dbeb1d0ba0816ab2b21a762c0385d8ee940ace2d
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
68 bool, struct tm *);
69 static int tm_diff (struct tm *, struct tm *);
70 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
71
72 static Lisp_Object Qbuffer_access_fontify_functions;
73
74 /* Symbol for the text property used to mark fields. */
75
76 Lisp_Object Qfield;
77
78 /* A special value for Qfield properties. */
79
80 static Lisp_Object Qboundary;
81
82 /* The startup value of the TZ environment variable so it can be
83 restored if the user calls set-time-zone-rule with a nil
84 argument. If null, the TZ environment variable was unset. */
85 static char const *initial_tz;
86
87 /* True if the static variable tzvalbuf (defined in
88 set_time_zone_rule) is part of 'environ'. */
89 static bool tzvalbuf_in_environ;
90
91
92 void
93 init_editfns (void)
94 {
95 const char *user_name;
96 register char *p;
97 struct passwd *pw; /* password entry for the current user */
98 Lisp_Object tem;
99
100 /* Set up system_name even when dumping. */
101 init_system_name ();
102
103 #ifndef CANNOT_DUMP
104 /* Don't bother with this on initial start when just dumping out */
105 if (!initialized)
106 return;
107 #endif /* not CANNOT_DUMP */
108
109 initial_tz = getenv ("TZ");
110 tzvalbuf_in_environ = 0;
111
112 pw = getpwuid (getuid ());
113 #ifdef MSDOS
114 /* We let the real user name default to "root" because that's quite
115 accurate on MSDOG and because it lets Emacs find the init file.
116 (The DVX libraries override the Djgpp libraries here.) */
117 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
118 #else
119 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
120 #endif
121
122 /* Get the effective user name, by consulting environment variables,
123 or the effective uid if those are unset. */
124 user_name = getenv ("LOGNAME");
125 if (!user_name)
126 #ifdef WINDOWSNT
127 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
128 #else /* WINDOWSNT */
129 user_name = getenv ("USER");
130 #endif /* WINDOWSNT */
131 if (!user_name)
132 {
133 pw = getpwuid (geteuid ());
134 user_name = pw ? pw->pw_name : "unknown";
135 }
136 Vuser_login_name = build_string (user_name);
137
138 /* If the user name claimed in the environment vars differs from
139 the real uid, use the claimed name to find the full name. */
140 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
141 if (! NILP (tem))
142 tem = Vuser_login_name;
143 else
144 {
145 uid_t euid = geteuid ();
146 tem = make_fixnum_or_float (euid);
147 }
148 Vuser_full_name = Fuser_full_name (tem);
149
150 p = getenv ("NAME");
151 if (p)
152 Vuser_full_name = build_string (p);
153 else if (NILP (Vuser_full_name))
154 Vuser_full_name = build_string ("unknown");
155
156 #ifdef HAVE_SYS_UTSNAME_H
157 {
158 struct utsname uts;
159 uname (&uts);
160 Voperating_system_release = build_string (uts.release);
161 }
162 #else
163 Voperating_system_release = Qnil;
164 #endif
165 }
166 \f
167 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
168 doc: /* Convert arg CHAR to a string containing that character.
169 usage: (char-to-string CHAR) */)
170 (Lisp_Object character)
171 {
172 int c, len;
173 unsigned char str[MAX_MULTIBYTE_LENGTH];
174
175 CHECK_CHARACTER (character);
176 c = XFASTINT (character);
177
178 len = CHAR_STRING (c, str);
179 return make_string_from_bytes ((char *) str, 1, len);
180 }
181
182 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
183 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
184 (Lisp_Object byte)
185 {
186 unsigned char b;
187 CHECK_NUMBER (byte);
188 if (XINT (byte) < 0 || XINT (byte) > 255)
189 error ("Invalid byte");
190 b = XINT (byte);
191 return make_string_from_bytes ((char *) &b, 1, 1);
192 }
193
194 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
195 doc: /* Return the first character in STRING. */)
196 (register Lisp_Object string)
197 {
198 register Lisp_Object val;
199 CHECK_STRING (string);
200 if (SCHARS (string))
201 {
202 if (STRING_MULTIBYTE (string))
203 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
204 else
205 XSETFASTINT (val, SREF (string, 0));
206 }
207 else
208 XSETFASTINT (val, 0);
209 return val;
210 }
211
212 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
213 doc: /* Return value of point, as an integer.
214 Beginning of buffer is position (point-min). */)
215 (void)
216 {
217 Lisp_Object temp;
218 XSETFASTINT (temp, PT);
219 return temp;
220 }
221
222 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
223 doc: /* Return value of point, as a marker object. */)
224 (void)
225 {
226 return build_marker (current_buffer, PT, PT_BYTE);
227 }
228
229 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
230 doc: /* Set point to POSITION, a number or marker.
231 Beginning of buffer is position (point-min), end is (point-max).
232
233 The return value is POSITION. */)
234 (register Lisp_Object position)
235 {
236 if (MARKERP (position))
237 set_point_from_marker (position);
238 else if (INTEGERP (position))
239 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
240 else
241 wrong_type_argument (Qinteger_or_marker_p, position);
242 return position;
243 }
244
245
246 /* Return the start or end position of the region.
247 BEGINNINGP means return the start.
248 If there is no region active, signal an error. */
249
250 static Lisp_Object
251 region_limit (bool beginningp)
252 {
253 Lisp_Object m;
254
255 if (!NILP (Vtransient_mark_mode)
256 && NILP (Vmark_even_if_inactive)
257 && NILP (BVAR (current_buffer, mark_active)))
258 xsignal0 (Qmark_inactive);
259
260 m = Fmarker_position (BVAR (current_buffer, mark));
261 if (NILP (m))
262 error ("The mark is not set now, so there is no region");
263
264 /* Clip to the current narrowing (bug#11770). */
265 return make_number ((PT < XFASTINT (m)) == beginningp
266 ? PT
267 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
268 }
269
270 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
271 doc: /* Return the integer value of point or mark, whichever is smaller. */)
272 (void)
273 {
274 return region_limit (1);
275 }
276
277 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
278 doc: /* Return the integer value of point or mark, whichever is larger. */)
279 (void)
280 {
281 return region_limit (0);
282 }
283
284 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
285 doc: /* Return this buffer's mark, as a marker object.
286 Watch out! Moving this marker changes the mark position.
287 If you set the marker not to point anywhere, the buffer will have no mark. */)
288 (void)
289 {
290 return BVAR (current_buffer, mark);
291 }
292
293 \f
294 /* Find all the overlays in the current buffer that touch position POS.
295 Return the number found, and store them in a vector in VEC
296 of length LEN. */
297
298 static ptrdiff_t
299 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
300 {
301 Lisp_Object overlay, start, end;
302 struct Lisp_Overlay *tail;
303 ptrdiff_t startpos, endpos;
304 ptrdiff_t idx = 0;
305
306 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
307 {
308 XSETMISC (overlay, tail);
309
310 end = OVERLAY_END (overlay);
311 endpos = OVERLAY_POSITION (end);
312 if (endpos < pos)
313 break;
314 start = OVERLAY_START (overlay);
315 startpos = OVERLAY_POSITION (start);
316 if (startpos <= pos)
317 {
318 if (idx < len)
319 vec[idx] = overlay;
320 /* Keep counting overlays even if we can't return them all. */
321 idx++;
322 }
323 }
324
325 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
326 {
327 XSETMISC (overlay, tail);
328
329 start = OVERLAY_START (overlay);
330 startpos = OVERLAY_POSITION (start);
331 if (pos < startpos)
332 break;
333 end = OVERLAY_END (overlay);
334 endpos = OVERLAY_POSITION (end);
335 if (pos <= endpos)
336 {
337 if (idx < len)
338 vec[idx] = overlay;
339 idx++;
340 }
341 }
342
343 return idx;
344 }
345
346 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
347 doc: /* Return the value of POSITION's property PROP, in OBJECT.
348 Almost identical to `get-char-property' except for the following difference:
349 Whereas `get-char-property' returns the property of the char at (i.e. right
350 after) POSITION, this pays attention to properties's stickiness and overlays's
351 advancement settings, in order to find the property of POSITION itself,
352 i.e. the property that a char would inherit if it were inserted
353 at POSITION. */)
354 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
355 {
356 CHECK_NUMBER_COERCE_MARKER (position);
357
358 if (NILP (object))
359 XSETBUFFER (object, current_buffer);
360 else if (WINDOWP (object))
361 object = XWINDOW (object)->contents;
362
363 if (!BUFFERP (object))
364 /* pos-property only makes sense in buffers right now, since strings
365 have no overlays and no notion of insertion for which stickiness
366 could be obeyed. */
367 return Fget_text_property (position, prop, object);
368 else
369 {
370 EMACS_INT posn = XINT (position);
371 ptrdiff_t noverlays;
372 Lisp_Object *overlay_vec, tem;
373 struct buffer *obuf = current_buffer;
374 USE_SAFE_ALLOCA;
375
376 set_buffer_temp (XBUFFER (object));
377
378 /* First try with room for 40 overlays. */
379 noverlays = 40;
380 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
381 noverlays = overlays_around (posn, overlay_vec, noverlays);
382
383 /* If there are more than 40,
384 make enough space for all, and try again. */
385 if (noverlays > 40)
386 {
387 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
388 noverlays = overlays_around (posn, overlay_vec, noverlays);
389 }
390 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
391
392 set_buffer_temp (obuf);
393
394 /* Now check the overlays in order of decreasing priority. */
395 while (--noverlays >= 0)
396 {
397 Lisp_Object ol = overlay_vec[noverlays];
398 tem = Foverlay_get (ol, prop);
399 if (!NILP (tem))
400 {
401 /* Check the overlay is indeed active at point. */
402 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
403 if ((OVERLAY_POSITION (start) == posn
404 && XMARKER (start)->insertion_type == 1)
405 || (OVERLAY_POSITION (finish) == posn
406 && XMARKER (finish)->insertion_type == 0))
407 ; /* The overlay will not cover a char inserted at point. */
408 else
409 {
410 SAFE_FREE ();
411 return tem;
412 }
413 }
414 }
415 SAFE_FREE ();
416
417 { /* Now check the text properties. */
418 int stickiness = text_property_stickiness (prop, position, object);
419 if (stickiness > 0)
420 return Fget_text_property (position, prop, object);
421 else if (stickiness < 0
422 && XINT (position) > BUF_BEGV (XBUFFER (object)))
423 return Fget_text_property (make_number (XINT (position) - 1),
424 prop, object);
425 else
426 return Qnil;
427 }
428 }
429 }
430
431 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
432 the value of point is used instead. If BEG or END is null,
433 means don't store the beginning or end of the field.
434
435 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
436 results; they do not effect boundary behavior.
437
438 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
439 position of a field, then the beginning of the previous field is
440 returned instead of the beginning of POS's field (since the end of a
441 field is actually also the beginning of the next input field, this
442 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
443 non-nil case, if two fields are separated by a field with the special
444 value `boundary', and POS lies within it, then the two separated
445 fields are considered to be adjacent, and POS between them, when
446 finding the beginning and ending of the "merged" field.
447
448 Either BEG or END may be 0, in which case the corresponding value
449 is not stored. */
450
451 static void
452 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
453 Lisp_Object beg_limit,
454 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
455 {
456 /* Fields right before and after the point. */
457 Lisp_Object before_field, after_field;
458 /* True if POS counts as the start of a field. */
459 bool at_field_start = 0;
460 /* True if POS counts as the end of a field. */
461 bool at_field_end = 0;
462
463 if (NILP (pos))
464 XSETFASTINT (pos, PT);
465 else
466 CHECK_NUMBER_COERCE_MARKER (pos);
467
468 after_field
469 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
470 before_field
471 = (XFASTINT (pos) > BEGV
472 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
473 Qfield, Qnil, NULL)
474 /* Using nil here would be a more obvious choice, but it would
475 fail when the buffer starts with a non-sticky field. */
476 : after_field);
477
478 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
479 and POS is at beginning of a field, which can also be interpreted
480 as the end of the previous field. Note that the case where if
481 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
482 more natural one; then we avoid treating the beginning of a field
483 specially. */
484 if (NILP (merge_at_boundary))
485 {
486 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
487 if (!EQ (field, after_field))
488 at_field_end = 1;
489 if (!EQ (field, before_field))
490 at_field_start = 1;
491 if (NILP (field) && at_field_start && at_field_end)
492 /* If an inserted char would have a nil field while the surrounding
493 text is non-nil, we're probably not looking at a
494 zero-length field, but instead at a non-nil field that's
495 not intended for editing (such as comint's prompts). */
496 at_field_end = at_field_start = 0;
497 }
498
499 /* Note about special `boundary' fields:
500
501 Consider the case where the point (`.') is between the fields `x' and `y':
502
503 xxxx.yyyy
504
505 In this situation, if merge_at_boundary is non-nil, consider the
506 `x' and `y' fields as forming one big merged field, and so the end
507 of the field is the end of `y'.
508
509 However, if `x' and `y' are separated by a special `boundary' field
510 (a field with a `field' char-property of 'boundary), then ignore
511 this special field when merging adjacent fields. Here's the same
512 situation, but with a `boundary' field between the `x' and `y' fields:
513
514 xxx.BBBByyyy
515
516 Here, if point is at the end of `x', the beginning of `y', or
517 anywhere in-between (within the `boundary' field), merge all
518 three fields and consider the beginning as being the beginning of
519 the `x' field, and the end as being the end of the `y' field. */
520
521 if (beg)
522 {
523 if (at_field_start)
524 /* POS is at the edge of a field, and we should consider it as
525 the beginning of the following field. */
526 *beg = XFASTINT (pos);
527 else
528 /* Find the previous field boundary. */
529 {
530 Lisp_Object p = pos;
531 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
532 /* Skip a `boundary' field. */
533 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
534 beg_limit);
535
536 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
537 beg_limit);
538 *beg = NILP (p) ? BEGV : XFASTINT (p);
539 }
540 }
541
542 if (end)
543 {
544 if (at_field_end)
545 /* POS is at the edge of a field, and we should consider it as
546 the end of the previous field. */
547 *end = XFASTINT (pos);
548 else
549 /* Find the next field boundary. */
550 {
551 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
552 /* Skip a `boundary' field. */
553 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
554 end_limit);
555
556 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
557 end_limit);
558 *end = NILP (pos) ? ZV : XFASTINT (pos);
559 }
560 }
561 }
562
563 \f
564 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
565 doc: /* Delete the field surrounding POS.
566 A field is a region of text with the same `field' property.
567 If POS is nil, the value of point is used for POS. */)
568 (Lisp_Object pos)
569 {
570 ptrdiff_t beg, end;
571 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
572 if (beg != end)
573 del_range (beg, end);
574 return Qnil;
575 }
576
577 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
578 doc: /* Return the contents of the field surrounding POS as a string.
579 A field is a region of text with the same `field' property.
580 If POS is nil, the value of point is used for POS. */)
581 (Lisp_Object pos)
582 {
583 ptrdiff_t beg, end;
584 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
585 return make_buffer_string (beg, end, 1);
586 }
587
588 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
589 doc: /* Return the contents of the field around POS, without text properties.
590 A field is a region of text with the same `field' property.
591 If POS is nil, the value of point is used for POS. */)
592 (Lisp_Object pos)
593 {
594 ptrdiff_t beg, end;
595 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
596 return make_buffer_string (beg, end, 0);
597 }
598
599 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
600 doc: /* Return the beginning of the field surrounding POS.
601 A field is a region of text with the same `field' property.
602 If POS is nil, the value of point is used for POS.
603 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
604 field, then the beginning of the *previous* field is returned.
605 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
606 is before LIMIT, then LIMIT will be returned instead. */)
607 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
608 {
609 ptrdiff_t beg;
610 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
611 return make_number (beg);
612 }
613
614 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
615 doc: /* Return the end of the field surrounding POS.
616 A field is a region of text with the same `field' property.
617 If POS is nil, the value of point is used for POS.
618 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
619 then the end of the *following* field is returned.
620 If LIMIT is non-nil, it is a buffer position; if the end of the field
621 is after LIMIT, then LIMIT will be returned instead. */)
622 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
623 {
624 ptrdiff_t end;
625 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
626 return make_number (end);
627 }
628
629 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
630 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
631 A field is a region of text with the same `field' property.
632
633 If NEW-POS is nil, then use the current point instead, and move point
634 to the resulting constrained position, in addition to returning that
635 position.
636
637 If OLD-POS is at the boundary of two fields, then the allowable
638 positions for NEW-POS depends on the value of the optional argument
639 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
640 constrained to the field that has the same `field' char-property
641 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
642 is non-nil, NEW-POS is constrained to the union of the two adjacent
643 fields. Additionally, if two fields are separated by another field with
644 the special value `boundary', then any point within this special field is
645 also considered to be `on the boundary'.
646
647 If the optional argument ONLY-IN-LINE is non-nil and constraining
648 NEW-POS would move it to a different line, NEW-POS is returned
649 unconstrained. This is useful for commands that move by line, like
650 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
651 only in the case where they can still move to the right line.
652
653 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
654 a non-nil property of that name, then any field boundaries are ignored.
655
656 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
657 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
658 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
659 {
660 /* If non-zero, then the original point, before re-positioning. */
661 ptrdiff_t orig_point = 0;
662 bool fwd;
663 Lisp_Object prev_old, prev_new;
664
665 if (NILP (new_pos))
666 /* Use the current point, and afterwards, set it. */
667 {
668 orig_point = PT;
669 XSETFASTINT (new_pos, PT);
670 }
671
672 CHECK_NUMBER_COERCE_MARKER (new_pos);
673 CHECK_NUMBER_COERCE_MARKER (old_pos);
674
675 fwd = (XINT (new_pos) > XINT (old_pos));
676
677 prev_old = make_number (XINT (old_pos) - 1);
678 prev_new = make_number (XINT (new_pos) - 1);
679
680 if (NILP (Vinhibit_field_text_motion)
681 && !EQ (new_pos, old_pos)
682 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
683 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
684 /* To recognize field boundaries, we must also look at the
685 previous positions; we could use `Fget_pos_property'
686 instead, but in itself that would fail inside non-sticky
687 fields (like comint prompts). */
688 || (XFASTINT (new_pos) > BEGV
689 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
690 || (XFASTINT (old_pos) > BEGV
691 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
692 && (NILP (inhibit_capture_property)
693 /* Field boundaries are again a problem; but now we must
694 decide the case exactly, so we need to call
695 `get_pos_property' as well. */
696 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
697 && (XFASTINT (old_pos) <= BEGV
698 || NILP (Fget_char_property
699 (old_pos, inhibit_capture_property, Qnil))
700 || NILP (Fget_char_property
701 (prev_old, inhibit_capture_property, Qnil))))))
702 /* It is possible that NEW_POS is not within the same field as
703 OLD_POS; try to move NEW_POS so that it is. */
704 {
705 ptrdiff_t shortage;
706 Lisp_Object field_bound;
707
708 if (fwd)
709 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
710 else
711 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
712
713 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
714 other side of NEW_POS, which would mean that NEW_POS is
715 already acceptable, and it's not necessary to constrain it
716 to FIELD_BOUND. */
717 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
718 /* NEW_POS should be constrained, but only if either
719 ONLY_IN_LINE is nil (in which case any constraint is OK),
720 or NEW_POS and FIELD_BOUND are on the same line (in which
721 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
722 && (NILP (only_in_line)
723 /* This is the ONLY_IN_LINE case, check that NEW_POS and
724 FIELD_BOUND are on the same line by seeing whether
725 there's an intervening newline or not. */
726 || (find_newline (XFASTINT (new_pos), -1,
727 XFASTINT (field_bound), -1,
728 fwd ? -1 : 1, &shortage, NULL, 1),
729 shortage != 0)))
730 /* Constrain NEW_POS to FIELD_BOUND. */
731 new_pos = field_bound;
732
733 if (orig_point && XFASTINT (new_pos) != orig_point)
734 /* The NEW_POS argument was originally nil, so automatically set PT. */
735 SET_PT (XFASTINT (new_pos));
736 }
737
738 return new_pos;
739 }
740
741 \f
742 DEFUN ("line-beginning-position",
743 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
744 doc: /* Return the character position of the first character on the current line.
745 With optional argument N, scan forward N - 1 lines first.
746 If the scan reaches the end of the buffer, return that position.
747
748 This function ignores text display directionality; it returns the
749 position of the first character in logical order, i.e. the smallest
750 character position on the line.
751
752 This function constrains the returned position to the current field
753 unless that position would be on a different line than the original,
754 unconstrained result. If N is nil or 1, and a front-sticky field
755 starts at point, the scan stops as soon as it starts. To ignore field
756 boundaries, bind `inhibit-field-text-motion' to t.
757
758 This function does not move point. */)
759 (Lisp_Object n)
760 {
761 ptrdiff_t orig, orig_byte, end;
762 ptrdiff_t count = SPECPDL_INDEX ();
763 specbind (Qinhibit_point_motion_hooks, Qt);
764
765 if (NILP (n))
766 XSETFASTINT (n, 1);
767 else
768 CHECK_NUMBER (n);
769
770 orig = PT;
771 orig_byte = PT_BYTE;
772 Fforward_line (make_number (XINT (n) - 1));
773 end = PT;
774
775 SET_PT_BOTH (orig, orig_byte);
776
777 unbind_to (count, Qnil);
778
779 /* Return END constrained to the current input field. */
780 return Fconstrain_to_field (make_number (end), make_number (orig),
781 XINT (n) != 1 ? Qt : Qnil,
782 Qt, Qnil);
783 }
784
785 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
786 doc: /* Return the character position of the last character on the current line.
787 With argument N not nil or 1, move forward N - 1 lines first.
788 If scan reaches end of buffer, return that position.
789
790 This function ignores text display directionality; it returns the
791 position of the last character in logical order, i.e. the largest
792 character position on the line.
793
794 This function constrains the returned position to the current field
795 unless that would be on a different line than the original,
796 unconstrained result. If N is nil or 1, and a rear-sticky field ends
797 at point, the scan stops as soon as it starts. To ignore field
798 boundaries bind `inhibit-field-text-motion' to t.
799
800 This function does not move point. */)
801 (Lisp_Object n)
802 {
803 ptrdiff_t clipped_n;
804 ptrdiff_t end_pos;
805 ptrdiff_t orig = PT;
806
807 if (NILP (n))
808 XSETFASTINT (n, 1);
809 else
810 CHECK_NUMBER (n);
811
812 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
813 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
814 NULL);
815
816 /* Return END_POS constrained to the current input field. */
817 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
818 Qnil, Qt, Qnil);
819 }
820
821 /* Save current buffer state for `save-excursion' special form.
822 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
823 offload some work from GC. */
824
825 Lisp_Object
826 save_excursion_save (void)
827 {
828 return make_save_obj_obj_obj_obj
829 (Fpoint_marker (),
830 /* Do not copy the mark if it points to nowhere. */
831 (XMARKER (BVAR (current_buffer, mark))->buffer
832 ? Fcopy_marker (BVAR (current_buffer, mark), Qnil)
833 : Qnil),
834 /* Selected window if current buffer is shown in it, nil otherwise. */
835 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
836 ? selected_window : Qnil),
837 BVAR (current_buffer, mark_active));
838 }
839
840 /* Restore saved buffer before leaving `save-excursion' special form. */
841
842 void
843 save_excursion_restore (Lisp_Object info)
844 {
845 Lisp_Object tem, tem1, omark, nmark;
846 struct gcpro gcpro1, gcpro2, gcpro3;
847
848 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
849 /* If we're unwinding to top level, saved buffer may be deleted. This
850 means that all of its markers are unchained and so tem is nil. */
851 if (NILP (tem))
852 goto out;
853
854 omark = nmark = Qnil;
855 GCPRO3 (info, omark, nmark);
856
857 Fset_buffer (tem);
858
859 /* Point marker. */
860 tem = XSAVE_OBJECT (info, 0);
861 Fgoto_char (tem);
862 unchain_marker (XMARKER (tem));
863
864 /* Mark marker. */
865 tem = XSAVE_OBJECT (info, 1);
866 omark = Fmarker_position (BVAR (current_buffer, mark));
867 if (NILP (tem))
868 unchain_marker (XMARKER (BVAR (current_buffer, mark)));
869 else
870 {
871 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
872 nmark = Fmarker_position (tem);
873 unchain_marker (XMARKER (tem));
874 }
875
876 /* Mark active. */
877 tem = XSAVE_OBJECT (info, 3);
878 tem1 = BVAR (current_buffer, mark_active);
879 bset_mark_active (current_buffer, tem);
880
881 /* If mark is active now, and either was not active
882 or was at a different place, run the activate hook. */
883 if (! NILP (tem))
884 {
885 if (! EQ (omark, nmark))
886 {
887 tem = intern ("activate-mark-hook");
888 Frun_hooks (1, &tem);
889 }
890 }
891 /* If mark has ceased to be active, run deactivate hook. */
892 else if (! NILP (tem1))
893 {
894 tem = intern ("deactivate-mark-hook");
895 Frun_hooks (1, &tem);
896 }
897
898 /* If buffer was visible in a window, and a different window was
899 selected, and the old selected window is still showing this
900 buffer, restore point in that window. */
901 tem = XSAVE_OBJECT (info, 2);
902 if (WINDOWP (tem)
903 && !EQ (tem, selected_window)
904 && (tem1 = XWINDOW (tem)->contents,
905 (/* Window is live... */
906 BUFFERP (tem1)
907 /* ...and it shows the current buffer. */
908 && XBUFFER (tem1) == current_buffer)))
909 Fset_window_point (tem, make_number (PT));
910
911 UNGCPRO;
912
913 out:
914
915 free_misc (info);
916 }
917
918 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
919 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
920 Executes BODY just like `progn'.
921 The values of point, mark and the current buffer are restored
922 even in case of abnormal exit (throw or error).
923 The state of activation of the mark is also restored.
924
925 This construct does not save `deactivate-mark', and therefore
926 functions that change the buffer will still cause deactivation
927 of the mark at the end of the command. To prevent that, bind
928 `deactivate-mark' with `let'.
929
930 If you only want to save the current buffer but not point nor mark,
931 then just use `save-current-buffer', or even `with-current-buffer'.
932
933 usage: (save-excursion &rest BODY) */)
934 (Lisp_Object args)
935 {
936 register Lisp_Object val;
937 ptrdiff_t count = SPECPDL_INDEX ();
938
939 record_unwind_protect (save_excursion_restore, save_excursion_save ());
940
941 val = Fprogn (args);
942 return unbind_to (count, val);
943 }
944
945 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
946 doc: /* Record which buffer is current; execute BODY; make that buffer current.
947 BODY is executed just like `progn'.
948 usage: (save-current-buffer &rest BODY) */)
949 (Lisp_Object args)
950 {
951 ptrdiff_t count = SPECPDL_INDEX ();
952
953 record_unwind_current_buffer ();
954 return unbind_to (count, Fprogn (args));
955 }
956 \f
957 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
958 doc: /* Return the number of characters in the current buffer.
959 If BUFFER, return the number of characters in that buffer instead. */)
960 (Lisp_Object buffer)
961 {
962 if (NILP (buffer))
963 return make_number (Z - BEG);
964 else
965 {
966 CHECK_BUFFER (buffer);
967 return make_number (BUF_Z (XBUFFER (buffer))
968 - BUF_BEG (XBUFFER (buffer)));
969 }
970 }
971
972 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
973 doc: /* Return the minimum permissible value of point in the current buffer.
974 This is 1, unless narrowing (a buffer restriction) is in effect. */)
975 (void)
976 {
977 Lisp_Object temp;
978 XSETFASTINT (temp, BEGV);
979 return temp;
980 }
981
982 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
983 doc: /* Return a marker to the minimum permissible value of point in this buffer.
984 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
985 (void)
986 {
987 return build_marker (current_buffer, BEGV, BEGV_BYTE);
988 }
989
990 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
991 doc: /* Return the maximum permissible value of point in the current buffer.
992 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
993 is in effect, in which case it is less. */)
994 (void)
995 {
996 Lisp_Object temp;
997 XSETFASTINT (temp, ZV);
998 return temp;
999 }
1000
1001 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1002 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1003 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1004 is in effect, in which case it is less. */)
1005 (void)
1006 {
1007 return build_marker (current_buffer, ZV, ZV_BYTE);
1008 }
1009
1010 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1011 doc: /* Return the position of the gap, in the current buffer.
1012 See also `gap-size'. */)
1013 (void)
1014 {
1015 Lisp_Object temp;
1016 XSETFASTINT (temp, GPT);
1017 return temp;
1018 }
1019
1020 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1021 doc: /* Return the size of the current buffer's gap.
1022 See also `gap-position'. */)
1023 (void)
1024 {
1025 Lisp_Object temp;
1026 XSETFASTINT (temp, GAP_SIZE);
1027 return temp;
1028 }
1029
1030 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1031 doc: /* Return the byte position for character position POSITION.
1032 If POSITION is out of range, the value is nil. */)
1033 (Lisp_Object position)
1034 {
1035 CHECK_NUMBER_COERCE_MARKER (position);
1036 if (XINT (position) < BEG || XINT (position) > Z)
1037 return Qnil;
1038 return make_number (CHAR_TO_BYTE (XINT (position)));
1039 }
1040
1041 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1042 doc: /* Return the character position for byte position BYTEPOS.
1043 If BYTEPOS is out of range, the value is nil. */)
1044 (Lisp_Object bytepos)
1045 {
1046 CHECK_NUMBER (bytepos);
1047 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1048 return Qnil;
1049 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1050 }
1051 \f
1052 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1053 doc: /* Return the character following point, as a number.
1054 At the end of the buffer or accessible region, return 0. */)
1055 (void)
1056 {
1057 Lisp_Object temp;
1058 if (PT >= ZV)
1059 XSETFASTINT (temp, 0);
1060 else
1061 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1062 return temp;
1063 }
1064
1065 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1066 doc: /* Return the character preceding point, as a number.
1067 At the beginning of the buffer or accessible region, return 0. */)
1068 (void)
1069 {
1070 Lisp_Object temp;
1071 if (PT <= BEGV)
1072 XSETFASTINT (temp, 0);
1073 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1074 {
1075 ptrdiff_t pos = PT_BYTE;
1076 DEC_POS (pos);
1077 XSETFASTINT (temp, FETCH_CHAR (pos));
1078 }
1079 else
1080 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1081 return temp;
1082 }
1083
1084 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1085 doc: /* Return t if point is at the beginning of the buffer.
1086 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1087 (void)
1088 {
1089 if (PT == BEGV)
1090 return Qt;
1091 return Qnil;
1092 }
1093
1094 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1095 doc: /* Return t if point is at the end of the buffer.
1096 If the buffer is narrowed, this means the end of the narrowed part. */)
1097 (void)
1098 {
1099 if (PT == ZV)
1100 return Qt;
1101 return Qnil;
1102 }
1103
1104 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1105 doc: /* Return t if point is at the beginning of a line. */)
1106 (void)
1107 {
1108 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1109 return Qt;
1110 return Qnil;
1111 }
1112
1113 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1114 doc: /* Return t if point is at the end of a line.
1115 `End of a line' includes point being at the end of the buffer. */)
1116 (void)
1117 {
1118 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1119 return Qt;
1120 return Qnil;
1121 }
1122
1123 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1124 doc: /* Return character in current buffer at position POS.
1125 POS is an integer or a marker and defaults to point.
1126 If POS is out of range, the value is nil. */)
1127 (Lisp_Object pos)
1128 {
1129 register ptrdiff_t pos_byte;
1130
1131 if (NILP (pos))
1132 {
1133 pos_byte = PT_BYTE;
1134 XSETFASTINT (pos, PT);
1135 }
1136
1137 if (MARKERP (pos))
1138 {
1139 pos_byte = marker_byte_position (pos);
1140 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1141 return Qnil;
1142 }
1143 else
1144 {
1145 CHECK_NUMBER_COERCE_MARKER (pos);
1146 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1147 return Qnil;
1148
1149 pos_byte = CHAR_TO_BYTE (XINT (pos));
1150 }
1151
1152 return make_number (FETCH_CHAR (pos_byte));
1153 }
1154
1155 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1156 doc: /* Return character in current buffer preceding position POS.
1157 POS is an integer or a marker and defaults to point.
1158 If POS is out of range, the value is nil. */)
1159 (Lisp_Object pos)
1160 {
1161 register Lisp_Object val;
1162 register ptrdiff_t pos_byte;
1163
1164 if (NILP (pos))
1165 {
1166 pos_byte = PT_BYTE;
1167 XSETFASTINT (pos, PT);
1168 }
1169
1170 if (MARKERP (pos))
1171 {
1172 pos_byte = marker_byte_position (pos);
1173
1174 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1175 return Qnil;
1176 }
1177 else
1178 {
1179 CHECK_NUMBER_COERCE_MARKER (pos);
1180
1181 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1182 return Qnil;
1183
1184 pos_byte = CHAR_TO_BYTE (XINT (pos));
1185 }
1186
1187 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1188 {
1189 DEC_POS (pos_byte);
1190 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1191 }
1192 else
1193 {
1194 pos_byte--;
1195 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1196 }
1197 return val;
1198 }
1199 \f
1200 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1201 doc: /* Return the name under which the user logged in, as a string.
1202 This is based on the effective uid, not the real uid.
1203 Also, if the environment variables LOGNAME or USER are set,
1204 that determines the value of this function.
1205
1206 If optional argument UID is an integer or a float, return the login name
1207 of the user with that uid, or nil if there is no such user. */)
1208 (Lisp_Object uid)
1209 {
1210 struct passwd *pw;
1211 uid_t id;
1212
1213 /* Set up the user name info if we didn't do it before.
1214 (That can happen if Emacs is dumpable
1215 but you decide to run `temacs -l loadup' and not dump. */
1216 if (INTEGERP (Vuser_login_name))
1217 init_editfns ();
1218
1219 if (NILP (uid))
1220 return Vuser_login_name;
1221
1222 CONS_TO_INTEGER (uid, uid_t, id);
1223 block_input ();
1224 pw = getpwuid (id);
1225 unblock_input ();
1226 return (pw ? build_string (pw->pw_name) : Qnil);
1227 }
1228
1229 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1230 0, 0, 0,
1231 doc: /* Return the name of the user's real uid, as a string.
1232 This ignores the environment variables LOGNAME and USER, so it differs from
1233 `user-login-name' when running under `su'. */)
1234 (void)
1235 {
1236 /* Set up the user name info if we didn't do it before.
1237 (That can happen if Emacs is dumpable
1238 but you decide to run `temacs -l loadup' and not dump. */
1239 if (INTEGERP (Vuser_login_name))
1240 init_editfns ();
1241 return Vuser_real_login_name;
1242 }
1243
1244 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1245 doc: /* Return the effective uid of Emacs.
1246 Value is an integer or a float, depending on the value. */)
1247 (void)
1248 {
1249 uid_t euid = geteuid ();
1250 return make_fixnum_or_float (euid);
1251 }
1252
1253 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1254 doc: /* Return the real uid of Emacs.
1255 Value is an integer or a float, depending on the value. */)
1256 (void)
1257 {
1258 uid_t uid = getuid ();
1259 return make_fixnum_or_float (uid);
1260 }
1261
1262 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1263 doc: /* Return the effective gid of Emacs.
1264 Value is an integer or a float, depending on the value. */)
1265 (void)
1266 {
1267 gid_t egid = getegid ();
1268 return make_fixnum_or_float (egid);
1269 }
1270
1271 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1272 doc: /* Return the real gid of Emacs.
1273 Value is an integer or a float, depending on the value. */)
1274 (void)
1275 {
1276 gid_t gid = getgid ();
1277 return make_fixnum_or_float (gid);
1278 }
1279
1280 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1281 doc: /* Return the full name of the user logged in, as a string.
1282 If the full name corresponding to Emacs's userid is not known,
1283 return "unknown".
1284
1285 If optional argument UID is an integer or float, return the full name
1286 of the user with that uid, or nil if there is no such user.
1287 If UID is a string, return the full name of the user with that login
1288 name, or nil if there is no such user. */)
1289 (Lisp_Object uid)
1290 {
1291 struct passwd *pw;
1292 register char *p, *q;
1293 Lisp_Object full;
1294
1295 if (NILP (uid))
1296 return Vuser_full_name;
1297 else if (NUMBERP (uid))
1298 {
1299 uid_t u;
1300 CONS_TO_INTEGER (uid, uid_t, u);
1301 block_input ();
1302 pw = getpwuid (u);
1303 unblock_input ();
1304 }
1305 else if (STRINGP (uid))
1306 {
1307 block_input ();
1308 pw = getpwnam (SSDATA (uid));
1309 unblock_input ();
1310 }
1311 else
1312 error ("Invalid UID specification");
1313
1314 if (!pw)
1315 return Qnil;
1316
1317 p = USER_FULL_NAME;
1318 /* Chop off everything after the first comma. */
1319 q = strchr (p, ',');
1320 full = make_string (p, q ? q - p : strlen (p));
1321
1322 #ifdef AMPERSAND_FULL_NAME
1323 p = SSDATA (full);
1324 q = strchr (p, '&');
1325 /* Substitute the login name for the &, upcasing the first character. */
1326 if (q)
1327 {
1328 register char *r;
1329 Lisp_Object login;
1330
1331 login = Fuser_login_name (make_number (pw->pw_uid));
1332 r = alloca (strlen (p) + SCHARS (login) + 1);
1333 memcpy (r, p, q - p);
1334 r[q - p] = 0;
1335 strcat (r, SSDATA (login));
1336 r[q - p] = upcase ((unsigned char) r[q - p]);
1337 strcat (r, q + 1);
1338 full = build_string (r);
1339 }
1340 #endif /* AMPERSAND_FULL_NAME */
1341
1342 return full;
1343 }
1344
1345 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1346 doc: /* Return the host name of the machine you are running on, as a string. */)
1347 (void)
1348 {
1349 return Vsystem_name;
1350 }
1351
1352 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1353 doc: /* Return the process ID of Emacs, as a number. */)
1354 (void)
1355 {
1356 pid_t pid = getpid ();
1357 return make_fixnum_or_float (pid);
1358 }
1359
1360 \f
1361
1362 #ifndef TIME_T_MIN
1363 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1364 #endif
1365 #ifndef TIME_T_MAX
1366 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1367 #endif
1368
1369 /* Report that a time value is out of range for Emacs. */
1370 void
1371 time_overflow (void)
1372 {
1373 error ("Specified time is not representable");
1374 }
1375
1376 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1377 static EMACS_INT
1378 hi_time (time_t t)
1379 {
1380 time_t hi = t >> 16;
1381
1382 /* Check for overflow, helping the compiler for common cases where
1383 no runtime check is needed, and taking care not to convert
1384 negative numbers to unsigned before comparing them. */
1385 if (! ((! TYPE_SIGNED (time_t)
1386 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1387 || MOST_NEGATIVE_FIXNUM <= hi)
1388 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1389 || hi <= MOST_POSITIVE_FIXNUM)))
1390 time_overflow ();
1391
1392 return hi;
1393 }
1394
1395 /* Return the bottom 16 bits of the time T. */
1396 static int
1397 lo_time (time_t t)
1398 {
1399 return t & ((1 << 16) - 1);
1400 }
1401
1402 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1403 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1404 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1405 HIGH has the most significant bits of the seconds, while LOW has the
1406 least significant 16 bits. USEC and PSEC are the microsecond and
1407 picosecond counts. */)
1408 (void)
1409 {
1410 return make_lisp_time (current_timespec ());
1411 }
1412
1413 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1414 0, 0, 0,
1415 doc: /* Return the current run time used by Emacs.
1416 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1417 style as (current-time).
1418
1419 On systems that can't determine the run time, `get-internal-run-time'
1420 does the same thing as `current-time'. */)
1421 (void)
1422 {
1423 #ifdef HAVE_GETRUSAGE
1424 struct rusage usage;
1425 time_t secs;
1426 int usecs;
1427
1428 if (getrusage (RUSAGE_SELF, &usage) < 0)
1429 /* This shouldn't happen. What action is appropriate? */
1430 xsignal0 (Qerror);
1431
1432 /* Sum up user time and system time. */
1433 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1434 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1435 if (usecs >= 1000000)
1436 {
1437 usecs -= 1000000;
1438 secs++;
1439 }
1440 return make_lisp_time (make_timespec (secs, usecs * 1000));
1441 #else /* ! HAVE_GETRUSAGE */
1442 #ifdef WINDOWSNT
1443 return w32_get_internal_run_time ();
1444 #else /* ! WINDOWSNT */
1445 return Fcurrent_time ();
1446 #endif /* WINDOWSNT */
1447 #endif /* HAVE_GETRUSAGE */
1448 }
1449 \f
1450
1451 /* Make a Lisp list that represents the time T with fraction TAIL. */
1452 static Lisp_Object
1453 make_time_tail (time_t t, Lisp_Object tail)
1454 {
1455 return Fcons (make_number (hi_time (t)),
1456 Fcons (make_number (lo_time (t)), tail));
1457 }
1458
1459 /* Make a Lisp list that represents the system time T. */
1460 static Lisp_Object
1461 make_time (time_t t)
1462 {
1463 return make_time_tail (t, Qnil);
1464 }
1465
1466 /* Make a Lisp list that represents the Emacs time T. T may be an
1467 invalid time, with a slightly negative tv_nsec value such as
1468 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1469 correspondingly negative picosecond count. */
1470 Lisp_Object
1471 make_lisp_time (struct timespec t)
1472 {
1473 int ns = t.tv_nsec;
1474 return make_time_tail (t.tv_sec, list2i (ns / 1000, ns % 1000 * 1000));
1475 }
1476
1477 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1478 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1479 Return true if successful. */
1480 static bool
1481 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1482 Lisp_Object *plow, Lisp_Object *pusec,
1483 Lisp_Object *ppsec)
1484 {
1485 if (CONSP (specified_time))
1486 {
1487 Lisp_Object low = XCDR (specified_time);
1488 Lisp_Object usec = make_number (0);
1489 Lisp_Object psec = make_number (0);
1490 if (CONSP (low))
1491 {
1492 Lisp_Object low_tail = XCDR (low);
1493 low = XCAR (low);
1494 if (CONSP (low_tail))
1495 {
1496 usec = XCAR (low_tail);
1497 low_tail = XCDR (low_tail);
1498 if (CONSP (low_tail))
1499 psec = XCAR (low_tail);
1500 }
1501 else if (!NILP (low_tail))
1502 usec = low_tail;
1503 }
1504
1505 *phigh = XCAR (specified_time);
1506 *plow = low;
1507 *pusec = usec;
1508 *ppsec = psec;
1509 return 1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1516 list, generate the corresponding time value.
1517
1518 If RESULT is not null, store into *RESULT the converted time;
1519 this can fail if the converted time does not fit into struct timespec.
1520 If *DRESULT is not null, store into *DRESULT the number of
1521 seconds since the start of the POSIX Epoch.
1522
1523 Return true if successful. */
1524 bool
1525 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1526 Lisp_Object psec,
1527 struct timespec *result, double *dresult)
1528 {
1529 EMACS_INT hi, lo, us, ps;
1530 if (! (INTEGERP (high) && INTEGERP (low)
1531 && INTEGERP (usec) && INTEGERP (psec)))
1532 return 0;
1533 hi = XINT (high);
1534 lo = XINT (low);
1535 us = XINT (usec);
1536 ps = XINT (psec);
1537
1538 /* Normalize out-of-range lower-order components by carrying
1539 each overflow into the next higher-order component. */
1540 us += ps / 1000000 - (ps % 1000000 < 0);
1541 lo += us / 1000000 - (us % 1000000 < 0);
1542 hi += lo >> 16;
1543 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1544 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1545 lo &= (1 << 16) - 1;
1546
1547 if (result)
1548 {
1549 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1550 && hi <= TIME_T_MAX >> 16)
1551 {
1552 /* Return the greatest representable time that is not greater
1553 than the requested time. */
1554 time_t sec = hi;
1555 *result = make_timespec ((sec << 16) + lo, us * 1000 + ps / 1000);
1556 }
1557 else
1558 {
1559 /* Overflow in the highest-order component. */
1560 return 0;
1561 }
1562 }
1563
1564 if (dresult)
1565 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1566
1567 return 1;
1568 }
1569
1570 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1571 If SPECIFIED_TIME is nil, use the current time.
1572
1573 Round the time down to the nearest struct timespec value.
1574 Return seconds since the Epoch.
1575 Signal an error if unsuccessful. */
1576 struct timespec
1577 lisp_time_argument (Lisp_Object specified_time)
1578 {
1579 struct timespec t;
1580 if (NILP (specified_time))
1581 t = current_timespec ();
1582 else
1583 {
1584 Lisp_Object high, low, usec, psec;
1585 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1586 && decode_time_components (high, low, usec, psec, &t, 0)))
1587 error ("Invalid time specification");
1588 }
1589 return t;
1590 }
1591
1592 /* Like lisp_time_argument, except decode only the seconds part,
1593 do not allow out-of-range time stamps, do not check the subseconds part,
1594 and always round down. */
1595 static time_t
1596 lisp_seconds_argument (Lisp_Object specified_time)
1597 {
1598 if (NILP (specified_time))
1599 return time (NULL);
1600 else
1601 {
1602 Lisp_Object high, low, usec, psec;
1603 struct timespec t;
1604 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1605 && decode_time_components (high, low, make_number (0),
1606 make_number (0), &t, 0)))
1607 error ("Invalid time specification");
1608 return t.tv_sec;
1609 }
1610 }
1611
1612 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1613 doc: /* Return the current time, as a float number of seconds since the epoch.
1614 If SPECIFIED-TIME is given, it is the time to convert to float
1615 instead of the current time. The argument should have the form
1616 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1617 you can use times from `current-time' and from `file-attributes'.
1618 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1619 considered obsolete.
1620
1621 WARNING: Since the result is floating point, it may not be exact.
1622 If precise time stamps are required, use either `current-time',
1623 or (if you need time as a string) `format-time-string'. */)
1624 (Lisp_Object specified_time)
1625 {
1626 double t;
1627 if (NILP (specified_time))
1628 {
1629 struct timespec now = current_timespec ();
1630 t = now.tv_sec + now.tv_nsec / 1e9;
1631 }
1632 else
1633 {
1634 Lisp_Object high, low, usec, psec;
1635 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1636 && decode_time_components (high, low, usec, psec, 0, &t)))
1637 error ("Invalid time specification");
1638 }
1639 return make_float (t);
1640 }
1641
1642 /* Write information into buffer S of size MAXSIZE, according to the
1643 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1644 Default to Universal Time if UT, local time otherwise.
1645 Use NS as the number of nanoseconds in the %N directive.
1646 Return the number of bytes written, not including the terminating
1647 '\0'. If S is NULL, nothing will be written anywhere; so to
1648 determine how many bytes would be written, use NULL for S and
1649 ((size_t) -1) for MAXSIZE.
1650
1651 This function behaves like nstrftime, except it allows null
1652 bytes in FORMAT and it does not support nanoseconds. */
1653 static size_t
1654 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1655 size_t format_len, const struct tm *tp, bool ut, int ns)
1656 {
1657 size_t total = 0;
1658
1659 /* Loop through all the null-terminated strings in the format
1660 argument. Normally there's just one null-terminated string, but
1661 there can be arbitrarily many, concatenated together, if the
1662 format contains '\0' bytes. nstrftime stops at the first
1663 '\0' byte so we must invoke it separately for each such string. */
1664 for (;;)
1665 {
1666 size_t len;
1667 size_t result;
1668
1669 if (s)
1670 s[0] = '\1';
1671
1672 result = nstrftime (s, maxsize, format, tp, ut, ns);
1673
1674 if (s)
1675 {
1676 if (result == 0 && s[0] != '\0')
1677 return 0;
1678 s += result + 1;
1679 }
1680
1681 maxsize -= result + 1;
1682 total += result;
1683 len = strlen (format);
1684 if (len == format_len)
1685 return total;
1686 total++;
1687 format += len + 1;
1688 format_len -= len + 1;
1689 }
1690 }
1691
1692 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1693 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1694 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1695 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1696 is also still accepted.
1697 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1698 as Universal Time; nil means describe TIME in the local time zone.
1699 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1700 by text that describes the specified date and time in TIME:
1701
1702 %Y is the year, %y within the century, %C the century.
1703 %G is the year corresponding to the ISO week, %g within the century.
1704 %m is the numeric month.
1705 %b and %h are the locale's abbreviated month name, %B the full name.
1706 (%h is not supported on MS-Windows.)
1707 %d is the day of the month, zero-padded, %e is blank-padded.
1708 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1709 %a is the locale's abbreviated name of the day of week, %A the full name.
1710 %U is the week number starting on Sunday, %W starting on Monday,
1711 %V according to ISO 8601.
1712 %j is the day of the year.
1713
1714 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1715 only blank-padded, %l is like %I blank-padded.
1716 %p is the locale's equivalent of either AM or PM.
1717 %M is the minute.
1718 %S is the second.
1719 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1720 %Z is the time zone name, %z is the numeric form.
1721 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1722
1723 %c is the locale's date and time format.
1724 %x is the locale's "preferred" date format.
1725 %D is like "%m/%d/%y".
1726 %F is the ISO 8601 date format (like "%Y-%m-%d").
1727
1728 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1729 %X is the locale's "preferred" time format.
1730
1731 Finally, %n is a newline, %t is a tab, %% is a literal %.
1732
1733 Certain flags and modifiers are available with some format controls.
1734 The flags are `_', `-', `^' and `#'. For certain characters X,
1735 %_X is like %X, but padded with blanks; %-X is like %X,
1736 but without padding. %^X is like %X, but with all textual
1737 characters up-cased; %#X is like %X, but with letter-case of
1738 all textual characters reversed.
1739 %NX (where N stands for an integer) is like %X,
1740 but takes up at least N (a number) positions.
1741 The modifiers are `E' and `O'. For certain characters X,
1742 %EX is a locale's alternative version of %X;
1743 %OX is like %X, but uses the locale's number symbols.
1744
1745 For example, to produce full ISO 8601 format, use "%FT%T%z".
1746
1747 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1748 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1749 {
1750 struct timespec t = lisp_time_argument (timeval);
1751 struct tm tm;
1752
1753 CHECK_STRING (format_string);
1754 format_string = code_convert_string_norecord (format_string,
1755 Vlocale_coding_system, 1);
1756 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1757 t, ! NILP (universal), &tm);
1758 }
1759
1760 static Lisp_Object
1761 format_time_string (char const *format, ptrdiff_t formatlen,
1762 struct timespec t, bool ut, struct tm *tmp)
1763 {
1764 char buffer[4000];
1765 char *buf = buffer;
1766 ptrdiff_t size = sizeof buffer;
1767 size_t len;
1768 Lisp_Object bufstring;
1769 int ns = t.tv_nsec;
1770 struct tm *tm;
1771 USE_SAFE_ALLOCA;
1772
1773 while (1)
1774 {
1775 time_t *taddr = &t.tv_sec;
1776 block_input ();
1777
1778 synchronize_system_time_locale ();
1779
1780 tm = ut ? gmtime (taddr) : localtime (taddr);
1781 if (! tm)
1782 {
1783 unblock_input ();
1784 time_overflow ();
1785 }
1786 *tmp = *tm;
1787
1788 buf[0] = '\1';
1789 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1790 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1791 break;
1792
1793 /* Buffer was too small, so make it bigger and try again. */
1794 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1795 unblock_input ();
1796 if (STRING_BYTES_BOUND <= len)
1797 string_overflow ();
1798 size = len + 1;
1799 buf = SAFE_ALLOCA (size);
1800 }
1801
1802 unblock_input ();
1803 bufstring = make_unibyte_string (buf, len);
1804 SAFE_FREE ();
1805 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1806 }
1807
1808 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1809 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1810 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1811 as from `current-time' and `file-attributes', or nil to use the
1812 current time. The obsolete form (HIGH . LOW) is also still accepted.
1813 The list has the following nine members: SEC is an integer between 0
1814 and 60; SEC is 60 for a leap second, which only some operating systems
1815 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1816 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1817 integer between 1 and 12. YEAR is an integer indicating the
1818 four-digit year. DOW is the day of week, an integer between 0 and 6,
1819 where 0 is Sunday. DST is t if daylight saving time is in effect,
1820 otherwise nil. ZONE is an integer indicating the number of seconds
1821 east of Greenwich. (Note that Common Lisp has different meanings for
1822 DOW and ZONE.) */)
1823 (Lisp_Object specified_time)
1824 {
1825 time_t time_spec = lisp_seconds_argument (specified_time);
1826 struct tm save_tm;
1827 struct tm *decoded_time;
1828 Lisp_Object list_args[9];
1829
1830 block_input ();
1831 decoded_time = localtime (&time_spec);
1832 if (decoded_time)
1833 save_tm = *decoded_time;
1834 unblock_input ();
1835 if (! (decoded_time
1836 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1837 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1838 time_overflow ();
1839 XSETFASTINT (list_args[0], save_tm.tm_sec);
1840 XSETFASTINT (list_args[1], save_tm.tm_min);
1841 XSETFASTINT (list_args[2], save_tm.tm_hour);
1842 XSETFASTINT (list_args[3], save_tm.tm_mday);
1843 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1844 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1845 cast below avoids overflow in int arithmetics. */
1846 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1847 XSETFASTINT (list_args[6], save_tm.tm_wday);
1848 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1849
1850 block_input ();
1851 decoded_time = gmtime (&time_spec);
1852 if (decoded_time == 0)
1853 list_args[8] = Qnil;
1854 else
1855 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1856 unblock_input ();
1857 return Flist (9, list_args);
1858 }
1859
1860 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1861 the result is representable as an int. Assume OFFSET is small and
1862 nonnegative. */
1863 static int
1864 check_tm_member (Lisp_Object obj, int offset)
1865 {
1866 EMACS_INT n;
1867 CHECK_NUMBER (obj);
1868 n = XINT (obj);
1869 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1870 time_overflow ();
1871 return n - offset;
1872 }
1873
1874 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1875 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1876 This is the reverse operation of `decode-time', which see.
1877 ZONE defaults to the current time zone rule. This can
1878 be a string or t (as from `set-time-zone-rule'), or it can be a list
1879 \(as from `current-time-zone') or an integer (as from `decode-time')
1880 applied without consideration for daylight saving time.
1881
1882 You can pass more than 7 arguments; then the first six arguments
1883 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1884 The intervening arguments are ignored.
1885 This feature lets (apply 'encode-time (decode-time ...)) work.
1886
1887 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1888 for example, a DAY of 0 means the day preceding the given month.
1889 Year numbers less than 100 are treated just like other year numbers.
1890 If you want them to stand for years in this century, you must do that yourself.
1891
1892 Years before 1970 are not guaranteed to work. On some systems,
1893 year values as low as 1901 do work.
1894
1895 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1896 (ptrdiff_t nargs, Lisp_Object *args)
1897 {
1898 time_t value;
1899 struct tm tm;
1900 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1901
1902 tm.tm_sec = check_tm_member (args[0], 0);
1903 tm.tm_min = check_tm_member (args[1], 0);
1904 tm.tm_hour = check_tm_member (args[2], 0);
1905 tm.tm_mday = check_tm_member (args[3], 0);
1906 tm.tm_mon = check_tm_member (args[4], 1);
1907 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1908 tm.tm_isdst = -1;
1909
1910 if (CONSP (zone))
1911 zone = XCAR (zone);
1912 if (NILP (zone))
1913 {
1914 block_input ();
1915 value = mktime (&tm);
1916 unblock_input ();
1917 }
1918 else
1919 {
1920 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
1921 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
1922 char *old_tzstring;
1923 const char *tzstring;
1924 USE_SAFE_ALLOCA;
1925
1926 if (EQ (zone, Qt))
1927 tzstring = "UTC0";
1928 else if (STRINGP (zone))
1929 tzstring = SSDATA (zone);
1930 else if (INTEGERP (zone))
1931 {
1932 EMACS_INT abszone = eabs (XINT (zone));
1933 EMACS_INT zone_hr = abszone / (60*60);
1934 int zone_min = (abszone/60) % 60;
1935 int zone_sec = abszone % 60;
1936 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0],
1937 zone_hr, zone_min, zone_sec);
1938 tzstring = tzbuf;
1939 }
1940 else
1941 error ("Invalid time zone specification");
1942
1943 old_tzstring = getenv ("TZ");
1944 if (old_tzstring)
1945 {
1946 char *buf = SAFE_ALLOCA (strlen (old_tzstring) + 1);
1947 old_tzstring = strcpy (buf, old_tzstring);
1948 }
1949
1950 block_input ();
1951
1952 /* Set TZ before calling mktime; merely adjusting mktime's returned
1953 value doesn't suffice, since that would mishandle leap seconds. */
1954 set_time_zone_rule (tzstring);
1955
1956 value = mktime (&tm);
1957
1958 set_time_zone_rule (old_tzstring);
1959 #ifdef LOCALTIME_CACHE
1960 tzset ();
1961 #endif
1962 unblock_input ();
1963 SAFE_FREE ();
1964 }
1965
1966 if (value == (time_t) -1)
1967 time_overflow ();
1968
1969 return make_time (value);
1970 }
1971
1972 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1973 doc: /* Return the current local time, as a human-readable string.
1974 Programs can use this function to decode a time,
1975 since the number of columns in each field is fixed
1976 if the year is in the range 1000-9999.
1977 The format is `Sun Sep 16 01:03:52 1973'.
1978 However, see also the functions `decode-time' and `format-time-string'
1979 which provide a much more powerful and general facility.
1980
1981 If SPECIFIED-TIME is given, it is a time to format instead of the
1982 current time. The argument should have the form (HIGH LOW . IGNORED).
1983 Thus, you can use times obtained from `current-time' and from
1984 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1985 but this is considered obsolete. */)
1986 (Lisp_Object specified_time)
1987 {
1988 time_t value = lisp_seconds_argument (specified_time);
1989 struct tm *tm;
1990 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1991 int len IF_LINT (= 0);
1992
1993 /* Convert to a string in ctime format, except without the trailing
1994 newline, and without the 4-digit year limit. Don't use asctime
1995 or ctime, as they might dump core if the year is outside the
1996 range -999 .. 9999. */
1997 block_input ();
1998 tm = localtime (&value);
1999 if (tm)
2000 {
2001 static char const wday_name[][4] =
2002 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2003 static char const mon_name[][4] =
2004 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2005 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2006 printmax_t year_base = TM_YEAR_BASE;
2007
2008 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2009 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2010 tm->tm_hour, tm->tm_min, tm->tm_sec,
2011 tm->tm_year + year_base);
2012 }
2013 unblock_input ();
2014 if (! tm)
2015 time_overflow ();
2016
2017 return make_unibyte_string (buf, len);
2018 }
2019
2020 /* Yield A - B, measured in seconds.
2021 This function is copied from the GNU C Library. */
2022 static int
2023 tm_diff (struct tm *a, struct tm *b)
2024 {
2025 /* Compute intervening leap days correctly even if year is negative.
2026 Take care to avoid int overflow in leap day calculations,
2027 but it's OK to assume that A and B are close to each other. */
2028 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2029 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2030 int a100 = a4 / 25 - (a4 % 25 < 0);
2031 int b100 = b4 / 25 - (b4 % 25 < 0);
2032 int a400 = a100 >> 2;
2033 int b400 = b100 >> 2;
2034 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2035 int years = a->tm_year - b->tm_year;
2036 int days = (365 * years + intervening_leap_days
2037 + (a->tm_yday - b->tm_yday));
2038 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2039 + (a->tm_min - b->tm_min))
2040 + (a->tm_sec - b->tm_sec));
2041 }
2042
2043 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2044 doc: /* Return the offset and name for the local time zone.
2045 This returns a list of the form (OFFSET NAME).
2046 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2047 A negative value means west of Greenwich.
2048 NAME is a string giving the name of the time zone.
2049 If SPECIFIED-TIME is given, the time zone offset is determined from it
2050 instead of using the current time. The argument should have the form
2051 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2052 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2053 have the form (HIGH . LOW), but this is considered obsolete.
2054
2055 Some operating systems cannot provide all this information to Emacs;
2056 in this case, `current-time-zone' returns a list containing nil for
2057 the data it can't find. */)
2058 (Lisp_Object specified_time)
2059 {
2060 struct timespec value;
2061 int offset;
2062 struct tm *t;
2063 struct tm localtm;
2064 Lisp_Object zone_offset, zone_name;
2065
2066 zone_offset = Qnil;
2067 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2068 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2069 block_input ();
2070 t = gmtime (&value.tv_sec);
2071 if (t)
2072 offset = tm_diff (&localtm, t);
2073 unblock_input ();
2074
2075 if (t)
2076 {
2077 zone_offset = make_number (offset);
2078 if (SCHARS (zone_name) == 0)
2079 {
2080 /* No local time zone name is available; use "+-NNNN" instead. */
2081 int m = offset / 60;
2082 int am = offset < 0 ? - m : m;
2083 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2084 zone_name = make_formatted_string (buf, "%c%02d%02d",
2085 (offset < 0 ? '-' : '+'),
2086 am / 60, am % 60);
2087 }
2088 }
2089
2090 return list2 (zone_offset, zone_name);
2091 }
2092
2093 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2094 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2095 If TZ is nil, use implementation-defined default time zone information.
2096 If TZ is t, use Universal Time.
2097
2098 Instead of calling this function, you typically want (setenv "TZ" TZ).
2099 That changes both the environment of the Emacs process and the
2100 variable `process-environment', whereas `set-time-zone-rule' affects
2101 only the former. */)
2102 (Lisp_Object tz)
2103 {
2104 const char *tzstring;
2105
2106 if (! (NILP (tz) || EQ (tz, Qt)))
2107 CHECK_STRING (tz);
2108
2109 if (NILP (tz))
2110 tzstring = initial_tz;
2111 else if (EQ (tz, Qt))
2112 tzstring = "UTC0";
2113 else
2114 tzstring = SSDATA (tz);
2115
2116 block_input ();
2117 set_time_zone_rule (tzstring);
2118 unblock_input ();
2119
2120 return Qnil;
2121 }
2122
2123 /* Set the local time zone rule to TZSTRING.
2124
2125 This function is not thread-safe, partly because putenv, unsetenv
2126 and tzset are not, and partly because of the static storage it
2127 updates. Other threads that invoke localtime etc. may be adversely
2128 affected while this function is executing. */
2129
2130 void
2131 set_time_zone_rule (const char *tzstring)
2132 {
2133 /* A buffer holding a string of the form "TZ=value", intended
2134 to be part of the environment. */
2135 static char *tzvalbuf;
2136 static ptrdiff_t tzvalbufsize;
2137
2138 int tzeqlen = sizeof "TZ=" - 1;
2139
2140 #ifdef LOCALTIME_CACHE
2141 /* These two values are known to load tz files in buggy implementations,
2142 i.e., Solaris 1 executables running under either Solaris 1 or Solaris 2.
2143 Their values shouldn't matter in non-buggy implementations.
2144 We don't use string literals for these strings,
2145 since if a string in the environment is in readonly
2146 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2147 See Sun bugs 1113095 and 1114114, ``Timezone routines
2148 improperly modify environment''. */
2149
2150 static char set_time_zone_rule_tz[][sizeof "TZ=GMT+0"]
2151 = { "TZ=GMT+0", "TZ=GMT+1" };
2152
2153 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2154 "US/Pacific" that loads a tz file, then changes to a value like
2155 "XXX0" that does not load a tz file, and then changes back to
2156 its original value, the last change is (incorrectly) ignored.
2157 Also, if TZ changes twice in succession to values that do
2158 not load a tz file, tzset can dump core (see Sun bug#1225179).
2159 The following code works around these bugs. */
2160
2161 if (tzstring)
2162 {
2163 /* Temporarily set TZ to a value that loads a tz file
2164 and that differs from tzstring. */
2165 bool eq0 = strcmp (tzstring, set_time_zone_rule_tz[0] + tzeqlen) == 0;
2166 xputenv (set_time_zone_rule_tz[eq0]);
2167 }
2168 else
2169 {
2170 /* The implied tzstring is unknown, so temporarily set TZ to
2171 two different values that each load a tz file. */
2172 xputenv (set_time_zone_rule_tz[0]);
2173 tzset ();
2174 xputenv (set_time_zone_rule_tz[1]);
2175 }
2176 tzset ();
2177 tzvalbuf_in_environ = 0;
2178 #endif
2179
2180 if (!tzstring)
2181 {
2182 unsetenv ("TZ");
2183 tzvalbuf_in_environ = 0;
2184 }
2185 else
2186 {
2187 ptrdiff_t tzstringlen = strlen (tzstring);
2188
2189 if (tzvalbufsize <= tzeqlen + tzstringlen)
2190 {
2191 unsetenv ("TZ");
2192 tzvalbuf_in_environ = 0;
2193 tzvalbuf = xpalloc (tzvalbuf, &tzvalbufsize,
2194 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2195 memcpy (tzvalbuf, "TZ=", tzeqlen);
2196 }
2197
2198 strcpy (tzvalbuf + tzeqlen, tzstring);
2199
2200 if (!tzvalbuf_in_environ)
2201 {
2202 xputenv (tzvalbuf);
2203 tzvalbuf_in_environ = 1;
2204 }
2205 }
2206
2207 #ifdef LOCALTIME_CACHE
2208 tzset ();
2209 #endif
2210 }
2211 \f
2212 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2213 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2214 type of object is Lisp_String). INHERIT is passed to
2215 INSERT_FROM_STRING_FUNC as the last argument. */
2216
2217 static void
2218 general_insert_function (void (*insert_func)
2219 (const char *, ptrdiff_t),
2220 void (*insert_from_string_func)
2221 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2222 ptrdiff_t, ptrdiff_t, bool),
2223 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2224 {
2225 ptrdiff_t argnum;
2226 Lisp_Object val;
2227
2228 for (argnum = 0; argnum < nargs; argnum++)
2229 {
2230 val = args[argnum];
2231 if (CHARACTERP (val))
2232 {
2233 int c = XFASTINT (val);
2234 unsigned char str[MAX_MULTIBYTE_LENGTH];
2235 int len;
2236
2237 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2238 len = CHAR_STRING (c, str);
2239 else
2240 {
2241 str[0] = CHAR_TO_BYTE8 (c);
2242 len = 1;
2243 }
2244 (*insert_func) ((char *) str, len);
2245 }
2246 else if (STRINGP (val))
2247 {
2248 (*insert_from_string_func) (val, 0, 0,
2249 SCHARS (val),
2250 SBYTES (val),
2251 inherit);
2252 }
2253 else
2254 wrong_type_argument (Qchar_or_string_p, val);
2255 }
2256 }
2257
2258 void
2259 insert1 (Lisp_Object arg)
2260 {
2261 Finsert (1, &arg);
2262 }
2263
2264
2265 /* Callers passing one argument to Finsert need not gcpro the
2266 argument "array", since the only element of the array will
2267 not be used after calling insert or insert_from_string, so
2268 we don't care if it gets trashed. */
2269
2270 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2271 doc: /* Insert the arguments, either strings or characters, at point.
2272 Point and before-insertion markers move forward to end up
2273 after the inserted text.
2274 Any other markers at the point of insertion remain before the text.
2275
2276 If the current buffer is multibyte, unibyte strings are converted
2277 to multibyte for insertion (see `string-make-multibyte').
2278 If the current buffer is unibyte, multibyte strings are converted
2279 to unibyte for insertion (see `string-make-unibyte').
2280
2281 When operating on binary data, it may be necessary to preserve the
2282 original bytes of a unibyte string when inserting it into a multibyte
2283 buffer; to accomplish this, apply `string-as-multibyte' to the string
2284 and insert the result.
2285
2286 usage: (insert &rest ARGS) */)
2287 (ptrdiff_t nargs, Lisp_Object *args)
2288 {
2289 general_insert_function (insert, insert_from_string, 0, nargs, args);
2290 return Qnil;
2291 }
2292
2293 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2294 0, MANY, 0,
2295 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2296 Point and before-insertion markers move forward to end up
2297 after the inserted text.
2298 Any other markers at the point of insertion remain before the text.
2299
2300 If the current buffer is multibyte, unibyte strings are converted
2301 to multibyte for insertion (see `unibyte-char-to-multibyte').
2302 If the current buffer is unibyte, multibyte strings are converted
2303 to unibyte for insertion.
2304
2305 usage: (insert-and-inherit &rest ARGS) */)
2306 (ptrdiff_t nargs, Lisp_Object *args)
2307 {
2308 general_insert_function (insert_and_inherit, insert_from_string, 1,
2309 nargs, args);
2310 return Qnil;
2311 }
2312
2313 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2314 doc: /* Insert strings or characters at point, relocating markers after the text.
2315 Point and markers move forward to end up after the inserted text.
2316
2317 If the current buffer is multibyte, unibyte strings are converted
2318 to multibyte for insertion (see `unibyte-char-to-multibyte').
2319 If the current buffer is unibyte, multibyte strings are converted
2320 to unibyte for insertion.
2321
2322 If an overlay begins at the insertion point, the inserted text falls
2323 outside the overlay; if a nonempty overlay ends at the insertion
2324 point, the inserted text falls inside that overlay.
2325
2326 usage: (insert-before-markers &rest ARGS) */)
2327 (ptrdiff_t nargs, Lisp_Object *args)
2328 {
2329 general_insert_function (insert_before_markers,
2330 insert_from_string_before_markers, 0,
2331 nargs, args);
2332 return Qnil;
2333 }
2334
2335 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2336 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2337 doc: /* Insert text at point, relocating markers and inheriting properties.
2338 Point and markers move forward to end up after the inserted text.
2339
2340 If the current buffer is multibyte, unibyte strings are converted
2341 to multibyte for insertion (see `unibyte-char-to-multibyte').
2342 If the current buffer is unibyte, multibyte strings are converted
2343 to unibyte for insertion.
2344
2345 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2346 (ptrdiff_t nargs, Lisp_Object *args)
2347 {
2348 general_insert_function (insert_before_markers_and_inherit,
2349 insert_from_string_before_markers, 1,
2350 nargs, args);
2351 return Qnil;
2352 }
2353 \f
2354 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2355 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2356 (prefix-numeric-value current-prefix-arg)\
2357 t))",
2358 doc: /* Insert COUNT copies of CHARACTER.
2359 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2360 of these ways:
2361
2362 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2363 Completion is available; if you type a substring of the name
2364 preceded by an asterisk `*', Emacs shows all names which include
2365 that substring, not necessarily at the beginning of the name.
2366
2367 - As a hexadecimal code point, e.g. 263A. Note that code points in
2368 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2369 the Unicode code space).
2370
2371 - As a code point with a radix specified with #, e.g. #o21430
2372 (octal), #x2318 (hex), or #10r8984 (decimal).
2373
2374 If called interactively, COUNT is given by the prefix argument. If
2375 omitted or nil, it defaults to 1.
2376
2377 Inserting the character(s) relocates point and before-insertion
2378 markers in the same ways as the function `insert'.
2379
2380 The optional third argument INHERIT, if non-nil, says to inherit text
2381 properties from adjoining text, if those properties are sticky. If
2382 called interactively, INHERIT is t. */)
2383 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2384 {
2385 int i, stringlen;
2386 register ptrdiff_t n;
2387 int c, len;
2388 unsigned char str[MAX_MULTIBYTE_LENGTH];
2389 char string[4000];
2390
2391 CHECK_CHARACTER (character);
2392 if (NILP (count))
2393 XSETFASTINT (count, 1);
2394 CHECK_NUMBER (count);
2395 c = XFASTINT (character);
2396
2397 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2398 len = CHAR_STRING (c, str);
2399 else
2400 str[0] = c, len = 1;
2401 if (XINT (count) <= 0)
2402 return Qnil;
2403 if (BUF_BYTES_MAX / len < XINT (count))
2404 buffer_overflow ();
2405 n = XINT (count) * len;
2406 stringlen = min (n, sizeof string - sizeof string % len);
2407 for (i = 0; i < stringlen; i++)
2408 string[i] = str[i % len];
2409 while (n > stringlen)
2410 {
2411 QUIT;
2412 if (!NILP (inherit))
2413 insert_and_inherit (string, stringlen);
2414 else
2415 insert (string, stringlen);
2416 n -= stringlen;
2417 }
2418 if (!NILP (inherit))
2419 insert_and_inherit (string, n);
2420 else
2421 insert (string, n);
2422 return Qnil;
2423 }
2424
2425 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2426 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2427 Both arguments are required.
2428 BYTE is a number of the range 0..255.
2429
2430 If BYTE is 128..255 and the current buffer is multibyte, the
2431 corresponding eight-bit character is inserted.
2432
2433 Point, and before-insertion markers, are relocated as in the function `insert'.
2434 The optional third arg INHERIT, if non-nil, says to inherit text properties
2435 from adjoining text, if those properties are sticky. */)
2436 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2437 {
2438 CHECK_NUMBER (byte);
2439 if (XINT (byte) < 0 || XINT (byte) > 255)
2440 args_out_of_range_3 (byte, make_number (0), make_number (255));
2441 if (XINT (byte) >= 128
2442 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2443 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2444 return Finsert_char (byte, count, inherit);
2445 }
2446
2447 \f
2448 /* Making strings from buffer contents. */
2449
2450 /* Return a Lisp_String containing the text of the current buffer from
2451 START to END. If text properties are in use and the current buffer
2452 has properties in the range specified, the resulting string will also
2453 have them, if PROPS is true.
2454
2455 We don't want to use plain old make_string here, because it calls
2456 make_uninit_string, which can cause the buffer arena to be
2457 compacted. make_string has no way of knowing that the data has
2458 been moved, and thus copies the wrong data into the string. This
2459 doesn't effect most of the other users of make_string, so it should
2460 be left as is. But we should use this function when conjuring
2461 buffer substrings. */
2462
2463 Lisp_Object
2464 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2465 {
2466 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2467 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2468
2469 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2470 }
2471
2472 /* Return a Lisp_String containing the text of the current buffer from
2473 START / START_BYTE to END / END_BYTE.
2474
2475 If text properties are in use and the current buffer
2476 has properties in the range specified, the resulting string will also
2477 have them, if PROPS is true.
2478
2479 We don't want to use plain old make_string here, because it calls
2480 make_uninit_string, which can cause the buffer arena to be
2481 compacted. make_string has no way of knowing that the data has
2482 been moved, and thus copies the wrong data into the string. This
2483 doesn't effect most of the other users of make_string, so it should
2484 be left as is. But we should use this function when conjuring
2485 buffer substrings. */
2486
2487 Lisp_Object
2488 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2489 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2490 {
2491 Lisp_Object result, tem, tem1;
2492
2493 if (start < GPT && GPT < end)
2494 move_gap_both (start, start_byte);
2495
2496 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2497 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2498 else
2499 result = make_uninit_string (end - start);
2500 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2501
2502 /* If desired, update and copy the text properties. */
2503 if (props)
2504 {
2505 update_buffer_properties (start, end);
2506
2507 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2508 tem1 = Ftext_properties_at (make_number (start), Qnil);
2509
2510 if (XINT (tem) != end || !NILP (tem1))
2511 copy_intervals_to_string (result, current_buffer, start,
2512 end - start);
2513 }
2514
2515 return result;
2516 }
2517
2518 /* Call Vbuffer_access_fontify_functions for the range START ... END
2519 in the current buffer, if necessary. */
2520
2521 static void
2522 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2523 {
2524 /* If this buffer has some access functions,
2525 call them, specifying the range of the buffer being accessed. */
2526 if (!NILP (Vbuffer_access_fontify_functions))
2527 {
2528 Lisp_Object args[3];
2529 Lisp_Object tem;
2530
2531 args[0] = Qbuffer_access_fontify_functions;
2532 XSETINT (args[1], start);
2533 XSETINT (args[2], end);
2534
2535 /* But don't call them if we can tell that the work
2536 has already been done. */
2537 if (!NILP (Vbuffer_access_fontified_property))
2538 {
2539 tem = Ftext_property_any (args[1], args[2],
2540 Vbuffer_access_fontified_property,
2541 Qnil, Qnil);
2542 if (! NILP (tem))
2543 Frun_hook_with_args (3, args);
2544 }
2545 else
2546 Frun_hook_with_args (3, args);
2547 }
2548 }
2549
2550 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2551 doc: /* Return the contents of part of the current buffer as a string.
2552 The two arguments START and END are character positions;
2553 they can be in either order.
2554 The string returned is multibyte if the buffer is multibyte.
2555
2556 This function copies the text properties of that part of the buffer
2557 into the result string; if you don't want the text properties,
2558 use `buffer-substring-no-properties' instead. */)
2559 (Lisp_Object start, Lisp_Object end)
2560 {
2561 register ptrdiff_t b, e;
2562
2563 validate_region (&start, &end);
2564 b = XINT (start);
2565 e = XINT (end);
2566
2567 return make_buffer_string (b, e, 1);
2568 }
2569
2570 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2571 Sbuffer_substring_no_properties, 2, 2, 0,
2572 doc: /* Return the characters of part of the buffer, without the text properties.
2573 The two arguments START and END are character positions;
2574 they can be in either order. */)
2575 (Lisp_Object start, Lisp_Object end)
2576 {
2577 register ptrdiff_t b, e;
2578
2579 validate_region (&start, &end);
2580 b = XINT (start);
2581 e = XINT (end);
2582
2583 return make_buffer_string (b, e, 0);
2584 }
2585
2586 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2587 doc: /* Return the contents of the current buffer as a string.
2588 If narrowing is in effect, this function returns only the visible part
2589 of the buffer. */)
2590 (void)
2591 {
2592 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2593 }
2594
2595 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2596 1, 3, 0,
2597 doc: /* Insert before point a substring of the contents of BUFFER.
2598 BUFFER may be a buffer or a buffer name.
2599 Arguments START and END are character positions specifying the substring.
2600 They default to the values of (point-min) and (point-max) in BUFFER. */)
2601 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2602 {
2603 register EMACS_INT b, e, temp;
2604 register struct buffer *bp, *obuf;
2605 Lisp_Object buf;
2606
2607 buf = Fget_buffer (buffer);
2608 if (NILP (buf))
2609 nsberror (buffer);
2610 bp = XBUFFER (buf);
2611 if (!BUFFER_LIVE_P (bp))
2612 error ("Selecting deleted buffer");
2613
2614 if (NILP (start))
2615 b = BUF_BEGV (bp);
2616 else
2617 {
2618 CHECK_NUMBER_COERCE_MARKER (start);
2619 b = XINT (start);
2620 }
2621 if (NILP (end))
2622 e = BUF_ZV (bp);
2623 else
2624 {
2625 CHECK_NUMBER_COERCE_MARKER (end);
2626 e = XINT (end);
2627 }
2628
2629 if (b > e)
2630 temp = b, b = e, e = temp;
2631
2632 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2633 args_out_of_range (start, end);
2634
2635 obuf = current_buffer;
2636 set_buffer_internal_1 (bp);
2637 update_buffer_properties (b, e);
2638 set_buffer_internal_1 (obuf);
2639
2640 insert_from_buffer (bp, b, e - b, 0);
2641 return Qnil;
2642 }
2643
2644 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2645 6, 6, 0,
2646 doc: /* Compare two substrings of two buffers; return result as number.
2647 Return -N if first string is less after N-1 chars, +N if first string is
2648 greater after N-1 chars, or 0 if strings match. Each substring is
2649 represented as three arguments: BUFFER, START and END. That makes six
2650 args in all, three for each substring.
2651
2652 The value of `case-fold-search' in the current buffer
2653 determines whether case is significant or ignored. */)
2654 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2655 {
2656 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2657 register struct buffer *bp1, *bp2;
2658 register Lisp_Object trt
2659 = (!NILP (BVAR (current_buffer, case_fold_search))
2660 ? BVAR (current_buffer, case_canon_table) : Qnil);
2661 ptrdiff_t chars = 0;
2662 ptrdiff_t i1, i2, i1_byte, i2_byte;
2663
2664 /* Find the first buffer and its substring. */
2665
2666 if (NILP (buffer1))
2667 bp1 = current_buffer;
2668 else
2669 {
2670 Lisp_Object buf1;
2671 buf1 = Fget_buffer (buffer1);
2672 if (NILP (buf1))
2673 nsberror (buffer1);
2674 bp1 = XBUFFER (buf1);
2675 if (!BUFFER_LIVE_P (bp1))
2676 error ("Selecting deleted buffer");
2677 }
2678
2679 if (NILP (start1))
2680 begp1 = BUF_BEGV (bp1);
2681 else
2682 {
2683 CHECK_NUMBER_COERCE_MARKER (start1);
2684 begp1 = XINT (start1);
2685 }
2686 if (NILP (end1))
2687 endp1 = BUF_ZV (bp1);
2688 else
2689 {
2690 CHECK_NUMBER_COERCE_MARKER (end1);
2691 endp1 = XINT (end1);
2692 }
2693
2694 if (begp1 > endp1)
2695 temp = begp1, begp1 = endp1, endp1 = temp;
2696
2697 if (!(BUF_BEGV (bp1) <= begp1
2698 && begp1 <= endp1
2699 && endp1 <= BUF_ZV (bp1)))
2700 args_out_of_range (start1, end1);
2701
2702 /* Likewise for second substring. */
2703
2704 if (NILP (buffer2))
2705 bp2 = current_buffer;
2706 else
2707 {
2708 Lisp_Object buf2;
2709 buf2 = Fget_buffer (buffer2);
2710 if (NILP (buf2))
2711 nsberror (buffer2);
2712 bp2 = XBUFFER (buf2);
2713 if (!BUFFER_LIVE_P (bp2))
2714 error ("Selecting deleted buffer");
2715 }
2716
2717 if (NILP (start2))
2718 begp2 = BUF_BEGV (bp2);
2719 else
2720 {
2721 CHECK_NUMBER_COERCE_MARKER (start2);
2722 begp2 = XINT (start2);
2723 }
2724 if (NILP (end2))
2725 endp2 = BUF_ZV (bp2);
2726 else
2727 {
2728 CHECK_NUMBER_COERCE_MARKER (end2);
2729 endp2 = XINT (end2);
2730 }
2731
2732 if (begp2 > endp2)
2733 temp = begp2, begp2 = endp2, endp2 = temp;
2734
2735 if (!(BUF_BEGV (bp2) <= begp2
2736 && begp2 <= endp2
2737 && endp2 <= BUF_ZV (bp2)))
2738 args_out_of_range (start2, end2);
2739
2740 i1 = begp1;
2741 i2 = begp2;
2742 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2743 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2744
2745 while (i1 < endp1 && i2 < endp2)
2746 {
2747 /* When we find a mismatch, we must compare the
2748 characters, not just the bytes. */
2749 int c1, c2;
2750
2751 QUIT;
2752
2753 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2754 {
2755 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2756 BUF_INC_POS (bp1, i1_byte);
2757 i1++;
2758 }
2759 else
2760 {
2761 c1 = BUF_FETCH_BYTE (bp1, i1);
2762 MAKE_CHAR_MULTIBYTE (c1);
2763 i1++;
2764 }
2765
2766 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2767 {
2768 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2769 BUF_INC_POS (bp2, i2_byte);
2770 i2++;
2771 }
2772 else
2773 {
2774 c2 = BUF_FETCH_BYTE (bp2, i2);
2775 MAKE_CHAR_MULTIBYTE (c2);
2776 i2++;
2777 }
2778
2779 if (!NILP (trt))
2780 {
2781 c1 = char_table_translate (trt, c1);
2782 c2 = char_table_translate (trt, c2);
2783 }
2784 if (c1 < c2)
2785 return make_number (- 1 - chars);
2786 if (c1 > c2)
2787 return make_number (chars + 1);
2788
2789 chars++;
2790 }
2791
2792 /* The strings match as far as they go.
2793 If one is shorter, that one is less. */
2794 if (chars < endp1 - begp1)
2795 return make_number (chars + 1);
2796 else if (chars < endp2 - begp2)
2797 return make_number (- chars - 1);
2798
2799 /* Same length too => they are equal. */
2800 return make_number (0);
2801 }
2802 \f
2803 static void
2804 subst_char_in_region_unwind (Lisp_Object arg)
2805 {
2806 bset_undo_list (current_buffer, arg);
2807 }
2808
2809 static void
2810 subst_char_in_region_unwind_1 (Lisp_Object arg)
2811 {
2812 bset_filename (current_buffer, arg);
2813 }
2814
2815 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2816 Ssubst_char_in_region, 4, 5, 0,
2817 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2818 If optional arg NOUNDO is non-nil, don't record this change for undo
2819 and don't mark the buffer as really changed.
2820 Both characters must have the same length of multi-byte form. */)
2821 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2822 {
2823 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2824 /* Keep track of the first change in the buffer:
2825 if 0 we haven't found it yet.
2826 if < 0 we've found it and we've run the before-change-function.
2827 if > 0 we've actually performed it and the value is its position. */
2828 ptrdiff_t changed = 0;
2829 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2830 unsigned char *p;
2831 ptrdiff_t count = SPECPDL_INDEX ();
2832 #define COMBINING_NO 0
2833 #define COMBINING_BEFORE 1
2834 #define COMBINING_AFTER 2
2835 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2836 int maybe_byte_combining = COMBINING_NO;
2837 ptrdiff_t last_changed = 0;
2838 bool multibyte_p
2839 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2840 int fromc, toc;
2841
2842 restart:
2843
2844 validate_region (&start, &end);
2845 CHECK_CHARACTER (fromchar);
2846 CHECK_CHARACTER (tochar);
2847 fromc = XFASTINT (fromchar);
2848 toc = XFASTINT (tochar);
2849
2850 if (multibyte_p)
2851 {
2852 len = CHAR_STRING (fromc, fromstr);
2853 if (CHAR_STRING (toc, tostr) != len)
2854 error ("Characters in `subst-char-in-region' have different byte-lengths");
2855 if (!ASCII_CHAR_P (*tostr))
2856 {
2857 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2858 complete multibyte character, it may be combined with the
2859 after bytes. If it is in the range 0xA0..0xFF, it may be
2860 combined with the before and after bytes. */
2861 if (!CHAR_HEAD_P (*tostr))
2862 maybe_byte_combining = COMBINING_BOTH;
2863 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2864 maybe_byte_combining = COMBINING_AFTER;
2865 }
2866 }
2867 else
2868 {
2869 len = 1;
2870 fromstr[0] = fromc;
2871 tostr[0] = toc;
2872 }
2873
2874 pos = XINT (start);
2875 pos_byte = CHAR_TO_BYTE (pos);
2876 stop = CHAR_TO_BYTE (XINT (end));
2877 end_byte = stop;
2878
2879 /* If we don't want undo, turn off putting stuff on the list.
2880 That's faster than getting rid of things,
2881 and it prevents even the entry for a first change.
2882 Also inhibit locking the file. */
2883 if (!changed && !NILP (noundo))
2884 {
2885 record_unwind_protect (subst_char_in_region_unwind,
2886 BVAR (current_buffer, undo_list));
2887 bset_undo_list (current_buffer, Qt);
2888 /* Don't do file-locking. */
2889 record_unwind_protect (subst_char_in_region_unwind_1,
2890 BVAR (current_buffer, filename));
2891 bset_filename (current_buffer, Qnil);
2892 }
2893
2894 if (pos_byte < GPT_BYTE)
2895 stop = min (stop, GPT_BYTE);
2896 while (1)
2897 {
2898 ptrdiff_t pos_byte_next = pos_byte;
2899
2900 if (pos_byte >= stop)
2901 {
2902 if (pos_byte >= end_byte) break;
2903 stop = end_byte;
2904 }
2905 p = BYTE_POS_ADDR (pos_byte);
2906 if (multibyte_p)
2907 INC_POS (pos_byte_next);
2908 else
2909 ++pos_byte_next;
2910 if (pos_byte_next - pos_byte == len
2911 && p[0] == fromstr[0]
2912 && (len == 1
2913 || (p[1] == fromstr[1]
2914 && (len == 2 || (p[2] == fromstr[2]
2915 && (len == 3 || p[3] == fromstr[3]))))))
2916 {
2917 if (changed < 0)
2918 /* We've already seen this and run the before-change-function;
2919 this time we only need to record the actual position. */
2920 changed = pos;
2921 else if (!changed)
2922 {
2923 changed = -1;
2924 modify_text (pos, XINT (end));
2925
2926 if (! NILP (noundo))
2927 {
2928 if (MODIFF - 1 == SAVE_MODIFF)
2929 SAVE_MODIFF++;
2930 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2931 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2932 }
2933
2934 /* The before-change-function may have moved the gap
2935 or even modified the buffer so we should start over. */
2936 goto restart;
2937 }
2938
2939 /* Take care of the case where the new character
2940 combines with neighboring bytes. */
2941 if (maybe_byte_combining
2942 && (maybe_byte_combining == COMBINING_AFTER
2943 ? (pos_byte_next < Z_BYTE
2944 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2945 : ((pos_byte_next < Z_BYTE
2946 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2947 || (pos_byte > BEG_BYTE
2948 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
2949 {
2950 Lisp_Object tem, string;
2951
2952 struct gcpro gcpro1;
2953
2954 tem = BVAR (current_buffer, undo_list);
2955 GCPRO1 (tem);
2956
2957 /* Make a multibyte string containing this single character. */
2958 string = make_multibyte_string ((char *) tostr, 1, len);
2959 /* replace_range is less efficient, because it moves the gap,
2960 but it handles combining correctly. */
2961 replace_range (pos, pos + 1, string,
2962 0, 0, 1);
2963 pos_byte_next = CHAR_TO_BYTE (pos);
2964 if (pos_byte_next > pos_byte)
2965 /* Before combining happened. We should not increment
2966 POS. So, to cancel the later increment of POS,
2967 decrease it now. */
2968 pos--;
2969 else
2970 INC_POS (pos_byte_next);
2971
2972 if (! NILP (noundo))
2973 bset_undo_list (current_buffer, tem);
2974
2975 UNGCPRO;
2976 }
2977 else
2978 {
2979 if (NILP (noundo))
2980 record_change (pos, 1);
2981 for (i = 0; i < len; i++) *p++ = tostr[i];
2982 }
2983 last_changed = pos + 1;
2984 }
2985 pos_byte = pos_byte_next;
2986 pos++;
2987 }
2988
2989 if (changed > 0)
2990 {
2991 signal_after_change (changed,
2992 last_changed - changed, last_changed - changed);
2993 update_compositions (changed, last_changed, CHECK_ALL);
2994 }
2995
2996 unbind_to (count, Qnil);
2997 return Qnil;
2998 }
2999
3000
3001 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3002 Lisp_Object);
3003
3004 /* Helper function for Ftranslate_region_internal.
3005
3006 Check if a character sequence at POS (POS_BYTE) matches an element
3007 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3008 element is found, return it. Otherwise return Qnil. */
3009
3010 static Lisp_Object
3011 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3012 Lisp_Object val)
3013 {
3014 int buf_size = 16, buf_used = 0;
3015 int *buf = alloca (sizeof (int) * buf_size);
3016
3017 for (; CONSP (val); val = XCDR (val))
3018 {
3019 Lisp_Object elt;
3020 ptrdiff_t len, i;
3021
3022 elt = XCAR (val);
3023 if (! CONSP (elt))
3024 continue;
3025 elt = XCAR (elt);
3026 if (! VECTORP (elt))
3027 continue;
3028 len = ASIZE (elt);
3029 if (len <= end - pos)
3030 {
3031 for (i = 0; i < len; i++)
3032 {
3033 if (buf_used <= i)
3034 {
3035 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3036 int len1;
3037
3038 if (buf_used == buf_size)
3039 {
3040 int *newbuf;
3041
3042 buf_size += 16;
3043 newbuf = alloca (sizeof (int) * buf_size);
3044 memcpy (newbuf, buf, sizeof (int) * buf_used);
3045 buf = newbuf;
3046 }
3047 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3048 pos_byte += len1;
3049 }
3050 if (XINT (AREF (elt, i)) != buf[i])
3051 break;
3052 }
3053 if (i == len)
3054 return XCAR (val);
3055 }
3056 }
3057 return Qnil;
3058 }
3059
3060
3061 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3062 Stranslate_region_internal, 3, 3, 0,
3063 doc: /* Internal use only.
3064 From START to END, translate characters according to TABLE.
3065 TABLE is a string or a char-table; the Nth character in it is the
3066 mapping for the character with code N.
3067 It returns the number of characters changed. */)
3068 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3069 {
3070 register unsigned char *tt; /* Trans table. */
3071 register int nc; /* New character. */
3072 int cnt; /* Number of changes made. */
3073 ptrdiff_t size; /* Size of translate table. */
3074 ptrdiff_t pos, pos_byte, end_pos;
3075 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3076 bool string_multibyte IF_LINT (= 0);
3077
3078 validate_region (&start, &end);
3079 if (CHAR_TABLE_P (table))
3080 {
3081 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3082 error ("Not a translation table");
3083 size = MAX_CHAR;
3084 tt = NULL;
3085 }
3086 else
3087 {
3088 CHECK_STRING (table);
3089
3090 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3091 table = string_make_unibyte (table);
3092 string_multibyte = SCHARS (table) < SBYTES (table);
3093 size = SBYTES (table);
3094 tt = SDATA (table);
3095 }
3096
3097 pos = XINT (start);
3098 pos_byte = CHAR_TO_BYTE (pos);
3099 end_pos = XINT (end);
3100 modify_text (pos, end_pos);
3101
3102 cnt = 0;
3103 for (; pos < end_pos; )
3104 {
3105 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3106 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3107 int len, str_len;
3108 int oc;
3109 Lisp_Object val;
3110
3111 if (multibyte)
3112 oc = STRING_CHAR_AND_LENGTH (p, len);
3113 else
3114 oc = *p, len = 1;
3115 if (oc < size)
3116 {
3117 if (tt)
3118 {
3119 /* Reload as signal_after_change in last iteration may GC. */
3120 tt = SDATA (table);
3121 if (string_multibyte)
3122 {
3123 str = tt + string_char_to_byte (table, oc);
3124 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3125 }
3126 else
3127 {
3128 nc = tt[oc];
3129 if (! ASCII_CHAR_P (nc) && multibyte)
3130 {
3131 str_len = BYTE8_STRING (nc, buf);
3132 str = buf;
3133 }
3134 else
3135 {
3136 str_len = 1;
3137 str = tt + oc;
3138 }
3139 }
3140 }
3141 else
3142 {
3143 nc = oc;
3144 val = CHAR_TABLE_REF (table, oc);
3145 if (CHARACTERP (val))
3146 {
3147 nc = XFASTINT (val);
3148 str_len = CHAR_STRING (nc, buf);
3149 str = buf;
3150 }
3151 else if (VECTORP (val) || (CONSP (val)))
3152 {
3153 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3154 where TO is TO-CHAR or [TO-CHAR ...]. */
3155 nc = -1;
3156 }
3157 }
3158
3159 if (nc != oc && nc >= 0)
3160 {
3161 /* Simple one char to one char translation. */
3162 if (len != str_len)
3163 {
3164 Lisp_Object string;
3165
3166 /* This is less efficient, because it moves the gap,
3167 but it should handle multibyte characters correctly. */
3168 string = make_multibyte_string ((char *) str, 1, str_len);
3169 replace_range (pos, pos + 1, string, 1, 0, 1);
3170 len = str_len;
3171 }
3172 else
3173 {
3174 record_change (pos, 1);
3175 while (str_len-- > 0)
3176 *p++ = *str++;
3177 signal_after_change (pos, 1, 1);
3178 update_compositions (pos, pos + 1, CHECK_BORDER);
3179 }
3180 ++cnt;
3181 }
3182 else if (nc < 0)
3183 {
3184 Lisp_Object string;
3185
3186 if (CONSP (val))
3187 {
3188 val = check_translation (pos, pos_byte, end_pos, val);
3189 if (NILP (val))
3190 {
3191 pos_byte += len;
3192 pos++;
3193 continue;
3194 }
3195 /* VAL is ([FROM-CHAR ...] . TO). */
3196 len = ASIZE (XCAR (val));
3197 val = XCDR (val);
3198 }
3199 else
3200 len = 1;
3201
3202 if (VECTORP (val))
3203 {
3204 string = Fconcat (1, &val);
3205 }
3206 else
3207 {
3208 string = Fmake_string (make_number (1), val);
3209 }
3210 replace_range (pos, pos + len, string, 1, 0, 1);
3211 pos_byte += SBYTES (string);
3212 pos += SCHARS (string);
3213 cnt += SCHARS (string);
3214 end_pos += SCHARS (string) - len;
3215 continue;
3216 }
3217 }
3218 pos_byte += len;
3219 pos++;
3220 }
3221
3222 return make_number (cnt);
3223 }
3224
3225 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3226 doc: /* Delete the text between START and END.
3227 If called interactively, delete the region between point and mark.
3228 This command deletes buffer text without modifying the kill ring. */)
3229 (Lisp_Object start, Lisp_Object end)
3230 {
3231 validate_region (&start, &end);
3232 del_range (XINT (start), XINT (end));
3233 return Qnil;
3234 }
3235
3236 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3237 Sdelete_and_extract_region, 2, 2, 0,
3238 doc: /* Delete the text between START and END and return it. */)
3239 (Lisp_Object start, Lisp_Object end)
3240 {
3241 validate_region (&start, &end);
3242 if (XINT (start) == XINT (end))
3243 return empty_unibyte_string;
3244 return del_range_1 (XINT (start), XINT (end), 1, 1);
3245 }
3246 \f
3247 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3248 doc: /* Remove restrictions (narrowing) from current buffer.
3249 This allows the buffer's full text to be seen and edited. */)
3250 (void)
3251 {
3252 if (BEG != BEGV || Z != ZV)
3253 current_buffer->clip_changed = 1;
3254 BEGV = BEG;
3255 BEGV_BYTE = BEG_BYTE;
3256 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3257 /* Changing the buffer bounds invalidates any recorded current column. */
3258 invalidate_current_column ();
3259 return Qnil;
3260 }
3261
3262 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3263 doc: /* Restrict editing in this buffer to the current region.
3264 The rest of the text becomes temporarily invisible and untouchable
3265 but is not deleted; if you save the buffer in a file, the invisible
3266 text is included in the file. \\[widen] makes all visible again.
3267 See also `save-restriction'.
3268
3269 When calling from a program, pass two arguments; positions (integers
3270 or markers) bounding the text that should remain visible. */)
3271 (register Lisp_Object start, Lisp_Object end)
3272 {
3273 CHECK_NUMBER_COERCE_MARKER (start);
3274 CHECK_NUMBER_COERCE_MARKER (end);
3275
3276 if (XINT (start) > XINT (end))
3277 {
3278 Lisp_Object tem;
3279 tem = start; start = end; end = tem;
3280 }
3281
3282 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3283 args_out_of_range (start, end);
3284
3285 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3286 current_buffer->clip_changed = 1;
3287
3288 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3289 SET_BUF_ZV (current_buffer, XFASTINT (end));
3290 if (PT < XFASTINT (start))
3291 SET_PT (XFASTINT (start));
3292 if (PT > XFASTINT (end))
3293 SET_PT (XFASTINT (end));
3294 /* Changing the buffer bounds invalidates any recorded current column. */
3295 invalidate_current_column ();
3296 return Qnil;
3297 }
3298
3299 Lisp_Object
3300 save_restriction_save (void)
3301 {
3302 if (BEGV == BEG && ZV == Z)
3303 /* The common case that the buffer isn't narrowed.
3304 We return just the buffer object, which save_restriction_restore
3305 recognizes as meaning `no restriction'. */
3306 return Fcurrent_buffer ();
3307 else
3308 /* We have to save a restriction, so return a pair of markers, one
3309 for the beginning and one for the end. */
3310 {
3311 Lisp_Object beg, end;
3312
3313 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3314 end = build_marker (current_buffer, ZV, ZV_BYTE);
3315
3316 /* END must move forward if text is inserted at its exact location. */
3317 XMARKER (end)->insertion_type = 1;
3318
3319 return Fcons (beg, end);
3320 }
3321 }
3322
3323 void
3324 save_restriction_restore (Lisp_Object data)
3325 {
3326 struct buffer *cur = NULL;
3327 struct buffer *buf = (CONSP (data)
3328 ? XMARKER (XCAR (data))->buffer
3329 : XBUFFER (data));
3330
3331 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3332 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3333 is the case if it is or has an indirect buffer), then make
3334 sure it is current before we update BEGV, so
3335 set_buffer_internal takes care of managing those markers. */
3336 cur = current_buffer;
3337 set_buffer_internal (buf);
3338 }
3339
3340 if (CONSP (data))
3341 /* A pair of marks bounding a saved restriction. */
3342 {
3343 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3344 struct Lisp_Marker *end = XMARKER (XCDR (data));
3345 eassert (buf == end->buffer);
3346
3347 if (buf /* Verify marker still points to a buffer. */
3348 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3349 /* The restriction has changed from the saved one, so restore
3350 the saved restriction. */
3351 {
3352 ptrdiff_t pt = BUF_PT (buf);
3353
3354 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3355 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3356
3357 if (pt < beg->charpos || pt > end->charpos)
3358 /* The point is outside the new visible range, move it inside. */
3359 SET_BUF_PT_BOTH (buf,
3360 clip_to_bounds (beg->charpos, pt, end->charpos),
3361 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3362 end->bytepos));
3363
3364 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3365 }
3366 }
3367 else
3368 /* A buffer, which means that there was no old restriction. */
3369 {
3370 if (buf /* Verify marker still points to a buffer. */
3371 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3372 /* The buffer has been narrowed, get rid of the narrowing. */
3373 {
3374 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3375 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3376
3377 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3378 }
3379 }
3380
3381 /* Changing the buffer bounds invalidates any recorded current column. */
3382 invalidate_current_column ();
3383
3384 if (cur)
3385 set_buffer_internal (cur);
3386 }
3387
3388 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3389 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3390 The buffer's restrictions make parts of the beginning and end invisible.
3391 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3392 This special form, `save-restriction', saves the current buffer's restrictions
3393 when it is entered, and restores them when it is exited.
3394 So any `narrow-to-region' within BODY lasts only until the end of the form.
3395 The old restrictions settings are restored
3396 even in case of abnormal exit (throw or error).
3397
3398 The value returned is the value of the last form in BODY.
3399
3400 Note: if you are using both `save-excursion' and `save-restriction',
3401 use `save-excursion' outermost:
3402 (save-excursion (save-restriction ...))
3403
3404 usage: (save-restriction &rest BODY) */)
3405 (Lisp_Object body)
3406 {
3407 register Lisp_Object val;
3408 ptrdiff_t count = SPECPDL_INDEX ();
3409
3410 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3411 val = Fprogn (body);
3412 return unbind_to (count, val);
3413 }
3414 \f
3415 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3416 doc: /* Display a message at the bottom of the screen.
3417 The message also goes into the `*Messages*' buffer, if `message-log-max'
3418 is non-nil. (In keyboard macros, that's all it does.)
3419 Return the message.
3420
3421 In batch mode, the message is printed to the standard error stream,
3422 followed by a newline.
3423
3424 The first argument is a format control string, and the rest are data
3425 to be formatted under control of the string. See `format' for details.
3426
3427 Note: Use (message "%s" VALUE) to print the value of expressions and
3428 variables to avoid accidentally interpreting `%' as format specifiers.
3429
3430 If the first argument is nil or the empty string, the function clears
3431 any existing message; this lets the minibuffer contents show. See
3432 also `current-message'.
3433
3434 usage: (message FORMAT-STRING &rest ARGS) */)
3435 (ptrdiff_t nargs, Lisp_Object *args)
3436 {
3437 if (NILP (args[0])
3438 || (STRINGP (args[0])
3439 && SBYTES (args[0]) == 0))
3440 {
3441 message1 (0);
3442 return args[0];
3443 }
3444 else
3445 {
3446 register Lisp_Object val;
3447 val = Fformat (nargs, args);
3448 message3 (val);
3449 return val;
3450 }
3451 }
3452
3453 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3454 doc: /* Display a message, in a dialog box if possible.
3455 If a dialog box is not available, use the echo area.
3456 The first argument is a format control string, and the rest are data
3457 to be formatted under control of the string. See `format' for details.
3458
3459 If the first argument is nil or the empty string, clear any existing
3460 message; let the minibuffer contents show.
3461
3462 usage: (message-box FORMAT-STRING &rest ARGS) */)
3463 (ptrdiff_t nargs, Lisp_Object *args)
3464 {
3465 if (NILP (args[0]))
3466 {
3467 message1 (0);
3468 return Qnil;
3469 }
3470 else
3471 {
3472 Lisp_Object val = Fformat (nargs, args);
3473 Lisp_Object pane, menu;
3474 struct gcpro gcpro1;
3475
3476 pane = list1 (Fcons (build_string ("OK"), Qt));
3477 GCPRO1 (pane);
3478 menu = Fcons (val, pane);
3479 Fx_popup_dialog (Qt, menu, Qt);
3480 UNGCPRO;
3481 return val;
3482 }
3483 }
3484
3485 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3486 doc: /* Display a message in a dialog box or in the echo area.
3487 If this command was invoked with the mouse, use a dialog box if
3488 `use-dialog-box' is non-nil.
3489 Otherwise, use the echo area.
3490 The first argument is a format control string, and the rest are data
3491 to be formatted under control of the string. See `format' for details.
3492
3493 If the first argument is nil or the empty string, clear any existing
3494 message; let the minibuffer contents show.
3495
3496 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3497 (ptrdiff_t nargs, Lisp_Object *args)
3498 {
3499 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3500 && use_dialog_box)
3501 return Fmessage_box (nargs, args);
3502 return Fmessage (nargs, args);
3503 }
3504
3505 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3506 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3507 (void)
3508 {
3509 return current_message ();
3510 }
3511
3512
3513 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3514 doc: /* Return a copy of STRING with text properties added.
3515 First argument is the string to copy.
3516 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3517 properties to add to the result.
3518 usage: (propertize STRING &rest PROPERTIES) */)
3519 (ptrdiff_t nargs, Lisp_Object *args)
3520 {
3521 Lisp_Object properties, string;
3522 struct gcpro gcpro1, gcpro2;
3523 ptrdiff_t i;
3524
3525 /* Number of args must be odd. */
3526 if ((nargs & 1) == 0)
3527 error ("Wrong number of arguments");
3528
3529 properties = string = Qnil;
3530 GCPRO2 (properties, string);
3531
3532 /* First argument must be a string. */
3533 CHECK_STRING (args[0]);
3534 string = Fcopy_sequence (args[0]);
3535
3536 for (i = 1; i < nargs; i += 2)
3537 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3538
3539 Fadd_text_properties (make_number (0),
3540 make_number (SCHARS (string)),
3541 properties, string);
3542 RETURN_UNGCPRO (string);
3543 }
3544
3545 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3546 doc: /* Format a string out of a format-string and arguments.
3547 The first argument is a format control string.
3548 The other arguments are substituted into it to make the result, a string.
3549
3550 The format control string may contain %-sequences meaning to substitute
3551 the next available argument:
3552
3553 %s means print a string argument. Actually, prints any object, with `princ'.
3554 %d means print as number in decimal (%o octal, %x hex).
3555 %X is like %x, but uses upper case.
3556 %e means print a number in exponential notation.
3557 %f means print a number in decimal-point notation.
3558 %g means print a number in exponential notation
3559 or decimal-point notation, whichever uses fewer characters.
3560 %c means print a number as a single character.
3561 %S means print any object as an s-expression (using `prin1').
3562
3563 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3564 Use %% to put a single % into the output.
3565
3566 A %-sequence may contain optional flag, width, and precision
3567 specifiers, as follows:
3568
3569 %<flags><width><precision>character
3570
3571 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3572
3573 The + flag character inserts a + before any positive number, while a
3574 space inserts a space before any positive number; these flags only
3575 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3576 The - and 0 flags affect the width specifier, as described below.
3577
3578 The # flag means to use an alternate display form for %o, %x, %X, %e,
3579 %f, and %g sequences: for %o, it ensures that the result begins with
3580 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3581 for %e, %f, and %g, it causes a decimal point to be included even if
3582 the precision is zero.
3583
3584 The width specifier supplies a lower limit for the length of the
3585 printed representation. The padding, if any, normally goes on the
3586 left, but it goes on the right if the - flag is present. The padding
3587 character is normally a space, but it is 0 if the 0 flag is present.
3588 The 0 flag is ignored if the - flag is present, or the format sequence
3589 is something other than %d, %e, %f, and %g.
3590
3591 For %e, %f, and %g sequences, the number after the "." in the
3592 precision specifier says how many decimal places to show; if zero, the
3593 decimal point itself is omitted. For %s and %S, the precision
3594 specifier truncates the string to the given width.
3595
3596 usage: (format STRING &rest OBJECTS) */)
3597 (ptrdiff_t nargs, Lisp_Object *args)
3598 {
3599 ptrdiff_t n; /* The number of the next arg to substitute. */
3600 char initial_buffer[4000];
3601 char *buf = initial_buffer;
3602 ptrdiff_t bufsize = sizeof initial_buffer;
3603 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3604 char *p;
3605 char *format, *end, *format_start;
3606 ptrdiff_t formatlen, nchars;
3607 /* True if the format is multibyte. */
3608 bool multibyte_format = 0;
3609 /* True if the output should be a multibyte string,
3610 which is true if any of the inputs is one. */
3611 bool multibyte = 0;
3612 /* When we make a multibyte string, we must pay attention to the
3613 byte combining problem, i.e., a byte may be combined with a
3614 multibyte character of the previous string. This flag tells if we
3615 must consider such a situation or not. */
3616 bool maybe_combine_byte;
3617 Lisp_Object val;
3618 bool arg_intervals = 0;
3619 USE_SAFE_ALLOCA;
3620
3621 /* discarded[I] is 1 if byte I of the format
3622 string was not copied into the output.
3623 It is 2 if byte I was not the first byte of its character. */
3624 char *discarded;
3625
3626 /* Each element records, for one argument,
3627 the start and end bytepos in the output string,
3628 whether the argument has been converted to string (e.g., due to "%S"),
3629 and whether the argument is a string with intervals.
3630 info[0] is unused. Unused elements have -1 for start. */
3631 struct info
3632 {
3633 ptrdiff_t start, end;
3634 bool_bf converted_to_string : 1;
3635 bool_bf intervals : 1;
3636 } *info = 0;
3637
3638 /* It should not be necessary to GCPRO ARGS, because
3639 the caller in the interpreter should take care of that. */
3640
3641 CHECK_STRING (args[0]);
3642 format_start = SSDATA (args[0]);
3643 formatlen = SBYTES (args[0]);
3644
3645 /* Allocate the info and discarded tables. */
3646 {
3647 ptrdiff_t i;
3648 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3649 memory_full (SIZE_MAX);
3650 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3651 discarded = (char *) &info[nargs + 1];
3652 for (i = 0; i < nargs + 1; i++)
3653 {
3654 info[i].start = -1;
3655 info[i].intervals = info[i].converted_to_string = 0;
3656 }
3657 memset (discarded, 0, formatlen);
3658 }
3659
3660 /* Try to determine whether the result should be multibyte.
3661 This is not always right; sometimes the result needs to be multibyte
3662 because of an object that we will pass through prin1,
3663 and in that case, we won't know it here. */
3664 multibyte_format = STRING_MULTIBYTE (args[0]);
3665 multibyte = multibyte_format;
3666 for (n = 1; !multibyte && n < nargs; n++)
3667 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3668 multibyte = 1;
3669
3670 /* If we start out planning a unibyte result,
3671 then discover it has to be multibyte, we jump back to retry. */
3672 retry:
3673
3674 p = buf;
3675 nchars = 0;
3676 n = 0;
3677
3678 /* Scan the format and store result in BUF. */
3679 format = format_start;
3680 end = format + formatlen;
3681 maybe_combine_byte = 0;
3682
3683 while (format != end)
3684 {
3685 /* The values of N and FORMAT when the loop body is entered. */
3686 ptrdiff_t n0 = n;
3687 char *format0 = format;
3688
3689 /* Bytes needed to represent the output of this conversion. */
3690 ptrdiff_t convbytes;
3691
3692 if (*format == '%')
3693 {
3694 /* General format specifications look like
3695
3696 '%' [flags] [field-width] [precision] format
3697
3698 where
3699
3700 flags ::= [-+0# ]+
3701 field-width ::= [0-9]+
3702 precision ::= '.' [0-9]*
3703
3704 If a field-width is specified, it specifies to which width
3705 the output should be padded with blanks, if the output
3706 string is shorter than field-width.
3707
3708 If precision is specified, it specifies the number of
3709 digits to print after the '.' for floats, or the max.
3710 number of chars to print from a string. */
3711
3712 bool minus_flag = 0;
3713 bool plus_flag = 0;
3714 bool space_flag = 0;
3715 bool sharp_flag = 0;
3716 bool zero_flag = 0;
3717 ptrdiff_t field_width;
3718 bool precision_given;
3719 uintmax_t precision = UINTMAX_MAX;
3720 char *num_end;
3721 char conversion;
3722
3723 while (1)
3724 {
3725 switch (*++format)
3726 {
3727 case '-': minus_flag = 1; continue;
3728 case '+': plus_flag = 1; continue;
3729 case ' ': space_flag = 1; continue;
3730 case '#': sharp_flag = 1; continue;
3731 case '0': zero_flag = 1; continue;
3732 }
3733 break;
3734 }
3735
3736 /* Ignore flags when sprintf ignores them. */
3737 space_flag &= ~ plus_flag;
3738 zero_flag &= ~ minus_flag;
3739
3740 {
3741 uintmax_t w = strtoumax (format, &num_end, 10);
3742 if (max_bufsize <= w)
3743 string_overflow ();
3744 field_width = w;
3745 }
3746 precision_given = *num_end == '.';
3747 if (precision_given)
3748 precision = strtoumax (num_end + 1, &num_end, 10);
3749 format = num_end;
3750
3751 if (format == end)
3752 error ("Format string ends in middle of format specifier");
3753
3754 memset (&discarded[format0 - format_start], 1, format - format0);
3755 conversion = *format;
3756 if (conversion == '%')
3757 goto copy_char;
3758 discarded[format - format_start] = 1;
3759 format++;
3760
3761 ++n;
3762 if (! (n < nargs))
3763 error ("Not enough arguments for format string");
3764
3765 /* For 'S', prin1 the argument, and then treat like 's'.
3766 For 's', princ any argument that is not a string or
3767 symbol. But don't do this conversion twice, which might
3768 happen after retrying. */
3769 if ((conversion == 'S'
3770 || (conversion == 's'
3771 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3772 {
3773 if (! info[n].converted_to_string)
3774 {
3775 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3776 args[n] = Fprin1_to_string (args[n], noescape);
3777 info[n].converted_to_string = 1;
3778 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3779 {
3780 multibyte = 1;
3781 goto retry;
3782 }
3783 }
3784 conversion = 's';
3785 }
3786 else if (conversion == 'c')
3787 {
3788 if (FLOATP (args[n]))
3789 {
3790 double d = XFLOAT_DATA (args[n]);
3791 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3792 }
3793
3794 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3795 {
3796 if (!multibyte)
3797 {
3798 multibyte = 1;
3799 goto retry;
3800 }
3801 args[n] = Fchar_to_string (args[n]);
3802 info[n].converted_to_string = 1;
3803 }
3804
3805 if (info[n].converted_to_string)
3806 conversion = 's';
3807 zero_flag = 0;
3808 }
3809
3810 if (SYMBOLP (args[n]))
3811 {
3812 args[n] = SYMBOL_NAME (args[n]);
3813 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3814 {
3815 multibyte = 1;
3816 goto retry;
3817 }
3818 }
3819
3820 if (conversion == 's')
3821 {
3822 /* handle case (precision[n] >= 0) */
3823
3824 ptrdiff_t width, padding, nbytes;
3825 ptrdiff_t nchars_string;
3826
3827 ptrdiff_t prec = -1;
3828 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3829 prec = precision;
3830
3831 /* lisp_string_width ignores a precision of 0, but GNU
3832 libc functions print 0 characters when the precision
3833 is 0. Imitate libc behavior here. Changing
3834 lisp_string_width is the right thing, and will be
3835 done, but meanwhile we work with it. */
3836
3837 if (prec == 0)
3838 width = nchars_string = nbytes = 0;
3839 else
3840 {
3841 ptrdiff_t nch, nby;
3842 width = lisp_string_width (args[n], prec, &nch, &nby);
3843 if (prec < 0)
3844 {
3845 nchars_string = SCHARS (args[n]);
3846 nbytes = SBYTES (args[n]);
3847 }
3848 else
3849 {
3850 nchars_string = nch;
3851 nbytes = nby;
3852 }
3853 }
3854
3855 convbytes = nbytes;
3856 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3857 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3858
3859 padding = width < field_width ? field_width - width : 0;
3860
3861 if (max_bufsize - padding <= convbytes)
3862 string_overflow ();
3863 convbytes += padding;
3864 if (convbytes <= buf + bufsize - p)
3865 {
3866 if (! minus_flag)
3867 {
3868 memset (p, ' ', padding);
3869 p += padding;
3870 nchars += padding;
3871 }
3872
3873 if (p > buf
3874 && multibyte
3875 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
3876 && STRING_MULTIBYTE (args[n])
3877 && !CHAR_HEAD_P (SREF (args[n], 0)))
3878 maybe_combine_byte = 1;
3879
3880 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3881 nbytes,
3882 STRING_MULTIBYTE (args[n]), multibyte);
3883
3884 info[n].start = nchars;
3885 nchars += nchars_string;
3886 info[n].end = nchars;
3887
3888 if (minus_flag)
3889 {
3890 memset (p, ' ', padding);
3891 p += padding;
3892 nchars += padding;
3893 }
3894
3895 /* If this argument has text properties, record where
3896 in the result string it appears. */
3897 if (string_intervals (args[n]))
3898 info[n].intervals = arg_intervals = 1;
3899
3900 continue;
3901 }
3902 }
3903 else if (! (conversion == 'c' || conversion == 'd'
3904 || conversion == 'e' || conversion == 'f'
3905 || conversion == 'g' || conversion == 'i'
3906 || conversion == 'o' || conversion == 'x'
3907 || conversion == 'X'))
3908 error ("Invalid format operation %%%c",
3909 STRING_CHAR ((unsigned char *) format - 1));
3910 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3911 error ("Format specifier doesn't match argument type");
3912 else
3913 {
3914 enum
3915 {
3916 /* Maximum precision for a %f conversion such that the
3917 trailing output digit might be nonzero. Any precision
3918 larger than this will not yield useful information. */
3919 USEFUL_PRECISION_MAX =
3920 ((1 - DBL_MIN_EXP)
3921 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3922 : FLT_RADIX == 16 ? 4
3923 : -1)),
3924
3925 /* Maximum number of bytes generated by any format, if
3926 precision is no more than USEFUL_PRECISION_MAX.
3927 On all practical hosts, %f is the worst case. */
3928 SPRINTF_BUFSIZE =
3929 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3930
3931 /* Length of pM (that is, of pMd without the
3932 trailing "d"). */
3933 pMlen = sizeof pMd - 2
3934 };
3935 verify (USEFUL_PRECISION_MAX > 0);
3936
3937 int prec;
3938 ptrdiff_t padding, sprintf_bytes;
3939 uintmax_t excess_precision, numwidth;
3940 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3941
3942 char sprintf_buf[SPRINTF_BUFSIZE];
3943
3944 /* Copy of conversion specification, modified somewhat.
3945 At most three flags F can be specified at once. */
3946 char convspec[sizeof "%FFF.*d" + pMlen];
3947
3948 /* Avoid undefined behavior in underlying sprintf. */
3949 if (conversion == 'd' || conversion == 'i')
3950 sharp_flag = 0;
3951
3952 /* Create the copy of the conversion specification, with
3953 any width and precision removed, with ".*" inserted,
3954 and with pM inserted for integer formats. */
3955 {
3956 char *f = convspec;
3957 *f++ = '%';
3958 *f = '-'; f += minus_flag;
3959 *f = '+'; f += plus_flag;
3960 *f = ' '; f += space_flag;
3961 *f = '#'; f += sharp_flag;
3962 *f = '0'; f += zero_flag;
3963 *f++ = '.';
3964 *f++ = '*';
3965 if (conversion == 'd' || conversion == 'i'
3966 || conversion == 'o' || conversion == 'x'
3967 || conversion == 'X')
3968 {
3969 memcpy (f, pMd, pMlen);
3970 f += pMlen;
3971 zero_flag &= ~ precision_given;
3972 }
3973 *f++ = conversion;
3974 *f = '\0';
3975 }
3976
3977 prec = -1;
3978 if (precision_given)
3979 prec = min (precision, USEFUL_PRECISION_MAX);
3980
3981 /* Use sprintf to format this number into sprintf_buf. Omit
3982 padding and excess precision, though, because sprintf limits
3983 output length to INT_MAX.
3984
3985 There are four types of conversion: double, unsigned
3986 char (passed as int), wide signed int, and wide
3987 unsigned int. Treat them separately because the
3988 sprintf ABI is sensitive to which type is passed. Be
3989 careful about integer overflow, NaNs, infinities, and
3990 conversions; for example, the min and max macros are
3991 not suitable here. */
3992 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
3993 {
3994 double x = (INTEGERP (args[n])
3995 ? XINT (args[n])
3996 : XFLOAT_DATA (args[n]));
3997 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
3998 }
3999 else if (conversion == 'c')
4000 {
4001 /* Don't use sprintf here, as it might mishandle prec. */
4002 sprintf_buf[0] = XINT (args[n]);
4003 sprintf_bytes = prec != 0;
4004 }
4005 else if (conversion == 'd')
4006 {
4007 /* For float, maybe we should use "%1.0f"
4008 instead so it also works for values outside
4009 the integer range. */
4010 printmax_t x;
4011 if (INTEGERP (args[n]))
4012 x = XINT (args[n]);
4013 else
4014 {
4015 double d = XFLOAT_DATA (args[n]);
4016 if (d < 0)
4017 {
4018 x = TYPE_MINIMUM (printmax_t);
4019 if (x < d)
4020 x = d;
4021 }
4022 else
4023 {
4024 x = TYPE_MAXIMUM (printmax_t);
4025 if (d < x)
4026 x = d;
4027 }
4028 }
4029 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4030 }
4031 else
4032 {
4033 /* Don't sign-extend for octal or hex printing. */
4034 uprintmax_t x;
4035 if (INTEGERP (args[n]))
4036 x = XUINT (args[n]);
4037 else
4038 {
4039 double d = XFLOAT_DATA (args[n]);
4040 if (d < 0)
4041 x = 0;
4042 else
4043 {
4044 x = TYPE_MAXIMUM (uprintmax_t);
4045 if (d < x)
4046 x = d;
4047 }
4048 }
4049 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4050 }
4051
4052 /* Now the length of the formatted item is known, except it omits
4053 padding and excess precision. Deal with excess precision
4054 first. This happens only when the format specifies
4055 ridiculously large precision. */
4056 excess_precision = precision - prec;
4057 if (excess_precision)
4058 {
4059 if (conversion == 'e' || conversion == 'f'
4060 || conversion == 'g')
4061 {
4062 if ((conversion == 'g' && ! sharp_flag)
4063 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4064 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4065 excess_precision = 0;
4066 else
4067 {
4068 if (conversion == 'g')
4069 {
4070 char *dot = strchr (sprintf_buf, '.');
4071 if (!dot)
4072 excess_precision = 0;
4073 }
4074 }
4075 trailing_zeros = excess_precision;
4076 }
4077 else
4078 leading_zeros = excess_precision;
4079 }
4080
4081 /* Compute the total bytes needed for this item, including
4082 excess precision and padding. */
4083 numwidth = sprintf_bytes + excess_precision;
4084 padding = numwidth < field_width ? field_width - numwidth : 0;
4085 if (max_bufsize - sprintf_bytes <= excess_precision
4086 || max_bufsize - padding <= numwidth)
4087 string_overflow ();
4088 convbytes = numwidth + padding;
4089
4090 if (convbytes <= buf + bufsize - p)
4091 {
4092 /* Copy the formatted item from sprintf_buf into buf,
4093 inserting padding and excess-precision zeros. */
4094
4095 char *src = sprintf_buf;
4096 char src0 = src[0];
4097 int exponent_bytes = 0;
4098 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4099 int significand_bytes;
4100 if (zero_flag
4101 && ((src[signedp] >= '0' && src[signedp] <= '9')
4102 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4103 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4104 {
4105 leading_zeros += padding;
4106 padding = 0;
4107 }
4108
4109 if (excess_precision
4110 && (conversion == 'e' || conversion == 'g'))
4111 {
4112 char *e = strchr (src, 'e');
4113 if (e)
4114 exponent_bytes = src + sprintf_bytes - e;
4115 }
4116
4117 if (! minus_flag)
4118 {
4119 memset (p, ' ', padding);
4120 p += padding;
4121 nchars += padding;
4122 }
4123
4124 *p = src0;
4125 src += signedp;
4126 p += signedp;
4127 memset (p, '0', leading_zeros);
4128 p += leading_zeros;
4129 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4130 memcpy (p, src, significand_bytes);
4131 p += significand_bytes;
4132 src += significand_bytes;
4133 memset (p, '0', trailing_zeros);
4134 p += trailing_zeros;
4135 memcpy (p, src, exponent_bytes);
4136 p += exponent_bytes;
4137
4138 info[n].start = nchars;
4139 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4140 info[n].end = nchars;
4141
4142 if (minus_flag)
4143 {
4144 memset (p, ' ', padding);
4145 p += padding;
4146 nchars += padding;
4147 }
4148
4149 continue;
4150 }
4151 }
4152 }
4153 else
4154 copy_char:
4155 {
4156 /* Copy a single character from format to buf. */
4157
4158 char *src = format;
4159 unsigned char str[MAX_MULTIBYTE_LENGTH];
4160
4161 if (multibyte_format)
4162 {
4163 /* Copy a whole multibyte character. */
4164 if (p > buf
4165 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4166 && !CHAR_HEAD_P (*format))
4167 maybe_combine_byte = 1;
4168
4169 do
4170 format++;
4171 while (! CHAR_HEAD_P (*format));
4172
4173 convbytes = format - src;
4174 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4175 }
4176 else
4177 {
4178 unsigned char uc = *format++;
4179 if (! multibyte || ASCII_CHAR_P (uc))
4180 convbytes = 1;
4181 else
4182 {
4183 int c = BYTE8_TO_CHAR (uc);
4184 convbytes = CHAR_STRING (c, str);
4185 src = (char *) str;
4186 }
4187 }
4188
4189 if (convbytes <= buf + bufsize - p)
4190 {
4191 memcpy (p, src, convbytes);
4192 p += convbytes;
4193 nchars++;
4194 continue;
4195 }
4196 }
4197
4198 /* There wasn't enough room to store this conversion or single
4199 character. CONVBYTES says how much room is needed. Allocate
4200 enough room (and then some) and do it again. */
4201 {
4202 ptrdiff_t used = p - buf;
4203
4204 if (max_bufsize - used < convbytes)
4205 string_overflow ();
4206 bufsize = used + convbytes;
4207 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4208
4209 if (buf == initial_buffer)
4210 {
4211 buf = xmalloc_atomic (bufsize);
4212 memcpy (buf, initial_buffer, used);
4213 }
4214 else
4215 {
4216 buf = xrealloc (buf, bufsize);
4217 }
4218
4219 p = buf + used;
4220 }
4221
4222 format = format0;
4223 n = n0;
4224 }
4225
4226 if (bufsize < p - buf)
4227 emacs_abort ();
4228
4229 if (maybe_combine_byte)
4230 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4231 val = make_specified_string (buf, nchars, p - buf, multibyte);
4232
4233 /* If we allocated BUF with malloc, free it too. */
4234 SAFE_FREE ();
4235
4236 /* If the format string has text properties, or any of the string
4237 arguments has text properties, set up text properties of the
4238 result string. */
4239
4240 if (string_intervals (args[0]) || arg_intervals)
4241 {
4242 Lisp_Object len, new_len, props;
4243 struct gcpro gcpro1;
4244
4245 /* Add text properties from the format string. */
4246 len = make_number (SCHARS (args[0]));
4247 props = text_property_list (args[0], make_number (0), len, Qnil);
4248 GCPRO1 (props);
4249
4250 if (CONSP (props))
4251 {
4252 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4253 ptrdiff_t argn = 1;
4254 Lisp_Object list;
4255
4256 /* Adjust the bounds of each text property
4257 to the proper start and end in the output string. */
4258
4259 /* Put the positions in PROPS in increasing order, so that
4260 we can do (effectively) one scan through the position
4261 space of the format string. */
4262 props = Fnreverse (props);
4263
4264 /* BYTEPOS is the byte position in the format string,
4265 POSITION is the untranslated char position in it,
4266 TRANSLATED is the translated char position in BUF,
4267 and ARGN is the number of the next arg we will come to. */
4268 for (list = props; CONSP (list); list = XCDR (list))
4269 {
4270 Lisp_Object item;
4271 ptrdiff_t pos;
4272
4273 item = XCAR (list);
4274
4275 /* First adjust the property start position. */
4276 pos = XINT (XCAR (item));
4277
4278 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4279 up to this position. */
4280 for (; position < pos; bytepos++)
4281 {
4282 if (! discarded[bytepos])
4283 position++, translated++;
4284 else if (discarded[bytepos] == 1)
4285 {
4286 position++;
4287 if (translated == info[argn].start)
4288 {
4289 translated += info[argn].end - info[argn].start;
4290 argn++;
4291 }
4292 }
4293 }
4294
4295 XSETCAR (item, make_number (translated));
4296
4297 /* Likewise adjust the property end position. */
4298 pos = XINT (XCAR (XCDR (item)));
4299
4300 for (; position < pos; bytepos++)
4301 {
4302 if (! discarded[bytepos])
4303 position++, translated++;
4304 else if (discarded[bytepos] == 1)
4305 {
4306 position++;
4307 if (translated == info[argn].start)
4308 {
4309 translated += info[argn].end - info[argn].start;
4310 argn++;
4311 }
4312 }
4313 }
4314
4315 XSETCAR (XCDR (item), make_number (translated));
4316 }
4317
4318 add_text_properties_from_list (val, props, make_number (0));
4319 }
4320
4321 /* Add text properties from arguments. */
4322 if (arg_intervals)
4323 for (n = 1; n < nargs; ++n)
4324 if (info[n].intervals)
4325 {
4326 len = make_number (SCHARS (args[n]));
4327 new_len = make_number (info[n].end - info[n].start);
4328 props = text_property_list (args[n], make_number (0), len, Qnil);
4329 props = extend_property_ranges (props, new_len);
4330 /* If successive arguments have properties, be sure that
4331 the value of `composition' property be the copy. */
4332 if (n > 1 && info[n - 1].end)
4333 make_composition_value_copy (props);
4334 add_text_properties_from_list (val, props,
4335 make_number (info[n].start));
4336 }
4337
4338 UNGCPRO;
4339 }
4340
4341 return val;
4342 }
4343
4344 Lisp_Object
4345 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4346 {
4347 Lisp_Object args[3];
4348 args[0] = build_string (string1);
4349 args[1] = arg0;
4350 args[2] = arg1;
4351 return Fformat (3, args);
4352 }
4353 \f
4354 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4355 doc: /* Return t if two characters match, optionally ignoring case.
4356 Both arguments must be characters (i.e. integers).
4357 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4358 (register Lisp_Object c1, Lisp_Object c2)
4359 {
4360 int i1, i2;
4361 /* Check they're chars, not just integers, otherwise we could get array
4362 bounds violations in downcase. */
4363 CHECK_CHARACTER (c1);
4364 CHECK_CHARACTER (c2);
4365
4366 if (XINT (c1) == XINT (c2))
4367 return Qt;
4368 if (NILP (BVAR (current_buffer, case_fold_search)))
4369 return Qnil;
4370
4371 i1 = XFASTINT (c1);
4372 i2 = XFASTINT (c2);
4373
4374 /* FIXME: It is possible to compare multibyte characters even when
4375 the current buffer is unibyte. Unfortunately this is ambiguous
4376 for characters between 128 and 255, as they could be either
4377 eight-bit raw bytes or Latin-1 characters. Assume the former for
4378 now. See Bug#17011, and also see casefiddle.c's casify_object,
4379 which has a similar problem. */
4380 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4381 {
4382 if (SINGLE_BYTE_CHAR_P (i1))
4383 i1 = UNIBYTE_TO_CHAR (i1);
4384 if (SINGLE_BYTE_CHAR_P (i2))
4385 i2 = UNIBYTE_TO_CHAR (i2);
4386 }
4387
4388 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4389 }
4390 \f
4391 /* Transpose the markers in two regions of the current buffer, and
4392 adjust the ones between them if necessary (i.e.: if the regions
4393 differ in size).
4394
4395 START1, END1 are the character positions of the first region.
4396 START1_BYTE, END1_BYTE are the byte positions.
4397 START2, END2 are the character positions of the second region.
4398 START2_BYTE, END2_BYTE are the byte positions.
4399
4400 Traverses the entire marker list of the buffer to do so, adding an
4401 appropriate amount to some, subtracting from some, and leaving the
4402 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4403
4404 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4405
4406 static void
4407 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4408 ptrdiff_t start2, ptrdiff_t end2,
4409 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4410 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4411 {
4412 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4413 register struct Lisp_Marker *marker;
4414
4415 /* Update point as if it were a marker. */
4416 if (PT < start1)
4417 ;
4418 else if (PT < end1)
4419 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4420 PT_BYTE + (end2_byte - end1_byte));
4421 else if (PT < start2)
4422 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4423 (PT_BYTE + (end2_byte - start2_byte)
4424 - (end1_byte - start1_byte)));
4425 else if (PT < end2)
4426 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4427 PT_BYTE - (start2_byte - start1_byte));
4428
4429 /* We used to adjust the endpoints here to account for the gap, but that
4430 isn't good enough. Even if we assume the caller has tried to move the
4431 gap out of our way, it might still be at start1 exactly, for example;
4432 and that places it `inside' the interval, for our purposes. The amount
4433 of adjustment is nontrivial if there's a `denormalized' marker whose
4434 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4435 the dirty work to Fmarker_position, below. */
4436
4437 /* The difference between the region's lengths */
4438 diff = (end2 - start2) - (end1 - start1);
4439 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4440
4441 /* For shifting each marker in a region by the length of the other
4442 region plus the distance between the regions. */
4443 amt1 = (end2 - start2) + (start2 - end1);
4444 amt2 = (end1 - start1) + (start2 - end1);
4445 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4446 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4447
4448 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4449 {
4450 mpos = marker->bytepos;
4451 if (mpos >= start1_byte && mpos < end2_byte)
4452 {
4453 if (mpos < end1_byte)
4454 mpos += amt1_byte;
4455 else if (mpos < start2_byte)
4456 mpos += diff_byte;
4457 else
4458 mpos -= amt2_byte;
4459 marker->bytepos = mpos;
4460 }
4461 mpos = marker->charpos;
4462 if (mpos >= start1 && mpos < end2)
4463 {
4464 if (mpos < end1)
4465 mpos += amt1;
4466 else if (mpos < start2)
4467 mpos += diff;
4468 else
4469 mpos -= amt2;
4470 }
4471 marker->charpos = mpos;
4472 }
4473 }
4474
4475 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4476 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4477 The regions should not be overlapping, because the size of the buffer is
4478 never changed in a transposition.
4479
4480 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4481 any markers that happen to be located in the regions.
4482
4483 Transposing beyond buffer boundaries is an error. */)
4484 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4485 {
4486 register ptrdiff_t start1, end1, start2, end2;
4487 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4488 ptrdiff_t gap, len1, len_mid, len2;
4489 unsigned char *start1_addr, *start2_addr, *temp;
4490
4491 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4492 Lisp_Object buf;
4493
4494 XSETBUFFER (buf, current_buffer);
4495 cur_intv = buffer_intervals (current_buffer);
4496
4497 validate_region (&startr1, &endr1);
4498 validate_region (&startr2, &endr2);
4499
4500 start1 = XFASTINT (startr1);
4501 end1 = XFASTINT (endr1);
4502 start2 = XFASTINT (startr2);
4503 end2 = XFASTINT (endr2);
4504 gap = GPT;
4505
4506 /* Swap the regions if they're reversed. */
4507 if (start2 < end1)
4508 {
4509 register ptrdiff_t glumph = start1;
4510 start1 = start2;
4511 start2 = glumph;
4512 glumph = end1;
4513 end1 = end2;
4514 end2 = glumph;
4515 }
4516
4517 len1 = end1 - start1;
4518 len2 = end2 - start2;
4519
4520 if (start2 < end1)
4521 error ("Transposed regions overlap");
4522 /* Nothing to change for adjacent regions with one being empty */
4523 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4524 return Qnil;
4525
4526 /* The possibilities are:
4527 1. Adjacent (contiguous) regions, or separate but equal regions
4528 (no, really equal, in this case!), or
4529 2. Separate regions of unequal size.
4530
4531 The worst case is usually No. 2. It means that (aside from
4532 potential need for getting the gap out of the way), there also
4533 needs to be a shifting of the text between the two regions. So
4534 if they are spread far apart, we are that much slower... sigh. */
4535
4536 /* It must be pointed out that the really studly thing to do would
4537 be not to move the gap at all, but to leave it in place and work
4538 around it if necessary. This would be extremely efficient,
4539 especially considering that people are likely to do
4540 transpositions near where they are working interactively, which
4541 is exactly where the gap would be found. However, such code
4542 would be much harder to write and to read. So, if you are
4543 reading this comment and are feeling squirrely, by all means have
4544 a go! I just didn't feel like doing it, so I will simply move
4545 the gap the minimum distance to get it out of the way, and then
4546 deal with an unbroken array. */
4547
4548 start1_byte = CHAR_TO_BYTE (start1);
4549 end2_byte = CHAR_TO_BYTE (end2);
4550
4551 /* Make sure the gap won't interfere, by moving it out of the text
4552 we will operate on. */
4553 if (start1 < gap && gap < end2)
4554 {
4555 if (gap - start1 < end2 - gap)
4556 move_gap_both (start1, start1_byte);
4557 else
4558 move_gap_both (end2, end2_byte);
4559 }
4560
4561 start2_byte = CHAR_TO_BYTE (start2);
4562 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4563 len2_byte = end2_byte - start2_byte;
4564
4565 #ifdef BYTE_COMBINING_DEBUG
4566 if (end1 == start2)
4567 {
4568 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4569 len2_byte, start1, start1_byte)
4570 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4571 len1_byte, end2, start2_byte + len2_byte)
4572 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4573 len1_byte, end2, start2_byte + len2_byte))
4574 emacs_abort ();
4575 }
4576 else
4577 {
4578 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4579 len2_byte, start1, start1_byte)
4580 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4581 len1_byte, start2, start2_byte)
4582 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4583 len2_byte, end1, start1_byte + len1_byte)
4584 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4585 len1_byte, end2, start2_byte + len2_byte))
4586 emacs_abort ();
4587 }
4588 #endif
4589
4590 /* Hmmm... how about checking to see if the gap is large
4591 enough to use as the temporary storage? That would avoid an
4592 allocation... interesting. Later, don't fool with it now. */
4593
4594 /* Working without memmove, for portability (sigh), so must be
4595 careful of overlapping subsections of the array... */
4596
4597 if (end1 == start2) /* adjacent regions */
4598 {
4599 modify_text (start1, end2);
4600 record_change (start1, len1 + len2);
4601
4602 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4603 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4604 /* Don't use Fset_text_properties: that can cause GC, which can
4605 clobber objects stored in the tmp_intervals. */
4606 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4607 if (tmp_interval3)
4608 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4609
4610 /* First region smaller than second. */
4611 if (len1_byte < len2_byte)
4612 {
4613 USE_SAFE_ALLOCA;
4614
4615 temp = SAFE_ALLOCA (len2_byte);
4616
4617 /* Don't precompute these addresses. We have to compute them
4618 at the last minute, because the relocating allocator might
4619 have moved the buffer around during the xmalloc. */
4620 start1_addr = BYTE_POS_ADDR (start1_byte);
4621 start2_addr = BYTE_POS_ADDR (start2_byte);
4622
4623 memcpy (temp, start2_addr, len2_byte);
4624 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4625 memcpy (start1_addr, temp, len2_byte);
4626 SAFE_FREE ();
4627 }
4628 else
4629 /* First region not smaller than second. */
4630 {
4631 USE_SAFE_ALLOCA;
4632
4633 temp = SAFE_ALLOCA (len1_byte);
4634 start1_addr = BYTE_POS_ADDR (start1_byte);
4635 start2_addr = BYTE_POS_ADDR (start2_byte);
4636 memcpy (temp, start1_addr, len1_byte);
4637 memcpy (start1_addr, start2_addr, len2_byte);
4638 memcpy (start1_addr + len2_byte, temp, len1_byte);
4639 SAFE_FREE ();
4640 }
4641 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4642 len1, current_buffer, 0);
4643 graft_intervals_into_buffer (tmp_interval2, start1,
4644 len2, current_buffer, 0);
4645 update_compositions (start1, start1 + len2, CHECK_BORDER);
4646 update_compositions (start1 + len2, end2, CHECK_TAIL);
4647 }
4648 /* Non-adjacent regions, because end1 != start2, bleagh... */
4649 else
4650 {
4651 len_mid = start2_byte - (start1_byte + len1_byte);
4652
4653 if (len1_byte == len2_byte)
4654 /* Regions are same size, though, how nice. */
4655 {
4656 USE_SAFE_ALLOCA;
4657
4658 modify_text (start1, end1);
4659 modify_text (start2, end2);
4660 record_change (start1, len1);
4661 record_change (start2, len2);
4662 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4663 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4664
4665 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4666 if (tmp_interval3)
4667 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4668
4669 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4670 if (tmp_interval3)
4671 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4672
4673 temp = SAFE_ALLOCA (len1_byte);
4674 start1_addr = BYTE_POS_ADDR (start1_byte);
4675 start2_addr = BYTE_POS_ADDR (start2_byte);
4676 memcpy (temp, start1_addr, len1_byte);
4677 memcpy (start1_addr, start2_addr, len2_byte);
4678 memcpy (start2_addr, temp, len1_byte);
4679 SAFE_FREE ();
4680
4681 graft_intervals_into_buffer (tmp_interval1, start2,
4682 len1, current_buffer, 0);
4683 graft_intervals_into_buffer (tmp_interval2, start1,
4684 len2, current_buffer, 0);
4685 }
4686
4687 else if (len1_byte < len2_byte) /* Second region larger than first */
4688 /* Non-adjacent & unequal size, area between must also be shifted. */
4689 {
4690 USE_SAFE_ALLOCA;
4691
4692 modify_text (start1, end2);
4693 record_change (start1, (end2 - start1));
4694 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4695 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4696 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4697
4698 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4699 if (tmp_interval3)
4700 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4701
4702 /* holds region 2 */
4703 temp = SAFE_ALLOCA (len2_byte);
4704 start1_addr = BYTE_POS_ADDR (start1_byte);
4705 start2_addr = BYTE_POS_ADDR (start2_byte);
4706 memcpy (temp, start2_addr, len2_byte);
4707 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4708 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4709 memcpy (start1_addr, temp, len2_byte);
4710 SAFE_FREE ();
4711
4712 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4713 len1, current_buffer, 0);
4714 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4715 len_mid, current_buffer, 0);
4716 graft_intervals_into_buffer (tmp_interval2, start1,
4717 len2, current_buffer, 0);
4718 }
4719 else
4720 /* Second region smaller than first. */
4721 {
4722 USE_SAFE_ALLOCA;
4723
4724 record_change (start1, (end2 - start1));
4725 modify_text (start1, end2);
4726
4727 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4728 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4729 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4730
4731 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4732 if (tmp_interval3)
4733 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4734
4735 /* holds region 1 */
4736 temp = SAFE_ALLOCA (len1_byte);
4737 start1_addr = BYTE_POS_ADDR (start1_byte);
4738 start2_addr = BYTE_POS_ADDR (start2_byte);
4739 memcpy (temp, start1_addr, len1_byte);
4740 memcpy (start1_addr, start2_addr, len2_byte);
4741 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4742 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4743 SAFE_FREE ();
4744
4745 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4746 len1, current_buffer, 0);
4747 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4748 len_mid, current_buffer, 0);
4749 graft_intervals_into_buffer (tmp_interval2, start1,
4750 len2, current_buffer, 0);
4751 }
4752
4753 update_compositions (start1, start1 + len2, CHECK_BORDER);
4754 update_compositions (end2 - len1, end2, CHECK_BORDER);
4755 }
4756
4757 /* When doing multiple transpositions, it might be nice
4758 to optimize this. Perhaps the markers in any one buffer
4759 should be organized in some sorted data tree. */
4760 if (NILP (leave_markers))
4761 {
4762 transpose_markers (start1, end1, start2, end2,
4763 start1_byte, start1_byte + len1_byte,
4764 start2_byte, start2_byte + len2_byte);
4765 fix_start_end_in_overlays (start1, end2);
4766 }
4767
4768 signal_after_change (start1, end2 - start1, end2 - start1);
4769 return Qnil;
4770 }
4771
4772 \f
4773 void
4774 syms_of_editfns (void)
4775 {
4776 #include "editfns.x"
4777
4778 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4779
4780 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4781 doc: /* Non-nil means text motion commands don't notice fields. */);
4782 Vinhibit_field_text_motion = Qnil;
4783
4784 DEFVAR_LISP ("buffer-access-fontify-functions",
4785 Vbuffer_access_fontify_functions,
4786 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4787 Each function is called with two arguments which specify the range
4788 of the buffer being accessed. */);
4789 Vbuffer_access_fontify_functions = Qnil;
4790
4791 {
4792 Lisp_Object obuf;
4793 obuf = Fcurrent_buffer ();
4794 /* Do this here, because init_buffer_once is too early--it won't work. */
4795 Fset_buffer (Vprin1_to_string_buffer);
4796 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4797 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4798 Qnil);
4799 Fset_buffer (obuf);
4800 }
4801
4802 DEFVAR_LISP ("buffer-access-fontified-property",
4803 Vbuffer_access_fontified_property,
4804 doc: /* Property which (if non-nil) indicates text has been fontified.
4805 `buffer-substring' need not call the `buffer-access-fontify-functions'
4806 functions if all the text being accessed has this property. */);
4807 Vbuffer_access_fontified_property = Qnil;
4808
4809 DEFVAR_LISP ("system-name", Vsystem_name,
4810 doc: /* The host name of the machine Emacs is running on. */);
4811
4812 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4813 doc: /* The full name of the user logged in. */);
4814
4815 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4816 doc: /* The user's name, taken from environment variables if possible. */);
4817
4818 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4819 doc: /* The user's name, based upon the real uid only. */);
4820
4821 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4822 doc: /* The release of the operating system Emacs is running on. */);
4823
4824 DEFSYM (Qfield, "field");
4825 DEFSYM (Qboundary, "boundary");
4826 }