM_WRONG_TYPE_ARG (2, k);
5a8fc758 1833
01c7284a
MW
1834 if (scm_is_true (scm_zero_p (n)))
1835 {
1836 if (scm_is_true (scm_zero_p (k))) /* 0^0 == 1 per R5RS */
1837 return acc; /* return exact 1, regardless of n */
1838 else if (scm_is_true (scm_positive_p (k)))
1839 return n;
1840 else /* return NaN for (0 ^ k) for negative k per R6RS */
1841 return scm_nan ();
1842 }
1843 else if (scm_is_eq (n, acc))
1844 return acc;
bc36d050 1845 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1846 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1847
e11e83f3
MV
1848 if (SCM_I_INUMP (k))
1849 i2 = SCM_I_INUM (k);
ca46fb90
RB
1850 else if (SCM_BIGP (k))
1851 {
1852 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1853 scm_remember_upto_here_1 (k);
1854 i2_is_big = 1;
1855 }
2830fd91 1856 else
ca46fb90
RB
1857 SCM_WRONG_TYPE_ARG (2, k);
1858
1859 if (i2_is_big)
f872b822 1860 {
ca46fb90
RB
1861 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1862 {
1863 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1864 n = scm_divide (n, SCM_UNDEFINED);
1865 }
1866 while (1)
1867 {
1868 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1869 {
ca46fb90
RB
1870 return acc;
1871 }
1872 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1873 {
ca46fb90
RB
1874 return scm_product (acc, n);
1875 }
1876 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1877 acc = scm_product (acc, n);
1878 n = scm_product (n, n);
1879 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1880 }
f872b822 1881 }
ca46fb90 1882 else
f872b822 1883 {
ca46fb90
RB
1884 if (i2 < 0)
1885 {
1886 i2 = -i2;
1887 n = scm_divide (n, SCM_UNDEFINED);
1888 }
1889 while (1)
1890 {
1891 if (0 == i2)
1892 return acc;
1893 if (1 == i2)
1894 return scm_product (acc, n);
1895 if (i2 & 1)
1896 acc = scm_product (acc, n);
1897 n = scm_product (n, n);
1898 i2 >>= 1;
1899 }
f872b822 1900 }
0f2d19dd 1901}
1bbd0b84 1902#undef FUNC_NAME
0f2d19dd 1903
a1ec6916 1904SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1905 (SCM n, SCM cnt),
32f19569
KR
1906 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1907 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1908 "\n"
e7644cb2 1909 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1910 "@var{cnt} is negative it's a division, rounded towards negative\n"
1911 "infinity. (Note that this is not the same rounding as\n"
1912 "@code{quotient} does.)\n"
1913 "\n"
1914 "With @var{n} viewed as an infinite precision twos complement,\n"
1915 "@code{ash} means a left shift introducing zero bits, or a right\n"
1916 "shift dropping bits.\n"
1e6808ea 1917 "\n"
b380b885 1918 "@lisp\n"
1e6808ea
MG
1919 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1920 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1921 "\n"
1922 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1923 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1924 "@end lisp")
1bbd0b84 1925#define FUNC_NAME s_scm_ash
0f2d19dd 1926{
3ab9f56e 1927 long bits_to_shift;
5efd3c7d 1928 bits_to_shift = scm_to_long (cnt);
ca46fb90 1929
788aca27
KR
1930 if (SCM_I_INUMP (n))
1931 {
e25f3727 1932 scm_t_inum nn = SCM_I_INUM (n);
788aca27
KR
1933
1934 if (bits_to_shift > 0)
1935 {
1936 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1937 overflow a non-zero fixnum. For smaller shifts we check the
1938 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1939 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1940 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1941 bits_to_shift)". */
1942
1943 if (nn == 0)
1944 return n;
1945
1946 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
e25f3727 1947 && ((scm_t_bits)
788aca27
KR
1948 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1949 <= 1))
1950 {
1951 return SCM_I_MAKINUM (nn << bits_to_shift);
1952 }
1953 else
1954 {
e25f3727 1955 SCM result = scm_i_inum2big (nn);
788aca27
KR
1956 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1957 bits_to_shift);
1958 return result;
1959 }
1960 }
1961 else
1962 {
1963 bits_to_shift = -bits_to_shift;
1964 if (bits_to_shift >= SCM_LONG_BIT)
cff5fa33 1965 return (nn >= 0 ? SCM_INUM0 : SCM_I_MAKINUM(-1));
788aca27
KR
1966 else
1967 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1968 }
1969
1970 }
1971 else if (SCM_BIGP (n))
ca46fb90 1972 {
788aca27
KR
1973 SCM result;
1974
1975 if (bits_to_shift == 0)
1976 return n;
1977
1978 result = scm_i_mkbig ();
1979 if (bits_to_shift >= 0)
1980 {
1981 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1982 bits_to_shift);
1983 return result;
1984 }
ca46fb90 1985 else
788aca27
KR
1986 {
1987 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1988 we have to allocate a bignum even if the result is going to be a
1989 fixnum. */
1990 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1991 -bits_to_shift);
1992 return scm_i_normbig (result);
1993 }
1994
ca46fb90
RB
1995 }
1996 else
788aca27
KR
1997 {
1998 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1999 }
0f2d19dd 2000}
1bbd0b84 2001#undef FUNC_NAME
0f2d19dd 2002
3c9f20f8 2003
a1ec6916 2004SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 2005 (SCM n, SCM start, SCM end),
1e6808ea
MG
2006 "Return the integer composed of the @var{start} (inclusive)\n"
2007 "through @var{end} (exclusive) bits of @var{n}. The\n"
2008 "@var{start}th bit becomes the 0-th bit in the result.\n"
2009 "\n"
b380b885
MD
2010 "@lisp\n"
2011 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
2012 " @result{} \"1010\"\n"
2013 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
2014 " @result{} \"10110\"\n"
2015 "@end lisp")
1bbd0b84 2016#define FUNC_NAME s_scm_bit_extract
0f2d19dd 2017{
7f848242 2018 unsigned long int istart, iend, bits;
5efd3c7d
MV
2019 istart = scm_to_ulong (start);
2020 iend = scm_to_ulong (end);
c1bfcf60 2021 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 2022
7f848242
KR
2023 /* how many bits to keep */
2024 bits = iend - istart;
2025
e11e83f3 2026 if (SCM_I_INUMP (n))
0aacf84e 2027 {
e25f3727 2028 scm_t_inum in = SCM_I_INUM (n);
7f848242
KR
2029
2030 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 2031 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 2032 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 2033
0aacf84e
MD
2034 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
2035 {
2036 /* Since we emulate two's complement encoded numbers, this
2037 * special case requires us to produce a result that has
7f848242 2038 * more bits than can be stored in a fixnum.
0aacf84e 2039 */
e25f3727 2040 SCM result = scm_i_inum2big (in);
7f848242
KR
2041 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
2042 bits);
2043 return result;
0aacf84e 2044 }
ac0c002c 2045
7f848242 2046 /* mask down to requisite bits */
857ae6af 2047 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 2048 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
2049 }
2050 else if (SCM_BIGP (n))
ac0c002c 2051 {
7f848242
KR
2052 SCM result;
2053 if (bits == 1)
2054 {
d956fa6f 2055 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
2056 }
2057 else
2058 {
2059 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
2060 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
2061 such bits into a ulong. */
2062 result = scm_i_mkbig ();
2063 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
2064 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
2065 result = scm_i_normbig (result);
2066 }
2067 scm_remember_upto_here_1 (n);
2068 return result;
ac0c002c 2069 }
0aacf84e 2070 else
78166ad5 2071 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2072}
1bbd0b84 2073#undef FUNC_NAME
0f2d19dd 2074
7f848242 2075
e4755e5c
JB
2076static const char scm_logtab[] = {
2077 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
2078};
1cc91f1b 2079
a1ec6916 2080SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 2081 (SCM n),
1e6808ea
MG
2082 "Return the number of bits in integer @var{n}. If integer is\n"
2083 "positive, the 1-bits in its binary representation are counted.\n"
2084 "If negative, the 0-bits in its two's-complement binary\n"
2085 "representation are counted. If 0, 0 is returned.\n"
2086 "\n"
b380b885
MD
2087 "@lisp\n"
2088 "(logcount #b10101010)\n"
ca46fb90
RB
2089 " @result{} 4\n"
2090 "(logcount 0)\n"
2091 " @result{} 0\n"
2092 "(logcount -2)\n"
2093 " @result{} 1\n"
2094 "@end lisp")
2095#define FUNC_NAME s_scm_logcount
2096{
e11e83f3 2097 if (SCM_I_INUMP (n))
f872b822 2098 {
e25f3727
AW
2099 unsigned long c = 0;
2100 scm_t_inum nn = SCM_I_INUM (n);
ca46fb90
RB
2101 if (nn < 0)
2102 nn = -1 - nn;
2103 while (nn)
2104 {
2105 c += scm_logtab[15 & nn];
2106 nn >>= 4;
2107 }
d956fa6f 2108 return SCM_I_MAKINUM (c);
f872b822 2109 }
ca46fb90 2110 else if (SCM_BIGP (n))
f872b822 2111 {
ca46fb90 2112 unsigned long count;
713a4259
KR
2113 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2114 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 2115 else
713a4259
KR
2116 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2117 scm_remember_upto_here_1 (n);
d956fa6f 2118 return SCM_I_MAKINUM (count);
f872b822 2119 }
ca46fb90
RB
2120 else
2121 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2122}
ca46fb90 2123#undef FUNC_NAME
0f2d19dd
JB
2124
2125
ca46fb90
RB
2126static const char scm_ilentab[] = {
2127 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2128};
2129
0f2d19dd 2130
ca46fb90
RB
2131SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2132 (SCM n),
2133 "Return the number of bits necessary to represent @var{n}.\n"
2134 "\n"
2135 "@lisp\n"
2136 "(integer-length #b10101010)\n"
2137 " @result{} 8\n"
2138 "(integer-length 0)\n"
2139 " @result{} 0\n"
2140 "(integer-length #b1111)\n"
2141 " @result{} 4\n"
2142 "@end lisp")
2143#define FUNC_NAME s_scm_integer_length
2144{
e11e83f3 2145 if (SCM_I_INUMP (n))
0aacf84e 2146 {
e25f3727 2147 unsigned long c = 0;
0aacf84e 2148 unsigned int l = 4;
e25f3727 2149 scm_t_inum nn = SCM_I_INUM (n);
0aacf84e
MD
2150 if (nn < 0)
2151 nn = -1 - nn;
2152 while (nn)
2153 {
2154 c += 4;
2155 l = scm_ilentab [15 & nn];
2156 nn >>= 4;
2157 }
d956fa6f 2158 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
2159 }
2160 else if (SCM_BIGP (n))
2161 {
2162 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2163 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2164 1 too big, so check for that and adjust. */
2165 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2166 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2167 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2168 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2169 size--;
2170 scm_remember_upto_here_1 (n);
d956fa6f 2171 return SCM_I_MAKINUM (size);
0aacf84e
MD
2172 }
2173 else
ca46fb90 2174 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
2175}
2176#undef FUNC_NAME
0f2d19dd
JB
2177
2178/*** NUMBERS -> STRINGS ***/
0b799eea
MV
2179#define SCM_MAX_DBL_PREC 60
2180#define SCM_MAX_DBL_RADIX 36
2181
2182/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2183static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2184static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2185
2186static
2187void init_dblprec(int *prec, int radix) {
2188 /* determine floating point precision by adding successively
2189 smaller increments to 1.0 until it is considered == 1.0 */
2190 double f = ((double)1.0)/radix;
2191 double fsum = 1.0 + f;
2192
2193 *prec = 0;
2194 while (fsum != 1.0)
2195 {
2196 if (++(*prec) > SCM_MAX_DBL_PREC)
2197 fsum = 1.0;
2198 else
2199 {
2200 f /= radix;
2201 fsum = f + 1.0;
2202 }
2203 }
2204 (*prec) -= 1;
2205}
2206
2207static
2208void init_fx_radix(double *fx_list, int radix)
2209{
2210 /* initialize a per-radix list of tolerances. When added
2211 to a number < 1.0, we can determine if we should raund
2212 up and quit converting a number to a string. */
2213 int i;
2214 fx_list[0] = 0.0;
2215 fx_list[1] = 0.5;
2216 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2217 fx_list[i] = (fx_list[i-1] / radix);
2218}
2219
2220/* use this array as a way to generate a single digit */
9b5fcde6 2221static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
0f2d19dd 2222
1be6b49c 2223static size_t
0b799eea 2224idbl2str (double f, char *a, int radix)
0f2d19dd 2225{
0b799eea
MV
2226 int efmt, dpt, d, i, wp;
2227 double *fx;
2228#ifdef DBL_MIN_10_EXP
2229 double f_cpy;
2230 int exp_cpy;
2231#endif /* DBL_MIN_10_EXP */
2232 size_t ch = 0;
2233 int exp = 0;
2234
2235 if(radix < 2 ||
2236 radix > SCM_MAX_DBL_RADIX)
2237 {
2238 /* revert to existing behavior */
2239 radix = 10;
2240 }
2241
2242 wp = scm_dblprec[radix-2];
2243 fx = fx_per_radix[radix-2];
0f2d19dd 2244
f872b822 2245 if (f == 0.0)
abb7e44d
MV
2246 {
2247#ifdef HAVE_COPYSIGN
2248 double sgn = copysign (1.0, f);
2249
2250 if (sgn < 0.0)
2251 a[ch++] = '-';
2252#endif
abb7e44d
MV
2253 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2254 }
7351e207 2255
2e65b52f 2256 if (isinf (f))
7351e207
MV
2257 {
2258 if (f < 0)
2259 strcpy (a, "-inf.0");
2260 else
2261 strcpy (a, "+inf.0");
2262 return ch+6;
2263 }
2e65b52f 2264 else if (isnan (f))
7351e207
MV
2265 {
2266 strcpy (a, "+nan.0");
2267 return ch+6;
2268 }
2269
f872b822
MD
2270 if (f < 0.0)
2271 {
2272 f = -f;
2273 a[ch++] = '-';
2274 }
7351e207 2275
f872b822
MD
2276#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2277 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2278 /* just do the checking...if it passes, we do the conversion for our
2279 radix again below */
2280 f_cpy = f;
2281 exp_cpy = exp;
2282
2283 while (f_cpy < 1.0)
f872b822 2284 {
0b799eea
MV
2285 f_cpy *= 10.0;
2286 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2287 {
2288 a[ch++] = '#';
2289 a[ch++] = '.';
2290 a[ch++] = '#';
2291 return ch;
2292 }
f872b822 2293 }
0b799eea 2294 while (f_cpy > 10.0)
f872b822 2295 {
0b799eea
MV
2296 f_cpy *= 0.10;
2297 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2298 {
2299 a[ch++] = '#';
2300 a[ch++] = '.';
2301 a[ch++] = '#';
2302 return ch;
2303 }
f872b822 2304 }
0b799eea
MV
2305#endif
2306
f872b822
MD
2307 while (f < 1.0)
2308 {
0b799eea 2309 f *= radix;
f872b822
MD
2310 exp--;
2311 }
0b799eea 2312 while (f > radix)
f872b822 2313 {
0b799eea 2314 f /= radix;
f872b822
MD
2315 exp++;
2316 }
0b799eea
MV
2317
2318 if (f + fx[wp] >= radix)
f872b822
MD
2319 {
2320 f = 1.0;
2321 exp++;
2322 }
0f2d19dd 2323 zero:
0b799eea
MV
2324#ifdef ENGNOT
2325 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2326 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2327 exp -= dpt++;
2328 efmt = 1;
f872b822
MD
2329#else
2330 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2331 if (!efmt)
cda139a7
MD
2332 {
2333 if (exp < 0)
2334 {
2335 a[ch++] = '0';
2336 a[ch++] = '.';
2337 dpt = exp;
f872b822
MD
2338 while (++dpt)
2339 a[ch++] = '0';
cda139a7
MD
2340 }
2341 else
f872b822 2342 dpt = exp + 1;
cda139a7 2343 }
0f2d19dd
JB
2344 else
2345 dpt = 1;
f872b822
MD
2346#endif
2347
2348 do
2349 {
2350 d = f;
2351 f -= d;
0b799eea 2352 a[ch++] = number_chars[d];
f872b822
MD
2353 if (f < fx[wp])
2354 break;
2355 if (f + fx[wp] >= 1.0)
2356 {
0b799eea 2357 a[ch - 1] = number_chars[d+1];
f872b822
MD
2358 break;
2359 }
0b799eea 2360 f *= radix;
f872b822
MD
2361 if (!(--dpt))
2362 a[ch++] = '.';
0f2d19dd 2363 }
f872b822 2364 while (wp--);
0f2d19dd
JB
2365
2366 if (dpt > 0)
cda139a7 2367 {
f872b822 2368#ifndef ENGNOT
cda139a7
MD
2369 if ((dpt > 4) && (exp > 6))
2370 {
f872b822 2371 d = (a[0] == '-' ? 2 : 1);
cda139a7 2372 for (i = ch++; i > d; i--)
f872b822 2373 a[i] = a[i - 1];
cda139a7
MD
2374 a[d] = '.';
2375 efmt = 1;
2376 }
2377 else
f872b822 2378#endif
cda139a7 2379 {
f872b822
MD
2380 while (--dpt)
2381 a[ch++] = '0';
cda139a7
MD
2382 a[ch++] = '.';
2383 }
2384 }
f872b822
MD
2385 if (a[ch - 1] == '.')
2386 a[ch++] = '0'; /* trailing zero */
2387 if (efmt && exp)
2388 {
2389 a[ch++] = 'e';
2390 if (exp < 0)
2391 {
2392 exp = -exp;
2393 a[ch++] = '-';
2394 }
0b799eea
MV
2395 for (i = radix; i <= exp; i *= radix);
2396 for (i /= radix; i; i /= radix)
f872b822 2397 {
0b799eea 2398 a[ch++] = number_chars[exp / i];
f872b822
MD
2399 exp %= i;
2400 }
0f2d19dd 2401 }
0f2d19dd
JB
2402 return ch;
2403}
2404
7a1aba42
MV
2405
2406static size_t
2407icmplx2str (double real, double imag, char *str, int radix)
2408{
2409 size_t i;
2410
2411 i = idbl2str (real, str, radix);
2412 if (imag != 0.0)
2413 {
2414 /* Don't output a '+' for negative numbers or for Inf and
2415 NaN. They will provide their own sign. */
2e65b52f 2416 if (0 <= imag && !isinf (imag) && !isnan (imag))
7a1aba42
MV
2417 str[i++] = '+';
2418 i += idbl2str (imag, &str[i], radix);
2419 str[i++] = 'i';
2420 }
2421 return i;
2422}
2423
1be6b49c 2424static size_t
0b799eea 2425iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2426{
1be6b49c 2427 size_t i;
3c9a524f 2428 if (SCM_REALP (flt))
0b799eea 2429 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2430 else
7a1aba42
MV
2431 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2432 str, radix);
0f2d19dd
JB
2433 return i;
2434}
0f2d19dd 2435
2881e77b 2436/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
2437 characters in the result.
2438 rad is output base
2439 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2440size_t
2881e77b
MV
2441scm_iint2str (scm_t_intmax num, int rad, char *p)
2442{
2443 if (num < 0)
2444 {
2445 *p++ = '-';
2446 return scm_iuint2str (-num, rad, p) + 1;
2447 }
2448 else
2449 return scm_iuint2str (num, rad, p);
2450}
2451
2452/* convert a scm_t_intmax to a string (unterminated). returns the number of
2453 characters in the result.
2454 rad is output base
2455 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2456size_t
2457scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 2458{
1be6b49c
ML
2459 size_t j = 1;
2460 size_t i;
2881e77b 2461 scm_t_uintmax n = num;
5c11cc9d 2462
a6f3af16
AW
2463 if (rad < 2 || rad > 36)
2464 scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
2465
f872b822 2466 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2467 j++;
2468
2469 i = j;
2881e77b 2470 n = num;
f872b822
MD
2471 while (i--)
2472 {
5c11cc9d
GH
2473 int d = n % rad;
2474
f872b822 2475 n /= rad;
a6f3af16 2476 p[i] = number_chars[d];
f872b822 2477 }
0f2d19dd
JB
2478 return j;
2479}
2480
a1ec6916 2481SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2482 (SCM n, SCM radix),
2483 "Return a string holding the external representation of the\n"
942e5b91
MG
2484 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2485 "inexact, a radix of 10 will be used.")
1bbd0b84 2486#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2487{
1bbd0b84 2488 int base;
98cb6e75 2489
0aacf84e 2490 if (SCM_UNBNDP (radix))
98cb6e75 2491 base = 10;
0aacf84e 2492 else
5efd3c7d 2493 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2494
e11e83f3 2495 if (SCM_I_INUMP (n))
0aacf84e
MD
2496 {
2497 char num_buf [SCM_INTBUFLEN];
e11e83f3 2498 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 2499 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
2500 }
2501 else if (SCM_BIGP (n))
2502 {
2503 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2504 scm_remember_upto_here_1 (n);
cc95e00a 2505 return scm_take_locale_string (str);
0aacf84e 2506 }
f92e85f7
MV
2507 else if (SCM_FRACTIONP (n))
2508 {
f92e85f7 2509 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 2510 scm_from_locale_string ("/"),
f92e85f7
MV
2511 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2512 }
0aacf84e
MD
2513 else if (SCM_INEXACTP (n))
2514 {
2515 char num_buf [FLOBUFLEN];
cc95e00a 2516 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2517 }
2518 else
bb628794 2519 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2520}
1bbd0b84 2521#undef FUNC_NAME
0f2d19dd
JB
2522
2523
ca46fb90
RB
2524/* These print routines used to be stubbed here so that scm_repl.c
2525 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2526
0f2d19dd 2527int
e81d98ec 2528scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2529{
56e55ac7 2530 char num_buf[FLOBUFLEN];
0b799eea 2531 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2532 return !0;
2533}
2534
b479fe9a
MV
2535void
2536scm_i_print_double (double val, SCM port)
2537{
2538 char num_buf[FLOBUFLEN];
2539 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2540}
2541
f3ae5d60 2542int
e81d98ec 2543scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2544
f3ae5d60 2545{
56e55ac7 2546 char num_buf[FLOBUFLEN];
0b799eea 2547 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2548 return !0;
2549}
1cc91f1b 2550
7a1aba42
MV
2551void
2552scm_i_print_complex (double real, double imag, SCM port)
2553{
2554 char num_buf[FLOBUFLEN];
2555 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2556}
2557
f92e85f7
MV
2558int
2559scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2560{
2561 SCM str;
f92e85f7 2562 str = scm_number_to_string (sexp, SCM_UNDEFINED);
a9178715 2563 scm_display (str, port);
f92e85f7
MV
2564 scm_remember_upto_here_1 (str);
2565 return !0;
2566}
2567
0f2d19dd 2568int
e81d98ec 2569scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2570{
ca46fb90
RB
2571 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2572 scm_remember_upto_here_1 (exp);
2573 scm_lfwrite (str, (size_t) strlen (str), port);
2574 free (str);
0f2d19dd
JB
2575 return !0;
2576}
2577/*** END nums->strs ***/
2578
3c9a524f 2579
0f2d19dd 2580/*** STRINGS -> NUMBERS ***/
2a8fecee 2581
3c9a524f
DH
2582/* The following functions implement the conversion from strings to numbers.
2583 * The implementation somehow follows the grammar for numbers as it is given
2584 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2585 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2586 * points should be noted about the implementation:
2587 * * Each function keeps a local index variable 'idx' that points at the
2588 * current position within the parsed string. The global index is only
2589 * updated if the function could parse the corresponding syntactic unit
2590 * successfully.
2591 * * Similarly, the functions keep track of indicators of inexactness ('#',
2592 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2593 * global exactness information is only updated after each part has been
2594 * successfully parsed.
2595 * * Sequences of digits are parsed into temporary variables holding fixnums.
2596 * Only if these fixnums would overflow, the result variables are updated
2597 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2598 * the temporary variables holding the fixnums are cleared, and the process
2599 * starts over again. If for example fixnums were able to store five decimal
2600 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2601 * and the result was computed as 12345 * 100000 + 67890. In other words,
2602 * only every five digits two bignum operations were performed.
2603 */
2604
2605enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2606
2607/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2608
a6f3af16
AW
2609/* Caller is responsible for checking that the return value is in range
2610 for the given radix, which should be <= 36. */
2611static unsigned int
2612char_decimal_value (scm_t_uint32 c)
2613{
2614 /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
2615 that's certainly above any valid decimal, so we take advantage of
2616 that to elide some tests. */
2617 unsigned int d = (unsigned int) uc_decimal_value (c);
2618
2619 /* If that failed, try extended hexadecimals, then. Only accept ascii
2620 hexadecimals. */
2621 if (d >= 10U)
2622 {
2623 c = uc_tolower (c);
2624 if (c >= (scm_t_uint32) 'a')
2625 d = c - (scm_t_uint32)'a' + 10U;
2626 }
2627 return d;
2628}
3c9a524f 2629
2a8fecee 2630static SCM
3f47e526 2631mem2uinteger (SCM mem, unsigned int *p_idx,
3c9a524f 2632 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2633{
3c9a524f
DH
2634 unsigned int idx = *p_idx;
2635 unsigned int hash_seen = 0;
2636 scm_t_bits shift = 1;
2637 scm_t_bits add = 0;
2638 unsigned int digit_value;
2639 SCM result;
2640 char c;
3f47e526 2641 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2642
2643 if (idx == len)
2644 return SCM_BOOL_F;
2a8fecee 2645
3f47e526 2646 c = scm_i_string_ref (mem, idx);
a6f3af16 2647 digit_value = char_decimal_value (c);
3c9a524f
DH
2648 if (digit_value >= radix)
2649 return SCM_BOOL_F;
2650
2651 idx++;
d956fa6f 2652 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2653 while (idx != len)
f872b822 2654 {
3f47e526 2655 scm_t_wchar c = scm_i_string_ref (mem, idx);
a6f3af16 2656 if (c == '#')
3c9a524f
DH
2657 {
2658 hash_seen = 1;
2659 digit_value = 0;
2660 }
a6f3af16
AW
2661 else if (hash_seen)
2662 break;
3c9a524f 2663 else
a6f3af16
AW
2664 {
2665 digit_value = char_decimal_value (c);
2666 /* This check catches non-decimals in addition to out-of-range
2667 decimals. */
2668 if (digit_value >= radix)
2669 break;
2670 }
3c9a524f
DH
2671
2672 idx++;
2673 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2674 {
d956fa6f 2675 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2676 if (add > 0)
d956fa6f 2677 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2678
2679 shift = radix;
2680 add = digit_value;
2681 }
2682 else
2683 {
2684 shift = shift * radix;
2685 add = add * radix + digit_value;
2686 }
2687 };
2688
2689 if (shift > 1)
d956fa6f 2690 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2691 if (add > 0)
d956fa6f 2692 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2693
2694 *p_idx = idx;
2695 if (hash_seen)
2696 *p_exactness = INEXACT;
2697
2698 return result;
2a8fecee
JB
2699}
2700
2701
3c9a524f
DH
2702/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2703 * covers the parts of the rules that start at a potential point. The value
2704 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2705 * in variable result. The content of *p_exactness indicates, whether a hash
2706 * has already been seen in the digits before the point.
3c9a524f 2707 */
1cc91f1b 2708
3f47e526 2709#define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
3c9a524f
DH
2710
2711static SCM
3f47e526 2712mem2decimal_from_point (SCM result, SCM mem,
3c9a524f 2713 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2714{
3c9a524f
DH
2715 unsigned int idx = *p_idx;
2716 enum t_exactness x = *p_exactness;
3f47e526 2717 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2718
2719 if (idx == len)
79d34f68 2720 return result;
3c9a524f 2721
3f47e526 2722 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2723 {
2724 scm_t_bits shift = 1;
2725 scm_t_bits add = 0;
2726 unsigned int digit_value;
cff5fa33 2727 SCM big_shift = SCM_INUM1;
3c9a524f
DH
2728
2729 idx++;
2730 while (idx != len)
2731 {
3f47e526
MG
2732 scm_t_wchar c = scm_i_string_ref (mem, idx);
2733 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2734 {
2735 if (x == INEXACT)
2736 return SCM_BOOL_F;
2737 else
2738 digit_value = DIGIT2UINT (c);
2739 }
2740 else if (c == '#')
2741 {
2742 x = INEXACT;
2743 digit_value = 0;
2744 }
2745 else
2746 break;
2747
2748 idx++;
2749 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2750 {
d956fa6f
MV
2751 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2752 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2753 if (add > 0)
d956fa6f 2754 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2755
2756 shift = 10;
2757 add = digit_value;
2758 }
2759 else
2760 {
2761 shift = shift * 10;
2762 add = add * 10 + digit_value;
2763 }
2764 };
2765
2766 if (add > 0)
2767 {
d956fa6f
MV
2768 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2769 result = scm_product (result, SCM_I_MAKINUM (shift));
2770 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2771 }
2772
d8592269 2773 result = scm_divide (result, big_shift);
79d34f68 2774
3c9a524f
DH
2775 /* We've seen a decimal point, thus the value is implicitly inexact. */
2776 x = INEXACT;
f872b822 2777 }
3c9a524f 2778
3c9a524f 2779 if (idx != len)
f872b822 2780 {
3c9a524f
DH
2781 int sign = 1;
2782 unsigned int start;
3f47e526 2783 scm_t_wchar c;
3c9a524f
DH
2784 int exponent;
2785 SCM e;
2786
2787 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2788
3f47e526 2789 switch (scm_i_string_ref (mem, idx))
f872b822 2790 {
3c9a524f
DH
2791 case 'd': case 'D':
2792 case 'e': case 'E':
2793 case 'f': case 'F':
2794 case 'l': case 'L':
2795 case 's': case 'S':
2796 idx++;
ee0ddd21
AW
2797 if (idx == len)
2798 return SCM_BOOL_F;
2799
3c9a524f 2800 start = idx;
3f47e526 2801 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2802 if (c == '-')
2803 {
2804 idx++;
ee0ddd21
AW
2805 if (idx == len)
2806 return SCM_BOOL_F;
2807
3c9a524f 2808 sign = -1;
3f47e526 2809 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2810 }
2811 else if (c == '+')
2812 {
2813 idx++;
ee0ddd21
AW
2814 if (idx == len)
2815 return SCM_BOOL_F;
2816
3c9a524f 2817 sign = 1;
3f47e526 2818 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2819 }
2820 else
2821 sign = 1;
2822
3f47e526 2823 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2824 return SCM_BOOL_F;
2825
2826 idx++;
2827 exponent = DIGIT2UINT (c);
2828 while (idx != len)
f872b822 2829 {
3f47e526
MG
2830 scm_t_wchar c = scm_i_string_ref (mem, idx);
2831 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2832 {
2833 idx++;
2834 if (exponent <= SCM_MAXEXP)
2835 exponent = exponent * 10 + DIGIT2UINT (c);
2836 }
2837 else
2838 break;
f872b822 2839 }
3c9a524f
DH
2840
2841 if (exponent > SCM_MAXEXP)
f872b822 2842 {
3c9a524f 2843 size_t exp_len = idx - start;
3f47e526 2844 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
3c9a524f
DH
2845 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2846 scm_out_of_range ("string->number", exp_num);
f872b822 2847 }
3c9a524f 2848
d956fa6f 2849 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2850 if (sign == 1)
2851 result = scm_product (result, e);
2852 else
f92e85f7 2853 result = scm_divide2real (result, e);
3c9a524f
DH
2854
2855 /* We've seen an exponent, thus the value is implicitly inexact. */
2856 x = INEXACT;
2857
f872b822 2858 break;
3c9a524f 2859
f872b822 2860 default:
3c9a524f 2861 break;
f872b822 2862 }
0f2d19dd 2863 }
3c9a524f
DH
2864
2865 *p_idx = idx;
2866 if (x == INEXACT)
2867 *p_exactness = x;
2868
2869 return result;
0f2d19dd 2870}
0f2d19dd 2871
3c9a524f
DH
2872
2873/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2874
2875static SCM
3f47e526 2876mem2ureal (SCM mem, unsigned int *p_idx,
3c9a524f 2877 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2878{
3c9a524f 2879 unsigned int idx = *p_idx;
164d2481 2880 SCM result;
3f47e526 2881 size_t len = scm_i_string_length (mem);
3c9a524f 2882
40f89215
NJ
2883 /* Start off believing that the number will be exact. This changes
2884 to INEXACT if we see a decimal point or a hash. */
2885 enum t_exactness x = EXACT;
2886
3c9a524f
DH
2887 if (idx == len)
2888 return SCM_BOOL_F;
2889
3f47e526 2890 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
7351e207
MV
2891 {
2892 *p_idx = idx+5;
2893 return scm_inf ();
2894 }
2895
3f47e526 2896 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
7351e207 2897 {
d8592269
MV
2898 /* Cobble up the fractional part. We might want to set the
2899 NaN's mantissa from it. */
7351e207 2900 idx += 4;
3f47e526 2901 mem2uinteger (mem, &idx, 10, &x);
7351e207
MV
2902 *p_idx = idx;
2903 return scm_nan ();
2904 }
2905
3f47e526 2906 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2907 {
2908 if (radix != 10)
2909 return SCM_BOOL_F;
2910 else if (idx + 1 == len)
2911 return SCM_BOOL_F;
3f47e526 2912 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
3c9a524f
DH
2913 return SCM_BOOL_F;
2914 else
cff5fa33 2915 result = mem2decimal_from_point (SCM_INUM0, mem,
40f89215 2916 p_idx, &x);
f872b822 2917 }
3c9a524f
DH
2918 else
2919 {
3c9a524f 2920 SCM uinteger;
3c9a524f 2921
3f47e526 2922 uinteger = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2923 if (scm_is_false (uinteger))
3c9a524f
DH
2924 return SCM_BOOL_F;
2925
2926 if (idx == len)
2927 result = uinteger;
3f47e526 2928 else if (scm_i_string_ref (mem, idx) == '/')
f872b822 2929 {
3c9a524f
DH
2930 SCM divisor;
2931
2932 idx++;
ee0ddd21
AW
2933 if (idx == len)
2934 return SCM_BOOL_F;
3c9a524f 2935
3f47e526 2936 divisor = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2937 if (scm_is_false (divisor))
3c9a524f
DH
2938 return SCM_BOOL_F;
2939
f92e85f7 2940 /* both are int/big here, I assume */
cba42c93 2941 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2942 }
3c9a524f
DH
2943 else if (radix == 10)
2944 {
3f47e526 2945 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
73e4de09 2946 if (scm_is_false (result))
3c9a524f
DH
2947 return SCM_BOOL_F;
2948 }
2949 else
2950 result = uinteger;
2951
2952 *p_idx = idx;
f872b822 2953 }
164d2481 2954
40f89215
NJ
2955 /* Update *p_exactness if the number just read was inexact. This is
2956 important for complex numbers, so that a complex number is
2957 treated as inexact overall if either its real or imaginary part
2958 is inexact.
2959 */
2960 if (x == INEXACT)
2961 *p_exactness = x;
2962
164d2481
MV
2963 /* When returning an inexact zero, make sure it is represented as a
2964 floating point value so that we can change its sign.
2965 */
cff5fa33 2966 if (scm_is_eq (result, SCM_INUM0) && *p_exactness == INEXACT)
55f26379 2967 result = scm_from_double (0.0);
164d2481
MV
2968
2969 return result;
3c9a524f 2970}
0f2d19dd 2971
0f2d19dd 2972
3c9a524f 2973/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2974
3c9a524f 2975static SCM
3f47e526 2976mem2complex (SCM mem, unsigned int idx,
3c9a524f
DH
2977 unsigned int radix, enum t_exactness *p_exactness)
2978{
3f47e526 2979 scm_t_wchar c;
3c9a524f
DH
2980 int sign = 0;
2981 SCM ureal;
3f47e526 2982 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2983
2984 if (idx == len)
2985 return SCM_BOOL_F;
2986
3f47e526 2987 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2988 if (c == '+')
2989 {
2990 idx++;
2991 sign = 1;
2992 }
2993 else if (c == '-')
2994 {
2995 idx++;
2996 sign = -1;
0f2d19dd 2997 }
0f2d19dd 2998
3c9a524f
DH
2999 if (idx == len)
3000 return SCM_BOOL_F;
3001
3f47e526 3002 ureal = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 3003 if (scm_is_false (ureal))
f872b822 3004 {
3c9a524f
DH
3005 /* input must be either +i or -i */
3006
3007 if (sign == 0)
3008 return SCM_BOOL_F;
3009
3f47e526
MG
3010 if (scm_i_string_ref (mem, idx) == 'i'
3011 || scm_i_string_ref (mem, idx) == 'I')
f872b822 3012 {
3c9a524f
DH
3013 idx++;
3014 if (idx != len)
3015 return SCM_BOOL_F;
3016
cff5fa33 3017 return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
f872b822 3018 }
3c9a524f
DH
3019 else
3020 return SCM_BOOL_F;
0f2d19dd 3021 }
3c9a524f
DH
3022 else
3023 {
73e4de09 3024 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 3025 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 3026
3c9a524f
DH
3027 if (idx == len)
3028 return ureal;
3029
3f47e526 3030 c = scm_i_string_ref (mem, idx);
3c9a524f 3031 switch (c)
f872b822 3032 {
3c9a524f
DH
3033 case 'i': case 'I':
3034 /* either +<ureal>i or -<ureal>i */
3035
3036 idx++;
3037 if (sign == 0)
3038 return SCM_BOOL_F;
3039 if (idx != len)
3040 return SCM_BOOL_F;
cff5fa33 3041 return scm_make_rectangular (SCM_INUM0, ureal);
3c9a524f
DH
3042
3043 case '@':
3044 /* polar input: <real>@<real>. */
3045
3046 idx++;
3047 if (idx == len)
3048 return SCM_BOOL_F;
3049 else
f872b822 3050 {
3c9a524f
DH
3051 int sign;
3052 SCM angle;
3053 SCM result;
3054
3f47e526 3055 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
3056 if (c == '+')
3057 {
3058 idx++;
ee0ddd21
AW
3059 if (idx == len)
3060 return SCM_BOOL_F;
3c9a524f
DH
3061 sign = 1;
3062 }
3063 else if (c == '-')
3064 {
3065 idx++;
ee0ddd21
AW
3066 if (idx == len)
3067 return SCM_BOOL_F;
3c9a524f
DH
3068 sign = -1;
3069 }
3070 else
3071 sign = 1;
3072
3f47e526 3073 angle = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 3074 if (scm_is_false (angle))
3c9a524f
DH
3075 return SCM_BOOL_F;
3076 if (idx != len)
3077 return SCM_BOOL_F;
3078
73e4de09 3079 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
3080 angle = scm_difference (angle, SCM_UNDEFINED);
3081
3082 result = scm_make_polar (ureal, angle);
3083 return result;
f872b822 3084 }
3c9a524f
DH
3085 case '+':
3086 case '-':
3087 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 3088
3c9a524f
DH
3089 idx++;
3090 if (idx == len)
3091 return SCM_BOOL_F;
3092 else
3093 {
3094 int sign = (c == '+') ? 1 : -1;
3f47e526 3095 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
0f2d19dd 3096
73e4de09 3097 if (scm_is_false (imag))
d956fa6f 3098 imag = SCM_I_MAKINUM (sign);
23295dc3 3099 else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
1fe5e088 3100 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 3101
3c9a524f
DH
3102 if (idx == len)
3103 return SCM_BOOL_F;
3f47e526
MG
3104 if (scm_i_string_ref (mem, idx) != 'i'
3105 && scm_i_string_ref (mem, idx) != 'I')
3c9a524f 3106 return SCM_BOOL_F;
0f2d19dd 3107
3c9a524f
DH
3108 idx++;
3109 if (idx != len)
3110 return SCM_BOOL_F;
0f2d19dd 3111
1fe5e088 3112 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
3113 }
3114 default:
3115 return SCM_BOOL_F;
3116 }
3117 }
0f2d19dd 3118}
0f2d19dd
JB
3119
3120
3c9a524f
DH
3121/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
3122
3123enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 3124
0f2d19dd 3125SCM
3f47e526 3126scm_i_string_to_number (SCM mem, unsigned int default_radix)
0f2d19dd 3127{
3c9a524f
DH
3128 unsigned int idx = 0;
3129 unsigned int radix = NO_RADIX;
3130 enum t_exactness forced_x = NO_EXACTNESS;
3131 enum t_exactness implicit_x = EXACT;
3132 SCM result;
3f47e526 3133 size_t len = scm_i_string_length (mem);
3c9a524f
DH
3134
3135 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3f47e526 3136 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3c9a524f 3137 {
3f47e526 3138 switch (scm_i_string_ref (mem, idx + 1))
3c9a524f
DH
3139 {
3140 case 'b': case 'B':
3141 if (radix != NO_RADIX)
3142 return SCM_BOOL_F;
3143 radix = DUAL;
3144 break;
3145 case 'd': case 'D':
3146 if (radix != NO_RADIX)
3147 return SCM_BOOL_F;
3148 radix = DEC;
3149 break;
3150 case 'i': case 'I':
3151 if (forced_x != NO_EXACTNESS)
3152 return SCM_BOOL_F;
3153 forced_x = INEXACT;
3154 break;
3155 case 'e': case 'E':
3156 if (forced_x != NO_EXACTNESS)
3157 return SCM_BOOL_F;
3158 forced_x = EXACT;
3159 break;
3160 case 'o': case 'O':
3161 if (radix != NO_RADIX)
3162 return SCM_BOOL_F;
3163 radix = OCT;
3164 break;
3165 case 'x': case 'X':
3166 if (radix != NO_RADIX)
3167 return SCM_BOOL_F;
3168 radix = HEX;
3169 break;
3170 default:
f872b822 3171 return SCM_BOOL_F;
3c9a524f
DH
3172 }
3173 idx += 2;
3174 }
3175
3176 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3177 if (radix == NO_RADIX)
3f47e526 3178 result = mem2complex (mem, idx, default_radix, &implicit_x);
3c9a524f 3179 else
3f47e526 3180 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3c9a524f 3181
73e4de09 3182 if (scm_is_false (result))
3c9a524f 3183 return SCM_BOOL_F;
f872b822 3184
3c9a524f 3185 switch (forced_x)
f872b822 3186 {
3c9a524f
DH
3187 case EXACT:
3188 if (SCM_INEXACTP (result))
3c9a524f
DH
3189 return scm_inexact_to_exact (result);
3190 else
3191 return result;
3192 case INEXACT:
3193 if (SCM_INEXACTP (result))
3194 return result;
3195 else
3196 return scm_exact_to_inexact (result);
3197 case NO_EXACTNESS:
3198 default:
3199 if (implicit_x == INEXACT)
3200 {
3201 if (SCM_INEXACTP (result))
3202 return result;
3203 else
3204 return scm_exact_to_inexact (result);
3205 }
3206 else
3207 return result;
f872b822 3208 }
0f2d19dd
JB
3209}
3210
3f47e526
MG
3211SCM
3212scm_c_locale_stringn_to_number (const char* mem, size_t len,
3213 unsigned int default_radix)
3214{
3215 SCM str = scm_from_locale_stringn (mem, len);
3216
3217 return scm_i_string_to_number (str, default_radix);
3218}
3219
0f2d19dd 3220
a1ec6916 3221SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 3222 (SCM string, SCM radix),
1e6808ea 3223 "Return a number of the maximally precise representation\n"
942e5b91 3224 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
3225 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3226 "is a default radix that may be overridden by an explicit radix\n"
3227 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3228 "supplied, then the default radix is 10. If string is not a\n"
3229 "syntactically valid notation for a number, then\n"
3230 "@code{string->number} returns @code{#f}.")
1bbd0b84 3231#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
3232{
3233 SCM answer;
5efd3c7d 3234 unsigned int base;
a6d9e5ab 3235 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
3236
3237 if (SCM_UNBNDP (radix))
3238 base = 10;
3239 else
3240 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3241
3f47e526 3242 answer = scm_i_string_to_number (string, base);
8824ac88
MV
3243 scm_remember_upto_here_1 (string);
3244 return answer;
0f2d19dd 3245}
1bbd0b84 3246#undef FUNC_NAME
3c9a524f
DH
3247
3248
0f2d19dd
JB
3249/*** END strs->nums ***/
3250
5986c47d 3251
8507ec80
MV
3252SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3253 (SCM x),
3254 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3255 "otherwise.")
3256#define FUNC_NAME s_scm_number_p
3257{
3258 return scm_from_bool (SCM_NUMBERP (x));
3259}
3260#undef FUNC_NAME
3261
3262SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3263 (SCM x),
942e5b91 3264 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3265 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3266 "values form subsets of the set of complex numbers, i. e. the\n"
3267 "predicate will also be fulfilled if @var{x} is a real,\n"
3268 "rational or integer number.")
8507ec80 3269#define FUNC_NAME s_scm_complex_p
0f2d19dd 3270{
8507ec80
MV
3271 /* all numbers are complex. */
3272 return scm_number_p (x);
0f2d19dd 3273}
1bbd0b84 3274#undef FUNC_NAME
0f2d19dd 3275
f92e85f7
MV
3276SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3277 (SCM x),
3278 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3279 "otherwise. Note that the set of integer values forms a subset of\n"
3280 "the set of real numbers, i. e. the predicate will also be\n"
3281 "fulfilled if @var{x} is an integer number.")
3282#define FUNC_NAME s_scm_real_p
3283{
c960e556
MW
3284 return scm_from_bool
3285 (SCM_I_INUMP (x) || SCM_REALP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x));
f92e85f7
MV
3286}
3287#undef FUNC_NAME
3288
3289SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3290 (SCM x),
942e5b91 3291 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3292 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3293 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3294 "fulfilled if @var{x} is an integer number.")
3295#define FUNC_NAME s_scm_rational_p
0f2d19dd 3296{
c960e556 3297 if (SCM_I_INUMP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x))
f92e85f7
MV
3298 return SCM_BOOL_T;
3299 else if (SCM_REALP (x))
c960e556
MW
3300 /* due to their limited precision, finite floating point numbers are
3301 rational as well. (finite means neither infinity nor a NaN) */
3302 return scm_from_bool (DOUBLE_IS_FINITE (SCM_REAL_VALUE (x)));
0aacf84e 3303 else
bb628794 3304 return SCM_BOOL_F;
0f2d19dd 3305}
1bbd0b84 3306#undef FUNC_NAME
0f2d19dd 3307
a1ec6916 3308SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3309 (SCM x),
942e5b91
MG
3310 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3311 "else.")
1bbd0b84 3312#define FUNC_NAME s_scm_integer_p
0f2d19dd 3313{
c960e556 3314 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f872b822 3315 return SCM_BOOL_T;
c960e556
MW
3316 else if (SCM_REALP (x))
3317 {
3318 double val = SCM_REAL_VALUE (x);
3319 return scm_from_bool (!isinf (val) && (val == floor (val)));
3320 }
3321 else
8e43ed5d 3322 return SCM_BOOL_F;
0f2d19dd 3323}
1bbd0b84 3324#undef FUNC_NAME
0f2d19dd
JB
3325
3326
8a1f4f98
AW
3327SCM scm_i_num_eq_p (SCM, SCM, SCM);
3328SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
3329 (SCM x, SCM y, SCM rest),
3330 "Return @code{#t} if all parameters are numerically equal.")
3331#define FUNC_NAME s_scm_i_num_eq_p
3332{
3333 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3334 return SCM_BOOL_T;
3335 while (!scm_is_null (rest))
3336 {
3337 if (scm_is_false (scm_num_eq_p (x, y)))
3338 return SCM_BOOL_F;
3339 x = y;
3340 y = scm_car (rest);
3341 rest = scm_cdr (rest);
3342 }
3343 return scm_num_eq_p (x, y);
3344}
3345#undef FUNC_NAME
0f2d19dd 3346SCM
6e8d25a6 3347scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3348{
d8b95e27 3349 again:
e11e83f3 3350 if (SCM_I_INUMP (x))
0aacf84e 3351 {
e25f3727 3352 scm_t_signed_bits xx = SCM_I_INUM (x);
e11e83f3 3353 if (SCM_I_INUMP (y))
0aacf84e 3354 {
e25f3727 3355 scm_t_signed_bits yy = SCM_I_INUM (y);
73e4de09 3356 return scm_from_bool (xx == yy);
0aacf84e
MD
3357 }
3358 else if (SCM_BIGP (y))
3359 return SCM_BOOL_F;
3360 else if (SCM_REALP (y))
e8c5b1f2
KR
3361 {
3362 /* On a 32-bit system an inum fits a double, we can cast the inum
3363 to a double and compare.
3364
3365 But on a 64-bit system an inum is bigger than a double and
3366 casting it to a double (call that dxx) will round. dxx is at
3367 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3368 an integer and fits a long. So we cast yy to a long and
3369 compare with plain xx.
3370
3371 An alternative (for any size system actually) would be to check
3372 yy is an integer (with floor) and is in range of an inum
3373 (compare against appropriate powers of 2) then test
e25f3727
AW
3374 xx==(scm_t_signed_bits)yy. It's just a matter of which
3375 casts/comparisons might be fastest or easiest for the cpu. */
e8c5b1f2
KR
3376
3377 double yy = SCM_REAL_VALUE (y);
3a1b45fd
MV
3378 return scm_from_bool ((double) xx == yy
3379 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 3380 || xx == (scm_t_signed_bits) yy));
e8c5b1f2 3381 }
0aacf84e 3382 else if (SCM_COMPLEXP (y))
73e4de09 3383 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3384 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3385 else if (SCM_FRACTIONP (y))
3386 return SCM_BOOL_F;
0aacf84e 3387 else
8a1f4f98 3388 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3389 }
0aacf84e
MD
3390 else if (SCM_BIGP (x))
3391 {
e11e83f3 3392 if (SCM_I_INUMP (y))
0aacf84e
MD
3393 return SCM_BOOL_F;
3394 else if (SCM_BIGP (y))
3395 {
3396 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3397 scm_remember_upto_here_2 (x, y);
73e4de09 3398 return scm_from_bool (0 == cmp);
0aacf84e
MD
3399 }
3400 else if (SCM_REALP (y))
3401 {
3402 int cmp;
2e65b52f 3403 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
3404 return SCM_BOOL_F;
3405 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3406 scm_remember_upto_here_1 (x);
73e4de09 3407 return scm_from_bool (0 == cmp);
0aacf84e
MD
3408 }
3409 else if (SCM_COMPLEXP (y))
3410 {
3411 int cmp;
3412 if (0.0 != SCM_COMPLEX_IMAG (y))
3413 return SCM_BOOL_F;
2e65b52f 3414 if (isnan (SCM_COMPLEX_REAL (y)))
0aacf84e
MD
3415 return SCM_BOOL_F;
3416 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3417 scm_remember_upto_here_1 (x);
73e4de09 3418 return scm_from_bool (0 == cmp);
0aacf84e 3419 }
f92e85f7
MV
3420 else if (SCM_FRACTIONP (y))
3421 return SCM_BOOL_F;
0aacf84e 3422 else
8a1f4f98 3423 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3424 }
0aacf84e
MD
3425 else if (SCM_REALP (x))
3426 {
e8c5b1f2 3427 double xx = SCM_REAL_VALUE (x);
e11e83f3 3428 if (SCM_I_INUMP (y))
e8c5b1f2
KR
3429 {
3430 /* see comments with inum/real above */
e25f3727 3431 scm_t_signed_bits yy = SCM_I_INUM (y);
3a1b45fd
MV
3432 return scm_from_bool (xx == (double) yy
3433 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 3434 || (scm_t_signed_bits) xx == yy));
e8c5b1f2 3435 }
0aacf84e
MD
3436 else if (SCM_BIGP (y))
3437 {
3438 int cmp;
2e65b52f 3439 if (isnan (SCM_REAL_VALUE (x)))
0aacf84e
MD
3440 return SCM_BOOL_F;
3441 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3442 scm_remember_upto_here_1 (y);
73e4de09 3443 return scm_from_bool (0 == cmp);
0aacf84e
MD
3444 }
3445 else if (SCM_REALP (y))
73e4de09 3446 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3447 else if (SCM_COMPLEXP (y))
73e4de09 3448 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3449 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3450 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3451 {
3452 double xx = SCM_REAL_VALUE (x);
2e65b52f 3453 if (isnan (xx))
d8b95e27 3454 return SCM_BOOL_F;
2e65b52f 3455 if (isinf (xx))
73e4de09 3456 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3457 x = scm_inexact_to_exact (x); /* with x as frac or int */
3458 goto again;
3459 }
0aacf84e 3460 else
8a1f4f98 3461 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3462 }
0aacf84e
MD
3463 else if (SCM_COMPLEXP (x))
3464 {
e11e83f3
MV
3465 if (SCM_I_INUMP (y))
3466 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3467 && (SCM_COMPLEX_IMAG (x) == 0.0));
3468 else if (SCM_BIGP (y))
3469 {
3470 int cmp;
3471 if (0.0 != SCM_COMPLEX_IMAG (x))
3472 return SCM_BOOL_F;
2e65b52f 3473 if (isnan (SCM_COMPLEX_REAL (x)))
0aacf84e
MD
3474 return SCM_BOOL_F;
3475 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3476 scm_remember_upto_here_1 (y);
73e4de09 3477 return scm_from_bool (0 == cmp);
0aacf84e
MD
3478 }
3479 else if (SCM_REALP (y))
73e4de09 3480 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3481 && (SCM_COMPLEX_IMAG (x) == 0.0));
3482 else if (SCM_COMPLEXP (y))
73e4de09 3483 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3484 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3485 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3486 {
3487 double xx;
3488 if (SCM_COMPLEX_IMAG (x) != 0.0)
3489 return SCM_BOOL_F;
3490 xx = SCM_COMPLEX_REAL (x);
2e65b52f 3491 if (isnan (xx))
d8b95e27 3492 return SCM_BOOL_F;
2e65b52f 3493 if (isinf (xx))
73e4de09 3494 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3495 x = scm_inexact_to_exact (x); /* with x as frac or int */
3496 goto again;
3497 }
f92e85f7 3498 else
8a1f4f98 3499 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f92e85f7
MV
3500 }
3501 else if (SCM_FRACTIONP (x))
3502 {
e11e83f3 3503 if (SCM_I_INUMP (y))
f92e85f7
MV
3504 return SCM_BOOL_F;
3505 else if (SCM_BIGP (y))
3506 return SCM_BOOL_F;
3507 else if (SCM_REALP (y))
d8b95e27
KR
3508 {
3509 double yy = SCM_REAL_VALUE (y);
2e65b52f 3510 if (isnan (yy))
d8b95e27 3511 return SCM_BOOL_F;
2e65b52f 3512 if (isinf (yy))
73e4de09 3513 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3514 y = scm_inexact_to_exact (y); /* with y as frac or int */
3515 goto again;
3516 }
f92e85f7 3517 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3518 {
3519 double yy;
3520 if (SCM_COMPLEX_IMAG (y) != 0.0)
3521 return SCM_BOOL_F;
3522 yy = SCM_COMPLEX_REAL (y);
2e65b52f 3523 if (isnan (yy))
d8b95e27 3524 return SCM_BOOL_F;
2e65b52f 3525 if (isinf (yy))
73e4de09 3526 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3527 y = scm_inexact_to_exact (y); /* with y as frac or int */
3528 goto again;
3529 }
f92e85f7
MV
3530 else if (SCM_FRACTIONP (y))
3531 return scm_i_fraction_equalp (x, y);
0aacf84e 3532 else
8a1f4f98 3533 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3534 }
0aacf84e 3535 else
8a1f4f98 3536 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1, s_scm_i_num_eq_p);
0f2d19dd
JB
3537}
3538
3539
a5f0b599
KR
3540/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3541 done are good for inums, but for bignums an answer can almost always be
3542 had by just examining a few high bits of the operands, as done by GMP in
3543 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3544 of the float exponent to take into account. */
3545
8c93b597 3546SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
8a1f4f98
AW
3547SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
3548 (SCM x, SCM y, SCM rest),
3549 "Return @code{#t} if the list of parameters is monotonically\n"
3550 "increasing.")
3551#define FUNC_NAME s_scm_i_num_less_p
3552{
3553 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3554 return SCM_BOOL_T;
3555 while (!scm_is_null (rest))
3556 {
3557 if (scm_is_false (scm_less_p (x, y)))
3558 return SCM_BOOL_F;
3559 x = y;
3560 y = scm_car (rest);
3561 rest = scm_cdr (rest);
3562 }
3563 return scm_less_p (x, y);
3564}
3565#undef FUNC_NAME
0f2d19dd 3566SCM
6e8d25a6 3567scm_less_p (SCM x, SCM y)
0f2d19dd 3568{
a5f0b599 3569 again:
e11e83f3 3570 if (SCM_I_INUMP (x))
0aacf84e 3571 {
e25f3727 3572 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 3573 if (SCM_I_INUMP (y))
0aacf84e 3574 {
e25f3727 3575 scm_t_inum yy = SCM_I_INUM (y);
73e4de09 3576 return scm_from_bool (xx < yy);
0aacf84e
MD
3577 }
3578 else if (SCM_BIGP (y))
3579 {
3580 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3581 scm_remember_upto_here_1 (y);
73e4de09 3582 return scm_from_bool (sgn > 0);
0aacf84e
MD
3583 }
3584 else if (SCM_REALP (y))
73e4de09 3585 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3586 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3587 {
3588 /* "x < a/b" becomes "x*b < a" */
3589 int_frac:
3590 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3591 y = SCM_FRACTION_NUMERATOR (y);
3592 goto again;
3593 }
0aacf84e 3594 else
8a1f4f98 3595 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3596 }
0aacf84e
MD
3597 else if (SCM_BIGP (x))
3598 {
e11e83f3 3599 if (SCM_I_INUMP (y))
0aacf84e
MD
3600 {
3601 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3602 scm_remember_upto_here_1 (x);
73e4de09 3603 return scm_from_bool (sgn < 0);
0aacf84e
MD
3604 }
3605 else if (SCM_BIGP (y))
3606 {
3607 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3608 scm_remember_upto_here_2 (x, y);
73e4de09 3609 return scm_from_bool (cmp < 0);
0aacf84e
MD
3610 }
3611 else if (SCM_REALP (y))
3612 {
3613 int cmp;
2e65b52f 3614 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
3615 return SCM_BOOL_F;
3616 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3617 scm_remember_upto_here_1 (x);
73e4de09 3618 return scm_from_bool (cmp < 0);
0aacf84e 3619 }
f92e85f7 3620 else if (SCM_FRACTIONP (y))
a5f0b599 3621 goto int_frac;
0aacf84e 3622 else
8a1f4f98 3623 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f4c627b3 3624 }
0aacf84e
MD
3625 else if (SCM_REALP (x))
3626 {
e11e83f3
MV
3627 if (SCM_I_INUMP (y))
3628 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3629 else if (SCM_BIGP (y))
3630 {
3631 int cmp;
2e65b52f 3632 if (isnan (SCM_REAL_VALUE (x)))
0aacf84e
MD
3633 return SCM_BOOL_F;
3634 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3635 scm_remember_upto_here_1 (y);
73e4de09 3636 return scm_from_bool (cmp > 0);
0aacf84e
MD
3637 }
3638 else if (SCM_REALP (y))
73e4de09 3639 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3640 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3641 {
3642 double xx = SCM_REAL_VALUE (x);
2e65b52f 3643 if (isnan (xx))
a5f0b599 3644 return SCM_BOOL_F;
2e65b52f 3645 if (isinf (xx))
73e4de09 3646 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3647 x = scm_inexact_to_exact (x); /* with x as frac or int */
3648 goto again;
3649 }
f92e85f7 3650 else
8a1f4f98 3651 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f92e85f7
MV
3652 }
3653 else if (SCM_FRACTIONP (x))
3654 {
e11e83f3 3655 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3656 {
3657 /* "a/b < y" becomes "a < y*b" */
3658 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3659 x = SCM_FRACTION_NUMERATOR (x);
3660 goto again;
3661 }
f92e85f7 3662 else if (SCM_REALP (y))
a5f0b599
KR
3663 {
3664 double yy = SCM_REAL_VALUE (y);
2e65b52f 3665 if (isnan (yy))
a5f0b599 3666 return SCM_BOOL_F;
2e65b52f 3667 if (isinf (yy))
73e4de09 3668 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3669 y = scm_inexact_to_exact (y); /* with y as frac or int */
3670 goto again;
3671 }
f92e85f7 3672 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3673 {
3674 /* "a/b < c/d" becomes "a*d < c*b" */
3675 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3676 SCM_FRACTION_DENOMINATOR (y));
3677 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3678 SCM_FRACTION_DENOMINATOR (x));
3679 x = new_x;
3680 y = new_y;
3681 goto again;
3682 }
0aacf84e 3683 else
8a1f4f98 3684 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3685 }
0aacf84e 3686 else
8a1f4f98 3687 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, s_scm_i_num_less_p);
0f2d19dd
JB
3688}
3689
3690
8a1f4f98
AW
3691SCM scm_i_num_gr_p (SCM, SCM, SCM);
3692SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
3693 (SCM x, SCM y, SCM rest),
3694 "Return @code{#t} if the list of parameters is monotonically\n"
3695 "decreasing.")
3696#define FUNC_NAME s_scm_i_num_gr_p
3697{
3698 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3699 return SCM_BOOL_T;
3700 while (!scm_is_null (rest))
3701 {
3702 if (scm_is_false (scm_gr_p (x, y)))
3703 return SCM_BOOL_F;
3704 x = y;
3705 y = scm_car (rest);
3706 rest = scm_cdr (rest);
3707 }
3708 return scm_gr_p (x, y);
3709}
3710#undef FUNC_NAME
3711#define FUNC_NAME s_scm_i_num_gr_p
c76b1eaf
MD
3712SCM
3713scm_gr_p (SCM x, SCM y)
0f2d19dd 3714{
c76b1eaf 3715 if (!SCM_NUMBERP (x))
8a1f4f98 3716 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3717 else if (!SCM_NUMBERP (y))
8a1f4f98 3718 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
c76b1eaf
MD
3719 else
3720 return scm_less_p (y, x);
0f2d19dd 3721}
1bbd0b84 3722#undef FUNC_NAME
0f2d19dd
JB
3723
3724
8a1f4f98
AW
3725SCM scm_i_num_leq_p (SCM, SCM, SCM);
3726SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
3727 (SCM x, SCM y, SCM rest),
3728 "Return @code{#t} if the list of parameters is monotonically\n"
3729 "non-decreasing.")
3730#define FUNC_NAME s_scm_i_num_leq_p
3731{
3732 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3733 return SCM_BOOL_T;
3734 while (!scm_is_null (rest))
3735 {
3736 if (scm_is_false (scm_leq_p (x, y)))
3737 return SCM_BOOL_F;
3738 x = y;
3739 y = scm_car (rest);
3740 rest = scm_cdr (rest);
3741 }
3742 return scm_leq_p (x, y);
3743}
3744#undef FUNC_NAME
3745#define FUNC_NAME s_scm_i_num_leq_p
c76b1eaf
MD
3746SCM
3747scm_leq_p (SCM x, SCM y)
0f2d19dd 3748{
c76b1eaf 3749 if (!SCM_NUMBERP (x))
8a1f4f98 3750 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3751 else if (!SCM_NUMBERP (y))
8a1f4f98 3752 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3753 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3754 return SCM_BOOL_F;
c76b1eaf 3755 else
73e4de09 3756 return scm_not (scm_less_p (y, x));
0f2d19dd 3757}
1bbd0b84 3758#undef FUNC_NAME
0f2d19dd
JB
3759
3760
8a1f4f98
AW
3761SCM scm_i_num_geq_p (SCM, SCM, SCM);
3762SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
3763 (SCM x, SCM y, SCM rest),
3764 "Return @code{#t} if the list of parameters is monotonically\n"
3765 "non-increasing.")
3766#define FUNC_NAME s_scm_i_num_geq_p
3767{
3768 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3769 return SCM_BOOL_T;
3770 while (!scm_is_null (rest))
3771 {
3772 if (scm_is_false (scm_geq_p (x, y)))
3773 return SCM_BOOL_F;
3774 x = y;
3775 y = scm_car (rest);
3776 rest = scm_cdr (rest);
3777 }
3778 return scm_geq_p (x, y);
3779}
3780#undef FUNC_NAME
3781#define FUNC_NAME s_scm_i_num_geq_p
c76b1eaf
MD
3782SCM
3783scm_geq_p (SCM x, SCM y)
0f2d19dd 3784{
c76b1eaf 3785 if (!SCM_NUMBERP (x))
8a1f4f98 3786 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3787 else if (!SCM_NUMBERP (y))
8a1f4f98 3788 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3789 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3790 return SCM_BOOL_F;
c76b1eaf 3791 else
73e4de09 3792 return scm_not (scm_less_p (x, y));
0f2d19dd 3793}
1bbd0b84 3794#undef FUNC_NAME
0f2d19dd
JB
3795
3796
152f82bf 3797SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3798/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3799 * "zero."
3800 */
0f2d19dd 3801SCM
6e8d25a6 3802scm_zero_p (SCM z)
0f2d19dd 3803{
e11e83f3 3804 if (SCM_I_INUMP (z))
bc36d050 3805 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3806 else if (SCM_BIGP (z))
c2ff8ab0 3807 return SCM_BOOL_F;
0aacf84e 3808 else if (SCM_REALP (z))
73e4de09 3809 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3810 else if (SCM_COMPLEXP (z))
73e4de09 3811 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3812 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3813 else if (SCM_FRACTIONP (z))
3814 return SCM_BOOL_F;
0aacf84e 3815 else
c2ff8ab0 3816 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3817}
3818
3819
152f82bf 3820SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3821/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3822 * "zero."
3823 */
0f2d19dd 3824SCM
6e8d25a6 3825scm_positive_p (SCM x)
0f2d19dd 3826{
e11e83f3
MV
3827 if (SCM_I_INUMP (x))
3828 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3829 else if (SCM_BIGP (x))
3830 {
3831 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3832 scm_remember_upto_here_1 (x);
73e4de09 3833 return scm_from_bool (sgn > 0);
0aacf84e
MD
3834 }
3835 else if (SCM_REALP (x))
73e4de09 3836 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3837 else if (SCM_FRACTIONP (x))
3838 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3839 else
c2ff8ab0 3840 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3841}
3842
3843
152f82bf 3844SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3845/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3846 * "zero."
3847 */
0f2d19dd 3848SCM
6e8d25a6 3849scm_negative_p (SCM x)
0f2d19dd 3850{
e11e83f3
MV
3851 if (SCM_I_INUMP (x))
3852 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3853 else if (SCM_BIGP (x))
3854 {
3855 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3856 scm_remember_upto_here_1 (x);
73e4de09 3857 return scm_from_bool (sgn < 0);
0aacf84e
MD
3858 }
3859 else if (SCM_REALP (x))
73e4de09 3860 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3861 else if (SCM_FRACTIONP (x))
3862 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3863 else
c2ff8ab0 3864 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3865}
3866
3867
2a06f791
KR
3868/* scm_min and scm_max return an inexact when either argument is inexact, as
3869 required by r5rs. On that basis, for exact/inexact combinations the
3870 exact is converted to inexact to compare and possibly return. This is
3871 unlike scm_less_p above which takes some trouble to preserve all bits in
3872 its test, such trouble is not required for min and max. */
3873
78d3deb1
AW
3874SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
3875 (SCM x, SCM y, SCM rest),
3876 "Return the maximum of all parameter values.")
3877#define FUNC_NAME s_scm_i_max
3878{
3879 while (!scm_is_null (rest))
3880 { x = scm_max (x, y);
3881 y = scm_car (rest);
3882 rest = scm_cdr (rest);
3883 }
3884 return scm_max (x, y);
3885}
3886#undef FUNC_NAME
3887
3888#define s_max s_scm_i_max
3889#define g_max g_scm_i_max
3890
0f2d19dd 3891SCM
6e8d25a6 3892scm_max (SCM x, SCM y)
0f2d19dd 3893{
0aacf84e
MD
3894 if (SCM_UNBNDP (y))
3895 {
3896 if (SCM_UNBNDP (x))
3897 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3898 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3899 return x;
3900 else
3901 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3902 }
f4c627b3 3903
e11e83f3 3904 if (SCM_I_INUMP (x))
0aacf84e 3905 {
e25f3727 3906 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 3907 if (SCM_I_INUMP (y))
0aacf84e 3908 {
e25f3727 3909 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
3910 return (xx < yy) ? y : x;
3911 }
3912 else if (SCM_BIGP (y))
3913 {
3914 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3915 scm_remember_upto_here_1 (y);
3916 return (sgn < 0) ? x : y;
3917 }
3918 else if (SCM_REALP (y))
3919 {
3920 double z = xx;
3921 /* if y==NaN then ">" is false and we return NaN */
55f26379 3922 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3923 }
f92e85f7
MV
3924 else if (SCM_FRACTIONP (y))
3925 {
e4bc5d6c 3926 use_less:
73e4de09 3927 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3928 }
0aacf84e
MD
3929 else
3930 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3931 }
0aacf84e
MD
3932 else if (SCM_BIGP (x))
3933 {
e11e83f3 3934 if (SCM_I_INUMP (y))
0aacf84e
MD
3935 {
3936 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3937 scm_remember_upto_here_1 (x);
3938 return (sgn < 0) ? y : x;
3939 }
3940 else if (SCM_BIGP (y))
3941 {
3942 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3943 scm_remember_upto_here_2 (x, y);
3944 return (cmp > 0) ? x : y;
3945 }
3946 else if (SCM_REALP (y))
3947 {
2a06f791
KR
3948 /* if y==NaN then xx>yy is false, so we return the NaN y */
3949 double xx, yy;
3950 big_real:
3951 xx = scm_i_big2dbl (x);
3952 yy = SCM_REAL_VALUE (y);
55f26379 3953 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3954 }
f92e85f7
MV
3955 else if (SCM_FRACTIONP (y))
3956 {
e4bc5d6c 3957 goto use_less;
f92e85f7 3958 }
0aacf84e
MD
3959 else
3960 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3961 }
0aacf84e
MD
3962 else if (SCM_REALP (x))
3963 {
e11e83f3 3964 if (SCM_I_INUMP (y))
0aacf84e 3965 {
e11e83f3 3966 double z = SCM_I_INUM (y);
0aacf84e 3967 /* if x==NaN then "<" is false and we return NaN */
55f26379 3968 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
3969 }
3970 else if (SCM_BIGP (y))
3971 {
b6f8f763 3972 SCM_SWAP (x, y);
2a06f791 3973 goto big_real;
0aacf84e
MD
3974 }
3975 else if (SCM_REALP (y))
3976 {
3977 /* if x==NaN then our explicit check means we return NaN
3978 if y==NaN then ">" is false and we return NaN
3979 calling isnan is unavoidable, since it's the only way to know
3980 which of x or y causes any compares to be false */
3981 double xx = SCM_REAL_VALUE (x);
2e65b52f 3982 return (isnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
0aacf84e 3983 }
f92e85f7
MV
3984 else if (SCM_FRACTIONP (y))
3985 {
3986 double yy = scm_i_fraction2double (y);
3987 double xx = SCM_REAL_VALUE (x);
55f26379 3988 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
3989 }
3990 else
3991 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3992 }
3993 else if (SCM_FRACTIONP (x))
3994 {
e11e83f3 3995 if (SCM_I_INUMP (y))
f92e85f7 3996 {
e4bc5d6c 3997 goto use_less;
f92e85f7
MV
3998 }
3999 else if (SCM_BIGP (y))
4000 {
e4bc5d6c 4001 goto use_less;
f92e85f7
MV
4002 }
4003 else if (SCM_REALP (y))
4004 {
4005 double xx = scm_i_fraction2double (x);
55f26379 4006 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
4007 }
4008 else if (SCM_FRACTIONP (y))
4009 {
e4bc5d6c 4010 goto use_less;
f92e85f7 4011 }
0aacf84e
MD
4012 else
4013 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 4014 }
0aacf84e 4015 else
f4c627b3 4016 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
4017}
4018
4019
78d3deb1
AW
4020SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
4021 (SCM x, SCM y, SCM rest),
4022 "Return the minimum of all parameter values.")
4023#define FUNC_NAME s_scm_i_min
4024{
4025 while (!scm_is_null (rest))
4026 { x = scm_min (x, y);
4027 y = scm_car (rest);
4028 rest = scm_cdr (rest);
4029 }
4030 return scm_min (x, y);
4031}
4032#undef FUNC_NAME
4033
4034#define s_min s_scm_i_min
4035#define g_min g_scm_i_min
4036
0f2d19dd 4037SCM
6e8d25a6 4038scm_min (SCM x, SCM y)
0f2d19dd 4039{
0aacf84e
MD
4040 if (SCM_UNBNDP (y))
4041 {
4042 if (SCM_UNBNDP (x))
4043 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 4044 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
4045 return x;
4046 else
4047 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 4048 }
f4c627b3 4049
e11e83f3 4050 if (SCM_I_INUMP (x))
0aacf84e 4051 {
e25f3727 4052 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 4053 if (SCM_I_INUMP (y))
0aacf84e 4054 {
e25f3727 4055 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
4056 return (xx < yy) ? x : y;
4057 }
4058 else if (SCM_BIGP (y))
4059 {
4060 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
4061 scm_remember_upto_here_1 (y);
4062 return (sgn < 0) ? y : x;
4063 }
4064 else if (SCM_REALP (y))
4065 {
4066 double z = xx;
4067 /* if y==NaN then "<" is false and we return NaN */
55f26379 4068 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 4069 }
f92e85f7
MV
4070 else if (SCM_FRACTIONP (y))
4071 {
e4bc5d6c 4072 use_less:
73e4de09 4073 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 4074 }
0aacf84e
MD
4075 else
4076 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4077 }
0aacf84e
MD
4078 else if (SCM_BIGP (x))
4079 {
e11e83f3 4080 if (SCM_I_INUMP (y))
0aacf84e
MD
4081 {
4082 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4083 scm_remember_upto_here_1 (x);
4084 return (sgn < 0) ? x : y;
4085 }
4086 else if (SCM_BIGP (y))
4087 {
4088 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4089 scm_remember_upto_here_2 (x, y);
4090 return (cmp > 0) ? y : x;
4091 }
4092 else if (SCM_REALP (y))
4093 {
2a06f791
KR
4094 /* if y==NaN then xx<yy is false, so we return the NaN y */
4095 double xx, yy;
4096 big_real:
4097 xx = scm_i_big2dbl (x);
4098 yy = SCM_REAL_VALUE (y);
55f26379 4099 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 4100 }
f92e85f7
MV
4101 else if (SCM_FRACTIONP (y))
4102 {
e4bc5d6c 4103 goto use_less;
f92e85f7 4104 }
0aacf84e
MD
4105 else
4106 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 4107 }
0aacf84e
MD
4108 else if (SCM_REALP (x))
4109 {
e11e83f3 4110 if (SCM_I_INUMP (y))
0aacf84e 4111 {
e11e83f3 4112 double z = SCM_I_INUM (y);
0aacf84e 4113 /* if x==NaN then "<" is false and we return NaN */
55f26379 4114 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
4115 }
4116 else if (SCM_BIGP (y))
4117 {
b6f8f763 4118 SCM_SWAP (x, y);
2a06f791 4119 goto big_real;
0aacf84e
MD
4120 }
4121 else if (SCM_REALP (y))
4122 {
4123 /* if x==NaN then our explicit check means we return NaN
4124 if y==NaN then "<" is false and we return NaN
4125 calling isnan is unavoidable, since it's the only way to know
4126 which of x or y causes any compares to be false */
4127 double xx = SCM_REAL_VALUE (x);
2e65b52f 4128 return (isnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
0aacf84e 4129 }
f92e85f7
MV
4130 else if (SCM_FRACTIONP (y))
4131 {
4132 double yy = scm_i_fraction2double (y);
4133 double xx = SCM_REAL_VALUE (x);
55f26379 4134 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 4135 }
0aacf84e
MD
4136 else
4137 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4138 }
f92e85f7
MV
4139 else if (SCM_FRACTIONP (x))
4140 {
e11e83f3 4141 if (SCM_I_INUMP (y))
f92e85f7 4142 {
e4bc5d6c 4143 goto use_less;
f92e85f7
MV
4144 }
4145 else if (SCM_BIGP (y))
4146 {
e4bc5d6c 4147 goto use_less;
f92e85f7
MV
4148 }
4149 else if (SCM_REALP (y))
4150 {
4151 double xx = scm_i_fraction2double (x);
55f26379 4152 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
4153 }
4154 else if (SCM_FRACTIONP (y))
4155 {
e4bc5d6c 4156 goto use_less;
f92e85f7
MV
4157 }
4158 else
78d3deb1 4159 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f92e85f7 4160 }
0aacf84e 4161 else
f4c627b3 4162 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
4163}
4164
4165
8ccd24f7
AW
4166SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
4167 (SCM x, SCM y, SCM rest),
4168 "Return the sum of all parameter values. Return 0 if called without\n"
4169 "any parameters." )
4170#define FUNC_NAME s_scm_i_sum
4171{
4172 while (!scm_is_null (rest))
4173 { x = scm_sum (x, y);
4174 y = scm_car (rest);
4175 rest = scm_cdr (rest);
4176 }
4177 return scm_sum (x, y);
4178}
4179#undef FUNC_NAME
4180
4181#define s_sum s_scm_i_sum
4182#define g_sum g_scm_i_sum
4183
0f2d19dd 4184SCM
6e8d25a6 4185scm_sum (SCM x, SCM y)
0f2d19dd 4186{
9cc37597 4187 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4188 {
4189 if (SCM_NUMBERP (x)) return x;
4190 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 4191 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 4192 }
c209c88e 4193
9cc37597 4194 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 4195 {
9cc37597 4196 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 4197 {
e25f3727
AW
4198 scm_t_inum xx = SCM_I_INUM (x);
4199 scm_t_inum yy = SCM_I_INUM (y);
4200 scm_t_inum z = xx + yy;
4201 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_inum2big (z);
ca46fb90
RB
4202 }
4203 else if (SCM_BIGP (y))
4204 {
4205 SCM_SWAP (x, y);
4206 goto add_big_inum;
4207 }
4208 else if (SCM_REALP (y))
4209 {
e25f3727 4210 scm_t_inum xx = SCM_I_INUM (x);
55f26379 4211 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
4212 }
4213 else if (SCM_COMPLEXP (y))
4214 {
e25f3727 4215 scm_t_inum xx = SCM_I_INUM (x);
8507ec80 4216 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
4217 SCM_COMPLEX_IMAG (y));
4218 }
f92e85f7 4219 else if (SCM_FRACTIONP (y))
cba42c93 4220 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4221 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4222 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
4223 else
4224 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
4225 } else if (SCM_BIGP (x))
4226 {
e11e83f3 4227 if (SCM_I_INUMP (y))
0aacf84e 4228 {
e25f3727 4229 scm_t_inum inum;
0aacf84e
MD
4230 int bigsgn;
4231 add_big_inum:
e11e83f3 4232 inum = SCM_I_INUM (y);
0aacf84e
MD
4233 if (inum == 0)
4234 return x;
4235 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4236 if (inum < 0)
4237 {
4238 SCM result = scm_i_mkbig ();
4239 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4240 scm_remember_upto_here_1 (x);
4241 /* we know the result will have to be a bignum */
4242 if (bigsgn == -1)
4243 return result;
4244 return scm_i_normbig (result);
4245 }
4246 else
4247 {
4248 SCM result = scm_i_mkbig ();
4249 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4250 scm_remember_upto_here_1 (x);
4251 /* we know the result will have to be a bignum */
4252 if (bigsgn == 1)
4253 return result;
4254 return scm_i_normbig (result);
4255 }
4256 }
4257 else if (SCM_BIGP (y))
4258 {
4259 SCM result = scm_i_mkbig ();
4260 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4261 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4262 mpz_add (SCM_I_BIG_MPZ (result),
4263 SCM_I_BIG_MPZ (x),
4264 SCM_I_BIG_MPZ (y));
4265 scm_remember_upto_here_2 (x, y);
4266 /* we know the result will have to be a bignum */
4267 if (sgn_x == sgn_y)
4268 return result;
4269 return scm_i_normbig (result);
4270 }
4271 else if (SCM_REALP (y))
4272 {
4273 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4274 scm_remember_upto_here_1 (x);
55f26379 4275 return scm_from_double (result);
0aacf84e
MD
4276 }
4277 else if (SCM_COMPLEXP (y))
4278 {
4279 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4280 + SCM_COMPLEX_REAL (y));
4281 scm_remember_upto_here_1 (x);
8507ec80 4282 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 4283 }
f92e85f7 4284 else if (SCM_FRACTIONP (y))
cba42c93 4285 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4286 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4287 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4288 else
4289 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 4290 }
0aacf84e
MD
4291 else if (SCM_REALP (x))
4292 {
e11e83f3 4293 if (SCM_I_INUMP (y))
55f26379 4294 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
4295 else if (SCM_BIGP (y))
4296 {
4297 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4298 scm_remember_upto_here_1 (y);
55f26379 4299 return scm_from_double (result);
0aacf84e
MD
4300 }
4301 else if (SCM_REALP (y))
55f26379 4302 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 4303 else if (SCM_COMPLEXP (y))
8507ec80 4304 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4305 SCM_COMPLEX_IMAG (y));
f92e85f7 4306 else if (SCM_FRACTIONP (y))
55f26379 4307 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
4308 else
4309 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 4310 }
0aacf84e
MD
4311 else if (SCM_COMPLEXP (x))
4312 {
e11e83f3 4313 if (SCM_I_INUMP (y))
8507ec80 4314 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
4315 SCM_COMPLEX_IMAG (x));
4316 else if (SCM_BIGP (y))
4317 {
4318 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4319 + SCM_COMPLEX_REAL (x));
4320 scm_remember_upto_here_1 (y);
8507ec80 4321 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4322 }
4323 else if (SCM_REALP (y))
8507ec80 4324 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
4325 SCM_COMPLEX_IMAG (x));
4326 else if (SCM_COMPLEXP (y))
8507ec80 4327 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4328 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 4329 else if (SCM_FRACTIONP (y))
8507ec80 4330 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
4331 SCM_COMPLEX_IMAG (x));
4332 else
4333 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4334 }
4335 else if (SCM_FRACTIONP (x))
4336 {
e11e83f3 4337 if (SCM_I_INUMP (y))
cba42c93 4338 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4339 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4340 SCM_FRACTION_DENOMINATOR (x));
4341 else if (SCM_BIGP (y))
cba42c93 4342 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4343 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4344 SCM_FRACTION_DENOMINATOR (x));
4345 else if (SCM_REALP (y))
55f26379 4346 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 4347 else if (SCM_COMPLEXP (y))
8507ec80 4348 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
4349 SCM_COMPLEX_IMAG (y));
4350 else if (SCM_FRACTIONP (y))
4351 /* a/b + c/d = (ad + bc) / bd */
cba42c93 4352 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4353 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4354 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4355 else
4356 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 4357 }
0aacf84e 4358 else
98cb6e75 4359 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
4360}
4361
4362
40882e3d
KR
4363SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4364 (SCM x),
4365 "Return @math{@var{x}+1}.")
4366#define FUNC_NAME s_scm_oneplus
4367{
cff5fa33 4368 return scm_sum (x, SCM_INUM1);
40882e3d
KR
4369}
4370#undef FUNC_NAME
4371
4372
78d3deb1
AW
4373SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
4374 (SCM x, SCM y, SCM rest),
4375 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
4376 "the sum of all but the first argument are subtracted from the first\n"
4377 "argument.")
4378#define FUNC_NAME s_scm_i_difference
4379{
4380 while (!scm_is_null (rest))
4381 { x = scm_difference (x, y);
4382 y = scm_car (rest);
4383 rest = scm_cdr (rest);
4384 }
4385 return scm_difference (x, y);
4386}
4387#undef FUNC_NAME
4388
4389#define s_difference s_scm_i_difference
4390#define g_difference g_scm_i_difference
4391
0f2d19dd 4392SCM
6e8d25a6 4393scm_difference (SCM x, SCM y)
78d3deb1 4394#define FUNC_NAME s_difference
0f2d19dd 4395{
9cc37597 4396 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4397 {
4398 if (SCM_UNBNDP (x))
4399 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4400 else
e11e83f3 4401 if (SCM_I_INUMP (x))
ca46fb90 4402 {
e25f3727 4403 scm_t_inum xx = -SCM_I_INUM (x);
ca46fb90 4404 if (SCM_FIXABLE (xx))
d956fa6f 4405 return SCM_I_MAKINUM (xx);
ca46fb90 4406 else
e25f3727 4407 return scm_i_inum2big (xx);
ca46fb90
RB
4408 }
4409 else if (SCM_BIGP (x))
a9ad4847
KR
4410 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4411 bignum, but negating that gives a fixnum. */
ca46fb90
RB
4412 return scm_i_normbig (scm_i_clonebig (x, 0));
4413 else if (SCM_REALP (x))
55f26379 4414 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4415 else if (SCM_COMPLEXP (x))
8507ec80 4416 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4417 -SCM_COMPLEX_IMAG (x));
f92e85f7 4418 else if (SCM_FRACTIONP (x))
cba42c93 4419 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4420 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4421 else
4422 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4423 }
ca46fb90 4424
9cc37597 4425 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4426 {
9cc37597 4427 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4428 {
e25f3727
AW
4429 scm_t_inum xx = SCM_I_INUM (x);
4430 scm_t_inum yy = SCM_I_INUM (y);
4431 scm_t_inum z = xx - yy;
0aacf84e 4432 if (SCM_FIXABLE (z))
d956fa6f 4433 return SCM_I_MAKINUM (z);
0aacf84e 4434 else
e25f3727 4435 return scm_i_inum2big (z);
0aacf84e
MD
4436 }
4437 else if (SCM_BIGP (y))
4438 {
4439 /* inum-x - big-y */
e25f3727 4440 scm_t_inum xx = SCM_I_INUM (x);
ca46fb90 4441
0aacf84e 4442 if (xx == 0)
b5c40589
MW
4443 {
4444 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4445 bignum, but negating that gives a fixnum. */
4446 return scm_i_normbig (scm_i_clonebig (y, 0));
4447 }
0aacf84e
MD
4448 else
4449 {
4450 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4451 SCM result = scm_i_mkbig ();
ca46fb90 4452
0aacf84e
MD
4453 if (xx >= 0)
4454 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4455 else
4456 {
4457 /* x - y == -(y + -x) */
4458 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4459 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4460 }
4461 scm_remember_upto_here_1 (y);
ca46fb90 4462
0aacf84e
MD
4463 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4464 /* we know the result will have to be a bignum */
4465 return result;
4466 else
4467 return scm_i_normbig (result);
4468 }
4469 }
4470 else if (SCM_REALP (y))
4471 {
e25f3727 4472 scm_t_inum xx = SCM_I_INUM (x);
55f26379 4473 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4474 }
4475 else if (SCM_COMPLEXP (y))
4476 {
e25f3727 4477 scm_t_inum xx = SCM_I_INUM (x);
8507ec80 4478 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4479 - SCM_COMPLEX_IMAG (y));
4480 }
f92e85f7
MV
4481 else if (SCM_FRACTIONP (y))
4482 /* a - b/c = (ac - b) / c */
cba42c93 4483 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4484 SCM_FRACTION_NUMERATOR (y)),
4485 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4486 else
4487 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4488 }
0aacf84e
MD
4489 else if (SCM_BIGP (x))
4490 {
e11e83f3 4491 if (SCM_I_INUMP (y))
0aacf84e
MD
4492 {
4493 /* big-x - inum-y */
e25f3727 4494 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e 4495 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4496
0aacf84e
MD
4497 scm_remember_upto_here_1 (x);
4498 if (sgn_x == 0)
c71b0706 4499 return (SCM_FIXABLE (-yy) ?
e25f3727 4500 SCM_I_MAKINUM (-yy) : scm_from_inum (-yy));
0aacf84e
MD
4501 else
4502 {
4503 SCM result = scm_i_mkbig ();
ca46fb90 4504
708f22c6
KR
4505 if (yy >= 0)
4506 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4507 else
4508 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4509 scm_remember_upto_here_1 (x);
ca46fb90 4510
0aacf84e
MD
4511 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4512 /* we know the result will have to be a bignum */
4513 return result;
4514 else
4515 return scm_i_normbig (result);
4516 }
4517 }
4518 else if (SCM_BIGP (y))
4519 {
4520 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4521 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4522 SCM result = scm_i_mkbig ();
4523 mpz_sub (SCM_I_BIG_MPZ (result),
4524 SCM_I_BIG_MPZ (x),
4525 SCM_I_BIG_MPZ (y));
4526 scm_remember_upto_here_2 (x, y);
4527 /* we know the result will have to be a bignum */
4528 if ((sgn_x == 1) && (sgn_y == -1))
4529 return result;
4530 if ((sgn_x == -1) && (sgn_y == 1))
4531 return result;
4532 return scm_i_normbig (result);
4533 }
4534 else if (SCM_REALP (y))
4535 {
4536 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4537 scm_remember_upto_here_1 (x);
55f26379 4538 return scm_from_double (result);
0aacf84e
MD
4539 }
4540 else if (SCM_COMPLEXP (y))
4541 {
4542 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4543 - SCM_COMPLEX_REAL (y));
4544 scm_remember_upto_here_1 (x);
8507ec80 4545 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4546 }
f92e85f7 4547 else if (SCM_FRACTIONP (y))
cba42c93 4548 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4549 SCM_FRACTION_NUMERATOR (y)),
4550 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4551 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4552 }
0aacf84e
MD
4553 else if (SCM_REALP (x))
4554 {
e11e83f3 4555 if (SCM_I_INUMP (y))
55f26379 4556 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4557 else if (SCM_BIGP (y))
4558 {
4559 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4560 scm_remember_upto_here_1 (x);
55f26379 4561 return scm_from_double (result);
0aacf84e
MD
4562 }
4563 else if (SCM_REALP (y))
55f26379 4564 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4565 else if (SCM_COMPLEXP (y))
8507ec80 4566 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4567 -SCM_COMPLEX_IMAG (y));
f92e85f7 4568 else if (SCM_FRACTIONP (y))
55f26379 4569 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4570 else
4571 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4572 }
0aacf84e
MD
4573 else if (SCM_COMPLEXP (x))
4574 {
e11e83f3 4575 if (SCM_I_INUMP (y))
8507ec80 4576 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4577 SCM_COMPLEX_IMAG (x));
4578 else if (SCM_BIGP (y))
4579 {
4580 double real_part = (SCM_COMPLEX_REAL (x)
4581 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4582 scm_remember_upto_here_1 (x);
8507ec80 4583 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4584 }
4585 else if (SCM_REALP (y))
8507ec80 4586 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4587 SCM_COMPLEX_IMAG (x));
4588 else if (SCM_COMPLEXP (y))
8507ec80 4589 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4590 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4591 else if (SCM_FRACTIONP (y))
8507ec80 4592 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4593 SCM_COMPLEX_IMAG (x));
4594 else
4595 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4596 }
4597 else if (SCM_FRACTIONP (x))
4598 {
e11e83f3 4599 if (SCM_I_INUMP (y))
f92e85f7 4600 /* a/b - c = (a - cb) / b */
cba42c93 4601 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4602 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4603 SCM_FRACTION_DENOMINATOR (x));
4604 else if (SCM_BIGP (y))
cba42c93 4605 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4606 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4607 SCM_FRACTION_DENOMINATOR (x));
4608 else if (SCM_REALP (y))
55f26379 4609 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4610 else if (SCM_COMPLEXP (y))
8507ec80 4611 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4612 -SCM_COMPLEX_IMAG (y));
4613 else if (SCM_FRACTIONP (y))
4614 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4615 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4616 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4617 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4618 else
4619 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4620 }
0aacf84e 4621 else
98cb6e75 4622 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4623}
c05e97b7 4624#undef FUNC_NAME
0f2d19dd 4625
ca46fb90 4626
40882e3d
KR
4627SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4628 (SCM x),
4629 "Return @math{@var{x}-1}.")
4630#define FUNC_NAME s_scm_oneminus
4631{
cff5fa33 4632 return scm_difference (x, SCM_INUM1);
40882e3d
KR
4633}
4634#undef FUNC_NAME
4635
4636
78d3deb1
AW
4637SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
4638 (SCM x, SCM y, SCM rest),
4639 "Return the product of all arguments. If called without arguments,\n"
4640 "1 is returned.")
4641#define FUNC_NAME s_scm_i_product
4642{
4643 while (!scm_is_null (rest))
4644 { x = scm_product (x, y);
4645 y = scm_car (rest);
4646 rest = scm_cdr (rest);
4647 }
4648 return scm_product (x, y);
4649}
4650#undef FUNC_NAME
4651
4652#define s_product s_scm_i_product
4653#define g_product g_scm_i_product
4654
0f2d19dd 4655SCM
6e8d25a6 4656scm_product (SCM x, SCM y)
0f2d19dd 4657{
9cc37597 4658 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4659 {
4660 if (SCM_UNBNDP (x))
d956fa6f 4661 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4662 else if (SCM_NUMBERP (x))
4663 return x;
4664 else
4665 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4666 }
ca46fb90 4667
9cc37597 4668 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4669 {
e25f3727 4670 scm_t_inum xx;
f4c627b3 4671
0aacf84e 4672 intbig:
e11e83f3 4673 xx = SCM_I_INUM (x);
f4c627b3 4674
0aacf84e
MD
4675 switch (xx)
4676 {
ca46fb90
RB
4677 case 0: return x; break;
4678 case 1: return y; break;
b5c40589
MW
4679 /*
4680 * The following case (x = -1) is important for more than
4681 * just optimization. It handles the case of negating
4682 * (+ 1 most-positive-fixnum) aka (- most-negative-fixnum),
4683 * which is a bignum that must be changed back into a fixnum.
4684 * Failure to do so will cause the following to return #f:
4685 * (= most-negative-fixnum (* -1 (- most-negative-fixnum)))
4686 */
4687 case -1:
4688 return scm_difference(y, SCM_UNDEFINED);
4689 break;
0aacf84e 4690 }
f4c627b3 4691
9cc37597 4692 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4693 {
e25f3727
AW
4694 scm_t_inum yy = SCM_I_INUM (y);
4695 scm_t_inum kk = xx * yy;
d956fa6f 4696 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4697 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4698 return k;
4699 else
4700 {
e25f3727 4701 SCM result = scm_i_inum2big (xx);
0aacf84e
MD
4702 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4703 return scm_i_normbig (result);
4704 }
4705 }
4706 else if (SCM_BIGP (y))
4707 {
4708 SCM result = scm_i_mkbig ();
4709 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4710 scm_remember_upto_here_1 (y);
4711 return result;
4712 }
4713 else if (SCM_REALP (y))
55f26379 4714 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4715 else if (SCM_COMPLEXP (y))
8507ec80 4716 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4717 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4718 else if (SCM_FRACTIONP (y))
cba42c93 4719 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4720 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4721 else
4722 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4723 }
0aacf84e
MD
4724 else if (SCM_BIGP (x))
4725 {
e11e83f3 4726 if (SCM_I_INUMP (y))
0aacf84e
MD
4727 {
4728 SCM_SWAP (x, y);
4729 goto intbig;
4730 }
4731 else if (SCM_BIGP (y))
4732 {
4733 SCM result = scm_i_mkbig ();
4734 mpz_mul (SCM_I_BIG_MPZ (result),
4735 SCM_I_BIG_MPZ (x),
4736 SCM_I_BIG_MPZ (y));
4737 scm_remember_upto_here_2 (x, y);
4738 return result;
4739 }
4740 else if (SCM_REALP (y))
4741 {
4742 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4743 scm_remember_upto_here_1 (x);
55f26379 4744 return scm_from_double (result);
0aacf84e
MD
4745 }
4746 else if (SCM_COMPLEXP (y))
4747 {
4748 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4749 scm_remember_upto_here_1 (x);
8507ec80 4750 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4751 z * SCM_COMPLEX_IMAG (y));
4752 }
f92e85f7 4753 else if (SCM_FRACTIONP (y))
cba42c93 4754 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4755 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4756 else
4757 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4758 }
0aacf84e
MD
4759 else if (SCM_REALP (x))
4760 {
e11e83f3 4761 if (SCM_I_INUMP (y))
23d72566
KR
4762 {
4763 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4764 if (scm_is_eq (y, SCM_INUM0))
4765 return y;
4766 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4767 }
0aacf84e
MD
4768 else if (SCM_BIGP (y))
4769 {
4770 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4771 scm_remember_upto_here_1 (y);
55f26379 4772 return scm_from_double (result);
0aacf84e
MD
4773 }
4774 else if (SCM_REALP (y))
55f26379 4775 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4776 else if (SCM_COMPLEXP (y))
8507ec80 4777 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4778 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4779 else if (SCM_FRACTIONP (y))
55f26379 4780 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4781 else
4782 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4783 }
0aacf84e
MD
4784 else if (SCM_COMPLEXP (x))
4785 {
e11e83f3 4786 if (SCM_I_INUMP (y))
23d72566
KR
4787 {
4788 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4789 if (scm_is_eq (y, SCM_INUM0))
4790 return y;
4791 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4792 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4793 }
0aacf84e
MD
4794 else if (SCM_BIGP (y))
4795 {
4796 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4797 scm_remember_upto_here_1 (y);
8507ec80 4798 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4799 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4800 }
4801 else if (SCM_REALP (y))
8507ec80 4802 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4803 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4804 else if (SCM_COMPLEXP (y))
4805 {
8507ec80 4806 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4807 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4808 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4809 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4810 }
f92e85f7
MV
4811 else if (SCM_FRACTIONP (y))
4812 {
4813 double yy = scm_i_fraction2double (y);
8507ec80 4814 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4815 yy * SCM_COMPLEX_IMAG (x));
4816 }
4817 else
4818 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4819 }
4820 else if (SCM_FRACTIONP (x))
4821 {
e11e83f3 4822 if (SCM_I_INUMP (y))
cba42c93 4823 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4824 SCM_FRACTION_DENOMINATOR (x));
4825 else if (SCM_BIGP (y))
cba42c93 4826 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4827 SCM_FRACTION_DENOMINATOR (x));
4828 else if (SCM_REALP (y))
55f26379 4829 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4830 else if (SCM_COMPLEXP (y))
4831 {
4832 double xx = scm_i_fraction2double (x);
8507ec80 4833 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4834 xx * SCM_COMPLEX_IMAG (y));
4835 }
4836 else if (SCM_FRACTIONP (y))
4837 /* a/b * c/d = ac / bd */
cba42c93 4838 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4839 SCM_FRACTION_NUMERATOR (y)),
4840 scm_product (SCM_FRACTION_DENOMINATOR (x),
4841 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4842 else
4843 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4844 }
0aacf84e 4845 else
f4c627b3 4846 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4847}
4848
7351e207
MV
4849#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4850 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4851#define ALLOW_DIVIDE_BY_ZERO
4852/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4853#endif
0f2d19dd 4854
ba74ef4e
MV
4855/* The code below for complex division is adapted from the GNU
4856 libstdc++, which adapted it from f2c's libF77, and is subject to
4857 this copyright: */
4858
4859/****************************************************************
4860Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4861
4862Permission to use, copy, modify, and distribute this software
4863and its documentation for any purpose and without fee is hereby
4864granted, provided that the above copyright notice appear in all
4865copies and that both that the copyright notice and this
4866permission notice and warranty disclaimer appear in supporting
4867documentation, and that the names of AT&T Bell Laboratories or
4868Bellcore or any of their entities not be used in advertising or
4869publicity pertaining to distribution of the software without
4870specific, written prior permission.
4871
4872AT&T and Bellcore disclaim all warranties with regard to this
4873software, including all implied warranties of merchantability
4874and fitness. In no event shall AT&T or Bellcore be liable for
4875any special, indirect or consequential damages or any damages
4876whatsoever resulting from loss of use, data or profits, whether
4877in an action of contract, negligence or other tortious action,
4878arising out of or in connection with the use or performance of
4879this software.
4880****************************************************************/
4881
78d3deb1
AW
4882SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
4883 (SCM x, SCM y, SCM rest),
4884 "Divide the first argument by the product of the remaining\n"
4885 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
4886 "returned.")
4887#define FUNC_NAME s_scm_i_divide
4888{
4889 while (!scm_is_null (rest))
4890 { x = scm_divide (x, y);
4891 y = scm_car (rest);
4892 rest = scm_cdr (rest);
4893 }
4894 return scm_divide (x, y);
4895}
4896#undef FUNC_NAME
4897
4898#define s_divide s_scm_i_divide
4899#define g_divide g_scm_i_divide
4900
f92e85f7 4901static SCM
78d3deb1
AW
4902do_divide (SCM x, SCM y, int inexact)
4903#define FUNC_NAME s_divide
0f2d19dd 4904{
f8de44c1
DH
4905 double a;
4906
9cc37597 4907 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4908 {
4909 if (SCM_UNBNDP (x))
4910 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4911 else if (SCM_I_INUMP (x))
0aacf84e 4912 {
e25f3727 4913 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
4914 if (xx == 1 || xx == -1)
4915 return x;
7351e207 4916#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4917 else if (xx == 0)
4918 scm_num_overflow (s_divide);
7351e207 4919#endif
0aacf84e 4920 else
f92e85f7
MV
4921 {
4922 if (inexact)
55f26379 4923 return scm_from_double (1.0 / (double) xx);
cff5fa33 4924 else return scm_i_make_ratio (SCM_INUM1, x);
f92e85f7 4925 }
0aacf84e
MD
4926 }
4927 else if (SCM_BIGP (x))
f92e85f7
MV
4928 {
4929 if (inexact)
55f26379 4930 return scm_from_double (1.0 / scm_i_big2dbl (x));
cff5fa33 4931 else return scm_i_make_ratio (SCM_INUM1, x);
f92e85f7 4932 }
0aacf84e
MD
4933 else if (SCM_REALP (x))
4934 {
4935 double xx = SCM_REAL_VALUE (x);
7351e207 4936#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4937 if (xx == 0.0)
4938 scm_num_overflow (s_divide);
4939 else
7351e207 4940#endif
55f26379 4941 return scm_from_double (1.0 / xx);
0aacf84e
MD
4942 }
4943 else if (SCM_COMPLEXP (x))
4944 {
4945 double r = SCM_COMPLEX_REAL (x);
4946 double i = SCM_COMPLEX_IMAG (x);
4c6e36a6 4947 if (fabs(r) <= fabs(i))
0aacf84e
MD
4948 {
4949 double t = r / i;
4950 double d = i * (1.0 + t * t);
8507ec80 4951 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4952 }
4953 else
4954 {
4955 double t = i / r;
4956 double d = r * (1.0 + t * t);
8507ec80 4957 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4958 }
4959 }
f92e85f7 4960 else if (SCM_FRACTIONP (x))
cba42c93 4961 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4962 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4963 else
4964 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4965 }
f8de44c1 4966
9cc37597 4967 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4968 {
e25f3727 4969 scm_t_inum xx = SCM_I_INUM (x);
9cc37597 4970 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4971 {
e25f3727 4972 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
4973 if (yy == 0)
4974 {
7351e207 4975#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4976 scm_num_overflow (s_divide);
7351e207 4977#else
55f26379 4978 return scm_from_double ((double) xx / (double) yy);
7351e207 4979#endif
0aacf84e
MD
4980 }
4981 else if (xx % yy != 0)
f92e85f7
MV
4982 {
4983 if (inexact)
55f26379 4984 return scm_from_double ((double) xx / (double) yy);
cba42c93 4985 else return scm_i_make_ratio (x, y);
f92e85f7 4986 }
0aacf84e
MD
4987 else
4988 {
e25f3727 4989 scm_t_inum z = xx / yy;
0aacf84e 4990 if (SCM_FIXABLE (z))
d956fa6f 4991 return SCM_I_MAKINUM (z);
0aacf84e 4992 else
e25f3727 4993 return scm_i_inum2big (z);
0aacf84e 4994 }
f872b822 4995 }
0aacf84e 4996 else if (SCM_BIGP (y))
f92e85f7
MV
4997 {
4998 if (inexact)
55f26379 4999 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 5000 else return scm_i_make_ratio (x, y);
f92e85f7 5001 }
0aacf84e
MD
5002 else if (SCM_REALP (y))
5003 {
5004 double yy = SCM_REAL_VALUE (y);
7351e207 5005#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5006 if (yy == 0.0)
5007 scm_num_overflow (s_divide);
5008 else
7351e207 5009#endif
55f26379 5010 return scm_from_double ((double) xx / yy);
ba74ef4e 5011 }
0aacf84e
MD
5012 else if (SCM_COMPLEXP (y))
5013 {
5014 a = xx;
5015 complex_div: /* y _must_ be a complex number */
5016 {
5017 double r = SCM_COMPLEX_REAL (y);
5018 double i = SCM_COMPLEX_IMAG (y);
4c6e36a6 5019 if (fabs(r) <= fabs(i))
0aacf84e
MD
5020 {
5021 double t = r / i;
5022 double d = i * (1.0 + t * t);
8507ec80 5023 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
5024 }
5025 else
5026 {
5027 double t = i / r;
5028 double d = r * (1.0 + t * t);
8507ec80 5029 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
5030 }
5031 }
5032 }
f92e85f7
MV
5033 else if (SCM_FRACTIONP (y))
5034 /* a / b/c = ac / b */
cba42c93 5035 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5036 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5037 else
5038 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5039 }
0aacf84e
MD
5040 else if (SCM_BIGP (x))
5041 {
e11e83f3 5042 if (SCM_I_INUMP (y))
0aacf84e 5043 {
e25f3727 5044 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
5045 if (yy == 0)
5046 {
7351e207 5047#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5048 scm_num_overflow (s_divide);
7351e207 5049#else
0aacf84e
MD
5050 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5051 scm_remember_upto_here_1 (x);
5052 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 5053#endif
0aacf84e
MD
5054 }
5055 else if (yy == 1)
5056 return x;
5057 else
5058 {
5059 /* FIXME: HMM, what are the relative performance issues here?
5060 We need to test. Is it faster on average to test
5061 divisible_p, then perform whichever operation, or is it
5062 faster to perform the integer div opportunistically and
5063 switch to real if there's a remainder? For now we take the
5064 middle ground: test, then if divisible, use the faster div
5065 func. */
5066
e25f3727 5067 scm_t_inum abs_yy = yy < 0 ? -yy : yy;
0aacf84e
MD
5068 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
5069
5070 if (divisible_p)
5071 {
5072 SCM result = scm_i_mkbig ();
5073 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
5074 scm_remember_upto_here_1 (x);
5075 if (yy < 0)
5076 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
5077 return scm_i_normbig (result);
5078 }
5079 else
f92e85f7
MV
5080 {
5081 if (inexact)
55f26379 5082 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 5083 else return scm_i_make_ratio (x, y);
f92e85f7 5084 }
0aacf84e
MD
5085 }
5086 }
5087 else if (SCM_BIGP (y))
5088 {
a4955a04
MW
5089 /* big_x / big_y */
5090 if (inexact)
0aacf84e 5091 {
a4955a04
MW
5092 /* It's easily possible for the ratio x/y to fit a double
5093 but one or both x and y be too big to fit a double,
5094 hence the use of mpq_get_d rather than converting and
5095 dividing. */
5096 mpq_t q;
5097 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
5098 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
5099 return scm_from_double (mpq_get_d (q));
0aacf84e
MD
5100 }
5101 else
5102 {
a4955a04
MW
5103 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
5104 SCM_I_BIG_MPZ (y));
5105 if (divisible_p)
5106 {
5107 SCM result = scm_i_mkbig ();
5108 mpz_divexact (SCM_I_BIG_MPZ (result),
5109 SCM_I_BIG_MPZ (x),
5110 SCM_I_BIG_MPZ (y));
5111 scm_remember_upto_here_2 (x, y);
5112 return scm_i_normbig (result);
5113 }
5114 else
5115 return scm_i_make_ratio (x, y);
0aacf84e
MD
5116 }
5117 }
5118 else if (SCM_REALP (y))
5119 {
5120 double yy = SCM_REAL_VALUE (y);
7351e207 5121#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5122 if (yy == 0.0)
5123 scm_num_overflow (s_divide);
5124 else
7351e207 5125#endif
55f26379 5126 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
5127 }
5128 else if (SCM_COMPLEXP (y))
5129 {
5130 a = scm_i_big2dbl (x);
5131 goto complex_div;
5132 }
f92e85f7 5133 else if (SCM_FRACTIONP (y))
cba42c93 5134 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5135 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5136 else
5137 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5138 }
0aacf84e
MD
5139 else if (SCM_REALP (x))
5140 {
5141 double rx = SCM_REAL_VALUE (x);
e11e83f3 5142 if (SCM_I_INUMP (y))
0aacf84e 5143 {
e25f3727 5144 scm_t_inum yy = SCM_I_INUM (y);
7351e207 5145#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5146 if (yy == 0)
5147 scm_num_overflow (s_divide);
5148 else
7351e207 5149#endif
55f26379 5150 return scm_from_double (rx / (double) yy);
0aacf84e
MD
5151 }
5152 else if (SCM_BIGP (y))
5153 {
5154 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5155 scm_remember_upto_here_1 (y);
55f26379 5156 return scm_from_double (rx / dby);
0aacf84e
MD
5157 }
5158 else if (SCM_REALP (y))
5159 {
5160 double yy = SCM_REAL_VALUE (y);
7351e207 5161#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5162 if (yy == 0.0)
5163 scm_num_overflow (s_divide);
5164 else
7351e207 5165#endif
55f26379 5166 return scm_from_double (rx / yy);
0aacf84e
MD
5167 }
5168 else if (SCM_COMPLEXP (y))
5169 {
5170 a = rx;
5171 goto complex_div;
5172 }
f92e85f7 5173 else if (SCM_FRACTIONP (y))
55f26379 5174 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
5175 else
5176 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5177 }
0aacf84e
MD
5178 else if (SCM_COMPLEXP (x))
5179 {
5180 double rx = SCM_COMPLEX_REAL (x);
5181 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 5182 if (SCM_I_INUMP (y))
0aacf84e 5183 {
e25f3727 5184 scm_t_inum yy = SCM_I_INUM (y);
7351e207 5185#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5186 if (yy == 0)
5187 scm_num_overflow (s_divide);
5188 else
7351e207 5189#endif
0aacf84e
MD
5190 {
5191 double d = yy;
8507ec80 5192 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
5193 }
5194 }
5195 else if (SCM_BIGP (y))
5196 {
5197 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5198 scm_remember_upto_here_1 (y);
8507ec80 5199 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
5200 }
5201 else if (SCM_REALP (y))
5202 {
5203 double yy = SCM_REAL_VALUE (y);
7351e207 5204#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5205 if (yy == 0.0)
5206 scm_num_overflow (s_divide);
5207 else
7351e207 5208#endif
8507ec80 5209 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
5210 }
5211 else if (SCM_COMPLEXP (y))
5212 {
5213 double ry = SCM_COMPLEX_REAL (y);
5214 double iy = SCM_COMPLEX_IMAG (y);
4c6e36a6 5215 if (fabs(ry) <= fabs(iy))
0aacf84e
MD
5216 {
5217 double t = ry / iy;
5218 double d = iy * (1.0 + t * t);
8507ec80 5219 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
5220 }
5221 else
5222 {
5223 double t = iy / ry;
5224 double d = ry * (1.0 + t * t);
8507ec80 5225 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
5226 }
5227 }
f92e85f7
MV
5228 else if (SCM_FRACTIONP (y))
5229 {
5230 double yy = scm_i_fraction2double (y);
8507ec80 5231 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 5232 }
0aacf84e
MD
5233 else
5234 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5235 }
f92e85f7
MV
5236 else if (SCM_FRACTIONP (x))
5237 {
e11e83f3 5238 if (SCM_I_INUMP (y))
f92e85f7 5239 {
e25f3727 5240 scm_t_inum yy = SCM_I_INUM (y);
f92e85f7
MV
5241#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5242 if (yy == 0)
5243 scm_num_overflow (s_divide);
5244 else
5245#endif
cba42c93 5246 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5247 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5248 }
5249 else if (SCM_BIGP (y))
5250 {
cba42c93 5251 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5252 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5253 }
5254 else if (SCM_REALP (y))
5255 {
5256 double yy = SCM_REAL_VALUE (y);
5257#ifndef ALLOW_DIVIDE_BY_ZERO
5258 if (yy == 0.0)
5259 scm_num_overflow (s_divide);
5260 else
5261#endif
55f26379 5262 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
5263 }
5264 else if (SCM_COMPLEXP (y))
5265 {
5266 a = scm_i_fraction2double (x);
5267 goto complex_div;
5268 }
5269 else if (SCM_FRACTIONP (y))
cba42c93 5270 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
5271 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5272 else
5273 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5274 }
0aacf84e 5275 else
f8de44c1 5276 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 5277}
f92e85f7
MV
5278
5279SCM
5280scm_divide (SCM x, SCM y)
5281{
78d3deb1 5282 return do_divide (x, y, 0);
f92e85f7
MV
5283}
5284
5285static SCM scm_divide2real (SCM x, SCM y)
5286{
78d3deb1 5287 return do_divide (x, y, 1);
f92e85f7 5288}
c05e97b7 5289#undef FUNC_NAME
0f2d19dd 5290
fa605590 5291
0f2d19dd 5292double
3101f40f 5293scm_c_truncate (double x)
0f2d19dd 5294{
fa605590
KR
5295#if HAVE_TRUNC
5296 return trunc (x);
5297#else
f872b822
MD
5298 if (x < 0.0)
5299 return -floor (-x);
5300 return floor (x);
fa605590 5301#endif
0f2d19dd 5302}
0f2d19dd 5303
3101f40f
MV
5304/* scm_c_round is done using floor(x+0.5) to round to nearest and with
5305 half-way case (ie. when x is an integer plus 0.5) going upwards.
5306 Then half-way cases are identified and adjusted down if the
5307 round-upwards didn't give the desired even integer.
6187f48b
KR
5308
5309 "plus_half == result" identifies a half-way case. If plus_half, which is
5310 x + 0.5, is an integer then x must be an integer plus 0.5.
5311
5312 An odd "result" value is identified with result/2 != floor(result/2).
5313 This is done with plus_half, since that value is ready for use sooner in
5314 a pipelined cpu, and we're already requiring plus_half == result.
5315
5316 Note however that we need to be careful when x is big and already an
5317 integer. In that case "x+0.5" may round to an adjacent integer, causing
5318 us to return such a value, incorrectly. For instance if the hardware is
5319 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5320 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5321 returned. Or if the hardware is in round-upwards mode, then other bigger
5322 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5323 representable value, 2^128+2^76 (or whatever), again incorrect.
5324
5325 These bad roundings of x+0.5 are avoided by testing at the start whether
5326 x is already an integer. If it is then clearly that's the desired result
5327 already. And if it's not then the exponent must be small enough to allow
5328 an 0.5 to be represented, and hence added without a bad rounding. */
5329
0f2d19dd 5330double
3101f40f 5331scm_c_round (double x)
0f2d19dd 5332{
6187f48b
KR
5333 double plus_half, result;
5334
5335 if (x == floor (x))
5336 return x;
5337
5338 plus_half = x + 0.5;
5339 result = floor (plus_half);
3101f40f 5340 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
5341 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5342 ? result - 1
5343 : result);
0f2d19dd
JB
5344}
5345
f92e85f7
MV
5346SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5347 (SCM x),
5348 "Round the number @var{x} towards zero.")
5349#define FUNC_NAME s_scm_truncate_number
5350{
73e4de09 5351 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5352 return scm_floor (x);
5353 else
5354 return scm_ceiling (x);
5355}
5356#undef FUNC_NAME
5357
5358static SCM exactly_one_half;
5359
5360SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5361 (SCM x),
5362 "Round the number @var{x} towards the nearest integer. "
5363 "When it is exactly halfway between two integers, "
5364 "round towards the even one.")
5365#define FUNC_NAME s_scm_round_number
5366{
e11e83f3 5367 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
5368 return x;
5369 else if (SCM_REALP (x))
3101f40f 5370 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
f92e85f7 5371 else
bae30667
KR
5372 {
5373 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5374 single quotient+remainder division then examining to see which way
5375 the rounding should go. */
5376 SCM plus_half = scm_sum (x, exactly_one_half);
5377 SCM result = scm_floor (plus_half);
3101f40f 5378 /* Adjust so that the rounding is towards even. */
73e4de09
MV
5379 if (scm_is_true (scm_num_eq_p (plus_half, result))
5380 && scm_is_true (scm_odd_p (result)))
cff5fa33 5381 return scm_difference (result, SCM_INUM1);
bae30667
KR
5382 else
5383 return result;
5384 }
f92e85f7
MV
5385}
5386#undef FUNC_NAME
5387
5388SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5389 (SCM x),
5390 "Round the number @var{x} towards minus infinity.")
5391#define FUNC_NAME s_scm_floor
5392{
e11e83f3 5393 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5394 return x;
5395 else if (SCM_REALP (x))
55f26379 5396 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5397 else if (SCM_FRACTIONP (x))
5398 {
5399 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5400 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5401 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5402 {
5403 /* For positive x, rounding towards zero is correct. */
5404 return q;
5405 }
5406 else
5407 {
5408 /* For negative x, we need to return q-1 unless x is an
5409 integer. But fractions are never integer, per our
5410 assumptions. */
cff5fa33 5411 return scm_difference (q, SCM_INUM1);
f92e85f7
MV
5412 }
5413 }
5414 else
5415 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5416}
5417#undef FUNC_NAME
5418
5419SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5420 (SCM x),
5421 "Round the number @var{x} towards infinity.")
5422#define FUNC_NAME s_scm_ceiling
5423{
e11e83f3 5424 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5425 return x;
5426 else if (SCM_REALP (x))
55f26379 5427 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5428 else if (SCM_FRACTIONP (x))
5429 {
5430 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5431 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5432 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5433 {
5434 /* For negative x, rounding towards zero is correct. */
5435 return q;
5436 }
5437 else
5438 {
5439 /* For positive x, we need to return q+1 unless x is an
5440 integer. But fractions are never integer, per our
5441 assumptions. */
cff5fa33 5442 return scm_sum (q, SCM_INUM1);
f92e85f7
MV
5443 }
5444 }
5445 else
5446 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5447}
5448#undef FUNC_NAME
0f2d19dd 5449
ad79736c
AW
5450/* sin/cos/tan/asin/acos/atan
5451 sinh/cosh/tanh/asinh/acosh/atanh
5452 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5453 Written by Jerry D. Hedden, (C) FSF.
5454 See the file `COPYING' for terms applying to this program. */
0f2d19dd 5455
6fc4d012 5456SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
27c37006 5457 (SCM x, SCM y),
6fc4d012
AW
5458 "Return @var{x} raised to the power of @var{y}.")
5459#define FUNC_NAME s_scm_expt
0f2d19dd 5460{
01c7284a
MW
5461 if (scm_is_integer (y))
5462 {
5463 if (scm_is_true (scm_exact_p (y)))
5464 return scm_integer_expt (x, y);
5465 else
5466 {
5467 /* Here we handle the case where the exponent is an inexact
5468 integer. We make the exponent exact in order to use
5469 scm_integer_expt, and thus avoid the spurious imaginary
5470 parts that may result from round-off errors in the general
5471 e^(y log x) method below (for example when squaring a large
5472 negative number). In this case, we must return an inexact
5473 result for correctness. We also make the base inexact so
5474 that scm_integer_expt will use fast inexact arithmetic
5475 internally. Note that making the base inexact is not
5476 sufficient to guarantee an inexact result, because
5477 scm_integer_expt will return an exact 1 when the exponent
5478 is 0, even if the base is inexact. */
5479 return scm_exact_to_inexact
5480 (scm_integer_expt (scm_exact_to_inexact (x),
5481 scm_inexact_to_exact (y)));
5482 }
5483 }
6fc4d012
AW
5484 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5485 {
5486 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5487 }
5488 else
5489 return scm_exp (scm_product (scm_log (x), y));
0f2d19dd 5490}
1bbd0b84 5491#undef FUNC_NAME
0f2d19dd 5492
ad79736c
AW
5493SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5494 (SCM z),
5495 "Compute the sine of @var{z}.")
5496#define FUNC_NAME s_scm_sin
5497{
5498 if (scm_is_real (z))
5499 return scm_from_double (sin (scm_to_double (z)));
5500 else if (SCM_COMPLEXP (z))
5501 { double x, y;
5502 x = SCM_COMPLEX_REAL (z);
5503 y = SCM_COMPLEX_IMAG (z);
5504 return scm_c_make_rectangular (sin (x) * cosh (y),
5505 cos (x) * sinh (y));
5506 }
5507 else
5508 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5509}
5510#undef FUNC_NAME
0f2d19dd 5511
ad79736c
AW
5512SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5513 (SCM z),
5514 "Compute the cosine of @var{z}.")
5515#define FUNC_NAME s_scm_cos
5516{
5517 if (scm_is_real (z))
5518 return scm_from_double (cos (scm_to_double (z)));
5519 else if (SCM_COMPLEXP (z))
5520 { double x, y;
5521 x = SCM_COMPLEX_REAL (z);
5522 y = SCM_COMPLEX_IMAG (z);
5523 return scm_c_make_rectangular (cos (x) * cosh (y),
5524 -sin (x) * sinh (y));
5525 }
5526 else
5527 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5528}
5529#undef FUNC_NAME
5530
5531SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5532 (SCM z),
5533 "Compute the tangent of @var{z}.")
5534#define FUNC_NAME s_scm_tan
0f2d19dd 5535{
ad79736c
AW
5536 if (scm_is_real (z))
5537 return scm_from_double (tan (scm_to_double (z)));
5538 else if (SCM_COMPLEXP (z))
5539 { double x, y, w;
5540 x = 2.0 * SCM_COMPLEX_REAL (z);
5541 y = 2.0 * SCM_COMPLEX_IMAG (z);
5542 w = cos (x) + cosh (y);
5543#ifndef ALLOW_DIVIDE_BY_ZERO
5544 if (w == 0.0)
5545 scm_num_overflow (s_scm_tan);
5546#endif
5547 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5548 }
5549 else
5550 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5551}
5552#undef FUNC_NAME
5553
5554SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5555 (SCM z),
5556 "Compute the hyperbolic sine of @var{z}.")
5557#define FUNC_NAME s_scm_sinh
5558{
5559 if (scm_is_real (z))
5560 return scm_from_double (sinh (scm_to_double (z)));
5561 else if (SCM_COMPLEXP (z))
5562 { double x, y;
5563 x = SCM_COMPLEX_REAL (z);
5564 y = SCM_COMPLEX_IMAG (z);
5565 return scm_c_make_rectangular (sinh (x) * cos (y),
5566 cosh (x) * sin (y));
5567 }
5568 else
5569 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5570}
5571#undef FUNC_NAME
5572
5573SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5574 (SCM z),
5575 "Compute the hyperbolic cosine of @var{z}.")
5576#define FUNC_NAME s_scm_cosh
5577{
5578 if (scm_is_real (z))
5579 return scm_from_double (cosh (scm_to_double (z)));
5580 else if (SCM_COMPLEXP (z))
5581 { double x, y;
5582 x = SCM_COMPLEX_REAL (z);
5583 y = SCM_COMPLEX_IMAG (z);
5584 return scm_c_make_rectangular (cosh (x) * cos (y),
5585 sinh (x) * sin (y));
5586 }
5587 else
5588 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5589}
5590#undef FUNC_NAME
5591
5592SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5593 (SCM z),
5594 "Compute the hyperbolic tangent of @var{z}.")
5595#define FUNC_NAME s_scm_tanh
5596{
5597 if (scm_is_real (z))
5598 return scm_from_double (tanh (scm_to_double (z)));
5599 else if (SCM_COMPLEXP (z))
5600 { double x, y, w;
5601 x = 2.0 * SCM_COMPLEX_REAL (z);
5602 y = 2.0 * SCM_COMPLEX_IMAG (z);
5603 w = cosh (x) + cos (y);
5604#ifndef ALLOW_DIVIDE_BY_ZERO
5605 if (w == 0.0)
5606 scm_num_overflow (s_scm_tanh);
5607#endif
5608 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5609 }
5610 else
5611 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5612}
5613#undef FUNC_NAME
5614
5615SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5616 (SCM z),
5617 "Compute the arc sine of @var{z}.")
5618#define FUNC_NAME s_scm_asin
5619{
5620 if (scm_is_real (z))
5621 {
5622 double w = scm_to_double (z);
5623 if (w >= -1.0 && w <= 1.0)
5624 return scm_from_double (asin (w));
5625 else
5626 return scm_product (scm_c_make_rectangular (0, -1),
5627 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5628 }
5629 else if (SCM_COMPLEXP (z))
5630 { double x, y;
5631 x = SCM_COMPLEX_REAL (z);
5632 y = SCM_COMPLEX_IMAG (z);
5633 return scm_product (scm_c_make_rectangular (0, -1),
5634 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5635 }
5636 else
5637 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5638}
5639#undef FUNC_NAME
5640
5641SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5642 (SCM z),
5643 "Compute the arc cosine of @var{z}.")
5644#define FUNC_NAME s_scm_acos
5645{
5646 if (scm_is_real (z))
5647 {
5648 double w = scm_to_double (z);
5649 if (w >= -1.0 && w <= 1.0)
5650 return scm_from_double (acos (w));
5651 else
5652 return scm_sum (scm_from_double (acos (0.0)),
5653 scm_product (scm_c_make_rectangular (0, 1),
5654 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5655 }
5656 else if (SCM_COMPLEXP (z))
5657 { double x, y;
5658 x = SCM_COMPLEX_REAL (z);
5659 y = SCM_COMPLEX_IMAG (z);
5660 return scm_sum (scm_from_double (acos (0.0)),
5661 scm_product (scm_c_make_rectangular (0, 1),
5662 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5663 }
5664 else
5665 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5666}
5667#undef FUNC_NAME
5668
5669SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5670 (SCM z, SCM y),
5671 "With one argument, compute the arc tangent of @var{z}.\n"
5672 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5673 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5674#define FUNC_NAME s_scm_atan
5675{
5676 if (SCM_UNBNDP (y))
5677 {
5678 if (scm_is_real (z))
5679 return scm_from_double (atan (scm_to_double (z)));
5680 else if (SCM_COMPLEXP (z))
5681 {
5682 double v, w;
5683 v = SCM_COMPLEX_REAL (z);
5684 w = SCM_COMPLEX_IMAG (z);
5685 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5686 scm_c_make_rectangular (v, w + 1.0))),
5687 scm_c_make_rectangular (0, 2));
5688 }
5689 else
5690 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5691 }
5692 else if (scm_is_real (z))
5693 {
5694 if (scm_is_real (y))
5695 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5696 else
5697 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5698 }
5699 else
5700 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5701}
5702#undef FUNC_NAME
5703
5704SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5705 (SCM z),
5706 "Compute the inverse hyperbolic sine of @var{z}.")
5707#define FUNC_NAME s_scm_sys_asinh
5708{
5709 if (scm_is_real (z))
5710 return scm_from_double (asinh (scm_to_double (z)));
5711 else if (scm_is_number (z))
5712 return scm_log (scm_sum (z,
5713 scm_sqrt (scm_sum (scm_product (z, z),
cff5fa33 5714 SCM_INUM1))));
ad79736c
AW
5715 else
5716 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5717}
5718#undef FUNC_NAME
5719
5720SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5721 (SCM z),
5722 "Compute the inverse hyperbolic cosine of @var{z}.")
5723#define FUNC_NAME s_scm_sys_acosh
5724{
5725 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5726 return scm_from_double (acosh (scm_to_double (z)));
5727 else if (scm_is_number (z))
5728 return scm_log (scm_sum (z,
5729 scm_sqrt (scm_difference (scm_product (z, z),
cff5fa33 5730 SCM_INUM1))));
ad79736c
AW
5731 else
5732 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5733}
5734#undef FUNC_NAME
5735
5736SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5737 (SCM z),
5738 "Compute the inverse hyperbolic tangent of @var{z}.")
5739#define FUNC_NAME s_scm_sys_atanh
5740{
5741 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5742 return scm_from_double (atanh (scm_to_double (z)));
5743 else if (scm_is_number (z))
cff5fa33
MW
5744 return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
5745 scm_difference (SCM_INUM1, z))),
ad79736c
AW
5746 SCM_I_MAKINUM (2));
5747 else
5748 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
0f2d19dd 5749}
1bbd0b84 5750#undef FUNC_NAME
0f2d19dd 5751
8507ec80
MV
5752SCM
5753scm_c_make_rectangular (double re, double im)
5754{
5755 if (im == 0.0)
5756 return scm_from_double (re);
5757 else
5758 {
5759 SCM z;
03604fcf
LC
5760
5761 z = PTR2SCM (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
92d8fd32 5762 "complex"));
03604fcf 5763 SCM_SET_CELL_TYPE (z, scm_tc16_complex);
8507ec80
MV
5764 SCM_COMPLEX_REAL (z) = re;
5765 SCM_COMPLEX_IMAG (z) = im;
5766 return z;
5767 }
5768}
0f2d19dd 5769
a1ec6916 5770SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
a2c25234
LC
5771 (SCM real_part, SCM imaginary_part),
5772 "Return a complex number constructed of the given @var{real-part} "
5773 "and @var{imaginary-part} parts.")
1bbd0b84 5774#define FUNC_NAME s_scm_make_rectangular
0f2d19dd 5775{
ad79736c
AW
5776 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5777 SCM_ARG1, FUNC_NAME, "real");
5778 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5779 SCM_ARG2, FUNC_NAME, "real");
5780 return scm_c_make_rectangular (scm_to_double (real_part),
5781 scm_to_double (imaginary_part));
0f2d19dd 5782}
1bbd0b84 5783#undef FUNC_NAME
0f2d19dd 5784
8507ec80
MV
5785SCM
5786scm_c_make_polar (double mag, double ang)
5787{
5788 double s, c;
5e647d08
LC
5789
5790 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5791 use it on Glibc-based systems that have it (it's a GNU extension). See
5792 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5793 details. */
5794#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
8507ec80
MV
5795 sincos (ang, &s, &c);
5796#else
5797 s = sin (ang);
5798 c = cos (ang);
5799#endif
5800 return scm_c_make_rectangular (mag * c, mag * s);
5801}
0f2d19dd 5802
a1ec6916 5803SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5804 (SCM x, SCM y),
942e5b91 5805 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5806#define FUNC_NAME s_scm_make_polar
0f2d19dd 5807{
ad79736c
AW
5808 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5809 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5810 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
0f2d19dd 5811}
1bbd0b84 5812#undef FUNC_NAME
0f2d19dd
JB
5813
5814
152f82bf 5815SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5816/* "Return the real part of the number @var{z}."
5817 */
0f2d19dd 5818SCM
6e8d25a6 5819scm_real_part (SCM z)
0f2d19dd 5820{
e11e83f3 5821 if (SCM_I_INUMP (z))
c2ff8ab0 5822 return z;
0aacf84e 5823 else if (SCM_BIGP (z))
c2ff8ab0 5824 return z;
0aacf84e 5825 else if (SCM_REALP (z))
c2ff8ab0 5826 return z;
0aacf84e 5827 else if (SCM_COMPLEXP (z))
55f26379 5828 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5829 else if (SCM_FRACTIONP (z))
2fa2d879 5830 return z;
0aacf84e 5831 else
c2ff8ab0 5832 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5833}
5834
5835
152f82bf 5836SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5837/* "Return the imaginary part of the number @var{z}."
5838 */
0f2d19dd 5839SCM
6e8d25a6 5840scm_imag_part (SCM z)
0f2d19dd 5841{
e11e83f3 5842 if (SCM_I_INUMP (z))
f872b822 5843 return SCM_INUM0;
0aacf84e 5844 else if (SCM_BIGP (z))
f872b822 5845 return SCM_INUM0;
0aacf84e 5846 else if (SCM_REALP (z))
e7efe8e7 5847 return flo0;
0aacf84e 5848 else if (SCM_COMPLEXP (z))
55f26379 5849 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5850 else if (SCM_FRACTIONP (z))
5851 return SCM_INUM0;
0aacf84e 5852 else
c2ff8ab0 5853 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5854}
5855
f92e85f7
MV
5856SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5857/* "Return the numerator of the number @var{z}."
5858 */
5859SCM
5860scm_numerator (SCM z)
5861{
e11e83f3 5862 if (SCM_I_INUMP (z))
f92e85f7
MV
5863 return z;
5864 else if (SCM_BIGP (z))
5865 return z;
5866 else if (SCM_FRACTIONP (z))
e2bf3b19 5867 return SCM_FRACTION_NUMERATOR (z);
f92e85f7
MV
5868 else if (SCM_REALP (z))
5869 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5870 else
5871 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5872}
5873
5874
5875SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5876/* "Return the denominator of the number @var{z}."
5877 */
5878SCM
5879scm_denominator (SCM z)
5880{
e11e83f3 5881 if (SCM_I_INUMP (z))
cff5fa33 5882 return SCM_INUM1;
f92e85f7 5883 else if (SCM_BIGP (z))
cff5fa33 5884 return SCM_INUM1;
f92e85f7 5885 else if (SCM_FRACTIONP (z))
e2bf3b19 5886 return SCM_FRACTION_DENOMINATOR (z);
f92e85f7
MV
5887 else if (SCM_REALP (z))
5888 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5889 else
5890 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5891}
0f2d19dd 5892
9de33deb 5893SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5894/* "Return the magnitude of the number @var{z}. This is the same as\n"
5895 * "@code{abs} for real arguments, but also allows complex numbers."
5896 */
0f2d19dd 5897SCM
6e8d25a6 5898scm_magnitude (SCM z)
0f2d19dd 5899{
e11e83f3 5900 if (SCM_I_INUMP (z))
0aacf84e 5901 {
e25f3727 5902 scm_t_inum zz = SCM_I_INUM (z);
0aacf84e
MD
5903 if (zz >= 0)
5904 return z;
5905 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5906 return SCM_I_MAKINUM (-zz);
0aacf84e 5907 else
e25f3727 5908 return scm_i_inum2big (-zz);
5986c47d 5909 }
0aacf84e
MD
5910 else if (SCM_BIGP (z))
5911 {
5912 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5913 scm_remember_upto_here_1 (z);
5914 if (sgn < 0)
5915 return scm_i_clonebig (z, 0);
5916 else
5917 return z;
5986c47d 5918 }
0aacf84e 5919 else if (SCM_REALP (z))
55f26379 5920 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5921 else if (SCM_COMPLEXP (z))
55f26379 5922 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5923 else if (SCM_FRACTIONP (z))
5924 {
73e4de09 5925 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5926 return z;
cba42c93 5927 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5928 SCM_FRACTION_DENOMINATOR (z));
5929 }
0aacf84e 5930 else
c2ff8ab0 5931 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5932}
5933
5934
9de33deb 5935SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5936/* "Return the angle of the complex number @var{z}."
5937 */
0f2d19dd 5938SCM
6e8d25a6 5939scm_angle (SCM z)
0f2d19dd 5940{
c8ae173e 5941 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
e7efe8e7 5942 flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5943 But if atan2 follows the floating point rounding mode, then the value
5944 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5945 if (SCM_I_INUMP (z))
0aacf84e 5946 {
e11e83f3 5947 if (SCM_I_INUM (z) >= 0)
e7efe8e7 5948 return flo0;
0aacf84e 5949 else
55f26379 5950 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5951 }
0aacf84e
MD
5952 else if (SCM_BIGP (z))
5953 {
5954 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5955 scm_remember_upto_here_1 (z);
5956 if (sgn < 0)
55f26379 5957 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5958 else
e7efe8e7 5959 return flo0;
0f2d19dd 5960 }
0aacf84e 5961 else if (SCM_REALP (z))
c8ae173e
KR
5962 {
5963 if (SCM_REAL_VALUE (z) >= 0)
e7efe8e7 5964 return flo0;
c8ae173e 5965 else
55f26379 5966 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5967 }
0aacf84e 5968 else if (SCM_COMPLEXP (z))
55f26379 5969 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
5970 else if (SCM_FRACTIONP (z))
5971 {
73e4de09 5972 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
e7efe8e7 5973 return flo0;
55f26379 5974 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 5975 }
0aacf84e 5976 else
f4c627b3 5977 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
5978}
5979
5980
3c9a524f
DH
5981SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5982/* Convert the number @var{x} to its inexact representation.\n"
5983 */
5984SCM
5985scm_exact_to_inexact (SCM z)
5986{
e11e83f3 5987 if (SCM_I_INUMP (z))
55f26379 5988 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 5989 else if (SCM_BIGP (z))
55f26379 5990 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 5991 else if (SCM_FRACTIONP (z))
55f26379 5992 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
5993 else if (SCM_INEXACTP (z))
5994 return z;
5995 else
5996 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5997}
5998
5999
a1ec6916 6000SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 6001 (SCM z),
1e6808ea 6002 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 6003#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 6004{
e11e83f3 6005 if (SCM_I_INUMP (z))
f872b822 6006 return z;
0aacf84e 6007 else if (SCM_BIGP (z))
f872b822 6008 return z;
0aacf84e
MD
6009 else if (SCM_REALP (z))
6010 {
2e65b52f 6011 if (isinf (SCM_REAL_VALUE (z)) || isnan (SCM_REAL_VALUE (z)))
f92e85f7 6012 SCM_OUT_OF_RANGE (1, z);
2be24db4 6013 else
f92e85f7
MV
6014 {
6015 mpq_t frac;
6016 SCM q;
6017
6018 mpq_init (frac);
6019 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 6020 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
6021 scm_i_mpz2num (mpq_denref (frac)));
6022
cba42c93 6023 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
6024 for frac...
6025 */
6026 mpq_clear (frac);
6027 return q;
6028 }
c2ff8ab0 6029 }
f92e85f7
MV
6030 else if (SCM_FRACTIONP (z))
6031 return z;
0aacf84e 6032 else
c2ff8ab0 6033 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 6034}
1bbd0b84 6035#undef FUNC_NAME
0f2d19dd 6036
f92e85f7 6037SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
76dae881
NJ
6038 (SCM x, SCM eps),
6039 "Returns the @emph{simplest} rational number differing\n"
6040 "from @var{x} by no more than @var{eps}.\n"
6041 "\n"
6042 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
6043 "exact result when both its arguments are exact. Thus, you might need\n"
6044 "to use @code{inexact->exact} on the arguments.\n"
6045 "\n"
6046 "@lisp\n"
6047 "(rationalize (inexact->exact 1.2) 1/100)\n"
6048 "@result{} 6/5\n"
6049 "@end lisp")
f92e85f7
MV
6050#define FUNC_NAME s_scm_rationalize
6051{
e11e83f3 6052 if (SCM_I_INUMP (x))
f92e85f7
MV
6053 return x;
6054 else if (SCM_BIGP (x))
6055 return x;
6056 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
6057 {
6058 /* Use continued fractions to find closest ratio. All
6059 arithmetic is done with exact numbers.
6060 */
6061
6062 SCM ex = scm_inexact_to_exact (x);
6063 SCM int_part = scm_floor (ex);
cff5fa33
MW
6064 SCM tt = SCM_INUM1;
6065 SCM a1 = SCM_INUM0, a2 = SCM_INUM1, a = SCM_INUM0;
6066 SCM b1 = SCM_INUM1, b2 = SCM_INUM0, b = SCM_INUM0;
f92e85f7
MV
6067 SCM rx;
6068 int i = 0;
6069
73e4de09 6070 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
6071 return ex;
6072
6073 ex = scm_difference (ex, int_part); /* x = x-int_part */
6074 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
6075
6076 /* We stop after a million iterations just to be absolutely sure
6077 that we don't go into an infinite loop. The process normally
6078 converges after less than a dozen iterations.
6079 */
6080
76dae881 6081 eps = scm_abs (eps);
f92e85f7
MV
6082 while (++i < 1000000)
6083 {
6084 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
6085 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
6086 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
6087 scm_is_false
f92e85f7 6088 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
76dae881 6089 eps))) /* abs(x-a/b) <= eps */
02164269
MV
6090 {
6091 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09 6092 if (scm_is_false (scm_exact_p (x))
76dae881 6093 || scm_is_false (scm_exact_p (eps)))
02164269
MV
6094 return scm_exact_to_inexact (res);
6095 else
6096 return res;
6097 }
f92e85f7
MV
6098 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
6099 SCM_UNDEFINED);
6100 tt = scm_floor (rx); /* tt = floor (rx) */
6101 a2 = a1;
6102 b2 = b1;
6103 a1 = a;
6104 b1 = b;
6105 }
6106 scm_num_overflow (s_scm_rationalize);
6107 }
6108 else
6109 SCM_WRONG_TYPE_ARG (1, x);
6110}
6111#undef FUNC_NAME
6112
73e4de09
MV
6113/* conversion functions */
6114
6115int
6116scm_is_integer (SCM val)
6117{
6118 return scm_is_true (scm_integer_p (val));
6119}
6120
6121int
6122scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
6123{
e11e83f3 6124 if (SCM_I_INUMP (val))
73e4de09 6125 {
e11e83f3 6126 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6127 return n >= min && n <= max;
6128 }
6129 else if (SCM_BIGP (val))
6130 {
6131 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
6132 return 0;
6133 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
6134 {
6135 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
6136 {
6137 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
6138 return n >= min && n <= max;
6139 }
6140 else
6141 return 0;
6142 }
73e4de09
MV
6143 else
6144 {
d956fa6f
MV
6145 scm_t_intmax n;
6146 size_t count;
73e4de09 6147
d956fa6f
MV
6148 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6149 > CHAR_BIT*sizeof (scm_t_uintmax))
6150 return 0;
6151
6152 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6153 SCM_I_BIG_MPZ (val));
73e4de09 6154
d956fa6f 6155 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 6156 {
d956fa6f
MV
6157 if (n < 0)
6158 return 0;
73e4de09 6159 }
73e4de09
MV
6160 else
6161 {
d956fa6f
MV
6162 n = -n;
6163 if (n >= 0)
6164 return 0;
73e4de09 6165 }
d956fa6f
MV
6166
6167 return n >= min && n <= max;
73e4de09
MV
6168 }
6169 }
73e4de09
MV
6170 else
6171 return 0;
6172}
6173
6174int
6175scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
6176{
e11e83f3 6177 if (SCM_I_INUMP (val))
73e4de09 6178 {
e11e83f3 6179 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6180 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
6181 }
6182 else if (SCM_BIGP (val))
6183 {
6184 if (max <= SCM_MOST_POSITIVE_FIXNUM)
6185 return 0;
6186 else if (max <= ULONG_MAX)
d956fa6f
MV
6187 {
6188 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
6189 {
6190 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
6191 return n >= min && n <= max;
6192 }
6193 else
6194 return 0;
6195 }
73e4de09
MV
6196 else
6197 {
d956fa6f
MV
6198 scm_t_uintmax n;
6199 size_t count;
73e4de09 6200
d956fa6f
MV
6201 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
6202 return 0;
73e4de09 6203
d956fa6f
MV
6204 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6205 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 6206 return 0;
d956fa6f
MV
6207
6208 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6209 SCM_I_BIG_MPZ (val));
73e4de09 6210
d956fa6f 6211 return n >= min && n <= max;
73e4de09
MV
6212 }
6213 }
73e4de09
MV
6214 else
6215 return 0;
6216}
6217
1713d319
MV
6218static void
6219scm_i_range_error (SCM bad_val, SCM min, SCM max)
6220{
6221 scm_error (scm_out_of_range_key,
6222 NULL,
6223 "Value out of range ~S to ~S: ~S",
6224 scm_list_3 (min, max, bad_val),
6225 scm_list_1 (bad_val));
6226}
6227
bfd7932e
MV
6228#define TYPE scm_t_intmax
6229#define TYPE_MIN min
6230#define TYPE_MAX max
6231#define SIZEOF_TYPE 0
6232#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
6233#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
6234#include "libguile/conv-integer.i.c"
6235
6236#define TYPE scm_t_uintmax
6237#define TYPE_MIN min
6238#define TYPE_MAX max
6239#define SIZEOF_TYPE 0
6240#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
6241#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
6242#include "libguile/conv-uinteger.i.c"
6243
6244#define TYPE scm_t_int8
6245#define TYPE_MIN SCM_T_INT8_MIN
6246#define TYPE_MAX SCM_T_INT8_MAX
6247#define SIZEOF_TYPE 1
6248#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
6249#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
6250#include "libguile/conv-integer.i.c"
6251
6252#define TYPE scm_t_uint8
6253#define TYPE_MIN 0
6254#define TYPE_MAX SCM_T_UINT8_MAX
6255#define SIZEOF_TYPE 1
6256#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6257#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6258#include "libguile/conv-uinteger.i.c"
6259
6260#define TYPE scm_t_int16
6261#define TYPE_MIN SCM_T_INT16_MIN
6262#define TYPE_MAX SCM_T_INT16_MAX
6263#define SIZEOF_TYPE 2
6264#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6265#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6266#include "libguile/conv-integer.i.c"
6267
6268#define TYPE scm_t_uint16
6269#define TYPE_MIN 0
6270#define TYPE_MAX SCM_T_UINT16_MAX
6271#define SIZEOF_TYPE 2
6272#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6273#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6274#include "libguile/conv-uinteger.i.c"
6275
6276#define TYPE scm_t_int32
6277#define TYPE_MIN SCM_T_INT32_MIN
6278#define TYPE_MAX SCM_T_INT32_MAX
6279#define SIZEOF_TYPE 4
6280#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6281#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6282#include "libguile/conv-integer.i.c"
6283
6284#define TYPE scm_t_uint32
6285#define TYPE_MIN 0
6286#define TYPE_MAX SCM_T_UINT32_MAX
6287#define SIZEOF_TYPE 4
6288#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6289#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6290#include "libguile/conv-uinteger.i.c"
6291
904a78f1
MG
6292#define TYPE scm_t_wchar
6293#define TYPE_MIN (scm_t_int32)-1
6294#define TYPE_MAX (scm_t_int32)0x10ffff
6295#define SIZEOF_TYPE 4
6296#define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6297#define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6298#include "libguile/conv-integer.i.c"
6299
bfd7932e
MV
6300#define TYPE scm_t_int64
6301#define TYPE_MIN SCM_T_INT64_MIN
6302#define TYPE_MAX SCM_T_INT64_MAX
6303#define SIZEOF_TYPE 8
6304#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6305#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6306#include "libguile/conv-integer.i.c"
6307
6308#define TYPE scm_t_uint64
6309#define TYPE_MIN 0
6310#define TYPE_MAX SCM_T_UINT64_MAX
6311#define SIZEOF_TYPE 8
6312#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6313#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6314#include "libguile/conv-uinteger.i.c"
73e4de09 6315
cd036260
MV
6316void
6317scm_to_mpz (SCM val, mpz_t rop)
6318{
6319 if (SCM_I_INUMP (val))
6320 mpz_set_si (rop, SCM_I_INUM (val));
6321 else if (SCM_BIGP (val))
6322 mpz_set (rop, SCM_I_BIG_MPZ (val));
6323 else
6324 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6325}
6326
6327SCM
6328scm_from_mpz (mpz_t val)
6329{
6330 return scm_i_mpz2num (val);
6331}
6332
73e4de09
MV
6333int
6334scm_is_real (SCM val)
6335{
6336 return scm_is_true (scm_real_p (val));
6337}
6338
55f26379
MV
6339int
6340scm_is_rational (SCM val)
6341{
6342 return scm_is_true (scm_rational_p (val));
6343}
6344
73e4de09
MV
6345double
6346scm_to_double (SCM val)
6347{
55f26379
MV
6348 if (SCM_I_INUMP (val))
6349 return SCM_I_INUM (val);
6350 else if (SCM_BIGP (val))
6351 return scm_i_big2dbl (val);
6352 else if (SCM_FRACTIONP (val))
6353 return scm_i_fraction2double (val);
6354 else if (SCM_REALP (val))
6355 return SCM_REAL_VALUE (val);
6356 else
7a1aba42 6357 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
6358}
6359
6360SCM
6361scm_from_double (double val)
6362{
978c52d1
LC
6363 SCM z;
6364
6365 z = PTR2SCM (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
6366
6367 SCM_SET_CELL_TYPE (z, scm_tc16_real);
55f26379 6368 SCM_REAL_VALUE (z) = val;
978c52d1 6369
55f26379 6370 return z;
73e4de09
MV
6371}
6372
220058a8 6373#if SCM_ENABLE_DEPRECATED == 1
55f26379
MV
6374
6375float
e25f3727 6376scm_num2float (SCM num, unsigned long pos, const char *s_caller)
55f26379 6377{
220058a8
AW
6378 scm_c_issue_deprecation_warning
6379 ("`scm_num2float' is deprecated. Use scm_to_double instead.");
6380
55f26379
MV
6381 if (SCM_BIGP (num))
6382 {
6383 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
2e65b52f 6384 if (!isinf (res))
55f26379
MV
6385 return res;
6386 else
6387 scm_out_of_range (NULL, num);
6388 }
6389 else
6390 return scm_to_double (num);
6391}
6392
6393double
e25f3727 6394scm_num2double (SCM num, unsigned long pos, const char *s_caller)
55f26379 6395{
220058a8
AW
6396 scm_c_issue_deprecation_warning
6397 ("`scm_num2double' is deprecated. Use scm_to_double instead.");
6398
55f26379
MV
6399 if (SCM_BIGP (num))
6400 {
6401 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
2e65b52f 6402 if (!isinf (res))
55f26379
MV
6403 return res;
6404 else
6405 scm_out_of_range (NULL, num);
6406 }
6407 else
6408 return scm_to_double (num);
6409}
6410
6411#endif
6412
8507ec80
MV
6413int
6414scm_is_complex (SCM val)
6415{
6416 return scm_is_true (scm_complex_p (val));
6417}
6418
6419double
6420scm_c_real_part (SCM z)
6421{
6422 if (SCM_COMPLEXP (z))
6423 return SCM_COMPLEX_REAL (z);
6424 else
6425 {
6426 /* Use the scm_real_part to get proper error checking and
6427 dispatching.
6428 */
6429 return scm_to_double (scm_real_part (z));
6430 }
6431}
6432
6433double
6434scm_c_imag_part (SCM z)
6435{
6436 if (SCM_COMPLEXP (z))
6437 return SCM_COMPLEX_IMAG (z);
6438 else
6439 {
6440 /* Use the scm_imag_part to get proper error checking and
6441 dispatching. The result will almost always be 0.0, but not
6442 always.
6443 */
6444 return scm_to_double (scm_imag_part (z));
6445 }
6446}
6447
6448double
6449scm_c_magnitude (SCM z)
6450{
6451 return scm_to_double (scm_magnitude (z));
6452}
6453
6454double
6455scm_c_angle (SCM z)
6456{
6457 return scm_to_double (scm_angle (z));
6458}
6459
6460int
6461scm_is_number (SCM z)
6462{
6463 return scm_is_true (scm_number_p (z));
6464}
6465
8ab3d8a0
KR
6466
6467/* In the following functions we dispatch to the real-arg funcs like log()
6468 when we know the arg is real, instead of just handing everything to
6469 clog() for instance. This is in case clog() doesn't optimize for a
6470 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6471 well use it to go straight to the applicable C func. */
6472
6473SCM_DEFINE (scm_log, "log", 1, 0, 0,
6474 (SCM z),
6475 "Return the natural logarithm of @var{z}.")
6476#define FUNC_NAME s_scm_log
6477{
6478 if (SCM_COMPLEXP (z))
6479 {
4b26c03e 6480#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6481 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6482#else
6483 double re = SCM_COMPLEX_REAL (z);
6484 double im = SCM_COMPLEX_IMAG (z);
6485 return scm_c_make_rectangular (log (hypot (re, im)),
6486 atan2 (im, re));
6487#endif
6488 }
6489 else
6490 {
6491 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6492 although the value itself overflows. */
6493 double re = scm_to_double (z);
6494 double l = log (fabs (re));
6495 if (re >= 0.0)
6496 return scm_from_double (l);
6497 else
6498 return scm_c_make_rectangular (l, M_PI);
6499 }
6500}
6501#undef FUNC_NAME
6502
6503
6504SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6505 (SCM z),
6506 "Return the base 10 logarithm of @var{z}.")
6507#define FUNC_NAME s_scm_log10
6508{
6509 if (SCM_COMPLEXP (z))
6510 {
6511 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6512 clog() and a multiply by M_LOG10E, rather than the fallback
6513 log10+hypot+atan2.) */
f328f862
LC
6514#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
6515 && defined SCM_COMPLEX_VALUE
8ab3d8a0
KR
6516 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6517#else
6518 double re = SCM_COMPLEX_REAL (z);
6519 double im = SCM_COMPLEX_IMAG (z);
6520 return scm_c_make_rectangular (log10 (hypot (re, im)),
6521 M_LOG10E * atan2 (im, re));
6522#endif
6523 }
6524 else
6525 {
6526 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6527 although the value itself overflows. */
6528 double re = scm_to_double (z);
6529 double l = log10 (fabs (re));
6530 if (re >= 0.0)
6531 return scm_from_double (l);
6532 else
6533 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6534 }
6535}
6536#undef FUNC_NAME
6537
6538
6539SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6540 (SCM z),
6541 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6542 "base of natural logarithms (2.71828@dots{}).")
6543#define FUNC_NAME s_scm_exp
6544{
6545 if (SCM_COMPLEXP (z))
6546 {
4b26c03e 6547#if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6548 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6549#else
6550 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6551 SCM_COMPLEX_IMAG (z));
6552#endif
6553 }
6554 else
6555 {
6556 /* When z is a negative bignum the conversion to double overflows,
6557 giving -infinity, but that's ok, the exp is still 0.0. */
6558 return scm_from_double (exp (scm_to_double (z)));
6559 }
6560}
6561#undef FUNC_NAME
6562
6563
6564SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6565 (SCM x),
6566 "Return the square root of @var{z}. Of the two possible roots\n"
6567 "(positive and negative), the one with the a positive real part\n"
6568 "is returned, or if that's zero then a positive imaginary part.\n"
6569 "Thus,\n"
6570 "\n"
6571 "@example\n"
6572 "(sqrt 9.0) @result{} 3.0\n"
6573 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6574 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6575 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6576 "@end example")
6577#define FUNC_NAME s_scm_sqrt
6578{
6579 if (SCM_COMPLEXP (x))
6580 {
f328f862
LC
6581#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
6582 && defined SCM_COMPLEX_VALUE
8ab3d8a0
KR
6583 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6584#else
6585 double re = SCM_COMPLEX_REAL (x);
6586 double im = SCM_COMPLEX_IMAG (x);
6587 return scm_c_make_polar (sqrt (hypot (re, im)),
6588 0.5 * atan2 (im, re));
6589#endif
6590 }
6591 else
6592 {
6593 double xx = scm_to_double (x);
6594 if (xx < 0)
6595 return scm_c_make_rectangular (0.0, sqrt (-xx));
6596 else
6597 return scm_from_double (sqrt (xx));
6598 }
6599}
6600#undef FUNC_NAME
6601
6602
6603
0f2d19dd
JB
6604void
6605scm_init_numbers ()
0f2d19dd 6606{
0b799eea
MV
6607 int i;
6608
713a4259
KR
6609 mpz_init_set_si (z_negative_one, -1);
6610
a261c0e9
DH
6611 /* It may be possible to tune the performance of some algorithms by using
6612 * the following constants to avoid the creation of bignums. Please, before
6613 * using these values, remember the two rules of program optimization:
6614 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 6615 scm_c_define ("most-positive-fixnum",
d956fa6f 6616 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 6617 scm_c_define ("most-negative-fixnum",
d956fa6f 6618 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 6619
f3ae5d60
MD
6620 scm_add_feature ("complex");
6621 scm_add_feature ("inexact");
e7efe8e7 6622 flo0 = scm_from_double (0.0);
0b799eea
MV
6623
6624 /* determine floating point precision */
55f26379 6625 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
6626 {
6627 init_dblprec(&scm_dblprec[i-2],i);
6628 init_fx_radix(fx_per_radix[i-2],i);
6629 }
f872b822 6630#ifdef DBL_DIG
0b799eea 6631 /* hard code precision for base 10 if the preprocessor tells us to... */
f39448c5 6632 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
0b799eea 6633#endif
1be6b49c 6634
cff5fa33 6635 exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
a0599745 6636#include "libguile/numbers.x"
0f2d19dd 6637}
89e00824
ML
6638
6639/*
6640 Local Variables:
6641 c-file-style: "gnu"
6642 End:
6643*/