macterm.c (XTread_socket): Correctly set the frame position
[bpt/emacs.git] / lispref / objects.texi
index fcd50f3..7c8eff0 100644 (file)
@@ -1,6 +1,7 @@
 @c -*-texinfo-*-
 @c This is part of the GNU Emacs Lisp Reference Manual.
-@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998 Free Software Foundation, Inc. 
+@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2003
+@c   Free Software Foundation, Inc.
 @c See the file elisp.texi for copying conditions.
 @setfilename ../info/objects
 @node Lisp Data Types, Numbers, Introduction, Top
@@ -22,12 +23,12 @@ but not for ``the'' type of an object.
 
 @cindex primitive type
   A few fundamental object types are built into Emacs.  These, from
-which all other types are constructed, are called @dfn{primitive
-types}.  Each object belongs to one and only one primitive type.  These
-types include @dfn{integer}, @dfn{float}, @dfn{cons}, @dfn{symbol},
-@dfn{string}, @dfn{vector}, @dfn{subr}, @dfn{byte-code function}, plus
-several special types, such as @dfn{buffer}, that are related to
-editing.  (@xref{Editing Types}.)
+which all other types are constructed, are called @dfn{primitive types}.
+Each object belongs to one and only one primitive type.  These types
+include @dfn{integer}, @dfn{float}, @dfn{cons}, @dfn{symbol},
+@dfn{string}, @dfn{vector}, @dfn{hash-table}, @dfn{subr}, and
+@dfn{byte-code function}, plus several special types, such as
+@dfn{buffer}, that are related to editing.  (@xref{Editing Types}.)
 
   Each primitive type has a corresponding Lisp function that checks
 whether an object is a member of that type.
@@ -41,7 +42,9 @@ it as a number; Lisp knows it is a vector, not a number.
 variable, and the type is known by the compiler but not represented in
 the data.  Such type declarations do not exist in Emacs Lisp.  A Lisp
 variable can have any type of value, and it remembers whatever value
-you store in it, type and all.
+you store in it, type and all.  (Actually, a small number of Emacs
+Lisp variables can only take on values of a certain type.
+@xref{Variables with Restricted Values}.)
 
   This chapter describes the purpose, printed representation, and read
 syntax of each of the standard types in GNU Emacs Lisp.  Details on how
@@ -52,6 +55,7 @@ to use these types can be found in later chapters.
 * Comments::                    Comments and their formatting conventions.
 * Programming Types::           Types found in all Lisp systems.
 * Editing Types::               Types specific to Emacs.
+* Circular Objects::            Read syntax for circular structure.
 * Type Predicates::             Tests related to types.
 * Equality Predicates::         Tests of equality between any two objects.
 @end menu
@@ -146,6 +150,7 @@ latter are unique to Emacs Lisp.
 * Vector Type::         One-dimensional arrays.
 * Char-Table Type::     One-dimensional sparse arrays indexed by characters.
 * Bool-Vector Type::    One-dimensional arrays of @code{t} or @code{nil}.
+* Hash Table Type::     Super-fast lookup tables.
 * Function Type::       A piece of executable code you can call from elsewhere.
 * Macro Type::          A method of expanding an expression into another
                           expression, more fundamental but less pretty.
@@ -158,24 +163,24 @@ latter are unique to Emacs Lisp.
 @node Integer Type
 @subsection Integer Type
 
-  The range of values for integers in Emacs Lisp is @minus{}134217728 to
-134217727 (28 bits; i.e.,
-@ifinfo
--2**27
-@end ifinfo
+  The range of values for integers in Emacs Lisp is @minus{}268435456 to
+268435455 (29 bits; i.e.,
+@ifnottex
+-2**28
+@end ifnottex
 @tex
-$-2^{27}$
+@math{-2^{28}}
 @end tex
 to
-@ifinfo
-2**27 - 1)
-@end ifinfo
+@ifnottex
+2**28 - 1)
+@end ifnottex
 @tex
-$2^{28}-1$)
+@math{2^{28}-1})
 @end tex
 on most machines.  (Some machines may provide a wider range.)  It is
 important to note that the Emacs Lisp arithmetic functions do not check
-for overflow.  Thus @code{(1+ 134217727)} is @minus{}134217728 on most
+for overflow.  Thus @code{(1+ 268435455)} is @minus{}268435456 on most
 machines.
 
   The read syntax for integers is a sequence of (base ten) digits with an
@@ -187,9 +192,9 @@ leading @samp{+} or a final @samp{.}.
 @group
 -1               ; @r{The integer -1.}
 1                ; @r{The integer 1.}
-1.               ; @r{Also The integer 1.}
+1.               ; @r{Also the integer 1.}
 +1               ; @r{Also the integer 1.}
-268435457        ; @r{Also the integer 1 on a 28-bit implementation.}
+536870913        ; @r{Also the integer 1 on a 29-bit implementation.}
 @end group
 @end example
 
@@ -198,9 +203,10 @@ leading @samp{+} or a final @samp{.}.
 @node Floating Point Type
 @subsection Floating Point Type
 
-  Emacs supports floating point numbers (though there is a compilation
-option to disable them).  The precise range of floating point numbers is
-machine-specific.
+  Floating point numbers are the computer equivalent of scientific
+notation.  The precise number of significant figures and the range of
+possible exponents is machine-specific; Emacs always uses the C data
+type @code{double} to store the value.
 
   The printed representation for floating point numbers requires either
 a decimal point (with at least one digit following), an exponent, or
@@ -212,7 +218,7 @@ number whose value is 1500.  They are all equivalent.
 
 @node Character Type
 @subsection Character Type
-@cindex @sc{ASCII} character codes
+@cindex @acronym{ASCII} character codes
 
   A @dfn{character} in Emacs Lisp is nothing more than an integer.  In
 other words, characters are represented by their character codes.  For
@@ -222,11 +228,12 @@ example, the character @kbd{A} is represented as the @w{integer 65}.
 common to work with @emph{strings}, which are sequences composed of
 characters.  @xref{String Type}.
 
-  Characters in strings, buffers, and files are currently limited to the
-range of 0 to 524287---nineteen bits.  But not all values in that range
-are valid character codes.  Codes 0 through 127 are ASCII codes; the
-rest are non-ASCII (@pxref{Non-ASCII Characters}).  Characters that represent
-keyboard input have a much wider range, to encode modifier keys such as
+  Characters in strings, buffers, and files are currently limited to
+the range of 0 to 524287---nineteen bits.  But not all values in that
+range are valid character codes.  Codes 0 through 127 are
+@acronym{ASCII} codes; the rest are non-@acronym{ASCII}
+(@pxref{Non-ASCII Characters}).  Characters that represent keyboard
+input have a much wider range, to encode modifier keys such as
 Control, Meta and Shift.
 
 @cindex read syntax for characters
@@ -244,7 +251,7 @@ with a question mark.
   The usual read syntax for alphanumeric characters is a question mark
 followed by the character; thus, @samp{?A} for the character
 @kbd{A}, @samp{?B} for the character @kbd{B}, and @samp{?a} for the
-character @kbd{a}.  
+character @kbd{a}.
 
   For example:
 
@@ -254,9 +261,9 @@ character @kbd{a}.
 
   You can use the same syntax for punctuation characters, but it is
 often a good idea to add a @samp{\} so that the Emacs commands for
-editing Lisp code don't get confused.  For example, @samp{?\ } is the
-way to write the space character.  If the character is @samp{\}, you
-@emph{must} use a second @samp{\} to quote it: @samp{?\\}.
+editing Lisp code don't get confused.  For example, @samp{?\(} is the
+way to write the open-paren character.  If the character is @samp{\},
+you @emph{must} use a second @samp{\} to quote it: @samp{?\\}.
 
 @cindex whitespace
 @cindex bell character
@@ -275,13 +282,16 @@ way to write the space character.  If the character is @samp{\}, you
 @cindex @samp{\r}
 @cindex escape
 @cindex @samp{\e}
-  You can express the characters Control-g, backspace, tab, newline,
-vertical tab, formfeed, return, and escape as @samp{?\a}, @samp{?\b},
-@samp{?\t}, @samp{?\n}, @samp{?\v}, @samp{?\f}, @samp{?\r}, @samp{?\e},
-respectively.  Thus,
+@cindex space
+@cindex @samp{\s}
+  You can express the characters control-g, backspace, tab, newline,
+vertical tab, formfeed, space, return, del, and escape as @samp{?\a},
+@samp{?\b}, @samp{?\t}, @samp{?\n}, @samp{?\v}, @samp{?\f},
+@samp{?\s}, @samp{?\r}, @samp{?\d}, and @samp{?\e}, respectively.
+Thus,
 
 @example
-?\a @result{} 7                 ; @r{@kbd{C-g}}
+?\a @result{} 7                 ; @r{control-g, @kbd{C-g}}
 ?\b @result{} 8                 ; @r{backspace, @key{BS}, @kbd{C-h}}
 ?\t @result{} 9                 ; @r{tab, @key{TAB}, @kbd{C-i}}
 ?\n @result{} 10                ; @r{newline, @kbd{C-j}}
@@ -289,13 +299,17 @@ respectively.  Thus,
 ?\f @result{} 12                ; @r{formfeed character, @kbd{C-l}}
 ?\r @result{} 13                ; @r{carriage return, @key{RET}, @kbd{C-m}}
 ?\e @result{} 27                ; @r{escape character, @key{ESC}, @kbd{C-[}}
+?\s @result{} 32                ; @r{space character, @key{SPC}}
 ?\\ @result{} 92                ; @r{backslash character, @kbd{\}}
+?\d @result{} 127               ; @r{delete character, @key{DEL}}
 @end example
 
 @cindex escape sequence
   These sequences which start with backslash are also known as
-@dfn{escape sequences}, because backslash plays the role of an escape
-character; this usage has nothing to do with the character @key{ESC}.
+@dfn{escape sequences}, because backslash plays the role of an
+``escape character''; this terminology has nothing to do with the
+character @key{ESC}.  @samp{\s} is meant for use only in character
+constants; in string constants, just write the space.
 
 @cindex control characters
   Control characters may be represented using yet another read syntax.
@@ -312,17 +326,17 @@ equivalent to @samp{?\^I} and to @samp{?\^i}:
 @end example
 
   In strings and buffers, the only control characters allowed are those
-that exist in @sc{ASCII}; but for keyboard input purposes, you can turn
+that exist in @acronym{ASCII}; but for keyboard input purposes, you can turn
 any character into a control character with @samp{C-}.  The character
-codes for these non-@sc{ASCII} control characters include the
+codes for these non-@acronym{ASCII} control characters include the
 @tex
-$2^{26}$
+@math{2^{26}}
 @end tex
-@ifinfo
+@ifnottex
 2**26
-@end ifinfo
+@end ifnottex
 bit as well as the code for the corresponding non-control
-character.  Ordinary terminals have no way of generating non-@sc{ASCII}
+character.  Ordinary terminals have no way of generating non-@acronym{ASCII}
 control characters, but you can generate them straightforwardly using X
 and other window systems.
 
@@ -349,27 +363,26 @@ people who read it.
   A @dfn{meta character} is a character typed with the @key{META}
 modifier key.  The integer that represents such a character has the
 @tex
-$2^{27}$
+@math{2^{27}}
 @end tex
-@ifinfo
+@ifnottex
 2**27
-@end ifinfo
-bit set (which on most machines makes it a negative number).  We
-use high bits for this and other modifiers to make possible a wide range
-of basic character codes.
+@end ifnottex
+bit set.  We use high bits for this and other modifiers to make
+possible a wide range of basic character codes.
 
   In a string, the
 @tex
-$2^{7}$
+@math{2^{7}}
 @end tex
-@ifinfo
+@ifnottex
 2**7
-@end ifinfo
-bit attached to an ASCII character indicates a meta character; thus, the
-meta characters that can fit in a string have codes in the range from
-128 to 255, and are the meta versions of the ordinary @sc{ASCII}
-characters.  (In Emacs versions 18 and older, this convention was used
-for characters outside of strings as well.)
+@end ifnottex
+bit attached to an @acronym{ASCII} character indicates a meta
+character; thus, the meta characters that can fit in a string have
+codes in the range from 128 to 255, and are the meta versions of the
+ordinary @acronym{ASCII} characters.  (In Emacs versions 18 and older,
+this convention was used for characters outside of strings as well.)
 
   The read syntax for meta characters uses @samp{\M-}.  For example,
 @samp{?\M-A} stands for @kbd{M-A}.  You can use @samp{\M-} together with
@@ -379,38 +392,40 @@ or as @samp{?\M-\101}.  Likewise, you can write @kbd{C-M-b} as
 @samp{?\M-\C-b}, @samp{?\C-\M-b}, or @samp{?\M-\002}.
 
   The case of a graphic character is indicated by its character code;
-for example, @sc{ASCII} distinguishes between the characters @samp{a}
-and @samp{A}.  But @sc{ASCII} has no way to represent whether a control
+for example, @acronym{ASCII} distinguishes between the characters @samp{a}
+and @samp{A}.  But @acronym{ASCII} has no way to represent whether a control
 character is upper case or lower case.  Emacs uses the
 @tex
-$2^{25}$
+@math{2^{25}}
 @end tex
-@ifinfo
+@ifnottex
 2**25
-@end ifinfo
+@end ifnottex
 bit to indicate that the shift key was used in typing a control
 character.  This distinction is possible only when you use X terminals
 or other special terminals; ordinary terminals do not report the
 distinction to the computer in any way.  The Lisp syntax for
-the shift bit is @samp{\S-}; thus, @samp{?\C-\S-o} or @samp{?\C-\S-O} 
+the shift bit is @samp{\S-}; thus, @samp{?\C-\S-o} or @samp{?\C-\S-O}
 represents the shifted-control-o character.
 
 @cindex hyper characters
 @cindex super characters
 @cindex alt characters
-  The X Window System defines three other modifier bits that can be set
+  The X Window System defines three other @anchor{modifier bits}
+modifier bits that can be set
 in a character: @dfn{hyper}, @dfn{super} and @dfn{alt}.  The syntaxes
 for these bits are @samp{\H-}, @samp{\s-} and @samp{\A-}.  (Case is
 significant in these prefixes.)  Thus, @samp{?\H-\M-\A-x} represents
-@kbd{Alt-Hyper-Meta-x}.
+@kbd{Alt-Hyper-Meta-x}.  (Note that @samp{\s} with no following @samp{-}
+represents the space character.)
 @tex
-Numerically, the
-bit values are $2^{22}$ for alt, $2^{23}$ for super and $2^{24}$ for hyper.
+Numerically, the bit values are @math{2^{22}} for alt, @math{2^{23}}
+for super and @math{2^{24}} for hyper.
 @end tex
-@ifinfo
+@ifnottex
 Numerically, the
 bit values are 2**22 for alt, 2**23 for super and 2**24 for hyper.
-@end ifinfo
+@end ifnottex
 
 @cindex @samp{\} in character constant
 @cindex backslash in character constant
@@ -420,9 +435,9 @@ character code in either octal or hex.  To use octal, write a question
 mark followed by a backslash and the octal character code (up to three
 octal digits); thus, @samp{?\101} for the character @kbd{A},
 @samp{?\001} for the character @kbd{C-a}, and @code{?\002} for the
-character @kbd{C-b}.  Although this syntax can represent any @sc{ASCII}
+character @kbd{C-b}.  Although this syntax can represent any @acronym{ASCII}
 character, it is preferred only when the precise octal value is more
-important than the @sc{ASCII} representation.
+important than the @acronym{ASCII} representation.
 
 @example
 @group
@@ -435,23 +450,26 @@ important than the @sc{ASCII} representation.
 and the hexadecimal character code.  You can use any number of hex
 digits, so you can represent any character code in this way.
 Thus, @samp{?\x41} for the character @kbd{A}, @samp{?\x1} for the
-character @kbd{C-a}, and @code{?\x8e0} for the character
+character @kbd{C-a}, and @code{?\x8e0} for the Latin-1 character
 @iftex
 @samp{@`a}.
 @end iftex
-@ifinfo
+@ifnottex
 @samp{a} with grave accent.
-@end ifinfo
+@end ifnottex
 
   A backslash is allowed, and harmless, preceding any character without
 a special escape meaning; thus, @samp{?\+} is equivalent to @samp{?+}.
 There is no reason to add a backslash before most characters.  However,
 you should add a backslash before any of the characters
 @samp{()\|;'`"#.,} to avoid confusing the Emacs commands for editing
-Lisp code.  Also add a backslash before whitespace characters such as
+Lisp code.  You can also add a backslash before whitespace characters such as
 space, tab, newline and formfeed.  However, it is cleaner to use one of
-the easily readable escape sequences, such as @samp{\t}, instead of an
-actual whitespace character such as a tab.
+the easily readable escape sequences, such as @samp{\t} or @samp{\s},
+instead of an actual whitespace character such as a tab or a space.
+(If you do write backslash followed by a space, you should write
+an extra space after the character constant to separate it from the
+following text.)
 
 @node Symbol Type
 @subsection Symbol Type
@@ -467,6 +485,11 @@ reliably.  In a given context, usually only one of these uses is
 intended.  But you can use one symbol in all of these ways,
 independently.
 
+  A symbol whose name starts with a colon (@samp{:}) is called a
+@dfn{keyword symbol}.  These symbols automatically act as constants, and
+are normally used only by comparing an unknown symbol with a few
+specific alternatives.
+
 @cindex @samp{\} in symbols
 @cindex backslash in symbols
   A symbol name can contain any characters whatever.  Most symbol names
@@ -474,7 +497,7 @@ are written with letters, digits, and the punctuation characters
 @samp{-+=*/}.  Such names require no special punctuation; the characters
 of the name suffice as long as the name does not look like a number.
 (If it does, write a @samp{\} at the beginning of the name to force
-interpretation as a symbol.)  The characters @samp{_~!@@$%^&:<>@{@}} are
+interpretation as a symbol.)  The characters @samp{_~!@@$%^&:<>@{@}?} are
 less often used but also require no special punctuation.  Any other
 characters may be included in a symbol's name by escaping them with a
 backslash.  In contrast to its use in strings, however, a backslash in
@@ -494,7 +517,7 @@ Lisp, upper case and lower case letters are distinct.
 
   Here are several examples of symbol names.  Note that the @samp{+} in
 the fifth example is escaped to prevent it from being read as a number.
-This is not necessary in the sixth example because the rest of the name
+This is not necessary in the seventh example because the rest of the name
 makes it invalid as a number.
 
 @example
@@ -520,6 +543,18 @@ char-to-string      ; @r{A symbol named @samp{char-to-string}.}
 @end group
 @end example
 
+@ifinfo
+@c This uses ``colon'' instead of a literal `:' because Info cannot
+@c cope with a `:' in a menu
+@cindex @samp{#@var{colon}} read syntax
+@end ifinfo
+@ifnotinfo
+@cindex @samp{#:} read syntax
+@end ifnotinfo
+  Normally the Lisp reader interns all symbols (@pxref{Creating
+Symbols}).  To prevent interning, you can write @samp{#:} before the
+name of the symbol.
+
 @node Sequence Type
 @subsection Sequence Types
 
@@ -531,11 +566,11 @@ considered a sequence.
   Arrays are further subdivided into strings, vectors, char-tables and
 bool-vectors.  Vectors can hold elements of any type, but string
 elements must be characters, and bool-vector elements must be @code{t}
-or @code{nil}.  The characters in a string can have text properties like
-characters in a buffer (@pxref{Text Properties}); vectors and
-bool-vectors do not support text properties even when their elements
-happen to be characters.  Char-tables are like vectors except that they
-are indexed by any valid character code.
+or @code{nil}.  Char-tables are like vectors except that they are
+indexed by any valid character code.  The characters in a string can
+have text properties like characters in a buffer (@pxref{Text
+Properties}), but vectors do not support text properties, even when
+their elements happen to be characters.
 
   Lists, strings and the other array types are different, but they have
 important similarities.  For example, all have a length @var{l}, and all
@@ -559,7 +594,7 @@ same object, @code{nil}.
 
   A @dfn{cons cell} is an object that consists of two slots, called the
 @sc{car} slot and the @sc{cdr} slot.  Each slot can @dfn{hold} or
-@dfn{refer to} any Lisp object.  We also say that the ``the @sc{car} of
+@dfn{refer to} any Lisp object.  We also say that ``the @sc{car} of
 this cons cell is'' whatever object its @sc{car} slot currently holds,
 and likewise for the @sc{cdr}.
 
@@ -696,7 +731,7 @@ that represents the @sc{car} and @sc{cdr} explicitly.  In this syntax,
 @code{(@var{a} .@: @var{b})} stands for a cons cell whose @sc{car} is
 the object @var{a}, and whose @sc{cdr} is the object @var{b}.  Dotted
 pair notation is therefore more general than list syntax.  In the dotted
-pair notation, the list @samp{(1 2 3)} is written as @samp{(1 .  (2 . (3
+pair notation, the list @samp{(1 2 3)} is written as @samp{(1 . (2 . (3
 . nil)))}.  For @code{nil}-terminated lists, you can use either
 notation, but list notation is usually clearer and more convenient.
 When printing a list, the dotted pair notation is only used if the
@@ -755,7 +790,7 @@ and looks like this:
 
   Similarly, the three-element list @code{(rose violet buttercup)}
 is equivalent to @code{(rose . (violet . (buttercup)))}.
-@ifinfo
+@ifnottex
 It looks like this:
 
 @example
@@ -768,7 +803,7 @@ It looks like this:
       --> rose     --> violet   --> buttercup
 @end group
 @end example
-@end ifinfo
+@end ifnottex
 
 @node Association List Type
 @comment  node-name,  next,  previous,  up
@@ -786,7 +821,7 @@ the list.
 
 @example
 (setq alist-of-colors
-      '((rose . red) (lily . white)  (buttercup . yellow)))
+      '((rose . red) (lily . white) (buttercup . yellow)))
 @end example
 
 @noindent
@@ -794,7 +829,8 @@ sets the variable @code{alist-of-colors} to an alist of three elements.  In the
 first element, @code{rose} is the key and @code{red} is the value.
 
   @xref{Association Lists}, for a further explanation of alists and for
-functions that work on alists.
+functions that work on alists.  @xref{Hash Tables}, for another kind of
+lookup table, which is much faster for handling a large number of keys.
 
 @node Array Type
 @subsection Array Type
@@ -876,17 +912,17 @@ ignores an escaped newline while reading a string.  An escaped space
 in documentation strings,
 but the newline is \
 ignored if escaped."
-     @result{} "It is useful to include newlines 
-in documentation strings, 
+     @result{} "It is useful to include newlines
+in documentation strings,
 but the newline is ignored if escaped."
 @end example
 
 @node Non-ASCII in Strings
-@subsubsection Non-ASCII Characters in Strings
+@subsubsection Non-@acronym{ASCII} Characters in Strings
 
-  You can include a non-@sc{ASCII} international character in a string
+  You can include a non-@acronym{ASCII} international character in a string
 constant by writing it literally.  There are two text representations
-for non-@sc{ASCII} characters in Emacs strings (and in buffers): unibyte
+for non-@acronym{ASCII} characters in Emacs strings (and in buffers): unibyte
 and multibyte.  If the string constant is read from a multibyte source,
 such as a multibyte buffer or string, or a file that would be visited as
 multibyte, then the character is read as a multibyte character, and that
@@ -894,9 +930,9 @@ makes the string multibyte.  If the string constant is read from a
 unibyte source, then the character is read as unibyte and that makes the
 string unibyte.
 
-  You can also represent a multibyte non-@sc{ASCII} character with its
-character code, using a hex escape, @samp{\x@var{nnnnnnn}}, with as many
-digits as necessary.  (Multibyte non-@sc{ASCII} character codes are all
+  You can also represent a multibyte non-@acronym{ASCII} character with its
+character code: use a hex escape, @samp{\x@var{nnnnnnn}}, with as many
+digits as necessary.  (Multibyte non-@acronym{ASCII} character codes are all
 greater than 256.)  Any character which is not a valid hex digit
 terminates this construct.  If the next character in the string could be
 interpreted as a hex digit, write @w{@samp{\ }} (backslash and space) to
@@ -905,11 +941,14 @@ one character, @samp{a} with grave accent.  @w{@samp{\ }} in a string
 constant is just like backslash-newline; it does not contribute any
 character to the string, but it does terminate the preceding hex escape.
 
-  Using a multibyte hex escape forces the string to multibyte.  You can
-represent a unibyte non-@sc{ASCII} character with its character code,
-which must be in the range from 128 (0200 octal) to 255 (0377 octal).
-This forces a unibyte string.
-  
+  You can represent a unibyte non-@acronym{ASCII} character with its
+character code, which must be in the range from 128 (0200 octal) to
+255 (0377 octal).  If you write all such character codes in octal and
+the string contains no other characters forcing it to be multibyte,
+this produces a unibyte string.  However, using any hex escape in a
+string (even for an @acronym{ASCII} character) forces the string to be
+multibyte.
+
   @xref{Text Representations}, for more information about the two
 text representations.
 
@@ -925,20 +964,20 @@ description of the read syntax for characters.
 
   However, not all of the characters you can write with backslash
 escape-sequences are valid in strings.  The only control characters that
-a string can hold are the @sc{ASCII} control characters.  Strings do not
-distinguish case in @sc{ASCII} control characters.
+a string can hold are the @acronym{ASCII} control characters.  Strings do not
+distinguish case in @acronym{ASCII} control characters.
 
   Properly speaking, strings cannot hold meta characters; but when a
 string is to be used as a key sequence, there is a special convention
-that provides a way to represent meta versions of @sc{ASCII} characters in a
-string.  If you use the @samp{\M-} syntax to indicate a meta character
-in a string constant, this sets the
+that provides a way to represent meta versions of @acronym{ASCII}
+characters in a string.  If you use the @samp{\M-} syntax to indicate
+a meta character in a string constant, this sets the
 @tex
-$2^{7}$
+@math{2^{7}}
 @end tex
-@ifinfo
+@ifnottex
 2**7
-@end ifinfo
+@end ifnottex
 bit of the character in the string.  If the string is used in
 @code{define-key} or @code{lookup-key}, this numeric code is translated
 into the equivalent meta character.  @xref{Character Type}.
@@ -1031,7 +1070,7 @@ Case tables (@pxref{Case Tables}).
 Character category tables (@pxref{Categories}).
 
 @item
-Display Tables (@pxref{Display Tables}).
+Display tables (@pxref{Display Tables}).
 
 @item
 Syntax tables (@pxref{Syntax Tables}).
@@ -1043,26 +1082,48 @@ Syntax tables (@pxref{Syntax Tables}).
   A @dfn{bool-vector} is a one-dimensional array of elements that
 must be @code{t} or @code{nil}.
 
-  The printed representation of a Bool-vector is like a string, except
+  The printed representation of a bool-vector is like a string, except
 that it begins with @samp{#&} followed by the length.  The string
 constant that follows actually specifies the contents of the bool-vector
 as a bitmap---each ``character'' in the string contains 8 bits, which
 specify the next 8 elements of the bool-vector (1 stands for @code{t},
-and 0 for @code{nil}).  The least significant bits of the character 
-correspond to the lowest indices in the bool-vector.  If the length is not a
-multiple of 8, the printed representation shows extra elements, but
-these extras really make no difference.
+and 0 for @code{nil}).  The least significant bits of the character
+correspond to the lowest indices in the bool-vector.
 
 @example
 (make-bool-vector 3 t)
-     @result{} #&3"\007"
+     @result{} #&3"^G"
 (make-bool-vector 3 nil)
-     @result{} #&3"\0"
-;; @r{These are equal since only the first 3 bits are used.}
+     @result{} #&3"^@@"
+@end example
+
+@noindent
+These results make sense, because the binary code for @samp{C-g} is
+111 and @samp{C-@@} is the character with code 0.
+
+  If the length is not a multiple of 8, the printed representation
+shows extra elements, but these extras really make no difference.  For
+instance, in the next example, the two bool-vectors are equal, because
+only the first 3 bits are used:
+
+@example
 (equal #&3"\377" #&3"\007")
      @result{} t
 @end example
 
+@node Hash Table Type
+@subsection Hash Table Type
+
+    A hash table is a very fast kind of lookup table, somewhat like an
+alist in that it maps keys to corresponding values, but much faster.
+Hash tables are a new feature in Emacs 21; they have no read syntax, and
+print using hash notation.  @xref{Hash Tables}.
+
+@example
+(make-hash-table)
+     @result{} #<hash-table 'eql nil 0/65 0x83af980>
+@end example
+
 @node Function Type
 @subsection Function Type
 
@@ -1156,11 +1217,11 @@ opening @samp{[}.
 @subsection Autoload Type
 
   An @dfn{autoload object} is a list whose first element is the symbol
-@code{autoload}.  It is stored as the function definition of a symbol as
-a placeholder for the real definition; it says that the real definition
-is found in a file of Lisp code that should be loaded when necessary.
-The autoload object contains the name of the file, plus some other
-information about the real definition.
+@code{autoload}.  It is stored as the function definition of a symbol,
+where it serves as a placeholder for the real definition.  The autoload
+object says that the real definition is found in a file of Lisp code
+that should be loaded when necessary.  It contains the name of the file,
+plus some other information about the real definition.
 
   After the file has been loaded, the symbol should have a new function
 definition that is not an autoload object.  The new definition is then
@@ -1207,9 +1268,9 @@ buffer need not be displayed in any window.
   The contents of a buffer are much like a string, but buffers are not
 used like strings in Emacs Lisp, and the available operations are
 different.  For example, you can insert text efficiently into an
-existing buffer, whereas ``inserting'' text into a string requires
-concatenating substrings, and the result is an entirely new string
-object.
+existing buffer, altering the buffer's contents, whereas ``inserting''
+text into a string requires concatenating substrings, and the result is
+an entirely new string object.
 
   Each buffer has a designated position called @dfn{point}
 (@pxref{Positions}).  At any time, one buffer is the @dfn{current
@@ -1431,6 +1492,69 @@ positions.
 
   @xref{Overlays}, for how to create and use overlays.
 
+@node Circular Objects
+@section Read Syntax for Circular Objects
+@cindex circular structure, read syntax
+@cindex shared structure, read syntax
+@cindex @samp{#@var{n}=} read syntax
+@cindex @samp{#@var{n}#} read syntax
+
+  In Emacs 21, to represent shared or circular structures within a
+complex of Lisp objects, you can use the reader constructs
+@samp{#@var{n}=} and @samp{#@var{n}#}.
+
+  Use @code{#@var{n}=} before an object to label it for later reference;
+subsequently, you can use @code{#@var{n}#} to refer the same object in
+another place.  Here, @var{n} is some integer.  For example, here is how
+to make a list in which the first element recurs as the third element:
+
+@example
+(#1=(a) b #1#)
+@end example
+
+@noindent
+This differs from ordinary syntax such as this
+
+@example
+((a) b (a))
+@end example
+
+@noindent
+which would result in a list whose first and third elements
+look alike but are not the same Lisp object.  This shows the difference:
+
+@example
+(prog1 nil
+  (setq x '(#1=(a) b #1#)))
+(eq (nth 0 x) (nth 2 x))
+     @result{} t
+(setq x '((a) b (a)))
+(eq (nth 0 x) (nth 2 x))
+     @result{} nil
+@end example
+
+  You can also use the same syntax to make a circular structure, which
+appears as an ``element'' within itself.  Here is an example:
+
+@example
+#1=(a #1#)
+@end example
+
+@noindent
+This makes a list whose second element is the list itself.
+Here's how you can see that it really works:
+
+@example
+(prog1 nil
+  (setq x '#1=(a #1#)))
+(eq x (cadr x))
+     @result{} t
+@end example
+
+  The Lisp printer can produce this syntax to record circular and shared
+structure in a Lisp object, if you bind the variable @code{print-circle}
+to a non-@code{nil} value.  @xref{Output Variables}.
+
 @node Type Predicates
 @section Type Predicates
 @cindex predicates
@@ -1546,6 +1670,9 @@ with references to further information.
 @item keymapp
 @xref{Creating Keymaps, keymapp}.
 
+@item keywordp
+@xref{Constant Variables}.
+
 @item listp
 @xref{List-related Predicates, listp}.
 
@@ -1612,7 +1739,7 @@ types.  In most cases, it is more convenient to use type predicates than
 This function returns a symbol naming the primitive type of
 @var{object}.  The value is one of the symbols @code{symbol},
 @code{integer}, @code{float}, @code{string}, @code{cons}, @code{vector},
-@code{char-table}, @code{bool-vector}, @code{subr},
+@code{char-table}, @code{bool-vector}, @code{hash-table}, @code{subr},
 @code{compiled-function}, @code{marker}, @code{overlay}, @code{window},
 @code{buffer}, @code{frame}, @code{process}, or
 @code{window-configuration}.
@@ -1709,8 +1836,9 @@ Symbols}.
 This function returns @code{t} if @var{object1} and @var{object2} have
 equal components, @code{nil} otherwise.  Whereas @code{eq} tests if its
 arguments are the same object, @code{equal} looks inside nonidentical
-arguments to see if their elements are the same.  So, if two objects are
-@code{eq}, they are @code{equal}, but the converse is not always true.
+arguments to see if their elements or contents are the same.  So, if two
+objects are @code{eq}, they are @code{equal}, but the converse is not
+always true.
 
 @example
 @group
@@ -1762,9 +1890,12 @@ arguments to see if their elements are the same.  So, if two objects are
 @end example
 
 Comparison of strings is case-sensitive, but does not take account of
-text properties---it compares only the characters in the strings.
-A unibyte string never equals a multibyte string unless the
-contents are entirely @sc{ASCII} (@pxref{Text Representations}).
+text properties---it compares only the characters in the strings.  For
+technical reasons, a unibyte string and a multibyte string are
+@code{equal} if and only if they contain the same sequence of
+character codes and all these codes are either in the range 0 through
+127 (@acronym{ASCII}) or 160 through 255 (@code{eight-bit-graphic}).
+(@pxref{Text Representations}).
 
 @example
 @group
@@ -1773,9 +1904,23 @@ contents are entirely @sc{ASCII} (@pxref{Text Representations}).
 @end group
 @end example
 
-Two distinct buffers are never @code{equal}, even if their contents
-are the same.
+However, two distinct buffers are never considered @code{equal}, even if
+their textual contents are the same.
 @end defun
 
-  The test for equality is implemented recursively, and circular lists may
-therefore cause infinite recursion (leading to an error).
+  The test for equality is implemented recursively; for example, given
+two cons cells @var{x} and @var{y}, @code{(equal @var{x} @var{y})}
+returns @code{t} if and only if both the expressions below return
+@code{t}:
+
+@example
+(equal (car @var{x}) (car @var{y}))
+(equal (cdr @var{x}) (cdr @var{y}))
+@end example
+
+Because of this recursive method, circular lists may therefore cause
+infinite recursion (leading to an error).
+
+@ignore
+   arch-tag: 9711a66e-4749-4265-9e8c-972d55b67096
+@end ignore