more r6rs incompat
[bpt/guile.git] / libguile / numbers.c
CommitLineData
8c93b597 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e 7 * This library is free software; you can redistribute it and/or
53befeb7
NJ
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
0f2d19dd 11 *
53befeb7
NJ
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
73be1d9e
MV
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
53befeb7
NJ
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
73be1d9e 21 */
1bbd0b84 22
0f2d19dd 23\f
ca46fb90
RB
24/* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 29 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
30 */
31
32/* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
0f2d19dd 43
dbb605f5 44#ifdef HAVE_CONFIG_H
ee33d62a
RB
45# include <config.h>
46#endif
47
0f2d19dd 48#include <math.h>
fc194577 49#include <string.h>
3f47e526
MG
50#include <unicase.h>
51#include <unictype.h>
f92e85f7 52
8ab3d8a0
KR
53#if HAVE_COMPLEX_H
54#include <complex.h>
55#endif
56
a0599745 57#include "libguile/_scm.h"
a0599745
MD
58#include "libguile/feature.h"
59#include "libguile/ports.h"
60#include "libguile/root.h"
61#include "libguile/smob.h"
62#include "libguile/strings.h"
a0599745
MD
63
64#include "libguile/validate.h"
65#include "libguile/numbers.h"
1be6b49c 66#include "libguile/deprecation.h"
f4c627b3 67
f92e85f7
MV
68#include "libguile/eq.h"
69
55f26379
MV
70#include "libguile/discouraged.h"
71
8ab3d8a0
KR
72/* values per glibc, if not already defined */
73#ifndef M_LOG10E
74#define M_LOG10E 0.43429448190325182765
75#endif
76#ifndef M_PI
77#define M_PI 3.14159265358979323846
78#endif
79
0f2d19dd 80\f
f4c627b3 81
ca46fb90
RB
82/*
83 Wonder if this might be faster for some of our code? A switch on
84 the numtag would jump directly to the right case, and the
85 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
86
87 #define SCM_I_NUMTAG_NOTNUM 0
88 #define SCM_I_NUMTAG_INUM 1
89 #define SCM_I_NUMTAG_BIG scm_tc16_big
90 #define SCM_I_NUMTAG_REAL scm_tc16_real
91 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
92 #define SCM_I_NUMTAG(x) \
e11e83f3 93 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 94 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 95 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
96 : SCM_I_NUMTAG_NOTNUM)))
97*/
f92e85f7 98/* the macro above will not work as is with fractions */
f4c627b3
DH
99
100
e7efe8e7
AW
101static SCM flo0;
102
34d19ef6 103#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 104
56e55ac7 105/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
106 * printed or scm_string representation of an inexact number.
107 */
0b799eea 108#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 109
7351e207
MV
110#if defined (SCO)
111#if ! defined (HAVE_ISNAN)
112#define HAVE_ISNAN
113static int
114isnan (double x)
115{
116 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
117}
0f2d19dd 118#endif
7351e207
MV
119#if ! defined (HAVE_ISINF)
120#define HAVE_ISINF
121static int
122isinf (double x)
123{
124 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
125}
0f2d19dd 126
7351e207 127#endif
e6f3ef58
MD
128#endif
129
b127c712 130
ad79736c
AW
131#if !defined (HAVE_ASINH)
132static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
133#endif
134#if !defined (HAVE_ACOSH)
135static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
136#endif
137#if !defined (HAVE_ATANH)
138static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
139#endif
140
f8a8200b
KR
141/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
142 an explicit check. In some future gmp (don't know what version number),
143 mpz_cmp_d is supposed to do this itself. */
144#if 1
b127c712
KR
145#define xmpz_cmp_d(z, d) \
146 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
147#else
148#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
149#endif
150
a98ce907
KR
151/* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
152 isinf. It does have finite and isnan though, hence the use of those.
153 fpclass would be a possibility on that system too. */
f92e85f7
MV
154static int
155xisinf (double x)
156{
157#if defined (HAVE_ISINF)
158 return isinf (x);
159#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
160 return (! (finite (x) || isnan (x)));
161#else
162 return 0;
163#endif
164}
165
166static int
167xisnan (double x)
168{
169#if defined (HAVE_ISNAN)
170 return isnan (x);
171#else
172 return 0;
173#endif
174}
175
4b26c03e 176#if defined (GUILE_I)
bca69a9f 177#if HAVE_COMPLEX_DOUBLE
8ab3d8a0
KR
178
179/* For an SCM object Z which is a complex number (ie. satisfies
180 SCM_COMPLEXP), return its value as a C level "complex double". */
181#define SCM_COMPLEX_VALUE(z) \
4b26c03e 182 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
8ab3d8a0 183
7a35784c 184static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
8ab3d8a0
KR
185
186/* Convert a C "complex double" to an SCM value. */
7a35784c 187static inline SCM
8ab3d8a0
KR
188scm_from_complex_double (complex double z)
189{
190 return scm_c_make_rectangular (creal (z), cimag (z));
191}
bca69a9f 192
8ab3d8a0 193#endif /* HAVE_COMPLEX_DOUBLE */
bca69a9f 194#endif /* GUILE_I */
8ab3d8a0 195
0f2d19dd
JB
196\f
197
713a4259 198static mpz_t z_negative_one;
ac0c002c
DH
199
200\f
201
189171c5 202SCM
ca46fb90
RB
203scm_i_mkbig ()
204{
205 /* Return a newly created bignum. */
206 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
207 mpz_init (SCM_I_BIG_MPZ (z));
208 return z;
209}
210
189171c5 211SCM
c71b0706
MV
212scm_i_long2big (long x)
213{
214 /* Return a newly created bignum initialized to X. */
215 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
216 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
217 return z;
218}
219
189171c5 220SCM
c71b0706
MV
221scm_i_ulong2big (unsigned long x)
222{
223 /* Return a newly created bignum initialized to X. */
224 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
225 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
226 return z;
227}
228
189171c5 229SCM
ca46fb90
RB
230scm_i_clonebig (SCM src_big, int same_sign_p)
231{
232 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
233 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
234 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
235 if (!same_sign_p)
236 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
237 return z;
238}
239
189171c5 240int
ca46fb90
RB
241scm_i_bigcmp (SCM x, SCM y)
242{
243 /* Return neg if x < y, pos if x > y, and 0 if x == y */
244 /* presume we already know x and y are bignums */
245 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
246 scm_remember_upto_here_2 (x, y);
247 return result;
248}
249
189171c5 250SCM
ca46fb90
RB
251scm_i_dbl2big (double d)
252{
253 /* results are only defined if d is an integer */
254 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
255 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
256 return z;
257}
258
f92e85f7
MV
259/* Convert a integer in double representation to a SCM number. */
260
189171c5 261SCM
f92e85f7
MV
262scm_i_dbl2num (double u)
263{
264 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
265 powers of 2, so there's no rounding when making "double" values
266 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
267 get rounded on a 64-bit machine, hence the "+1".
268
269 The use of floor() to force to an integer value ensures we get a
270 "numerically closest" value without depending on how a
271 double->long cast or how mpz_set_d will round. For reference,
272 double->long probably follows the hardware rounding mode,
273 mpz_set_d truncates towards zero. */
274
275 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
276 representable as a double? */
277
278 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
279 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
d956fa6f 280 return SCM_I_MAKINUM ((long) u);
f92e85f7
MV
281 else
282 return scm_i_dbl2big (u);
283}
284
089c9a59
KR
285/* scm_i_big2dbl() rounds to the closest representable double, in accordance
286 with R5RS exact->inexact.
287
288 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
f8a8200b
KR
289 (ie. truncate towards zero), then adjust to get the closest double by
290 examining the next lower bit and adding 1 (to the absolute value) if
291 necessary.
292
293 Bignums exactly half way between representable doubles are rounded to the
294 next higher absolute value (ie. away from zero). This seems like an
295 adequate interpretation of R5RS "numerically closest", and it's easier
296 and faster than a full "nearest-even" style.
297
298 The bit test must be done on the absolute value of the mpz_t, which means
299 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
300 negatives as twos complement.
301
302 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
303 following the hardware rounding mode, but applied to the absolute value
304 of the mpz_t operand. This is not what we want so we put the high
305 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
306 mpz_get_d is supposed to always truncate towards zero.
307
308 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
309 is a slowdown. It'd be faster to pick out the relevant high bits with
310 mpz_getlimbn if we could be bothered coding that, and if the new
311 truncating gmp doesn't come out. */
089c9a59
KR
312
313double
ca46fb90
RB
314scm_i_big2dbl (SCM b)
315{
089c9a59
KR
316 double result;
317 size_t bits;
318
319 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
320
f8a8200b 321#if 1
089c9a59 322 {
f8a8200b 323 /* Current GMP, eg. 4.1.3, force truncation towards zero */
089c9a59
KR
324 mpz_t tmp;
325 if (bits > DBL_MANT_DIG)
326 {
327 size_t shift = bits - DBL_MANT_DIG;
328 mpz_init2 (tmp, DBL_MANT_DIG);
329 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
330 result = ldexp (mpz_get_d (tmp), shift);
331 mpz_clear (tmp);
332 }
333 else
334 {
335 result = mpz_get_d (SCM_I_BIG_MPZ (b));
336 }
337 }
338#else
f8a8200b 339 /* Future GMP */
089c9a59
KR
340 result = mpz_get_d (SCM_I_BIG_MPZ (b));
341#endif
342
343 if (bits > DBL_MANT_DIG)
344 {
345 unsigned long pos = bits - DBL_MANT_DIG - 1;
346 /* test bit number "pos" in absolute value */
347 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
348 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
349 {
350 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
351 }
352 }
353
ca46fb90
RB
354 scm_remember_upto_here_1 (b);
355 return result;
356}
357
189171c5 358SCM
ca46fb90
RB
359scm_i_normbig (SCM b)
360{
361 /* convert a big back to a fixnum if it'll fit */
362 /* presume b is a bignum */
363 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
364 {
365 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
366 if (SCM_FIXABLE (val))
d956fa6f 367 b = SCM_I_MAKINUM (val);
ca46fb90
RB
368 }
369 return b;
370}
f872b822 371
f92e85f7
MV
372static SCM_C_INLINE_KEYWORD SCM
373scm_i_mpz2num (mpz_t b)
374{
375 /* convert a mpz number to a SCM number. */
376 if (mpz_fits_slong_p (b))
377 {
378 long val = mpz_get_si (b);
379 if (SCM_FIXABLE (val))
d956fa6f 380 return SCM_I_MAKINUM (val);
f92e85f7
MV
381 }
382
383 {
384 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
385 mpz_init_set (SCM_I_BIG_MPZ (z), b);
386 return z;
387 }
388}
389
390/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
391static SCM scm_divide2real (SCM x, SCM y);
392
cba42c93
MV
393static SCM
394scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 395#define FUNC_NAME "make-ratio"
f92e85f7 396{
c60e130c
MV
397 /* First make sure the arguments are proper.
398 */
e11e83f3 399 if (SCM_I_INUMP (denominator))
f92e85f7 400 {
bc36d050 401 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 402 scm_num_overflow ("make-ratio");
bc36d050 403 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
f92e85f7
MV
404 return numerator;
405 }
406 else
407 {
408 if (!(SCM_BIGP(denominator)))
409 SCM_WRONG_TYPE_ARG (2, denominator);
410 }
e11e83f3 411 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
412 SCM_WRONG_TYPE_ARG (1, numerator);
413
414 /* Then flip signs so that the denominator is positive.
415 */
73e4de09 416 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
417 {
418 numerator = scm_difference (numerator, SCM_UNDEFINED);
419 denominator = scm_difference (denominator, SCM_UNDEFINED);
420 }
421
422 /* Now consider for each of the four fixnum/bignum combinations
423 whether the rational number is really an integer.
424 */
e11e83f3 425 if (SCM_I_INUMP (numerator))
f92e85f7 426 {
e11e83f3 427 long x = SCM_I_INUM (numerator);
bc36d050 428 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 429 return SCM_INUM0;
e11e83f3 430 if (SCM_I_INUMP (denominator))
f92e85f7 431 {
dd5130ca 432 long y;
e11e83f3 433 y = SCM_I_INUM (denominator);
f92e85f7 434 if (x == y)
d956fa6f 435 return SCM_I_MAKINUM(1);
f92e85f7 436 if ((x % y) == 0)
d956fa6f 437 return SCM_I_MAKINUM (x / y);
f92e85f7 438 }
dd5130ca
KR
439 else
440 {
441 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
442 of that value for the denominator, as a bignum. Apart from
443 that case, abs(bignum) > abs(inum) so inum/bignum is not an
444 integer. */
445 if (x == SCM_MOST_NEGATIVE_FIXNUM
446 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
447 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 448 return SCM_I_MAKINUM(-1);
dd5130ca 449 }
f92e85f7 450 }
c60e130c 451 else if (SCM_BIGP (numerator))
f92e85f7 452 {
e11e83f3 453 if (SCM_I_INUMP (denominator))
c60e130c 454 {
e11e83f3 455 long yy = SCM_I_INUM (denominator);
c60e130c
MV
456 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
457 return scm_divide (numerator, denominator);
458 }
459 else
f92e85f7 460 {
bc36d050 461 if (scm_is_eq (numerator, denominator))
d956fa6f 462 return SCM_I_MAKINUM(1);
c60e130c
MV
463 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
464 SCM_I_BIG_MPZ (denominator)))
465 return scm_divide(numerator, denominator);
f92e85f7 466 }
f92e85f7 467 }
c60e130c
MV
468
469 /* No, it's a proper fraction.
470 */
e2bf3b19
HWN
471 {
472 SCM divisor = scm_gcd (numerator, denominator);
473 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
474 {
475 numerator = scm_divide (numerator, divisor);
476 denominator = scm_divide (denominator, divisor);
477 }
478
479 return scm_double_cell (scm_tc16_fraction,
480 SCM_UNPACK (numerator),
481 SCM_UNPACK (denominator), 0);
482 }
f92e85f7 483}
c60e130c 484#undef FUNC_NAME
f92e85f7 485
f92e85f7
MV
486double
487scm_i_fraction2double (SCM z)
488{
55f26379
MV
489 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
490 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
491}
492
a1ec6916 493SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 494 (SCM x),
942e5b91
MG
495 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
496 "otherwise.")
1bbd0b84 497#define FUNC_NAME s_scm_exact_p
0f2d19dd 498{
e11e83f3 499 if (SCM_I_INUMP (x))
0aacf84e
MD
500 return SCM_BOOL_T;
501 if (SCM_BIGP (x))
502 return SCM_BOOL_T;
f92e85f7
MV
503 if (SCM_FRACTIONP (x))
504 return SCM_BOOL_T;
eb927cb9
MV
505 if (SCM_NUMBERP (x))
506 return SCM_BOOL_F;
507 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 508}
1bbd0b84 509#undef FUNC_NAME
0f2d19dd 510
4219f20d 511
a1ec6916 512SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 513 (SCM n),
942e5b91
MG
514 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
515 "otherwise.")
1bbd0b84 516#define FUNC_NAME s_scm_odd_p
0f2d19dd 517{
e11e83f3 518 if (SCM_I_INUMP (n))
0aacf84e 519 {
e11e83f3 520 long val = SCM_I_INUM (n);
73e4de09 521 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
522 }
523 else if (SCM_BIGP (n))
524 {
525 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
526 scm_remember_upto_here_1 (n);
73e4de09 527 return scm_from_bool (odd_p);
0aacf84e 528 }
73e4de09 529 else if (scm_is_true (scm_inf_p (n)))
7351e207 530 return SCM_BOOL_T;
f92e85f7
MV
531 else if (SCM_REALP (n))
532 {
533 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
534 if (rem == 1.0)
535 return SCM_BOOL_T;
536 else if (rem == 0.0)
537 return SCM_BOOL_F;
538 else
539 SCM_WRONG_TYPE_ARG (1, n);
540 }
0aacf84e 541 else
a1a33b0f 542 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 543}
1bbd0b84 544#undef FUNC_NAME
0f2d19dd 545
4219f20d 546
a1ec6916 547SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 548 (SCM n),
942e5b91
MG
549 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
550 "otherwise.")
1bbd0b84 551#define FUNC_NAME s_scm_even_p
0f2d19dd 552{
e11e83f3 553 if (SCM_I_INUMP (n))
0aacf84e 554 {
e11e83f3 555 long val = SCM_I_INUM (n);
73e4de09 556 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
557 }
558 else if (SCM_BIGP (n))
559 {
560 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
561 scm_remember_upto_here_1 (n);
73e4de09 562 return scm_from_bool (even_p);
0aacf84e 563 }
73e4de09 564 else if (scm_is_true (scm_inf_p (n)))
7351e207 565 return SCM_BOOL_T;
f92e85f7
MV
566 else if (SCM_REALP (n))
567 {
568 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
569 if (rem == 1.0)
570 return SCM_BOOL_F;
571 else if (rem == 0.0)
572 return SCM_BOOL_T;
573 else
574 SCM_WRONG_TYPE_ARG (1, n);
575 }
0aacf84e 576 else
a1a33b0f 577 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 578}
1bbd0b84 579#undef FUNC_NAME
0f2d19dd 580
7351e207 581SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
b1092b3a
MV
582 (SCM x),
583 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
584 "or @samp{-inf.0}, @code{#f} otherwise.")
7351e207
MV
585#define FUNC_NAME s_scm_inf_p
586{
b1092b3a
MV
587 if (SCM_REALP (x))
588 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
589 else if (SCM_COMPLEXP (x))
590 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
591 || xisinf (SCM_COMPLEX_IMAG (x)));
0aacf84e 592 else
7351e207 593 return SCM_BOOL_F;
7351e207
MV
594}
595#undef FUNC_NAME
596
597SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
598 (SCM n),
599 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
600 "otherwise.")
601#define FUNC_NAME s_scm_nan_p
602{
0aacf84e 603 if (SCM_REALP (n))
73e4de09 604 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
0aacf84e 605 else if (SCM_COMPLEXP (n))
73e4de09 606 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
7351e207 607 || xisnan (SCM_COMPLEX_IMAG (n)));
0aacf84e 608 else
7351e207 609 return SCM_BOOL_F;
7351e207
MV
610}
611#undef FUNC_NAME
612
613/* Guile's idea of infinity. */
614static double guile_Inf;
615
616/* Guile's idea of not a number. */
617static double guile_NaN;
618
619static void
620guile_ieee_init (void)
621{
622#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
623
624/* Some version of gcc on some old version of Linux used to crash when
625 trying to make Inf and NaN. */
626
240a27d2
KR
627#ifdef INFINITY
628 /* C99 INFINITY, when available.
629 FIXME: The standard allows for INFINITY to be something that overflows
630 at compile time. We ought to have a configure test to check for that
631 before trying to use it. (But in practice we believe this is not a
632 problem on any system guile is likely to target.) */
633 guile_Inf = INFINITY;
56a3dcd4 634#elif defined HAVE_DINFINITY
240a27d2 635 /* OSF */
7351e207 636 extern unsigned int DINFINITY[2];
eaa94eaa 637 guile_Inf = (*((double *) (DINFINITY)));
7351e207
MV
638#else
639 double tmp = 1e+10;
640 guile_Inf = tmp;
641 for (;;)
642 {
643 guile_Inf *= 1e+10;
644 if (guile_Inf == tmp)
645 break;
646 tmp = guile_Inf;
647 }
648#endif
649
650#endif
651
652#if defined (HAVE_ISNAN)
653
240a27d2
KR
654#ifdef NAN
655 /* C99 NAN, when available */
656 guile_NaN = NAN;
56a3dcd4 657#elif defined HAVE_DQNAN
eaa94eaa
LC
658 {
659 /* OSF */
660 extern unsigned int DQNAN[2];
661 guile_NaN = (*((double *)(DQNAN)));
662 }
7351e207
MV
663#else
664 guile_NaN = guile_Inf / guile_Inf;
665#endif
666
667#endif
668}
669
670SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
671 (void),
672 "Return Inf.")
673#define FUNC_NAME s_scm_inf
674{
675 static int initialized = 0;
676 if (! initialized)
677 {
678 guile_ieee_init ();
679 initialized = 1;
680 }
55f26379 681 return scm_from_double (guile_Inf);
7351e207
MV
682}
683#undef FUNC_NAME
684
685SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
686 (void),
687 "Return NaN.")
688#define FUNC_NAME s_scm_nan
689{
690 static int initialized = 0;
0aacf84e 691 if (!initialized)
7351e207
MV
692 {
693 guile_ieee_init ();
694 initialized = 1;
695 }
55f26379 696 return scm_from_double (guile_NaN);
7351e207
MV
697}
698#undef FUNC_NAME
699
4219f20d 700
a48d60b1
MD
701SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
702 (SCM x),
703 "Return the absolute value of @var{x}.")
704#define FUNC_NAME
0f2d19dd 705{
e11e83f3 706 if (SCM_I_INUMP (x))
0aacf84e 707 {
e11e83f3 708 long int xx = SCM_I_INUM (x);
0aacf84e
MD
709 if (xx >= 0)
710 return x;
711 else if (SCM_POSFIXABLE (-xx))
d956fa6f 712 return SCM_I_MAKINUM (-xx);
0aacf84e
MD
713 else
714 return scm_i_long2big (-xx);
4219f20d 715 }
0aacf84e
MD
716 else if (SCM_BIGP (x))
717 {
718 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
719 if (sgn < 0)
720 return scm_i_clonebig (x, 0);
721 else
722 return x;
4219f20d 723 }
0aacf84e 724 else if (SCM_REALP (x))
ae38324d
KR
725 {
726 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
727 double xx = SCM_REAL_VALUE (x);
728 if (xx < 0.0)
55f26379 729 return scm_from_double (-xx);
ae38324d
KR
730 else
731 return x;
732 }
f92e85f7
MV
733 else if (SCM_FRACTIONP (x))
734 {
73e4de09 735 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 736 return x;
cba42c93 737 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
738 SCM_FRACTION_DENOMINATOR (x));
739 }
0aacf84e 740 else
a48d60b1 741 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 742}
a48d60b1 743#undef FUNC_NAME
0f2d19dd 744
4219f20d 745
9de33deb 746SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
747/* "Return the quotient of the numbers @var{x} and @var{y}."
748 */
0f2d19dd 749SCM
6e8d25a6 750scm_quotient (SCM x, SCM y)
0f2d19dd 751{
e11e83f3 752 if (SCM_I_INUMP (x))
0aacf84e 753 {
e11e83f3
MV
754 long xx = SCM_I_INUM (x);
755 if (SCM_I_INUMP (y))
0aacf84e 756 {
e11e83f3 757 long yy = SCM_I_INUM (y);
0aacf84e
MD
758 if (yy == 0)
759 scm_num_overflow (s_quotient);
760 else
761 {
762 long z = xx / yy;
763 if (SCM_FIXABLE (z))
d956fa6f 764 return SCM_I_MAKINUM (z);
0aacf84e
MD
765 else
766 return scm_i_long2big (z);
767 }
828865c3 768 }
0aacf84e 769 else if (SCM_BIGP (y))
ac0c002c 770 {
e11e83f3 771 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
772 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
773 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
774 {
775 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
776 scm_remember_upto_here_1 (y);
d956fa6f 777 return SCM_I_MAKINUM (-1);
4dc09ee4 778 }
0aacf84e 779 else
d956fa6f 780 return SCM_I_MAKINUM (0);
ac0c002c
DH
781 }
782 else
0aacf84e 783 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 784 }
0aacf84e
MD
785 else if (SCM_BIGP (x))
786 {
e11e83f3 787 if (SCM_I_INUMP (y))
0aacf84e 788 {
e11e83f3 789 long yy = SCM_I_INUM (y);
0aacf84e
MD
790 if (yy == 0)
791 scm_num_overflow (s_quotient);
792 else if (yy == 1)
793 return x;
794 else
795 {
796 SCM result = scm_i_mkbig ();
797 if (yy < 0)
798 {
799 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
800 SCM_I_BIG_MPZ (x),
801 - yy);
802 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
803 }
804 else
805 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
806 scm_remember_upto_here_1 (x);
807 return scm_i_normbig (result);
808 }
809 }
810 else if (SCM_BIGP (y))
811 {
812 SCM result = scm_i_mkbig ();
813 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
814 SCM_I_BIG_MPZ (x),
815 SCM_I_BIG_MPZ (y));
816 scm_remember_upto_here_2 (x, y);
817 return scm_i_normbig (result);
818 }
819 else
820 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 821 }
0aacf84e 822 else
89a7e495 823 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
824}
825
9de33deb 826SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
827/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
828 * "@lisp\n"
829 * "(remainder 13 4) @result{} 1\n"
830 * "(remainder -13 4) @result{} -1\n"
831 * "@end lisp"
832 */
0f2d19dd 833SCM
6e8d25a6 834scm_remainder (SCM x, SCM y)
0f2d19dd 835{
e11e83f3 836 if (SCM_I_INUMP (x))
0aacf84e 837 {
e11e83f3 838 if (SCM_I_INUMP (y))
0aacf84e 839 {
e11e83f3 840 long yy = SCM_I_INUM (y);
0aacf84e
MD
841 if (yy == 0)
842 scm_num_overflow (s_remainder);
843 else
844 {
e11e83f3 845 long z = SCM_I_INUM (x) % yy;
d956fa6f 846 return SCM_I_MAKINUM (z);
0aacf84e
MD
847 }
848 }
849 else if (SCM_BIGP (y))
ac0c002c 850 {
e11e83f3 851 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
852 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
853 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
854 {
855 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
856 scm_remember_upto_here_1 (y);
d956fa6f 857 return SCM_I_MAKINUM (0);
4dc09ee4 858 }
0aacf84e
MD
859 else
860 return x;
ac0c002c
DH
861 }
862 else
0aacf84e 863 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 864 }
0aacf84e
MD
865 else if (SCM_BIGP (x))
866 {
e11e83f3 867 if (SCM_I_INUMP (y))
0aacf84e 868 {
e11e83f3 869 long yy = SCM_I_INUM (y);
0aacf84e
MD
870 if (yy == 0)
871 scm_num_overflow (s_remainder);
872 else
873 {
874 SCM result = scm_i_mkbig ();
875 if (yy < 0)
876 yy = - yy;
877 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
878 scm_remember_upto_here_1 (x);
879 return scm_i_normbig (result);
880 }
881 }
882 else if (SCM_BIGP (y))
883 {
884 SCM result = scm_i_mkbig ();
885 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
886 SCM_I_BIG_MPZ (x),
887 SCM_I_BIG_MPZ (y));
888 scm_remember_upto_here_2 (x, y);
889 return scm_i_normbig (result);
890 }
891 else
892 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 893 }
0aacf84e 894 else
89a7e495 895 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
896}
897
89a7e495 898
9de33deb 899SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
900/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
901 * "@lisp\n"
902 * "(modulo 13 4) @result{} 1\n"
903 * "(modulo -13 4) @result{} 3\n"
904 * "@end lisp"
905 */
0f2d19dd 906SCM
6e8d25a6 907scm_modulo (SCM x, SCM y)
0f2d19dd 908{
e11e83f3 909 if (SCM_I_INUMP (x))
0aacf84e 910 {
e11e83f3
MV
911 long xx = SCM_I_INUM (x);
912 if (SCM_I_INUMP (y))
0aacf84e 913 {
e11e83f3 914 long yy = SCM_I_INUM (y);
0aacf84e
MD
915 if (yy == 0)
916 scm_num_overflow (s_modulo);
917 else
918 {
66b1c775
KR
919 /* C99 specifies that "%" is the remainder corresponding to a
920 quotient rounded towards zero, and that's also traditional
921 for machine division, so z here should be well defined. */
0aacf84e
MD
922 long z = xx % yy;
923 long result;
924
925 if (yy < 0)
926 {
927 if (z > 0)
928 result = z + yy;
929 else
930 result = z;
931 }
932 else
933 {
934 if (z < 0)
935 result = z + yy;
936 else
937 result = z;
938 }
d956fa6f 939 return SCM_I_MAKINUM (result);
0aacf84e
MD
940 }
941 }
942 else if (SCM_BIGP (y))
943 {
944 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
945 {
946 mpz_t z_x;
947 SCM result;
948
949 if (sgn_y < 0)
950 {
951 SCM pos_y = scm_i_clonebig (y, 0);
952 /* do this after the last scm_op */
953 mpz_init_set_si (z_x, xx);
954 result = pos_y; /* re-use this bignum */
955 mpz_mod (SCM_I_BIG_MPZ (result),
956 z_x,
957 SCM_I_BIG_MPZ (pos_y));
958 scm_remember_upto_here_1 (pos_y);
959 }
960 else
961 {
962 result = scm_i_mkbig ();
963 /* do this after the last scm_op */
964 mpz_init_set_si (z_x, xx);
965 mpz_mod (SCM_I_BIG_MPZ (result),
966 z_x,
967 SCM_I_BIG_MPZ (y));
968 scm_remember_upto_here_1 (y);
969 }
ca46fb90 970
0aacf84e
MD
971 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
972 mpz_add (SCM_I_BIG_MPZ (result),
973 SCM_I_BIG_MPZ (y),
974 SCM_I_BIG_MPZ (result));
975 scm_remember_upto_here_1 (y);
976 /* and do this before the next one */
977 mpz_clear (z_x);
978 return scm_i_normbig (result);
979 }
980 }
981 else
982 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 983 }
0aacf84e
MD
984 else if (SCM_BIGP (x))
985 {
e11e83f3 986 if (SCM_I_INUMP (y))
0aacf84e 987 {
e11e83f3 988 long yy = SCM_I_INUM (y);
0aacf84e
MD
989 if (yy == 0)
990 scm_num_overflow (s_modulo);
991 else
992 {
993 SCM result = scm_i_mkbig ();
994 mpz_mod_ui (SCM_I_BIG_MPZ (result),
995 SCM_I_BIG_MPZ (x),
996 (yy < 0) ? - yy : yy);
997 scm_remember_upto_here_1 (x);
998 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
999 mpz_sub_ui (SCM_I_BIG_MPZ (result),
1000 SCM_I_BIG_MPZ (result),
1001 - yy);
1002 return scm_i_normbig (result);
1003 }
1004 }
1005 else if (SCM_BIGP (y))
1006 {
0aacf84e
MD
1007 {
1008 SCM result = scm_i_mkbig ();
1009 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1010 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1011 mpz_mod (SCM_I_BIG_MPZ (result),
1012 SCM_I_BIG_MPZ (x),
1013 SCM_I_BIG_MPZ (pos_y));
ca46fb90 1014
0aacf84e
MD
1015 scm_remember_upto_here_1 (x);
1016 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1017 mpz_add (SCM_I_BIG_MPZ (result),
1018 SCM_I_BIG_MPZ (y),
1019 SCM_I_BIG_MPZ (result));
1020 scm_remember_upto_here_2 (y, pos_y);
1021 return scm_i_normbig (result);
1022 }
1023 }
1024 else
1025 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 1026 }
0aacf84e 1027 else
09fb7599 1028 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
1029}
1030
78d3deb1
AW
1031SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
1032 (SCM x, SCM y, SCM rest),
1033 "Return the greatest common divisor of all parameter values.\n"
1034 "If called without arguments, 0 is returned.")
1035#define FUNC_NAME s_scm_i_gcd
1036{
1037 while (!scm_is_null (rest))
1038 { x = scm_gcd (x, y);
1039 y = scm_car (rest);
1040 rest = scm_cdr (rest);
1041 }
1042 return scm_gcd (x, y);
1043}
1044#undef FUNC_NAME
1045
1046#define s_gcd s_scm_i_gcd
1047#define g_gcd g_scm_i_gcd
1048
0f2d19dd 1049SCM
6e8d25a6 1050scm_gcd (SCM x, SCM y)
0f2d19dd 1051{
ca46fb90 1052 if (SCM_UNBNDP (y))
1dd79792 1053 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
ca46fb90 1054
e11e83f3 1055 if (SCM_I_INUMP (x))
ca46fb90 1056 {
e11e83f3 1057 if (SCM_I_INUMP (y))
ca46fb90 1058 {
e11e83f3
MV
1059 long xx = SCM_I_INUM (x);
1060 long yy = SCM_I_INUM (y);
ca46fb90
RB
1061 long u = xx < 0 ? -xx : xx;
1062 long v = yy < 0 ? -yy : yy;
1063 long result;
0aacf84e
MD
1064 if (xx == 0)
1065 result = v;
1066 else if (yy == 0)
1067 result = u;
1068 else
1069 {
1070 long k = 1;
1071 long t;
1072 /* Determine a common factor 2^k */
1073 while (!(1 & (u | v)))
1074 {
1075 k <<= 1;
1076 u >>= 1;
1077 v >>= 1;
1078 }
1079 /* Now, any factor 2^n can be eliminated */
1080 if (u & 1)
1081 t = -v;
1082 else
1083 {
1084 t = u;
1085 b3:
1086 t = SCM_SRS (t, 1);
1087 }
1088 if (!(1 & t))
1089 goto b3;
1090 if (t > 0)
1091 u = t;
1092 else
1093 v = -t;
1094 t = u - v;
1095 if (t != 0)
1096 goto b3;
1097 result = u * k;
1098 }
1099 return (SCM_POSFIXABLE (result)
d956fa6f 1100 ? SCM_I_MAKINUM (result)
0aacf84e 1101 : scm_i_long2big (result));
ca46fb90
RB
1102 }
1103 else if (SCM_BIGP (y))
1104 {
0bff4dce
KR
1105 SCM_SWAP (x, y);
1106 goto big_inum;
ca46fb90
RB
1107 }
1108 else
1109 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1110 }
ca46fb90
RB
1111 else if (SCM_BIGP (x))
1112 {
e11e83f3 1113 if (SCM_I_INUMP (y))
ca46fb90
RB
1114 {
1115 unsigned long result;
0bff4dce
KR
1116 long yy;
1117 big_inum:
e11e83f3 1118 yy = SCM_I_INUM (y);
8c5b0afc
KR
1119 if (yy == 0)
1120 return scm_abs (x);
0aacf84e
MD
1121 if (yy < 0)
1122 yy = -yy;
ca46fb90
RB
1123 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1124 scm_remember_upto_here_1 (x);
0aacf84e 1125 return (SCM_POSFIXABLE (result)
d956fa6f 1126 ? SCM_I_MAKINUM (result)
c71b0706 1127 : scm_from_ulong (result));
ca46fb90
RB
1128 }
1129 else if (SCM_BIGP (y))
1130 {
1131 SCM result = scm_i_mkbig ();
0aacf84e
MD
1132 mpz_gcd (SCM_I_BIG_MPZ (result),
1133 SCM_I_BIG_MPZ (x),
1134 SCM_I_BIG_MPZ (y));
1135 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1136 return scm_i_normbig (result);
1137 }
1138 else
1139 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1140 }
ca46fb90 1141 else
09fb7599 1142 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1143}
1144
78d3deb1
AW
1145SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
1146 (SCM x, SCM y, SCM rest),
1147 "Return the least common multiple of the arguments.\n"
1148 "If called without arguments, 1 is returned.")
1149#define FUNC_NAME s_scm_i_lcm
1150{
1151 while (!scm_is_null (rest))
1152 { x = scm_lcm (x, y);
1153 y = scm_car (rest);
1154 rest = scm_cdr (rest);
1155 }
1156 return scm_lcm (x, y);
1157}
1158#undef FUNC_NAME
1159
1160#define s_lcm s_scm_i_lcm
1161#define g_lcm g_scm_i_lcm
1162
0f2d19dd 1163SCM
6e8d25a6 1164scm_lcm (SCM n1, SCM n2)
0f2d19dd 1165{
ca46fb90
RB
1166 if (SCM_UNBNDP (n2))
1167 {
1168 if (SCM_UNBNDP (n1))
d956fa6f
MV
1169 return SCM_I_MAKINUM (1L);
1170 n2 = SCM_I_MAKINUM (1L);
09fb7599 1171 }
09fb7599 1172
e11e83f3 1173 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1174 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1175 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1176 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1177
e11e83f3 1178 if (SCM_I_INUMP (n1))
ca46fb90 1179 {
e11e83f3 1180 if (SCM_I_INUMP (n2))
ca46fb90
RB
1181 {
1182 SCM d = scm_gcd (n1, n2);
bc36d050 1183 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1184 return d;
1185 else
1186 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1187 }
1188 else
1189 {
1190 /* inum n1, big n2 */
1191 inumbig:
1192 {
1193 SCM result = scm_i_mkbig ();
e11e83f3 1194 long nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1195 if (nn1 == 0) return SCM_INUM0;
1196 if (nn1 < 0) nn1 = - nn1;
1197 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1198 scm_remember_upto_here_1 (n2);
1199 return result;
1200 }
1201 }
1202 }
1203 else
1204 {
1205 /* big n1 */
e11e83f3 1206 if (SCM_I_INUMP (n2))
ca46fb90
RB
1207 {
1208 SCM_SWAP (n1, n2);
1209 goto inumbig;
1210 }
1211 else
1212 {
1213 SCM result = scm_i_mkbig ();
1214 mpz_lcm(SCM_I_BIG_MPZ (result),
1215 SCM_I_BIG_MPZ (n1),
1216 SCM_I_BIG_MPZ (n2));
1217 scm_remember_upto_here_2(n1, n2);
1218 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1219 return result;
1220 }
f872b822 1221 }
0f2d19dd
JB
1222}
1223
8a525303
GB
1224/* Emulating 2's complement bignums with sign magnitude arithmetic:
1225
1226 Logand:
1227 X Y Result Method:
1228 (len)
1229 + + + x (map digit:logand X Y)
1230 + - + x (map digit:logand X (lognot (+ -1 Y)))
1231 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1232 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1233
1234 Logior:
1235 X Y Result Method:
1236
1237 + + + (map digit:logior X Y)
1238 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1239 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1240 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1241
1242 Logxor:
1243 X Y Result Method:
1244
1245 + + + (map digit:logxor X Y)
1246 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1247 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1248 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1249
1250 Logtest:
1251 X Y Result
1252
1253 + + (any digit:logand X Y)
1254 + - (any digit:logand X (lognot (+ -1 Y)))
1255 - + (any digit:logand (lognot (+ -1 X)) Y)
1256 - - #t
1257
1258*/
1259
78d3deb1
AW
1260SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
1261 (SCM x, SCM y, SCM rest),
1262 "Return the bitwise AND of the integer arguments.\n\n"
1263 "@lisp\n"
1264 "(logand) @result{} -1\n"
1265 "(logand 7) @result{} 7\n"
1266 "(logand #b111 #b011 #b001) @result{} 1\n"
1267 "@end lisp")
1268#define FUNC_NAME s_scm_i_logand
1269{
1270 while (!scm_is_null (rest))
1271 { x = scm_logand (x, y);
1272 y = scm_car (rest);
1273 rest = scm_cdr (rest);
1274 }
1275 return scm_logand (x, y);
1276}
1277#undef FUNC_NAME
1278
1279#define s_scm_logand s_scm_i_logand
1280
1281SCM scm_logand (SCM n1, SCM n2)
1bbd0b84 1282#define FUNC_NAME s_scm_logand
0f2d19dd 1283{
9a00c9fc
DH
1284 long int nn1;
1285
0aacf84e
MD
1286 if (SCM_UNBNDP (n2))
1287 {
1288 if (SCM_UNBNDP (n1))
d956fa6f 1289 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1290 else if (!SCM_NUMBERP (n1))
1291 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1292 else if (SCM_NUMBERP (n1))
1293 return n1;
1294 else
1295 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1296 }
09fb7599 1297
e11e83f3 1298 if (SCM_I_INUMP (n1))
0aacf84e 1299 {
e11e83f3
MV
1300 nn1 = SCM_I_INUM (n1);
1301 if (SCM_I_INUMP (n2))
0aacf84e 1302 {
e11e83f3 1303 long nn2 = SCM_I_INUM (n2);
d956fa6f 1304 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1305 }
1306 else if SCM_BIGP (n2)
1307 {
1308 intbig:
1309 if (n1 == 0)
1310 return SCM_INUM0;
1311 {
1312 SCM result_z = scm_i_mkbig ();
1313 mpz_t nn1_z;
1314 mpz_init_set_si (nn1_z, nn1);
1315 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1316 scm_remember_upto_here_1 (n2);
1317 mpz_clear (nn1_z);
1318 return scm_i_normbig (result_z);
1319 }
1320 }
1321 else
1322 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1323 }
1324 else if (SCM_BIGP (n1))
1325 {
e11e83f3 1326 if (SCM_I_INUMP (n2))
0aacf84e
MD
1327 {
1328 SCM_SWAP (n1, n2);
e11e83f3 1329 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1330 goto intbig;
1331 }
1332 else if (SCM_BIGP (n2))
1333 {
1334 SCM result_z = scm_i_mkbig ();
1335 mpz_and (SCM_I_BIG_MPZ (result_z),
1336 SCM_I_BIG_MPZ (n1),
1337 SCM_I_BIG_MPZ (n2));
1338 scm_remember_upto_here_2 (n1, n2);
1339 return scm_i_normbig (result_z);
1340 }
1341 else
1342 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1343 }
0aacf84e 1344 else
09fb7599 1345 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1346}
1bbd0b84 1347#undef FUNC_NAME
0f2d19dd 1348
09fb7599 1349
78d3deb1
AW
1350SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
1351 (SCM x, SCM y, SCM rest),
1352 "Return the bitwise OR of the integer arguments.\n\n"
1353 "@lisp\n"
1354 "(logior) @result{} 0\n"
1355 "(logior 7) @result{} 7\n"
1356 "(logior #b000 #b001 #b011) @result{} 3\n"
1357 "@end lisp")
1358#define FUNC_NAME s_scm_i_logior
1359{
1360 while (!scm_is_null (rest))
1361 { x = scm_logior (x, y);
1362 y = scm_car (rest);
1363 rest = scm_cdr (rest);
1364 }
1365 return scm_logior (x, y);
1366}
1367#undef FUNC_NAME
1368
1369#define s_scm_logior s_scm_i_logior
1370
1371SCM scm_logior (SCM n1, SCM n2)
1bbd0b84 1372#define FUNC_NAME s_scm_logior
0f2d19dd 1373{
9a00c9fc
DH
1374 long int nn1;
1375
0aacf84e
MD
1376 if (SCM_UNBNDP (n2))
1377 {
1378 if (SCM_UNBNDP (n1))
1379 return SCM_INUM0;
1380 else if (SCM_NUMBERP (n1))
1381 return n1;
1382 else
1383 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1384 }
09fb7599 1385
e11e83f3 1386 if (SCM_I_INUMP (n1))
0aacf84e 1387 {
e11e83f3
MV
1388 nn1 = SCM_I_INUM (n1);
1389 if (SCM_I_INUMP (n2))
0aacf84e 1390 {
e11e83f3 1391 long nn2 = SCM_I_INUM (n2);
d956fa6f 1392 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1393 }
1394 else if (SCM_BIGP (n2))
1395 {
1396 intbig:
1397 if (nn1 == 0)
1398 return n2;
1399 {
1400 SCM result_z = scm_i_mkbig ();
1401 mpz_t nn1_z;
1402 mpz_init_set_si (nn1_z, nn1);
1403 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1404 scm_remember_upto_here_1 (n2);
1405 mpz_clear (nn1_z);
9806de0d 1406 return scm_i_normbig (result_z);
0aacf84e
MD
1407 }
1408 }
1409 else
1410 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1411 }
1412 else if (SCM_BIGP (n1))
1413 {
e11e83f3 1414 if (SCM_I_INUMP (n2))
0aacf84e
MD
1415 {
1416 SCM_SWAP (n1, n2);
e11e83f3 1417 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1418 goto intbig;
1419 }
1420 else if (SCM_BIGP (n2))
1421 {
1422 SCM result_z = scm_i_mkbig ();
1423 mpz_ior (SCM_I_BIG_MPZ (result_z),
1424 SCM_I_BIG_MPZ (n1),
1425 SCM_I_BIG_MPZ (n2));
1426 scm_remember_upto_here_2 (n1, n2);
9806de0d 1427 return scm_i_normbig (result_z);
0aacf84e
MD
1428 }
1429 else
1430 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1431 }
0aacf84e 1432 else
09fb7599 1433 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1434}
1bbd0b84 1435#undef FUNC_NAME
0f2d19dd 1436
09fb7599 1437
78d3deb1
AW
1438SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
1439 (SCM x, SCM y, SCM rest),
3c3db128
GH
1440 "Return the bitwise XOR of the integer arguments. A bit is\n"
1441 "set in the result if it is set in an odd number of arguments.\n"
1442 "@lisp\n"
1443 "(logxor) @result{} 0\n"
1444 "(logxor 7) @result{} 7\n"
1445 "(logxor #b000 #b001 #b011) @result{} 2\n"
1446 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1447 "@end lisp")
78d3deb1
AW
1448#define FUNC_NAME s_scm_i_logxor
1449{
1450 while (!scm_is_null (rest))
1451 { x = scm_logxor (x, y);
1452 y = scm_car (rest);
1453 rest = scm_cdr (rest);
1454 }
1455 return scm_logxor (x, y);
1456}
1457#undef FUNC_NAME
1458
1459#define s_scm_logxor s_scm_i_logxor
1460
1461SCM scm_logxor (SCM n1, SCM n2)
1bbd0b84 1462#define FUNC_NAME s_scm_logxor
0f2d19dd 1463{
9a00c9fc
DH
1464 long int nn1;
1465
0aacf84e
MD
1466 if (SCM_UNBNDP (n2))
1467 {
1468 if (SCM_UNBNDP (n1))
1469 return SCM_INUM0;
1470 else if (SCM_NUMBERP (n1))
1471 return n1;
1472 else
1473 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1474 }
09fb7599 1475
e11e83f3 1476 if (SCM_I_INUMP (n1))
0aacf84e 1477 {
e11e83f3
MV
1478 nn1 = SCM_I_INUM (n1);
1479 if (SCM_I_INUMP (n2))
0aacf84e 1480 {
e11e83f3 1481 long nn2 = SCM_I_INUM (n2);
d956fa6f 1482 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1483 }
1484 else if (SCM_BIGP (n2))
1485 {
1486 intbig:
1487 {
1488 SCM result_z = scm_i_mkbig ();
1489 mpz_t nn1_z;
1490 mpz_init_set_si (nn1_z, nn1);
1491 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1492 scm_remember_upto_here_1 (n2);
1493 mpz_clear (nn1_z);
1494 return scm_i_normbig (result_z);
1495 }
1496 }
1497 else
1498 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1499 }
1500 else if (SCM_BIGP (n1))
1501 {
e11e83f3 1502 if (SCM_I_INUMP (n2))
0aacf84e
MD
1503 {
1504 SCM_SWAP (n1, n2);
e11e83f3 1505 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1506 goto intbig;
1507 }
1508 else if (SCM_BIGP (n2))
1509 {
1510 SCM result_z = scm_i_mkbig ();
1511 mpz_xor (SCM_I_BIG_MPZ (result_z),
1512 SCM_I_BIG_MPZ (n1),
1513 SCM_I_BIG_MPZ (n2));
1514 scm_remember_upto_here_2 (n1, n2);
1515 return scm_i_normbig (result_z);
1516 }
1517 else
1518 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1519 }
0aacf84e 1520 else
09fb7599 1521 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1522}
1bbd0b84 1523#undef FUNC_NAME
0f2d19dd 1524
09fb7599 1525
a1ec6916 1526SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 1527 (SCM j, SCM k),
ba6e7231
KR
1528 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1529 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1530 "without actually calculating the @code{logand}, just testing\n"
1531 "for non-zero.\n"
1532 "\n"
1e6808ea 1533 "@lisp\n"
b380b885
MD
1534 "(logtest #b0100 #b1011) @result{} #f\n"
1535 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1536 "@end lisp")
1bbd0b84 1537#define FUNC_NAME s_scm_logtest
0f2d19dd 1538{
1e6808ea 1539 long int nj;
9a00c9fc 1540
e11e83f3 1541 if (SCM_I_INUMP (j))
0aacf84e 1542 {
e11e83f3
MV
1543 nj = SCM_I_INUM (j);
1544 if (SCM_I_INUMP (k))
0aacf84e 1545 {
e11e83f3 1546 long nk = SCM_I_INUM (k);
73e4de09 1547 return scm_from_bool (nj & nk);
0aacf84e
MD
1548 }
1549 else if (SCM_BIGP (k))
1550 {
1551 intbig:
1552 if (nj == 0)
1553 return SCM_BOOL_F;
1554 {
1555 SCM result;
1556 mpz_t nj_z;
1557 mpz_init_set_si (nj_z, nj);
1558 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1559 scm_remember_upto_here_1 (k);
73e4de09 1560 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1561 mpz_clear (nj_z);
1562 return result;
1563 }
1564 }
1565 else
1566 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1567 }
1568 else if (SCM_BIGP (j))
1569 {
e11e83f3 1570 if (SCM_I_INUMP (k))
0aacf84e
MD
1571 {
1572 SCM_SWAP (j, k);
e11e83f3 1573 nj = SCM_I_INUM (j);
0aacf84e
MD
1574 goto intbig;
1575 }
1576 else if (SCM_BIGP (k))
1577 {
1578 SCM result;
1579 mpz_t result_z;
1580 mpz_init (result_z);
1581 mpz_and (result_z,
1582 SCM_I_BIG_MPZ (j),
1583 SCM_I_BIG_MPZ (k));
1584 scm_remember_upto_here_2 (j, k);
73e4de09 1585 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1586 mpz_clear (result_z);
1587 return result;
1588 }
1589 else
1590 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1591 }
1592 else
1593 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1594}
1bbd0b84 1595#undef FUNC_NAME
0f2d19dd 1596
c1bfcf60 1597
a1ec6916 1598SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1599 (SCM index, SCM j),
ba6e7231
KR
1600 "Test whether bit number @var{index} in @var{j} is set.\n"
1601 "@var{index} starts from 0 for the least significant bit.\n"
1602 "\n"
1e6808ea 1603 "@lisp\n"
b380b885
MD
1604 "(logbit? 0 #b1101) @result{} #t\n"
1605 "(logbit? 1 #b1101) @result{} #f\n"
1606 "(logbit? 2 #b1101) @result{} #t\n"
1607 "(logbit? 3 #b1101) @result{} #t\n"
1608 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1609 "@end lisp")
1bbd0b84 1610#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1611{
78166ad5 1612 unsigned long int iindex;
5efd3c7d 1613 iindex = scm_to_ulong (index);
78166ad5 1614
e11e83f3 1615 if (SCM_I_INUMP (j))
0d75f6d8
KR
1616 {
1617 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1618 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1619 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1620 }
0aacf84e
MD
1621 else if (SCM_BIGP (j))
1622 {
1623 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1624 scm_remember_upto_here_1 (j);
73e4de09 1625 return scm_from_bool (val);
0aacf84e
MD
1626 }
1627 else
78166ad5 1628 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1629}
1bbd0b84 1630#undef FUNC_NAME
0f2d19dd 1631
78166ad5 1632
a1ec6916 1633SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1634 (SCM n),
4d814788 1635 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1636 "argument.\n"
1637 "\n"
b380b885
MD
1638 "@lisp\n"
1639 "(number->string (lognot #b10000000) 2)\n"
1640 " @result{} \"-10000001\"\n"
1641 "(number->string (lognot #b0) 2)\n"
1642 " @result{} \"-1\"\n"
1e6808ea 1643 "@end lisp")
1bbd0b84 1644#define FUNC_NAME s_scm_lognot
0f2d19dd 1645{
e11e83f3 1646 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1647 /* No overflow here, just need to toggle all the bits making up the inum.
1648 Enhancement: No need to strip the tag and add it back, could just xor
1649 a block of 1 bits, if that worked with the various debug versions of
1650 the SCM typedef. */
e11e83f3 1651 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1652
1653 } else if (SCM_BIGP (n)) {
1654 SCM result = scm_i_mkbig ();
1655 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1656 scm_remember_upto_here_1 (n);
1657 return result;
1658
1659 } else {
1660 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1661 }
0f2d19dd 1662}
1bbd0b84 1663#undef FUNC_NAME
0f2d19dd 1664
518b7508
KR
1665/* returns 0 if IN is not an integer. OUT must already be
1666 initialized. */
1667static int
1668coerce_to_big (SCM in, mpz_t out)
1669{
1670 if (SCM_BIGP (in))
1671 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1672 else if (SCM_I_INUMP (in))
1673 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1674 else
1675 return 0;
1676
1677 return 1;
1678}
1679
d885e204 1680SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1681 (SCM n, SCM k, SCM m),
1682 "Return @var{n} raised to the integer exponent\n"
1683 "@var{k}, modulo @var{m}.\n"
1684 "\n"
1685 "@lisp\n"
1686 "(modulo-expt 2 3 5)\n"
1687 " @result{} 3\n"
1688 "@end lisp")
d885e204 1689#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1690{
1691 mpz_t n_tmp;
1692 mpz_t k_tmp;
1693 mpz_t m_tmp;
1694
1695 /* There are two classes of error we might encounter --
1696 1) Math errors, which we'll report by calling scm_num_overflow,
1697 and
1698 2) wrong-type errors, which of course we'll report by calling
1699 SCM_WRONG_TYPE_ARG.
1700 We don't report those errors immediately, however; instead we do
1701 some cleanup first. These variables tell us which error (if
1702 any) we should report after cleaning up.
1703 */
1704 int report_overflow = 0;
1705
1706 int position_of_wrong_type = 0;
1707 SCM value_of_wrong_type = SCM_INUM0;
1708
1709 SCM result = SCM_UNDEFINED;
1710
1711 mpz_init (n_tmp);
1712 mpz_init (k_tmp);
1713 mpz_init (m_tmp);
1714
bc36d050 1715 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1716 {
1717 report_overflow = 1;
1718 goto cleanup;
1719 }
1720
1721 if (!coerce_to_big (n, n_tmp))
1722 {
1723 value_of_wrong_type = n;
1724 position_of_wrong_type = 1;
1725 goto cleanup;
1726 }
1727
1728 if (!coerce_to_big (k, k_tmp))
1729 {
1730 value_of_wrong_type = k;
1731 position_of_wrong_type = 2;
1732 goto cleanup;
1733 }
1734
1735 if (!coerce_to_big (m, m_tmp))
1736 {
1737 value_of_wrong_type = m;
1738 position_of_wrong_type = 3;
1739 goto cleanup;
1740 }
1741
1742 /* if the exponent K is negative, and we simply call mpz_powm, we
1743 will get a divide-by-zero exception when an inverse 1/n mod m
1744 doesn't exist (or is not unique). Since exceptions are hard to
1745 handle, we'll attempt the inversion "by hand" -- that way, we get
1746 a simple failure code, which is easy to handle. */
1747
1748 if (-1 == mpz_sgn (k_tmp))
1749 {
1750 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1751 {
1752 report_overflow = 1;
1753 goto cleanup;
1754 }
1755 mpz_neg (k_tmp, k_tmp);
1756 }
1757
1758 result = scm_i_mkbig ();
1759 mpz_powm (SCM_I_BIG_MPZ (result),
1760 n_tmp,
1761 k_tmp,
1762 m_tmp);
b7b8c575
KR
1763
1764 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1765 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1766
518b7508
KR
1767 cleanup:
1768 mpz_clear (m_tmp);
1769 mpz_clear (k_tmp);
1770 mpz_clear (n_tmp);
1771
1772 if (report_overflow)
1773 scm_num_overflow (FUNC_NAME);
1774
1775 if (position_of_wrong_type)
1776 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1777 value_of_wrong_type);
1778
1779 return scm_i_normbig (result);
1780}
1781#undef FUNC_NAME
1782
a1ec6916 1783SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1784 (SCM n, SCM k),
ba6e7231
KR
1785 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1786 "exact integer, @var{n} can be any number.\n"
1787 "\n"
1788 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1789 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1790 "includes @math{0^0} is 1.\n"
1e6808ea 1791 "\n"
b380b885 1792 "@lisp\n"
ba6e7231
KR
1793 "(integer-expt 2 5) @result{} 32\n"
1794 "(integer-expt -3 3) @result{} -27\n"
1795 "(integer-expt 5 -3) @result{} 1/125\n"
1796 "(integer-expt 0 0) @result{} 1\n"
b380b885 1797 "@end lisp")
1bbd0b84 1798#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1799{
1c35cb19
RB
1800 long i2 = 0;
1801 SCM z_i2 = SCM_BOOL_F;
1802 int i2_is_big = 0;
d956fa6f 1803 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1804
5a8fc758
AW
1805 SCM_VALIDATE_NUMBER (SCM_ARG1, n);
1806
d57ed702 1807 /* 0^0 == 1 according to R5RS */
bc36d050 1808 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
73e4de09 1809 return scm_is_false (scm_zero_p(k)) ? n : acc;
bc36d050 1810 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1811 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1812
e11e83f3
MV
1813 if (SCM_I_INUMP (k))
1814 i2 = SCM_I_INUM (k);
ca46fb90
RB
1815 else if (SCM_BIGP (k))
1816 {
1817 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1818 scm_remember_upto_here_1 (k);
1819 i2_is_big = 1;
1820 }
2830fd91 1821 else
ca46fb90
RB
1822 SCM_WRONG_TYPE_ARG (2, k);
1823
1824 if (i2_is_big)
f872b822 1825 {
ca46fb90
RB
1826 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1827 {
1828 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1829 n = scm_divide (n, SCM_UNDEFINED);
1830 }
1831 while (1)
1832 {
1833 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1834 {
ca46fb90
RB
1835 return acc;
1836 }
1837 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1838 {
ca46fb90
RB
1839 return scm_product (acc, n);
1840 }
1841 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1842 acc = scm_product (acc, n);
1843 n = scm_product (n, n);
1844 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1845 }
f872b822 1846 }
ca46fb90 1847 else
f872b822 1848 {
ca46fb90
RB
1849 if (i2 < 0)
1850 {
1851 i2 = -i2;
1852 n = scm_divide (n, SCM_UNDEFINED);
1853 }
1854 while (1)
1855 {
1856 if (0 == i2)
1857 return acc;
1858 if (1 == i2)
1859 return scm_product (acc, n);
1860 if (i2 & 1)
1861 acc = scm_product (acc, n);
1862 n = scm_product (n, n);
1863 i2 >>= 1;
1864 }
f872b822 1865 }
0f2d19dd 1866}
1bbd0b84 1867#undef FUNC_NAME
0f2d19dd 1868
a1ec6916 1869SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1870 (SCM n, SCM cnt),
32f19569
KR
1871 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1872 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1873 "\n"
e7644cb2 1874 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1875 "@var{cnt} is negative it's a division, rounded towards negative\n"
1876 "infinity. (Note that this is not the same rounding as\n"
1877 "@code{quotient} does.)\n"
1878 "\n"
1879 "With @var{n} viewed as an infinite precision twos complement,\n"
1880 "@code{ash} means a left shift introducing zero bits, or a right\n"
1881 "shift dropping bits.\n"
1e6808ea 1882 "\n"
b380b885 1883 "@lisp\n"
1e6808ea
MG
1884 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1885 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1886 "\n"
1887 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1888 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1889 "@end lisp")
1bbd0b84 1890#define FUNC_NAME s_scm_ash
0f2d19dd 1891{
3ab9f56e 1892 long bits_to_shift;
5efd3c7d 1893 bits_to_shift = scm_to_long (cnt);
ca46fb90 1894
788aca27
KR
1895 if (SCM_I_INUMP (n))
1896 {
1897 long nn = SCM_I_INUM (n);
1898
1899 if (bits_to_shift > 0)
1900 {
1901 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1902 overflow a non-zero fixnum. For smaller shifts we check the
1903 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1904 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1905 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1906 bits_to_shift)". */
1907
1908 if (nn == 0)
1909 return n;
1910
1911 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1912 && ((unsigned long)
1913 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1914 <= 1))
1915 {
1916 return SCM_I_MAKINUM (nn << bits_to_shift);
1917 }
1918 else
1919 {
1920 SCM result = scm_i_long2big (nn);
1921 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1922 bits_to_shift);
1923 return result;
1924 }
1925 }
1926 else
1927 {
1928 bits_to_shift = -bits_to_shift;
1929 if (bits_to_shift >= SCM_LONG_BIT)
1930 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1931 else
1932 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1933 }
1934
1935 }
1936 else if (SCM_BIGP (n))
ca46fb90 1937 {
788aca27
KR
1938 SCM result;
1939
1940 if (bits_to_shift == 0)
1941 return n;
1942
1943 result = scm_i_mkbig ();
1944 if (bits_to_shift >= 0)
1945 {
1946 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1947 bits_to_shift);
1948 return result;
1949 }
ca46fb90 1950 else
788aca27
KR
1951 {
1952 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1953 we have to allocate a bignum even if the result is going to be a
1954 fixnum. */
1955 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1956 -bits_to_shift);
1957 return scm_i_normbig (result);
1958 }
1959
ca46fb90
RB
1960 }
1961 else
788aca27
KR
1962 {
1963 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1964 }
0f2d19dd 1965}
1bbd0b84 1966#undef FUNC_NAME
0f2d19dd 1967
3c9f20f8 1968
a1ec6916 1969SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 1970 (SCM n, SCM start, SCM end),
1e6808ea
MG
1971 "Return the integer composed of the @var{start} (inclusive)\n"
1972 "through @var{end} (exclusive) bits of @var{n}. The\n"
1973 "@var{start}th bit becomes the 0-th bit in the result.\n"
1974 "\n"
b380b885
MD
1975 "@lisp\n"
1976 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1977 " @result{} \"1010\"\n"
1978 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1979 " @result{} \"10110\"\n"
1980 "@end lisp")
1bbd0b84 1981#define FUNC_NAME s_scm_bit_extract
0f2d19dd 1982{
7f848242 1983 unsigned long int istart, iend, bits;
5efd3c7d
MV
1984 istart = scm_to_ulong (start);
1985 iend = scm_to_ulong (end);
c1bfcf60 1986 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 1987
7f848242
KR
1988 /* how many bits to keep */
1989 bits = iend - istart;
1990
e11e83f3 1991 if (SCM_I_INUMP (n))
0aacf84e 1992 {
e11e83f3 1993 long int in = SCM_I_INUM (n);
7f848242
KR
1994
1995 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 1996 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 1997 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 1998
0aacf84e
MD
1999 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
2000 {
2001 /* Since we emulate two's complement encoded numbers, this
2002 * special case requires us to produce a result that has
7f848242 2003 * more bits than can be stored in a fixnum.
0aacf84e 2004 */
7f848242
KR
2005 SCM result = scm_i_long2big (in);
2006 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
2007 bits);
2008 return result;
0aacf84e 2009 }
ac0c002c 2010
7f848242 2011 /* mask down to requisite bits */
857ae6af 2012 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 2013 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
2014 }
2015 else if (SCM_BIGP (n))
ac0c002c 2016 {
7f848242
KR
2017 SCM result;
2018 if (bits == 1)
2019 {
d956fa6f 2020 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
2021 }
2022 else
2023 {
2024 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
2025 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
2026 such bits into a ulong. */
2027 result = scm_i_mkbig ();
2028 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
2029 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
2030 result = scm_i_normbig (result);
2031 }
2032 scm_remember_upto_here_1 (n);
2033 return result;
ac0c002c 2034 }
0aacf84e 2035 else
78166ad5 2036 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2037}
1bbd0b84 2038#undef FUNC_NAME
0f2d19dd 2039
7f848242 2040
e4755e5c
JB
2041static const char scm_logtab[] = {
2042 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
2043};
1cc91f1b 2044
a1ec6916 2045SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 2046 (SCM n),
1e6808ea
MG
2047 "Return the number of bits in integer @var{n}. If integer is\n"
2048 "positive, the 1-bits in its binary representation are counted.\n"
2049 "If negative, the 0-bits in its two's-complement binary\n"
2050 "representation are counted. If 0, 0 is returned.\n"
2051 "\n"
b380b885
MD
2052 "@lisp\n"
2053 "(logcount #b10101010)\n"
ca46fb90
RB
2054 " @result{} 4\n"
2055 "(logcount 0)\n"
2056 " @result{} 0\n"
2057 "(logcount -2)\n"
2058 " @result{} 1\n"
2059 "@end lisp")
2060#define FUNC_NAME s_scm_logcount
2061{
e11e83f3 2062 if (SCM_I_INUMP (n))
f872b822 2063 {
ca46fb90 2064 unsigned long int c = 0;
e11e83f3 2065 long int nn = SCM_I_INUM (n);
ca46fb90
RB
2066 if (nn < 0)
2067 nn = -1 - nn;
2068 while (nn)
2069 {
2070 c += scm_logtab[15 & nn];
2071 nn >>= 4;
2072 }
d956fa6f 2073 return SCM_I_MAKINUM (c);
f872b822 2074 }
ca46fb90 2075 else if (SCM_BIGP (n))
f872b822 2076 {
ca46fb90 2077 unsigned long count;
713a4259
KR
2078 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2079 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 2080 else
713a4259
KR
2081 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2082 scm_remember_upto_here_1 (n);
d956fa6f 2083 return SCM_I_MAKINUM (count);
f872b822 2084 }
ca46fb90
RB
2085 else
2086 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2087}
ca46fb90 2088#undef FUNC_NAME
0f2d19dd
JB
2089
2090
ca46fb90
RB
2091static const char scm_ilentab[] = {
2092 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2093};
2094
0f2d19dd 2095
ca46fb90
RB
2096SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2097 (SCM n),
2098 "Return the number of bits necessary to represent @var{n}.\n"
2099 "\n"
2100 "@lisp\n"
2101 "(integer-length #b10101010)\n"
2102 " @result{} 8\n"
2103 "(integer-length 0)\n"
2104 " @result{} 0\n"
2105 "(integer-length #b1111)\n"
2106 " @result{} 4\n"
2107 "@end lisp")
2108#define FUNC_NAME s_scm_integer_length
2109{
e11e83f3 2110 if (SCM_I_INUMP (n))
0aacf84e
MD
2111 {
2112 unsigned long int c = 0;
2113 unsigned int l = 4;
e11e83f3 2114 long int nn = SCM_I_INUM (n);
0aacf84e
MD
2115 if (nn < 0)
2116 nn = -1 - nn;
2117 while (nn)
2118 {
2119 c += 4;
2120 l = scm_ilentab [15 & nn];
2121 nn >>= 4;
2122 }
d956fa6f 2123 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
2124 }
2125 else if (SCM_BIGP (n))
2126 {
2127 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2128 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2129 1 too big, so check for that and adjust. */
2130 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2131 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2132 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2133 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2134 size--;
2135 scm_remember_upto_here_1 (n);
d956fa6f 2136 return SCM_I_MAKINUM (size);
0aacf84e
MD
2137 }
2138 else
ca46fb90 2139 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
2140}
2141#undef FUNC_NAME
0f2d19dd
JB
2142
2143/*** NUMBERS -> STRINGS ***/
0b799eea
MV
2144#define SCM_MAX_DBL_PREC 60
2145#define SCM_MAX_DBL_RADIX 36
2146
2147/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2148static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2149static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2150
2151static
2152void init_dblprec(int *prec, int radix) {
2153 /* determine floating point precision by adding successively
2154 smaller increments to 1.0 until it is considered == 1.0 */
2155 double f = ((double)1.0)/radix;
2156 double fsum = 1.0 + f;
2157
2158 *prec = 0;
2159 while (fsum != 1.0)
2160 {
2161 if (++(*prec) > SCM_MAX_DBL_PREC)
2162 fsum = 1.0;
2163 else
2164 {
2165 f /= radix;
2166 fsum = f + 1.0;
2167 }
2168 }
2169 (*prec) -= 1;
2170}
2171
2172static
2173void init_fx_radix(double *fx_list, int radix)
2174{
2175 /* initialize a per-radix list of tolerances. When added
2176 to a number < 1.0, we can determine if we should raund
2177 up and quit converting a number to a string. */
2178 int i;
2179 fx_list[0] = 0.0;
2180 fx_list[1] = 0.5;
2181 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2182 fx_list[i] = (fx_list[i-1] / radix);
2183}
2184
2185/* use this array as a way to generate a single digit */
2186static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
0f2d19dd 2187
1be6b49c 2188static size_t
0b799eea 2189idbl2str (double f, char *a, int radix)
0f2d19dd 2190{
0b799eea
MV
2191 int efmt, dpt, d, i, wp;
2192 double *fx;
2193#ifdef DBL_MIN_10_EXP
2194 double f_cpy;
2195 int exp_cpy;
2196#endif /* DBL_MIN_10_EXP */
2197 size_t ch = 0;
2198 int exp = 0;
2199
2200 if(radix < 2 ||
2201 radix > SCM_MAX_DBL_RADIX)
2202 {
2203 /* revert to existing behavior */
2204 radix = 10;
2205 }
2206
2207 wp = scm_dblprec[radix-2];
2208 fx = fx_per_radix[radix-2];
0f2d19dd 2209
f872b822 2210 if (f == 0.0)
abb7e44d
MV
2211 {
2212#ifdef HAVE_COPYSIGN
2213 double sgn = copysign (1.0, f);
2214
2215 if (sgn < 0.0)
2216 a[ch++] = '-';
2217#endif
abb7e44d
MV
2218 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2219 }
7351e207
MV
2220
2221 if (xisinf (f))
2222 {
2223 if (f < 0)
2224 strcpy (a, "-inf.0");
2225 else
2226 strcpy (a, "+inf.0");
2227 return ch+6;
2228 }
2229 else if (xisnan (f))
2230 {
2231 strcpy (a, "+nan.0");
2232 return ch+6;
2233 }
2234
f872b822
MD
2235 if (f < 0.0)
2236 {
2237 f = -f;
2238 a[ch++] = '-';
2239 }
7351e207 2240
f872b822
MD
2241#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2242 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2243 /* just do the checking...if it passes, we do the conversion for our
2244 radix again below */
2245 f_cpy = f;
2246 exp_cpy = exp;
2247
2248 while (f_cpy < 1.0)
f872b822 2249 {
0b799eea
MV
2250 f_cpy *= 10.0;
2251 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2252 {
2253 a[ch++] = '#';
2254 a[ch++] = '.';
2255 a[ch++] = '#';
2256 return ch;
2257 }
f872b822 2258 }
0b799eea 2259 while (f_cpy > 10.0)
f872b822 2260 {
0b799eea
MV
2261 f_cpy *= 0.10;
2262 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2263 {
2264 a[ch++] = '#';
2265 a[ch++] = '.';
2266 a[ch++] = '#';
2267 return ch;
2268 }
f872b822 2269 }
0b799eea
MV
2270#endif
2271
f872b822
MD
2272 while (f < 1.0)
2273 {
0b799eea 2274 f *= radix;
f872b822
MD
2275 exp--;
2276 }
0b799eea 2277 while (f > radix)
f872b822 2278 {
0b799eea 2279 f /= radix;
f872b822
MD
2280 exp++;
2281 }
0b799eea
MV
2282
2283 if (f + fx[wp] >= radix)
f872b822
MD
2284 {
2285 f = 1.0;
2286 exp++;
2287 }
0f2d19dd 2288 zero:
0b799eea
MV
2289#ifdef ENGNOT
2290 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2291 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2292 exp -= dpt++;
2293 efmt = 1;
f872b822
MD
2294#else
2295 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2296 if (!efmt)
cda139a7
MD
2297 {
2298 if (exp < 0)
2299 {
2300 a[ch++] = '0';
2301 a[ch++] = '.';
2302 dpt = exp;
f872b822
MD
2303 while (++dpt)
2304 a[ch++] = '0';
cda139a7
MD
2305 }
2306 else
f872b822 2307 dpt = exp + 1;
cda139a7 2308 }
0f2d19dd
JB
2309 else
2310 dpt = 1;
f872b822
MD
2311#endif
2312
2313 do
2314 {
2315 d = f;
2316 f -= d;
0b799eea 2317 a[ch++] = number_chars[d];
f872b822
MD
2318 if (f < fx[wp])
2319 break;
2320 if (f + fx[wp] >= 1.0)
2321 {
0b799eea 2322 a[ch - 1] = number_chars[d+1];
f872b822
MD
2323 break;
2324 }
0b799eea 2325 f *= radix;
f872b822
MD
2326 if (!(--dpt))
2327 a[ch++] = '.';
0f2d19dd 2328 }
f872b822 2329 while (wp--);
0f2d19dd
JB
2330
2331 if (dpt > 0)
cda139a7 2332 {
f872b822 2333#ifndef ENGNOT
cda139a7
MD
2334 if ((dpt > 4) && (exp > 6))
2335 {
f872b822 2336 d = (a[0] == '-' ? 2 : 1);
cda139a7 2337 for (i = ch++; i > d; i--)
f872b822 2338 a[i] = a[i - 1];
cda139a7
MD
2339 a[d] = '.';
2340 efmt = 1;
2341 }
2342 else
f872b822 2343#endif
cda139a7 2344 {
f872b822
MD
2345 while (--dpt)
2346 a[ch++] = '0';
cda139a7
MD
2347 a[ch++] = '.';
2348 }
2349 }
f872b822
MD
2350 if (a[ch - 1] == '.')
2351 a[ch++] = '0'; /* trailing zero */
2352 if (efmt && exp)
2353 {
2354 a[ch++] = 'e';
2355 if (exp < 0)
2356 {
2357 exp = -exp;
2358 a[ch++] = '-';
2359 }
0b799eea
MV
2360 for (i = radix; i <= exp; i *= radix);
2361 for (i /= radix; i; i /= radix)
f872b822 2362 {
0b799eea 2363 a[ch++] = number_chars[exp / i];
f872b822
MD
2364 exp %= i;
2365 }
0f2d19dd 2366 }
0f2d19dd
JB
2367 return ch;
2368}
2369
7a1aba42
MV
2370
2371static size_t
2372icmplx2str (double real, double imag, char *str, int radix)
2373{
2374 size_t i;
2375
2376 i = idbl2str (real, str, radix);
2377 if (imag != 0.0)
2378 {
2379 /* Don't output a '+' for negative numbers or for Inf and
2380 NaN. They will provide their own sign. */
2381 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2382 str[i++] = '+';
2383 i += idbl2str (imag, &str[i], radix);
2384 str[i++] = 'i';
2385 }
2386 return i;
2387}
2388
1be6b49c 2389static size_t
0b799eea 2390iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2391{
1be6b49c 2392 size_t i;
3c9a524f 2393 if (SCM_REALP (flt))
0b799eea 2394 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2395 else
7a1aba42
MV
2396 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2397 str, radix);
0f2d19dd
JB
2398 return i;
2399}
0f2d19dd 2400
2881e77b 2401/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
2402 characters in the result.
2403 rad is output base
2404 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2405size_t
2881e77b
MV
2406scm_iint2str (scm_t_intmax num, int rad, char *p)
2407{
2408 if (num < 0)
2409 {
2410 *p++ = '-';
2411 return scm_iuint2str (-num, rad, p) + 1;
2412 }
2413 else
2414 return scm_iuint2str (num, rad, p);
2415}
2416
2417/* convert a scm_t_intmax to a string (unterminated). returns the number of
2418 characters in the result.
2419 rad is output base
2420 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2421size_t
2422scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 2423{
1be6b49c
ML
2424 size_t j = 1;
2425 size_t i;
2881e77b 2426 scm_t_uintmax n = num;
5c11cc9d 2427
f872b822 2428 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2429 j++;
2430
2431 i = j;
2881e77b 2432 n = num;
f872b822
MD
2433 while (i--)
2434 {
5c11cc9d
GH
2435 int d = n % rad;
2436
f872b822
MD
2437 n /= rad;
2438 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2439 }
0f2d19dd
JB
2440 return j;
2441}
2442
a1ec6916 2443SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2444 (SCM n, SCM radix),
2445 "Return a string holding the external representation of the\n"
942e5b91
MG
2446 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2447 "inexact, a radix of 10 will be used.")
1bbd0b84 2448#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2449{
1bbd0b84 2450 int base;
98cb6e75 2451
0aacf84e 2452 if (SCM_UNBNDP (radix))
98cb6e75 2453 base = 10;
0aacf84e 2454 else
5efd3c7d 2455 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2456
e11e83f3 2457 if (SCM_I_INUMP (n))
0aacf84e
MD
2458 {
2459 char num_buf [SCM_INTBUFLEN];
e11e83f3 2460 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 2461 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
2462 }
2463 else if (SCM_BIGP (n))
2464 {
2465 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2466 scm_remember_upto_here_1 (n);
cc95e00a 2467 return scm_take_locale_string (str);
0aacf84e 2468 }
f92e85f7
MV
2469 else if (SCM_FRACTIONP (n))
2470 {
f92e85f7 2471 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 2472 scm_from_locale_string ("/"),
f92e85f7
MV
2473 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2474 }
0aacf84e
MD
2475 else if (SCM_INEXACTP (n))
2476 {
2477 char num_buf [FLOBUFLEN];
cc95e00a 2478 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2479 }
2480 else
bb628794 2481 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2482}
1bbd0b84 2483#undef FUNC_NAME
0f2d19dd
JB
2484
2485
ca46fb90
RB
2486/* These print routines used to be stubbed here so that scm_repl.c
2487 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2488
0f2d19dd 2489int
e81d98ec 2490scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2491{
56e55ac7 2492 char num_buf[FLOBUFLEN];
0b799eea 2493 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2494 return !0;
2495}
2496
b479fe9a
MV
2497void
2498scm_i_print_double (double val, SCM port)
2499{
2500 char num_buf[FLOBUFLEN];
2501 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2502}
2503
f3ae5d60 2504int
e81d98ec 2505scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2506
f3ae5d60 2507{
56e55ac7 2508 char num_buf[FLOBUFLEN];
0b799eea 2509 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2510 return !0;
2511}
1cc91f1b 2512
7a1aba42
MV
2513void
2514scm_i_print_complex (double real, double imag, SCM port)
2515{
2516 char num_buf[FLOBUFLEN];
2517 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2518}
2519
f92e85f7
MV
2520int
2521scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2522{
2523 SCM str;
f92e85f7 2524 str = scm_number_to_string (sexp, SCM_UNDEFINED);
3f47e526 2525 scm_lfwrite_str (str, port);
f92e85f7
MV
2526 scm_remember_upto_here_1 (str);
2527 return !0;
2528}
2529
0f2d19dd 2530int
e81d98ec 2531scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2532{
ca46fb90
RB
2533 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2534 scm_remember_upto_here_1 (exp);
2535 scm_lfwrite (str, (size_t) strlen (str), port);
2536 free (str);
0f2d19dd
JB
2537 return !0;
2538}
2539/*** END nums->strs ***/
2540
3c9a524f 2541
0f2d19dd 2542/*** STRINGS -> NUMBERS ***/
2a8fecee 2543
3c9a524f
DH
2544/* The following functions implement the conversion from strings to numbers.
2545 * The implementation somehow follows the grammar for numbers as it is given
2546 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2547 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2548 * points should be noted about the implementation:
2549 * * Each function keeps a local index variable 'idx' that points at the
2550 * current position within the parsed string. The global index is only
2551 * updated if the function could parse the corresponding syntactic unit
2552 * successfully.
2553 * * Similarly, the functions keep track of indicators of inexactness ('#',
2554 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2555 * global exactness information is only updated after each part has been
2556 * successfully parsed.
2557 * * Sequences of digits are parsed into temporary variables holding fixnums.
2558 * Only if these fixnums would overflow, the result variables are updated
2559 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2560 * the temporary variables holding the fixnums are cleared, and the process
2561 * starts over again. If for example fixnums were able to store five decimal
2562 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2563 * and the result was computed as 12345 * 100000 + 67890. In other words,
2564 * only every five digits two bignum operations were performed.
2565 */
2566
2567enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2568
2569/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2570
2571/* In non ASCII-style encodings the following macro might not work. */
3f47e526
MG
2572#define XDIGIT2UINT(d) \
2573 (uc_is_property_decimal_digit ((int) (unsigned char) d) \
2574 ? (d) - '0' \
cdf8f9e6 2575 : uc_tolower ((int) (unsigned char) d) - 'a' + 10)
3c9a524f 2576
2a8fecee 2577static SCM
3f47e526 2578mem2uinteger (SCM mem, unsigned int *p_idx,
3c9a524f 2579 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2580{
3c9a524f
DH
2581 unsigned int idx = *p_idx;
2582 unsigned int hash_seen = 0;
2583 scm_t_bits shift = 1;
2584 scm_t_bits add = 0;
2585 unsigned int digit_value;
2586 SCM result;
2587 char c;
3f47e526 2588 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2589
2590 if (idx == len)
2591 return SCM_BOOL_F;
2a8fecee 2592
3f47e526
MG
2593 c = scm_i_string_ref (mem, idx);
2594 if (!uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
3c9a524f
DH
2595 return SCM_BOOL_F;
2596 digit_value = XDIGIT2UINT (c);
2597 if (digit_value >= radix)
2598 return SCM_BOOL_F;
2599
2600 idx++;
d956fa6f 2601 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2602 while (idx != len)
f872b822 2603 {
3f47e526
MG
2604 scm_t_wchar c = scm_i_string_ref (mem, idx);
2605 if (uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
f872b822 2606 {
3c9a524f 2607 if (hash_seen)
1fe5e088 2608 break;
3c9a524f
DH
2609 digit_value = XDIGIT2UINT (c);
2610 if (digit_value >= radix)
1fe5e088 2611 break;
f872b822 2612 }
3c9a524f
DH
2613 else if (c == '#')
2614 {
2615 hash_seen = 1;
2616 digit_value = 0;
2617 }
2618 else
2619 break;
2620
2621 idx++;
2622 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2623 {
d956fa6f 2624 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2625 if (add > 0)
d956fa6f 2626 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2627
2628 shift = radix;
2629 add = digit_value;
2630 }
2631 else
2632 {
2633 shift = shift * radix;
2634 add = add * radix + digit_value;
2635 }
2636 };
2637
2638 if (shift > 1)
d956fa6f 2639 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2640 if (add > 0)
d956fa6f 2641 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2642
2643 *p_idx = idx;
2644 if (hash_seen)
2645 *p_exactness = INEXACT;
2646
2647 return result;
2a8fecee
JB
2648}
2649
2650
3c9a524f
DH
2651/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2652 * covers the parts of the rules that start at a potential point. The value
2653 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2654 * in variable result. The content of *p_exactness indicates, whether a hash
2655 * has already been seen in the digits before the point.
3c9a524f 2656 */
1cc91f1b 2657
3f47e526 2658#define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
3c9a524f
DH
2659
2660static SCM
3f47e526 2661mem2decimal_from_point (SCM result, SCM mem,
3c9a524f 2662 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2663{
3c9a524f
DH
2664 unsigned int idx = *p_idx;
2665 enum t_exactness x = *p_exactness;
3f47e526 2666 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2667
2668 if (idx == len)
79d34f68 2669 return result;
3c9a524f 2670
3f47e526 2671 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2672 {
2673 scm_t_bits shift = 1;
2674 scm_t_bits add = 0;
2675 unsigned int digit_value;
d956fa6f 2676 SCM big_shift = SCM_I_MAKINUM (1);
3c9a524f
DH
2677
2678 idx++;
2679 while (idx != len)
2680 {
3f47e526
MG
2681 scm_t_wchar c = scm_i_string_ref (mem, idx);
2682 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2683 {
2684 if (x == INEXACT)
2685 return SCM_BOOL_F;
2686 else
2687 digit_value = DIGIT2UINT (c);
2688 }
2689 else if (c == '#')
2690 {
2691 x = INEXACT;
2692 digit_value = 0;
2693 }
2694 else
2695 break;
2696
2697 idx++;
2698 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2699 {
d956fa6f
MV
2700 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2701 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2702 if (add > 0)
d956fa6f 2703 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2704
2705 shift = 10;
2706 add = digit_value;
2707 }
2708 else
2709 {
2710 shift = shift * 10;
2711 add = add * 10 + digit_value;
2712 }
2713 };
2714
2715 if (add > 0)
2716 {
d956fa6f
MV
2717 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2718 result = scm_product (result, SCM_I_MAKINUM (shift));
2719 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2720 }
2721
d8592269 2722 result = scm_divide (result, big_shift);
79d34f68 2723
3c9a524f
DH
2724 /* We've seen a decimal point, thus the value is implicitly inexact. */
2725 x = INEXACT;
f872b822 2726 }
3c9a524f 2727
3c9a524f 2728 if (idx != len)
f872b822 2729 {
3c9a524f
DH
2730 int sign = 1;
2731 unsigned int start;
3f47e526 2732 scm_t_wchar c;
3c9a524f
DH
2733 int exponent;
2734 SCM e;
2735
2736 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2737
3f47e526 2738 switch (scm_i_string_ref (mem, idx))
f872b822 2739 {
3c9a524f
DH
2740 case 'd': case 'D':
2741 case 'e': case 'E':
2742 case 'f': case 'F':
2743 case 'l': case 'L':
2744 case 's': case 'S':
2745 idx++;
ee0ddd21
AW
2746 if (idx == len)
2747 return SCM_BOOL_F;
2748
3c9a524f 2749 start = idx;
3f47e526 2750 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2751 if (c == '-')
2752 {
2753 idx++;
ee0ddd21
AW
2754 if (idx == len)
2755 return SCM_BOOL_F;
2756
3c9a524f 2757 sign = -1;
3f47e526 2758 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2759 }
2760 else if (c == '+')
2761 {
2762 idx++;
ee0ddd21
AW
2763 if (idx == len)
2764 return SCM_BOOL_F;
2765
3c9a524f 2766 sign = 1;
3f47e526 2767 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2768 }
2769 else
2770 sign = 1;
2771
3f47e526 2772 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2773 return SCM_BOOL_F;
2774
2775 idx++;
2776 exponent = DIGIT2UINT (c);
2777 while (idx != len)
f872b822 2778 {
3f47e526
MG
2779 scm_t_wchar c = scm_i_string_ref (mem, idx);
2780 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2781 {
2782 idx++;
2783 if (exponent <= SCM_MAXEXP)
2784 exponent = exponent * 10 + DIGIT2UINT (c);
2785 }
2786 else
2787 break;
f872b822 2788 }
3c9a524f
DH
2789
2790 if (exponent > SCM_MAXEXP)
f872b822 2791 {
3c9a524f 2792 size_t exp_len = idx - start;
3f47e526 2793 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
3c9a524f
DH
2794 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2795 scm_out_of_range ("string->number", exp_num);
f872b822 2796 }
3c9a524f 2797
d956fa6f 2798 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2799 if (sign == 1)
2800 result = scm_product (result, e);
2801 else
f92e85f7 2802 result = scm_divide2real (result, e);
3c9a524f
DH
2803
2804 /* We've seen an exponent, thus the value is implicitly inexact. */
2805 x = INEXACT;
2806
f872b822 2807 break;
3c9a524f 2808
f872b822 2809 default:
3c9a524f 2810 break;
f872b822 2811 }
0f2d19dd 2812 }
3c9a524f
DH
2813
2814 *p_idx = idx;
2815 if (x == INEXACT)
2816 *p_exactness = x;
2817
2818 return result;
0f2d19dd 2819}
0f2d19dd 2820
3c9a524f
DH
2821
2822/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2823
2824static SCM
3f47e526 2825mem2ureal (SCM mem, unsigned int *p_idx,
3c9a524f 2826 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2827{
3c9a524f 2828 unsigned int idx = *p_idx;
164d2481 2829 SCM result;
3f47e526 2830 size_t len = scm_i_string_length (mem);
3c9a524f 2831
40f89215
NJ
2832 /* Start off believing that the number will be exact. This changes
2833 to INEXACT if we see a decimal point or a hash. */
2834 enum t_exactness x = EXACT;
2835
3c9a524f
DH
2836 if (idx == len)
2837 return SCM_BOOL_F;
2838
3f47e526 2839 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
7351e207
MV
2840 {
2841 *p_idx = idx+5;
2842 return scm_inf ();
2843 }
2844
3f47e526 2845 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
7351e207 2846 {
d8592269
MV
2847 /* Cobble up the fractional part. We might want to set the
2848 NaN's mantissa from it. */
7351e207 2849 idx += 4;
3f47e526 2850 mem2uinteger (mem, &idx, 10, &x);
7351e207
MV
2851 *p_idx = idx;
2852 return scm_nan ();
2853 }
2854
3f47e526 2855 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2856 {
2857 if (radix != 10)
2858 return SCM_BOOL_F;
2859 else if (idx + 1 == len)
2860 return SCM_BOOL_F;
3f47e526 2861 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
3c9a524f
DH
2862 return SCM_BOOL_F;
2863 else
3f47e526 2864 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem,
40f89215 2865 p_idx, &x);
f872b822 2866 }
3c9a524f
DH
2867 else
2868 {
3c9a524f 2869 SCM uinteger;
3c9a524f 2870
3f47e526 2871 uinteger = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2872 if (scm_is_false (uinteger))
3c9a524f
DH
2873 return SCM_BOOL_F;
2874
2875 if (idx == len)
2876 result = uinteger;
3f47e526 2877 else if (scm_i_string_ref (mem, idx) == '/')
f872b822 2878 {
3c9a524f
DH
2879 SCM divisor;
2880
2881 idx++;
ee0ddd21
AW
2882 if (idx == len)
2883 return SCM_BOOL_F;
3c9a524f 2884
3f47e526 2885 divisor = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2886 if (scm_is_false (divisor))
3c9a524f
DH
2887 return SCM_BOOL_F;
2888
f92e85f7 2889 /* both are int/big here, I assume */
cba42c93 2890 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2891 }
3c9a524f
DH
2892 else if (radix == 10)
2893 {
3f47e526 2894 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
73e4de09 2895 if (scm_is_false (result))
3c9a524f
DH
2896 return SCM_BOOL_F;
2897 }
2898 else
2899 result = uinteger;
2900
2901 *p_idx = idx;
f872b822 2902 }
164d2481 2903
40f89215
NJ
2904 /* Update *p_exactness if the number just read was inexact. This is
2905 important for complex numbers, so that a complex number is
2906 treated as inexact overall if either its real or imaginary part
2907 is inexact.
2908 */
2909 if (x == INEXACT)
2910 *p_exactness = x;
2911
164d2481
MV
2912 /* When returning an inexact zero, make sure it is represented as a
2913 floating point value so that we can change its sign.
2914 */
bc36d050 2915 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
55f26379 2916 result = scm_from_double (0.0);
164d2481
MV
2917
2918 return result;
3c9a524f 2919}
0f2d19dd 2920
0f2d19dd 2921
3c9a524f 2922/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2923
3c9a524f 2924static SCM
3f47e526 2925mem2complex (SCM mem, unsigned int idx,
3c9a524f
DH
2926 unsigned int radix, enum t_exactness *p_exactness)
2927{
3f47e526 2928 scm_t_wchar c;
3c9a524f
DH
2929 int sign = 0;
2930 SCM ureal;
3f47e526 2931 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2932
2933 if (idx == len)
2934 return SCM_BOOL_F;
2935
3f47e526 2936 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2937 if (c == '+')
2938 {
2939 idx++;
2940 sign = 1;
2941 }
2942 else if (c == '-')
2943 {
2944 idx++;
2945 sign = -1;
0f2d19dd 2946 }
0f2d19dd 2947
3c9a524f
DH
2948 if (idx == len)
2949 return SCM_BOOL_F;
2950
3f47e526 2951 ureal = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 2952 if (scm_is_false (ureal))
f872b822 2953 {
3c9a524f
DH
2954 /* input must be either +i or -i */
2955
2956 if (sign == 0)
2957 return SCM_BOOL_F;
2958
3f47e526
MG
2959 if (scm_i_string_ref (mem, idx) == 'i'
2960 || scm_i_string_ref (mem, idx) == 'I')
f872b822 2961 {
3c9a524f
DH
2962 idx++;
2963 if (idx != len)
2964 return SCM_BOOL_F;
2965
d956fa6f 2966 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
f872b822 2967 }
3c9a524f
DH
2968 else
2969 return SCM_BOOL_F;
0f2d19dd 2970 }
3c9a524f
DH
2971 else
2972 {
73e4de09 2973 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 2974 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 2975
3c9a524f
DH
2976 if (idx == len)
2977 return ureal;
2978
3f47e526 2979 c = scm_i_string_ref (mem, idx);
3c9a524f 2980 switch (c)
f872b822 2981 {
3c9a524f
DH
2982 case 'i': case 'I':
2983 /* either +<ureal>i or -<ureal>i */
2984
2985 idx++;
2986 if (sign == 0)
2987 return SCM_BOOL_F;
2988 if (idx != len)
2989 return SCM_BOOL_F;
d956fa6f 2990 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
3c9a524f
DH
2991
2992 case '@':
2993 /* polar input: <real>@<real>. */
2994
2995 idx++;
2996 if (idx == len)
2997 return SCM_BOOL_F;
2998 else
f872b822 2999 {
3c9a524f
DH
3000 int sign;
3001 SCM angle;
3002 SCM result;
3003
3f47e526 3004 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
3005 if (c == '+')
3006 {
3007 idx++;
ee0ddd21
AW
3008 if (idx == len)
3009 return SCM_BOOL_F;
3c9a524f
DH
3010 sign = 1;
3011 }
3012 else if (c == '-')
3013 {
3014 idx++;
ee0ddd21
AW
3015 if (idx == len)
3016 return SCM_BOOL_F;
3c9a524f
DH
3017 sign = -1;
3018 }
3019 else
3020 sign = 1;
3021
3f47e526 3022 angle = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 3023 if (scm_is_false (angle))
3c9a524f
DH
3024 return SCM_BOOL_F;
3025 if (idx != len)
3026 return SCM_BOOL_F;
3027
73e4de09 3028 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
3029 angle = scm_difference (angle, SCM_UNDEFINED);
3030
3031 result = scm_make_polar (ureal, angle);
3032 return result;
f872b822 3033 }
3c9a524f
DH
3034 case '+':
3035 case '-':
3036 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 3037
3c9a524f
DH
3038 idx++;
3039 if (idx == len)
3040 return SCM_BOOL_F;
3041 else
3042 {
3043 int sign = (c == '+') ? 1 : -1;
3f47e526 3044 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
0f2d19dd 3045
73e4de09 3046 if (scm_is_false (imag))
d956fa6f 3047 imag = SCM_I_MAKINUM (sign);
73e4de09 3048 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
1fe5e088 3049 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 3050
3c9a524f
DH
3051 if (idx == len)
3052 return SCM_BOOL_F;
3f47e526
MG
3053 if (scm_i_string_ref (mem, idx) != 'i'
3054 && scm_i_string_ref (mem, idx) != 'I')
3c9a524f 3055 return SCM_BOOL_F;
0f2d19dd 3056
3c9a524f
DH
3057 idx++;
3058 if (idx != len)
3059 return SCM_BOOL_F;
0f2d19dd 3060
1fe5e088 3061 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
3062 }
3063 default:
3064 return SCM_BOOL_F;
3065 }
3066 }
0f2d19dd 3067}
0f2d19dd
JB
3068
3069
3c9a524f
DH
3070/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
3071
3072enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 3073
0f2d19dd 3074SCM
3f47e526 3075scm_i_string_to_number (SCM mem, unsigned int default_radix)
0f2d19dd 3076{
3c9a524f
DH
3077 unsigned int idx = 0;
3078 unsigned int radix = NO_RADIX;
3079 enum t_exactness forced_x = NO_EXACTNESS;
3080 enum t_exactness implicit_x = EXACT;
3081 SCM result;
3f47e526 3082 size_t len = scm_i_string_length (mem);
3c9a524f
DH
3083
3084 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3f47e526 3085 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3c9a524f 3086 {
3f47e526 3087 switch (scm_i_string_ref (mem, idx + 1))
3c9a524f
DH
3088 {
3089 case 'b': case 'B':
3090 if (radix != NO_RADIX)
3091 return SCM_BOOL_F;
3092 radix = DUAL;
3093 break;
3094 case 'd': case 'D':
3095 if (radix != NO_RADIX)
3096 return SCM_BOOL_F;
3097 radix = DEC;
3098 break;
3099 case 'i': case 'I':
3100 if (forced_x != NO_EXACTNESS)
3101 return SCM_BOOL_F;
3102 forced_x = INEXACT;
3103 break;
3104 case 'e': case 'E':
3105 if (forced_x != NO_EXACTNESS)
3106 return SCM_BOOL_F;
3107 forced_x = EXACT;
3108 break;
3109 case 'o': case 'O':
3110 if (radix != NO_RADIX)
3111 return SCM_BOOL_F;
3112 radix = OCT;
3113 break;
3114 case 'x': case 'X':
3115 if (radix != NO_RADIX)
3116 return SCM_BOOL_F;
3117 radix = HEX;
3118 break;
3119 default:
f872b822 3120 return SCM_BOOL_F;
3c9a524f
DH
3121 }
3122 idx += 2;
3123 }
3124
3125 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3126 if (radix == NO_RADIX)
3f47e526 3127 result = mem2complex (mem, idx, default_radix, &implicit_x);
3c9a524f 3128 else
3f47e526 3129 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3c9a524f 3130
73e4de09 3131 if (scm_is_false (result))
3c9a524f 3132 return SCM_BOOL_F;
f872b822 3133
3c9a524f 3134 switch (forced_x)
f872b822 3135 {
3c9a524f
DH
3136 case EXACT:
3137 if (SCM_INEXACTP (result))
3c9a524f
DH
3138 return scm_inexact_to_exact (result);
3139 else
3140 return result;
3141 case INEXACT:
3142 if (SCM_INEXACTP (result))
3143 return result;
3144 else
3145 return scm_exact_to_inexact (result);
3146 case NO_EXACTNESS:
3147 default:
3148 if (implicit_x == INEXACT)
3149 {
3150 if (SCM_INEXACTP (result))
3151 return result;
3152 else
3153 return scm_exact_to_inexact (result);
3154 }
3155 else
3156 return result;
f872b822 3157 }
0f2d19dd
JB
3158}
3159
3f47e526
MG
3160SCM
3161scm_c_locale_stringn_to_number (const char* mem, size_t len,
3162 unsigned int default_radix)
3163{
3164 SCM str = scm_from_locale_stringn (mem, len);
3165
3166 return scm_i_string_to_number (str, default_radix);
3167}
3168
0f2d19dd 3169
a1ec6916 3170SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 3171 (SCM string, SCM radix),
1e6808ea 3172 "Return a number of the maximally precise representation\n"
942e5b91 3173 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
3174 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3175 "is a default radix that may be overridden by an explicit radix\n"
3176 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3177 "supplied, then the default radix is 10. If string is not a\n"
3178 "syntactically valid notation for a number, then\n"
3179 "@code{string->number} returns @code{#f}.")
1bbd0b84 3180#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
3181{
3182 SCM answer;
5efd3c7d 3183 unsigned int base;
a6d9e5ab 3184 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
3185
3186 if (SCM_UNBNDP (radix))
3187 base = 10;
3188 else
3189 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3190
3f47e526 3191 answer = scm_i_string_to_number (string, base);
8824ac88
MV
3192 scm_remember_upto_here_1 (string);
3193 return answer;
0f2d19dd 3194}
1bbd0b84 3195#undef FUNC_NAME
3c9a524f
DH
3196
3197
0f2d19dd
JB
3198/*** END strs->nums ***/
3199
5986c47d 3200
0f2d19dd 3201SCM
1bbd0b84 3202scm_bigequal (SCM x, SCM y)
0f2d19dd 3203{
47ae1f0e 3204 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
ca46fb90 3205 scm_remember_upto_here_2 (x, y);
73e4de09 3206 return scm_from_bool (0 == result);
0f2d19dd
JB
3207}
3208
0f2d19dd 3209SCM
f3ae5d60 3210scm_real_equalp (SCM x, SCM y)
0f2d19dd 3211{
73e4de09 3212 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0f2d19dd
JB
3213}
3214
f3ae5d60
MD
3215SCM
3216scm_complex_equalp (SCM x, SCM y)
3217{
73e4de09 3218 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
f3ae5d60
MD
3219 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3220}
0f2d19dd 3221
f92e85f7
MV
3222SCM
3223scm_i_fraction_equalp (SCM x, SCM y)
3224{
73e4de09 3225 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
02164269 3226 SCM_FRACTION_NUMERATOR (y)))
73e4de09 3227 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
02164269
MV
3228 SCM_FRACTION_DENOMINATOR (y))))
3229 return SCM_BOOL_F;
3230 else
3231 return SCM_BOOL_T;
f92e85f7 3232}
0f2d19dd
JB
3233
3234
8507ec80
MV
3235SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3236 (SCM x),
3237 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3238 "otherwise.")
3239#define FUNC_NAME s_scm_number_p
3240{
3241 return scm_from_bool (SCM_NUMBERP (x));
3242}
3243#undef FUNC_NAME
3244
3245SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3246 (SCM x),
942e5b91 3247 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3248 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3249 "values form subsets of the set of complex numbers, i. e. the\n"
3250 "predicate will also be fulfilled if @var{x} is a real,\n"
3251 "rational or integer number.")
8507ec80 3252#define FUNC_NAME s_scm_complex_p
0f2d19dd 3253{
8507ec80
MV
3254 /* all numbers are complex. */
3255 return scm_number_p (x);
0f2d19dd 3256}
1bbd0b84 3257#undef FUNC_NAME
0f2d19dd 3258
f92e85f7
MV
3259SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3260 (SCM x),
3261 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3262 "otherwise. Note that the set of integer values forms a subset of\n"
3263 "the set of real numbers, i. e. the predicate will also be\n"
3264 "fulfilled if @var{x} is an integer number.")
3265#define FUNC_NAME s_scm_real_p
3266{
3267 /* we can't represent irrational numbers. */
3268 return scm_rational_p (x);
3269}
3270#undef FUNC_NAME
3271
3272SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3273 (SCM x),
942e5b91 3274 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3275 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3276 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3277 "fulfilled if @var{x} is an integer number.")
3278#define FUNC_NAME s_scm_rational_p
0f2d19dd 3279{
e11e83f3 3280 if (SCM_I_INUMP (x))
0f2d19dd 3281 return SCM_BOOL_T;
0aacf84e 3282 else if (SCM_IMP (x))
0f2d19dd 3283 return SCM_BOOL_F;
0aacf84e 3284 else if (SCM_BIGP (x))
0f2d19dd 3285 return SCM_BOOL_T;
f92e85f7
MV
3286 else if (SCM_FRACTIONP (x))
3287 return SCM_BOOL_T;
3288 else if (SCM_REALP (x))
3289 /* due to their limited precision, all floating point numbers are
3290 rational as well. */
3291 return SCM_BOOL_T;
0aacf84e 3292 else
bb628794 3293 return SCM_BOOL_F;
0f2d19dd 3294}
1bbd0b84 3295#undef FUNC_NAME
0f2d19dd 3296
a1ec6916 3297SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3298 (SCM x),
942e5b91
MG
3299 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3300 "else.")
1bbd0b84 3301#define FUNC_NAME s_scm_integer_p
0f2d19dd
JB
3302{
3303 double r;
e11e83f3 3304 if (SCM_I_INUMP (x))
f872b822
MD
3305 return SCM_BOOL_T;
3306 if (SCM_IMP (x))
3307 return SCM_BOOL_F;
f872b822
MD
3308 if (SCM_BIGP (x))
3309 return SCM_BOOL_T;
3c9a524f 3310 if (!SCM_INEXACTP (x))
f872b822 3311 return SCM_BOOL_F;
3c9a524f 3312 if (SCM_COMPLEXP (x))
f872b822 3313 return SCM_BOOL_F;
5986c47d 3314 r = SCM_REAL_VALUE (x);
1e35a229 3315 /* +/-inf passes r==floor(r), making those #t */
f872b822
MD
3316 if (r == floor (r))
3317 return SCM_BOOL_T;
0f2d19dd
JB
3318 return SCM_BOOL_F;
3319}
1bbd0b84 3320#undef FUNC_NAME
0f2d19dd
JB
3321
3322
a1ec6916 3323SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
1bbd0b84 3324 (SCM x),
942e5b91
MG
3325 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3326 "else.")
1bbd0b84 3327#define FUNC_NAME s_scm_inexact_p
0f2d19dd 3328{
eb927cb9
MV
3329 if (SCM_INEXACTP (x))
3330 return SCM_BOOL_T;
3331 if (SCM_NUMBERP (x))
3332 return SCM_BOOL_F;
3333 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 3334}
1bbd0b84 3335#undef FUNC_NAME
0f2d19dd
JB
3336
3337
8a1f4f98
AW
3338SCM scm_i_num_eq_p (SCM, SCM, SCM);
3339SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
3340 (SCM x, SCM y, SCM rest),
3341 "Return @code{#t} if all parameters are numerically equal.")
3342#define FUNC_NAME s_scm_i_num_eq_p
3343{
3344 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3345 return SCM_BOOL_T;
3346 while (!scm_is_null (rest))
3347 {
3348 if (scm_is_false (scm_num_eq_p (x, y)))
3349 return SCM_BOOL_F;
3350 x = y;
3351 y = scm_car (rest);
3352 rest = scm_cdr (rest);
3353 }
3354 return scm_num_eq_p (x, y);
3355}
3356#undef FUNC_NAME
0f2d19dd 3357SCM
6e8d25a6 3358scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3359{
d8b95e27 3360 again:
e11e83f3 3361 if (SCM_I_INUMP (x))
0aacf84e 3362 {
e11e83f3
MV
3363 long xx = SCM_I_INUM (x);
3364 if (SCM_I_INUMP (y))
0aacf84e 3365 {
e11e83f3 3366 long yy = SCM_I_INUM (y);
73e4de09 3367 return scm_from_bool (xx == yy);
0aacf84e
MD
3368 }
3369 else if (SCM_BIGP (y))
3370 return SCM_BOOL_F;
3371 else if (SCM_REALP (y))
e8c5b1f2
KR
3372 {
3373 /* On a 32-bit system an inum fits a double, we can cast the inum
3374 to a double and compare.
3375
3376 But on a 64-bit system an inum is bigger than a double and
3377 casting it to a double (call that dxx) will round. dxx is at
3378 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3379 an integer and fits a long. So we cast yy to a long and
3380 compare with plain xx.
3381
3382 An alternative (for any size system actually) would be to check
3383 yy is an integer (with floor) and is in range of an inum
3384 (compare against appropriate powers of 2) then test
3385 xx==(long)yy. It's just a matter of which casts/comparisons
3386 might be fastest or easiest for the cpu. */
3387
3388 double yy = SCM_REAL_VALUE (y);
3a1b45fd
MV
3389 return scm_from_bool ((double) xx == yy
3390 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3391 || xx == (long) yy));
e8c5b1f2 3392 }
0aacf84e 3393 else if (SCM_COMPLEXP (y))
73e4de09 3394 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3395 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3396 else if (SCM_FRACTIONP (y))
3397 return SCM_BOOL_F;
0aacf84e 3398 else
8a1f4f98 3399 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3400 }
0aacf84e
MD
3401 else if (SCM_BIGP (x))
3402 {
e11e83f3 3403 if (SCM_I_INUMP (y))
0aacf84e
MD
3404 return SCM_BOOL_F;
3405 else if (SCM_BIGP (y))
3406 {
3407 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3408 scm_remember_upto_here_2 (x, y);
73e4de09 3409 return scm_from_bool (0 == cmp);
0aacf84e
MD
3410 }
3411 else if (SCM_REALP (y))
3412 {
3413 int cmp;
3414 if (xisnan (SCM_REAL_VALUE (y)))
3415 return SCM_BOOL_F;
3416 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3417 scm_remember_upto_here_1 (x);
73e4de09 3418 return scm_from_bool (0 == cmp);
0aacf84e
MD
3419 }
3420 else if (SCM_COMPLEXP (y))
3421 {
3422 int cmp;
3423 if (0.0 != SCM_COMPLEX_IMAG (y))
3424 return SCM_BOOL_F;
3425 if (xisnan (SCM_COMPLEX_REAL (y)))
3426 return SCM_BOOL_F;
3427 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3428 scm_remember_upto_here_1 (x);
73e4de09 3429 return scm_from_bool (0 == cmp);
0aacf84e 3430 }
f92e85f7
MV
3431 else if (SCM_FRACTIONP (y))
3432 return SCM_BOOL_F;
0aacf84e 3433 else
8a1f4f98 3434 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3435 }
0aacf84e
MD
3436 else if (SCM_REALP (x))
3437 {
e8c5b1f2 3438 double xx = SCM_REAL_VALUE (x);
e11e83f3 3439 if (SCM_I_INUMP (y))
e8c5b1f2
KR
3440 {
3441 /* see comments with inum/real above */
3442 long yy = SCM_I_INUM (y);
3a1b45fd
MV
3443 return scm_from_bool (xx == (double) yy
3444 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3445 || (long) xx == yy));
e8c5b1f2 3446 }
0aacf84e
MD
3447 else if (SCM_BIGP (y))
3448 {
3449 int cmp;
3450 if (xisnan (SCM_REAL_VALUE (x)))
3451 return SCM_BOOL_F;
3452 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3453 scm_remember_upto_here_1 (y);
73e4de09 3454 return scm_from_bool (0 == cmp);
0aacf84e
MD
3455 }
3456 else if (SCM_REALP (y))
73e4de09 3457 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3458 else if (SCM_COMPLEXP (y))
73e4de09 3459 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3460 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3461 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3462 {
3463 double xx = SCM_REAL_VALUE (x);
3464 if (xisnan (xx))
3465 return SCM_BOOL_F;
3466 if (xisinf (xx))
73e4de09 3467 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3468 x = scm_inexact_to_exact (x); /* with x as frac or int */
3469 goto again;
3470 }
0aacf84e 3471 else
8a1f4f98 3472 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3473 }
0aacf84e
MD
3474 else if (SCM_COMPLEXP (x))
3475 {
e11e83f3
MV
3476 if (SCM_I_INUMP (y))
3477 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3478 && (SCM_COMPLEX_IMAG (x) == 0.0));
3479 else if (SCM_BIGP (y))
3480 {
3481 int cmp;
3482 if (0.0 != SCM_COMPLEX_IMAG (x))
3483 return SCM_BOOL_F;
3484 if (xisnan (SCM_COMPLEX_REAL (x)))
3485 return SCM_BOOL_F;
3486 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3487 scm_remember_upto_here_1 (y);
73e4de09 3488 return scm_from_bool (0 == cmp);
0aacf84e
MD
3489 }
3490 else if (SCM_REALP (y))
73e4de09 3491 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3492 && (SCM_COMPLEX_IMAG (x) == 0.0));
3493 else if (SCM_COMPLEXP (y))
73e4de09 3494 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3495 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3496 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3497 {
3498 double xx;
3499 if (SCM_COMPLEX_IMAG (x) != 0.0)
3500 return SCM_BOOL_F;
3501 xx = SCM_COMPLEX_REAL (x);
3502 if (xisnan (xx))
3503 return SCM_BOOL_F;
3504 if (xisinf (xx))
73e4de09 3505 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3506 x = scm_inexact_to_exact (x); /* with x as frac or int */
3507 goto again;
3508 }
f92e85f7 3509 else
8a1f4f98 3510 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f92e85f7
MV
3511 }
3512 else if (SCM_FRACTIONP (x))
3513 {
e11e83f3 3514 if (SCM_I_INUMP (y))
f92e85f7
MV
3515 return SCM_BOOL_F;
3516 else if (SCM_BIGP (y))
3517 return SCM_BOOL_F;
3518 else if (SCM_REALP (y))
d8b95e27
KR
3519 {
3520 double yy = SCM_REAL_VALUE (y);
3521 if (xisnan (yy))
3522 return SCM_BOOL_F;
3523 if (xisinf (yy))
73e4de09 3524 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3525 y = scm_inexact_to_exact (y); /* with y as frac or int */
3526 goto again;
3527 }
f92e85f7 3528 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3529 {
3530 double yy;
3531 if (SCM_COMPLEX_IMAG (y) != 0.0)
3532 return SCM_BOOL_F;
3533 yy = SCM_COMPLEX_REAL (y);
3534 if (xisnan (yy))
3535 return SCM_BOOL_F;
3536 if (xisinf (yy))
73e4de09 3537 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3538 y = scm_inexact_to_exact (y); /* with y as frac or int */
3539 goto again;
3540 }
f92e85f7
MV
3541 else if (SCM_FRACTIONP (y))
3542 return scm_i_fraction_equalp (x, y);
0aacf84e 3543 else
8a1f4f98 3544 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3545 }
0aacf84e 3546 else
8a1f4f98 3547 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1, s_scm_i_num_eq_p);
0f2d19dd
JB
3548}
3549
3550
a5f0b599
KR
3551/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3552 done are good for inums, but for bignums an answer can almost always be
3553 had by just examining a few high bits of the operands, as done by GMP in
3554 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3555 of the float exponent to take into account. */
3556
8c93b597 3557SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
8a1f4f98
AW
3558SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
3559 (SCM x, SCM y, SCM rest),
3560 "Return @code{#t} if the list of parameters is monotonically\n"
3561 "increasing.")
3562#define FUNC_NAME s_scm_i_num_less_p
3563{
3564 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3565 return SCM_BOOL_T;
3566 while (!scm_is_null (rest))
3567 {
3568 if (scm_is_false (scm_less_p (x, y)))
3569 return SCM_BOOL_F;
3570 x = y;
3571 y = scm_car (rest);
3572 rest = scm_cdr (rest);
3573 }
3574 return scm_less_p (x, y);
3575}
3576#undef FUNC_NAME
0f2d19dd 3577SCM
6e8d25a6 3578scm_less_p (SCM x, SCM y)
0f2d19dd 3579{
a5f0b599 3580 again:
e11e83f3 3581 if (SCM_I_INUMP (x))
0aacf84e 3582 {
e11e83f3
MV
3583 long xx = SCM_I_INUM (x);
3584 if (SCM_I_INUMP (y))
0aacf84e 3585 {
e11e83f3 3586 long yy = SCM_I_INUM (y);
73e4de09 3587 return scm_from_bool (xx < yy);
0aacf84e
MD
3588 }
3589 else if (SCM_BIGP (y))
3590 {
3591 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3592 scm_remember_upto_here_1 (y);
73e4de09 3593 return scm_from_bool (sgn > 0);
0aacf84e
MD
3594 }
3595 else if (SCM_REALP (y))
73e4de09 3596 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3597 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3598 {
3599 /* "x < a/b" becomes "x*b < a" */
3600 int_frac:
3601 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3602 y = SCM_FRACTION_NUMERATOR (y);
3603 goto again;
3604 }
0aacf84e 3605 else
8a1f4f98 3606 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3607 }
0aacf84e
MD
3608 else if (SCM_BIGP (x))
3609 {
e11e83f3 3610 if (SCM_I_INUMP (y))
0aacf84e
MD
3611 {
3612 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3613 scm_remember_upto_here_1 (x);
73e4de09 3614 return scm_from_bool (sgn < 0);
0aacf84e
MD
3615 }
3616 else if (SCM_BIGP (y))
3617 {
3618 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3619 scm_remember_upto_here_2 (x, y);
73e4de09 3620 return scm_from_bool (cmp < 0);
0aacf84e
MD
3621 }
3622 else if (SCM_REALP (y))
3623 {
3624 int cmp;
3625 if (xisnan (SCM_REAL_VALUE (y)))
3626 return SCM_BOOL_F;
3627 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3628 scm_remember_upto_here_1 (x);
73e4de09 3629 return scm_from_bool (cmp < 0);
0aacf84e 3630 }
f92e85f7 3631 else if (SCM_FRACTIONP (y))
a5f0b599 3632 goto int_frac;
0aacf84e 3633 else
8a1f4f98 3634 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f4c627b3 3635 }
0aacf84e
MD
3636 else if (SCM_REALP (x))
3637 {
e11e83f3
MV
3638 if (SCM_I_INUMP (y))
3639 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3640 else if (SCM_BIGP (y))
3641 {
3642 int cmp;
3643 if (xisnan (SCM_REAL_VALUE (x)))
3644 return SCM_BOOL_F;
3645 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3646 scm_remember_upto_here_1 (y);
73e4de09 3647 return scm_from_bool (cmp > 0);
0aacf84e
MD
3648 }
3649 else if (SCM_REALP (y))
73e4de09 3650 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3651 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3652 {
3653 double xx = SCM_REAL_VALUE (x);
3654 if (xisnan (xx))
3655 return SCM_BOOL_F;
3656 if (xisinf (xx))
73e4de09 3657 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3658 x = scm_inexact_to_exact (x); /* with x as frac or int */
3659 goto again;
3660 }
f92e85f7 3661 else
8a1f4f98 3662 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f92e85f7
MV
3663 }
3664 else if (SCM_FRACTIONP (x))
3665 {
e11e83f3 3666 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3667 {
3668 /* "a/b < y" becomes "a < y*b" */
3669 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3670 x = SCM_FRACTION_NUMERATOR (x);
3671 goto again;
3672 }
f92e85f7 3673 else if (SCM_REALP (y))
a5f0b599
KR
3674 {
3675 double yy = SCM_REAL_VALUE (y);
3676 if (xisnan (yy))
3677 return SCM_BOOL_F;
3678 if (xisinf (yy))
73e4de09 3679 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3680 y = scm_inexact_to_exact (y); /* with y as frac or int */
3681 goto again;
3682 }
f92e85f7 3683 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3684 {
3685 /* "a/b < c/d" becomes "a*d < c*b" */
3686 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3687 SCM_FRACTION_DENOMINATOR (y));
3688 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3689 SCM_FRACTION_DENOMINATOR (x));
3690 x = new_x;
3691 y = new_y;
3692 goto again;
3693 }
0aacf84e 3694 else
8a1f4f98 3695 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3696 }
0aacf84e 3697 else
8a1f4f98 3698 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, s_scm_i_num_less_p);
0f2d19dd
JB
3699}
3700
3701
8a1f4f98
AW
3702SCM scm_i_num_gr_p (SCM, SCM, SCM);
3703SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
3704 (SCM x, SCM y, SCM rest),
3705 "Return @code{#t} if the list of parameters is monotonically\n"
3706 "decreasing.")
3707#define FUNC_NAME s_scm_i_num_gr_p
3708{
3709 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3710 return SCM_BOOL_T;
3711 while (!scm_is_null (rest))
3712 {
3713 if (scm_is_false (scm_gr_p (x, y)))
3714 return SCM_BOOL_F;
3715 x = y;
3716 y = scm_car (rest);
3717 rest = scm_cdr (rest);
3718 }
3719 return scm_gr_p (x, y);
3720}
3721#undef FUNC_NAME
3722#define FUNC_NAME s_scm_i_num_gr_p
c76b1eaf
MD
3723SCM
3724scm_gr_p (SCM x, SCM y)
0f2d19dd 3725{
c76b1eaf 3726 if (!SCM_NUMBERP (x))
8a1f4f98 3727 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3728 else if (!SCM_NUMBERP (y))
8a1f4f98 3729 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
c76b1eaf
MD
3730 else
3731 return scm_less_p (y, x);
0f2d19dd 3732}
1bbd0b84 3733#undef FUNC_NAME
0f2d19dd
JB
3734
3735
8a1f4f98
AW
3736SCM scm_i_num_leq_p (SCM, SCM, SCM);
3737SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
3738 (SCM x, SCM y, SCM rest),
3739 "Return @code{#t} if the list of parameters is monotonically\n"
3740 "non-decreasing.")
3741#define FUNC_NAME s_scm_i_num_leq_p
3742{
3743 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3744 return SCM_BOOL_T;
3745 while (!scm_is_null (rest))
3746 {
3747 if (scm_is_false (scm_leq_p (x, y)))
3748 return SCM_BOOL_F;
3749 x = y;
3750 y = scm_car (rest);
3751 rest = scm_cdr (rest);
3752 }
3753 return scm_leq_p (x, y);
3754}
3755#undef FUNC_NAME
3756#define FUNC_NAME s_scm_i_num_leq_p
c76b1eaf
MD
3757SCM
3758scm_leq_p (SCM x, SCM y)
0f2d19dd 3759{
c76b1eaf 3760 if (!SCM_NUMBERP (x))
8a1f4f98 3761 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3762 else if (!SCM_NUMBERP (y))
8a1f4f98 3763 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3764 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3765 return SCM_BOOL_F;
c76b1eaf 3766 else
73e4de09 3767 return scm_not (scm_less_p (y, x));
0f2d19dd 3768}
1bbd0b84 3769#undef FUNC_NAME
0f2d19dd
JB
3770
3771
8a1f4f98
AW
3772SCM scm_i_num_geq_p (SCM, SCM, SCM);
3773SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
3774 (SCM x, SCM y, SCM rest),
3775 "Return @code{#t} if the list of parameters is monotonically\n"
3776 "non-increasing.")
3777#define FUNC_NAME s_scm_i_num_geq_p
3778{
3779 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3780 return SCM_BOOL_T;
3781 while (!scm_is_null (rest))
3782 {
3783 if (scm_is_false (scm_geq_p (x, y)))
3784 return SCM_BOOL_F;
3785 x = y;
3786 y = scm_car (rest);
3787 rest = scm_cdr (rest);
3788 }
3789 return scm_geq_p (x, y);
3790}
3791#undef FUNC_NAME
3792#define FUNC_NAME s_scm_i_num_geq_p
c76b1eaf
MD
3793SCM
3794scm_geq_p (SCM x, SCM y)
0f2d19dd 3795{
c76b1eaf 3796 if (!SCM_NUMBERP (x))
8a1f4f98 3797 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3798 else if (!SCM_NUMBERP (y))
8a1f4f98 3799 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3800 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3801 return SCM_BOOL_F;
c76b1eaf 3802 else
73e4de09 3803 return scm_not (scm_less_p (x, y));
0f2d19dd 3804}
1bbd0b84 3805#undef FUNC_NAME
0f2d19dd
JB
3806
3807
152f82bf 3808SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3809/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3810 * "zero."
3811 */
0f2d19dd 3812SCM
6e8d25a6 3813scm_zero_p (SCM z)
0f2d19dd 3814{
e11e83f3 3815 if (SCM_I_INUMP (z))
bc36d050 3816 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3817 else if (SCM_BIGP (z))
c2ff8ab0 3818 return SCM_BOOL_F;
0aacf84e 3819 else if (SCM_REALP (z))
73e4de09 3820 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3821 else if (SCM_COMPLEXP (z))
73e4de09 3822 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3823 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3824 else if (SCM_FRACTIONP (z))
3825 return SCM_BOOL_F;
0aacf84e 3826 else
c2ff8ab0 3827 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3828}
3829
3830
152f82bf 3831SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3832/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3833 * "zero."
3834 */
0f2d19dd 3835SCM
6e8d25a6 3836scm_positive_p (SCM x)
0f2d19dd 3837{
e11e83f3
MV
3838 if (SCM_I_INUMP (x))
3839 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3840 else if (SCM_BIGP (x))
3841 {
3842 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3843 scm_remember_upto_here_1 (x);
73e4de09 3844 return scm_from_bool (sgn > 0);
0aacf84e
MD
3845 }
3846 else if (SCM_REALP (x))
73e4de09 3847 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3848 else if (SCM_FRACTIONP (x))
3849 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3850 else
c2ff8ab0 3851 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3852}
3853
3854
152f82bf 3855SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3856/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3857 * "zero."
3858 */
0f2d19dd 3859SCM
6e8d25a6 3860scm_negative_p (SCM x)
0f2d19dd 3861{
e11e83f3
MV
3862 if (SCM_I_INUMP (x))
3863 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3864 else if (SCM_BIGP (x))
3865 {
3866 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3867 scm_remember_upto_here_1 (x);
73e4de09 3868 return scm_from_bool (sgn < 0);
0aacf84e
MD
3869 }
3870 else if (SCM_REALP (x))
73e4de09 3871 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3872 else if (SCM_FRACTIONP (x))
3873 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3874 else
c2ff8ab0 3875 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3876}
3877
3878
2a06f791
KR
3879/* scm_min and scm_max return an inexact when either argument is inexact, as
3880 required by r5rs. On that basis, for exact/inexact combinations the
3881 exact is converted to inexact to compare and possibly return. This is
3882 unlike scm_less_p above which takes some trouble to preserve all bits in
3883 its test, such trouble is not required for min and max. */
3884
78d3deb1
AW
3885SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
3886 (SCM x, SCM y, SCM rest),
3887 "Return the maximum of all parameter values.")
3888#define FUNC_NAME s_scm_i_max
3889{
3890 while (!scm_is_null (rest))
3891 { x = scm_max (x, y);
3892 y = scm_car (rest);
3893 rest = scm_cdr (rest);
3894 }
3895 return scm_max (x, y);
3896}
3897#undef FUNC_NAME
3898
3899#define s_max s_scm_i_max
3900#define g_max g_scm_i_max
3901
0f2d19dd 3902SCM
6e8d25a6 3903scm_max (SCM x, SCM y)
0f2d19dd 3904{
0aacf84e
MD
3905 if (SCM_UNBNDP (y))
3906 {
3907 if (SCM_UNBNDP (x))
3908 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3909 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3910 return x;
3911 else
3912 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3913 }
f4c627b3 3914
e11e83f3 3915 if (SCM_I_INUMP (x))
0aacf84e 3916 {
e11e83f3
MV
3917 long xx = SCM_I_INUM (x);
3918 if (SCM_I_INUMP (y))
0aacf84e 3919 {
e11e83f3 3920 long yy = SCM_I_INUM (y);
0aacf84e
MD
3921 return (xx < yy) ? y : x;
3922 }
3923 else if (SCM_BIGP (y))
3924 {
3925 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3926 scm_remember_upto_here_1 (y);
3927 return (sgn < 0) ? x : y;
3928 }
3929 else if (SCM_REALP (y))
3930 {
3931 double z = xx;
3932 /* if y==NaN then ">" is false and we return NaN */
55f26379 3933 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3934 }
f92e85f7
MV
3935 else if (SCM_FRACTIONP (y))
3936 {
e4bc5d6c 3937 use_less:
73e4de09 3938 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3939 }
0aacf84e
MD
3940 else
3941 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3942 }
0aacf84e
MD
3943 else if (SCM_BIGP (x))
3944 {
e11e83f3 3945 if (SCM_I_INUMP (y))
0aacf84e
MD
3946 {
3947 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3948 scm_remember_upto_here_1 (x);
3949 return (sgn < 0) ? y : x;
3950 }
3951 else if (SCM_BIGP (y))
3952 {
3953 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3954 scm_remember_upto_here_2 (x, y);
3955 return (cmp > 0) ? x : y;
3956 }
3957 else if (SCM_REALP (y))
3958 {
2a06f791
KR
3959 /* if y==NaN then xx>yy is false, so we return the NaN y */
3960 double xx, yy;
3961 big_real:
3962 xx = scm_i_big2dbl (x);
3963 yy = SCM_REAL_VALUE (y);
55f26379 3964 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3965 }
f92e85f7
MV
3966 else if (SCM_FRACTIONP (y))
3967 {
e4bc5d6c 3968 goto use_less;
f92e85f7 3969 }
0aacf84e
MD
3970 else
3971 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3972 }
0aacf84e
MD
3973 else if (SCM_REALP (x))
3974 {
e11e83f3 3975 if (SCM_I_INUMP (y))
0aacf84e 3976 {
e11e83f3 3977 double z = SCM_I_INUM (y);
0aacf84e 3978 /* if x==NaN then "<" is false and we return NaN */
55f26379 3979 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
3980 }
3981 else if (SCM_BIGP (y))
3982 {
b6f8f763 3983 SCM_SWAP (x, y);
2a06f791 3984 goto big_real;
0aacf84e
MD
3985 }
3986 else if (SCM_REALP (y))
3987 {
3988 /* if x==NaN then our explicit check means we return NaN
3989 if y==NaN then ">" is false and we return NaN
3990 calling isnan is unavoidable, since it's the only way to know
3991 which of x or y causes any compares to be false */
3992 double xx = SCM_REAL_VALUE (x);
3993 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3994 }
f92e85f7
MV
3995 else if (SCM_FRACTIONP (y))
3996 {
3997 double yy = scm_i_fraction2double (y);
3998 double xx = SCM_REAL_VALUE (x);
55f26379 3999 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
4000 }
4001 else
4002 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
4003 }
4004 else if (SCM_FRACTIONP (x))
4005 {
e11e83f3 4006 if (SCM_I_INUMP (y))
f92e85f7 4007 {
e4bc5d6c 4008 goto use_less;
f92e85f7
MV
4009 }
4010 else if (SCM_BIGP (y))
4011 {
e4bc5d6c 4012 goto use_less;
f92e85f7
MV
4013 }
4014 else if (SCM_REALP (y))
4015 {
4016 double xx = scm_i_fraction2double (x);
55f26379 4017 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
4018 }
4019 else if (SCM_FRACTIONP (y))
4020 {
e4bc5d6c 4021 goto use_less;
f92e85f7 4022 }
0aacf84e
MD
4023 else
4024 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 4025 }
0aacf84e 4026 else
f4c627b3 4027 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
4028}
4029
4030
78d3deb1
AW
4031SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
4032 (SCM x, SCM y, SCM rest),
4033 "Return the minimum of all parameter values.")
4034#define FUNC_NAME s_scm_i_min
4035{
4036 while (!scm_is_null (rest))
4037 { x = scm_min (x, y);
4038 y = scm_car (rest);
4039 rest = scm_cdr (rest);
4040 }
4041 return scm_min (x, y);
4042}
4043#undef FUNC_NAME
4044
4045#define s_min s_scm_i_min
4046#define g_min g_scm_i_min
4047
0f2d19dd 4048SCM
6e8d25a6 4049scm_min (SCM x, SCM y)
0f2d19dd 4050{
0aacf84e
MD
4051 if (SCM_UNBNDP (y))
4052 {
4053 if (SCM_UNBNDP (x))
4054 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 4055 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
4056 return x;
4057 else
4058 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 4059 }
f4c627b3 4060
e11e83f3 4061 if (SCM_I_INUMP (x))
0aacf84e 4062 {
e11e83f3
MV
4063 long xx = SCM_I_INUM (x);
4064 if (SCM_I_INUMP (y))
0aacf84e 4065 {
e11e83f3 4066 long yy = SCM_I_INUM (y);
0aacf84e
MD
4067 return (xx < yy) ? x : y;
4068 }
4069 else if (SCM_BIGP (y))
4070 {
4071 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
4072 scm_remember_upto_here_1 (y);
4073 return (sgn < 0) ? y : x;
4074 }
4075 else if (SCM_REALP (y))
4076 {
4077 double z = xx;
4078 /* if y==NaN then "<" is false and we return NaN */
55f26379 4079 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 4080 }
f92e85f7
MV
4081 else if (SCM_FRACTIONP (y))
4082 {
e4bc5d6c 4083 use_less:
73e4de09 4084 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 4085 }
0aacf84e
MD
4086 else
4087 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4088 }
0aacf84e
MD
4089 else if (SCM_BIGP (x))
4090 {
e11e83f3 4091 if (SCM_I_INUMP (y))
0aacf84e
MD
4092 {
4093 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4094 scm_remember_upto_here_1 (x);
4095 return (sgn < 0) ? x : y;
4096 }
4097 else if (SCM_BIGP (y))
4098 {
4099 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4100 scm_remember_upto_here_2 (x, y);
4101 return (cmp > 0) ? y : x;
4102 }
4103 else if (SCM_REALP (y))
4104 {
2a06f791
KR
4105 /* if y==NaN then xx<yy is false, so we return the NaN y */
4106 double xx, yy;
4107 big_real:
4108 xx = scm_i_big2dbl (x);
4109 yy = SCM_REAL_VALUE (y);
55f26379 4110 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 4111 }
f92e85f7
MV
4112 else if (SCM_FRACTIONP (y))
4113 {
e4bc5d6c 4114 goto use_less;
f92e85f7 4115 }
0aacf84e
MD
4116 else
4117 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 4118 }
0aacf84e
MD
4119 else if (SCM_REALP (x))
4120 {
e11e83f3 4121 if (SCM_I_INUMP (y))
0aacf84e 4122 {
e11e83f3 4123 double z = SCM_I_INUM (y);
0aacf84e 4124 /* if x==NaN then "<" is false and we return NaN */
55f26379 4125 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
4126 }
4127 else if (SCM_BIGP (y))
4128 {
b6f8f763 4129 SCM_SWAP (x, y);
2a06f791 4130 goto big_real;
0aacf84e
MD
4131 }
4132 else if (SCM_REALP (y))
4133 {
4134 /* if x==NaN then our explicit check means we return NaN
4135 if y==NaN then "<" is false and we return NaN
4136 calling isnan is unavoidable, since it's the only way to know
4137 which of x or y causes any compares to be false */
4138 double xx = SCM_REAL_VALUE (x);
4139 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
4140 }
f92e85f7
MV
4141 else if (SCM_FRACTIONP (y))
4142 {
4143 double yy = scm_i_fraction2double (y);
4144 double xx = SCM_REAL_VALUE (x);
55f26379 4145 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 4146 }
0aacf84e
MD
4147 else
4148 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4149 }
f92e85f7
MV
4150 else if (SCM_FRACTIONP (x))
4151 {
e11e83f3 4152 if (SCM_I_INUMP (y))
f92e85f7 4153 {
e4bc5d6c 4154 goto use_less;
f92e85f7
MV
4155 }
4156 else if (SCM_BIGP (y))
4157 {
e4bc5d6c 4158 goto use_less;
f92e85f7
MV
4159 }
4160 else if (SCM_REALP (y))
4161 {
4162 double xx = scm_i_fraction2double (x);
55f26379 4163 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
4164 }
4165 else if (SCM_FRACTIONP (y))
4166 {
e4bc5d6c 4167 goto use_less;
f92e85f7
MV
4168 }
4169 else
78d3deb1 4170 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f92e85f7 4171 }
0aacf84e 4172 else
f4c627b3 4173 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
4174}
4175
4176
8ccd24f7
AW
4177SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
4178 (SCM x, SCM y, SCM rest),
4179 "Return the sum of all parameter values. Return 0 if called without\n"
4180 "any parameters." )
4181#define FUNC_NAME s_scm_i_sum
4182{
4183 while (!scm_is_null (rest))
4184 { x = scm_sum (x, y);
4185 y = scm_car (rest);
4186 rest = scm_cdr (rest);
4187 }
4188 return scm_sum (x, y);
4189}
4190#undef FUNC_NAME
4191
4192#define s_sum s_scm_i_sum
4193#define g_sum g_scm_i_sum
4194
0f2d19dd 4195SCM
6e8d25a6 4196scm_sum (SCM x, SCM y)
0f2d19dd 4197{
9cc37597 4198 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4199 {
4200 if (SCM_NUMBERP (x)) return x;
4201 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 4202 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 4203 }
c209c88e 4204
9cc37597 4205 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 4206 {
9cc37597 4207 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 4208 {
e11e83f3
MV
4209 long xx = SCM_I_INUM (x);
4210 long yy = SCM_I_INUM (y);
ca46fb90 4211 long int z = xx + yy;
d956fa6f 4212 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
ca46fb90
RB
4213 }
4214 else if (SCM_BIGP (y))
4215 {
4216 SCM_SWAP (x, y);
4217 goto add_big_inum;
4218 }
4219 else if (SCM_REALP (y))
4220 {
e11e83f3 4221 long int xx = SCM_I_INUM (x);
55f26379 4222 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
4223 }
4224 else if (SCM_COMPLEXP (y))
4225 {
e11e83f3 4226 long int xx = SCM_I_INUM (x);
8507ec80 4227 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
4228 SCM_COMPLEX_IMAG (y));
4229 }
f92e85f7 4230 else if (SCM_FRACTIONP (y))
cba42c93 4231 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4232 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4233 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
4234 else
4235 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
4236 } else if (SCM_BIGP (x))
4237 {
e11e83f3 4238 if (SCM_I_INUMP (y))
0aacf84e
MD
4239 {
4240 long int inum;
4241 int bigsgn;
4242 add_big_inum:
e11e83f3 4243 inum = SCM_I_INUM (y);
0aacf84e
MD
4244 if (inum == 0)
4245 return x;
4246 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4247 if (inum < 0)
4248 {
4249 SCM result = scm_i_mkbig ();
4250 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4251 scm_remember_upto_here_1 (x);
4252 /* we know the result will have to be a bignum */
4253 if (bigsgn == -1)
4254 return result;
4255 return scm_i_normbig (result);
4256 }
4257 else
4258 {
4259 SCM result = scm_i_mkbig ();
4260 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4261 scm_remember_upto_here_1 (x);
4262 /* we know the result will have to be a bignum */
4263 if (bigsgn == 1)
4264 return result;
4265 return scm_i_normbig (result);
4266 }
4267 }
4268 else if (SCM_BIGP (y))
4269 {
4270 SCM result = scm_i_mkbig ();
4271 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4272 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4273 mpz_add (SCM_I_BIG_MPZ (result),
4274 SCM_I_BIG_MPZ (x),
4275 SCM_I_BIG_MPZ (y));
4276 scm_remember_upto_here_2 (x, y);
4277 /* we know the result will have to be a bignum */
4278 if (sgn_x == sgn_y)
4279 return result;
4280 return scm_i_normbig (result);
4281 }
4282 else if (SCM_REALP (y))
4283 {
4284 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4285 scm_remember_upto_here_1 (x);
55f26379 4286 return scm_from_double (result);
0aacf84e
MD
4287 }
4288 else if (SCM_COMPLEXP (y))
4289 {
4290 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4291 + SCM_COMPLEX_REAL (y));
4292 scm_remember_upto_here_1 (x);
8507ec80 4293 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 4294 }
f92e85f7 4295 else if (SCM_FRACTIONP (y))
cba42c93 4296 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4297 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4298 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4299 else
4300 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 4301 }
0aacf84e
MD
4302 else if (SCM_REALP (x))
4303 {
e11e83f3 4304 if (SCM_I_INUMP (y))
55f26379 4305 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
4306 else if (SCM_BIGP (y))
4307 {
4308 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4309 scm_remember_upto_here_1 (y);
55f26379 4310 return scm_from_double (result);
0aacf84e
MD
4311 }
4312 else if (SCM_REALP (y))
55f26379 4313 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 4314 else if (SCM_COMPLEXP (y))
8507ec80 4315 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4316 SCM_COMPLEX_IMAG (y));
f92e85f7 4317 else if (SCM_FRACTIONP (y))
55f26379 4318 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
4319 else
4320 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 4321 }
0aacf84e
MD
4322 else if (SCM_COMPLEXP (x))
4323 {
e11e83f3 4324 if (SCM_I_INUMP (y))
8507ec80 4325 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
4326 SCM_COMPLEX_IMAG (x));
4327 else if (SCM_BIGP (y))
4328 {
4329 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4330 + SCM_COMPLEX_REAL (x));
4331 scm_remember_upto_here_1 (y);
8507ec80 4332 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4333 }
4334 else if (SCM_REALP (y))
8507ec80 4335 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
4336 SCM_COMPLEX_IMAG (x));
4337 else if (SCM_COMPLEXP (y))
8507ec80 4338 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4339 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 4340 else if (SCM_FRACTIONP (y))
8507ec80 4341 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
4342 SCM_COMPLEX_IMAG (x));
4343 else
4344 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4345 }
4346 else if (SCM_FRACTIONP (x))
4347 {
e11e83f3 4348 if (SCM_I_INUMP (y))
cba42c93 4349 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4350 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4351 SCM_FRACTION_DENOMINATOR (x));
4352 else if (SCM_BIGP (y))
cba42c93 4353 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4354 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4355 SCM_FRACTION_DENOMINATOR (x));
4356 else if (SCM_REALP (y))
55f26379 4357 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 4358 else if (SCM_COMPLEXP (y))
8507ec80 4359 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
4360 SCM_COMPLEX_IMAG (y));
4361 else if (SCM_FRACTIONP (y))
4362 /* a/b + c/d = (ad + bc) / bd */
cba42c93 4363 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4364 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4365 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4366 else
4367 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 4368 }
0aacf84e 4369 else
98cb6e75 4370 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
4371}
4372
4373
40882e3d
KR
4374SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4375 (SCM x),
4376 "Return @math{@var{x}+1}.")
4377#define FUNC_NAME s_scm_oneplus
4378{
4379 return scm_sum (x, SCM_I_MAKINUM (1));
4380}
4381#undef FUNC_NAME
4382
4383
78d3deb1
AW
4384SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
4385 (SCM x, SCM y, SCM rest),
4386 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
4387 "the sum of all but the first argument are subtracted from the first\n"
4388 "argument.")
4389#define FUNC_NAME s_scm_i_difference
4390{
4391 while (!scm_is_null (rest))
4392 { x = scm_difference (x, y);
4393 y = scm_car (rest);
4394 rest = scm_cdr (rest);
4395 }
4396 return scm_difference (x, y);
4397}
4398#undef FUNC_NAME
4399
4400#define s_difference s_scm_i_difference
4401#define g_difference g_scm_i_difference
4402
0f2d19dd 4403SCM
6e8d25a6 4404scm_difference (SCM x, SCM y)
78d3deb1 4405#define FUNC_NAME s_difference
0f2d19dd 4406{
9cc37597 4407 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4408 {
4409 if (SCM_UNBNDP (x))
4410 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4411 else
e11e83f3 4412 if (SCM_I_INUMP (x))
ca46fb90 4413 {
e11e83f3 4414 long xx = -SCM_I_INUM (x);
ca46fb90 4415 if (SCM_FIXABLE (xx))
d956fa6f 4416 return SCM_I_MAKINUM (xx);
ca46fb90
RB
4417 else
4418 return scm_i_long2big (xx);
4419 }
4420 else if (SCM_BIGP (x))
a9ad4847
KR
4421 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4422 bignum, but negating that gives a fixnum. */
ca46fb90
RB
4423 return scm_i_normbig (scm_i_clonebig (x, 0));
4424 else if (SCM_REALP (x))
55f26379 4425 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4426 else if (SCM_COMPLEXP (x))
8507ec80 4427 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4428 -SCM_COMPLEX_IMAG (x));
f92e85f7 4429 else if (SCM_FRACTIONP (x))
cba42c93 4430 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4431 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4432 else
4433 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4434 }
ca46fb90 4435
9cc37597 4436 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4437 {
9cc37597 4438 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4439 {
e11e83f3
MV
4440 long int xx = SCM_I_INUM (x);
4441 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4442 long int z = xx - yy;
4443 if (SCM_FIXABLE (z))
d956fa6f 4444 return SCM_I_MAKINUM (z);
0aacf84e
MD
4445 else
4446 return scm_i_long2big (z);
4447 }
4448 else if (SCM_BIGP (y))
4449 {
4450 /* inum-x - big-y */
e11e83f3 4451 long xx = SCM_I_INUM (x);
ca46fb90 4452
0aacf84e
MD
4453 if (xx == 0)
4454 return scm_i_clonebig (y, 0);
4455 else
4456 {
4457 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4458 SCM result = scm_i_mkbig ();
ca46fb90 4459
0aacf84e
MD
4460 if (xx >= 0)
4461 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4462 else
4463 {
4464 /* x - y == -(y + -x) */
4465 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4466 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4467 }
4468 scm_remember_upto_here_1 (y);
ca46fb90 4469
0aacf84e
MD
4470 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4471 /* we know the result will have to be a bignum */
4472 return result;
4473 else
4474 return scm_i_normbig (result);
4475 }
4476 }
4477 else if (SCM_REALP (y))
4478 {
e11e83f3 4479 long int xx = SCM_I_INUM (x);
55f26379 4480 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4481 }
4482 else if (SCM_COMPLEXP (y))
4483 {
e11e83f3 4484 long int xx = SCM_I_INUM (x);
8507ec80 4485 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4486 - SCM_COMPLEX_IMAG (y));
4487 }
f92e85f7
MV
4488 else if (SCM_FRACTIONP (y))
4489 /* a - b/c = (ac - b) / c */
cba42c93 4490 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4491 SCM_FRACTION_NUMERATOR (y)),
4492 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4493 else
4494 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4495 }
0aacf84e
MD
4496 else if (SCM_BIGP (x))
4497 {
e11e83f3 4498 if (SCM_I_INUMP (y))
0aacf84e
MD
4499 {
4500 /* big-x - inum-y */
e11e83f3 4501 long yy = SCM_I_INUM (y);
0aacf84e 4502 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4503
0aacf84e
MD
4504 scm_remember_upto_here_1 (x);
4505 if (sgn_x == 0)
c71b0706
MV
4506 return (SCM_FIXABLE (-yy) ?
4507 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
0aacf84e
MD
4508 else
4509 {
4510 SCM result = scm_i_mkbig ();
ca46fb90 4511
708f22c6
KR
4512 if (yy >= 0)
4513 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4514 else
4515 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4516 scm_remember_upto_here_1 (x);
ca46fb90 4517
0aacf84e
MD
4518 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4519 /* we know the result will have to be a bignum */
4520 return result;
4521 else
4522 return scm_i_normbig (result);
4523 }
4524 }
4525 else if (SCM_BIGP (y))
4526 {
4527 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4528 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4529 SCM result = scm_i_mkbig ();
4530 mpz_sub (SCM_I_BIG_MPZ (result),
4531 SCM_I_BIG_MPZ (x),
4532 SCM_I_BIG_MPZ (y));
4533 scm_remember_upto_here_2 (x, y);
4534 /* we know the result will have to be a bignum */
4535 if ((sgn_x == 1) && (sgn_y == -1))
4536 return result;
4537 if ((sgn_x == -1) && (sgn_y == 1))
4538 return result;
4539 return scm_i_normbig (result);
4540 }
4541 else if (SCM_REALP (y))
4542 {
4543 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4544 scm_remember_upto_here_1 (x);
55f26379 4545 return scm_from_double (result);
0aacf84e
MD
4546 }
4547 else if (SCM_COMPLEXP (y))
4548 {
4549 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4550 - SCM_COMPLEX_REAL (y));
4551 scm_remember_upto_here_1 (x);
8507ec80 4552 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4553 }
f92e85f7 4554 else if (SCM_FRACTIONP (y))
cba42c93 4555 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4556 SCM_FRACTION_NUMERATOR (y)),
4557 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4558 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4559 }
0aacf84e
MD
4560 else if (SCM_REALP (x))
4561 {
e11e83f3 4562 if (SCM_I_INUMP (y))
55f26379 4563 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4564 else if (SCM_BIGP (y))
4565 {
4566 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4567 scm_remember_upto_here_1 (x);
55f26379 4568 return scm_from_double (result);
0aacf84e
MD
4569 }
4570 else if (SCM_REALP (y))
55f26379 4571 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4572 else if (SCM_COMPLEXP (y))
8507ec80 4573 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4574 -SCM_COMPLEX_IMAG (y));
f92e85f7 4575 else if (SCM_FRACTIONP (y))
55f26379 4576 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4577 else
4578 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4579 }
0aacf84e
MD
4580 else if (SCM_COMPLEXP (x))
4581 {
e11e83f3 4582 if (SCM_I_INUMP (y))
8507ec80 4583 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4584 SCM_COMPLEX_IMAG (x));
4585 else if (SCM_BIGP (y))
4586 {
4587 double real_part = (SCM_COMPLEX_REAL (x)
4588 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4589 scm_remember_upto_here_1 (x);
8507ec80 4590 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4591 }
4592 else if (SCM_REALP (y))
8507ec80 4593 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4594 SCM_COMPLEX_IMAG (x));
4595 else if (SCM_COMPLEXP (y))
8507ec80 4596 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4597 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4598 else if (SCM_FRACTIONP (y))
8507ec80 4599 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4600 SCM_COMPLEX_IMAG (x));
4601 else
4602 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4603 }
4604 else if (SCM_FRACTIONP (x))
4605 {
e11e83f3 4606 if (SCM_I_INUMP (y))
f92e85f7 4607 /* a/b - c = (a - cb) / b */
cba42c93 4608 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4609 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4610 SCM_FRACTION_DENOMINATOR (x));
4611 else if (SCM_BIGP (y))
cba42c93 4612 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4613 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4614 SCM_FRACTION_DENOMINATOR (x));
4615 else if (SCM_REALP (y))
55f26379 4616 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4617 else if (SCM_COMPLEXP (y))
8507ec80 4618 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4619 -SCM_COMPLEX_IMAG (y));
4620 else if (SCM_FRACTIONP (y))
4621 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4622 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4623 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4624 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4625 else
4626 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4627 }
0aacf84e 4628 else
98cb6e75 4629 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4630}
c05e97b7 4631#undef FUNC_NAME
0f2d19dd 4632
ca46fb90 4633
40882e3d
KR
4634SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4635 (SCM x),
4636 "Return @math{@var{x}-1}.")
4637#define FUNC_NAME s_scm_oneminus
4638{
4639 return scm_difference (x, SCM_I_MAKINUM (1));
4640}
4641#undef FUNC_NAME
4642
4643
78d3deb1
AW
4644SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
4645 (SCM x, SCM y, SCM rest),
4646 "Return the product of all arguments. If called without arguments,\n"
4647 "1 is returned.")
4648#define FUNC_NAME s_scm_i_product
4649{
4650 while (!scm_is_null (rest))
4651 { x = scm_product (x, y);
4652 y = scm_car (rest);
4653 rest = scm_cdr (rest);
4654 }
4655 return scm_product (x, y);
4656}
4657#undef FUNC_NAME
4658
4659#define s_product s_scm_i_product
4660#define g_product g_scm_i_product
4661
0f2d19dd 4662SCM
6e8d25a6 4663scm_product (SCM x, SCM y)
0f2d19dd 4664{
9cc37597 4665 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4666 {
4667 if (SCM_UNBNDP (x))
d956fa6f 4668 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4669 else if (SCM_NUMBERP (x))
4670 return x;
4671 else
4672 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4673 }
ca46fb90 4674
9cc37597 4675 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e
MD
4676 {
4677 long xx;
f4c627b3 4678
0aacf84e 4679 intbig:
e11e83f3 4680 xx = SCM_I_INUM (x);
f4c627b3 4681
0aacf84e
MD
4682 switch (xx)
4683 {
ca46fb90
RB
4684 case 0: return x; break;
4685 case 1: return y; break;
0aacf84e 4686 }
f4c627b3 4687
9cc37597 4688 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4689 {
e11e83f3 4690 long yy = SCM_I_INUM (y);
0aacf84e 4691 long kk = xx * yy;
d956fa6f 4692 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4693 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4694 return k;
4695 else
4696 {
4697 SCM result = scm_i_long2big (xx);
4698 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4699 return scm_i_normbig (result);
4700 }
4701 }
4702 else if (SCM_BIGP (y))
4703 {
4704 SCM result = scm_i_mkbig ();
4705 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4706 scm_remember_upto_here_1 (y);
4707 return result;
4708 }
4709 else if (SCM_REALP (y))
55f26379 4710 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4711 else if (SCM_COMPLEXP (y))
8507ec80 4712 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4713 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4714 else if (SCM_FRACTIONP (y))
cba42c93 4715 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4716 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4717 else
4718 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4719 }
0aacf84e
MD
4720 else if (SCM_BIGP (x))
4721 {
e11e83f3 4722 if (SCM_I_INUMP (y))
0aacf84e
MD
4723 {
4724 SCM_SWAP (x, y);
4725 goto intbig;
4726 }
4727 else if (SCM_BIGP (y))
4728 {
4729 SCM result = scm_i_mkbig ();
4730 mpz_mul (SCM_I_BIG_MPZ (result),
4731 SCM_I_BIG_MPZ (x),
4732 SCM_I_BIG_MPZ (y));
4733 scm_remember_upto_here_2 (x, y);
4734 return result;
4735 }
4736 else if (SCM_REALP (y))
4737 {
4738 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4739 scm_remember_upto_here_1 (x);
55f26379 4740 return scm_from_double (result);
0aacf84e
MD
4741 }
4742 else if (SCM_COMPLEXP (y))
4743 {
4744 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4745 scm_remember_upto_here_1 (x);
8507ec80 4746 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4747 z * SCM_COMPLEX_IMAG (y));
4748 }
f92e85f7 4749 else if (SCM_FRACTIONP (y))
cba42c93 4750 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4751 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4752 else
4753 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4754 }
0aacf84e
MD
4755 else if (SCM_REALP (x))
4756 {
e11e83f3 4757 if (SCM_I_INUMP (y))
23d72566
KR
4758 {
4759 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4760 if (scm_is_eq (y, SCM_INUM0))
4761 return y;
4762 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4763 }
0aacf84e
MD
4764 else if (SCM_BIGP (y))
4765 {
4766 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4767 scm_remember_upto_here_1 (y);
55f26379 4768 return scm_from_double (result);
0aacf84e
MD
4769 }
4770 else if (SCM_REALP (y))
55f26379 4771 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4772 else if (SCM_COMPLEXP (y))
8507ec80 4773 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4774 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4775 else if (SCM_FRACTIONP (y))
55f26379 4776 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4777 else
4778 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4779 }
0aacf84e
MD
4780 else if (SCM_COMPLEXP (x))
4781 {
e11e83f3 4782 if (SCM_I_INUMP (y))
23d72566
KR
4783 {
4784 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4785 if (scm_is_eq (y, SCM_INUM0))
4786 return y;
4787 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4788 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4789 }
0aacf84e
MD
4790 else if (SCM_BIGP (y))
4791 {
4792 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4793 scm_remember_upto_here_1 (y);
8507ec80 4794 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4795 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4796 }
4797 else if (SCM_REALP (y))
8507ec80 4798 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4799 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4800 else if (SCM_COMPLEXP (y))
4801 {
8507ec80 4802 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4803 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4804 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4805 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4806 }
f92e85f7
MV
4807 else if (SCM_FRACTIONP (y))
4808 {
4809 double yy = scm_i_fraction2double (y);
8507ec80 4810 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4811 yy * SCM_COMPLEX_IMAG (x));
4812 }
4813 else
4814 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4815 }
4816 else if (SCM_FRACTIONP (x))
4817 {
e11e83f3 4818 if (SCM_I_INUMP (y))
cba42c93 4819 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4820 SCM_FRACTION_DENOMINATOR (x));
4821 else if (SCM_BIGP (y))
cba42c93 4822 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4823 SCM_FRACTION_DENOMINATOR (x));
4824 else if (SCM_REALP (y))
55f26379 4825 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4826 else if (SCM_COMPLEXP (y))
4827 {
4828 double xx = scm_i_fraction2double (x);
8507ec80 4829 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4830 xx * SCM_COMPLEX_IMAG (y));
4831 }
4832 else if (SCM_FRACTIONP (y))
4833 /* a/b * c/d = ac / bd */
cba42c93 4834 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4835 SCM_FRACTION_NUMERATOR (y)),
4836 scm_product (SCM_FRACTION_DENOMINATOR (x),
4837 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4838 else
4839 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4840 }
0aacf84e 4841 else
f4c627b3 4842 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4843}
4844
7351e207
MV
4845#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4846 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4847#define ALLOW_DIVIDE_BY_ZERO
4848/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4849#endif
0f2d19dd 4850
ba74ef4e
MV
4851/* The code below for complex division is adapted from the GNU
4852 libstdc++, which adapted it from f2c's libF77, and is subject to
4853 this copyright: */
4854
4855/****************************************************************
4856Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4857
4858Permission to use, copy, modify, and distribute this software
4859and its documentation for any purpose and without fee is hereby
4860granted, provided that the above copyright notice appear in all
4861copies and that both that the copyright notice and this
4862permission notice and warranty disclaimer appear in supporting
4863documentation, and that the names of AT&T Bell Laboratories or
4864Bellcore or any of their entities not be used in advertising or
4865publicity pertaining to distribution of the software without
4866specific, written prior permission.
4867
4868AT&T and Bellcore disclaim all warranties with regard to this
4869software, including all implied warranties of merchantability
4870and fitness. In no event shall AT&T or Bellcore be liable for
4871any special, indirect or consequential damages or any damages
4872whatsoever resulting from loss of use, data or profits, whether
4873in an action of contract, negligence or other tortious action,
4874arising out of or in connection with the use or performance of
4875this software.
4876****************************************************************/
4877
78d3deb1
AW
4878SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
4879 (SCM x, SCM y, SCM rest),
4880 "Divide the first argument by the product of the remaining\n"
4881 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
4882 "returned.")
4883#define FUNC_NAME s_scm_i_divide
4884{
4885 while (!scm_is_null (rest))
4886 { x = scm_divide (x, y);
4887 y = scm_car (rest);
4888 rest = scm_cdr (rest);
4889 }
4890 return scm_divide (x, y);
4891}
4892#undef FUNC_NAME
4893
4894#define s_divide s_scm_i_divide
4895#define g_divide g_scm_i_divide
4896
f92e85f7 4897static SCM
78d3deb1
AW
4898do_divide (SCM x, SCM y, int inexact)
4899#define FUNC_NAME s_divide
0f2d19dd 4900{
f8de44c1
DH
4901 double a;
4902
9cc37597 4903 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4904 {
4905 if (SCM_UNBNDP (x))
4906 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4907 else if (SCM_I_INUMP (x))
0aacf84e 4908 {
e11e83f3 4909 long xx = SCM_I_INUM (x);
0aacf84e
MD
4910 if (xx == 1 || xx == -1)
4911 return x;
7351e207 4912#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4913 else if (xx == 0)
4914 scm_num_overflow (s_divide);
7351e207 4915#endif
0aacf84e 4916 else
f92e85f7
MV
4917 {
4918 if (inexact)
55f26379 4919 return scm_from_double (1.0 / (double) xx);
cba42c93 4920 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4921 }
0aacf84e
MD
4922 }
4923 else if (SCM_BIGP (x))
f92e85f7
MV
4924 {
4925 if (inexact)
55f26379 4926 return scm_from_double (1.0 / scm_i_big2dbl (x));
cba42c93 4927 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4928 }
0aacf84e
MD
4929 else if (SCM_REALP (x))
4930 {
4931 double xx = SCM_REAL_VALUE (x);
7351e207 4932#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4933 if (xx == 0.0)
4934 scm_num_overflow (s_divide);
4935 else
7351e207 4936#endif
55f26379 4937 return scm_from_double (1.0 / xx);
0aacf84e
MD
4938 }
4939 else if (SCM_COMPLEXP (x))
4940 {
4941 double r = SCM_COMPLEX_REAL (x);
4942 double i = SCM_COMPLEX_IMAG (x);
4c6e36a6 4943 if (fabs(r) <= fabs(i))
0aacf84e
MD
4944 {
4945 double t = r / i;
4946 double d = i * (1.0 + t * t);
8507ec80 4947 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4948 }
4949 else
4950 {
4951 double t = i / r;
4952 double d = r * (1.0 + t * t);
8507ec80 4953 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4954 }
4955 }
f92e85f7 4956 else if (SCM_FRACTIONP (x))
cba42c93 4957 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4958 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4959 else
4960 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4961 }
f8de44c1 4962
9cc37597 4963 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4964 {
e11e83f3 4965 long xx = SCM_I_INUM (x);
9cc37597 4966 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4967 {
e11e83f3 4968 long yy = SCM_I_INUM (y);
0aacf84e
MD
4969 if (yy == 0)
4970 {
7351e207 4971#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4972 scm_num_overflow (s_divide);
7351e207 4973#else
55f26379 4974 return scm_from_double ((double) xx / (double) yy);
7351e207 4975#endif
0aacf84e
MD
4976 }
4977 else if (xx % yy != 0)
f92e85f7
MV
4978 {
4979 if (inexact)
55f26379 4980 return scm_from_double ((double) xx / (double) yy);
cba42c93 4981 else return scm_i_make_ratio (x, y);
f92e85f7 4982 }
0aacf84e
MD
4983 else
4984 {
4985 long z = xx / yy;
4986 if (SCM_FIXABLE (z))
d956fa6f 4987 return SCM_I_MAKINUM (z);
0aacf84e
MD
4988 else
4989 return scm_i_long2big (z);
4990 }
f872b822 4991 }
0aacf84e 4992 else if (SCM_BIGP (y))
f92e85f7
MV
4993 {
4994 if (inexact)
55f26379 4995 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 4996 else return scm_i_make_ratio (x, y);
f92e85f7 4997 }
0aacf84e
MD
4998 else if (SCM_REALP (y))
4999 {
5000 double yy = SCM_REAL_VALUE (y);
7351e207 5001#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5002 if (yy == 0.0)
5003 scm_num_overflow (s_divide);
5004 else
7351e207 5005#endif
55f26379 5006 return scm_from_double ((double) xx / yy);
ba74ef4e 5007 }
0aacf84e
MD
5008 else if (SCM_COMPLEXP (y))
5009 {
5010 a = xx;
5011 complex_div: /* y _must_ be a complex number */
5012 {
5013 double r = SCM_COMPLEX_REAL (y);
5014 double i = SCM_COMPLEX_IMAG (y);
4c6e36a6 5015 if (fabs(r) <= fabs(i))
0aacf84e
MD
5016 {
5017 double t = r / i;
5018 double d = i * (1.0 + t * t);
8507ec80 5019 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
5020 }
5021 else
5022 {
5023 double t = i / r;
5024 double d = r * (1.0 + t * t);
8507ec80 5025 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
5026 }
5027 }
5028 }
f92e85f7
MV
5029 else if (SCM_FRACTIONP (y))
5030 /* a / b/c = ac / b */
cba42c93 5031 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5032 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5033 else
5034 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5035 }
0aacf84e
MD
5036 else if (SCM_BIGP (x))
5037 {
e11e83f3 5038 if (SCM_I_INUMP (y))
0aacf84e 5039 {
e11e83f3 5040 long int yy = SCM_I_INUM (y);
0aacf84e
MD
5041 if (yy == 0)
5042 {
7351e207 5043#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5044 scm_num_overflow (s_divide);
7351e207 5045#else
0aacf84e
MD
5046 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5047 scm_remember_upto_here_1 (x);
5048 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 5049#endif
0aacf84e
MD
5050 }
5051 else if (yy == 1)
5052 return x;
5053 else
5054 {
5055 /* FIXME: HMM, what are the relative performance issues here?
5056 We need to test. Is it faster on average to test
5057 divisible_p, then perform whichever operation, or is it
5058 faster to perform the integer div opportunistically and
5059 switch to real if there's a remainder? For now we take the
5060 middle ground: test, then if divisible, use the faster div
5061 func. */
5062
5063 long abs_yy = yy < 0 ? -yy : yy;
5064 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
5065
5066 if (divisible_p)
5067 {
5068 SCM result = scm_i_mkbig ();
5069 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
5070 scm_remember_upto_here_1 (x);
5071 if (yy < 0)
5072 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
5073 return scm_i_normbig (result);
5074 }
5075 else
f92e85f7
MV
5076 {
5077 if (inexact)
55f26379 5078 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 5079 else return scm_i_make_ratio (x, y);
f92e85f7 5080 }
0aacf84e
MD
5081 }
5082 }
5083 else if (SCM_BIGP (y))
5084 {
5085 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
5086 if (y_is_zero)
5087 {
ca46fb90 5088#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5089 scm_num_overflow (s_divide);
f872b822 5090#else
0aacf84e
MD
5091 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5092 scm_remember_upto_here_1 (x);
5093 return (sgn == 0) ? scm_nan () : scm_inf ();
f872b822 5094#endif
0aacf84e
MD
5095 }
5096 else
5097 {
5098 /* big_x / big_y */
23f2b9a3
KR
5099 if (inexact)
5100 {
5101 /* It's easily possible for the ratio x/y to fit a double
5102 but one or both x and y be too big to fit a double,
5103 hence the use of mpq_get_d rather than converting and
5104 dividing. */
5105 mpq_t q;
5106 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
5107 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
5108 return scm_from_double (mpq_get_d (q));
5109 }
5110 else
5111 {
5112 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
5113 SCM_I_BIG_MPZ (y));
5114 if (divisible_p)
5115 {
5116 SCM result = scm_i_mkbig ();
5117 mpz_divexact (SCM_I_BIG_MPZ (result),
5118 SCM_I_BIG_MPZ (x),
5119 SCM_I_BIG_MPZ (y));
5120 scm_remember_upto_here_2 (x, y);
5121 return scm_i_normbig (result);
5122 }
5123 else
5124 return scm_i_make_ratio (x, y);
5125 }
0aacf84e
MD
5126 }
5127 }
5128 else if (SCM_REALP (y))
5129 {
5130 double yy = SCM_REAL_VALUE (y);
7351e207 5131#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5132 if (yy == 0.0)
5133 scm_num_overflow (s_divide);
5134 else
7351e207 5135#endif
55f26379 5136 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
5137 }
5138 else if (SCM_COMPLEXP (y))
5139 {
5140 a = scm_i_big2dbl (x);
5141 goto complex_div;
5142 }
f92e85f7 5143 else if (SCM_FRACTIONP (y))
cba42c93 5144 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5145 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5146 else
5147 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5148 }
0aacf84e
MD
5149 else if (SCM_REALP (x))
5150 {
5151 double rx = SCM_REAL_VALUE (x);
e11e83f3 5152 if (SCM_I_INUMP (y))
0aacf84e 5153 {
e11e83f3 5154 long int yy = SCM_I_INUM (y);
7351e207 5155#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5156 if (yy == 0)
5157 scm_num_overflow (s_divide);
5158 else
7351e207 5159#endif
55f26379 5160 return scm_from_double (rx / (double) yy);
0aacf84e
MD
5161 }
5162 else if (SCM_BIGP (y))
5163 {
5164 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5165 scm_remember_upto_here_1 (y);
55f26379 5166 return scm_from_double (rx / dby);
0aacf84e
MD
5167 }
5168 else if (SCM_REALP (y))
5169 {
5170 double yy = SCM_REAL_VALUE (y);
7351e207 5171#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5172 if (yy == 0.0)
5173 scm_num_overflow (s_divide);
5174 else
7351e207 5175#endif
55f26379 5176 return scm_from_double (rx / yy);
0aacf84e
MD
5177 }
5178 else if (SCM_COMPLEXP (y))
5179 {
5180 a = rx;
5181 goto complex_div;
5182 }
f92e85f7 5183 else if (SCM_FRACTIONP (y))
55f26379 5184 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
5185 else
5186 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5187 }
0aacf84e
MD
5188 else if (SCM_COMPLEXP (x))
5189 {
5190 double rx = SCM_COMPLEX_REAL (x);
5191 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 5192 if (SCM_I_INUMP (y))
0aacf84e 5193 {
e11e83f3 5194 long int yy = SCM_I_INUM (y);
7351e207 5195#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5196 if (yy == 0)
5197 scm_num_overflow (s_divide);
5198 else
7351e207 5199#endif
0aacf84e
MD
5200 {
5201 double d = yy;
8507ec80 5202 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
5203 }
5204 }
5205 else if (SCM_BIGP (y))
5206 {
5207 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5208 scm_remember_upto_here_1 (y);
8507ec80 5209 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
5210 }
5211 else if (SCM_REALP (y))
5212 {
5213 double yy = SCM_REAL_VALUE (y);
7351e207 5214#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5215 if (yy == 0.0)
5216 scm_num_overflow (s_divide);
5217 else
7351e207 5218#endif
8507ec80 5219 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
5220 }
5221 else if (SCM_COMPLEXP (y))
5222 {
5223 double ry = SCM_COMPLEX_REAL (y);
5224 double iy = SCM_COMPLEX_IMAG (y);
4c6e36a6 5225 if (fabs(ry) <= fabs(iy))
0aacf84e
MD
5226 {
5227 double t = ry / iy;
5228 double d = iy * (1.0 + t * t);
8507ec80 5229 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
5230 }
5231 else
5232 {
5233 double t = iy / ry;
5234 double d = ry * (1.0 + t * t);
8507ec80 5235 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
5236 }
5237 }
f92e85f7
MV
5238 else if (SCM_FRACTIONP (y))
5239 {
5240 double yy = scm_i_fraction2double (y);
8507ec80 5241 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 5242 }
0aacf84e
MD
5243 else
5244 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5245 }
f92e85f7
MV
5246 else if (SCM_FRACTIONP (x))
5247 {
e11e83f3 5248 if (SCM_I_INUMP (y))
f92e85f7 5249 {
e11e83f3 5250 long int yy = SCM_I_INUM (y);
f92e85f7
MV
5251#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5252 if (yy == 0)
5253 scm_num_overflow (s_divide);
5254 else
5255#endif
cba42c93 5256 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5257 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5258 }
5259 else if (SCM_BIGP (y))
5260 {
cba42c93 5261 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5262 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5263 }
5264 else if (SCM_REALP (y))
5265 {
5266 double yy = SCM_REAL_VALUE (y);
5267#ifndef ALLOW_DIVIDE_BY_ZERO
5268 if (yy == 0.0)
5269 scm_num_overflow (s_divide);
5270 else
5271#endif
55f26379 5272 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
5273 }
5274 else if (SCM_COMPLEXP (y))
5275 {
5276 a = scm_i_fraction2double (x);
5277 goto complex_div;
5278 }
5279 else if (SCM_FRACTIONP (y))
cba42c93 5280 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
5281 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5282 else
5283 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5284 }
0aacf84e 5285 else
f8de44c1 5286 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 5287}
f92e85f7
MV
5288
5289SCM
5290scm_divide (SCM x, SCM y)
5291{
78d3deb1 5292 return do_divide (x, y, 0);
f92e85f7
MV
5293}
5294
5295static SCM scm_divide2real (SCM x, SCM y)
5296{
78d3deb1 5297 return do_divide (x, y, 1);
f92e85f7 5298}
c05e97b7 5299#undef FUNC_NAME
0f2d19dd 5300
fa605590 5301
0f2d19dd 5302double
3101f40f 5303scm_c_truncate (double x)
0f2d19dd 5304{
fa605590
KR
5305#if HAVE_TRUNC
5306 return trunc (x);
5307#else
f872b822
MD
5308 if (x < 0.0)
5309 return -floor (-x);
5310 return floor (x);
fa605590 5311#endif
0f2d19dd 5312}
0f2d19dd 5313
3101f40f
MV
5314/* scm_c_round is done using floor(x+0.5) to round to nearest and with
5315 half-way case (ie. when x is an integer plus 0.5) going upwards.
5316 Then half-way cases are identified and adjusted down if the
5317 round-upwards didn't give the desired even integer.
6187f48b
KR
5318
5319 "plus_half == result" identifies a half-way case. If plus_half, which is
5320 x + 0.5, is an integer then x must be an integer plus 0.5.
5321
5322 An odd "result" value is identified with result/2 != floor(result/2).
5323 This is done with plus_half, since that value is ready for use sooner in
5324 a pipelined cpu, and we're already requiring plus_half == result.
5325
5326 Note however that we need to be careful when x is big and already an
5327 integer. In that case "x+0.5" may round to an adjacent integer, causing
5328 us to return such a value, incorrectly. For instance if the hardware is
5329 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5330 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5331 returned. Or if the hardware is in round-upwards mode, then other bigger
5332 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5333 representable value, 2^128+2^76 (or whatever), again incorrect.
5334
5335 These bad roundings of x+0.5 are avoided by testing at the start whether
5336 x is already an integer. If it is then clearly that's the desired result
5337 already. And if it's not then the exponent must be small enough to allow
5338 an 0.5 to be represented, and hence added without a bad rounding. */
5339
0f2d19dd 5340double
3101f40f 5341scm_c_round (double x)
0f2d19dd 5342{
6187f48b
KR
5343 double plus_half, result;
5344
5345 if (x == floor (x))
5346 return x;
5347
5348 plus_half = x + 0.5;
5349 result = floor (plus_half);
3101f40f 5350 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
5351 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5352 ? result - 1
5353 : result);
0f2d19dd
JB
5354}
5355
f92e85f7
MV
5356SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5357 (SCM x),
5358 "Round the number @var{x} towards zero.")
5359#define FUNC_NAME s_scm_truncate_number
5360{
73e4de09 5361 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5362 return scm_floor (x);
5363 else
5364 return scm_ceiling (x);
5365}
5366#undef FUNC_NAME
5367
5368static SCM exactly_one_half;
5369
5370SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5371 (SCM x),
5372 "Round the number @var{x} towards the nearest integer. "
5373 "When it is exactly halfway between two integers, "
5374 "round towards the even one.")
5375#define FUNC_NAME s_scm_round_number
5376{
e11e83f3 5377 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
5378 return x;
5379 else if (SCM_REALP (x))
3101f40f 5380 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
f92e85f7 5381 else
bae30667
KR
5382 {
5383 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5384 single quotient+remainder division then examining to see which way
5385 the rounding should go. */
5386 SCM plus_half = scm_sum (x, exactly_one_half);
5387 SCM result = scm_floor (plus_half);
3101f40f 5388 /* Adjust so that the rounding is towards even. */
73e4de09
MV
5389 if (scm_is_true (scm_num_eq_p (plus_half, result))
5390 && scm_is_true (scm_odd_p (result)))
d956fa6f 5391 return scm_difference (result, SCM_I_MAKINUM (1));
bae30667
KR
5392 else
5393 return result;
5394 }
f92e85f7
MV
5395}
5396#undef FUNC_NAME
5397
5398SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5399 (SCM x),
5400 "Round the number @var{x} towards minus infinity.")
5401#define FUNC_NAME s_scm_floor
5402{
e11e83f3 5403 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5404 return x;
5405 else if (SCM_REALP (x))
55f26379 5406 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5407 else if (SCM_FRACTIONP (x))
5408 {
5409 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5410 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5411 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5412 {
5413 /* For positive x, rounding towards zero is correct. */
5414 return q;
5415 }
5416 else
5417 {
5418 /* For negative x, we need to return q-1 unless x is an
5419 integer. But fractions are never integer, per our
5420 assumptions. */
d956fa6f 5421 return scm_difference (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5422 }
5423 }
5424 else
5425 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5426}
5427#undef FUNC_NAME
5428
5429SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5430 (SCM x),
5431 "Round the number @var{x} towards infinity.")
5432#define FUNC_NAME s_scm_ceiling
5433{
e11e83f3 5434 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5435 return x;
5436 else if (SCM_REALP (x))
55f26379 5437 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5438 else if (SCM_FRACTIONP (x))
5439 {
5440 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5441 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5442 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5443 {
5444 /* For negative x, rounding towards zero is correct. */
5445 return q;
5446 }
5447 else
5448 {
5449 /* For positive x, we need to return q+1 unless x is an
5450 integer. But fractions are never integer, per our
5451 assumptions. */
d956fa6f 5452 return scm_sum (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5453 }
5454 }
5455 else
5456 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5457}
5458#undef FUNC_NAME
0f2d19dd 5459
ad79736c
AW
5460/* sin/cos/tan/asin/acos/atan
5461 sinh/cosh/tanh/asinh/acosh/atanh
5462 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5463 Written by Jerry D. Hedden, (C) FSF.
5464 See the file `COPYING' for terms applying to this program. */
0f2d19dd 5465
6fc4d012 5466SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
27c37006 5467 (SCM x, SCM y),
6fc4d012
AW
5468 "Return @var{x} raised to the power of @var{y}.")
5469#define FUNC_NAME s_scm_expt
0f2d19dd 5470{
5a8fc758 5471 if (scm_is_true (scm_exact_p (x)) && scm_is_integer (y))
6fc4d012
AW
5472 return scm_integer_expt (x, y);
5473 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5474 {
5475 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5476 }
5477 else
5478 return scm_exp (scm_product (scm_log (x), y));
0f2d19dd 5479}
1bbd0b84 5480#undef FUNC_NAME
0f2d19dd 5481
ad79736c
AW
5482SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5483 (SCM z),
5484 "Compute the sine of @var{z}.")
5485#define FUNC_NAME s_scm_sin
5486{
5487 if (scm_is_real (z))
5488 return scm_from_double (sin (scm_to_double (z)));
5489 else if (SCM_COMPLEXP (z))
5490 { double x, y;
5491 x = SCM_COMPLEX_REAL (z);
5492 y = SCM_COMPLEX_IMAG (z);
5493 return scm_c_make_rectangular (sin (x) * cosh (y),
5494 cos (x) * sinh (y));
5495 }
5496 else
5497 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5498}
5499#undef FUNC_NAME
0f2d19dd 5500
ad79736c
AW
5501SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5502 (SCM z),
5503 "Compute the cosine of @var{z}.")
5504#define FUNC_NAME s_scm_cos
5505{
5506 if (scm_is_real (z))
5507 return scm_from_double (cos (scm_to_double (z)));
5508 else if (SCM_COMPLEXP (z))
5509 { double x, y;
5510 x = SCM_COMPLEX_REAL (z);
5511 y = SCM_COMPLEX_IMAG (z);
5512 return scm_c_make_rectangular (cos (x) * cosh (y),
5513 -sin (x) * sinh (y));
5514 }
5515 else
5516 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5517}
5518#undef FUNC_NAME
5519
5520SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5521 (SCM z),
5522 "Compute the tangent of @var{z}.")
5523#define FUNC_NAME s_scm_tan
0f2d19dd 5524{
ad79736c
AW
5525 if (scm_is_real (z))
5526 return scm_from_double (tan (scm_to_double (z)));
5527 else if (SCM_COMPLEXP (z))
5528 { double x, y, w;
5529 x = 2.0 * SCM_COMPLEX_REAL (z);
5530 y = 2.0 * SCM_COMPLEX_IMAG (z);
5531 w = cos (x) + cosh (y);
5532#ifndef ALLOW_DIVIDE_BY_ZERO
5533 if (w == 0.0)
5534 scm_num_overflow (s_scm_tan);
5535#endif
5536 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5537 }
5538 else
5539 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5540}
5541#undef FUNC_NAME
5542
5543SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5544 (SCM z),
5545 "Compute the hyperbolic sine of @var{z}.")
5546#define FUNC_NAME s_scm_sinh
5547{
5548 if (scm_is_real (z))
5549 return scm_from_double (sinh (scm_to_double (z)));
5550 else if (SCM_COMPLEXP (z))
5551 { double x, y;
5552 x = SCM_COMPLEX_REAL (z);
5553 y = SCM_COMPLEX_IMAG (z);
5554 return scm_c_make_rectangular (sinh (x) * cos (y),
5555 cosh (x) * sin (y));
5556 }
5557 else
5558 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5559}
5560#undef FUNC_NAME
5561
5562SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5563 (SCM z),
5564 "Compute the hyperbolic cosine of @var{z}.")
5565#define FUNC_NAME s_scm_cosh
5566{
5567 if (scm_is_real (z))
5568 return scm_from_double (cosh (scm_to_double (z)));
5569 else if (SCM_COMPLEXP (z))
5570 { double x, y;
5571 x = SCM_COMPLEX_REAL (z);
5572 y = SCM_COMPLEX_IMAG (z);
5573 return scm_c_make_rectangular (cosh (x) * cos (y),
5574 sinh (x) * sin (y));
5575 }
5576 else
5577 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5578}
5579#undef FUNC_NAME
5580
5581SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5582 (SCM z),
5583 "Compute the hyperbolic tangent of @var{z}.")
5584#define FUNC_NAME s_scm_tanh
5585{
5586 if (scm_is_real (z))
5587 return scm_from_double (tanh (scm_to_double (z)));
5588 else if (SCM_COMPLEXP (z))
5589 { double x, y, w;
5590 x = 2.0 * SCM_COMPLEX_REAL (z);
5591 y = 2.0 * SCM_COMPLEX_IMAG (z);
5592 w = cosh (x) + cos (y);
5593#ifndef ALLOW_DIVIDE_BY_ZERO
5594 if (w == 0.0)
5595 scm_num_overflow (s_scm_tanh);
5596#endif
5597 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5598 }
5599 else
5600 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5601}
5602#undef FUNC_NAME
5603
5604SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5605 (SCM z),
5606 "Compute the arc sine of @var{z}.")
5607#define FUNC_NAME s_scm_asin
5608{
5609 if (scm_is_real (z))
5610 {
5611 double w = scm_to_double (z);
5612 if (w >= -1.0 && w <= 1.0)
5613 return scm_from_double (asin (w));
5614 else
5615 return scm_product (scm_c_make_rectangular (0, -1),
5616 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5617 }
5618 else if (SCM_COMPLEXP (z))
5619 { double x, y;
5620 x = SCM_COMPLEX_REAL (z);
5621 y = SCM_COMPLEX_IMAG (z);
5622 return scm_product (scm_c_make_rectangular (0, -1),
5623 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5624 }
5625 else
5626 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5627}
5628#undef FUNC_NAME
5629
5630SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5631 (SCM z),
5632 "Compute the arc cosine of @var{z}.")
5633#define FUNC_NAME s_scm_acos
5634{
5635 if (scm_is_real (z))
5636 {
5637 double w = scm_to_double (z);
5638 if (w >= -1.0 && w <= 1.0)
5639 return scm_from_double (acos (w));
5640 else
5641 return scm_sum (scm_from_double (acos (0.0)),
5642 scm_product (scm_c_make_rectangular (0, 1),
5643 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5644 }
5645 else if (SCM_COMPLEXP (z))
5646 { double x, y;
5647 x = SCM_COMPLEX_REAL (z);
5648 y = SCM_COMPLEX_IMAG (z);
5649 return scm_sum (scm_from_double (acos (0.0)),
5650 scm_product (scm_c_make_rectangular (0, 1),
5651 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5652 }
5653 else
5654 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5655}
5656#undef FUNC_NAME
5657
5658SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5659 (SCM z, SCM y),
5660 "With one argument, compute the arc tangent of @var{z}.\n"
5661 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5662 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5663#define FUNC_NAME s_scm_atan
5664{
5665 if (SCM_UNBNDP (y))
5666 {
5667 if (scm_is_real (z))
5668 return scm_from_double (atan (scm_to_double (z)));
5669 else if (SCM_COMPLEXP (z))
5670 {
5671 double v, w;
5672 v = SCM_COMPLEX_REAL (z);
5673 w = SCM_COMPLEX_IMAG (z);
5674 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5675 scm_c_make_rectangular (v, w + 1.0))),
5676 scm_c_make_rectangular (0, 2));
5677 }
5678 else
5679 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5680 }
5681 else if (scm_is_real (z))
5682 {
5683 if (scm_is_real (y))
5684 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5685 else
5686 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5687 }
5688 else
5689 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5690}
5691#undef FUNC_NAME
5692
5693SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5694 (SCM z),
5695 "Compute the inverse hyperbolic sine of @var{z}.")
5696#define FUNC_NAME s_scm_sys_asinh
5697{
5698 if (scm_is_real (z))
5699 return scm_from_double (asinh (scm_to_double (z)));
5700 else if (scm_is_number (z))
5701 return scm_log (scm_sum (z,
5702 scm_sqrt (scm_sum (scm_product (z, z),
5703 SCM_I_MAKINUM (1)))));
5704 else
5705 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5706}
5707#undef FUNC_NAME
5708
5709SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5710 (SCM z),
5711 "Compute the inverse hyperbolic cosine of @var{z}.")
5712#define FUNC_NAME s_scm_sys_acosh
5713{
5714 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5715 return scm_from_double (acosh (scm_to_double (z)));
5716 else if (scm_is_number (z))
5717 return scm_log (scm_sum (z,
5718 scm_sqrt (scm_difference (scm_product (z, z),
5719 SCM_I_MAKINUM (1)))));
5720 else
5721 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5722}
5723#undef FUNC_NAME
5724
5725SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5726 (SCM z),
5727 "Compute the inverse hyperbolic tangent of @var{z}.")
5728#define FUNC_NAME s_scm_sys_atanh
5729{
5730 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5731 return scm_from_double (atanh (scm_to_double (z)));
5732 else if (scm_is_number (z))
5733 return scm_divide (scm_log (scm_divide (scm_sum (SCM_I_MAKINUM (1), z),
5734 scm_difference (SCM_I_MAKINUM (1), z))),
5735 SCM_I_MAKINUM (2));
5736 else
5737 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
0f2d19dd 5738}
1bbd0b84 5739#undef FUNC_NAME
0f2d19dd 5740
8507ec80
MV
5741SCM
5742scm_c_make_rectangular (double re, double im)
5743{
5744 if (im == 0.0)
5745 return scm_from_double (re);
5746 else
5747 {
5748 SCM z;
92d8fd32
LC
5749 SCM_NEWSMOB (z, scm_tc16_complex,
5750 scm_gc_malloc_pointerless (sizeof (scm_t_complex),
5751 "complex"));
8507ec80
MV
5752 SCM_COMPLEX_REAL (z) = re;
5753 SCM_COMPLEX_IMAG (z) = im;
5754 return z;
5755 }
5756}
0f2d19dd 5757
a1ec6916 5758SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
a2c25234
LC
5759 (SCM real_part, SCM imaginary_part),
5760 "Return a complex number constructed of the given @var{real-part} "
5761 "and @var{imaginary-part} parts.")
1bbd0b84 5762#define FUNC_NAME s_scm_make_rectangular
0f2d19dd 5763{
ad79736c
AW
5764 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5765 SCM_ARG1, FUNC_NAME, "real");
5766 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5767 SCM_ARG2, FUNC_NAME, "real");
5768 return scm_c_make_rectangular (scm_to_double (real_part),
5769 scm_to_double (imaginary_part));
0f2d19dd 5770}
1bbd0b84 5771#undef FUNC_NAME
0f2d19dd 5772
8507ec80
MV
5773SCM
5774scm_c_make_polar (double mag, double ang)
5775{
5776 double s, c;
5e647d08
LC
5777
5778 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5779 use it on Glibc-based systems that have it (it's a GNU extension). See
5780 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5781 details. */
5782#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
8507ec80
MV
5783 sincos (ang, &s, &c);
5784#else
5785 s = sin (ang);
5786 c = cos (ang);
5787#endif
5788 return scm_c_make_rectangular (mag * c, mag * s);
5789}
0f2d19dd 5790
a1ec6916 5791SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5792 (SCM x, SCM y),
942e5b91 5793 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5794#define FUNC_NAME s_scm_make_polar
0f2d19dd 5795{
ad79736c
AW
5796 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5797 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5798 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
0f2d19dd 5799}
1bbd0b84 5800#undef FUNC_NAME
0f2d19dd
JB
5801
5802
152f82bf 5803SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5804/* "Return the real part of the number @var{z}."
5805 */
0f2d19dd 5806SCM
6e8d25a6 5807scm_real_part (SCM z)
0f2d19dd 5808{
e11e83f3 5809 if (SCM_I_INUMP (z))
c2ff8ab0 5810 return z;
0aacf84e 5811 else if (SCM_BIGP (z))
c2ff8ab0 5812 return z;
0aacf84e 5813 else if (SCM_REALP (z))
c2ff8ab0 5814 return z;
0aacf84e 5815 else if (SCM_COMPLEXP (z))
55f26379 5816 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5817 else if (SCM_FRACTIONP (z))
2fa2d879 5818 return z;
0aacf84e 5819 else
c2ff8ab0 5820 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5821}
5822
5823
152f82bf 5824SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5825/* "Return the imaginary part of the number @var{z}."
5826 */
0f2d19dd 5827SCM
6e8d25a6 5828scm_imag_part (SCM z)
0f2d19dd 5829{
e11e83f3 5830 if (SCM_I_INUMP (z))
f872b822 5831 return SCM_INUM0;
0aacf84e 5832 else if (SCM_BIGP (z))
f872b822 5833 return SCM_INUM0;
0aacf84e 5834 else if (SCM_REALP (z))
e7efe8e7 5835 return flo0;
0aacf84e 5836 else if (SCM_COMPLEXP (z))
55f26379 5837 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5838 else if (SCM_FRACTIONP (z))
5839 return SCM_INUM0;
0aacf84e 5840 else
c2ff8ab0 5841 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5842}
5843
f92e85f7
MV
5844SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5845/* "Return the numerator of the number @var{z}."
5846 */
5847SCM
5848scm_numerator (SCM z)
5849{
e11e83f3 5850 if (SCM_I_INUMP (z))
f92e85f7
MV
5851 return z;
5852 else if (SCM_BIGP (z))
5853 return z;
5854 else if (SCM_FRACTIONP (z))
e2bf3b19 5855 return SCM_FRACTION_NUMERATOR (z);
f92e85f7
MV
5856 else if (SCM_REALP (z))
5857 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5858 else
5859 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5860}
5861
5862
5863SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5864/* "Return the denominator of the number @var{z}."
5865 */
5866SCM
5867scm_denominator (SCM z)
5868{
e11e83f3 5869 if (SCM_I_INUMP (z))
d956fa6f 5870 return SCM_I_MAKINUM (1);
f92e85f7 5871 else if (SCM_BIGP (z))
d956fa6f 5872 return SCM_I_MAKINUM (1);
f92e85f7 5873 else if (SCM_FRACTIONP (z))
e2bf3b19 5874 return SCM_FRACTION_DENOMINATOR (z);
f92e85f7
MV
5875 else if (SCM_REALP (z))
5876 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5877 else
5878 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5879}
0f2d19dd 5880
9de33deb 5881SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5882/* "Return the magnitude of the number @var{z}. This is the same as\n"
5883 * "@code{abs} for real arguments, but also allows complex numbers."
5884 */
0f2d19dd 5885SCM
6e8d25a6 5886scm_magnitude (SCM z)
0f2d19dd 5887{
e11e83f3 5888 if (SCM_I_INUMP (z))
0aacf84e 5889 {
e11e83f3 5890 long int zz = SCM_I_INUM (z);
0aacf84e
MD
5891 if (zz >= 0)
5892 return z;
5893 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5894 return SCM_I_MAKINUM (-zz);
0aacf84e
MD
5895 else
5896 return scm_i_long2big (-zz);
5986c47d 5897 }
0aacf84e
MD
5898 else if (SCM_BIGP (z))
5899 {
5900 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5901 scm_remember_upto_here_1 (z);
5902 if (sgn < 0)
5903 return scm_i_clonebig (z, 0);
5904 else
5905 return z;
5986c47d 5906 }
0aacf84e 5907 else if (SCM_REALP (z))
55f26379 5908 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5909 else if (SCM_COMPLEXP (z))
55f26379 5910 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5911 else if (SCM_FRACTIONP (z))
5912 {
73e4de09 5913 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5914 return z;
cba42c93 5915 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5916 SCM_FRACTION_DENOMINATOR (z));
5917 }
0aacf84e 5918 else
c2ff8ab0 5919 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5920}
5921
5922
9de33deb 5923SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5924/* "Return the angle of the complex number @var{z}."
5925 */
0f2d19dd 5926SCM
6e8d25a6 5927scm_angle (SCM z)
0f2d19dd 5928{
c8ae173e 5929 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
e7efe8e7 5930 flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5931 But if atan2 follows the floating point rounding mode, then the value
5932 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5933 if (SCM_I_INUMP (z))
0aacf84e 5934 {
e11e83f3 5935 if (SCM_I_INUM (z) >= 0)
e7efe8e7 5936 return flo0;
0aacf84e 5937 else
55f26379 5938 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5939 }
0aacf84e
MD
5940 else if (SCM_BIGP (z))
5941 {
5942 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5943 scm_remember_upto_here_1 (z);
5944 if (sgn < 0)
55f26379 5945 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5946 else
e7efe8e7 5947 return flo0;
0f2d19dd 5948 }
0aacf84e 5949 else if (SCM_REALP (z))
c8ae173e
KR
5950 {
5951 if (SCM_REAL_VALUE (z) >= 0)
e7efe8e7 5952 return flo0;
c8ae173e 5953 else
55f26379 5954 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5955 }
0aacf84e 5956 else if (SCM_COMPLEXP (z))
55f26379 5957 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
5958 else if (SCM_FRACTIONP (z))
5959 {
73e4de09 5960 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
e7efe8e7 5961 return flo0;
55f26379 5962 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 5963 }
0aacf84e 5964 else
f4c627b3 5965 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
5966}
5967
5968
3c9a524f
DH
5969SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5970/* Convert the number @var{x} to its inexact representation.\n"
5971 */
5972SCM
5973scm_exact_to_inexact (SCM z)
5974{
e11e83f3 5975 if (SCM_I_INUMP (z))
55f26379 5976 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 5977 else if (SCM_BIGP (z))
55f26379 5978 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 5979 else if (SCM_FRACTIONP (z))
55f26379 5980 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
5981 else if (SCM_INEXACTP (z))
5982 return z;
5983 else
5984 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5985}
5986
5987
a1ec6916 5988SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 5989 (SCM z),
1e6808ea 5990 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 5991#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 5992{
e11e83f3 5993 if (SCM_I_INUMP (z))
f872b822 5994 return z;
0aacf84e 5995 else if (SCM_BIGP (z))
f872b822 5996 return z;
0aacf84e
MD
5997 else if (SCM_REALP (z))
5998 {
f92e85f7
MV
5999 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
6000 SCM_OUT_OF_RANGE (1, z);
2be24db4 6001 else
f92e85f7
MV
6002 {
6003 mpq_t frac;
6004 SCM q;
6005
6006 mpq_init (frac);
6007 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 6008 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
6009 scm_i_mpz2num (mpq_denref (frac)));
6010
cba42c93 6011 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
6012 for frac...
6013 */
6014 mpq_clear (frac);
6015 return q;
6016 }
c2ff8ab0 6017 }
f92e85f7
MV
6018 else if (SCM_FRACTIONP (z))
6019 return z;
0aacf84e 6020 else
c2ff8ab0 6021 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 6022}
1bbd0b84 6023#undef FUNC_NAME
0f2d19dd 6024
f92e85f7 6025SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
76dae881
NJ
6026 (SCM x, SCM eps),
6027 "Returns the @emph{simplest} rational number differing\n"
6028 "from @var{x} by no more than @var{eps}.\n"
6029 "\n"
6030 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
6031 "exact result when both its arguments are exact. Thus, you might need\n"
6032 "to use @code{inexact->exact} on the arguments.\n"
6033 "\n"
6034 "@lisp\n"
6035 "(rationalize (inexact->exact 1.2) 1/100)\n"
6036 "@result{} 6/5\n"
6037 "@end lisp")
f92e85f7
MV
6038#define FUNC_NAME s_scm_rationalize
6039{
e11e83f3 6040 if (SCM_I_INUMP (x))
f92e85f7
MV
6041 return x;
6042 else if (SCM_BIGP (x))
6043 return x;
6044 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
6045 {
6046 /* Use continued fractions to find closest ratio. All
6047 arithmetic is done with exact numbers.
6048 */
6049
6050 SCM ex = scm_inexact_to_exact (x);
6051 SCM int_part = scm_floor (ex);
d956fa6f
MV
6052 SCM tt = SCM_I_MAKINUM (1);
6053 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
6054 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
f92e85f7
MV
6055 SCM rx;
6056 int i = 0;
6057
73e4de09 6058 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
6059 return ex;
6060
6061 ex = scm_difference (ex, int_part); /* x = x-int_part */
6062 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
6063
6064 /* We stop after a million iterations just to be absolutely sure
6065 that we don't go into an infinite loop. The process normally
6066 converges after less than a dozen iterations.
6067 */
6068
76dae881 6069 eps = scm_abs (eps);
f92e85f7
MV
6070 while (++i < 1000000)
6071 {
6072 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
6073 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
6074 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
6075 scm_is_false
f92e85f7 6076 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
76dae881 6077 eps))) /* abs(x-a/b) <= eps */
02164269
MV
6078 {
6079 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09 6080 if (scm_is_false (scm_exact_p (x))
76dae881 6081 || scm_is_false (scm_exact_p (eps)))
02164269
MV
6082 return scm_exact_to_inexact (res);
6083 else
6084 return res;
6085 }
f92e85f7
MV
6086 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
6087 SCM_UNDEFINED);
6088 tt = scm_floor (rx); /* tt = floor (rx) */
6089 a2 = a1;
6090 b2 = b1;
6091 a1 = a;
6092 b1 = b;
6093 }
6094 scm_num_overflow (s_scm_rationalize);
6095 }
6096 else
6097 SCM_WRONG_TYPE_ARG (1, x);
6098}
6099#undef FUNC_NAME
6100
73e4de09
MV
6101/* conversion functions */
6102
6103int
6104scm_is_integer (SCM val)
6105{
6106 return scm_is_true (scm_integer_p (val));
6107}
6108
6109int
6110scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
6111{
e11e83f3 6112 if (SCM_I_INUMP (val))
73e4de09 6113 {
e11e83f3 6114 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6115 return n >= min && n <= max;
6116 }
6117 else if (SCM_BIGP (val))
6118 {
6119 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
6120 return 0;
6121 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
6122 {
6123 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
6124 {
6125 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
6126 return n >= min && n <= max;
6127 }
6128 else
6129 return 0;
6130 }
73e4de09
MV
6131 else
6132 {
d956fa6f
MV
6133 scm_t_intmax n;
6134 size_t count;
73e4de09 6135
d956fa6f
MV
6136 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6137 > CHAR_BIT*sizeof (scm_t_uintmax))
6138 return 0;
6139
6140 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6141 SCM_I_BIG_MPZ (val));
73e4de09 6142
d956fa6f 6143 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 6144 {
d956fa6f
MV
6145 if (n < 0)
6146 return 0;
73e4de09 6147 }
73e4de09
MV
6148 else
6149 {
d956fa6f
MV
6150 n = -n;
6151 if (n >= 0)
6152 return 0;
73e4de09 6153 }
d956fa6f
MV
6154
6155 return n >= min && n <= max;
73e4de09
MV
6156 }
6157 }
73e4de09
MV
6158 else
6159 return 0;
6160}
6161
6162int
6163scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
6164{
e11e83f3 6165 if (SCM_I_INUMP (val))
73e4de09 6166 {
e11e83f3 6167 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6168 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
6169 }
6170 else if (SCM_BIGP (val))
6171 {
6172 if (max <= SCM_MOST_POSITIVE_FIXNUM)
6173 return 0;
6174 else if (max <= ULONG_MAX)
d956fa6f
MV
6175 {
6176 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
6177 {
6178 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
6179 return n >= min && n <= max;
6180 }
6181 else
6182 return 0;
6183 }
73e4de09
MV
6184 else
6185 {
d956fa6f
MV
6186 scm_t_uintmax n;
6187 size_t count;
73e4de09 6188
d956fa6f
MV
6189 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
6190 return 0;
73e4de09 6191
d956fa6f
MV
6192 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6193 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 6194 return 0;
d956fa6f
MV
6195
6196 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6197 SCM_I_BIG_MPZ (val));
73e4de09 6198
d956fa6f 6199 return n >= min && n <= max;
73e4de09
MV
6200 }
6201 }
73e4de09
MV
6202 else
6203 return 0;
6204}
6205
1713d319
MV
6206static void
6207scm_i_range_error (SCM bad_val, SCM min, SCM max)
6208{
6209 scm_error (scm_out_of_range_key,
6210 NULL,
6211 "Value out of range ~S to ~S: ~S",
6212 scm_list_3 (min, max, bad_val),
6213 scm_list_1 (bad_val));
6214}
6215
bfd7932e
MV
6216#define TYPE scm_t_intmax
6217#define TYPE_MIN min
6218#define TYPE_MAX max
6219#define SIZEOF_TYPE 0
6220#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
6221#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
6222#include "libguile/conv-integer.i.c"
6223
6224#define TYPE scm_t_uintmax
6225#define TYPE_MIN min
6226#define TYPE_MAX max
6227#define SIZEOF_TYPE 0
6228#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
6229#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
6230#include "libguile/conv-uinteger.i.c"
6231
6232#define TYPE scm_t_int8
6233#define TYPE_MIN SCM_T_INT8_MIN
6234#define TYPE_MAX SCM_T_INT8_MAX
6235#define SIZEOF_TYPE 1
6236#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
6237#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
6238#include "libguile/conv-integer.i.c"
6239
6240#define TYPE scm_t_uint8
6241#define TYPE_MIN 0
6242#define TYPE_MAX SCM_T_UINT8_MAX
6243#define SIZEOF_TYPE 1
6244#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6245#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6246#include "libguile/conv-uinteger.i.c"
6247
6248#define TYPE scm_t_int16
6249#define TYPE_MIN SCM_T_INT16_MIN
6250#define TYPE_MAX SCM_T_INT16_MAX
6251#define SIZEOF_TYPE 2
6252#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6253#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6254#include "libguile/conv-integer.i.c"
6255
6256#define TYPE scm_t_uint16
6257#define TYPE_MIN 0
6258#define TYPE_MAX SCM_T_UINT16_MAX
6259#define SIZEOF_TYPE 2
6260#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6261#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6262#include "libguile/conv-uinteger.i.c"
6263
6264#define TYPE scm_t_int32
6265#define TYPE_MIN SCM_T_INT32_MIN
6266#define TYPE_MAX SCM_T_INT32_MAX
6267#define SIZEOF_TYPE 4
6268#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6269#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6270#include "libguile/conv-integer.i.c"
6271
6272#define TYPE scm_t_uint32
6273#define TYPE_MIN 0
6274#define TYPE_MAX SCM_T_UINT32_MAX
6275#define SIZEOF_TYPE 4
6276#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6277#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6278#include "libguile/conv-uinteger.i.c"
6279
904a78f1
MG
6280#define TYPE scm_t_wchar
6281#define TYPE_MIN (scm_t_int32)-1
6282#define TYPE_MAX (scm_t_int32)0x10ffff
6283#define SIZEOF_TYPE 4
6284#define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6285#define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6286#include "libguile/conv-integer.i.c"
6287
bfd7932e
MV
6288#define TYPE scm_t_int64
6289#define TYPE_MIN SCM_T_INT64_MIN
6290#define TYPE_MAX SCM_T_INT64_MAX
6291#define SIZEOF_TYPE 8
6292#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6293#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6294#include "libguile/conv-integer.i.c"
6295
6296#define TYPE scm_t_uint64
6297#define TYPE_MIN 0
6298#define TYPE_MAX SCM_T_UINT64_MAX
6299#define SIZEOF_TYPE 8
6300#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6301#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6302#include "libguile/conv-uinteger.i.c"
73e4de09 6303
cd036260
MV
6304void
6305scm_to_mpz (SCM val, mpz_t rop)
6306{
6307 if (SCM_I_INUMP (val))
6308 mpz_set_si (rop, SCM_I_INUM (val));
6309 else if (SCM_BIGP (val))
6310 mpz_set (rop, SCM_I_BIG_MPZ (val));
6311 else
6312 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6313}
6314
6315SCM
6316scm_from_mpz (mpz_t val)
6317{
6318 return scm_i_mpz2num (val);
6319}
6320
73e4de09
MV
6321int
6322scm_is_real (SCM val)
6323{
6324 return scm_is_true (scm_real_p (val));
6325}
6326
55f26379
MV
6327int
6328scm_is_rational (SCM val)
6329{
6330 return scm_is_true (scm_rational_p (val));
6331}
6332
73e4de09
MV
6333double
6334scm_to_double (SCM val)
6335{
55f26379
MV
6336 if (SCM_I_INUMP (val))
6337 return SCM_I_INUM (val);
6338 else if (SCM_BIGP (val))
6339 return scm_i_big2dbl (val);
6340 else if (SCM_FRACTIONP (val))
6341 return scm_i_fraction2double (val);
6342 else if (SCM_REALP (val))
6343 return SCM_REAL_VALUE (val);
6344 else
7a1aba42 6345 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
6346}
6347
6348SCM
6349scm_from_double (double val)
6350{
55f26379
MV
6351 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
6352 SCM_REAL_VALUE (z) = val;
6353 return z;
73e4de09
MV
6354}
6355
55f26379
MV
6356#if SCM_ENABLE_DISCOURAGED == 1
6357
6358float
6359scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
6360{
6361 if (SCM_BIGP (num))
6362 {
6363 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
6364 if (!xisinf (res))
6365 return res;
6366 else
6367 scm_out_of_range (NULL, num);
6368 }
6369 else
6370 return scm_to_double (num);
6371}
6372
6373double
6374scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
6375{
6376 if (SCM_BIGP (num))
6377 {
6378 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
6379 if (!xisinf (res))
6380 return res;
6381 else
6382 scm_out_of_range (NULL, num);
6383 }
6384 else
6385 return scm_to_double (num);
6386}
6387
6388#endif
6389
8507ec80
MV
6390int
6391scm_is_complex (SCM val)
6392{
6393 return scm_is_true (scm_complex_p (val));
6394}
6395
6396double
6397scm_c_real_part (SCM z)
6398{
6399 if (SCM_COMPLEXP (z))
6400 return SCM_COMPLEX_REAL (z);
6401 else
6402 {
6403 /* Use the scm_real_part to get proper error checking and
6404 dispatching.
6405 */
6406 return scm_to_double (scm_real_part (z));
6407 }
6408}
6409
6410double
6411scm_c_imag_part (SCM z)
6412{
6413 if (SCM_COMPLEXP (z))
6414 return SCM_COMPLEX_IMAG (z);
6415 else
6416 {
6417 /* Use the scm_imag_part to get proper error checking and
6418 dispatching. The result will almost always be 0.0, but not
6419 always.
6420 */
6421 return scm_to_double (scm_imag_part (z));
6422 }
6423}
6424
6425double
6426scm_c_magnitude (SCM z)
6427{
6428 return scm_to_double (scm_magnitude (z));
6429}
6430
6431double
6432scm_c_angle (SCM z)
6433{
6434 return scm_to_double (scm_angle (z));
6435}
6436
6437int
6438scm_is_number (SCM z)
6439{
6440 return scm_is_true (scm_number_p (z));
6441}
6442
8ab3d8a0
KR
6443
6444/* In the following functions we dispatch to the real-arg funcs like log()
6445 when we know the arg is real, instead of just handing everything to
6446 clog() for instance. This is in case clog() doesn't optimize for a
6447 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6448 well use it to go straight to the applicable C func. */
6449
6450SCM_DEFINE (scm_log, "log", 1, 0, 0,
6451 (SCM z),
6452 "Return the natural logarithm of @var{z}.")
6453#define FUNC_NAME s_scm_log
6454{
6455 if (SCM_COMPLEXP (z))
6456 {
4b26c03e 6457#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6458 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6459#else
6460 double re = SCM_COMPLEX_REAL (z);
6461 double im = SCM_COMPLEX_IMAG (z);
6462 return scm_c_make_rectangular (log (hypot (re, im)),
6463 atan2 (im, re));
6464#endif
6465 }
6466 else
6467 {
6468 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6469 although the value itself overflows. */
6470 double re = scm_to_double (z);
6471 double l = log (fabs (re));
6472 if (re >= 0.0)
6473 return scm_from_double (l);
6474 else
6475 return scm_c_make_rectangular (l, M_PI);
6476 }
6477}
6478#undef FUNC_NAME
6479
6480
6481SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6482 (SCM z),
6483 "Return the base 10 logarithm of @var{z}.")
6484#define FUNC_NAME s_scm_log10
6485{
6486 if (SCM_COMPLEXP (z))
6487 {
6488 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6489 clog() and a multiply by M_LOG10E, rather than the fallback
6490 log10+hypot+atan2.) */
4b26c03e 6491#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6492 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6493#else
6494 double re = SCM_COMPLEX_REAL (z);
6495 double im = SCM_COMPLEX_IMAG (z);
6496 return scm_c_make_rectangular (log10 (hypot (re, im)),
6497 M_LOG10E * atan2 (im, re));
6498#endif
6499 }
6500 else
6501 {
6502 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6503 although the value itself overflows. */
6504 double re = scm_to_double (z);
6505 double l = log10 (fabs (re));
6506 if (re >= 0.0)
6507 return scm_from_double (l);
6508 else
6509 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6510 }
6511}
6512#undef FUNC_NAME
6513
6514
6515SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6516 (SCM z),
6517 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6518 "base of natural logarithms (2.71828@dots{}).")
6519#define FUNC_NAME s_scm_exp
6520{
6521 if (SCM_COMPLEXP (z))
6522 {
4b26c03e 6523#if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6524 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6525#else
6526 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6527 SCM_COMPLEX_IMAG (z));
6528#endif
6529 }
6530 else
6531 {
6532 /* When z is a negative bignum the conversion to double overflows,
6533 giving -infinity, but that's ok, the exp is still 0.0. */
6534 return scm_from_double (exp (scm_to_double (z)));
6535 }
6536}
6537#undef FUNC_NAME
6538
6539
6540SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6541 (SCM x),
6542 "Return the square root of @var{z}. Of the two possible roots\n"
6543 "(positive and negative), the one with the a positive real part\n"
6544 "is returned, or if that's zero then a positive imaginary part.\n"
6545 "Thus,\n"
6546 "\n"
6547 "@example\n"
6548 "(sqrt 9.0) @result{} 3.0\n"
6549 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6550 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6551 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6552 "@end example")
6553#define FUNC_NAME s_scm_sqrt
6554{
6555 if (SCM_COMPLEXP (x))
6556 {
4b26c03e 6557#if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6558 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6559#else
6560 double re = SCM_COMPLEX_REAL (x);
6561 double im = SCM_COMPLEX_IMAG (x);
6562 return scm_c_make_polar (sqrt (hypot (re, im)),
6563 0.5 * atan2 (im, re));
6564#endif
6565 }
6566 else
6567 {
6568 double xx = scm_to_double (x);
6569 if (xx < 0)
6570 return scm_c_make_rectangular (0.0, sqrt (-xx));
6571 else
6572 return scm_from_double (sqrt (xx));
6573 }
6574}
6575#undef FUNC_NAME
6576
6577
6578
0f2d19dd
JB
6579void
6580scm_init_numbers ()
0f2d19dd 6581{
0b799eea
MV
6582 int i;
6583
713a4259
KR
6584 mpz_init_set_si (z_negative_one, -1);
6585
a261c0e9
DH
6586 /* It may be possible to tune the performance of some algorithms by using
6587 * the following constants to avoid the creation of bignums. Please, before
6588 * using these values, remember the two rules of program optimization:
6589 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 6590 scm_c_define ("most-positive-fixnum",
d956fa6f 6591 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 6592 scm_c_define ("most-negative-fixnum",
d956fa6f 6593 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 6594
f3ae5d60
MD
6595 scm_add_feature ("complex");
6596 scm_add_feature ("inexact");
e7efe8e7 6597 flo0 = scm_from_double (0.0);
0b799eea
MV
6598
6599 /* determine floating point precision */
55f26379 6600 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
6601 {
6602 init_dblprec(&scm_dblprec[i-2],i);
6603 init_fx_radix(fx_per_radix[i-2],i);
6604 }
f872b822 6605#ifdef DBL_DIG
0b799eea 6606 /* hard code precision for base 10 if the preprocessor tells us to... */
f39448c5 6607 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
0b799eea 6608#endif
1be6b49c 6609
f39448c5 6610 exactly_one_half = scm_divide (SCM_I_MAKINUM (1), SCM_I_MAKINUM (2));
a0599745 6611#include "libguile/numbers.x"
0f2d19dd 6612}
89e00824
ML
6613
6614/*
6615 Local Variables:
6616 c-file-style: "gnu"
6617 End:
6618*/