Reposition @anchor's.
[bpt/emacs.git] / lispref / lists.texi
index b123de5..d30dcb0 100644 (file)
@@ -1,6 +1,7 @@
 @c -*-texinfo-*-
 @c This is part of the GNU Emacs Lisp Reference Manual.
-@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999
+@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999,
+@c 2003, 2004
 @c   Free Software Foundation, Inc.
 @c See the file elisp.texi for copying conditions.
 @setfilename ../info/lists
@@ -51,16 +52,37 @@ the @sc{car} and the @sc{cdr} is entirely a matter of convention; at the
 level of cons cells, the @sc{car} and @sc{cdr} slots have the same
 characteristics.
 
+@cindex true list
+  Since @code{nil} is the conventional value to put in the @sc{cdr} of
+the last cons cell in the list, we call that case a @dfn{true list}.
+
+  In Lisp, we consider the symbol @code{nil} a list as well as a
+symbol; it is the list with no elements.  For convenience, the symbol
+@code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
+as its @sc{car}).  Therefore, the @sc{cdr} of a true list is always a
+true list.
+
+@cindex dotted list
+@cindex circular list
+  If the @sc{cdr} of a list's last cons cell is some other value,
+neither @code{nil} nor another cons cell, we call the structure a
+@dfn{dotted list}, since its printed representation would use
+@samp{.}.  There is one other possibility: some cons cell's @sc{cdr}
+could point to one of the previous cons cells in the list.  We call
+that structure a @dfn{circular list}.
+
+  For some purposes, it does not matter whether a list is true,
+circular or dotted.  If the program doesn't look far enough down the
+list to see the @sc{cdr} of the final cons cell, it won't care.
+However, some functions that operate on lists demand true lists and
+signal errors if given a dotted list.  Most functions that try to find
+the end of a list enter infinite loops if given a circular list.
+
 @cindex list structure
   Because most cons cells are used as part of lists, the phrase
 @dfn{list structure} has come to mean any structure made out of cons
 cells.
 
-  The symbol @code{nil} is considered a list as well as a symbol; it is
-the list with no elements.  For convenience, the symbol @code{nil} is
-considered to have @code{nil} as its @sc{cdr} (and also as its
-@sc{car}).
-
   The @sc{cdr} of any nonempty list @var{l} is a list containing all the
 elements of @var{l} except the first.
 
@@ -328,6 +350,7 @@ x
 @end defmac
 
 @defun nth n list
+@anchor{Definition of nth}
 This function returns the @var{n}th element of @var{list}.  Elements
 are numbered starting with zero, so the @sc{car} of @var{list} is
 element number zero.  If the length of @var{list} is @var{n} or less,
@@ -392,12 +415,14 @@ if @var{n} is bigger than @var{list}'s length.
 @end defun
 
 @defun safe-length list
-This function returns the length of @var{list}, with no risk
-of either an error or an infinite loop.
-
-If @var{list} is not really a list, @code{safe-length} returns 0.  If
-@var{list} is circular, it returns a finite value which is at least the
-number of distinct elements.
+@anchor{Definition of safe-length}
+This function returns the length of @var{list}, with no risk of either
+an error or an infinite loop.  It generally returns the number of
+distinct cons cells in the list.  However, for circular lists,
+the value is just an upper bound; it is often too large.
+
+If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
+returns 0.
 @end defun
 
   The most common way to compute the length of a list, when you are not
@@ -448,11 +473,11 @@ interesting to note that @code{list} is used more times in the source
 code for Emacs than @code{cons}.
 
 @defun cons object1 object2
-This function is the fundamental function used to build new list
+This function is the most basic function for building new list
 structure.  It creates a new cons cell, making @var{object1} the
-@sc{car}, and @var{object2} the @sc{cdr}.  It then returns the new cons
-cell.  The arguments @var{object1} and @var{object2} may be any Lisp
-objects, but most often @var{object2} is a list.
+@sc{car}, and @var{object2} the @sc{cdr}.  It then returns the new
+cons cell.  The arguments @var{object1} and @var{object2} may be any
+Lisp objects, but most often @var{object2} is a list.
 
 @example
 @group
@@ -565,7 +590,7 @@ object.  The final argument is not copied or converted; it becomes the
 @sc{cdr} of the last cons cell in the new list.  If the final argument
 is itself a list, then its elements become in effect elements of the
 result list.  If the final element is not a list, the result is a
-``dotted list'' since its final @sc{cdr} is not @code{nil} as required
+dotted list since its final @sc{cdr} is not @code{nil} as required
 in a true list.
 
 In Emacs 20 and before, the @code{append} function also allowed
@@ -708,7 +733,7 @@ x
 @end defun
 
 @defun copy-tree tree &optional vecp
-This function returns a copy the tree @code{tree}.  If @var{tree} is a
+This function returns a copy of the tree @code{tree}.  If @var{tree} is a
 cons cell, this makes a new cons cell with the same @sc{car} and
 @sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
 same way.
@@ -732,7 +757,7 @@ All arguments can be integers or floating point numbers.  However,
 floating point arguments can be tricky, because floating point
 arithmetic is inexact.  For instance, depending on the machine, it may
 quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
-the one element list @code{(0.4)}, whereas 
+the one element list @code{(0.4)}, whereas
 @code{(number-sequence 0.4 0.8 0.2)} returns a list with three
 elements.  The @var{n}th element of the list is computed by the exact
 formula @code{(+ @var{from} (* @var{n} @var{separation}))}.  Thus, if
@@ -1223,7 +1248,8 @@ useful example of @code{sort}.
   A list can represent an unordered mathematical set---simply consider a
 value an element of a set if it appears in the list, and ignore the
 order of the list.  To form the union of two sets, use @code{append} (as
-long as you don't mind having duplicate elements).  Other useful
+long as you don't mind having duplicate elements).  You can remove
+@code{equal} duplicates using @code{delete-dups}.  Other useful
 functions for sets include @code{memq} and @code{delq}, and their
 @code{equal} versions, @code{member} and @code{delete}.
 
@@ -1431,6 +1457,13 @@ be a string and that it ignores differences in letter-case and text
 representation: upper-case and lower-case letters are treated as
 equal, and unibyte strings are converted to multibyte prior to
 comparison.
+@end defun
+
+@defun delete-dups list
+This function destructively removes all @code{equal} duplicates from
+@var{list}, stores the result in @var{list} and returns it.  Of
+several @code{equal} occurrences of an element in @var{list},
+@code{delete-dups} keeps the first one.
 @end defun
 
   See also the function @code{add-to-list}, in @ref{Setting Variables},