6f70976c345444f46142b7ed363fa861f8e72dbf
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #include <signal.h>
26
27 #ifdef HAVE_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 /* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
34
35 #undef HIDE_LISP_IMPLEMENTATION
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "character.h"
46 #include "syssignal.h"
47 #include "termhooks.h" /* For struct terminal. */
48 #include <setjmp.h>
49 #include <verify.h>
50
51 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52 memory. Can do this only if using gmalloc.c. */
53
54 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
55 #undef GC_MALLOC_CHECK
56 #endif
57
58 #include <unistd.h>
59 #ifndef HAVE_UNISTD_H
60 extern POINTER_TYPE *sbrk ();
61 #endif
62
63 #include <fcntl.h>
64
65 #ifdef WINDOWSNT
66 #include "w32.h"
67 #endif
68
69 #ifdef DOUG_LEA_MALLOC
70
71 #include <malloc.h>
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 extern size_t _bytes_used;
83 extern size_t __malloc_extra_blocks;
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
88 #ifdef HAVE_PTHREAD
89
90 /* When GTK uses the file chooser dialog, different backends can be loaded
91 dynamically. One such a backend is the Gnome VFS backend that gets loaded
92 if you run Gnome. That backend creates several threads and also allocates
93 memory with malloc.
94
95 Also, gconf and gsettings may create several threads.
96
97 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
98 functions below are called from malloc, there is a chance that one
99 of these threads preempts the Emacs main thread and the hook variables
100 end up in an inconsistent state. So we have a mutex to prevent that (note
101 that the backend handles concurrent access to malloc within its own threads
102 but Emacs code running in the main thread is not included in that control).
103
104 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
105 happens in one of the backend threads we will have two threads that tries
106 to run Emacs code at once, and the code is not prepared for that.
107 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
108
109 static pthread_mutex_t alloc_mutex;
110
111 #define BLOCK_INPUT_ALLOC \
112 do \
113 { \
114 if (pthread_equal (pthread_self (), main_thread)) \
115 BLOCK_INPUT; \
116 pthread_mutex_lock (&alloc_mutex); \
117 } \
118 while (0)
119 #define UNBLOCK_INPUT_ALLOC \
120 do \
121 { \
122 pthread_mutex_unlock (&alloc_mutex); \
123 if (pthread_equal (pthread_self (), main_thread)) \
124 UNBLOCK_INPUT; \
125 } \
126 while (0)
127
128 #else /* ! defined HAVE_PTHREAD */
129
130 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
131 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
132
133 #endif /* ! defined HAVE_PTHREAD */
134 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
135
136 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
137 to a struct Lisp_String. */
138
139 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
140 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
141 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
142
143 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
144 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
145 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
146
147 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
148 Be careful during GC, because S->size contains the mark bit for
149 strings. */
150
151 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
152
153 /* Global variables. */
154 struct emacs_globals globals;
155
156 /* Number of bytes of consing done since the last gc. */
157
158 EMACS_INT consing_since_gc;
159
160 /* Similar minimum, computed from Vgc_cons_percentage. */
161
162 EMACS_INT gc_relative_threshold;
163
164 /* Minimum number of bytes of consing since GC before next GC,
165 when memory is full. */
166
167 EMACS_INT memory_full_cons_threshold;
168
169 /* Nonzero during GC. */
170
171 int gc_in_progress;
172
173 /* Nonzero means abort if try to GC.
174 This is for code which is written on the assumption that
175 no GC will happen, so as to verify that assumption. */
176
177 int abort_on_gc;
178
179 /* Number of live and free conses etc. */
180
181 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
182 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
183 static EMACS_INT total_free_floats, total_floats;
184
185 /* Points to memory space allocated as "spare", to be freed if we run
186 out of memory. We keep one large block, four cons-blocks, and
187 two string blocks. */
188
189 static char *spare_memory[7];
190
191 /* Amount of spare memory to keep in large reserve block, or to see
192 whether this much is available when malloc fails on a larger request. */
193
194 #define SPARE_MEMORY (1 << 14)
195
196 /* Number of extra blocks malloc should get when it needs more core. */
197
198 static int malloc_hysteresis;
199
200 /* Initialize it to a nonzero value to force it into data space
201 (rather than bss space). That way unexec will remap it into text
202 space (pure), on some systems. We have not implemented the
203 remapping on more recent systems because this is less important
204 nowadays than in the days of small memories and timesharing. */
205
206 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
207 #define PUREBEG (char *) pure
208
209 /* Pointer to the pure area, and its size. */
210
211 static char *purebeg;
212 static ptrdiff_t pure_size;
213
214 /* Number of bytes of pure storage used before pure storage overflowed.
215 If this is non-zero, this implies that an overflow occurred. */
216
217 static ptrdiff_t pure_bytes_used_before_overflow;
218
219 /* Value is non-zero if P points into pure space. */
220
221 #define PURE_POINTER_P(P) \
222 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
223
224 /* Index in pure at which next pure Lisp object will be allocated.. */
225
226 static EMACS_INT pure_bytes_used_lisp;
227
228 /* Number of bytes allocated for non-Lisp objects in pure storage. */
229
230 static EMACS_INT pure_bytes_used_non_lisp;
231
232 /* If nonzero, this is a warning delivered by malloc and not yet
233 displayed. */
234
235 const char *pending_malloc_warning;
236
237 /* Maximum amount of C stack to save when a GC happens. */
238
239 #ifndef MAX_SAVE_STACK
240 #define MAX_SAVE_STACK 16000
241 #endif
242
243 /* Buffer in which we save a copy of the C stack at each GC. */
244
245 #if MAX_SAVE_STACK > 0
246 static char *stack_copy;
247 static ptrdiff_t stack_copy_size;
248 #endif
249
250 /* Non-zero means ignore malloc warnings. Set during initialization.
251 Currently not used. */
252
253 static int ignore_warnings;
254
255 static Lisp_Object Qgc_cons_threshold;
256 Lisp_Object Qchar_table_extra_slots;
257
258 /* Hook run after GC has finished. */
259
260 static Lisp_Object Qpost_gc_hook;
261
262 static void mark_buffer (Lisp_Object);
263 static void mark_terminals (void);
264 static void gc_sweep (void);
265 static void mark_glyph_matrix (struct glyph_matrix *);
266 static void mark_face_cache (struct face_cache *);
267
268 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
269 static void refill_memory_reserve (void);
270 #endif
271 static struct Lisp_String *allocate_string (void);
272 static void compact_small_strings (void);
273 static void free_large_strings (void);
274 static void sweep_strings (void);
275 static void free_misc (Lisp_Object);
276 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
277
278 /* When scanning the C stack for live Lisp objects, Emacs keeps track
279 of what memory allocated via lisp_malloc is intended for what
280 purpose. This enumeration specifies the type of memory. */
281
282 enum mem_type
283 {
284 MEM_TYPE_NON_LISP,
285 MEM_TYPE_BUFFER,
286 MEM_TYPE_CONS,
287 MEM_TYPE_STRING,
288 MEM_TYPE_MISC,
289 MEM_TYPE_SYMBOL,
290 MEM_TYPE_FLOAT,
291 /* We used to keep separate mem_types for subtypes of vectors such as
292 process, hash_table, frame, terminal, and window, but we never made
293 use of the distinction, so it only caused source-code complexity
294 and runtime slowdown. Minor but pointless. */
295 MEM_TYPE_VECTORLIKE
296 };
297
298 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
299 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
300
301
302 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
303
304 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
305 #include <stdio.h> /* For fprintf. */
306 #endif
307
308 /* A unique object in pure space used to make some Lisp objects
309 on free lists recognizable in O(1). */
310
311 static Lisp_Object Vdead;
312 #define DEADP(x) EQ (x, Vdead)
313
314 #ifdef GC_MALLOC_CHECK
315
316 enum mem_type allocated_mem_type;
317 static int dont_register_blocks;
318
319 #endif /* GC_MALLOC_CHECK */
320
321 /* A node in the red-black tree describing allocated memory containing
322 Lisp data. Each such block is recorded with its start and end
323 address when it is allocated, and removed from the tree when it
324 is freed.
325
326 A red-black tree is a balanced binary tree with the following
327 properties:
328
329 1. Every node is either red or black.
330 2. Every leaf is black.
331 3. If a node is red, then both of its children are black.
332 4. Every simple path from a node to a descendant leaf contains
333 the same number of black nodes.
334 5. The root is always black.
335
336 When nodes are inserted into the tree, or deleted from the tree,
337 the tree is "fixed" so that these properties are always true.
338
339 A red-black tree with N internal nodes has height at most 2
340 log(N+1). Searches, insertions and deletions are done in O(log N).
341 Please see a text book about data structures for a detailed
342 description of red-black trees. Any book worth its salt should
343 describe them. */
344
345 struct mem_node
346 {
347 /* Children of this node. These pointers are never NULL. When there
348 is no child, the value is MEM_NIL, which points to a dummy node. */
349 struct mem_node *left, *right;
350
351 /* The parent of this node. In the root node, this is NULL. */
352 struct mem_node *parent;
353
354 /* Start and end of allocated region. */
355 void *start, *end;
356
357 /* Node color. */
358 enum {MEM_BLACK, MEM_RED} color;
359
360 /* Memory type. */
361 enum mem_type type;
362 };
363
364 /* Base address of stack. Set in main. */
365
366 Lisp_Object *stack_base;
367
368 /* Root of the tree describing allocated Lisp memory. */
369
370 static struct mem_node *mem_root;
371
372 /* Lowest and highest known address in the heap. */
373
374 static void *min_heap_address, *max_heap_address;
375
376 /* Sentinel node of the tree. */
377
378 static struct mem_node mem_z;
379 #define MEM_NIL &mem_z
380
381 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
382 static void lisp_free (POINTER_TYPE *);
383 static void mark_stack (void);
384 static int live_vector_p (struct mem_node *, void *);
385 static int live_buffer_p (struct mem_node *, void *);
386 static int live_string_p (struct mem_node *, void *);
387 static int live_cons_p (struct mem_node *, void *);
388 static int live_symbol_p (struct mem_node *, void *);
389 static int live_float_p (struct mem_node *, void *);
390 static int live_misc_p (struct mem_node *, void *);
391 static void mark_maybe_object (Lisp_Object);
392 static void mark_memory (void *, void *);
393 static void mem_init (void);
394 static struct mem_node *mem_insert (void *, void *, enum mem_type);
395 static void mem_insert_fixup (struct mem_node *);
396 static void mem_rotate_left (struct mem_node *);
397 static void mem_rotate_right (struct mem_node *);
398 static void mem_delete (struct mem_node *);
399 static void mem_delete_fixup (struct mem_node *);
400 static inline struct mem_node *mem_find (void *);
401
402
403 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
404 static void check_gcpros (void);
405 #endif
406
407 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
408
409 #ifndef DEADP
410 # define DEADP(x) 0
411 #endif
412
413 /* Recording what needs to be marked for gc. */
414
415 struct gcpro *gcprolist;
416
417 /* Addresses of staticpro'd variables. Initialize it to a nonzero
418 value; otherwise some compilers put it into BSS. */
419
420 #define NSTATICS 0x640
421 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
422
423 /* Index of next unused slot in staticvec. */
424
425 static int staticidx = 0;
426
427 static POINTER_TYPE *pure_alloc (size_t, int);
428
429
430 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
431 ALIGNMENT must be a power of 2. */
432
433 #define ALIGN(ptr, ALIGNMENT) \
434 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
435 & ~((ALIGNMENT) - 1)))
436
437
438 \f
439 /************************************************************************
440 Malloc
441 ************************************************************************/
442
443 /* Function malloc calls this if it finds we are near exhausting storage. */
444
445 void
446 malloc_warning (const char *str)
447 {
448 pending_malloc_warning = str;
449 }
450
451
452 /* Display an already-pending malloc warning. */
453
454 void
455 display_malloc_warning (void)
456 {
457 call3 (intern ("display-warning"),
458 intern ("alloc"),
459 build_string (pending_malloc_warning),
460 intern ("emergency"));
461 pending_malloc_warning = 0;
462 }
463 \f
464 /* Called if we can't allocate relocatable space for a buffer. */
465
466 void
467 buffer_memory_full (EMACS_INT nbytes)
468 {
469 /* If buffers use the relocating allocator, no need to free
470 spare_memory, because we may have plenty of malloc space left
471 that we could get, and if we don't, the malloc that fails will
472 itself cause spare_memory to be freed. If buffers don't use the
473 relocating allocator, treat this like any other failing
474 malloc. */
475
476 #ifndef REL_ALLOC
477 memory_full (nbytes);
478 #endif
479
480 /* This used to call error, but if we've run out of memory, we could
481 get infinite recursion trying to build the string. */
482 xsignal (Qnil, Vmemory_signal_data);
483 }
484
485
486 #ifndef XMALLOC_OVERRUN_CHECK
487 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
488 #else
489
490 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
491 around each block.
492
493 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
494 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
495 block size in little-endian order. The trailer consists of
496 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
497
498 The header is used to detect whether this block has been allocated
499 through these functions, as some low-level libc functions may
500 bypass the malloc hooks. */
501
502 #define XMALLOC_OVERRUN_CHECK_SIZE 16
503 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
504 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
505
506 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
507 hold a size_t value and (2) the header size is a multiple of the
508 alignment that Emacs needs for C types and for USE_LSB_TAG. */
509 #define XMALLOC_BASE_ALIGNMENT \
510 offsetof ( \
511 struct { \
512 union { long double d; intmax_t i; void *p; } u; \
513 char c; \
514 }, \
515 c)
516 #ifdef USE_LSB_TAG
517 /* A common multiple of the positive integers A and B. Ideally this
518 would be the least common multiple, but there's no way to do that
519 as a constant expression in C, so do the best that we can easily do. */
520 # define COMMON_MULTIPLE(a, b) \
521 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
522 # define XMALLOC_HEADER_ALIGNMENT \
523 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
524 #else
525 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
526 #endif
527 #define XMALLOC_OVERRUN_SIZE_SIZE \
528 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
529 + XMALLOC_HEADER_ALIGNMENT - 1) \
530 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
531 - XMALLOC_OVERRUN_CHECK_SIZE)
532
533 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
534 { '\x9a', '\x9b', '\xae', '\xaf',
535 '\xbf', '\xbe', '\xce', '\xcf',
536 '\xea', '\xeb', '\xec', '\xed',
537 '\xdf', '\xde', '\x9c', '\x9d' };
538
539 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
540 { '\xaa', '\xab', '\xac', '\xad',
541 '\xba', '\xbb', '\xbc', '\xbd',
542 '\xca', '\xcb', '\xcc', '\xcd',
543 '\xda', '\xdb', '\xdc', '\xdd' };
544
545 /* Insert and extract the block size in the header. */
546
547 static void
548 xmalloc_put_size (unsigned char *ptr, size_t size)
549 {
550 int i;
551 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
552 {
553 *--ptr = size & ((1 << CHAR_BIT) - 1);
554 size >>= CHAR_BIT;
555 }
556 }
557
558 static size_t
559 xmalloc_get_size (unsigned char *ptr)
560 {
561 size_t size = 0;
562 int i;
563 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
564 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
565 {
566 size <<= CHAR_BIT;
567 size += *ptr++;
568 }
569 return size;
570 }
571
572
573 /* The call depth in overrun_check functions. For example, this might happen:
574 xmalloc()
575 overrun_check_malloc()
576 -> malloc -> (via hook)_-> emacs_blocked_malloc
577 -> overrun_check_malloc
578 call malloc (hooks are NULL, so real malloc is called).
579 malloc returns 10000.
580 add overhead, return 10016.
581 <- (back in overrun_check_malloc)
582 add overhead again, return 10032
583 xmalloc returns 10032.
584
585 (time passes).
586
587 xfree(10032)
588 overrun_check_free(10032)
589 decrease overhead
590 free(10016) <- crash, because 10000 is the original pointer. */
591
592 static ptrdiff_t check_depth;
593
594 /* Like malloc, but wraps allocated block with header and trailer. */
595
596 static POINTER_TYPE *
597 overrun_check_malloc (size_t size)
598 {
599 register unsigned char *val;
600 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
601 if (SIZE_MAX - overhead < size)
602 abort ();
603
604 val = (unsigned char *) malloc (size + overhead);
605 if (val && check_depth == 1)
606 {
607 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
608 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
609 xmalloc_put_size (val, size);
610 memcpy (val + size, xmalloc_overrun_check_trailer,
611 XMALLOC_OVERRUN_CHECK_SIZE);
612 }
613 --check_depth;
614 return (POINTER_TYPE *)val;
615 }
616
617
618 /* Like realloc, but checks old block for overrun, and wraps new block
619 with header and trailer. */
620
621 static POINTER_TYPE *
622 overrun_check_realloc (POINTER_TYPE *block, size_t size)
623 {
624 register unsigned char *val = (unsigned char *) block;
625 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
626 if (SIZE_MAX - overhead < size)
627 abort ();
628
629 if (val
630 && check_depth == 1
631 && memcmp (xmalloc_overrun_check_header,
632 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
633 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
634 {
635 size_t osize = xmalloc_get_size (val);
636 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
637 XMALLOC_OVERRUN_CHECK_SIZE))
638 abort ();
639 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
640 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
641 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
642 }
643
644 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
645
646 if (val && check_depth == 1)
647 {
648 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
649 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
650 xmalloc_put_size (val, size);
651 memcpy (val + size, xmalloc_overrun_check_trailer,
652 XMALLOC_OVERRUN_CHECK_SIZE);
653 }
654 --check_depth;
655 return (POINTER_TYPE *)val;
656 }
657
658 /* Like free, but checks block for overrun. */
659
660 static void
661 overrun_check_free (POINTER_TYPE *block)
662 {
663 unsigned char *val = (unsigned char *) block;
664
665 ++check_depth;
666 if (val
667 && check_depth == 1
668 && memcmp (xmalloc_overrun_check_header,
669 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
670 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
671 {
672 size_t osize = xmalloc_get_size (val);
673 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
674 XMALLOC_OVERRUN_CHECK_SIZE))
675 abort ();
676 #ifdef XMALLOC_CLEAR_FREE_MEMORY
677 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
678 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
679 #else
680 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
681 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
682 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
683 #endif
684 }
685
686 free (val);
687 --check_depth;
688 }
689
690 #undef malloc
691 #undef realloc
692 #undef free
693 #define malloc overrun_check_malloc
694 #define realloc overrun_check_realloc
695 #define free overrun_check_free
696 #endif
697
698 #ifdef SYNC_INPUT
699 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
700 there's no need to block input around malloc. */
701 #define MALLOC_BLOCK_INPUT ((void)0)
702 #define MALLOC_UNBLOCK_INPUT ((void)0)
703 #else
704 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
705 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
706 #endif
707
708 /* Like malloc but check for no memory and block interrupt input.. */
709
710 POINTER_TYPE *
711 xmalloc (size_t size)
712 {
713 register POINTER_TYPE *val;
714
715 MALLOC_BLOCK_INPUT;
716 val = (POINTER_TYPE *) malloc (size);
717 MALLOC_UNBLOCK_INPUT;
718
719 if (!val && size)
720 memory_full (size);
721 return val;
722 }
723
724
725 /* Like realloc but check for no memory and block interrupt input.. */
726
727 POINTER_TYPE *
728 xrealloc (POINTER_TYPE *block, size_t size)
729 {
730 register POINTER_TYPE *val;
731
732 MALLOC_BLOCK_INPUT;
733 /* We must call malloc explicitly when BLOCK is 0, since some
734 reallocs don't do this. */
735 if (! block)
736 val = (POINTER_TYPE *) malloc (size);
737 else
738 val = (POINTER_TYPE *) realloc (block, size);
739 MALLOC_UNBLOCK_INPUT;
740
741 if (!val && size)
742 memory_full (size);
743 return val;
744 }
745
746
747 /* Like free but block interrupt input. */
748
749 void
750 xfree (POINTER_TYPE *block)
751 {
752 if (!block)
753 return;
754 MALLOC_BLOCK_INPUT;
755 free (block);
756 MALLOC_UNBLOCK_INPUT;
757 /* We don't call refill_memory_reserve here
758 because that duplicates doing so in emacs_blocked_free
759 and the criterion should go there. */
760 }
761
762
763 /* Other parts of Emacs pass large int values to allocator functions
764 expecting ptrdiff_t. This is portable in practice, but check it to
765 be safe. */
766 verify (INT_MAX <= PTRDIFF_MAX);
767
768
769 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
770 Signal an error on memory exhaustion, and block interrupt input. */
771
772 void *
773 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
774 {
775 xassert (0 <= nitems && 0 < item_size);
776 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
777 memory_full (SIZE_MAX);
778 return xmalloc (nitems * item_size);
779 }
780
781
782 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
783 Signal an error on memory exhaustion, and block interrupt input. */
784
785 void *
786 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
787 {
788 xassert (0 <= nitems && 0 < item_size);
789 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
790 memory_full (SIZE_MAX);
791 return xrealloc (pa, nitems * item_size);
792 }
793
794
795 /* Grow PA, which points to an array of *NITEMS items, and return the
796 location of the reallocated array, updating *NITEMS to reflect its
797 new size. The new array will contain at least NITEMS_INCR_MIN more
798 items, but will not contain more than NITEMS_MAX items total.
799 ITEM_SIZE is the size of each item, in bytes.
800
801 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
802 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
803 infinity.
804
805 If PA is null, then allocate a new array instead of reallocating
806 the old one. Thus, to grow an array A without saving its old
807 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
808 &NITEMS, ...).
809
810 Block interrupt input as needed. If memory exhaustion occurs, set
811 *NITEMS to zero if PA is null, and signal an error (i.e., do not
812 return). */
813
814 void *
815 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
816 ptrdiff_t nitems_max, ptrdiff_t item_size)
817 {
818 /* The approximate size to use for initial small allocation
819 requests. This is the largest "small" request for the GNU C
820 library malloc. */
821 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
822
823 /* If the array is tiny, grow it to about (but no greater than)
824 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
825 ptrdiff_t n = *nitems;
826 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
827 ptrdiff_t half_again = n >> 1;
828 ptrdiff_t incr_estimate = max (tiny_max, half_again);
829
830 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
831 NITEMS_MAX, and what the C language can represent safely. */
832 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
833 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
834 ? nitems_max : C_language_max);
835 ptrdiff_t nitems_incr_max = n_max - n;
836 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
837
838 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
839 if (! pa)
840 *nitems = 0;
841 if (nitems_incr_max < incr)
842 memory_full (SIZE_MAX);
843 n += incr;
844 pa = xrealloc (pa, n * item_size);
845 *nitems = n;
846 return pa;
847 }
848
849
850 /* Like strdup, but uses xmalloc. */
851
852 char *
853 xstrdup (const char *s)
854 {
855 size_t len = strlen (s) + 1;
856 char *p = (char *) xmalloc (len);
857 memcpy (p, s, len);
858 return p;
859 }
860
861
862 /* Unwind for SAFE_ALLOCA */
863
864 Lisp_Object
865 safe_alloca_unwind (Lisp_Object arg)
866 {
867 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
868
869 p->dogc = 0;
870 xfree (p->pointer);
871 p->pointer = 0;
872 free_misc (arg);
873 return Qnil;
874 }
875
876
877 /* Like malloc but used for allocating Lisp data. NBYTES is the
878 number of bytes to allocate, TYPE describes the intended use of the
879 allocated memory block (for strings, for conses, ...). */
880
881 #ifndef USE_LSB_TAG
882 static void *lisp_malloc_loser;
883 #endif
884
885 static POINTER_TYPE *
886 lisp_malloc (size_t nbytes, enum mem_type type)
887 {
888 register void *val;
889
890 MALLOC_BLOCK_INPUT;
891
892 #ifdef GC_MALLOC_CHECK
893 allocated_mem_type = type;
894 #endif
895
896 val = (void *) malloc (nbytes);
897
898 #ifndef USE_LSB_TAG
899 /* If the memory just allocated cannot be addressed thru a Lisp
900 object's pointer, and it needs to be,
901 that's equivalent to running out of memory. */
902 if (val && type != MEM_TYPE_NON_LISP)
903 {
904 Lisp_Object tem;
905 XSETCONS (tem, (char *) val + nbytes - 1);
906 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
907 {
908 lisp_malloc_loser = val;
909 free (val);
910 val = 0;
911 }
912 }
913 #endif
914
915 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
916 if (val && type != MEM_TYPE_NON_LISP)
917 mem_insert (val, (char *) val + nbytes, type);
918 #endif
919
920 MALLOC_UNBLOCK_INPUT;
921 if (!val && nbytes)
922 memory_full (nbytes);
923 return val;
924 }
925
926 /* Free BLOCK. This must be called to free memory allocated with a
927 call to lisp_malloc. */
928
929 static void
930 lisp_free (POINTER_TYPE *block)
931 {
932 MALLOC_BLOCK_INPUT;
933 free (block);
934 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
935 mem_delete (mem_find (block));
936 #endif
937 MALLOC_UNBLOCK_INPUT;
938 }
939
940 /* Allocation of aligned blocks of memory to store Lisp data. */
941 /* The entry point is lisp_align_malloc which returns blocks of at most */
942 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
943
944 /* Use posix_memalloc if the system has it and we're using the system's
945 malloc (because our gmalloc.c routines don't have posix_memalign although
946 its memalloc could be used). */
947 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
948 #define USE_POSIX_MEMALIGN 1
949 #endif
950
951 /* BLOCK_ALIGN has to be a power of 2. */
952 #define BLOCK_ALIGN (1 << 10)
953
954 /* Padding to leave at the end of a malloc'd block. This is to give
955 malloc a chance to minimize the amount of memory wasted to alignment.
956 It should be tuned to the particular malloc library used.
957 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
958 posix_memalign on the other hand would ideally prefer a value of 4
959 because otherwise, there's 1020 bytes wasted between each ablocks.
960 In Emacs, testing shows that those 1020 can most of the time be
961 efficiently used by malloc to place other objects, so a value of 0 can
962 still preferable unless you have a lot of aligned blocks and virtually
963 nothing else. */
964 #define BLOCK_PADDING 0
965 #define BLOCK_BYTES \
966 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
967
968 /* Internal data structures and constants. */
969
970 #define ABLOCKS_SIZE 16
971
972 /* An aligned block of memory. */
973 struct ablock
974 {
975 union
976 {
977 char payload[BLOCK_BYTES];
978 struct ablock *next_free;
979 } x;
980 /* `abase' is the aligned base of the ablocks. */
981 /* It is overloaded to hold the virtual `busy' field that counts
982 the number of used ablock in the parent ablocks.
983 The first ablock has the `busy' field, the others have the `abase'
984 field. To tell the difference, we assume that pointers will have
985 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
986 is used to tell whether the real base of the parent ablocks is `abase'
987 (if not, the word before the first ablock holds a pointer to the
988 real base). */
989 struct ablocks *abase;
990 /* The padding of all but the last ablock is unused. The padding of
991 the last ablock in an ablocks is not allocated. */
992 #if BLOCK_PADDING
993 char padding[BLOCK_PADDING];
994 #endif
995 };
996
997 /* A bunch of consecutive aligned blocks. */
998 struct ablocks
999 {
1000 struct ablock blocks[ABLOCKS_SIZE];
1001 };
1002
1003 /* Size of the block requested from malloc or memalign. */
1004 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1005
1006 #define ABLOCK_ABASE(block) \
1007 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1008 ? (struct ablocks *)(block) \
1009 : (block)->abase)
1010
1011 /* Virtual `busy' field. */
1012 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1013
1014 /* Pointer to the (not necessarily aligned) malloc block. */
1015 #ifdef USE_POSIX_MEMALIGN
1016 #define ABLOCKS_BASE(abase) (abase)
1017 #else
1018 #define ABLOCKS_BASE(abase) \
1019 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1020 #endif
1021
1022 /* The list of free ablock. */
1023 static struct ablock *free_ablock;
1024
1025 /* Allocate an aligned block of nbytes.
1026 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1027 smaller or equal to BLOCK_BYTES. */
1028 static POINTER_TYPE *
1029 lisp_align_malloc (size_t nbytes, enum mem_type type)
1030 {
1031 void *base, *val;
1032 struct ablocks *abase;
1033
1034 eassert (nbytes <= BLOCK_BYTES);
1035
1036 MALLOC_BLOCK_INPUT;
1037
1038 #ifdef GC_MALLOC_CHECK
1039 allocated_mem_type = type;
1040 #endif
1041
1042 if (!free_ablock)
1043 {
1044 int i;
1045 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1046
1047 #ifdef DOUG_LEA_MALLOC
1048 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1049 because mapped region contents are not preserved in
1050 a dumped Emacs. */
1051 mallopt (M_MMAP_MAX, 0);
1052 #endif
1053
1054 #ifdef USE_POSIX_MEMALIGN
1055 {
1056 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1057 if (err)
1058 base = NULL;
1059 abase = base;
1060 }
1061 #else
1062 base = malloc (ABLOCKS_BYTES);
1063 abase = ALIGN (base, BLOCK_ALIGN);
1064 #endif
1065
1066 if (base == 0)
1067 {
1068 MALLOC_UNBLOCK_INPUT;
1069 memory_full (ABLOCKS_BYTES);
1070 }
1071
1072 aligned = (base == abase);
1073 if (!aligned)
1074 ((void**)abase)[-1] = base;
1075
1076 #ifdef DOUG_LEA_MALLOC
1077 /* Back to a reasonable maximum of mmap'ed areas. */
1078 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1079 #endif
1080
1081 #ifndef USE_LSB_TAG
1082 /* If the memory just allocated cannot be addressed thru a Lisp
1083 object's pointer, and it needs to be, that's equivalent to
1084 running out of memory. */
1085 if (type != MEM_TYPE_NON_LISP)
1086 {
1087 Lisp_Object tem;
1088 char *end = (char *) base + ABLOCKS_BYTES - 1;
1089 XSETCONS (tem, end);
1090 if ((char *) XCONS (tem) != end)
1091 {
1092 lisp_malloc_loser = base;
1093 free (base);
1094 MALLOC_UNBLOCK_INPUT;
1095 memory_full (SIZE_MAX);
1096 }
1097 }
1098 #endif
1099
1100 /* Initialize the blocks and put them on the free list.
1101 Is `base' was not properly aligned, we can't use the last block. */
1102 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1103 {
1104 abase->blocks[i].abase = abase;
1105 abase->blocks[i].x.next_free = free_ablock;
1106 free_ablock = &abase->blocks[i];
1107 }
1108 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1109
1110 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1111 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1112 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1113 eassert (ABLOCKS_BASE (abase) == base);
1114 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1115 }
1116
1117 abase = ABLOCK_ABASE (free_ablock);
1118 ABLOCKS_BUSY (abase) =
1119 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1120 val = free_ablock;
1121 free_ablock = free_ablock->x.next_free;
1122
1123 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1124 if (type != MEM_TYPE_NON_LISP)
1125 mem_insert (val, (char *) val + nbytes, type);
1126 #endif
1127
1128 MALLOC_UNBLOCK_INPUT;
1129
1130 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1131 return val;
1132 }
1133
1134 static void
1135 lisp_align_free (POINTER_TYPE *block)
1136 {
1137 struct ablock *ablock = block;
1138 struct ablocks *abase = ABLOCK_ABASE (ablock);
1139
1140 MALLOC_BLOCK_INPUT;
1141 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1142 mem_delete (mem_find (block));
1143 #endif
1144 /* Put on free list. */
1145 ablock->x.next_free = free_ablock;
1146 free_ablock = ablock;
1147 /* Update busy count. */
1148 ABLOCKS_BUSY (abase) =
1149 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1150
1151 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1152 { /* All the blocks are free. */
1153 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1154 struct ablock **tem = &free_ablock;
1155 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1156
1157 while (*tem)
1158 {
1159 if (*tem >= (struct ablock *) abase && *tem < atop)
1160 {
1161 i++;
1162 *tem = (*tem)->x.next_free;
1163 }
1164 else
1165 tem = &(*tem)->x.next_free;
1166 }
1167 eassert ((aligned & 1) == aligned);
1168 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1169 #ifdef USE_POSIX_MEMALIGN
1170 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1171 #endif
1172 free (ABLOCKS_BASE (abase));
1173 }
1174 MALLOC_UNBLOCK_INPUT;
1175 }
1176
1177 /* Return a new buffer structure allocated from the heap with
1178 a call to lisp_malloc. */
1179
1180 struct buffer *
1181 allocate_buffer (void)
1182 {
1183 struct buffer *b
1184 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1185 MEM_TYPE_BUFFER);
1186 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1187 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1188 / sizeof (EMACS_INT)));
1189 return b;
1190 }
1191
1192 \f
1193 #ifndef SYSTEM_MALLOC
1194
1195 /* Arranging to disable input signals while we're in malloc.
1196
1197 This only works with GNU malloc. To help out systems which can't
1198 use GNU malloc, all the calls to malloc, realloc, and free
1199 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1200 pair; unfortunately, we have no idea what C library functions
1201 might call malloc, so we can't really protect them unless you're
1202 using GNU malloc. Fortunately, most of the major operating systems
1203 can use GNU malloc. */
1204
1205 #ifndef SYNC_INPUT
1206 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1207 there's no need to block input around malloc. */
1208
1209 #ifndef DOUG_LEA_MALLOC
1210 extern void * (*__malloc_hook) (size_t, const void *);
1211 extern void * (*__realloc_hook) (void *, size_t, const void *);
1212 extern void (*__free_hook) (void *, const void *);
1213 /* Else declared in malloc.h, perhaps with an extra arg. */
1214 #endif /* DOUG_LEA_MALLOC */
1215 static void * (*old_malloc_hook) (size_t, const void *);
1216 static void * (*old_realloc_hook) (void *, size_t, const void*);
1217 static void (*old_free_hook) (void*, const void*);
1218
1219 #ifdef DOUG_LEA_MALLOC
1220 # define BYTES_USED (mallinfo ().uordblks)
1221 #else
1222 # define BYTES_USED _bytes_used
1223 #endif
1224
1225 static size_t bytes_used_when_reconsidered;
1226
1227 /* Value of _bytes_used, when spare_memory was freed. */
1228
1229 static size_t bytes_used_when_full;
1230
1231 /* This function is used as the hook for free to call. */
1232
1233 static void
1234 emacs_blocked_free (void *ptr, const void *ptr2)
1235 {
1236 BLOCK_INPUT_ALLOC;
1237
1238 #ifdef GC_MALLOC_CHECK
1239 if (ptr)
1240 {
1241 struct mem_node *m;
1242
1243 m = mem_find (ptr);
1244 if (m == MEM_NIL || m->start != ptr)
1245 {
1246 fprintf (stderr,
1247 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1248 abort ();
1249 }
1250 else
1251 {
1252 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1253 mem_delete (m);
1254 }
1255 }
1256 #endif /* GC_MALLOC_CHECK */
1257
1258 __free_hook = old_free_hook;
1259 free (ptr);
1260
1261 /* If we released our reserve (due to running out of memory),
1262 and we have a fair amount free once again,
1263 try to set aside another reserve in case we run out once more. */
1264 if (! NILP (Vmemory_full)
1265 /* Verify there is enough space that even with the malloc
1266 hysteresis this call won't run out again.
1267 The code here is correct as long as SPARE_MEMORY
1268 is substantially larger than the block size malloc uses. */
1269 && (bytes_used_when_full
1270 > ((bytes_used_when_reconsidered = BYTES_USED)
1271 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1272 refill_memory_reserve ();
1273
1274 __free_hook = emacs_blocked_free;
1275 UNBLOCK_INPUT_ALLOC;
1276 }
1277
1278
1279 /* This function is the malloc hook that Emacs uses. */
1280
1281 static void *
1282 emacs_blocked_malloc (size_t size, const void *ptr)
1283 {
1284 void *value;
1285
1286 BLOCK_INPUT_ALLOC;
1287 __malloc_hook = old_malloc_hook;
1288 #ifdef DOUG_LEA_MALLOC
1289 /* Segfaults on my system. --lorentey */
1290 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1291 #else
1292 __malloc_extra_blocks = malloc_hysteresis;
1293 #endif
1294
1295 value = (void *) malloc (size);
1296
1297 #ifdef GC_MALLOC_CHECK
1298 {
1299 struct mem_node *m = mem_find (value);
1300 if (m != MEM_NIL)
1301 {
1302 fprintf (stderr, "Malloc returned %p which is already in use\n",
1303 value);
1304 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1305 m->start, m->end, (char *) m->end - (char *) m->start,
1306 m->type);
1307 abort ();
1308 }
1309
1310 if (!dont_register_blocks)
1311 {
1312 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1313 allocated_mem_type = MEM_TYPE_NON_LISP;
1314 }
1315 }
1316 #endif /* GC_MALLOC_CHECK */
1317
1318 __malloc_hook = emacs_blocked_malloc;
1319 UNBLOCK_INPUT_ALLOC;
1320
1321 /* fprintf (stderr, "%p malloc\n", value); */
1322 return value;
1323 }
1324
1325
1326 /* This function is the realloc hook that Emacs uses. */
1327
1328 static void *
1329 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1330 {
1331 void *value;
1332
1333 BLOCK_INPUT_ALLOC;
1334 __realloc_hook = old_realloc_hook;
1335
1336 #ifdef GC_MALLOC_CHECK
1337 if (ptr)
1338 {
1339 struct mem_node *m = mem_find (ptr);
1340 if (m == MEM_NIL || m->start != ptr)
1341 {
1342 fprintf (stderr,
1343 "Realloc of %p which wasn't allocated with malloc\n",
1344 ptr);
1345 abort ();
1346 }
1347
1348 mem_delete (m);
1349 }
1350
1351 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1352
1353 /* Prevent malloc from registering blocks. */
1354 dont_register_blocks = 1;
1355 #endif /* GC_MALLOC_CHECK */
1356
1357 value = (void *) realloc (ptr, size);
1358
1359 #ifdef GC_MALLOC_CHECK
1360 dont_register_blocks = 0;
1361
1362 {
1363 struct mem_node *m = mem_find (value);
1364 if (m != MEM_NIL)
1365 {
1366 fprintf (stderr, "Realloc returns memory that is already in use\n");
1367 abort ();
1368 }
1369
1370 /* Can't handle zero size regions in the red-black tree. */
1371 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1372 }
1373
1374 /* fprintf (stderr, "%p <- realloc\n", value); */
1375 #endif /* GC_MALLOC_CHECK */
1376
1377 __realloc_hook = emacs_blocked_realloc;
1378 UNBLOCK_INPUT_ALLOC;
1379
1380 return value;
1381 }
1382
1383
1384 #ifdef HAVE_PTHREAD
1385 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1386 normal malloc. Some thread implementations need this as they call
1387 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1388 calls malloc because it is the first call, and we have an endless loop. */
1389
1390 void
1391 reset_malloc_hooks (void)
1392 {
1393 __free_hook = old_free_hook;
1394 __malloc_hook = old_malloc_hook;
1395 __realloc_hook = old_realloc_hook;
1396 }
1397 #endif /* HAVE_PTHREAD */
1398
1399
1400 /* Called from main to set up malloc to use our hooks. */
1401
1402 void
1403 uninterrupt_malloc (void)
1404 {
1405 #ifdef HAVE_PTHREAD
1406 #ifdef DOUG_LEA_MALLOC
1407 pthread_mutexattr_t attr;
1408
1409 /* GLIBC has a faster way to do this, but let's keep it portable.
1410 This is according to the Single UNIX Specification. */
1411 pthread_mutexattr_init (&attr);
1412 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1413 pthread_mutex_init (&alloc_mutex, &attr);
1414 #else /* !DOUG_LEA_MALLOC */
1415 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1416 and the bundled gmalloc.c doesn't require it. */
1417 pthread_mutex_init (&alloc_mutex, NULL);
1418 #endif /* !DOUG_LEA_MALLOC */
1419 #endif /* HAVE_PTHREAD */
1420
1421 if (__free_hook != emacs_blocked_free)
1422 old_free_hook = __free_hook;
1423 __free_hook = emacs_blocked_free;
1424
1425 if (__malloc_hook != emacs_blocked_malloc)
1426 old_malloc_hook = __malloc_hook;
1427 __malloc_hook = emacs_blocked_malloc;
1428
1429 if (__realloc_hook != emacs_blocked_realloc)
1430 old_realloc_hook = __realloc_hook;
1431 __realloc_hook = emacs_blocked_realloc;
1432 }
1433
1434 #endif /* not SYNC_INPUT */
1435 #endif /* not SYSTEM_MALLOC */
1436
1437
1438 \f
1439 /***********************************************************************
1440 Interval Allocation
1441 ***********************************************************************/
1442
1443 /* Number of intervals allocated in an interval_block structure.
1444 The 1020 is 1024 minus malloc overhead. */
1445
1446 #define INTERVAL_BLOCK_SIZE \
1447 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1448
1449 /* Intervals are allocated in chunks in form of an interval_block
1450 structure. */
1451
1452 struct interval_block
1453 {
1454 /* Place `intervals' first, to preserve alignment. */
1455 struct interval intervals[INTERVAL_BLOCK_SIZE];
1456 struct interval_block *next;
1457 };
1458
1459 /* Current interval block. Its `next' pointer points to older
1460 blocks. */
1461
1462 static struct interval_block *interval_block;
1463
1464 /* Index in interval_block above of the next unused interval
1465 structure. */
1466
1467 static int interval_block_index;
1468
1469 /* Number of free and live intervals. */
1470
1471 static EMACS_INT total_free_intervals, total_intervals;
1472
1473 /* List of free intervals. */
1474
1475 static INTERVAL interval_free_list;
1476
1477
1478 /* Initialize interval allocation. */
1479
1480 static void
1481 init_intervals (void)
1482 {
1483 interval_block = NULL;
1484 interval_block_index = INTERVAL_BLOCK_SIZE;
1485 interval_free_list = 0;
1486 }
1487
1488
1489 /* Return a new interval. */
1490
1491 INTERVAL
1492 make_interval (void)
1493 {
1494 INTERVAL val;
1495
1496 /* eassert (!handling_signal); */
1497
1498 MALLOC_BLOCK_INPUT;
1499
1500 if (interval_free_list)
1501 {
1502 val = interval_free_list;
1503 interval_free_list = INTERVAL_PARENT (interval_free_list);
1504 }
1505 else
1506 {
1507 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1508 {
1509 register struct interval_block *newi;
1510
1511 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1512 MEM_TYPE_NON_LISP);
1513
1514 newi->next = interval_block;
1515 interval_block = newi;
1516 interval_block_index = 0;
1517 }
1518 val = &interval_block->intervals[interval_block_index++];
1519 }
1520
1521 MALLOC_UNBLOCK_INPUT;
1522
1523 consing_since_gc += sizeof (struct interval);
1524 intervals_consed++;
1525 RESET_INTERVAL (val);
1526 val->gcmarkbit = 0;
1527 return val;
1528 }
1529
1530
1531 /* Mark Lisp objects in interval I. */
1532
1533 static void
1534 mark_interval (register INTERVAL i, Lisp_Object dummy)
1535 {
1536 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1537 i->gcmarkbit = 1;
1538 mark_object (i->plist);
1539 }
1540
1541
1542 /* Mark the interval tree rooted in TREE. Don't call this directly;
1543 use the macro MARK_INTERVAL_TREE instead. */
1544
1545 static void
1546 mark_interval_tree (register INTERVAL tree)
1547 {
1548 /* No need to test if this tree has been marked already; this
1549 function is always called through the MARK_INTERVAL_TREE macro,
1550 which takes care of that. */
1551
1552 traverse_intervals_noorder (tree, mark_interval, Qnil);
1553 }
1554
1555
1556 /* Mark the interval tree rooted in I. */
1557
1558 #define MARK_INTERVAL_TREE(i) \
1559 do { \
1560 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1561 mark_interval_tree (i); \
1562 } while (0)
1563
1564
1565 #define UNMARK_BALANCE_INTERVALS(i) \
1566 do { \
1567 if (! NULL_INTERVAL_P (i)) \
1568 (i) = balance_intervals (i); \
1569 } while (0)
1570
1571 \f
1572 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1573 can't create number objects in macros. */
1574 #ifndef make_number
1575 Lisp_Object
1576 make_number (EMACS_INT n)
1577 {
1578 Lisp_Object obj;
1579 obj.s.val = n;
1580 obj.s.type = Lisp_Int;
1581 return obj;
1582 }
1583 #endif
1584 \f
1585 /***********************************************************************
1586 String Allocation
1587 ***********************************************************************/
1588
1589 /* Lisp_Strings are allocated in string_block structures. When a new
1590 string_block is allocated, all the Lisp_Strings it contains are
1591 added to a free-list string_free_list. When a new Lisp_String is
1592 needed, it is taken from that list. During the sweep phase of GC,
1593 string_blocks that are entirely free are freed, except two which
1594 we keep.
1595
1596 String data is allocated from sblock structures. Strings larger
1597 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1598 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1599
1600 Sblocks consist internally of sdata structures, one for each
1601 Lisp_String. The sdata structure points to the Lisp_String it
1602 belongs to. The Lisp_String points back to the `u.data' member of
1603 its sdata structure.
1604
1605 When a Lisp_String is freed during GC, it is put back on
1606 string_free_list, and its `data' member and its sdata's `string'
1607 pointer is set to null. The size of the string is recorded in the
1608 `u.nbytes' member of the sdata. So, sdata structures that are no
1609 longer used, can be easily recognized, and it's easy to compact the
1610 sblocks of small strings which we do in compact_small_strings. */
1611
1612 /* Size in bytes of an sblock structure used for small strings. This
1613 is 8192 minus malloc overhead. */
1614
1615 #define SBLOCK_SIZE 8188
1616
1617 /* Strings larger than this are considered large strings. String data
1618 for large strings is allocated from individual sblocks. */
1619
1620 #define LARGE_STRING_BYTES 1024
1621
1622 /* Structure describing string memory sub-allocated from an sblock.
1623 This is where the contents of Lisp strings are stored. */
1624
1625 struct sdata
1626 {
1627 /* Back-pointer to the string this sdata belongs to. If null, this
1628 structure is free, and the NBYTES member of the union below
1629 contains the string's byte size (the same value that STRING_BYTES
1630 would return if STRING were non-null). If non-null, STRING_BYTES
1631 (STRING) is the size of the data, and DATA contains the string's
1632 contents. */
1633 struct Lisp_String *string;
1634
1635 #ifdef GC_CHECK_STRING_BYTES
1636
1637 EMACS_INT nbytes;
1638 unsigned char data[1];
1639
1640 #define SDATA_NBYTES(S) (S)->nbytes
1641 #define SDATA_DATA(S) (S)->data
1642 #define SDATA_SELECTOR(member) member
1643
1644 #else /* not GC_CHECK_STRING_BYTES */
1645
1646 union
1647 {
1648 /* When STRING is non-null. */
1649 unsigned char data[1];
1650
1651 /* When STRING is null. */
1652 EMACS_INT nbytes;
1653 } u;
1654
1655 #define SDATA_NBYTES(S) (S)->u.nbytes
1656 #define SDATA_DATA(S) (S)->u.data
1657 #define SDATA_SELECTOR(member) u.member
1658
1659 #endif /* not GC_CHECK_STRING_BYTES */
1660
1661 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1662 };
1663
1664
1665 /* Structure describing a block of memory which is sub-allocated to
1666 obtain string data memory for strings. Blocks for small strings
1667 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1668 as large as needed. */
1669
1670 struct sblock
1671 {
1672 /* Next in list. */
1673 struct sblock *next;
1674
1675 /* Pointer to the next free sdata block. This points past the end
1676 of the sblock if there isn't any space left in this block. */
1677 struct sdata *next_free;
1678
1679 /* Start of data. */
1680 struct sdata first_data;
1681 };
1682
1683 /* Number of Lisp strings in a string_block structure. The 1020 is
1684 1024 minus malloc overhead. */
1685
1686 #define STRING_BLOCK_SIZE \
1687 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1688
1689 /* Structure describing a block from which Lisp_String structures
1690 are allocated. */
1691
1692 struct string_block
1693 {
1694 /* Place `strings' first, to preserve alignment. */
1695 struct Lisp_String strings[STRING_BLOCK_SIZE];
1696 struct string_block *next;
1697 };
1698
1699 /* Head and tail of the list of sblock structures holding Lisp string
1700 data. We always allocate from current_sblock. The NEXT pointers
1701 in the sblock structures go from oldest_sblock to current_sblock. */
1702
1703 static struct sblock *oldest_sblock, *current_sblock;
1704
1705 /* List of sblocks for large strings. */
1706
1707 static struct sblock *large_sblocks;
1708
1709 /* List of string_block structures. */
1710
1711 static struct string_block *string_blocks;
1712
1713 /* Free-list of Lisp_Strings. */
1714
1715 static struct Lisp_String *string_free_list;
1716
1717 /* Number of live and free Lisp_Strings. */
1718
1719 static EMACS_INT total_strings, total_free_strings;
1720
1721 /* Number of bytes used by live strings. */
1722
1723 static EMACS_INT total_string_size;
1724
1725 /* Given a pointer to a Lisp_String S which is on the free-list
1726 string_free_list, return a pointer to its successor in the
1727 free-list. */
1728
1729 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1730
1731 /* Return a pointer to the sdata structure belonging to Lisp string S.
1732 S must be live, i.e. S->data must not be null. S->data is actually
1733 a pointer to the `u.data' member of its sdata structure; the
1734 structure starts at a constant offset in front of that. */
1735
1736 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1737
1738
1739 #ifdef GC_CHECK_STRING_OVERRUN
1740
1741 /* We check for overrun in string data blocks by appending a small
1742 "cookie" after each allocated string data block, and check for the
1743 presence of this cookie during GC. */
1744
1745 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1746 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1747 { '\xde', '\xad', '\xbe', '\xef' };
1748
1749 #else
1750 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1751 #endif
1752
1753 /* Value is the size of an sdata structure large enough to hold NBYTES
1754 bytes of string data. The value returned includes a terminating
1755 NUL byte, the size of the sdata structure, and padding. */
1756
1757 #ifdef GC_CHECK_STRING_BYTES
1758
1759 #define SDATA_SIZE(NBYTES) \
1760 ((SDATA_DATA_OFFSET \
1761 + (NBYTES) + 1 \
1762 + sizeof (EMACS_INT) - 1) \
1763 & ~(sizeof (EMACS_INT) - 1))
1764
1765 #else /* not GC_CHECK_STRING_BYTES */
1766
1767 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1768 less than the size of that member. The 'max' is not needed when
1769 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1770 alignment code reserves enough space. */
1771
1772 #define SDATA_SIZE(NBYTES) \
1773 ((SDATA_DATA_OFFSET \
1774 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1775 ? NBYTES \
1776 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1777 + 1 \
1778 + sizeof (EMACS_INT) - 1) \
1779 & ~(sizeof (EMACS_INT) - 1))
1780
1781 #endif /* not GC_CHECK_STRING_BYTES */
1782
1783 /* Extra bytes to allocate for each string. */
1784
1785 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1786
1787 /* Exact bound on the number of bytes in a string, not counting the
1788 terminating null. A string cannot contain more bytes than
1789 STRING_BYTES_BOUND, nor can it be so long that the size_t
1790 arithmetic in allocate_string_data would overflow while it is
1791 calculating a value to be passed to malloc. */
1792 #define STRING_BYTES_MAX \
1793 min (STRING_BYTES_BOUND, \
1794 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1795 - GC_STRING_EXTRA \
1796 - offsetof (struct sblock, first_data) \
1797 - SDATA_DATA_OFFSET) \
1798 & ~(sizeof (EMACS_INT) - 1)))
1799
1800 /* Initialize string allocation. Called from init_alloc_once. */
1801
1802 static void
1803 init_strings (void)
1804 {
1805 total_strings = total_free_strings = total_string_size = 0;
1806 oldest_sblock = current_sblock = large_sblocks = NULL;
1807 string_blocks = NULL;
1808 string_free_list = NULL;
1809 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1810 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1811 }
1812
1813
1814 #ifdef GC_CHECK_STRING_BYTES
1815
1816 static int check_string_bytes_count;
1817
1818 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1819
1820
1821 /* Like GC_STRING_BYTES, but with debugging check. */
1822
1823 EMACS_INT
1824 string_bytes (struct Lisp_String *s)
1825 {
1826 EMACS_INT nbytes =
1827 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1828
1829 if (!PURE_POINTER_P (s)
1830 && s->data
1831 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1832 abort ();
1833 return nbytes;
1834 }
1835
1836 /* Check validity of Lisp strings' string_bytes member in B. */
1837
1838 static void
1839 check_sblock (struct sblock *b)
1840 {
1841 struct sdata *from, *end, *from_end;
1842
1843 end = b->next_free;
1844
1845 for (from = &b->first_data; from < end; from = from_end)
1846 {
1847 /* Compute the next FROM here because copying below may
1848 overwrite data we need to compute it. */
1849 EMACS_INT nbytes;
1850
1851 /* Check that the string size recorded in the string is the
1852 same as the one recorded in the sdata structure. */
1853 if (from->string)
1854 CHECK_STRING_BYTES (from->string);
1855
1856 if (from->string)
1857 nbytes = GC_STRING_BYTES (from->string);
1858 else
1859 nbytes = SDATA_NBYTES (from);
1860
1861 nbytes = SDATA_SIZE (nbytes);
1862 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1863 }
1864 }
1865
1866
1867 /* Check validity of Lisp strings' string_bytes member. ALL_P
1868 non-zero means check all strings, otherwise check only most
1869 recently allocated strings. Used for hunting a bug. */
1870
1871 static void
1872 check_string_bytes (int all_p)
1873 {
1874 if (all_p)
1875 {
1876 struct sblock *b;
1877
1878 for (b = large_sblocks; b; b = b->next)
1879 {
1880 struct Lisp_String *s = b->first_data.string;
1881 if (s)
1882 CHECK_STRING_BYTES (s);
1883 }
1884
1885 for (b = oldest_sblock; b; b = b->next)
1886 check_sblock (b);
1887 }
1888 else
1889 check_sblock (current_sblock);
1890 }
1891
1892 #endif /* GC_CHECK_STRING_BYTES */
1893
1894 #ifdef GC_CHECK_STRING_FREE_LIST
1895
1896 /* Walk through the string free list looking for bogus next pointers.
1897 This may catch buffer overrun from a previous string. */
1898
1899 static void
1900 check_string_free_list (void)
1901 {
1902 struct Lisp_String *s;
1903
1904 /* Pop a Lisp_String off the free-list. */
1905 s = string_free_list;
1906 while (s != NULL)
1907 {
1908 if ((uintptr_t) s < 1024)
1909 abort ();
1910 s = NEXT_FREE_LISP_STRING (s);
1911 }
1912 }
1913 #else
1914 #define check_string_free_list()
1915 #endif
1916
1917 /* Return a new Lisp_String. */
1918
1919 static struct Lisp_String *
1920 allocate_string (void)
1921 {
1922 struct Lisp_String *s;
1923
1924 /* eassert (!handling_signal); */
1925
1926 MALLOC_BLOCK_INPUT;
1927
1928 /* If the free-list is empty, allocate a new string_block, and
1929 add all the Lisp_Strings in it to the free-list. */
1930 if (string_free_list == NULL)
1931 {
1932 struct string_block *b;
1933 int i;
1934
1935 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1936 memset (b, 0, sizeof *b);
1937 b->next = string_blocks;
1938 string_blocks = b;
1939
1940 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1941 {
1942 s = b->strings + i;
1943 NEXT_FREE_LISP_STRING (s) = string_free_list;
1944 string_free_list = s;
1945 }
1946
1947 total_free_strings += STRING_BLOCK_SIZE;
1948 }
1949
1950 check_string_free_list ();
1951
1952 /* Pop a Lisp_String off the free-list. */
1953 s = string_free_list;
1954 string_free_list = NEXT_FREE_LISP_STRING (s);
1955
1956 MALLOC_UNBLOCK_INPUT;
1957
1958 /* Probably not strictly necessary, but play it safe. */
1959 memset (s, 0, sizeof *s);
1960
1961 --total_free_strings;
1962 ++total_strings;
1963 ++strings_consed;
1964 consing_since_gc += sizeof *s;
1965
1966 #ifdef GC_CHECK_STRING_BYTES
1967 if (!noninteractive)
1968 {
1969 if (++check_string_bytes_count == 200)
1970 {
1971 check_string_bytes_count = 0;
1972 check_string_bytes (1);
1973 }
1974 else
1975 check_string_bytes (0);
1976 }
1977 #endif /* GC_CHECK_STRING_BYTES */
1978
1979 return s;
1980 }
1981
1982
1983 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1984 plus a NUL byte at the end. Allocate an sdata structure for S, and
1985 set S->data to its `u.data' member. Store a NUL byte at the end of
1986 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1987 S->data if it was initially non-null. */
1988
1989 void
1990 allocate_string_data (struct Lisp_String *s,
1991 EMACS_INT nchars, EMACS_INT nbytes)
1992 {
1993 struct sdata *data, *old_data;
1994 struct sblock *b;
1995 EMACS_INT needed, old_nbytes;
1996
1997 if (STRING_BYTES_MAX < nbytes)
1998 string_overflow ();
1999
2000 /* Determine the number of bytes needed to store NBYTES bytes
2001 of string data. */
2002 needed = SDATA_SIZE (nbytes);
2003 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2004 old_nbytes = GC_STRING_BYTES (s);
2005
2006 MALLOC_BLOCK_INPUT;
2007
2008 if (nbytes > LARGE_STRING_BYTES)
2009 {
2010 size_t size = offsetof (struct sblock, first_data) + needed;
2011
2012 #ifdef DOUG_LEA_MALLOC
2013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2014 because mapped region contents are not preserved in
2015 a dumped Emacs.
2016
2017 In case you think of allowing it in a dumped Emacs at the
2018 cost of not being able to re-dump, there's another reason:
2019 mmap'ed data typically have an address towards the top of the
2020 address space, which won't fit into an EMACS_INT (at least on
2021 32-bit systems with the current tagging scheme). --fx */
2022 mallopt (M_MMAP_MAX, 0);
2023 #endif
2024
2025 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2026
2027 #ifdef DOUG_LEA_MALLOC
2028 /* Back to a reasonable maximum of mmap'ed areas. */
2029 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2030 #endif
2031
2032 b->next_free = &b->first_data;
2033 b->first_data.string = NULL;
2034 b->next = large_sblocks;
2035 large_sblocks = b;
2036 }
2037 else if (current_sblock == NULL
2038 || (((char *) current_sblock + SBLOCK_SIZE
2039 - (char *) current_sblock->next_free)
2040 < (needed + GC_STRING_EXTRA)))
2041 {
2042 /* Not enough room in the current sblock. */
2043 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2044 b->next_free = &b->first_data;
2045 b->first_data.string = NULL;
2046 b->next = NULL;
2047
2048 if (current_sblock)
2049 current_sblock->next = b;
2050 else
2051 oldest_sblock = b;
2052 current_sblock = b;
2053 }
2054 else
2055 b = current_sblock;
2056
2057 data = b->next_free;
2058 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2059
2060 MALLOC_UNBLOCK_INPUT;
2061
2062 data->string = s;
2063 s->data = SDATA_DATA (data);
2064 #ifdef GC_CHECK_STRING_BYTES
2065 SDATA_NBYTES (data) = nbytes;
2066 #endif
2067 s->size = nchars;
2068 s->size_byte = nbytes;
2069 s->data[nbytes] = '\0';
2070 #ifdef GC_CHECK_STRING_OVERRUN
2071 memcpy ((char *) data + needed, string_overrun_cookie,
2072 GC_STRING_OVERRUN_COOKIE_SIZE);
2073 #endif
2074
2075 /* If S had already data assigned, mark that as free by setting its
2076 string back-pointer to null, and recording the size of the data
2077 in it. */
2078 if (old_data)
2079 {
2080 SDATA_NBYTES (old_data) = old_nbytes;
2081 old_data->string = NULL;
2082 }
2083
2084 consing_since_gc += needed;
2085 }
2086
2087
2088 /* Sweep and compact strings. */
2089
2090 static void
2091 sweep_strings (void)
2092 {
2093 struct string_block *b, *next;
2094 struct string_block *live_blocks = NULL;
2095
2096 string_free_list = NULL;
2097 total_strings = total_free_strings = 0;
2098 total_string_size = 0;
2099
2100 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2101 for (b = string_blocks; b; b = next)
2102 {
2103 int i, nfree = 0;
2104 struct Lisp_String *free_list_before = string_free_list;
2105
2106 next = b->next;
2107
2108 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2109 {
2110 struct Lisp_String *s = b->strings + i;
2111
2112 if (s->data)
2113 {
2114 /* String was not on free-list before. */
2115 if (STRING_MARKED_P (s))
2116 {
2117 /* String is live; unmark it and its intervals. */
2118 UNMARK_STRING (s);
2119
2120 if (!NULL_INTERVAL_P (s->intervals))
2121 UNMARK_BALANCE_INTERVALS (s->intervals);
2122
2123 ++total_strings;
2124 total_string_size += STRING_BYTES (s);
2125 }
2126 else
2127 {
2128 /* String is dead. Put it on the free-list. */
2129 struct sdata *data = SDATA_OF_STRING (s);
2130
2131 /* Save the size of S in its sdata so that we know
2132 how large that is. Reset the sdata's string
2133 back-pointer so that we know it's free. */
2134 #ifdef GC_CHECK_STRING_BYTES
2135 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2136 abort ();
2137 #else
2138 data->u.nbytes = GC_STRING_BYTES (s);
2139 #endif
2140 data->string = NULL;
2141
2142 /* Reset the strings's `data' member so that we
2143 know it's free. */
2144 s->data = NULL;
2145
2146 /* Put the string on the free-list. */
2147 NEXT_FREE_LISP_STRING (s) = string_free_list;
2148 string_free_list = s;
2149 ++nfree;
2150 }
2151 }
2152 else
2153 {
2154 /* S was on the free-list before. Put it there again. */
2155 NEXT_FREE_LISP_STRING (s) = string_free_list;
2156 string_free_list = s;
2157 ++nfree;
2158 }
2159 }
2160
2161 /* Free blocks that contain free Lisp_Strings only, except
2162 the first two of them. */
2163 if (nfree == STRING_BLOCK_SIZE
2164 && total_free_strings > STRING_BLOCK_SIZE)
2165 {
2166 lisp_free (b);
2167 string_free_list = free_list_before;
2168 }
2169 else
2170 {
2171 total_free_strings += nfree;
2172 b->next = live_blocks;
2173 live_blocks = b;
2174 }
2175 }
2176
2177 check_string_free_list ();
2178
2179 string_blocks = live_blocks;
2180 free_large_strings ();
2181 compact_small_strings ();
2182
2183 check_string_free_list ();
2184 }
2185
2186
2187 /* Free dead large strings. */
2188
2189 static void
2190 free_large_strings (void)
2191 {
2192 struct sblock *b, *next;
2193 struct sblock *live_blocks = NULL;
2194
2195 for (b = large_sblocks; b; b = next)
2196 {
2197 next = b->next;
2198
2199 if (b->first_data.string == NULL)
2200 lisp_free (b);
2201 else
2202 {
2203 b->next = live_blocks;
2204 live_blocks = b;
2205 }
2206 }
2207
2208 large_sblocks = live_blocks;
2209 }
2210
2211
2212 /* Compact data of small strings. Free sblocks that don't contain
2213 data of live strings after compaction. */
2214
2215 static void
2216 compact_small_strings (void)
2217 {
2218 struct sblock *b, *tb, *next;
2219 struct sdata *from, *to, *end, *tb_end;
2220 struct sdata *to_end, *from_end;
2221
2222 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2223 to, and TB_END is the end of TB. */
2224 tb = oldest_sblock;
2225 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2226 to = &tb->first_data;
2227
2228 /* Step through the blocks from the oldest to the youngest. We
2229 expect that old blocks will stabilize over time, so that less
2230 copying will happen this way. */
2231 for (b = oldest_sblock; b; b = b->next)
2232 {
2233 end = b->next_free;
2234 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2235
2236 for (from = &b->first_data; from < end; from = from_end)
2237 {
2238 /* Compute the next FROM here because copying below may
2239 overwrite data we need to compute it. */
2240 EMACS_INT nbytes;
2241
2242 #ifdef GC_CHECK_STRING_BYTES
2243 /* Check that the string size recorded in the string is the
2244 same as the one recorded in the sdata structure. */
2245 if (from->string
2246 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2247 abort ();
2248 #endif /* GC_CHECK_STRING_BYTES */
2249
2250 if (from->string)
2251 nbytes = GC_STRING_BYTES (from->string);
2252 else
2253 nbytes = SDATA_NBYTES (from);
2254
2255 if (nbytes > LARGE_STRING_BYTES)
2256 abort ();
2257
2258 nbytes = SDATA_SIZE (nbytes);
2259 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2260
2261 #ifdef GC_CHECK_STRING_OVERRUN
2262 if (memcmp (string_overrun_cookie,
2263 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2264 GC_STRING_OVERRUN_COOKIE_SIZE))
2265 abort ();
2266 #endif
2267
2268 /* FROM->string non-null means it's alive. Copy its data. */
2269 if (from->string)
2270 {
2271 /* If TB is full, proceed with the next sblock. */
2272 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2273 if (to_end > tb_end)
2274 {
2275 tb->next_free = to;
2276 tb = tb->next;
2277 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2278 to = &tb->first_data;
2279 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2280 }
2281
2282 /* Copy, and update the string's `data' pointer. */
2283 if (from != to)
2284 {
2285 xassert (tb != b || to < from);
2286 memmove (to, from, nbytes + GC_STRING_EXTRA);
2287 to->string->data = SDATA_DATA (to);
2288 }
2289
2290 /* Advance past the sdata we copied to. */
2291 to = to_end;
2292 }
2293 }
2294 }
2295
2296 /* The rest of the sblocks following TB don't contain live data, so
2297 we can free them. */
2298 for (b = tb->next; b; b = next)
2299 {
2300 next = b->next;
2301 lisp_free (b);
2302 }
2303
2304 tb->next_free = to;
2305 tb->next = NULL;
2306 current_sblock = tb;
2307 }
2308
2309 void
2310 string_overflow (void)
2311 {
2312 error ("Maximum string size exceeded");
2313 }
2314
2315 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2316 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2317 LENGTH must be an integer.
2318 INIT must be an integer that represents a character. */)
2319 (Lisp_Object length, Lisp_Object init)
2320 {
2321 register Lisp_Object val;
2322 register unsigned char *p, *end;
2323 int c;
2324 EMACS_INT nbytes;
2325
2326 CHECK_NATNUM (length);
2327 CHECK_CHARACTER (init);
2328
2329 c = XFASTINT (init);
2330 if (ASCII_CHAR_P (c))
2331 {
2332 nbytes = XINT (length);
2333 val = make_uninit_string (nbytes);
2334 p = SDATA (val);
2335 end = p + SCHARS (val);
2336 while (p != end)
2337 *p++ = c;
2338 }
2339 else
2340 {
2341 unsigned char str[MAX_MULTIBYTE_LENGTH];
2342 int len = CHAR_STRING (c, str);
2343 EMACS_INT string_len = XINT (length);
2344
2345 if (string_len > STRING_BYTES_MAX / len)
2346 string_overflow ();
2347 nbytes = len * string_len;
2348 val = make_uninit_multibyte_string (string_len, nbytes);
2349 p = SDATA (val);
2350 end = p + nbytes;
2351 while (p != end)
2352 {
2353 memcpy (p, str, len);
2354 p += len;
2355 }
2356 }
2357
2358 *p = 0;
2359 return val;
2360 }
2361
2362
2363 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2364 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2365 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2366 (Lisp_Object length, Lisp_Object init)
2367 {
2368 register Lisp_Object val;
2369 struct Lisp_Bool_Vector *p;
2370 EMACS_INT length_in_chars, length_in_elts;
2371 int bits_per_value;
2372
2373 CHECK_NATNUM (length);
2374
2375 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2376
2377 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2378 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2379 / BOOL_VECTOR_BITS_PER_CHAR);
2380
2381 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2382 slot `size' of the struct Lisp_Bool_Vector. */
2383 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2384
2385 /* No Lisp_Object to trace in there. */
2386 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2387
2388 p = XBOOL_VECTOR (val);
2389 p->size = XFASTINT (length);
2390
2391 if (length_in_chars)
2392 {
2393 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2394
2395 /* Clear any extraneous bits in the last byte. */
2396 p->data[length_in_chars - 1]
2397 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2398 }
2399
2400 return val;
2401 }
2402
2403
2404 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2405 of characters from the contents. This string may be unibyte or
2406 multibyte, depending on the contents. */
2407
2408 Lisp_Object
2409 make_string (const char *contents, EMACS_INT nbytes)
2410 {
2411 register Lisp_Object val;
2412 EMACS_INT nchars, multibyte_nbytes;
2413
2414 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2415 &nchars, &multibyte_nbytes);
2416 if (nbytes == nchars || nbytes != multibyte_nbytes)
2417 /* CONTENTS contains no multibyte sequences or contains an invalid
2418 multibyte sequence. We must make unibyte string. */
2419 val = make_unibyte_string (contents, nbytes);
2420 else
2421 val = make_multibyte_string (contents, nchars, nbytes);
2422 return val;
2423 }
2424
2425
2426 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2427
2428 Lisp_Object
2429 make_unibyte_string (const char *contents, EMACS_INT length)
2430 {
2431 register Lisp_Object val;
2432 val = make_uninit_string (length);
2433 memcpy (SDATA (val), contents, length);
2434 return val;
2435 }
2436
2437
2438 /* Make a multibyte string from NCHARS characters occupying NBYTES
2439 bytes at CONTENTS. */
2440
2441 Lisp_Object
2442 make_multibyte_string (const char *contents,
2443 EMACS_INT nchars, EMACS_INT nbytes)
2444 {
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
2447 memcpy (SDATA (val), contents, nbytes);
2448 return val;
2449 }
2450
2451
2452 /* Make a string from NCHARS characters occupying NBYTES bytes at
2453 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2454
2455 Lisp_Object
2456 make_string_from_bytes (const char *contents,
2457 EMACS_INT nchars, EMACS_INT nbytes)
2458 {
2459 register Lisp_Object val;
2460 val = make_uninit_multibyte_string (nchars, nbytes);
2461 memcpy (SDATA (val), contents, nbytes);
2462 if (SBYTES (val) == SCHARS (val))
2463 STRING_SET_UNIBYTE (val);
2464 return val;
2465 }
2466
2467
2468 /* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. The argument MULTIBYTE controls whether to label the
2470 string as multibyte. If NCHARS is negative, it counts the number of
2471 characters by itself. */
2472
2473 Lisp_Object
2474 make_specified_string (const char *contents,
2475 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2476 {
2477 register Lisp_Object val;
2478
2479 if (nchars < 0)
2480 {
2481 if (multibyte)
2482 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2483 nbytes);
2484 else
2485 nchars = nbytes;
2486 }
2487 val = make_uninit_multibyte_string (nchars, nbytes);
2488 memcpy (SDATA (val), contents, nbytes);
2489 if (!multibyte)
2490 STRING_SET_UNIBYTE (val);
2491 return val;
2492 }
2493
2494
2495 /* Make a string from the data at STR, treating it as multibyte if the
2496 data warrants. */
2497
2498 Lisp_Object
2499 build_string (const char *str)
2500 {
2501 return make_string (str, strlen (str));
2502 }
2503
2504
2505 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2506 occupying LENGTH bytes. */
2507
2508 Lisp_Object
2509 make_uninit_string (EMACS_INT length)
2510 {
2511 Lisp_Object val;
2512
2513 if (!length)
2514 return empty_unibyte_string;
2515 val = make_uninit_multibyte_string (length, length);
2516 STRING_SET_UNIBYTE (val);
2517 return val;
2518 }
2519
2520
2521 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2522 which occupy NBYTES bytes. */
2523
2524 Lisp_Object
2525 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2526 {
2527 Lisp_Object string;
2528 struct Lisp_String *s;
2529
2530 if (nchars < 0)
2531 abort ();
2532 if (!nbytes)
2533 return empty_multibyte_string;
2534
2535 s = allocate_string ();
2536 allocate_string_data (s, nchars, nbytes);
2537 XSETSTRING (string, s);
2538 string_chars_consed += nbytes;
2539 return string;
2540 }
2541
2542
2543 \f
2544 /***********************************************************************
2545 Float Allocation
2546 ***********************************************************************/
2547
2548 /* We store float cells inside of float_blocks, allocating a new
2549 float_block with malloc whenever necessary. Float cells reclaimed
2550 by GC are put on a free list to be reallocated before allocating
2551 any new float cells from the latest float_block. */
2552
2553 #define FLOAT_BLOCK_SIZE \
2554 (((BLOCK_BYTES - sizeof (struct float_block *) \
2555 /* The compiler might add padding at the end. */ \
2556 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2557 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2558
2559 #define GETMARKBIT(block,n) \
2560 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2561 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2562 & 1)
2563
2564 #define SETMARKBIT(block,n) \
2565 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2567
2568 #define UNSETMARKBIT(block,n) \
2569 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2570 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2571
2572 #define FLOAT_BLOCK(fptr) \
2573 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2574
2575 #define FLOAT_INDEX(fptr) \
2576 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2577
2578 struct float_block
2579 {
2580 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2581 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2582 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2583 struct float_block *next;
2584 };
2585
2586 #define FLOAT_MARKED_P(fptr) \
2587 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2588
2589 #define FLOAT_MARK(fptr) \
2590 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2591
2592 #define FLOAT_UNMARK(fptr) \
2593 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2594
2595 /* Current float_block. */
2596
2597 static struct float_block *float_block;
2598
2599 /* Index of first unused Lisp_Float in the current float_block. */
2600
2601 static int float_block_index;
2602
2603 /* Free-list of Lisp_Floats. */
2604
2605 static struct Lisp_Float *float_free_list;
2606
2607
2608 /* Initialize float allocation. */
2609
2610 static void
2611 init_float (void)
2612 {
2613 float_block = NULL;
2614 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2615 float_free_list = 0;
2616 }
2617
2618
2619 /* Return a new float object with value FLOAT_VALUE. */
2620
2621 Lisp_Object
2622 make_float (double float_value)
2623 {
2624 register Lisp_Object val;
2625
2626 /* eassert (!handling_signal); */
2627
2628 MALLOC_BLOCK_INPUT;
2629
2630 if (float_free_list)
2631 {
2632 /* We use the data field for chaining the free list
2633 so that we won't use the same field that has the mark bit. */
2634 XSETFLOAT (val, float_free_list);
2635 float_free_list = float_free_list->u.chain;
2636 }
2637 else
2638 {
2639 if (float_block_index == FLOAT_BLOCK_SIZE)
2640 {
2641 register struct float_block *new;
2642
2643 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2644 MEM_TYPE_FLOAT);
2645 new->next = float_block;
2646 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2647 float_block = new;
2648 float_block_index = 0;
2649 }
2650 XSETFLOAT (val, &float_block->floats[float_block_index]);
2651 float_block_index++;
2652 }
2653
2654 MALLOC_UNBLOCK_INPUT;
2655
2656 XFLOAT_INIT (val, float_value);
2657 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2658 consing_since_gc += sizeof (struct Lisp_Float);
2659 floats_consed++;
2660 return val;
2661 }
2662
2663
2664 \f
2665 /***********************************************************************
2666 Cons Allocation
2667 ***********************************************************************/
2668
2669 /* We store cons cells inside of cons_blocks, allocating a new
2670 cons_block with malloc whenever necessary. Cons cells reclaimed by
2671 GC are put on a free list to be reallocated before allocating
2672 any new cons cells from the latest cons_block. */
2673
2674 #define CONS_BLOCK_SIZE \
2675 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2676 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2677
2678 #define CONS_BLOCK(fptr) \
2679 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2680
2681 #define CONS_INDEX(fptr) \
2682 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2683
2684 struct cons_block
2685 {
2686 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2687 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2688 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2689 struct cons_block *next;
2690 };
2691
2692 #define CONS_MARKED_P(fptr) \
2693 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2694
2695 #define CONS_MARK(fptr) \
2696 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2697
2698 #define CONS_UNMARK(fptr) \
2699 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2700
2701 /* Current cons_block. */
2702
2703 static struct cons_block *cons_block;
2704
2705 /* Index of first unused Lisp_Cons in the current block. */
2706
2707 static int cons_block_index;
2708
2709 /* Free-list of Lisp_Cons structures. */
2710
2711 static struct Lisp_Cons *cons_free_list;
2712
2713
2714 /* Initialize cons allocation. */
2715
2716 static void
2717 init_cons (void)
2718 {
2719 cons_block = NULL;
2720 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2721 cons_free_list = 0;
2722 }
2723
2724
2725 /* Explicitly free a cons cell by putting it on the free-list. */
2726
2727 void
2728 free_cons (struct Lisp_Cons *ptr)
2729 {
2730 ptr->u.chain = cons_free_list;
2731 #if GC_MARK_STACK
2732 ptr->car = Vdead;
2733 #endif
2734 cons_free_list = ptr;
2735 }
2736
2737 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2738 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2739 (Lisp_Object car, Lisp_Object cdr)
2740 {
2741 register Lisp_Object val;
2742
2743 /* eassert (!handling_signal); */
2744
2745 MALLOC_BLOCK_INPUT;
2746
2747 if (cons_free_list)
2748 {
2749 /* We use the cdr for chaining the free list
2750 so that we won't use the same field that has the mark bit. */
2751 XSETCONS (val, cons_free_list);
2752 cons_free_list = cons_free_list->u.chain;
2753 }
2754 else
2755 {
2756 if (cons_block_index == CONS_BLOCK_SIZE)
2757 {
2758 register struct cons_block *new;
2759 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2760 MEM_TYPE_CONS);
2761 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2762 new->next = cons_block;
2763 cons_block = new;
2764 cons_block_index = 0;
2765 }
2766 XSETCONS (val, &cons_block->conses[cons_block_index]);
2767 cons_block_index++;
2768 }
2769
2770 MALLOC_UNBLOCK_INPUT;
2771
2772 XSETCAR (val, car);
2773 XSETCDR (val, cdr);
2774 eassert (!CONS_MARKED_P (XCONS (val)));
2775 consing_since_gc += sizeof (struct Lisp_Cons);
2776 cons_cells_consed++;
2777 return val;
2778 }
2779
2780 #ifdef GC_CHECK_CONS_LIST
2781 /* Get an error now if there's any junk in the cons free list. */
2782 void
2783 check_cons_list (void)
2784 {
2785 struct Lisp_Cons *tail = cons_free_list;
2786
2787 while (tail)
2788 tail = tail->u.chain;
2789 }
2790 #endif
2791
2792 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2793
2794 Lisp_Object
2795 list1 (Lisp_Object arg1)
2796 {
2797 return Fcons (arg1, Qnil);
2798 }
2799
2800 Lisp_Object
2801 list2 (Lisp_Object arg1, Lisp_Object arg2)
2802 {
2803 return Fcons (arg1, Fcons (arg2, Qnil));
2804 }
2805
2806
2807 Lisp_Object
2808 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2809 {
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2811 }
2812
2813
2814 Lisp_Object
2815 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2816 {
2817 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2818 }
2819
2820
2821 Lisp_Object
2822 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2823 {
2824 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2825 Fcons (arg5, Qnil)))));
2826 }
2827
2828
2829 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2830 doc: /* Return a newly created list with specified arguments as elements.
2831 Any number of arguments, even zero arguments, are allowed.
2832 usage: (list &rest OBJECTS) */)
2833 (ptrdiff_t nargs, Lisp_Object *args)
2834 {
2835 register Lisp_Object val;
2836 val = Qnil;
2837
2838 while (nargs > 0)
2839 {
2840 nargs--;
2841 val = Fcons (args[nargs], val);
2842 }
2843 return val;
2844 }
2845
2846
2847 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2848 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2849 (register Lisp_Object length, Lisp_Object init)
2850 {
2851 register Lisp_Object val;
2852 register EMACS_INT size;
2853
2854 CHECK_NATNUM (length);
2855 size = XFASTINT (length);
2856
2857 val = Qnil;
2858 while (size > 0)
2859 {
2860 val = Fcons (init, val);
2861 --size;
2862
2863 if (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
2882 }
2883 }
2884 }
2885 }
2886
2887 QUIT;
2888 }
2889
2890 return val;
2891 }
2892
2893
2894 \f
2895 /***********************************************************************
2896 Vector Allocation
2897 ***********************************************************************/
2898
2899 /* Singly-linked list of all vectors. */
2900
2901 static struct Lisp_Vector *all_vectors;
2902
2903 /* Handy constants for vectorlike objects. */
2904 enum
2905 {
2906 header_size = offsetof (struct Lisp_Vector, contents),
2907 word_size = sizeof (Lisp_Object)
2908 };
2909
2910 /* Value is a pointer to a newly allocated Lisp_Vector structure
2911 with room for LEN Lisp_Objects. */
2912
2913 static struct Lisp_Vector *
2914 allocate_vectorlike (EMACS_INT len)
2915 {
2916 struct Lisp_Vector *p;
2917 size_t nbytes;
2918
2919 MALLOC_BLOCK_INPUT;
2920
2921 #ifdef DOUG_LEA_MALLOC
2922 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2923 because mapped region contents are not preserved in
2924 a dumped Emacs. */
2925 mallopt (M_MMAP_MAX, 0);
2926 #endif
2927
2928 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2929 /* eassert (!handling_signal); */
2930
2931 nbytes = header_size + len * word_size;
2932 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2933
2934 #ifdef DOUG_LEA_MALLOC
2935 /* Back to a reasonable maximum of mmap'ed areas. */
2936 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2937 #endif
2938
2939 consing_since_gc += nbytes;
2940 vector_cells_consed += len;
2941
2942 p->header.next.vector = all_vectors;
2943 all_vectors = p;
2944
2945 MALLOC_UNBLOCK_INPUT;
2946
2947 return p;
2948 }
2949
2950
2951 /* Allocate a vector with LEN slots. */
2952
2953 struct Lisp_Vector *
2954 allocate_vector (EMACS_INT len)
2955 {
2956 struct Lisp_Vector *v;
2957 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2958
2959 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2960 memory_full (SIZE_MAX);
2961 v = allocate_vectorlike (len);
2962 v->header.size = len;
2963 return v;
2964 }
2965
2966
2967 /* Allocate other vector-like structures. */
2968
2969 struct Lisp_Vector *
2970 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2971 {
2972 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2973 int i;
2974
2975 /* Only the first lisplen slots will be traced normally by the GC. */
2976 for (i = 0; i < lisplen; ++i)
2977 v->contents[i] = Qnil;
2978
2979 XSETPVECTYPESIZE (v, tag, lisplen);
2980 return v;
2981 }
2982
2983 struct Lisp_Hash_Table *
2984 allocate_hash_table (void)
2985 {
2986 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2987 }
2988
2989
2990 struct window *
2991 allocate_window (void)
2992 {
2993 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
2994 }
2995
2996
2997 struct terminal *
2998 allocate_terminal (void)
2999 {
3000 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3001 next_terminal, PVEC_TERMINAL);
3002 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3003 memset (&t->next_terminal, 0,
3004 (char*) (t + 1) - (char*) &t->next_terminal);
3005
3006 return t;
3007 }
3008
3009 struct frame *
3010 allocate_frame (void)
3011 {
3012 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3013 face_cache, PVEC_FRAME);
3014 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3015 memset (&f->face_cache, 0,
3016 (char *) (f + 1) - (char *) &f->face_cache);
3017 return f;
3018 }
3019
3020
3021 struct Lisp_Process *
3022 allocate_process (void)
3023 {
3024 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3025 }
3026
3027
3028 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3029 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3030 See also the function `vector'. */)
3031 (register Lisp_Object length, Lisp_Object init)
3032 {
3033 Lisp_Object vector;
3034 register EMACS_INT sizei;
3035 register EMACS_INT i;
3036 register struct Lisp_Vector *p;
3037
3038 CHECK_NATNUM (length);
3039 sizei = XFASTINT (length);
3040
3041 p = allocate_vector (sizei);
3042 for (i = 0; i < sizei; i++)
3043 p->contents[i] = init;
3044
3045 XSETVECTOR (vector, p);
3046 return vector;
3047 }
3048
3049
3050 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3051 doc: /* Return a newly created vector with specified arguments as elements.
3052 Any number of arguments, even zero arguments, are allowed.
3053 usage: (vector &rest OBJECTS) */)
3054 (ptrdiff_t nargs, Lisp_Object *args)
3055 {
3056 register Lisp_Object len, val;
3057 ptrdiff_t i;
3058 register struct Lisp_Vector *p;
3059
3060 XSETFASTINT (len, nargs);
3061 val = Fmake_vector (len, Qnil);
3062 p = XVECTOR (val);
3063 for (i = 0; i < nargs; i++)
3064 p->contents[i] = args[i];
3065 return val;
3066 }
3067
3068
3069 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3070 doc: /* Create a byte-code object with specified arguments as elements.
3071 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3072 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3073 and (optional) INTERACTIVE-SPEC.
3074 The first four arguments are required; at most six have any
3075 significance.
3076 The ARGLIST can be either like the one of `lambda', in which case the arguments
3077 will be dynamically bound before executing the byte code, or it can be an
3078 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3079 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3080 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3081 argument to catch the left-over arguments. If such an integer is used, the
3082 arguments will not be dynamically bound but will be instead pushed on the
3083 stack before executing the byte-code.
3084 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3085 (ptrdiff_t nargs, Lisp_Object *args)
3086 {
3087 register Lisp_Object len, val;
3088 ptrdiff_t i;
3089 register struct Lisp_Vector *p;
3090
3091 XSETFASTINT (len, nargs);
3092 if (!NILP (Vpurify_flag))
3093 val = make_pure_vector (nargs);
3094 else
3095 val = Fmake_vector (len, Qnil);
3096
3097 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3098 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3099 earlier because they produced a raw 8-bit string for byte-code
3100 and now such a byte-code string is loaded as multibyte while
3101 raw 8-bit characters converted to multibyte form. Thus, now we
3102 must convert them back to the original unibyte form. */
3103 args[1] = Fstring_as_unibyte (args[1]);
3104
3105 p = XVECTOR (val);
3106 for (i = 0; i < nargs; i++)
3107 {
3108 if (!NILP (Vpurify_flag))
3109 args[i] = Fpurecopy (args[i]);
3110 p->contents[i] = args[i];
3111 }
3112 XSETPVECTYPE (p, PVEC_COMPILED);
3113 XSETCOMPILED (val, p);
3114 return val;
3115 }
3116
3117
3118 \f
3119 /***********************************************************************
3120 Symbol Allocation
3121 ***********************************************************************/
3122
3123 /* Each symbol_block is just under 1020 bytes long, since malloc
3124 really allocates in units of powers of two and uses 4 bytes for its
3125 own overhead. */
3126
3127 #define SYMBOL_BLOCK_SIZE \
3128 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3129
3130 struct symbol_block
3131 {
3132 /* Place `symbols' first, to preserve alignment. */
3133 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3134 struct symbol_block *next;
3135 };
3136
3137 /* Current symbol block and index of first unused Lisp_Symbol
3138 structure in it. */
3139
3140 static struct symbol_block *symbol_block;
3141 static int symbol_block_index;
3142
3143 /* List of free symbols. */
3144
3145 static struct Lisp_Symbol *symbol_free_list;
3146
3147
3148 /* Initialize symbol allocation. */
3149
3150 static void
3151 init_symbol (void)
3152 {
3153 symbol_block = NULL;
3154 symbol_block_index = SYMBOL_BLOCK_SIZE;
3155 symbol_free_list = 0;
3156 }
3157
3158
3159 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3160 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3161 Its value and function definition are void, and its property list is nil. */)
3162 (Lisp_Object name)
3163 {
3164 register Lisp_Object val;
3165 register struct Lisp_Symbol *p;
3166
3167 CHECK_STRING (name);
3168
3169 /* eassert (!handling_signal); */
3170
3171 MALLOC_BLOCK_INPUT;
3172
3173 if (symbol_free_list)
3174 {
3175 XSETSYMBOL (val, symbol_free_list);
3176 symbol_free_list = symbol_free_list->next;
3177 }
3178 else
3179 {
3180 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3181 {
3182 struct symbol_block *new;
3183 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3184 MEM_TYPE_SYMBOL);
3185 new->next = symbol_block;
3186 symbol_block = new;
3187 symbol_block_index = 0;
3188 }
3189 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3190 symbol_block_index++;
3191 }
3192
3193 MALLOC_UNBLOCK_INPUT;
3194
3195 p = XSYMBOL (val);
3196 p->xname = name;
3197 p->plist = Qnil;
3198 p->redirect = SYMBOL_PLAINVAL;
3199 SET_SYMBOL_VAL (p, Qunbound);
3200 p->function = Qunbound;
3201 p->next = NULL;
3202 p->gcmarkbit = 0;
3203 p->interned = SYMBOL_UNINTERNED;
3204 p->constant = 0;
3205 p->declared_special = 0;
3206 consing_since_gc += sizeof (struct Lisp_Symbol);
3207 symbols_consed++;
3208 return val;
3209 }
3210
3211
3212 \f
3213 /***********************************************************************
3214 Marker (Misc) Allocation
3215 ***********************************************************************/
3216
3217 /* Allocation of markers and other objects that share that structure.
3218 Works like allocation of conses. */
3219
3220 #define MARKER_BLOCK_SIZE \
3221 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3222
3223 struct marker_block
3224 {
3225 /* Place `markers' first, to preserve alignment. */
3226 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3227 struct marker_block *next;
3228 };
3229
3230 static struct marker_block *marker_block;
3231 static int marker_block_index;
3232
3233 static union Lisp_Misc *marker_free_list;
3234
3235 static void
3236 init_marker (void)
3237 {
3238 marker_block = NULL;
3239 marker_block_index = MARKER_BLOCK_SIZE;
3240 marker_free_list = 0;
3241 }
3242
3243 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3244
3245 Lisp_Object
3246 allocate_misc (void)
3247 {
3248 Lisp_Object val;
3249
3250 /* eassert (!handling_signal); */
3251
3252 MALLOC_BLOCK_INPUT;
3253
3254 if (marker_free_list)
3255 {
3256 XSETMISC (val, marker_free_list);
3257 marker_free_list = marker_free_list->u_free.chain;
3258 }
3259 else
3260 {
3261 if (marker_block_index == MARKER_BLOCK_SIZE)
3262 {
3263 struct marker_block *new;
3264 new = (struct marker_block *) lisp_malloc (sizeof *new,
3265 MEM_TYPE_MISC);
3266 new->next = marker_block;
3267 marker_block = new;
3268 marker_block_index = 0;
3269 total_free_markers += MARKER_BLOCK_SIZE;
3270 }
3271 XSETMISC (val, &marker_block->markers[marker_block_index]);
3272 marker_block_index++;
3273 }
3274
3275 MALLOC_UNBLOCK_INPUT;
3276
3277 --total_free_markers;
3278 consing_since_gc += sizeof (union Lisp_Misc);
3279 misc_objects_consed++;
3280 XMISCANY (val)->gcmarkbit = 0;
3281 return val;
3282 }
3283
3284 /* Free a Lisp_Misc object */
3285
3286 static void
3287 free_misc (Lisp_Object misc)
3288 {
3289 XMISCTYPE (misc) = Lisp_Misc_Free;
3290 XMISC (misc)->u_free.chain = marker_free_list;
3291 marker_free_list = XMISC (misc);
3292
3293 total_free_markers++;
3294 }
3295
3296 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3297 INTEGER. This is used to package C values to call record_unwind_protect.
3298 The unwind function can get the C values back using XSAVE_VALUE. */
3299
3300 Lisp_Object
3301 make_save_value (void *pointer, ptrdiff_t integer)
3302 {
3303 register Lisp_Object val;
3304 register struct Lisp_Save_Value *p;
3305
3306 val = allocate_misc ();
3307 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3308 p = XSAVE_VALUE (val);
3309 p->pointer = pointer;
3310 p->integer = integer;
3311 p->dogc = 0;
3312 return val;
3313 }
3314
3315 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3316 doc: /* Return a newly allocated marker which does not point at any place. */)
3317 (void)
3318 {
3319 register Lisp_Object val;
3320 register struct Lisp_Marker *p;
3321
3322 val = allocate_misc ();
3323 XMISCTYPE (val) = Lisp_Misc_Marker;
3324 p = XMARKER (val);
3325 p->buffer = 0;
3326 p->bytepos = 0;
3327 p->charpos = 0;
3328 p->next = NULL;
3329 p->insertion_type = 0;
3330 return val;
3331 }
3332
3333 /* Put MARKER back on the free list after using it temporarily. */
3334
3335 void
3336 free_marker (Lisp_Object marker)
3337 {
3338 unchain_marker (XMARKER (marker));
3339 free_misc (marker);
3340 }
3341
3342 \f
3343 /* Return a newly created vector or string with specified arguments as
3344 elements. If all the arguments are characters that can fit
3345 in a string of events, make a string; otherwise, make a vector.
3346
3347 Any number of arguments, even zero arguments, are allowed. */
3348
3349 Lisp_Object
3350 make_event_array (register int nargs, Lisp_Object *args)
3351 {
3352 int i;
3353
3354 for (i = 0; i < nargs; i++)
3355 /* The things that fit in a string
3356 are characters that are in 0...127,
3357 after discarding the meta bit and all the bits above it. */
3358 if (!INTEGERP (args[i])
3359 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3360 return Fvector (nargs, args);
3361
3362 /* Since the loop exited, we know that all the things in it are
3363 characters, so we can make a string. */
3364 {
3365 Lisp_Object result;
3366
3367 result = Fmake_string (make_number (nargs), make_number (0));
3368 for (i = 0; i < nargs; i++)
3369 {
3370 SSET (result, i, XINT (args[i]));
3371 /* Move the meta bit to the right place for a string char. */
3372 if (XINT (args[i]) & CHAR_META)
3373 SSET (result, i, SREF (result, i) | 0x80);
3374 }
3375
3376 return result;
3377 }
3378 }
3379
3380
3381 \f
3382 /************************************************************************
3383 Memory Full Handling
3384 ************************************************************************/
3385
3386
3387 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3388 there may have been size_t overflow so that malloc was never
3389 called, or perhaps malloc was invoked successfully but the
3390 resulting pointer had problems fitting into a tagged EMACS_INT. In
3391 either case this counts as memory being full even though malloc did
3392 not fail. */
3393
3394 void
3395 memory_full (size_t nbytes)
3396 {
3397 /* Do not go into hysterics merely because a large request failed. */
3398 int enough_free_memory = 0;
3399 if (SPARE_MEMORY < nbytes)
3400 {
3401 void *p;
3402
3403 MALLOC_BLOCK_INPUT;
3404 p = malloc (SPARE_MEMORY);
3405 if (p)
3406 {
3407 free (p);
3408 enough_free_memory = 1;
3409 }
3410 MALLOC_UNBLOCK_INPUT;
3411 }
3412
3413 if (! enough_free_memory)
3414 {
3415 int i;
3416
3417 Vmemory_full = Qt;
3418
3419 memory_full_cons_threshold = sizeof (struct cons_block);
3420
3421 /* The first time we get here, free the spare memory. */
3422 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3423 if (spare_memory[i])
3424 {
3425 if (i == 0)
3426 free (spare_memory[i]);
3427 else if (i >= 1 && i <= 4)
3428 lisp_align_free (spare_memory[i]);
3429 else
3430 lisp_free (spare_memory[i]);
3431 spare_memory[i] = 0;
3432 }
3433
3434 /* Record the space now used. When it decreases substantially,
3435 we can refill the memory reserve. */
3436 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3437 bytes_used_when_full = BYTES_USED;
3438 #endif
3439 }
3440
3441 /* This used to call error, but if we've run out of memory, we could
3442 get infinite recursion trying to build the string. */
3443 xsignal (Qnil, Vmemory_signal_data);
3444 }
3445
3446 /* If we released our reserve (due to running out of memory),
3447 and we have a fair amount free once again,
3448 try to set aside another reserve in case we run out once more.
3449
3450 This is called when a relocatable block is freed in ralloc.c,
3451 and also directly from this file, in case we're not using ralloc.c. */
3452
3453 void
3454 refill_memory_reserve (void)
3455 {
3456 #ifndef SYSTEM_MALLOC
3457 if (spare_memory[0] == 0)
3458 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3459 if (spare_memory[1] == 0)
3460 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3461 MEM_TYPE_CONS);
3462 if (spare_memory[2] == 0)
3463 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3464 MEM_TYPE_CONS);
3465 if (spare_memory[3] == 0)
3466 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3467 MEM_TYPE_CONS);
3468 if (spare_memory[4] == 0)
3469 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3470 MEM_TYPE_CONS);
3471 if (spare_memory[5] == 0)
3472 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3473 MEM_TYPE_STRING);
3474 if (spare_memory[6] == 0)
3475 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3476 MEM_TYPE_STRING);
3477 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3478 Vmemory_full = Qnil;
3479 #endif
3480 }
3481 \f
3482 /************************************************************************
3483 C Stack Marking
3484 ************************************************************************/
3485
3486 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3487
3488 /* Conservative C stack marking requires a method to identify possibly
3489 live Lisp objects given a pointer value. We do this by keeping
3490 track of blocks of Lisp data that are allocated in a red-black tree
3491 (see also the comment of mem_node which is the type of nodes in
3492 that tree). Function lisp_malloc adds information for an allocated
3493 block to the red-black tree with calls to mem_insert, and function
3494 lisp_free removes it with mem_delete. Functions live_string_p etc
3495 call mem_find to lookup information about a given pointer in the
3496 tree, and use that to determine if the pointer points to a Lisp
3497 object or not. */
3498
3499 /* Initialize this part of alloc.c. */
3500
3501 static void
3502 mem_init (void)
3503 {
3504 mem_z.left = mem_z.right = MEM_NIL;
3505 mem_z.parent = NULL;
3506 mem_z.color = MEM_BLACK;
3507 mem_z.start = mem_z.end = NULL;
3508 mem_root = MEM_NIL;
3509 }
3510
3511
3512 /* Value is a pointer to the mem_node containing START. Value is
3513 MEM_NIL if there is no node in the tree containing START. */
3514
3515 static inline struct mem_node *
3516 mem_find (void *start)
3517 {
3518 struct mem_node *p;
3519
3520 if (start < min_heap_address || start > max_heap_address)
3521 return MEM_NIL;
3522
3523 /* Make the search always successful to speed up the loop below. */
3524 mem_z.start = start;
3525 mem_z.end = (char *) start + 1;
3526
3527 p = mem_root;
3528 while (start < p->start || start >= p->end)
3529 p = start < p->start ? p->left : p->right;
3530 return p;
3531 }
3532
3533
3534 /* Insert a new node into the tree for a block of memory with start
3535 address START, end address END, and type TYPE. Value is a
3536 pointer to the node that was inserted. */
3537
3538 static struct mem_node *
3539 mem_insert (void *start, void *end, enum mem_type type)
3540 {
3541 struct mem_node *c, *parent, *x;
3542
3543 if (min_heap_address == NULL || start < min_heap_address)
3544 min_heap_address = start;
3545 if (max_heap_address == NULL || end > max_heap_address)
3546 max_heap_address = end;
3547
3548 /* See where in the tree a node for START belongs. In this
3549 particular application, it shouldn't happen that a node is already
3550 present. For debugging purposes, let's check that. */
3551 c = mem_root;
3552 parent = NULL;
3553
3554 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3555
3556 while (c != MEM_NIL)
3557 {
3558 if (start >= c->start && start < c->end)
3559 abort ();
3560 parent = c;
3561 c = start < c->start ? c->left : c->right;
3562 }
3563
3564 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3565
3566 while (c != MEM_NIL)
3567 {
3568 parent = c;
3569 c = start < c->start ? c->left : c->right;
3570 }
3571
3572 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3573
3574 /* Create a new node. */
3575 #ifdef GC_MALLOC_CHECK
3576 x = (struct mem_node *) _malloc_internal (sizeof *x);
3577 if (x == NULL)
3578 abort ();
3579 #else
3580 x = (struct mem_node *) xmalloc (sizeof *x);
3581 #endif
3582 x->start = start;
3583 x->end = end;
3584 x->type = type;
3585 x->parent = parent;
3586 x->left = x->right = MEM_NIL;
3587 x->color = MEM_RED;
3588
3589 /* Insert it as child of PARENT or install it as root. */
3590 if (parent)
3591 {
3592 if (start < parent->start)
3593 parent->left = x;
3594 else
3595 parent->right = x;
3596 }
3597 else
3598 mem_root = x;
3599
3600 /* Re-establish red-black tree properties. */
3601 mem_insert_fixup (x);
3602
3603 return x;
3604 }
3605
3606
3607 /* Re-establish the red-black properties of the tree, and thereby
3608 balance the tree, after node X has been inserted; X is always red. */
3609
3610 static void
3611 mem_insert_fixup (struct mem_node *x)
3612 {
3613 while (x != mem_root && x->parent->color == MEM_RED)
3614 {
3615 /* X is red and its parent is red. This is a violation of
3616 red-black tree property #3. */
3617
3618 if (x->parent == x->parent->parent->left)
3619 {
3620 /* We're on the left side of our grandparent, and Y is our
3621 "uncle". */
3622 struct mem_node *y = x->parent->parent->right;
3623
3624 if (y->color == MEM_RED)
3625 {
3626 /* Uncle and parent are red but should be black because
3627 X is red. Change the colors accordingly and proceed
3628 with the grandparent. */
3629 x->parent->color = MEM_BLACK;
3630 y->color = MEM_BLACK;
3631 x->parent->parent->color = MEM_RED;
3632 x = x->parent->parent;
3633 }
3634 else
3635 {
3636 /* Parent and uncle have different colors; parent is
3637 red, uncle is black. */
3638 if (x == x->parent->right)
3639 {
3640 x = x->parent;
3641 mem_rotate_left (x);
3642 }
3643
3644 x->parent->color = MEM_BLACK;
3645 x->parent->parent->color = MEM_RED;
3646 mem_rotate_right (x->parent->parent);
3647 }
3648 }
3649 else
3650 {
3651 /* This is the symmetrical case of above. */
3652 struct mem_node *y = x->parent->parent->left;
3653
3654 if (y->color == MEM_RED)
3655 {
3656 x->parent->color = MEM_BLACK;
3657 y->color = MEM_BLACK;
3658 x->parent->parent->color = MEM_RED;
3659 x = x->parent->parent;
3660 }
3661 else
3662 {
3663 if (x == x->parent->left)
3664 {
3665 x = x->parent;
3666 mem_rotate_right (x);
3667 }
3668
3669 x->parent->color = MEM_BLACK;
3670 x->parent->parent->color = MEM_RED;
3671 mem_rotate_left (x->parent->parent);
3672 }
3673 }
3674 }
3675
3676 /* The root may have been changed to red due to the algorithm. Set
3677 it to black so that property #5 is satisfied. */
3678 mem_root->color = MEM_BLACK;
3679 }
3680
3681
3682 /* (x) (y)
3683 / \ / \
3684 a (y) ===> (x) c
3685 / \ / \
3686 b c a b */
3687
3688 static void
3689 mem_rotate_left (struct mem_node *x)
3690 {
3691 struct mem_node *y;
3692
3693 /* Turn y's left sub-tree into x's right sub-tree. */
3694 y = x->right;
3695 x->right = y->left;
3696 if (y->left != MEM_NIL)
3697 y->left->parent = x;
3698
3699 /* Y's parent was x's parent. */
3700 if (y != MEM_NIL)
3701 y->parent = x->parent;
3702
3703 /* Get the parent to point to y instead of x. */
3704 if (x->parent)
3705 {
3706 if (x == x->parent->left)
3707 x->parent->left = y;
3708 else
3709 x->parent->right = y;
3710 }
3711 else
3712 mem_root = y;
3713
3714 /* Put x on y's left. */
3715 y->left = x;
3716 if (x != MEM_NIL)
3717 x->parent = y;
3718 }
3719
3720
3721 /* (x) (Y)
3722 / \ / \
3723 (y) c ===> a (x)
3724 / \ / \
3725 a b b c */
3726
3727 static void
3728 mem_rotate_right (struct mem_node *x)
3729 {
3730 struct mem_node *y = x->left;
3731
3732 x->left = y->right;
3733 if (y->right != MEM_NIL)
3734 y->right->parent = x;
3735
3736 if (y != MEM_NIL)
3737 y->parent = x->parent;
3738 if (x->parent)
3739 {
3740 if (x == x->parent->right)
3741 x->parent->right = y;
3742 else
3743 x->parent->left = y;
3744 }
3745 else
3746 mem_root = y;
3747
3748 y->right = x;
3749 if (x != MEM_NIL)
3750 x->parent = y;
3751 }
3752
3753
3754 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3755
3756 static void
3757 mem_delete (struct mem_node *z)
3758 {
3759 struct mem_node *x, *y;
3760
3761 if (!z || z == MEM_NIL)
3762 return;
3763
3764 if (z->left == MEM_NIL || z->right == MEM_NIL)
3765 y = z;
3766 else
3767 {
3768 y = z->right;
3769 while (y->left != MEM_NIL)
3770 y = y->left;
3771 }
3772
3773 if (y->left != MEM_NIL)
3774 x = y->left;
3775 else
3776 x = y->right;
3777
3778 x->parent = y->parent;
3779 if (y->parent)
3780 {
3781 if (y == y->parent->left)
3782 y->parent->left = x;
3783 else
3784 y->parent->right = x;
3785 }
3786 else
3787 mem_root = x;
3788
3789 if (y != z)
3790 {
3791 z->start = y->start;
3792 z->end = y->end;
3793 z->type = y->type;
3794 }
3795
3796 if (y->color == MEM_BLACK)
3797 mem_delete_fixup (x);
3798
3799 #ifdef GC_MALLOC_CHECK
3800 _free_internal (y);
3801 #else
3802 xfree (y);
3803 #endif
3804 }
3805
3806
3807 /* Re-establish the red-black properties of the tree, after a
3808 deletion. */
3809
3810 static void
3811 mem_delete_fixup (struct mem_node *x)
3812 {
3813 while (x != mem_root && x->color == MEM_BLACK)
3814 {
3815 if (x == x->parent->left)
3816 {
3817 struct mem_node *w = x->parent->right;
3818
3819 if (w->color == MEM_RED)
3820 {
3821 w->color = MEM_BLACK;
3822 x->parent->color = MEM_RED;
3823 mem_rotate_left (x->parent);
3824 w = x->parent->right;
3825 }
3826
3827 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3828 {
3829 w->color = MEM_RED;
3830 x = x->parent;
3831 }
3832 else
3833 {
3834 if (w->right->color == MEM_BLACK)
3835 {
3836 w->left->color = MEM_BLACK;
3837 w->color = MEM_RED;
3838 mem_rotate_right (w);
3839 w = x->parent->right;
3840 }
3841 w->color = x->parent->color;
3842 x->parent->color = MEM_BLACK;
3843 w->right->color = MEM_BLACK;
3844 mem_rotate_left (x->parent);
3845 x = mem_root;
3846 }
3847 }
3848 else
3849 {
3850 struct mem_node *w = x->parent->left;
3851
3852 if (w->color == MEM_RED)
3853 {
3854 w->color = MEM_BLACK;
3855 x->parent->color = MEM_RED;
3856 mem_rotate_right (x->parent);
3857 w = x->parent->left;
3858 }
3859
3860 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3861 {
3862 w->color = MEM_RED;
3863 x = x->parent;
3864 }
3865 else
3866 {
3867 if (w->left->color == MEM_BLACK)
3868 {
3869 w->right->color = MEM_BLACK;
3870 w->color = MEM_RED;
3871 mem_rotate_left (w);
3872 w = x->parent->left;
3873 }
3874
3875 w->color = x->parent->color;
3876 x->parent->color = MEM_BLACK;
3877 w->left->color = MEM_BLACK;
3878 mem_rotate_right (x->parent);
3879 x = mem_root;
3880 }
3881 }
3882 }
3883
3884 x->color = MEM_BLACK;
3885 }
3886
3887
3888 /* Value is non-zero if P is a pointer to a live Lisp string on
3889 the heap. M is a pointer to the mem_block for P. */
3890
3891 static inline int
3892 live_string_p (struct mem_node *m, void *p)
3893 {
3894 if (m->type == MEM_TYPE_STRING)
3895 {
3896 struct string_block *b = (struct string_block *) m->start;
3897 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3898
3899 /* P must point to the start of a Lisp_String structure, and it
3900 must not be on the free-list. */
3901 return (offset >= 0
3902 && offset % sizeof b->strings[0] == 0
3903 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3904 && ((struct Lisp_String *) p)->data != NULL);
3905 }
3906 else
3907 return 0;
3908 }
3909
3910
3911 /* Value is non-zero if P is a pointer to a live Lisp cons on
3912 the heap. M is a pointer to the mem_block for P. */
3913
3914 static inline int
3915 live_cons_p (struct mem_node *m, void *p)
3916 {
3917 if (m->type == MEM_TYPE_CONS)
3918 {
3919 struct cons_block *b = (struct cons_block *) m->start;
3920 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3921
3922 /* P must point to the start of a Lisp_Cons, not be
3923 one of the unused cells in the current cons block,
3924 and not be on the free-list. */
3925 return (offset >= 0
3926 && offset % sizeof b->conses[0] == 0
3927 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3928 && (b != cons_block
3929 || offset / sizeof b->conses[0] < cons_block_index)
3930 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3931 }
3932 else
3933 return 0;
3934 }
3935
3936
3937 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3938 the heap. M is a pointer to the mem_block for P. */
3939
3940 static inline int
3941 live_symbol_p (struct mem_node *m, void *p)
3942 {
3943 if (m->type == MEM_TYPE_SYMBOL)
3944 {
3945 struct symbol_block *b = (struct symbol_block *) m->start;
3946 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3947
3948 /* P must point to the start of a Lisp_Symbol, not be
3949 one of the unused cells in the current symbol block,
3950 and not be on the free-list. */
3951 return (offset >= 0
3952 && offset % sizeof b->symbols[0] == 0
3953 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3954 && (b != symbol_block
3955 || offset / sizeof b->symbols[0] < symbol_block_index)
3956 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3957 }
3958 else
3959 return 0;
3960 }
3961
3962
3963 /* Value is non-zero if P is a pointer to a live Lisp float on
3964 the heap. M is a pointer to the mem_block for P. */
3965
3966 static inline int
3967 live_float_p (struct mem_node *m, void *p)
3968 {
3969 if (m->type == MEM_TYPE_FLOAT)
3970 {
3971 struct float_block *b = (struct float_block *) m->start;
3972 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3973
3974 /* P must point to the start of a Lisp_Float and not be
3975 one of the unused cells in the current float block. */
3976 return (offset >= 0
3977 && offset % sizeof b->floats[0] == 0
3978 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3979 && (b != float_block
3980 || offset / sizeof b->floats[0] < float_block_index));
3981 }
3982 else
3983 return 0;
3984 }
3985
3986
3987 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3988 the heap. M is a pointer to the mem_block for P. */
3989
3990 static inline int
3991 live_misc_p (struct mem_node *m, void *p)
3992 {
3993 if (m->type == MEM_TYPE_MISC)
3994 {
3995 struct marker_block *b = (struct marker_block *) m->start;
3996 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3997
3998 /* P must point to the start of a Lisp_Misc, not be
3999 one of the unused cells in the current misc block,
4000 and not be on the free-list. */
4001 return (offset >= 0
4002 && offset % sizeof b->markers[0] == 0
4003 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4004 && (b != marker_block
4005 || offset / sizeof b->markers[0] < marker_block_index)
4006 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4007 }
4008 else
4009 return 0;
4010 }
4011
4012
4013 /* Value is non-zero if P is a pointer to a live vector-like object.
4014 M is a pointer to the mem_block for P. */
4015
4016 static inline int
4017 live_vector_p (struct mem_node *m, void *p)
4018 {
4019 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4020 }
4021
4022
4023 /* Value is non-zero if P is a pointer to a live buffer. M is a
4024 pointer to the mem_block for P. */
4025
4026 static inline int
4027 live_buffer_p (struct mem_node *m, void *p)
4028 {
4029 /* P must point to the start of the block, and the buffer
4030 must not have been killed. */
4031 return (m->type == MEM_TYPE_BUFFER
4032 && p == m->start
4033 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4034 }
4035
4036 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4037
4038 #if GC_MARK_STACK
4039
4040 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4041
4042 /* Array of objects that are kept alive because the C stack contains
4043 a pattern that looks like a reference to them . */
4044
4045 #define MAX_ZOMBIES 10
4046 static Lisp_Object zombies[MAX_ZOMBIES];
4047
4048 /* Number of zombie objects. */
4049
4050 static EMACS_INT nzombies;
4051
4052 /* Number of garbage collections. */
4053
4054 static EMACS_INT ngcs;
4055
4056 /* Average percentage of zombies per collection. */
4057
4058 static double avg_zombies;
4059
4060 /* Max. number of live and zombie objects. */
4061
4062 static EMACS_INT max_live, max_zombies;
4063
4064 /* Average number of live objects per GC. */
4065
4066 static double avg_live;
4067
4068 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4069 doc: /* Show information about live and zombie objects. */)
4070 (void)
4071 {
4072 Lisp_Object args[8], zombie_list = Qnil;
4073 EMACS_INT i;
4074 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4075 zombie_list = Fcons (zombies[i], zombie_list);
4076 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4077 args[1] = make_number (ngcs);
4078 args[2] = make_float (avg_live);
4079 args[3] = make_float (avg_zombies);
4080 args[4] = make_float (avg_zombies / avg_live / 100);
4081 args[5] = make_number (max_live);
4082 args[6] = make_number (max_zombies);
4083 args[7] = zombie_list;
4084 return Fmessage (8, args);
4085 }
4086
4087 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4088
4089
4090 /* Mark OBJ if we can prove it's a Lisp_Object. */
4091
4092 static inline void
4093 mark_maybe_object (Lisp_Object obj)
4094 {
4095 void *po;
4096 struct mem_node *m;
4097
4098 if (INTEGERP (obj))
4099 return;
4100
4101 po = (void *) XPNTR (obj);
4102 m = mem_find (po);
4103
4104 if (m != MEM_NIL)
4105 {
4106 int mark_p = 0;
4107
4108 switch (XTYPE (obj))
4109 {
4110 case Lisp_String:
4111 mark_p = (live_string_p (m, po)
4112 && !STRING_MARKED_P ((struct Lisp_String *) po));
4113 break;
4114
4115 case Lisp_Cons:
4116 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4117 break;
4118
4119 case Lisp_Symbol:
4120 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4121 break;
4122
4123 case Lisp_Float:
4124 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4125 break;
4126
4127 case Lisp_Vectorlike:
4128 /* Note: can't check BUFFERP before we know it's a
4129 buffer because checking that dereferences the pointer
4130 PO which might point anywhere. */
4131 if (live_vector_p (m, po))
4132 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4133 else if (live_buffer_p (m, po))
4134 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4135 break;
4136
4137 case Lisp_Misc:
4138 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4139 break;
4140
4141 default:
4142 break;
4143 }
4144
4145 if (mark_p)
4146 {
4147 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4148 if (nzombies < MAX_ZOMBIES)
4149 zombies[nzombies] = obj;
4150 ++nzombies;
4151 #endif
4152 mark_object (obj);
4153 }
4154 }
4155 }
4156
4157
4158 /* If P points to Lisp data, mark that as live if it isn't already
4159 marked. */
4160
4161 static inline void
4162 mark_maybe_pointer (void *p)
4163 {
4164 struct mem_node *m;
4165
4166 /* Quickly rule out some values which can't point to Lisp data. */
4167 if ((intptr_t) p %
4168 #ifdef USE_LSB_TAG
4169 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4170 #else
4171 2 /* We assume that Lisp data is aligned on even addresses. */
4172 #endif
4173 )
4174 return;
4175
4176 m = mem_find (p);
4177 if (m != MEM_NIL)
4178 {
4179 Lisp_Object obj = Qnil;
4180
4181 switch (m->type)
4182 {
4183 case MEM_TYPE_NON_LISP:
4184 /* Nothing to do; not a pointer to Lisp memory. */
4185 break;
4186
4187 case MEM_TYPE_BUFFER:
4188 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4189 XSETVECTOR (obj, p);
4190 break;
4191
4192 case MEM_TYPE_CONS:
4193 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4194 XSETCONS (obj, p);
4195 break;
4196
4197 case MEM_TYPE_STRING:
4198 if (live_string_p (m, p)
4199 && !STRING_MARKED_P ((struct Lisp_String *) p))
4200 XSETSTRING (obj, p);
4201 break;
4202
4203 case MEM_TYPE_MISC:
4204 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4205 XSETMISC (obj, p);
4206 break;
4207
4208 case MEM_TYPE_SYMBOL:
4209 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4210 XSETSYMBOL (obj, p);
4211 break;
4212
4213 case MEM_TYPE_FLOAT:
4214 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4215 XSETFLOAT (obj, p);
4216 break;
4217
4218 case MEM_TYPE_VECTORLIKE:
4219 if (live_vector_p (m, p))
4220 {
4221 Lisp_Object tem;
4222 XSETVECTOR (tem, p);
4223 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4224 obj = tem;
4225 }
4226 break;
4227
4228 default:
4229 abort ();
4230 }
4231
4232 if (!NILP (obj))
4233 mark_object (obj);
4234 }
4235 }
4236
4237
4238 /* Alignment of Lisp_Object and pointer values. Use offsetof, as it
4239 sometimes returns a smaller alignment than GCC's __alignof__ and
4240 mark_memory might miss objects if __alignof__ were used. For
4241 example, on x86 with WIDE_EMACS_INT, __alignof__ (Lisp_Object) is 8
4242 but GC_LISP_OBJECT_ALIGNMENT should be 4. */
4243 #ifndef GC_LISP_OBJECT_ALIGNMENT
4244 # define GC_LISP_OBJECT_ALIGNMENT offsetof (struct {char a; Lisp_Object b;}, b)
4245 #endif
4246 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4247
4248 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4249 or END+OFFSET..START. */
4250
4251 static void
4252 mark_memory (void *start, void *end)
4253 {
4254 Lisp_Object *p;
4255 void **pp;
4256 int i;
4257
4258 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4259 nzombies = 0;
4260 #endif
4261
4262 /* Make START the pointer to the start of the memory region,
4263 if it isn't already. */
4264 if (end < start)
4265 {
4266 void *tem = start;
4267 start = end;
4268 end = tem;
4269 }
4270
4271 /* Mark Lisp_Objects. */
4272 for (p = start; (void *) p < end; p++)
4273 for (i = 0; i < sizeof *p; i += GC_LISP_OBJECT_ALIGNMENT)
4274 mark_maybe_object (*(Lisp_Object *) ((char *) p + i));
4275
4276 /* Mark Lisp data pointed to. This is necessary because, in some
4277 situations, the C compiler optimizes Lisp objects away, so that
4278 only a pointer to them remains. Example:
4279
4280 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4281 ()
4282 {
4283 Lisp_Object obj = build_string ("test");
4284 struct Lisp_String *s = XSTRING (obj);
4285 Fgarbage_collect ();
4286 fprintf (stderr, "test `%s'\n", s->data);
4287 return Qnil;
4288 }
4289
4290 Here, `obj' isn't really used, and the compiler optimizes it
4291 away. The only reference to the life string is through the
4292 pointer `s'. */
4293
4294 for (pp = start; (void *) pp < end; pp++)
4295 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4296 mark_maybe_pointer (*(void **) ((char *) pp + i));
4297 }
4298
4299 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4300 the GCC system configuration. In gcc 3.2, the only systems for
4301 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4302 by others?) and ns32k-pc532-min. */
4303
4304 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4305
4306 static int setjmp_tested_p, longjmps_done;
4307
4308 #define SETJMP_WILL_LIKELY_WORK "\
4309 \n\
4310 Emacs garbage collector has been changed to use conservative stack\n\
4311 marking. Emacs has determined that the method it uses to do the\n\
4312 marking will likely work on your system, but this isn't sure.\n\
4313 \n\
4314 If you are a system-programmer, or can get the help of a local wizard\n\
4315 who is, please take a look at the function mark_stack in alloc.c, and\n\
4316 verify that the methods used are appropriate for your system.\n\
4317 \n\
4318 Please mail the result to <emacs-devel@gnu.org>.\n\
4319 "
4320
4321 #define SETJMP_WILL_NOT_WORK "\
4322 \n\
4323 Emacs garbage collector has been changed to use conservative stack\n\
4324 marking. Emacs has determined that the default method it uses to do the\n\
4325 marking will not work on your system. We will need a system-dependent\n\
4326 solution for your system.\n\
4327 \n\
4328 Please take a look at the function mark_stack in alloc.c, and\n\
4329 try to find a way to make it work on your system.\n\
4330 \n\
4331 Note that you may get false negatives, depending on the compiler.\n\
4332 In particular, you need to use -O with GCC for this test.\n\
4333 \n\
4334 Please mail the result to <emacs-devel@gnu.org>.\n\
4335 "
4336
4337
4338 /* Perform a quick check if it looks like setjmp saves registers in a
4339 jmp_buf. Print a message to stderr saying so. When this test
4340 succeeds, this is _not_ a proof that setjmp is sufficient for
4341 conservative stack marking. Only the sources or a disassembly
4342 can prove that. */
4343
4344 static void
4345 test_setjmp (void)
4346 {
4347 char buf[10];
4348 register int x;
4349 jmp_buf jbuf;
4350 int result = 0;
4351
4352 /* Arrange for X to be put in a register. */
4353 sprintf (buf, "1");
4354 x = strlen (buf);
4355 x = 2 * x - 1;
4356
4357 setjmp (jbuf);
4358 if (longjmps_done == 1)
4359 {
4360 /* Came here after the longjmp at the end of the function.
4361
4362 If x == 1, the longjmp has restored the register to its
4363 value before the setjmp, and we can hope that setjmp
4364 saves all such registers in the jmp_buf, although that
4365 isn't sure.
4366
4367 For other values of X, either something really strange is
4368 taking place, or the setjmp just didn't save the register. */
4369
4370 if (x == 1)
4371 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4372 else
4373 {
4374 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4375 exit (1);
4376 }
4377 }
4378
4379 ++longjmps_done;
4380 x = 2;
4381 if (longjmps_done == 1)
4382 longjmp (jbuf, 1);
4383 }
4384
4385 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4386
4387
4388 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4389
4390 /* Abort if anything GCPRO'd doesn't survive the GC. */
4391
4392 static void
4393 check_gcpros (void)
4394 {
4395 struct gcpro *p;
4396 ptrdiff_t i;
4397
4398 for (p = gcprolist; p; p = p->next)
4399 for (i = 0; i < p->nvars; ++i)
4400 if (!survives_gc_p (p->var[i]))
4401 /* FIXME: It's not necessarily a bug. It might just be that the
4402 GCPRO is unnecessary or should release the object sooner. */
4403 abort ();
4404 }
4405
4406 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4407
4408 static void
4409 dump_zombies (void)
4410 {
4411 int i;
4412
4413 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4414 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4415 {
4416 fprintf (stderr, " %d = ", i);
4417 debug_print (zombies[i]);
4418 }
4419 }
4420
4421 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4422
4423
4424 /* Mark live Lisp objects on the C stack.
4425
4426 There are several system-dependent problems to consider when
4427 porting this to new architectures:
4428
4429 Processor Registers
4430
4431 We have to mark Lisp objects in CPU registers that can hold local
4432 variables or are used to pass parameters.
4433
4434 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4435 something that either saves relevant registers on the stack, or
4436 calls mark_maybe_object passing it each register's contents.
4437
4438 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4439 implementation assumes that calling setjmp saves registers we need
4440 to see in a jmp_buf which itself lies on the stack. This doesn't
4441 have to be true! It must be verified for each system, possibly
4442 by taking a look at the source code of setjmp.
4443
4444 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4445 can use it as a machine independent method to store all registers
4446 to the stack. In this case the macros described in the previous
4447 two paragraphs are not used.
4448
4449 Stack Layout
4450
4451 Architectures differ in the way their processor stack is organized.
4452 For example, the stack might look like this
4453
4454 +----------------+
4455 | Lisp_Object | size = 4
4456 +----------------+
4457 | something else | size = 2
4458 +----------------+
4459 | Lisp_Object | size = 4
4460 +----------------+
4461 | ... |
4462
4463 In such a case, not every Lisp_Object will be aligned equally. To
4464 find all Lisp_Object on the stack it won't be sufficient to walk
4465 the stack in steps of 4 bytes. Instead, two passes will be
4466 necessary, one starting at the start of the stack, and a second
4467 pass starting at the start of the stack + 2. Likewise, if the
4468 minimal alignment of Lisp_Objects on the stack is 1, four passes
4469 would be necessary, each one starting with one byte more offset
4470 from the stack start. */
4471
4472 static void
4473 mark_stack (void)
4474 {
4475 void *end;
4476
4477 #ifdef HAVE___BUILTIN_UNWIND_INIT
4478 /* Force callee-saved registers and register windows onto the stack.
4479 This is the preferred method if available, obviating the need for
4480 machine dependent methods. */
4481 __builtin_unwind_init ();
4482 end = &end;
4483 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4484 #ifndef GC_SAVE_REGISTERS_ON_STACK
4485 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4486 union aligned_jmpbuf {
4487 Lisp_Object o;
4488 jmp_buf j;
4489 } j;
4490 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4491 #endif
4492 /* This trick flushes the register windows so that all the state of
4493 the process is contained in the stack. */
4494 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4495 needed on ia64 too. See mach_dep.c, where it also says inline
4496 assembler doesn't work with relevant proprietary compilers. */
4497 #ifdef __sparc__
4498 #if defined (__sparc64__) && defined (__FreeBSD__)
4499 /* FreeBSD does not have a ta 3 handler. */
4500 asm ("flushw");
4501 #else
4502 asm ("ta 3");
4503 #endif
4504 #endif
4505
4506 /* Save registers that we need to see on the stack. We need to see
4507 registers used to hold register variables and registers used to
4508 pass parameters. */
4509 #ifdef GC_SAVE_REGISTERS_ON_STACK
4510 GC_SAVE_REGISTERS_ON_STACK (end);
4511 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4512
4513 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4514 setjmp will definitely work, test it
4515 and print a message with the result
4516 of the test. */
4517 if (!setjmp_tested_p)
4518 {
4519 setjmp_tested_p = 1;
4520 test_setjmp ();
4521 }
4522 #endif /* GC_SETJMP_WORKS */
4523
4524 setjmp (j.j);
4525 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4526 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4527 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4528
4529 /* This assumes that the stack is a contiguous region in memory. If
4530 that's not the case, something has to be done here to iterate
4531 over the stack segments. */
4532 mark_memory (stack_base, end);
4533
4534 /* Allow for marking a secondary stack, like the register stack on the
4535 ia64. */
4536 #ifdef GC_MARK_SECONDARY_STACK
4537 GC_MARK_SECONDARY_STACK ();
4538 #endif
4539
4540 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4541 check_gcpros ();
4542 #endif
4543 }
4544
4545 #endif /* GC_MARK_STACK != 0 */
4546
4547
4548 /* Determine whether it is safe to access memory at address P. */
4549 static int
4550 valid_pointer_p (void *p)
4551 {
4552 #ifdef WINDOWSNT
4553 return w32_valid_pointer_p (p, 16);
4554 #else
4555 int fd[2];
4556
4557 /* Obviously, we cannot just access it (we would SEGV trying), so we
4558 trick the o/s to tell us whether p is a valid pointer.
4559 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4560 not validate p in that case. */
4561
4562 if (pipe (fd) == 0)
4563 {
4564 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4565 emacs_close (fd[1]);
4566 emacs_close (fd[0]);
4567 return valid;
4568 }
4569
4570 return -1;
4571 #endif
4572 }
4573
4574 /* Return 1 if OBJ is a valid lisp object.
4575 Return 0 if OBJ is NOT a valid lisp object.
4576 Return -1 if we cannot validate OBJ.
4577 This function can be quite slow,
4578 so it should only be used in code for manual debugging. */
4579
4580 int
4581 valid_lisp_object_p (Lisp_Object obj)
4582 {
4583 void *p;
4584 #if GC_MARK_STACK
4585 struct mem_node *m;
4586 #endif
4587
4588 if (INTEGERP (obj))
4589 return 1;
4590
4591 p = (void *) XPNTR (obj);
4592 if (PURE_POINTER_P (p))
4593 return 1;
4594
4595 #if !GC_MARK_STACK
4596 return valid_pointer_p (p);
4597 #else
4598
4599 m = mem_find (p);
4600
4601 if (m == MEM_NIL)
4602 {
4603 int valid = valid_pointer_p (p);
4604 if (valid <= 0)
4605 return valid;
4606
4607 if (SUBRP (obj))
4608 return 1;
4609
4610 return 0;
4611 }
4612
4613 switch (m->type)
4614 {
4615 case MEM_TYPE_NON_LISP:
4616 return 0;
4617
4618 case MEM_TYPE_BUFFER:
4619 return live_buffer_p (m, p);
4620
4621 case MEM_TYPE_CONS:
4622 return live_cons_p (m, p);
4623
4624 case MEM_TYPE_STRING:
4625 return live_string_p (m, p);
4626
4627 case MEM_TYPE_MISC:
4628 return live_misc_p (m, p);
4629
4630 case MEM_TYPE_SYMBOL:
4631 return live_symbol_p (m, p);
4632
4633 case MEM_TYPE_FLOAT:
4634 return live_float_p (m, p);
4635
4636 case MEM_TYPE_VECTORLIKE:
4637 return live_vector_p (m, p);
4638
4639 default:
4640 break;
4641 }
4642
4643 return 0;
4644 #endif
4645 }
4646
4647
4648
4649 \f
4650 /***********************************************************************
4651 Pure Storage Management
4652 ***********************************************************************/
4653
4654 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4655 pointer to it. TYPE is the Lisp type for which the memory is
4656 allocated. TYPE < 0 means it's not used for a Lisp object. */
4657
4658 static POINTER_TYPE *
4659 pure_alloc (size_t size, int type)
4660 {
4661 POINTER_TYPE *result;
4662 #ifdef USE_LSB_TAG
4663 size_t alignment = (1 << GCTYPEBITS);
4664 #else
4665 size_t alignment = sizeof (EMACS_INT);
4666
4667 /* Give Lisp_Floats an extra alignment. */
4668 if (type == Lisp_Float)
4669 {
4670 #if defined __GNUC__ && __GNUC__ >= 2
4671 alignment = __alignof (struct Lisp_Float);
4672 #else
4673 alignment = sizeof (struct Lisp_Float);
4674 #endif
4675 }
4676 #endif
4677
4678 again:
4679 if (type >= 0)
4680 {
4681 /* Allocate space for a Lisp object from the beginning of the free
4682 space with taking account of alignment. */
4683 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4684 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4685 }
4686 else
4687 {
4688 /* Allocate space for a non-Lisp object from the end of the free
4689 space. */
4690 pure_bytes_used_non_lisp += size;
4691 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4692 }
4693 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4694
4695 if (pure_bytes_used <= pure_size)
4696 return result;
4697
4698 /* Don't allocate a large amount here,
4699 because it might get mmap'd and then its address
4700 might not be usable. */
4701 purebeg = (char *) xmalloc (10000);
4702 pure_size = 10000;
4703 pure_bytes_used_before_overflow += pure_bytes_used - size;
4704 pure_bytes_used = 0;
4705 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4706 goto again;
4707 }
4708
4709
4710 /* Print a warning if PURESIZE is too small. */
4711
4712 void
4713 check_pure_size (void)
4714 {
4715 if (pure_bytes_used_before_overflow)
4716 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4717 " bytes needed)"),
4718 pure_bytes_used + pure_bytes_used_before_overflow);
4719 }
4720
4721
4722 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4723 the non-Lisp data pool of the pure storage, and return its start
4724 address. Return NULL if not found. */
4725
4726 static char *
4727 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4728 {
4729 int i;
4730 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4731 const unsigned char *p;
4732 char *non_lisp_beg;
4733
4734 if (pure_bytes_used_non_lisp < nbytes + 1)
4735 return NULL;
4736
4737 /* Set up the Boyer-Moore table. */
4738 skip = nbytes + 1;
4739 for (i = 0; i < 256; i++)
4740 bm_skip[i] = skip;
4741
4742 p = (const unsigned char *) data;
4743 while (--skip > 0)
4744 bm_skip[*p++] = skip;
4745
4746 last_char_skip = bm_skip['\0'];
4747
4748 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4749 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4750
4751 /* See the comments in the function `boyer_moore' (search.c) for the
4752 use of `infinity'. */
4753 infinity = pure_bytes_used_non_lisp + 1;
4754 bm_skip['\0'] = infinity;
4755
4756 p = (const unsigned char *) non_lisp_beg + nbytes;
4757 start = 0;
4758 do
4759 {
4760 /* Check the last character (== '\0'). */
4761 do
4762 {
4763 start += bm_skip[*(p + start)];
4764 }
4765 while (start <= start_max);
4766
4767 if (start < infinity)
4768 /* Couldn't find the last character. */
4769 return NULL;
4770
4771 /* No less than `infinity' means we could find the last
4772 character at `p[start - infinity]'. */
4773 start -= infinity;
4774
4775 /* Check the remaining characters. */
4776 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4777 /* Found. */
4778 return non_lisp_beg + start;
4779
4780 start += last_char_skip;
4781 }
4782 while (start <= start_max);
4783
4784 return NULL;
4785 }
4786
4787
4788 /* Return a string allocated in pure space. DATA is a buffer holding
4789 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4790 non-zero means make the result string multibyte.
4791
4792 Must get an error if pure storage is full, since if it cannot hold
4793 a large string it may be able to hold conses that point to that
4794 string; then the string is not protected from gc. */
4795
4796 Lisp_Object
4797 make_pure_string (const char *data,
4798 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4799 {
4800 Lisp_Object string;
4801 struct Lisp_String *s;
4802
4803 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4804 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4805 if (s->data == NULL)
4806 {
4807 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4808 memcpy (s->data, data, nbytes);
4809 s->data[nbytes] = '\0';
4810 }
4811 s->size = nchars;
4812 s->size_byte = multibyte ? nbytes : -1;
4813 s->intervals = NULL_INTERVAL;
4814 XSETSTRING (string, s);
4815 return string;
4816 }
4817
4818 /* Return a string a string allocated in pure space. Do not allocate
4819 the string data, just point to DATA. */
4820
4821 Lisp_Object
4822 make_pure_c_string (const char *data)
4823 {
4824 Lisp_Object string;
4825 struct Lisp_String *s;
4826 EMACS_INT nchars = strlen (data);
4827
4828 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4829 s->size = nchars;
4830 s->size_byte = -1;
4831 s->data = (unsigned char *) data;
4832 s->intervals = NULL_INTERVAL;
4833 XSETSTRING (string, s);
4834 return string;
4835 }
4836
4837 /* Return a cons allocated from pure space. Give it pure copies
4838 of CAR as car and CDR as cdr. */
4839
4840 Lisp_Object
4841 pure_cons (Lisp_Object car, Lisp_Object cdr)
4842 {
4843 register Lisp_Object new;
4844 struct Lisp_Cons *p;
4845
4846 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4847 XSETCONS (new, p);
4848 XSETCAR (new, Fpurecopy (car));
4849 XSETCDR (new, Fpurecopy (cdr));
4850 return new;
4851 }
4852
4853
4854 /* Value is a float object with value NUM allocated from pure space. */
4855
4856 static Lisp_Object
4857 make_pure_float (double num)
4858 {
4859 register Lisp_Object new;
4860 struct Lisp_Float *p;
4861
4862 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4863 XSETFLOAT (new, p);
4864 XFLOAT_INIT (new, num);
4865 return new;
4866 }
4867
4868
4869 /* Return a vector with room for LEN Lisp_Objects allocated from
4870 pure space. */
4871
4872 Lisp_Object
4873 make_pure_vector (EMACS_INT len)
4874 {
4875 Lisp_Object new;
4876 struct Lisp_Vector *p;
4877 size_t size = (offsetof (struct Lisp_Vector, contents)
4878 + len * sizeof (Lisp_Object));
4879
4880 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4881 XSETVECTOR (new, p);
4882 XVECTOR (new)->header.size = len;
4883 return new;
4884 }
4885
4886
4887 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4888 doc: /* Make a copy of object OBJ in pure storage.
4889 Recursively copies contents of vectors and cons cells.
4890 Does not copy symbols. Copies strings without text properties. */)
4891 (register Lisp_Object obj)
4892 {
4893 if (NILP (Vpurify_flag))
4894 return obj;
4895
4896 if (PURE_POINTER_P (XPNTR (obj)))
4897 return obj;
4898
4899 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4900 {
4901 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4902 if (!NILP (tmp))
4903 return tmp;
4904 }
4905
4906 if (CONSP (obj))
4907 obj = pure_cons (XCAR (obj), XCDR (obj));
4908 else if (FLOATP (obj))
4909 obj = make_pure_float (XFLOAT_DATA (obj));
4910 else if (STRINGP (obj))
4911 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4912 SBYTES (obj),
4913 STRING_MULTIBYTE (obj));
4914 else if (COMPILEDP (obj) || VECTORP (obj))
4915 {
4916 register struct Lisp_Vector *vec;
4917 register EMACS_INT i;
4918 EMACS_INT size;
4919
4920 size = ASIZE (obj);
4921 if (size & PSEUDOVECTOR_FLAG)
4922 size &= PSEUDOVECTOR_SIZE_MASK;
4923 vec = XVECTOR (make_pure_vector (size));
4924 for (i = 0; i < size; i++)
4925 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4926 if (COMPILEDP (obj))
4927 {
4928 XSETPVECTYPE (vec, PVEC_COMPILED);
4929 XSETCOMPILED (obj, vec);
4930 }
4931 else
4932 XSETVECTOR (obj, vec);
4933 }
4934 else if (MARKERP (obj))
4935 error ("Attempt to copy a marker to pure storage");
4936 else
4937 /* Not purified, don't hash-cons. */
4938 return obj;
4939
4940 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4941 Fputhash (obj, obj, Vpurify_flag);
4942
4943 return obj;
4944 }
4945
4946
4947 \f
4948 /***********************************************************************
4949 Protection from GC
4950 ***********************************************************************/
4951
4952 /* Put an entry in staticvec, pointing at the variable with address
4953 VARADDRESS. */
4954
4955 void
4956 staticpro (Lisp_Object *varaddress)
4957 {
4958 staticvec[staticidx++] = varaddress;
4959 if (staticidx >= NSTATICS)
4960 abort ();
4961 }
4962
4963 \f
4964 /***********************************************************************
4965 Protection from GC
4966 ***********************************************************************/
4967
4968 /* Temporarily prevent garbage collection. */
4969
4970 int
4971 inhibit_garbage_collection (void)
4972 {
4973 int count = SPECPDL_INDEX ();
4974
4975 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
4976 return count;
4977 }
4978
4979
4980 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4981 doc: /* Reclaim storage for Lisp objects no longer needed.
4982 Garbage collection happens automatically if you cons more than
4983 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4984 `garbage-collect' normally returns a list with info on amount of space in use:
4985 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4986 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4987 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4988 (USED-STRINGS . FREE-STRINGS))
4989 However, if there was overflow in pure space, `garbage-collect'
4990 returns nil, because real GC can't be done. */)
4991 (void)
4992 {
4993 register struct specbinding *bind;
4994 char stack_top_variable;
4995 ptrdiff_t i;
4996 int message_p;
4997 Lisp_Object total[8];
4998 int count = SPECPDL_INDEX ();
4999 EMACS_TIME t1, t2, t3;
5000
5001 if (abort_on_gc)
5002 abort ();
5003
5004 /* Can't GC if pure storage overflowed because we can't determine
5005 if something is a pure object or not. */
5006 if (pure_bytes_used_before_overflow)
5007 return Qnil;
5008
5009 CHECK_CONS_LIST ();
5010
5011 /* Don't keep undo information around forever.
5012 Do this early on, so it is no problem if the user quits. */
5013 {
5014 register struct buffer *nextb = all_buffers;
5015
5016 while (nextb)
5017 {
5018 /* If a buffer's undo list is Qt, that means that undo is
5019 turned off in that buffer. Calling truncate_undo_list on
5020 Qt tends to return NULL, which effectively turns undo back on.
5021 So don't call truncate_undo_list if undo_list is Qt. */
5022 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5023 truncate_undo_list (nextb);
5024
5025 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5026 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5027 && ! nextb->text->inhibit_shrinking)
5028 {
5029 /* If a buffer's gap size is more than 10% of the buffer
5030 size, or larger than 2000 bytes, then shrink it
5031 accordingly. Keep a minimum size of 20 bytes. */
5032 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5033
5034 if (nextb->text->gap_size > size)
5035 {
5036 struct buffer *save_current = current_buffer;
5037 current_buffer = nextb;
5038 make_gap (-(nextb->text->gap_size - size));
5039 current_buffer = save_current;
5040 }
5041 }
5042
5043 nextb = nextb->header.next.buffer;
5044 }
5045 }
5046
5047 EMACS_GET_TIME (t1);
5048
5049 /* In case user calls debug_print during GC,
5050 don't let that cause a recursive GC. */
5051 consing_since_gc = 0;
5052
5053 /* Save what's currently displayed in the echo area. */
5054 message_p = push_message ();
5055 record_unwind_protect (pop_message_unwind, Qnil);
5056
5057 /* Save a copy of the contents of the stack, for debugging. */
5058 #if MAX_SAVE_STACK > 0
5059 if (NILP (Vpurify_flag))
5060 {
5061 char *stack;
5062 ptrdiff_t stack_size;
5063 if (&stack_top_variable < stack_bottom)
5064 {
5065 stack = &stack_top_variable;
5066 stack_size = stack_bottom - &stack_top_variable;
5067 }
5068 else
5069 {
5070 stack = stack_bottom;
5071 stack_size = &stack_top_variable - stack_bottom;
5072 }
5073 if (stack_size <= MAX_SAVE_STACK)
5074 {
5075 if (stack_copy_size < stack_size)
5076 {
5077 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5078 stack_copy_size = stack_size;
5079 }
5080 memcpy (stack_copy, stack, stack_size);
5081 }
5082 }
5083 #endif /* MAX_SAVE_STACK > 0 */
5084
5085 if (garbage_collection_messages)
5086 message1_nolog ("Garbage collecting...");
5087
5088 BLOCK_INPUT;
5089
5090 shrink_regexp_cache ();
5091
5092 gc_in_progress = 1;
5093
5094 /* clear_marks (); */
5095
5096 /* Mark all the special slots that serve as the roots of accessibility. */
5097
5098 for (i = 0; i < staticidx; i++)
5099 mark_object (*staticvec[i]);
5100
5101 for (bind = specpdl; bind != specpdl_ptr; bind++)
5102 {
5103 mark_object (bind->symbol);
5104 mark_object (bind->old_value);
5105 }
5106 mark_terminals ();
5107 mark_kboards ();
5108 mark_ttys ();
5109
5110 #ifdef USE_GTK
5111 {
5112 extern void xg_mark_data (void);
5113 xg_mark_data ();
5114 }
5115 #endif
5116
5117 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5118 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5119 mark_stack ();
5120 #else
5121 {
5122 register struct gcpro *tail;
5123 for (tail = gcprolist; tail; tail = tail->next)
5124 for (i = 0; i < tail->nvars; i++)
5125 mark_object (tail->var[i]);
5126 }
5127 mark_byte_stack ();
5128 {
5129 struct catchtag *catch;
5130 struct handler *handler;
5131
5132 for (catch = catchlist; catch; catch = catch->next)
5133 {
5134 mark_object (catch->tag);
5135 mark_object (catch->val);
5136 }
5137 for (handler = handlerlist; handler; handler = handler->next)
5138 {
5139 mark_object (handler->handler);
5140 mark_object (handler->var);
5141 }
5142 }
5143 mark_backtrace ();
5144 #endif
5145
5146 #ifdef HAVE_WINDOW_SYSTEM
5147 mark_fringe_data ();
5148 #endif
5149
5150 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5151 mark_stack ();
5152 #endif
5153
5154 /* Everything is now marked, except for the things that require special
5155 finalization, i.e. the undo_list.
5156 Look thru every buffer's undo list
5157 for elements that update markers that were not marked,
5158 and delete them. */
5159 {
5160 register struct buffer *nextb = all_buffers;
5161
5162 while (nextb)
5163 {
5164 /* If a buffer's undo list is Qt, that means that undo is
5165 turned off in that buffer. Calling truncate_undo_list on
5166 Qt tends to return NULL, which effectively turns undo back on.
5167 So don't call truncate_undo_list if undo_list is Qt. */
5168 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5169 {
5170 Lisp_Object tail, prev;
5171 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5172 prev = Qnil;
5173 while (CONSP (tail))
5174 {
5175 if (CONSP (XCAR (tail))
5176 && MARKERP (XCAR (XCAR (tail)))
5177 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5178 {
5179 if (NILP (prev))
5180 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5181 else
5182 {
5183 tail = XCDR (tail);
5184 XSETCDR (prev, tail);
5185 }
5186 }
5187 else
5188 {
5189 prev = tail;
5190 tail = XCDR (tail);
5191 }
5192 }
5193 }
5194 /* Now that we have stripped the elements that need not be in the
5195 undo_list any more, we can finally mark the list. */
5196 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5197
5198 nextb = nextb->header.next.buffer;
5199 }
5200 }
5201
5202 gc_sweep ();
5203
5204 /* Clear the mark bits that we set in certain root slots. */
5205
5206 unmark_byte_stack ();
5207 VECTOR_UNMARK (&buffer_defaults);
5208 VECTOR_UNMARK (&buffer_local_symbols);
5209
5210 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5211 dump_zombies ();
5212 #endif
5213
5214 UNBLOCK_INPUT;
5215
5216 CHECK_CONS_LIST ();
5217
5218 /* clear_marks (); */
5219 gc_in_progress = 0;
5220
5221 consing_since_gc = 0;
5222 if (gc_cons_threshold < 10000)
5223 gc_cons_threshold = 10000;
5224
5225 gc_relative_threshold = 0;
5226 if (FLOATP (Vgc_cons_percentage))
5227 { /* Set gc_cons_combined_threshold. */
5228 double tot = 0;
5229
5230 tot += total_conses * sizeof (struct Lisp_Cons);
5231 tot += total_symbols * sizeof (struct Lisp_Symbol);
5232 tot += total_markers * sizeof (union Lisp_Misc);
5233 tot += total_string_size;
5234 tot += total_vector_size * sizeof (Lisp_Object);
5235 tot += total_floats * sizeof (struct Lisp_Float);
5236 tot += total_intervals * sizeof (struct interval);
5237 tot += total_strings * sizeof (struct Lisp_String);
5238
5239 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5240 if (0 < tot)
5241 {
5242 if (tot < TYPE_MAXIMUM (EMACS_INT))
5243 gc_relative_threshold = tot;
5244 else
5245 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5246 }
5247 }
5248
5249 if (garbage_collection_messages)
5250 {
5251 if (message_p || minibuf_level > 0)
5252 restore_message ();
5253 else
5254 message1_nolog ("Garbage collecting...done");
5255 }
5256
5257 unbind_to (count, Qnil);
5258
5259 total[0] = Fcons (make_number (total_conses),
5260 make_number (total_free_conses));
5261 total[1] = Fcons (make_number (total_symbols),
5262 make_number (total_free_symbols));
5263 total[2] = Fcons (make_number (total_markers),
5264 make_number (total_free_markers));
5265 total[3] = make_number (total_string_size);
5266 total[4] = make_number (total_vector_size);
5267 total[5] = Fcons (make_number (total_floats),
5268 make_number (total_free_floats));
5269 total[6] = Fcons (make_number (total_intervals),
5270 make_number (total_free_intervals));
5271 total[7] = Fcons (make_number (total_strings),
5272 make_number (total_free_strings));
5273
5274 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5275 {
5276 /* Compute average percentage of zombies. */
5277 double nlive = 0;
5278
5279 for (i = 0; i < 7; ++i)
5280 if (CONSP (total[i]))
5281 nlive += XFASTINT (XCAR (total[i]));
5282
5283 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5284 max_live = max (nlive, max_live);
5285 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5286 max_zombies = max (nzombies, max_zombies);
5287 ++ngcs;
5288 }
5289 #endif
5290
5291 if (!NILP (Vpost_gc_hook))
5292 {
5293 int gc_count = inhibit_garbage_collection ();
5294 safe_run_hooks (Qpost_gc_hook);
5295 unbind_to (gc_count, Qnil);
5296 }
5297
5298 /* Accumulate statistics. */
5299 EMACS_GET_TIME (t2);
5300 EMACS_SUB_TIME (t3, t2, t1);
5301 if (FLOATP (Vgc_elapsed))
5302 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5303 EMACS_SECS (t3) +
5304 EMACS_USECS (t3) * 1.0e-6);
5305 gcs_done++;
5306
5307 return Flist (sizeof total / sizeof *total, total);
5308 }
5309
5310
5311 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5312 only interesting objects referenced from glyphs are strings. */
5313
5314 static void
5315 mark_glyph_matrix (struct glyph_matrix *matrix)
5316 {
5317 struct glyph_row *row = matrix->rows;
5318 struct glyph_row *end = row + matrix->nrows;
5319
5320 for (; row < end; ++row)
5321 if (row->enabled_p)
5322 {
5323 int area;
5324 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5325 {
5326 struct glyph *glyph = row->glyphs[area];
5327 struct glyph *end_glyph = glyph + row->used[area];
5328
5329 for (; glyph < end_glyph; ++glyph)
5330 if (STRINGP (glyph->object)
5331 && !STRING_MARKED_P (XSTRING (glyph->object)))
5332 mark_object (glyph->object);
5333 }
5334 }
5335 }
5336
5337
5338 /* Mark Lisp faces in the face cache C. */
5339
5340 static void
5341 mark_face_cache (struct face_cache *c)
5342 {
5343 if (c)
5344 {
5345 int i, j;
5346 for (i = 0; i < c->used; ++i)
5347 {
5348 struct face *face = FACE_FROM_ID (c->f, i);
5349
5350 if (face)
5351 {
5352 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5353 mark_object (face->lface[j]);
5354 }
5355 }
5356 }
5357 }
5358
5359
5360 \f
5361 /* Mark reference to a Lisp_Object.
5362 If the object referred to has not been seen yet, recursively mark
5363 all the references contained in it. */
5364
5365 #define LAST_MARKED_SIZE 500
5366 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5367 static int last_marked_index;
5368
5369 /* For debugging--call abort when we cdr down this many
5370 links of a list, in mark_object. In debugging,
5371 the call to abort will hit a breakpoint.
5372 Normally this is zero and the check never goes off. */
5373 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5374
5375 static void
5376 mark_vectorlike (struct Lisp_Vector *ptr)
5377 {
5378 EMACS_INT size = ptr->header.size;
5379 EMACS_INT i;
5380
5381 eassert (!VECTOR_MARKED_P (ptr));
5382 VECTOR_MARK (ptr); /* Else mark it */
5383 if (size & PSEUDOVECTOR_FLAG)
5384 size &= PSEUDOVECTOR_SIZE_MASK;
5385
5386 /* Note that this size is not the memory-footprint size, but only
5387 the number of Lisp_Object fields that we should trace.
5388 The distinction is used e.g. by Lisp_Process which places extra
5389 non-Lisp_Object fields at the end of the structure. */
5390 for (i = 0; i < size; i++) /* and then mark its elements */
5391 mark_object (ptr->contents[i]);
5392 }
5393
5394 /* Like mark_vectorlike but optimized for char-tables (and
5395 sub-char-tables) assuming that the contents are mostly integers or
5396 symbols. */
5397
5398 static void
5399 mark_char_table (struct Lisp_Vector *ptr)
5400 {
5401 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5402 int i;
5403
5404 eassert (!VECTOR_MARKED_P (ptr));
5405 VECTOR_MARK (ptr);
5406 for (i = 0; i < size; i++)
5407 {
5408 Lisp_Object val = ptr->contents[i];
5409
5410 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5411 continue;
5412 if (SUB_CHAR_TABLE_P (val))
5413 {
5414 if (! VECTOR_MARKED_P (XVECTOR (val)))
5415 mark_char_table (XVECTOR (val));
5416 }
5417 else
5418 mark_object (val);
5419 }
5420 }
5421
5422 void
5423 mark_object (Lisp_Object arg)
5424 {
5425 register Lisp_Object obj = arg;
5426 #ifdef GC_CHECK_MARKED_OBJECTS
5427 void *po;
5428 struct mem_node *m;
5429 #endif
5430 ptrdiff_t cdr_count = 0;
5431
5432 loop:
5433
5434 if (PURE_POINTER_P (XPNTR (obj)))
5435 return;
5436
5437 last_marked[last_marked_index++] = obj;
5438 if (last_marked_index == LAST_MARKED_SIZE)
5439 last_marked_index = 0;
5440
5441 /* Perform some sanity checks on the objects marked here. Abort if
5442 we encounter an object we know is bogus. This increases GC time
5443 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5444 #ifdef GC_CHECK_MARKED_OBJECTS
5445
5446 po = (void *) XPNTR (obj);
5447
5448 /* Check that the object pointed to by PO is known to be a Lisp
5449 structure allocated from the heap. */
5450 #define CHECK_ALLOCATED() \
5451 do { \
5452 m = mem_find (po); \
5453 if (m == MEM_NIL) \
5454 abort (); \
5455 } while (0)
5456
5457 /* Check that the object pointed to by PO is live, using predicate
5458 function LIVEP. */
5459 #define CHECK_LIVE(LIVEP) \
5460 do { \
5461 if (!LIVEP (m, po)) \
5462 abort (); \
5463 } while (0)
5464
5465 /* Check both of the above conditions. */
5466 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5467 do { \
5468 CHECK_ALLOCATED (); \
5469 CHECK_LIVE (LIVEP); \
5470 } while (0) \
5471
5472 #else /* not GC_CHECK_MARKED_OBJECTS */
5473
5474 #define CHECK_LIVE(LIVEP) (void) 0
5475 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5476
5477 #endif /* not GC_CHECK_MARKED_OBJECTS */
5478
5479 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5480 {
5481 case Lisp_String:
5482 {
5483 register struct Lisp_String *ptr = XSTRING (obj);
5484 if (STRING_MARKED_P (ptr))
5485 break;
5486 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5487 MARK_INTERVAL_TREE (ptr->intervals);
5488 MARK_STRING (ptr);
5489 #ifdef GC_CHECK_STRING_BYTES
5490 /* Check that the string size recorded in the string is the
5491 same as the one recorded in the sdata structure. */
5492 CHECK_STRING_BYTES (ptr);
5493 #endif /* GC_CHECK_STRING_BYTES */
5494 }
5495 break;
5496
5497 case Lisp_Vectorlike:
5498 if (VECTOR_MARKED_P (XVECTOR (obj)))
5499 break;
5500 #ifdef GC_CHECK_MARKED_OBJECTS
5501 m = mem_find (po);
5502 if (m == MEM_NIL && !SUBRP (obj)
5503 && po != &buffer_defaults
5504 && po != &buffer_local_symbols)
5505 abort ();
5506 #endif /* GC_CHECK_MARKED_OBJECTS */
5507
5508 if (BUFFERP (obj))
5509 {
5510 #ifdef GC_CHECK_MARKED_OBJECTS
5511 if (po != &buffer_defaults && po != &buffer_local_symbols)
5512 {
5513 struct buffer *b;
5514 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5515 ;
5516 if (b == NULL)
5517 abort ();
5518 }
5519 #endif /* GC_CHECK_MARKED_OBJECTS */
5520 mark_buffer (obj);
5521 }
5522 else if (SUBRP (obj))
5523 break;
5524 else if (COMPILEDP (obj))
5525 /* We could treat this just like a vector, but it is better to
5526 save the COMPILED_CONSTANTS element for last and avoid
5527 recursion there. */
5528 {
5529 register struct Lisp_Vector *ptr = XVECTOR (obj);
5530 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5531 int i;
5532
5533 CHECK_LIVE (live_vector_p);
5534 VECTOR_MARK (ptr); /* Else mark it */
5535 for (i = 0; i < size; i++) /* and then mark its elements */
5536 {
5537 if (i != COMPILED_CONSTANTS)
5538 mark_object (ptr->contents[i]);
5539 }
5540 obj = ptr->contents[COMPILED_CONSTANTS];
5541 goto loop;
5542 }
5543 else if (FRAMEP (obj))
5544 {
5545 register struct frame *ptr = XFRAME (obj);
5546 mark_vectorlike (XVECTOR (obj));
5547 mark_face_cache (ptr->face_cache);
5548 }
5549 else if (WINDOWP (obj))
5550 {
5551 register struct Lisp_Vector *ptr = XVECTOR (obj);
5552 struct window *w = XWINDOW (obj);
5553 mark_vectorlike (ptr);
5554 /* Mark glyphs for leaf windows. Marking window matrices is
5555 sufficient because frame matrices use the same glyph
5556 memory. */
5557 if (NILP (w->hchild)
5558 && NILP (w->vchild)
5559 && w->current_matrix)
5560 {
5561 mark_glyph_matrix (w->current_matrix);
5562 mark_glyph_matrix (w->desired_matrix);
5563 }
5564 }
5565 else if (HASH_TABLE_P (obj))
5566 {
5567 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5568 mark_vectorlike ((struct Lisp_Vector *)h);
5569 /* If hash table is not weak, mark all keys and values.
5570 For weak tables, mark only the vector. */
5571 if (NILP (h->weak))
5572 mark_object (h->key_and_value);
5573 else
5574 VECTOR_MARK (XVECTOR (h->key_and_value));
5575 }
5576 else if (CHAR_TABLE_P (obj))
5577 mark_char_table (XVECTOR (obj));
5578 else
5579 mark_vectorlike (XVECTOR (obj));
5580 break;
5581
5582 case Lisp_Symbol:
5583 {
5584 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5585 struct Lisp_Symbol *ptrx;
5586
5587 if (ptr->gcmarkbit)
5588 break;
5589 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5590 ptr->gcmarkbit = 1;
5591 mark_object (ptr->function);
5592 mark_object (ptr->plist);
5593 switch (ptr->redirect)
5594 {
5595 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5596 case SYMBOL_VARALIAS:
5597 {
5598 Lisp_Object tem;
5599 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5600 mark_object (tem);
5601 break;
5602 }
5603 case SYMBOL_LOCALIZED:
5604 {
5605 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5606 /* If the value is forwarded to a buffer or keyboard field,
5607 these are marked when we see the corresponding object.
5608 And if it's forwarded to a C variable, either it's not
5609 a Lisp_Object var, or it's staticpro'd already. */
5610 mark_object (blv->where);
5611 mark_object (blv->valcell);
5612 mark_object (blv->defcell);
5613 break;
5614 }
5615 case SYMBOL_FORWARDED:
5616 /* If the value is forwarded to a buffer or keyboard field,
5617 these are marked when we see the corresponding object.
5618 And if it's forwarded to a C variable, either it's not
5619 a Lisp_Object var, or it's staticpro'd already. */
5620 break;
5621 default: abort ();
5622 }
5623 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5624 MARK_STRING (XSTRING (ptr->xname));
5625 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5626
5627 ptr = ptr->next;
5628 if (ptr)
5629 {
5630 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5631 XSETSYMBOL (obj, ptrx);
5632 goto loop;
5633 }
5634 }
5635 break;
5636
5637 case Lisp_Misc:
5638 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5639 if (XMISCANY (obj)->gcmarkbit)
5640 break;
5641 XMISCANY (obj)->gcmarkbit = 1;
5642
5643 switch (XMISCTYPE (obj))
5644 {
5645
5646 case Lisp_Misc_Marker:
5647 /* DO NOT mark thru the marker's chain.
5648 The buffer's markers chain does not preserve markers from gc;
5649 instead, markers are removed from the chain when freed by gc. */
5650 break;
5651
5652 case Lisp_Misc_Save_Value:
5653 #if GC_MARK_STACK
5654 {
5655 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5656 /* If DOGC is set, POINTER is the address of a memory
5657 area containing INTEGER potential Lisp_Objects. */
5658 if (ptr->dogc)
5659 {
5660 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5661 ptrdiff_t nelt;
5662 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5663 mark_maybe_object (*p);
5664 }
5665 }
5666 #endif
5667 break;
5668
5669 case Lisp_Misc_Overlay:
5670 {
5671 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5672 mark_object (ptr->start);
5673 mark_object (ptr->end);
5674 mark_object (ptr->plist);
5675 if (ptr->next)
5676 {
5677 XSETMISC (obj, ptr->next);
5678 goto loop;
5679 }
5680 }
5681 break;
5682
5683 default:
5684 abort ();
5685 }
5686 break;
5687
5688 case Lisp_Cons:
5689 {
5690 register struct Lisp_Cons *ptr = XCONS (obj);
5691 if (CONS_MARKED_P (ptr))
5692 break;
5693 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5694 CONS_MARK (ptr);
5695 /* If the cdr is nil, avoid recursion for the car. */
5696 if (EQ (ptr->u.cdr, Qnil))
5697 {
5698 obj = ptr->car;
5699 cdr_count = 0;
5700 goto loop;
5701 }
5702 mark_object (ptr->car);
5703 obj = ptr->u.cdr;
5704 cdr_count++;
5705 if (cdr_count == mark_object_loop_halt)
5706 abort ();
5707 goto loop;
5708 }
5709
5710 case Lisp_Float:
5711 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5712 FLOAT_MARK (XFLOAT (obj));
5713 break;
5714
5715 case_Lisp_Int:
5716 break;
5717
5718 default:
5719 abort ();
5720 }
5721
5722 #undef CHECK_LIVE
5723 #undef CHECK_ALLOCATED
5724 #undef CHECK_ALLOCATED_AND_LIVE
5725 }
5726
5727 /* Mark the pointers in a buffer structure. */
5728
5729 static void
5730 mark_buffer (Lisp_Object buf)
5731 {
5732 register struct buffer *buffer = XBUFFER (buf);
5733 register Lisp_Object *ptr, tmp;
5734 Lisp_Object base_buffer;
5735
5736 eassert (!VECTOR_MARKED_P (buffer));
5737 VECTOR_MARK (buffer);
5738
5739 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5740
5741 /* For now, we just don't mark the undo_list. It's done later in
5742 a special way just before the sweep phase, and after stripping
5743 some of its elements that are not needed any more. */
5744
5745 if (buffer->overlays_before)
5746 {
5747 XSETMISC (tmp, buffer->overlays_before);
5748 mark_object (tmp);
5749 }
5750 if (buffer->overlays_after)
5751 {
5752 XSETMISC (tmp, buffer->overlays_after);
5753 mark_object (tmp);
5754 }
5755
5756 /* buffer-local Lisp variables start at `undo_list',
5757 tho only the ones from `name' on are GC'd normally. */
5758 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5759 ptr <= &PER_BUFFER_VALUE (buffer,
5760 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
5761 ptr++)
5762 mark_object (*ptr);
5763
5764 /* If this is an indirect buffer, mark its base buffer. */
5765 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5766 {
5767 XSETBUFFER (base_buffer, buffer->base_buffer);
5768 mark_buffer (base_buffer);
5769 }
5770 }
5771
5772 /* Mark the Lisp pointers in the terminal objects.
5773 Called by the Fgarbage_collector. */
5774
5775 static void
5776 mark_terminals (void)
5777 {
5778 struct terminal *t;
5779 for (t = terminal_list; t; t = t->next_terminal)
5780 {
5781 eassert (t->name != NULL);
5782 #ifdef HAVE_WINDOW_SYSTEM
5783 /* If a terminal object is reachable from a stacpro'ed object,
5784 it might have been marked already. Make sure the image cache
5785 gets marked. */
5786 mark_image_cache (t->image_cache);
5787 #endif /* HAVE_WINDOW_SYSTEM */
5788 if (!VECTOR_MARKED_P (t))
5789 mark_vectorlike ((struct Lisp_Vector *)t);
5790 }
5791 }
5792
5793
5794
5795 /* Value is non-zero if OBJ will survive the current GC because it's
5796 either marked or does not need to be marked to survive. */
5797
5798 int
5799 survives_gc_p (Lisp_Object obj)
5800 {
5801 int survives_p;
5802
5803 switch (XTYPE (obj))
5804 {
5805 case_Lisp_Int:
5806 survives_p = 1;
5807 break;
5808
5809 case Lisp_Symbol:
5810 survives_p = XSYMBOL (obj)->gcmarkbit;
5811 break;
5812
5813 case Lisp_Misc:
5814 survives_p = XMISCANY (obj)->gcmarkbit;
5815 break;
5816
5817 case Lisp_String:
5818 survives_p = STRING_MARKED_P (XSTRING (obj));
5819 break;
5820
5821 case Lisp_Vectorlike:
5822 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5823 break;
5824
5825 case Lisp_Cons:
5826 survives_p = CONS_MARKED_P (XCONS (obj));
5827 break;
5828
5829 case Lisp_Float:
5830 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5831 break;
5832
5833 default:
5834 abort ();
5835 }
5836
5837 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5838 }
5839
5840
5841 \f
5842 /* Sweep: find all structures not marked, and free them. */
5843
5844 static void
5845 gc_sweep (void)
5846 {
5847 /* Remove or mark entries in weak hash tables.
5848 This must be done before any object is unmarked. */
5849 sweep_weak_hash_tables ();
5850
5851 sweep_strings ();
5852 #ifdef GC_CHECK_STRING_BYTES
5853 if (!noninteractive)
5854 check_string_bytes (1);
5855 #endif
5856
5857 /* Put all unmarked conses on free list */
5858 {
5859 register struct cons_block *cblk;
5860 struct cons_block **cprev = &cons_block;
5861 register int lim = cons_block_index;
5862 EMACS_INT num_free = 0, num_used = 0;
5863
5864 cons_free_list = 0;
5865
5866 for (cblk = cons_block; cblk; cblk = *cprev)
5867 {
5868 register int i = 0;
5869 int this_free = 0;
5870 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5871
5872 /* Scan the mark bits an int at a time. */
5873 for (i = 0; i < ilim; i++)
5874 {
5875 if (cblk->gcmarkbits[i] == -1)
5876 {
5877 /* Fast path - all cons cells for this int are marked. */
5878 cblk->gcmarkbits[i] = 0;
5879 num_used += BITS_PER_INT;
5880 }
5881 else
5882 {
5883 /* Some cons cells for this int are not marked.
5884 Find which ones, and free them. */
5885 int start, pos, stop;
5886
5887 start = i * BITS_PER_INT;
5888 stop = lim - start;
5889 if (stop > BITS_PER_INT)
5890 stop = BITS_PER_INT;
5891 stop += start;
5892
5893 for (pos = start; pos < stop; pos++)
5894 {
5895 if (!CONS_MARKED_P (&cblk->conses[pos]))
5896 {
5897 this_free++;
5898 cblk->conses[pos].u.chain = cons_free_list;
5899 cons_free_list = &cblk->conses[pos];
5900 #if GC_MARK_STACK
5901 cons_free_list->car = Vdead;
5902 #endif
5903 }
5904 else
5905 {
5906 num_used++;
5907 CONS_UNMARK (&cblk->conses[pos]);
5908 }
5909 }
5910 }
5911 }
5912
5913 lim = CONS_BLOCK_SIZE;
5914 /* If this block contains only free conses and we have already
5915 seen more than two blocks worth of free conses then deallocate
5916 this block. */
5917 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5918 {
5919 *cprev = cblk->next;
5920 /* Unhook from the free list. */
5921 cons_free_list = cblk->conses[0].u.chain;
5922 lisp_align_free (cblk);
5923 }
5924 else
5925 {
5926 num_free += this_free;
5927 cprev = &cblk->next;
5928 }
5929 }
5930 total_conses = num_used;
5931 total_free_conses = num_free;
5932 }
5933
5934 /* Put all unmarked floats on free list */
5935 {
5936 register struct float_block *fblk;
5937 struct float_block **fprev = &float_block;
5938 register int lim = float_block_index;
5939 EMACS_INT num_free = 0, num_used = 0;
5940
5941 float_free_list = 0;
5942
5943 for (fblk = float_block; fblk; fblk = *fprev)
5944 {
5945 register int i;
5946 int this_free = 0;
5947 for (i = 0; i < lim; i++)
5948 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5949 {
5950 this_free++;
5951 fblk->floats[i].u.chain = float_free_list;
5952 float_free_list = &fblk->floats[i];
5953 }
5954 else
5955 {
5956 num_used++;
5957 FLOAT_UNMARK (&fblk->floats[i]);
5958 }
5959 lim = FLOAT_BLOCK_SIZE;
5960 /* If this block contains only free floats and we have already
5961 seen more than two blocks worth of free floats then deallocate
5962 this block. */
5963 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5964 {
5965 *fprev = fblk->next;
5966 /* Unhook from the free list. */
5967 float_free_list = fblk->floats[0].u.chain;
5968 lisp_align_free (fblk);
5969 }
5970 else
5971 {
5972 num_free += this_free;
5973 fprev = &fblk->next;
5974 }
5975 }
5976 total_floats = num_used;
5977 total_free_floats = num_free;
5978 }
5979
5980 /* Put all unmarked intervals on free list */
5981 {
5982 register struct interval_block *iblk;
5983 struct interval_block **iprev = &interval_block;
5984 register int lim = interval_block_index;
5985 EMACS_INT num_free = 0, num_used = 0;
5986
5987 interval_free_list = 0;
5988
5989 for (iblk = interval_block; iblk; iblk = *iprev)
5990 {
5991 register int i;
5992 int this_free = 0;
5993
5994 for (i = 0; i < lim; i++)
5995 {
5996 if (!iblk->intervals[i].gcmarkbit)
5997 {
5998 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5999 interval_free_list = &iblk->intervals[i];
6000 this_free++;
6001 }
6002 else
6003 {
6004 num_used++;
6005 iblk->intervals[i].gcmarkbit = 0;
6006 }
6007 }
6008 lim = INTERVAL_BLOCK_SIZE;
6009 /* If this block contains only free intervals and we have already
6010 seen more than two blocks worth of free intervals then
6011 deallocate this block. */
6012 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6013 {
6014 *iprev = iblk->next;
6015 /* Unhook from the free list. */
6016 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6017 lisp_free (iblk);
6018 }
6019 else
6020 {
6021 num_free += this_free;
6022 iprev = &iblk->next;
6023 }
6024 }
6025 total_intervals = num_used;
6026 total_free_intervals = num_free;
6027 }
6028
6029 /* Put all unmarked symbols on free list */
6030 {
6031 register struct symbol_block *sblk;
6032 struct symbol_block **sprev = &symbol_block;
6033 register int lim = symbol_block_index;
6034 EMACS_INT num_free = 0, num_used = 0;
6035
6036 symbol_free_list = NULL;
6037
6038 for (sblk = symbol_block; sblk; sblk = *sprev)
6039 {
6040 int this_free = 0;
6041 struct Lisp_Symbol *sym = sblk->symbols;
6042 struct Lisp_Symbol *end = sym + lim;
6043
6044 for (; sym < end; ++sym)
6045 {
6046 /* Check if the symbol was created during loadup. In such a case
6047 it might be pointed to by pure bytecode which we don't trace,
6048 so we conservatively assume that it is live. */
6049 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6050
6051 if (!sym->gcmarkbit && !pure_p)
6052 {
6053 if (sym->redirect == SYMBOL_LOCALIZED)
6054 xfree (SYMBOL_BLV (sym));
6055 sym->next = symbol_free_list;
6056 symbol_free_list = sym;
6057 #if GC_MARK_STACK
6058 symbol_free_list->function = Vdead;
6059 #endif
6060 ++this_free;
6061 }
6062 else
6063 {
6064 ++num_used;
6065 if (!pure_p)
6066 UNMARK_STRING (XSTRING (sym->xname));
6067 sym->gcmarkbit = 0;
6068 }
6069 }
6070
6071 lim = SYMBOL_BLOCK_SIZE;
6072 /* If this block contains only free symbols and we have already
6073 seen more than two blocks worth of free symbols then deallocate
6074 this block. */
6075 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6076 {
6077 *sprev = sblk->next;
6078 /* Unhook from the free list. */
6079 symbol_free_list = sblk->symbols[0].next;
6080 lisp_free (sblk);
6081 }
6082 else
6083 {
6084 num_free += this_free;
6085 sprev = &sblk->next;
6086 }
6087 }
6088 total_symbols = num_used;
6089 total_free_symbols = num_free;
6090 }
6091
6092 /* Put all unmarked misc's on free list.
6093 For a marker, first unchain it from the buffer it points into. */
6094 {
6095 register struct marker_block *mblk;
6096 struct marker_block **mprev = &marker_block;
6097 register int lim = marker_block_index;
6098 EMACS_INT num_free = 0, num_used = 0;
6099
6100 marker_free_list = 0;
6101
6102 for (mblk = marker_block; mblk; mblk = *mprev)
6103 {
6104 register int i;
6105 int this_free = 0;
6106
6107 for (i = 0; i < lim; i++)
6108 {
6109 if (!mblk->markers[i].u_any.gcmarkbit)
6110 {
6111 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6112 unchain_marker (&mblk->markers[i].u_marker);
6113 /* Set the type of the freed object to Lisp_Misc_Free.
6114 We could leave the type alone, since nobody checks it,
6115 but this might catch bugs faster. */
6116 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6117 mblk->markers[i].u_free.chain = marker_free_list;
6118 marker_free_list = &mblk->markers[i];
6119 this_free++;
6120 }
6121 else
6122 {
6123 num_used++;
6124 mblk->markers[i].u_any.gcmarkbit = 0;
6125 }
6126 }
6127 lim = MARKER_BLOCK_SIZE;
6128 /* If this block contains only free markers and we have already
6129 seen more than two blocks worth of free markers then deallocate
6130 this block. */
6131 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6132 {
6133 *mprev = mblk->next;
6134 /* Unhook from the free list. */
6135 marker_free_list = mblk->markers[0].u_free.chain;
6136 lisp_free (mblk);
6137 }
6138 else
6139 {
6140 num_free += this_free;
6141 mprev = &mblk->next;
6142 }
6143 }
6144
6145 total_markers = num_used;
6146 total_free_markers = num_free;
6147 }
6148
6149 /* Free all unmarked buffers */
6150 {
6151 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6152
6153 while (buffer)
6154 if (!VECTOR_MARKED_P (buffer))
6155 {
6156 if (prev)
6157 prev->header.next = buffer->header.next;
6158 else
6159 all_buffers = buffer->header.next.buffer;
6160 next = buffer->header.next.buffer;
6161 lisp_free (buffer);
6162 buffer = next;
6163 }
6164 else
6165 {
6166 VECTOR_UNMARK (buffer);
6167 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6168 prev = buffer, buffer = buffer->header.next.buffer;
6169 }
6170 }
6171
6172 /* Free all unmarked vectors */
6173 {
6174 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6175 total_vector_size = 0;
6176
6177 while (vector)
6178 if (!VECTOR_MARKED_P (vector))
6179 {
6180 if (prev)
6181 prev->header.next = vector->header.next;
6182 else
6183 all_vectors = vector->header.next.vector;
6184 next = vector->header.next.vector;
6185 lisp_free (vector);
6186 vector = next;
6187
6188 }
6189 else
6190 {
6191 VECTOR_UNMARK (vector);
6192 if (vector->header.size & PSEUDOVECTOR_FLAG)
6193 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6194 else
6195 total_vector_size += vector->header.size;
6196 prev = vector, vector = vector->header.next.vector;
6197 }
6198 }
6199
6200 #ifdef GC_CHECK_STRING_BYTES
6201 if (!noninteractive)
6202 check_string_bytes (1);
6203 #endif
6204 }
6205
6206
6207
6208 \f
6209 /* Debugging aids. */
6210
6211 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6212 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6213 This may be helpful in debugging Emacs's memory usage.
6214 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6215 (void)
6216 {
6217 Lisp_Object end;
6218
6219 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6220
6221 return end;
6222 }
6223
6224 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6225 doc: /* Return a list of counters that measure how much consing there has been.
6226 Each of these counters increments for a certain kind of object.
6227 The counters wrap around from the largest positive integer to zero.
6228 Garbage collection does not decrease them.
6229 The elements of the value are as follows:
6230 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6231 All are in units of 1 = one object consed
6232 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6233 objects consed.
6234 MISCS include overlays, markers, and some internal types.
6235 Frames, windows, buffers, and subprocesses count as vectors
6236 (but the contents of a buffer's text do not count here). */)
6237 (void)
6238 {
6239 Lisp_Object consed[8];
6240
6241 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6242 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6243 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6244 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6245 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6246 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6247 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6248 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6249
6250 return Flist (8, consed);
6251 }
6252
6253 /* Find at most FIND_MAX symbols which have OBJ as their value or
6254 function. This is used in gdbinit's `xwhichsymbols' command. */
6255
6256 Lisp_Object
6257 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6258 {
6259 struct symbol_block *sblk;
6260 int gc_count = inhibit_garbage_collection ();
6261 Lisp_Object found = Qnil;
6262
6263 if (! DEADP (obj))
6264 {
6265 for (sblk = symbol_block; sblk; sblk = sblk->next)
6266 {
6267 struct Lisp_Symbol *sym = sblk->symbols;
6268 int bn;
6269
6270 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, sym++)
6271 {
6272 Lisp_Object val;
6273 Lisp_Object tem;
6274
6275 if (sblk == symbol_block && bn >= symbol_block_index)
6276 break;
6277
6278 XSETSYMBOL (tem, sym);
6279 val = find_symbol_value (tem);
6280 if (EQ (val, obj)
6281 || EQ (sym->function, obj)
6282 || (!NILP (sym->function)
6283 && COMPILEDP (sym->function)
6284 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6285 || (!NILP (val)
6286 && COMPILEDP (val)
6287 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6288 {
6289 found = Fcons (tem, found);
6290 if (--find_max == 0)
6291 goto out;
6292 }
6293 }
6294 }
6295 }
6296
6297 out:
6298 unbind_to (gc_count, Qnil);
6299 return found;
6300 }
6301
6302 #ifdef ENABLE_CHECKING
6303 int suppress_checking;
6304
6305 void
6306 die (const char *msg, const char *file, int line)
6307 {
6308 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6309 file, line, msg);
6310 abort ();
6311 }
6312 #endif
6313 \f
6314 /* Initialization */
6315
6316 void
6317 init_alloc_once (void)
6318 {
6319 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6320 purebeg = PUREBEG;
6321 pure_size = PURESIZE;
6322 pure_bytes_used = 0;
6323 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6324 pure_bytes_used_before_overflow = 0;
6325
6326 /* Initialize the list of free aligned blocks. */
6327 free_ablock = NULL;
6328
6329 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6330 mem_init ();
6331 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6332 #endif
6333
6334 all_vectors = 0;
6335 ignore_warnings = 1;
6336 #ifdef DOUG_LEA_MALLOC
6337 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6338 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6339 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6340 #endif
6341 init_strings ();
6342 init_cons ();
6343 init_symbol ();
6344 init_marker ();
6345 init_float ();
6346 init_intervals ();
6347 init_weak_hash_tables ();
6348
6349 #ifdef REL_ALLOC
6350 malloc_hysteresis = 32;
6351 #else
6352 malloc_hysteresis = 0;
6353 #endif
6354
6355 refill_memory_reserve ();
6356
6357 ignore_warnings = 0;
6358 gcprolist = 0;
6359 byte_stack_list = 0;
6360 staticidx = 0;
6361 consing_since_gc = 0;
6362 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6363 gc_relative_threshold = 0;
6364 }
6365
6366 void
6367 init_alloc (void)
6368 {
6369 gcprolist = 0;
6370 byte_stack_list = 0;
6371 #if GC_MARK_STACK
6372 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6373 setjmp_tested_p = longjmps_done = 0;
6374 #endif
6375 #endif
6376 Vgc_elapsed = make_float (0.0);
6377 gcs_done = 0;
6378 }
6379
6380 void
6381 syms_of_alloc (void)
6382 {
6383 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6384 doc: /* *Number of bytes of consing between garbage collections.
6385 Garbage collection can happen automatically once this many bytes have been
6386 allocated since the last garbage collection. All data types count.
6387
6388 Garbage collection happens automatically only when `eval' is called.
6389
6390 By binding this temporarily to a large number, you can effectively
6391 prevent garbage collection during a part of the program.
6392 See also `gc-cons-percentage'. */);
6393
6394 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6395 doc: /* *Portion of the heap used for allocation.
6396 Garbage collection can happen automatically once this portion of the heap
6397 has been allocated since the last garbage collection.
6398 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6399 Vgc_cons_percentage = make_float (0.1);
6400
6401 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6402 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6403
6404 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6405 doc: /* Number of cons cells that have been consed so far. */);
6406
6407 DEFVAR_INT ("floats-consed", floats_consed,
6408 doc: /* Number of floats that have been consed so far. */);
6409
6410 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6411 doc: /* Number of vector cells that have been consed so far. */);
6412
6413 DEFVAR_INT ("symbols-consed", symbols_consed,
6414 doc: /* Number of symbols that have been consed so far. */);
6415
6416 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6417 doc: /* Number of string characters that have been consed so far. */);
6418
6419 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6420 doc: /* Number of miscellaneous objects that have been consed so far. */);
6421
6422 DEFVAR_INT ("intervals-consed", intervals_consed,
6423 doc: /* Number of intervals that have been consed so far. */);
6424
6425 DEFVAR_INT ("strings-consed", strings_consed,
6426 doc: /* Number of strings that have been consed so far. */);
6427
6428 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6429 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6430 This means that certain objects should be allocated in shared (pure) space.
6431 It can also be set to a hash-table, in which case this table is used to
6432 do hash-consing of the objects allocated to pure space. */);
6433
6434 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6435 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6436 garbage_collection_messages = 0;
6437
6438 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6439 doc: /* Hook run after garbage collection has finished. */);
6440 Vpost_gc_hook = Qnil;
6441 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6442
6443 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6444 doc: /* Precomputed `signal' argument for memory-full error. */);
6445 /* We build this in advance because if we wait until we need it, we might
6446 not be able to allocate the memory to hold it. */
6447 Vmemory_signal_data
6448 = pure_cons (Qerror,
6449 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6450
6451 DEFVAR_LISP ("memory-full", Vmemory_full,
6452 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6453 Vmemory_full = Qnil;
6454
6455 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6456 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6457
6458 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6459 doc: /* Accumulated time elapsed in garbage collections.
6460 The time is in seconds as a floating point value. */);
6461 DEFVAR_INT ("gcs-done", gcs_done,
6462 doc: /* Accumulated number of garbage collections done. */);
6463
6464 defsubr (&Scons);
6465 defsubr (&Slist);
6466 defsubr (&Svector);
6467 defsubr (&Smake_byte_code);
6468 defsubr (&Smake_list);
6469 defsubr (&Smake_vector);
6470 defsubr (&Smake_string);
6471 defsubr (&Smake_bool_vector);
6472 defsubr (&Smake_symbol);
6473 defsubr (&Smake_marker);
6474 defsubr (&Spurecopy);
6475 defsubr (&Sgarbage_collect);
6476 defsubr (&Smemory_limit);
6477 defsubr (&Smemory_use_counts);
6478
6479 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6480 defsubr (&Sgc_status);
6481 #endif
6482 }