Correct the explanation of glyphs and glyph table.
[bpt/emacs.git] / lispref / strings.texi
index dc4aaab..f35f94b 100644 (file)
@@ -1,6 +1,7 @@
 @c -*-texinfo-*-
 @c This is part of the GNU Emacs Lisp Reference Manual.
-@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998 Free Software Foundation, Inc. 
+@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999
+@c   Free Software Foundation, Inc. 
 @c See the file elisp.texi for copying conditions.
 @setfilename ../info/strings
 @node Strings and Characters, Lists, Numbers, Top
@@ -13,8 +14,8 @@
 
   A string in Emacs Lisp is an array that contains an ordered sequence
 of characters.  Strings are used as names of symbols, buffers, and
-files, to send messages to users, to hold text being copied between
-buffers, and for many other purposes.  Because strings are so important,
+files; to send messages to users; to hold text being copied between
+buffers; and for many other purposes.  Because strings are so important,
 Emacs Lisp has many functions expressly for manipulating them.  Emacs
 Lisp programs use strings more often than individual characters.
 
@@ -27,7 +28,7 @@ keyboard character events.
 * Creating Strings::          Functions to allocate new strings.
 * Modifying Strings::         Altering the contents of an existing string.
 * Text Comparison::           Comparing characters or strings.
-* String Conversion::         Converting characters or strings and vice versa.
+* String Conversion::         Converting to and from characters and strings.
 * Formatting Strings::        @code{format}: Emacs's analogue of @code{printf}.
 * Case Conversion::           Case conversion functions.
 * Case Tables::                      Customizing case conversion.
@@ -36,15 +37,14 @@ keyboard character events.
 @node String Basics
 @section String and Character Basics
 
-  Strings in Emacs Lisp are arrays that contain an ordered sequence of
-characters.  Characters are represented in Emacs Lisp as integers;
+  Characters are represented in Emacs Lisp as integers;
 whether an integer is a character or not is determined only by how it is
 used.  Thus, strings really contain integers.
 
   The length of a string (like any array) is fixed, and cannot be
 altered once the string exists.  Strings in Lisp are @emph{not}
 terminated by a distinguished character code.  (By contrast, strings in
-C are terminated by a character with @sc{ASCII} code 0.)
+C are terminated by a character with @sc{ascii} code 0.)
 
   Since strings are arrays, and therefore sequences as well, you can
 operate on them with the general array and sequence functions.
@@ -52,25 +52,25 @@ operate on them with the general array and sequence functions.
 change individual characters in a string using the functions @code{aref}
 and @code{aset} (@pxref{Array Functions}).
 
-  There are two text representations for non-@sc{ASCII} characters in
+  There are two text representations for non-@sc{ascii} characters in
 Emacs strings (and in buffers): unibyte and multibyte (@pxref{Text
-Representations}).  @sc{ASCII} characters always occupy one byte in a
-string; in fact, there is no real difference between the two
-representation for a string which is all @sc{ASCII}.  For most Lisp
-programming, you don't need to be concerned with these two
+Representations}).  An @sc{ascii} character always occupies one byte in a
+string; in fact, when a string is all @sc{ascii}, there is no real
+difference between the unibyte and multibyte representations.
+For most Lisp programming, you don't need to be concerned with these two
 representations.
 
   Sometimes key sequences are represented as strings.  When a string is
 a key sequence, string elements in the range 128 to 255 represent meta
-characters (which are extremely large integers) rather than character
+characters (which are large integers) rather than character
 codes in the range 128 to 255.
 
   Strings cannot hold characters that have the hyper, super or alt
-modifiers; they can hold @sc{ASCII} control characters, but no other
-control characters.  They do not distinguish case in @sc{ASCII} control
+modifiers; they can hold @sc{ascii} control characters, but no other
+control characters.  They do not distinguish case in @sc{ascii} control
 characters.  If you want to store such characters in a sequence, such as
 a key sequence, you must use a vector instead of a string.
-@xref{Character Type}, for more information about representation of meta
+@xref{Character Type}, for more information about the representation of meta
 and other modifiers for keyboard input characters.
 
   Strings are useful for holding regular expressions.  You can also
@@ -88,7 +88,7 @@ strings also copy the properties of the characters being copied.
 copy them into buffers.  @xref{Character Type}, and @ref{String Type},
 for information about the syntax of characters and strings.
 @xref{Non-ASCII Characters}, for functions to convert between text
-representations and encode and decode character codes.
+representations and to encode and decode character codes.
 
 @node Predicates for Strings
 @section The Predicates for Strings
@@ -129,7 +129,6 @@ This function returns a string made up of @var{count} repetitions of
 @end defun
 
 @defun string &rest characters
-@tindex string
 This returns a string containing the characters @var{characters}.
 
 @example
@@ -201,7 +200,7 @@ Functions}).
 If the characters copied from @var{string} have text properties, the
 properties are copied into the new string also.  @xref{Text Properties}.
 
-@code{substring} also allows vectors for the first argument.
+@code{substring} also accepts a vector for the first argument.
 For example:
 
 @example
@@ -247,23 +246,13 @@ returns an empty string.
 The @code{concat} function always constructs a new string that is
 not @code{eq} to any existing string.
 
-When an argument is an integer (not a sequence of integers), it is
-converted to a string of digits making up the decimal printed
-representation of the integer.  @strong{Don't use this feature; we plan
-to eliminate it.  If you already use this feature, change your programs
-now!}  The proper way to convert an integer to a decimal number in this
-way is with @code{format} (@pxref{Formatting Strings}) or
+In Emacs versions before 21, when an argument was an integer (not a
+sequence of integers), it was converted to a string of digits making up
+the decimal printed representation of the integer.  This obsolete usage
+no longer works.  The proper way to convert an integer to its decimal
+printed form is with @code{format} (@pxref{Formatting Strings}) or
 @code{number-to-string} (@pxref{String Conversion}).
 
-@example
-@group
-(concat 137)
-     @result{} "137"
-(concat 54 321)
-     @result{} "54321"
-@end group
-@end example
-
 For information about other concatenation functions, see the
 description of @code{mapconcat} in @ref{Mapping Functions},
 @code{vconcat} in @ref{Vectors}, and @code{append} in @ref{Building
@@ -271,12 +260,12 @@ Lists}.
 @end defun
 
 @defun split-string string separators
-@tindex split-string
-Split @var{string} into substrings in between matches for the regular
+This function splits @var{string} into substrings at matches for the regular
 expression @var{separators}.  Each match for @var{separators} defines a
 splitting point; the substrings between the splitting points are made
-into a list, which is the value.  If @var{separators} is @code{nil} (or
-omitted), the default is @code{"[ \f\t\n\r\v]+"}.
+into a list, which is the value returned by @code{split-string}.
+If @var{separators} is @code{nil} (or omitted),
+the default is @code{"[ \f\t\n\r\v]+"}.
 
 For example,
 
@@ -319,14 +308,13 @@ that index, @code{aset} signals an error.
   A more powerful function is @code{store-substring}:
 
 @defun store-substring string idx obj
-@tindex store-substring
 This function alters part of the contents of the string @var{string}, by
 storing @var{obj} starting at index @var{idx}.  The argument @var{obj}
 may be either a character or a (smaller) string.
 
 Since it is impossible to change the length of an existing string, it is
 an error if @var{obj} doesn't fit within @var{string}'s actual length,
-of if any new character requires a different number of bytes from the
+or if any new character requires a different number of bytes from the
 character currently present at that point in @var{string}.
 @end defun
 
@@ -351,7 +339,8 @@ in case if @code{case-fold-search} is non-@code{nil}.
 
 @defun string= string1 string2
 This function returns @code{t} if the characters of the two strings
-match exactly; case is significant.
+match exactly.
+Case is always significant, regardless of @code{case-fold-search}.
 
 @example
 (string= "abc" "abc")
@@ -366,7 +355,7 @@ The function @code{string=} ignores the text properties of the two
 strings.  When @code{equal} (@pxref{Equality Predicates}) compares two
 strings, it uses @code{string=}.
 
-If the strings contain non-@sc{ASCII} characters, and one is unibyte
+If the strings contain non-@sc{ascii} characters, and one is unibyte
 while the other is multibyte, then they cannot be equal.  @xref{Text
 Representations}.
 @end defun
@@ -378,9 +367,9 @@ Representations}.
 @cindex lexical comparison
 @defun string< string1 string2
 @c (findex string< causes problems for permuted index!!)
-This function compares two strings a character at a time.  First it
-scans both the strings at once to find the first pair of corresponding
-characters that do not match.  If the lesser character of those two is
+This function compares two strings a character at a time.  It
+scans both the strings at the same time to find the first pair of corresponding
+characters that do not match.  If the lesser character of these two is
 the character from @var{string1}, then @var{string1} is less, and this
 function returns @code{t}.  If the lesser character is the one from
 @var{string2}, then @var{string1} is greater, and this function returns
@@ -388,11 +377,11 @@ function returns @code{t}.  If the lesser character is the one from
 
 Pairs of characters are compared according to their character codes.
 Keep in mind that lower case letters have higher numeric values in the
-@sc{ASCII} character set than their upper case counterparts; digits and
+@sc{ascii} character set than their upper case counterparts; digits and
 many punctuation characters have a lower numeric value than upper case
-letters.  An @sc{ASCII} character is less than any non-@sc{ASCII}
-character; a unibyte non-@sc{ASCII} character is always less than any
-multibyte non-@sc{ASCII} character (@pxref{Text Representations}).
+letters.  An @sc{ascii} character is less than any non-@sc{ascii}
+character; a unibyte non-@sc{ascii} character is always less than any
+multibyte non-@sc{ascii} character (@pxref{Text Representations}).
 
 @example
 @group
@@ -431,12 +420,12 @@ no characters is less than any other string.
 @end defun
 
 @defun compare-strings string1 start1 end1 string2 start2 end2 &optional ignore-case
-@tindex compare-strings
-This function compares a specified part of @var{string1} with a
+This function compares the specified part of @var{string1} with the
 specified part of @var{string2}.  The specified part of @var{string1}
-runs from index @var{start1} up to index @var{end1} (default, the end of
-the string).  The specified part of @var{string2} runs from index
-@var{start2} up to index @var{end2} (default, the end of the string).
+runs from index @var{start1} up to index @var{end1} (@code{nil} means
+the end of the string).  The specified part of @var{string2} runs from
+index @var{start2} up to index @var{end2} (@code{nil} means the end of
+the string).
 
 The strings are both converted to multibyte for the comparison
 (@pxref{Text Representations}) so that a unibyte string can be equal to
@@ -452,14 +441,12 @@ portion) is less.
 @end defun
 
 @defun assoc-ignore-case key alist
-@tindex assoc-ignore-case
 This function works like @code{assoc}, except that @var{key} must be a
-string, and comparison is done using @code{compare-strings}.
-Case differences are ignored in this comparison.
+string, and comparison is done using @code{compare-strings}, ignoring
+case differences.  @xref{Association Lists}.
 @end defun
 
 @defun assoc-ignore-representation key alist
-@tindex assoc-ignore-representation
 This function works like @code{assoc}, except that @var{key} must be a
 string, and comparison is done using @code{compare-strings}.
 Case differences are significant.
@@ -499,7 +486,7 @@ This function returns a new string containing one character,
 @cindex string to character
   This function returns the first character in @var{string}.  If the
 string is empty, the function returns 0.  The value is also 0 when the
-first character of @var{string} is the null character, @sc{ASCII} code
+first character of @var{string} is the null character, @sc{ascii} code
 0.
 
 @example
@@ -509,8 +496,10 @@ first character of @var{string} is the null character, @sc{ASCII} code
      @result{} 120
 (string-to-char "")
      @result{} 0
+@group
 (string-to-char "\000")
      @result{} 0
+@end group
 @end example
 
 This function may be eliminated in the future if it does not seem useful
@@ -520,9 +509,9 @@ enough to retain.
 @defun number-to-string number
 @cindex integer to string
 @cindex integer to decimal
-This function returns a string consisting of the printed
+This function returns a string consisting of the printed base-ten
 representation of @var{number}, which may be an integer or a floating
-point number.  The value starts with a sign if the argument is
+point number.  The returned value starts with a minus sign if the argument is
 negative.
 
 @example
@@ -547,13 +536,16 @@ This function returns the numeric value of the characters in
 in that base.  If @var{base} is @code{nil}, then base ten is used.
 Floating point conversion always uses base ten; we have not implemented
 other radices for floating point numbers, because that would be much
-more work and does not seem useful.
+more work and does not seem useful.  If @var{string} looks like an
+integer but its value is too large to fit into a Lisp integer,
+@code{string-to-number} returns a floating point result.
 
 The parsing skips spaces and tabs at the beginning of @var{string}, then
 reads as much of @var{string} as it can interpret as a number.  (On some
 systems it ignores other whitespace at the beginning, not just spaces
-and tabs.)  If the first character after the ignored whitespace is not a
-digit or a plus or minus sign, this function returns 0.
+and tabs.)  If the first character after the ignored whitespace is
+neither a digit, nor a plus or minus sign, nor the leading dot of a
+floating point number, this function returns 0.
 
 @example
 (string-to-number "256")
@@ -564,6 +556,8 @@ digit or a plus or minus sign, this function returns 0.
      @result{} 0
 (string-to-number "-4.5")
      @result{} -4.5
+(string-to-number "1e5")
+     @result{} 100000.0
 @end example
 
 @findex string-to-int
@@ -592,8 +586,8 @@ Functions}.
 @cindex strings, formatting them
 
   @dfn{Formatting} means constructing a string by substitution of
-computed values at various places in a constant string.  This string
-controls how the other values are printed as well as where they appear;
+computed values at various places in a constant string.  This constant string
+controls how the other values are printed, as well as where they appear;
 it is called a @dfn{format string}.
 
   Formatting is often useful for computing messages to be displayed.  In
@@ -606,6 +600,10 @@ This function returns a new string that is made by copying
 @var{string} and then replacing any format specification 
 in the copy with encodings of the corresponding @var{objects}.  The
 arguments @var{objects} are the computed values to be formatted.
+
+The characters in @var{string}, other than the format specifications,
+are copied directly into the output; starting in Emacs 21, if they have
+text properties, these are copied into the output also.
 @end defun
 
 @cindex @samp{%} in format
@@ -624,7 +622,7 @@ For example:
 @end example
 
   If @var{string} contains more than one format specification, the
-format specifications correspond with successive values from
+format specifications correspond to successive values from
 @var{objects}.  Thus, the first format specification in @var{string}
 uses the first such value, the second format specification uses the
 second such value, and so on.  Any extra format specifications (those
@@ -645,6 +643,10 @@ made without quoting (that is, using @code{princ}, not
 by their contents alone, with no @samp{"} characters, and symbols appear
 without @samp{\} characters.
 
+Starting in Emacs 21, if the object is a string, its text properties are
+copied into the output.  The text properties of the @samp{%s} itself
+are also copied, but those of the object take priority.
+
 If there is no corresponding object, the empty string is used.
 
 @item %S
@@ -665,9 +667,10 @@ Replace the specification with the base-ten representation of an
 integer.
 
 @item %x
+@itemx %X
 @cindex integer to hexadecimal
 Replace the specification with the base-sixteen representation of an
-integer.
+integer.  @samp{%x} uses lower case and @samp{%X} uses upper case.
 
 @item %c
 Replace the specification with the character which is the value given.
@@ -686,9 +689,9 @@ using either exponential notation or decimal-point notation, whichever
 is shorter.
 
 @item %%
-A single @samp{%} is placed in the string.  This format specification is
-unusual in that it does not use a value.  For example, @code{(format "%%
-%d" 30)} returns @code{"% 30"}.
+Replace the specification with a single @samp{%}.  This format
+specification is unusual in that it does not use a value.  For example,
+@code{(format "%% %d" 30)} returns @code{"% 30"}.
 @end table
 
   Any other format character results in an @samp{Invalid format
@@ -773,15 +776,15 @@ not truncated.  In the third case, the padding is on the right.
   The character case functions change the case of single characters or
 of the contents of strings.  The functions normally convert only
 alphabetic characters (the letters @samp{A} through @samp{Z} and
-@samp{a} through @samp{z}, as well as non-ASCII letters); other
-characters are not altered.  (You can specify a different case
-conversion mapping by specifying a case table---@pxref{Case Tables}.)
+@samp{a} through @samp{z}, as well as non-@sc{ascii} letters); other
+characters are not altered.  You can specify a different case
+conversion mapping by specifying a case table (@pxref{Case Tables}).
 
   These functions do not modify the strings that are passed to them as
 arguments.
 
   The examples below use the characters @samp{X} and @samp{x} which have
-@sc{ASCII} codes 88 and 120 respectively.
+@sc{ascii} codes 88 and 120 respectively.
 
 @defun downcase string-or-char
 This function converts a character or a string to lower case.
@@ -813,7 +816,7 @@ lower case is converted to upper case.
 When the argument to @code{upcase} is a character, @code{upcase}
 returns the corresponding upper case character.  This value is an integer.
 If the original character is upper case, or is not a letter, then the
-value equals the original character.
+value returned equals the original character.
 
 @example
 (upcase "The cat in the hat")
@@ -835,7 +838,7 @@ case.
 
 The definition of a word is any sequence of consecutive characters that
 are assigned to the word constituent syntax class in the current syntax
-table (@xref{Syntax Class Table}).
+table (@pxref{Syntax Class Table}).
 
 When the argument to @code{capitalize} is a character, @code{capitalize}
 has the same result as @code{upcase}.
@@ -855,14 +858,14 @@ has the same result as @code{upcase}.
 @end defun
 
 @defun upcase-initials string
-This function capitalizes the initials of the words in @var{string}.
+This function capitalizes the initials of the words in @var{string},
 without altering any letters other than the initials.  It returns a new
 string whose contents are a copy of @var{string}, in which each word has
-been converted to upper case.
+had its initial letter converted to upper case.
 
 The definition of a word is any sequence of consecutive characters that
 are assigned to the word constituent syntax class in the current syntax
-table (@xref{Syntax Class Table}).
+table (@pxref{Syntax Class Table}).
 
 @example
 @group
@@ -920,7 +923,7 @@ of them, or @samp{A} for both of them).
 
   The extra table @var{equivalences} is a map that cyclicly permutes
 each equivalence class (of characters with the same canonical
-equivalent).  (For ordinary @sc{ASCII}, this would map @samp{a} into
+equivalent).  (For ordinary @sc{ascii}, this would map @samp{a} into
 @samp{A} and @samp{A} into @samp{a}, and likewise for each set of
 equivalent characters.)
 
@@ -957,7 +960,7 @@ This sets the current buffer's case table to @var{table}.
 @end defun
 
   The following three functions are convenient subroutines for packages
-that define non-@sc{ASCII} character sets.  They modify the specified
+that define non-@sc{ascii} character sets.  They modify the specified
 case table @var{case-table}; they also modify the standard syntax table.
 @xref{Syntax Tables}.  Normally you would use these functions to change
 the standard case table.