* buffer.h (FETCH_MULTIBYTE_CHAR): Define as inline.
[bpt/emacs.git] / src / bytecode.c
... / ...
CommitLineData
1/* Execution of byte code produced by bytecomp.el.
2 Copyright (C) 1985-1988, 1993, 2000-2012 Free Software Foundation, Inc.
3
4This file is part of GNU Emacs.
5
6GNU Emacs is free software: you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation, either version 3 of the License, or
9(at your option) any later version.
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19/*
20hacked on by jwz@lucid.com 17-jun-91
21 o added a compile-time switch to turn on simple sanity checking;
22 o put back the obsolete byte-codes for error-detection;
23 o added a new instruction, unbind_all, which I will use for
24 tail-recursion elimination;
25 o made temp_output_buffer_show be called with the right number
26 of args;
27 o made the new bytecodes be called with args in the right order;
28 o added metering support.
29
30by Hallvard:
31 o added relative jump instructions;
32 o all conditionals now only do QUIT if they jump.
33 */
34
35#include <config.h>
36#include <setjmp.h>
37#include "lisp.h"
38#include "character.h"
39#include "buffer.h"
40#include "syntax.h"
41#include "window.h"
42
43#ifdef CHECK_FRAME_FONT
44#include "frame.h"
45#include "xterm.h"
46#endif
47
48/*
49 * define BYTE_CODE_SAFE to enable some minor sanity checking (useful for
50 * debugging the byte compiler...)
51 *
52 * define BYTE_CODE_METER to enable generation of a byte-op usage histogram.
53 */
54/* #define BYTE_CODE_SAFE */
55/* #define BYTE_CODE_METER */
56
57\f
58#ifdef BYTE_CODE_METER
59
60Lisp_Object Qbyte_code_meter;
61#define METER_2(code1, code2) \
62 XFASTINT (XVECTOR (XVECTOR (Vbyte_code_meter)->contents[(code1)]) \
63 ->contents[(code2)])
64
65#define METER_1(code) METER_2 (0, (code))
66
67#define METER_CODE(last_code, this_code) \
68{ \
69 if (byte_metering_on) \
70 { \
71 if (METER_1 (this_code) < MOST_POSITIVE_FIXNUM) \
72 METER_1 (this_code)++; \
73 if (last_code \
74 && METER_2 (last_code, this_code) < MOST_POSITIVE_FIXNUM) \
75 METER_2 (last_code, this_code)++; \
76 } \
77}
78
79#endif /* BYTE_CODE_METER */
80\f
81
82Lisp_Object Qbytecode;
83
84/* Byte codes: */
85
86#define Bstack_ref 0 /* Actually, Bstack_ref+0 is not implemented: use dup. */
87#define Bvarref 010
88#define Bvarset 020
89#define Bvarbind 030
90#define Bcall 040
91#define Bunbind 050
92
93#define Bnth 070
94#define Bsymbolp 071
95#define Bconsp 072
96#define Bstringp 073
97#define Blistp 074
98#define Beq 075
99#define Bmemq 076
100#define Bnot 077
101#define Bcar 0100
102#define Bcdr 0101
103#define Bcons 0102
104#define Blist1 0103
105#define Blist2 0104
106#define Blist3 0105
107#define Blist4 0106
108#define Blength 0107
109#define Baref 0110
110#define Baset 0111
111#define Bsymbol_value 0112
112#define Bsymbol_function 0113
113#define Bset 0114
114#define Bfset 0115
115#define Bget 0116
116#define Bsubstring 0117
117#define Bconcat2 0120
118#define Bconcat3 0121
119#define Bconcat4 0122
120#define Bsub1 0123
121#define Badd1 0124
122#define Beqlsign 0125
123#define Bgtr 0126
124#define Blss 0127
125#define Bleq 0130
126#define Bgeq 0131
127#define Bdiff 0132
128#define Bnegate 0133
129#define Bplus 0134
130#define Bmax 0135
131#define Bmin 0136
132#define Bmult 0137
133
134#define Bpoint 0140
135/* Was Bmark in v17. */
136#define Bsave_current_buffer 0141 /* Obsolete. */
137#define Bgoto_char 0142
138#define Binsert 0143
139#define Bpoint_max 0144
140#define Bpoint_min 0145
141#define Bchar_after 0146
142#define Bfollowing_char 0147
143#define Bpreceding_char 0150
144#define Bcurrent_column 0151
145#define Bindent_to 0152
146#ifdef BYTE_CODE_SAFE
147#define Bscan_buffer 0153 /* No longer generated as of v18. */
148#endif
149#define Beolp 0154
150#define Beobp 0155
151#define Bbolp 0156
152#define Bbobp 0157
153#define Bcurrent_buffer 0160
154#define Bset_buffer 0161
155#define Bsave_current_buffer_1 0162 /* Replacing Bsave_current_buffer. */
156#if 0
157#define Bread_char 0162 /* No longer generated as of v19 */
158#endif
159#ifdef BYTE_CODE_SAFE
160#define Bset_mark 0163 /* this loser is no longer generated as of v18 */
161#endif
162#define Binteractive_p 0164 /* Obsolete since Emacs-24.1. */
163
164#define Bforward_char 0165
165#define Bforward_word 0166
166#define Bskip_chars_forward 0167
167#define Bskip_chars_backward 0170
168#define Bforward_line 0171
169#define Bchar_syntax 0172
170#define Bbuffer_substring 0173
171#define Bdelete_region 0174
172#define Bnarrow_to_region 0175
173#define Bwiden 0176
174#define Bend_of_line 0177
175
176#define Bconstant2 0201
177#define Bgoto 0202
178#define Bgotoifnil 0203
179#define Bgotoifnonnil 0204
180#define Bgotoifnilelsepop 0205
181#define Bgotoifnonnilelsepop 0206
182#define Breturn 0207
183#define Bdiscard 0210
184#define Bdup 0211
185
186#define Bsave_excursion 0212
187#define Bsave_window_excursion 0213 /* Obsolete since Emacs-24.1. */
188#define Bsave_restriction 0214
189#define Bcatch 0215
190
191#define Bunwind_protect 0216
192#define Bcondition_case 0217
193#define Btemp_output_buffer_setup 0220 /* Obsolete since Emacs-24.1. */
194#define Btemp_output_buffer_show 0221 /* Obsolete since Emacs-24.1. */
195
196#define Bunbind_all 0222 /* Obsolete. Never used. */
197
198#define Bset_marker 0223
199#define Bmatch_beginning 0224
200#define Bmatch_end 0225
201#define Bupcase 0226
202#define Bdowncase 0227
203
204#define Bstringeqlsign 0230
205#define Bstringlss 0231
206#define Bequal 0232
207#define Bnthcdr 0233
208#define Belt 0234
209#define Bmember 0235
210#define Bassq 0236
211#define Bnreverse 0237
212#define Bsetcar 0240
213#define Bsetcdr 0241
214#define Bcar_safe 0242
215#define Bcdr_safe 0243
216#define Bnconc 0244
217#define Bquo 0245
218#define Brem 0246
219#define Bnumberp 0247
220#define Bintegerp 0250
221
222#define BRgoto 0252
223#define BRgotoifnil 0253
224#define BRgotoifnonnil 0254
225#define BRgotoifnilelsepop 0255
226#define BRgotoifnonnilelsepop 0256
227
228#define BlistN 0257
229#define BconcatN 0260
230#define BinsertN 0261
231
232/* Bstack_ref is code 0. */
233#define Bstack_set 0262
234#define Bstack_set2 0263
235#define BdiscardN 0266
236
237#define Bconstant 0300
238
239/* Whether to maintain a `top' and `bottom' field in the stack frame. */
240#define BYTE_MAINTAIN_TOP (BYTE_CODE_SAFE || BYTE_MARK_STACK)
241\f
242/* Structure describing a value stack used during byte-code execution
243 in Fbyte_code. */
244
245struct byte_stack
246{
247 /* Program counter. This points into the byte_string below
248 and is relocated when that string is relocated. */
249 const unsigned char *pc;
250
251 /* Top and bottom of stack. The bottom points to an area of memory
252 allocated with alloca in Fbyte_code. */
253#if BYTE_MAINTAIN_TOP
254 Lisp_Object *top, *bottom;
255#endif
256
257 /* The string containing the byte-code, and its current address.
258 Storing this here protects it from GC because mark_byte_stack
259 marks it. */
260 Lisp_Object byte_string;
261 const unsigned char *byte_string_start;
262
263 /* The vector of constants used during byte-code execution. Storing
264 this here protects it from GC because mark_byte_stack marks it. */
265 Lisp_Object constants;
266
267 /* Next entry in byte_stack_list. */
268 struct byte_stack *next;
269};
270
271/* A list of currently active byte-code execution value stacks.
272 Fbyte_code adds an entry to the head of this list before it starts
273 processing byte-code, and it removed the entry again when it is
274 done. Signaling an error truncates the list analogous to
275 gcprolist. */
276
277struct byte_stack *byte_stack_list;
278
279\f
280/* Mark objects on byte_stack_list. Called during GC. */
281
282#if BYTE_MARK_STACK
283void
284mark_byte_stack (void)
285{
286 struct byte_stack *stack;
287 Lisp_Object *obj;
288
289 for (stack = byte_stack_list; stack; stack = stack->next)
290 {
291 /* If STACK->top is null here, this means there's an opcode in
292 Fbyte_code that wasn't expected to GC, but did. To find out
293 which opcode this is, record the value of `stack', and walk
294 up the stack in a debugger, stopping in frames of Fbyte_code.
295 The culprit is found in the frame of Fbyte_code where the
296 address of its local variable `stack' is equal to the
297 recorded value of `stack' here. */
298 eassert (stack->top);
299
300 for (obj = stack->bottom; obj <= stack->top; ++obj)
301 mark_object (*obj);
302
303 mark_object (stack->byte_string);
304 mark_object (stack->constants);
305 }
306}
307#endif
308
309/* Unmark objects in the stacks on byte_stack_list. Relocate program
310 counters. Called when GC has completed. */
311
312void
313unmark_byte_stack (void)
314{
315 struct byte_stack *stack;
316
317 for (stack = byte_stack_list; stack; stack = stack->next)
318 {
319 if (stack->byte_string_start != SDATA (stack->byte_string))
320 {
321 ptrdiff_t offset = stack->pc - stack->byte_string_start;
322 stack->byte_string_start = SDATA (stack->byte_string);
323 stack->pc = stack->byte_string_start + offset;
324 }
325 }
326}
327
328\f
329/* Fetch the next byte from the bytecode stream */
330
331#define FETCH *stack.pc++
332
333/* Fetch two bytes from the bytecode stream and make a 16-bit number
334 out of them */
335
336#define FETCH2 (op = FETCH, op + (FETCH << 8))
337
338/* Push x onto the execution stack. This used to be #define PUSH(x)
339 (*++stackp = (x)) This oddity is necessary because Alliant can't be
340 bothered to compile the preincrement operator properly, as of 4/91.
341 -JimB */
342
343#define PUSH(x) (top++, *top = (x))
344
345/* Pop a value off the execution stack. */
346
347#define POP (*top--)
348
349/* Discard n values from the execution stack. */
350
351#define DISCARD(n) (top -= (n))
352
353/* Get the value which is at the top of the execution stack, but don't
354 pop it. */
355
356#define TOP (*top)
357
358/* Actions that must be performed before and after calling a function
359 that might GC. */
360
361#if !BYTE_MAINTAIN_TOP
362#define BEFORE_POTENTIAL_GC() ((void)0)
363#define AFTER_POTENTIAL_GC() ((void)0)
364#else
365#define BEFORE_POTENTIAL_GC() stack.top = top
366#define AFTER_POTENTIAL_GC() stack.top = NULL
367#endif
368
369/* Garbage collect if we have consed enough since the last time.
370 We do this at every branch, to avoid loops that never GC. */
371
372#define MAYBE_GC() \
373 do { \
374 if (consing_since_gc > gc_cons_threshold \
375 && consing_since_gc > gc_relative_threshold) \
376 { \
377 BEFORE_POTENTIAL_GC (); \
378 Fgarbage_collect (); \
379 AFTER_POTENTIAL_GC (); \
380 } \
381 } while (0)
382
383/* Check for jumping out of range. */
384
385#ifdef BYTE_CODE_SAFE
386
387#define CHECK_RANGE(ARG) \
388 if (ARG >= bytestr_length) abort ()
389
390#else /* not BYTE_CODE_SAFE */
391
392#define CHECK_RANGE(ARG)
393
394#endif /* not BYTE_CODE_SAFE */
395
396/* A version of the QUIT macro which makes sure that the stack top is
397 set before signaling `quit'. */
398
399#define BYTE_CODE_QUIT \
400 do { \
401 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
402 { \
403 Lisp_Object flag = Vquit_flag; \
404 Vquit_flag = Qnil; \
405 BEFORE_POTENTIAL_GC (); \
406 if (EQ (Vthrow_on_input, flag)) \
407 Fthrow (Vthrow_on_input, Qt); \
408 Fsignal (Qquit, Qnil); \
409 AFTER_POTENTIAL_GC (); \
410 } \
411 ELSE_PENDING_SIGNALS \
412 } while (0)
413
414
415DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
416 doc: /* Function used internally in byte-compiled code.
417The first argument, BYTESTR, is a string of byte code;
418the second, VECTOR, a vector of constants;
419the third, MAXDEPTH, the maximum stack depth used in this function.
420If the third argument is incorrect, Emacs may crash. */)
421 (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth)
422{
423 return exec_byte_code (bytestr, vector, maxdepth, Qnil, 0, NULL);
424}
425
426/* Execute the byte-code in BYTESTR. VECTOR is the constant vector, and
427 MAXDEPTH is the maximum stack depth used (if MAXDEPTH is incorrect,
428 emacs may crash!). If ARGS_TEMPLATE is non-nil, it should be a lisp
429 argument list (including &rest, &optional, etc.), and ARGS, of size
430 NARGS, should be a vector of the actual arguments. The arguments in
431 ARGS are pushed on the stack according to ARGS_TEMPLATE before
432 executing BYTESTR. */
433
434Lisp_Object
435exec_byte_code (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth,
436 Lisp_Object args_template, ptrdiff_t nargs, Lisp_Object *args)
437{
438 ptrdiff_t count = SPECPDL_INDEX ();
439#ifdef BYTE_CODE_METER
440 int this_op = 0;
441 int prev_op;
442#endif
443 int op;
444 /* Lisp_Object v1, v2; */
445 Lisp_Object *vectorp;
446#ifdef BYTE_CODE_SAFE
447 ptrdiff_t const_length;
448 Lisp_Object *stacke;
449 ptrdiff_t bytestr_length;
450#endif
451 struct byte_stack stack;
452 Lisp_Object *top;
453 Lisp_Object result;
454
455#if 0 /* CHECK_FRAME_FONT */
456 {
457 struct frame *f = SELECTED_FRAME ();
458 if (FRAME_X_P (f)
459 && FRAME_FONT (f)->direction != 0
460 && FRAME_FONT (f)->direction != 1)
461 abort ();
462 }
463#endif
464
465 CHECK_STRING (bytestr);
466 CHECK_VECTOR (vector);
467 CHECK_NATNUM (maxdepth);
468
469#ifdef BYTE_CODE_SAFE
470 const_length = ASIZE (vector);
471#endif
472
473 if (STRING_MULTIBYTE (bytestr))
474 /* BYTESTR must have been produced by Emacs 20.2 or the earlier
475 because they produced a raw 8-bit string for byte-code and now
476 such a byte-code string is loaded as multibyte while raw 8-bit
477 characters converted to multibyte form. Thus, now we must
478 convert them back to the originally intended unibyte form. */
479 bytestr = Fstring_as_unibyte (bytestr);
480
481#ifdef BYTE_CODE_SAFE
482 bytestr_length = SBYTES (bytestr);
483#endif
484 vectorp = XVECTOR (vector)->contents;
485
486 stack.byte_string = bytestr;
487 stack.pc = stack.byte_string_start = SDATA (bytestr);
488 stack.constants = vector;
489 if (MAX_ALLOCA / sizeof (Lisp_Object) <= XFASTINT (maxdepth))
490 memory_full (SIZE_MAX);
491 top = (Lisp_Object *) alloca ((XFASTINT (maxdepth) + 1)
492 * sizeof (Lisp_Object));
493#if BYTE_MAINTAIN_TOP
494 stack.bottom = top + 1;
495 stack.top = NULL;
496#endif
497 stack.next = byte_stack_list;
498 byte_stack_list = &stack;
499
500#ifdef BYTE_CODE_SAFE
501 stacke = stack.bottom - 1 + XFASTINT (maxdepth);
502#endif
503
504 if (INTEGERP (args_template))
505 {
506 ptrdiff_t at = XINT (args_template);
507 int rest = at & 128;
508 int mandatory = at & 127;
509 ptrdiff_t nonrest = at >> 8;
510 eassert (mandatory <= nonrest);
511 if (nargs <= nonrest)
512 {
513 ptrdiff_t i;
514 for (i = 0 ; i < nargs; i++, args++)
515 PUSH (*args);
516 if (nargs < mandatory)
517 /* Too few arguments. */
518 Fsignal (Qwrong_number_of_arguments,
519 Fcons (Fcons (make_number (mandatory),
520 rest ? Qand_rest : make_number (nonrest)),
521 Fcons (make_number (nargs), Qnil)));
522 else
523 {
524 for (; i < nonrest; i++)
525 PUSH (Qnil);
526 if (rest)
527 PUSH (Qnil);
528 }
529 }
530 else if (rest)
531 {
532 ptrdiff_t i;
533 for (i = 0 ; i < nonrest; i++, args++)
534 PUSH (*args);
535 PUSH (Flist (nargs - nonrest, args));
536 }
537 else
538 /* Too many arguments. */
539 Fsignal (Qwrong_number_of_arguments,
540 Fcons (Fcons (make_number (mandatory),
541 make_number (nonrest)),
542 Fcons (make_number (nargs), Qnil)));
543 }
544 else if (! NILP (args_template))
545 /* We should push some arguments on the stack. */
546 {
547 error ("Unknown args template!");
548 }
549
550 while (1)
551 {
552#ifdef BYTE_CODE_SAFE
553 if (top > stacke)
554 abort ();
555 else if (top < stack.bottom - 1)
556 abort ();
557#endif
558
559#ifdef BYTE_CODE_METER
560 prev_op = this_op;
561 this_op = op = FETCH;
562 METER_CODE (prev_op, op);
563#else
564 op = FETCH;
565#endif
566
567 switch (op)
568 {
569 case Bvarref + 7:
570 op = FETCH2;
571 goto varref;
572
573 case Bvarref:
574 case Bvarref + 1:
575 case Bvarref + 2:
576 case Bvarref + 3:
577 case Bvarref + 4:
578 case Bvarref + 5:
579 op = op - Bvarref;
580 goto varref;
581
582 /* This seems to be the most frequently executed byte-code
583 among the Bvarref's, so avoid a goto here. */
584 case Bvarref+6:
585 op = FETCH;
586 varref:
587 {
588 Lisp_Object v1, v2;
589
590 v1 = vectorp[op];
591 if (SYMBOLP (v1))
592 {
593 if (XSYMBOL (v1)->redirect != SYMBOL_PLAINVAL
594 || (v2 = SYMBOL_VAL (XSYMBOL (v1)),
595 EQ (v2, Qunbound)))
596 {
597 BEFORE_POTENTIAL_GC ();
598 v2 = Fsymbol_value (v1);
599 AFTER_POTENTIAL_GC ();
600 }
601 }
602 else
603 {
604 BEFORE_POTENTIAL_GC ();
605 v2 = Fsymbol_value (v1);
606 AFTER_POTENTIAL_GC ();
607 }
608 PUSH (v2);
609 break;
610 }
611
612 case Bgotoifnil:
613 {
614 Lisp_Object v1;
615 MAYBE_GC ();
616 op = FETCH2;
617 v1 = POP;
618 if (NILP (v1))
619 {
620 BYTE_CODE_QUIT;
621 CHECK_RANGE (op);
622 stack.pc = stack.byte_string_start + op;
623 }
624 break;
625 }
626
627 case Bcar:
628 {
629 Lisp_Object v1;
630 v1 = TOP;
631 if (CONSP (v1))
632 TOP = XCAR (v1);
633 else if (NILP (v1))
634 TOP = Qnil;
635 else
636 {
637 BEFORE_POTENTIAL_GC ();
638 wrong_type_argument (Qlistp, v1);
639 AFTER_POTENTIAL_GC ();
640 }
641 break;
642 }
643
644 case Beq:
645 {
646 Lisp_Object v1;
647 v1 = POP;
648 TOP = EQ (v1, TOP) ? Qt : Qnil;
649 break;
650 }
651
652 case Bmemq:
653 {
654 Lisp_Object v1;
655 BEFORE_POTENTIAL_GC ();
656 v1 = POP;
657 TOP = Fmemq (TOP, v1);
658 AFTER_POTENTIAL_GC ();
659 break;
660 }
661
662 case Bcdr:
663 {
664 Lisp_Object v1;
665 v1 = TOP;
666 if (CONSP (v1))
667 TOP = XCDR (v1);
668 else if (NILP (v1))
669 TOP = Qnil;
670 else
671 {
672 BEFORE_POTENTIAL_GC ();
673 wrong_type_argument (Qlistp, v1);
674 AFTER_POTENTIAL_GC ();
675 }
676 break;
677 break;
678 }
679
680 case Bvarset:
681 case Bvarset+1:
682 case Bvarset+2:
683 case Bvarset+3:
684 case Bvarset+4:
685 case Bvarset+5:
686 op -= Bvarset;
687 goto varset;
688
689 case Bvarset+7:
690 op = FETCH2;
691 goto varset;
692
693 case Bvarset+6:
694 op = FETCH;
695 varset:
696 {
697 Lisp_Object sym, val;
698
699 sym = vectorp[op];
700 val = TOP;
701
702 /* Inline the most common case. */
703 if (SYMBOLP (sym)
704 && !EQ (val, Qunbound)
705 && !XSYMBOL (sym)->redirect
706 && !SYMBOL_CONSTANT_P (sym))
707 XSYMBOL (sym)->val.value = val;
708 else
709 {
710 BEFORE_POTENTIAL_GC ();
711 set_internal (sym, val, Qnil, 0);
712 AFTER_POTENTIAL_GC ();
713 }
714 }
715 (void) POP;
716 break;
717
718 case Bdup:
719 {
720 Lisp_Object v1;
721 v1 = TOP;
722 PUSH (v1);
723 break;
724 }
725
726 /* ------------------ */
727
728 case Bvarbind+6:
729 op = FETCH;
730 goto varbind;
731
732 case Bvarbind+7:
733 op = FETCH2;
734 goto varbind;
735
736 case Bvarbind:
737 case Bvarbind+1:
738 case Bvarbind+2:
739 case Bvarbind+3:
740 case Bvarbind+4:
741 case Bvarbind+5:
742 op -= Bvarbind;
743 varbind:
744 /* Specbind can signal and thus GC. */
745 BEFORE_POTENTIAL_GC ();
746 specbind (vectorp[op], POP);
747 AFTER_POTENTIAL_GC ();
748 break;
749
750 case Bcall+6:
751 op = FETCH;
752 goto docall;
753
754 case Bcall+7:
755 op = FETCH2;
756 goto docall;
757
758 case Bcall:
759 case Bcall+1:
760 case Bcall+2:
761 case Bcall+3:
762 case Bcall+4:
763 case Bcall+5:
764 op -= Bcall;
765 docall:
766 {
767 BEFORE_POTENTIAL_GC ();
768 DISCARD (op);
769#ifdef BYTE_CODE_METER
770 if (byte_metering_on && SYMBOLP (TOP))
771 {
772 Lisp_Object v1, v2;
773
774 v1 = TOP;
775 v2 = Fget (v1, Qbyte_code_meter);
776 if (INTEGERP (v2)
777 && XINT (v2) < MOST_POSITIVE_FIXNUM)
778 {
779 XSETINT (v2, XINT (v2) + 1);
780 Fput (v1, Qbyte_code_meter, v2);
781 }
782 }
783#endif
784 TOP = Ffuncall (op + 1, &TOP);
785 AFTER_POTENTIAL_GC ();
786 break;
787 }
788
789 case Bunbind+6:
790 op = FETCH;
791 goto dounbind;
792
793 case Bunbind+7:
794 op = FETCH2;
795 goto dounbind;
796
797 case Bunbind:
798 case Bunbind+1:
799 case Bunbind+2:
800 case Bunbind+3:
801 case Bunbind+4:
802 case Bunbind+5:
803 op -= Bunbind;
804 dounbind:
805 BEFORE_POTENTIAL_GC ();
806 unbind_to (SPECPDL_INDEX () - op, Qnil);
807 AFTER_POTENTIAL_GC ();
808 break;
809
810 case Bunbind_all: /* Obsolete. Never used. */
811 /* To unbind back to the beginning of this frame. Not used yet,
812 but will be needed for tail-recursion elimination. */
813 BEFORE_POTENTIAL_GC ();
814 unbind_to (count, Qnil);
815 AFTER_POTENTIAL_GC ();
816 break;
817
818 case Bgoto:
819 MAYBE_GC ();
820 BYTE_CODE_QUIT;
821 op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */
822 CHECK_RANGE (op);
823 stack.pc = stack.byte_string_start + op;
824 break;
825
826 case Bgotoifnonnil:
827 {
828 Lisp_Object v1;
829 MAYBE_GC ();
830 op = FETCH2;
831 v1 = POP;
832 if (!NILP (v1))
833 {
834 BYTE_CODE_QUIT;
835 CHECK_RANGE (op);
836 stack.pc = stack.byte_string_start + op;
837 }
838 break;
839 }
840
841 case Bgotoifnilelsepop:
842 MAYBE_GC ();
843 op = FETCH2;
844 if (NILP (TOP))
845 {
846 BYTE_CODE_QUIT;
847 CHECK_RANGE (op);
848 stack.pc = stack.byte_string_start + op;
849 }
850 else DISCARD (1);
851 break;
852
853 case Bgotoifnonnilelsepop:
854 MAYBE_GC ();
855 op = FETCH2;
856 if (!NILP (TOP))
857 {
858 BYTE_CODE_QUIT;
859 CHECK_RANGE (op);
860 stack.pc = stack.byte_string_start + op;
861 }
862 else DISCARD (1);
863 break;
864
865 case BRgoto:
866 MAYBE_GC ();
867 BYTE_CODE_QUIT;
868 stack.pc += (int) *stack.pc - 127;
869 break;
870
871 case BRgotoifnil:
872 {
873 Lisp_Object v1;
874 MAYBE_GC ();
875 v1 = POP;
876 if (NILP (v1))
877 {
878 BYTE_CODE_QUIT;
879 stack.pc += (int) *stack.pc - 128;
880 }
881 stack.pc++;
882 break;
883 }
884
885 case BRgotoifnonnil:
886 {
887 Lisp_Object v1;
888 MAYBE_GC ();
889 v1 = POP;
890 if (!NILP (v1))
891 {
892 BYTE_CODE_QUIT;
893 stack.pc += (int) *stack.pc - 128;
894 }
895 stack.pc++;
896 break;
897 }
898
899 case BRgotoifnilelsepop:
900 MAYBE_GC ();
901 op = *stack.pc++;
902 if (NILP (TOP))
903 {
904 BYTE_CODE_QUIT;
905 stack.pc += op - 128;
906 }
907 else DISCARD (1);
908 break;
909
910 case BRgotoifnonnilelsepop:
911 MAYBE_GC ();
912 op = *stack.pc++;
913 if (!NILP (TOP))
914 {
915 BYTE_CODE_QUIT;
916 stack.pc += op - 128;
917 }
918 else DISCARD (1);
919 break;
920
921 case Breturn:
922 result = POP;
923 goto exit;
924
925 case Bdiscard:
926 DISCARD (1);
927 break;
928
929 case Bconstant2:
930 PUSH (vectorp[FETCH2]);
931 break;
932
933 case Bsave_excursion:
934 record_unwind_protect (save_excursion_restore,
935 save_excursion_save ());
936 break;
937
938 case Bsave_current_buffer: /* Obsolete since ??. */
939 case Bsave_current_buffer_1:
940 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
941 break;
942
943 case Bsave_window_excursion: /* Obsolete since 24.1. */
944 {
945 register ptrdiff_t count1 = SPECPDL_INDEX ();
946 record_unwind_protect (Fset_window_configuration,
947 Fcurrent_window_configuration (Qnil));
948 BEFORE_POTENTIAL_GC ();
949 TOP = Fprogn (TOP);
950 unbind_to (count1, TOP);
951 AFTER_POTENTIAL_GC ();
952 break;
953 }
954
955 case Bsave_restriction:
956 record_unwind_protect (save_restriction_restore,
957 save_restriction_save ());
958 break;
959
960 case Bcatch: /* FIXME: ill-suited for lexbind. */
961 {
962 Lisp_Object v1;
963 BEFORE_POTENTIAL_GC ();
964 v1 = POP;
965 TOP = internal_catch (TOP, eval_sub, v1);
966 AFTER_POTENTIAL_GC ();
967 break;
968 }
969
970 case Bunwind_protect: /* FIXME: avoid closure for lexbind. */
971 record_unwind_protect (Fprogn, POP);
972 break;
973
974 case Bcondition_case: /* FIXME: ill-suited for lexbind. */
975 {
976 Lisp_Object handlers, body;
977 handlers = POP;
978 body = POP;
979 BEFORE_POTENTIAL_GC ();
980 TOP = internal_lisp_condition_case (TOP, body, handlers);
981 AFTER_POTENTIAL_GC ();
982 break;
983 }
984
985 case Btemp_output_buffer_setup: /* Obsolete since 24.1. */
986 BEFORE_POTENTIAL_GC ();
987 CHECK_STRING (TOP);
988 temp_output_buffer_setup (SSDATA (TOP));
989 AFTER_POTENTIAL_GC ();
990 TOP = Vstandard_output;
991 break;
992
993 case Btemp_output_buffer_show: /* Obsolete since 24.1. */
994 {
995 Lisp_Object v1;
996 BEFORE_POTENTIAL_GC ();
997 v1 = POP;
998 temp_output_buffer_show (TOP);
999 TOP = v1;
1000 /* pop binding of standard-output */
1001 unbind_to (SPECPDL_INDEX () - 1, Qnil);
1002 AFTER_POTENTIAL_GC ();
1003 break;
1004 }
1005
1006 case Bnth:
1007 {
1008 Lisp_Object v1, v2;
1009 EMACS_INT n;
1010 BEFORE_POTENTIAL_GC ();
1011 v1 = POP;
1012 v2 = TOP;
1013 CHECK_NUMBER (v2);
1014 n = XINT (v2);
1015 immediate_quit = 1;
1016 while (--n >= 0 && CONSP (v1))
1017 v1 = XCDR (v1);
1018 immediate_quit = 0;
1019 TOP = CAR (v1);
1020 AFTER_POTENTIAL_GC ();
1021 break;
1022 }
1023
1024 case Bsymbolp:
1025 TOP = SYMBOLP (TOP) ? Qt : Qnil;
1026 break;
1027
1028 case Bconsp:
1029 TOP = CONSP (TOP) ? Qt : Qnil;
1030 break;
1031
1032 case Bstringp:
1033 TOP = STRINGP (TOP) ? Qt : Qnil;
1034 break;
1035
1036 case Blistp:
1037 TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
1038 break;
1039
1040 case Bnot:
1041 TOP = NILP (TOP) ? Qt : Qnil;
1042 break;
1043
1044 case Bcons:
1045 {
1046 Lisp_Object v1;
1047 v1 = POP;
1048 TOP = Fcons (TOP, v1);
1049 break;
1050 }
1051
1052 case Blist1:
1053 TOP = Fcons (TOP, Qnil);
1054 break;
1055
1056 case Blist2:
1057 {
1058 Lisp_Object v1;
1059 v1 = POP;
1060 TOP = Fcons (TOP, Fcons (v1, Qnil));
1061 break;
1062 }
1063
1064 case Blist3:
1065 DISCARD (2);
1066 TOP = Flist (3, &TOP);
1067 break;
1068
1069 case Blist4:
1070 DISCARD (3);
1071 TOP = Flist (4, &TOP);
1072 break;
1073
1074 case BlistN:
1075 op = FETCH;
1076 DISCARD (op - 1);
1077 TOP = Flist (op, &TOP);
1078 break;
1079
1080 case Blength:
1081 BEFORE_POTENTIAL_GC ();
1082 TOP = Flength (TOP);
1083 AFTER_POTENTIAL_GC ();
1084 break;
1085
1086 case Baref:
1087 {
1088 Lisp_Object v1;
1089 BEFORE_POTENTIAL_GC ();
1090 v1 = POP;
1091 TOP = Faref (TOP, v1);
1092 AFTER_POTENTIAL_GC ();
1093 break;
1094 }
1095
1096 case Baset:
1097 {
1098 Lisp_Object v1, v2;
1099 BEFORE_POTENTIAL_GC ();
1100 v2 = POP; v1 = POP;
1101 TOP = Faset (TOP, v1, v2);
1102 AFTER_POTENTIAL_GC ();
1103 break;
1104 }
1105
1106 case Bsymbol_value:
1107 BEFORE_POTENTIAL_GC ();
1108 TOP = Fsymbol_value (TOP);
1109 AFTER_POTENTIAL_GC ();
1110 break;
1111
1112 case Bsymbol_function:
1113 BEFORE_POTENTIAL_GC ();
1114 TOP = Fsymbol_function (TOP);
1115 AFTER_POTENTIAL_GC ();
1116 break;
1117
1118 case Bset:
1119 {
1120 Lisp_Object v1;
1121 BEFORE_POTENTIAL_GC ();
1122 v1 = POP;
1123 TOP = Fset (TOP, v1);
1124 AFTER_POTENTIAL_GC ();
1125 break;
1126 }
1127
1128 case Bfset:
1129 {
1130 Lisp_Object v1;
1131 BEFORE_POTENTIAL_GC ();
1132 v1 = POP;
1133 TOP = Ffset (TOP, v1);
1134 AFTER_POTENTIAL_GC ();
1135 break;
1136 }
1137
1138 case Bget:
1139 {
1140 Lisp_Object v1;
1141 BEFORE_POTENTIAL_GC ();
1142 v1 = POP;
1143 TOP = Fget (TOP, v1);
1144 AFTER_POTENTIAL_GC ();
1145 break;
1146 }
1147
1148 case Bsubstring:
1149 {
1150 Lisp_Object v1, v2;
1151 BEFORE_POTENTIAL_GC ();
1152 v2 = POP; v1 = POP;
1153 TOP = Fsubstring (TOP, v1, v2);
1154 AFTER_POTENTIAL_GC ();
1155 break;
1156 }
1157
1158 case Bconcat2:
1159 BEFORE_POTENTIAL_GC ();
1160 DISCARD (1);
1161 TOP = Fconcat (2, &TOP);
1162 AFTER_POTENTIAL_GC ();
1163 break;
1164
1165 case Bconcat3:
1166 BEFORE_POTENTIAL_GC ();
1167 DISCARD (2);
1168 TOP = Fconcat (3, &TOP);
1169 AFTER_POTENTIAL_GC ();
1170 break;
1171
1172 case Bconcat4:
1173 BEFORE_POTENTIAL_GC ();
1174 DISCARD (3);
1175 TOP = Fconcat (4, &TOP);
1176 AFTER_POTENTIAL_GC ();
1177 break;
1178
1179 case BconcatN:
1180 op = FETCH;
1181 BEFORE_POTENTIAL_GC ();
1182 DISCARD (op - 1);
1183 TOP = Fconcat (op, &TOP);
1184 AFTER_POTENTIAL_GC ();
1185 break;
1186
1187 case Bsub1:
1188 {
1189 Lisp_Object v1;
1190 v1 = TOP;
1191 if (INTEGERP (v1))
1192 {
1193 XSETINT (v1, XINT (v1) - 1);
1194 TOP = v1;
1195 }
1196 else
1197 {
1198 BEFORE_POTENTIAL_GC ();
1199 TOP = Fsub1 (v1);
1200 AFTER_POTENTIAL_GC ();
1201 }
1202 break;
1203 }
1204
1205 case Badd1:
1206 {
1207 Lisp_Object v1;
1208 v1 = TOP;
1209 if (INTEGERP (v1))
1210 {
1211 XSETINT (v1, XINT (v1) + 1);
1212 TOP = v1;
1213 }
1214 else
1215 {
1216 BEFORE_POTENTIAL_GC ();
1217 TOP = Fadd1 (v1);
1218 AFTER_POTENTIAL_GC ();
1219 }
1220 break;
1221 }
1222
1223 case Beqlsign:
1224 {
1225 Lisp_Object v1, v2;
1226 BEFORE_POTENTIAL_GC ();
1227 v2 = POP; v1 = TOP;
1228 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
1229 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
1230 AFTER_POTENTIAL_GC ();
1231 if (FLOATP (v1) || FLOATP (v2))
1232 {
1233 double f1, f2;
1234
1235 f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1));
1236 f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2));
1237 TOP = (f1 == f2 ? Qt : Qnil);
1238 }
1239 else
1240 TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil);
1241 break;
1242 }
1243
1244 case Bgtr:
1245 {
1246 Lisp_Object v1;
1247 BEFORE_POTENTIAL_GC ();
1248 v1 = POP;
1249 TOP = Fgtr (TOP, v1);
1250 AFTER_POTENTIAL_GC ();
1251 break;
1252 }
1253
1254 case Blss:
1255 {
1256 Lisp_Object v1;
1257 BEFORE_POTENTIAL_GC ();
1258 v1 = POP;
1259 TOP = Flss (TOP, v1);
1260 AFTER_POTENTIAL_GC ();
1261 break;
1262 }
1263
1264 case Bleq:
1265 {
1266 Lisp_Object v1;
1267 BEFORE_POTENTIAL_GC ();
1268 v1 = POP;
1269 TOP = Fleq (TOP, v1);
1270 AFTER_POTENTIAL_GC ();
1271 break;
1272 }
1273
1274 case Bgeq:
1275 {
1276 Lisp_Object v1;
1277 BEFORE_POTENTIAL_GC ();
1278 v1 = POP;
1279 TOP = Fgeq (TOP, v1);
1280 AFTER_POTENTIAL_GC ();
1281 break;
1282 }
1283
1284 case Bdiff:
1285 BEFORE_POTENTIAL_GC ();
1286 DISCARD (1);
1287 TOP = Fminus (2, &TOP);
1288 AFTER_POTENTIAL_GC ();
1289 break;
1290
1291 case Bnegate:
1292 {
1293 Lisp_Object v1;
1294 v1 = TOP;
1295 if (INTEGERP (v1))
1296 {
1297 XSETINT (v1, - XINT (v1));
1298 TOP = v1;
1299 }
1300 else
1301 {
1302 BEFORE_POTENTIAL_GC ();
1303 TOP = Fminus (1, &TOP);
1304 AFTER_POTENTIAL_GC ();
1305 }
1306 break;
1307 }
1308
1309 case Bplus:
1310 BEFORE_POTENTIAL_GC ();
1311 DISCARD (1);
1312 TOP = Fplus (2, &TOP);
1313 AFTER_POTENTIAL_GC ();
1314 break;
1315
1316 case Bmax:
1317 BEFORE_POTENTIAL_GC ();
1318 DISCARD (1);
1319 TOP = Fmax (2, &TOP);
1320 AFTER_POTENTIAL_GC ();
1321 break;
1322
1323 case Bmin:
1324 BEFORE_POTENTIAL_GC ();
1325 DISCARD (1);
1326 TOP = Fmin (2, &TOP);
1327 AFTER_POTENTIAL_GC ();
1328 break;
1329
1330 case Bmult:
1331 BEFORE_POTENTIAL_GC ();
1332 DISCARD (1);
1333 TOP = Ftimes (2, &TOP);
1334 AFTER_POTENTIAL_GC ();
1335 break;
1336
1337 case Bquo:
1338 BEFORE_POTENTIAL_GC ();
1339 DISCARD (1);
1340 TOP = Fquo (2, &TOP);
1341 AFTER_POTENTIAL_GC ();
1342 break;
1343
1344 case Brem:
1345 {
1346 Lisp_Object v1;
1347 BEFORE_POTENTIAL_GC ();
1348 v1 = POP;
1349 TOP = Frem (TOP, v1);
1350 AFTER_POTENTIAL_GC ();
1351 break;
1352 }
1353
1354 case Bpoint:
1355 {
1356 Lisp_Object v1;
1357 XSETFASTINT (v1, PT);
1358 PUSH (v1);
1359 break;
1360 }
1361
1362 case Bgoto_char:
1363 BEFORE_POTENTIAL_GC ();
1364 TOP = Fgoto_char (TOP);
1365 AFTER_POTENTIAL_GC ();
1366 break;
1367
1368 case Binsert:
1369 BEFORE_POTENTIAL_GC ();
1370 TOP = Finsert (1, &TOP);
1371 AFTER_POTENTIAL_GC ();
1372 break;
1373
1374 case BinsertN:
1375 op = FETCH;
1376 BEFORE_POTENTIAL_GC ();
1377 DISCARD (op - 1);
1378 TOP = Finsert (op, &TOP);
1379 AFTER_POTENTIAL_GC ();
1380 break;
1381
1382 case Bpoint_max:
1383 {
1384 Lisp_Object v1;
1385 XSETFASTINT (v1, ZV);
1386 PUSH (v1);
1387 break;
1388 }
1389
1390 case Bpoint_min:
1391 {
1392 Lisp_Object v1;
1393 XSETFASTINT (v1, BEGV);
1394 PUSH (v1);
1395 break;
1396 }
1397
1398 case Bchar_after:
1399 BEFORE_POTENTIAL_GC ();
1400 TOP = Fchar_after (TOP);
1401 AFTER_POTENTIAL_GC ();
1402 break;
1403
1404 case Bfollowing_char:
1405 {
1406 Lisp_Object v1;
1407 BEFORE_POTENTIAL_GC ();
1408 v1 = Ffollowing_char ();
1409 AFTER_POTENTIAL_GC ();
1410 PUSH (v1);
1411 break;
1412 }
1413
1414 case Bpreceding_char:
1415 {
1416 Lisp_Object v1;
1417 BEFORE_POTENTIAL_GC ();
1418 v1 = Fprevious_char ();
1419 AFTER_POTENTIAL_GC ();
1420 PUSH (v1);
1421 break;
1422 }
1423
1424 case Bcurrent_column:
1425 {
1426 Lisp_Object v1;
1427 BEFORE_POTENTIAL_GC ();
1428 XSETFASTINT (v1, current_column ());
1429 AFTER_POTENTIAL_GC ();
1430 PUSH (v1);
1431 break;
1432 }
1433
1434 case Bindent_to:
1435 BEFORE_POTENTIAL_GC ();
1436 TOP = Findent_to (TOP, Qnil);
1437 AFTER_POTENTIAL_GC ();
1438 break;
1439
1440 case Beolp:
1441 PUSH (Feolp ());
1442 break;
1443
1444 case Beobp:
1445 PUSH (Feobp ());
1446 break;
1447
1448 case Bbolp:
1449 PUSH (Fbolp ());
1450 break;
1451
1452 case Bbobp:
1453 PUSH (Fbobp ());
1454 break;
1455
1456 case Bcurrent_buffer:
1457 PUSH (Fcurrent_buffer ());
1458 break;
1459
1460 case Bset_buffer:
1461 BEFORE_POTENTIAL_GC ();
1462 TOP = Fset_buffer (TOP);
1463 AFTER_POTENTIAL_GC ();
1464 break;
1465
1466 case Binteractive_p: /* Obsolete since 24.1. */
1467 PUSH (Finteractive_p ());
1468 break;
1469
1470 case Bforward_char:
1471 BEFORE_POTENTIAL_GC ();
1472 TOP = Fforward_char (TOP);
1473 AFTER_POTENTIAL_GC ();
1474 break;
1475
1476 case Bforward_word:
1477 BEFORE_POTENTIAL_GC ();
1478 TOP = Fforward_word (TOP);
1479 AFTER_POTENTIAL_GC ();
1480 break;
1481
1482 case Bskip_chars_forward:
1483 {
1484 Lisp_Object v1;
1485 BEFORE_POTENTIAL_GC ();
1486 v1 = POP;
1487 TOP = Fskip_chars_forward (TOP, v1);
1488 AFTER_POTENTIAL_GC ();
1489 break;
1490 }
1491
1492 case Bskip_chars_backward:
1493 {
1494 Lisp_Object v1;
1495 BEFORE_POTENTIAL_GC ();
1496 v1 = POP;
1497 TOP = Fskip_chars_backward (TOP, v1);
1498 AFTER_POTENTIAL_GC ();
1499 break;
1500 }
1501
1502 case Bforward_line:
1503 BEFORE_POTENTIAL_GC ();
1504 TOP = Fforward_line (TOP);
1505 AFTER_POTENTIAL_GC ();
1506 break;
1507
1508 case Bchar_syntax:
1509 {
1510 int c;
1511
1512 BEFORE_POTENTIAL_GC ();
1513 CHECK_CHARACTER (TOP);
1514 AFTER_POTENTIAL_GC ();
1515 c = XFASTINT (TOP);
1516 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
1517 MAKE_CHAR_MULTIBYTE (c);
1518 XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (c)]);
1519 }
1520 break;
1521
1522 case Bbuffer_substring:
1523 {
1524 Lisp_Object v1;
1525 BEFORE_POTENTIAL_GC ();
1526 v1 = POP;
1527 TOP = Fbuffer_substring (TOP, v1);
1528 AFTER_POTENTIAL_GC ();
1529 break;
1530 }
1531
1532 case Bdelete_region:
1533 {
1534 Lisp_Object v1;
1535 BEFORE_POTENTIAL_GC ();
1536 v1 = POP;
1537 TOP = Fdelete_region (TOP, v1);
1538 AFTER_POTENTIAL_GC ();
1539 break;
1540 }
1541
1542 case Bnarrow_to_region:
1543 {
1544 Lisp_Object v1;
1545 BEFORE_POTENTIAL_GC ();
1546 v1 = POP;
1547 TOP = Fnarrow_to_region (TOP, v1);
1548 AFTER_POTENTIAL_GC ();
1549 break;
1550 }
1551
1552 case Bwiden:
1553 BEFORE_POTENTIAL_GC ();
1554 PUSH (Fwiden ());
1555 AFTER_POTENTIAL_GC ();
1556 break;
1557
1558 case Bend_of_line:
1559 BEFORE_POTENTIAL_GC ();
1560 TOP = Fend_of_line (TOP);
1561 AFTER_POTENTIAL_GC ();
1562 break;
1563
1564 case Bset_marker:
1565 {
1566 Lisp_Object v1, v2;
1567 BEFORE_POTENTIAL_GC ();
1568 v1 = POP;
1569 v2 = POP;
1570 TOP = Fset_marker (TOP, v2, v1);
1571 AFTER_POTENTIAL_GC ();
1572 break;
1573 }
1574
1575 case Bmatch_beginning:
1576 BEFORE_POTENTIAL_GC ();
1577 TOP = Fmatch_beginning (TOP);
1578 AFTER_POTENTIAL_GC ();
1579 break;
1580
1581 case Bmatch_end:
1582 BEFORE_POTENTIAL_GC ();
1583 TOP = Fmatch_end (TOP);
1584 AFTER_POTENTIAL_GC ();
1585 break;
1586
1587 case Bupcase:
1588 BEFORE_POTENTIAL_GC ();
1589 TOP = Fupcase (TOP);
1590 AFTER_POTENTIAL_GC ();
1591 break;
1592
1593 case Bdowncase:
1594 BEFORE_POTENTIAL_GC ();
1595 TOP = Fdowncase (TOP);
1596 AFTER_POTENTIAL_GC ();
1597 break;
1598
1599 case Bstringeqlsign:
1600 {
1601 Lisp_Object v1;
1602 BEFORE_POTENTIAL_GC ();
1603 v1 = POP;
1604 TOP = Fstring_equal (TOP, v1);
1605 AFTER_POTENTIAL_GC ();
1606 break;
1607 }
1608
1609 case Bstringlss:
1610 {
1611 Lisp_Object v1;
1612 BEFORE_POTENTIAL_GC ();
1613 v1 = POP;
1614 TOP = Fstring_lessp (TOP, v1);
1615 AFTER_POTENTIAL_GC ();
1616 break;
1617 }
1618
1619 case Bequal:
1620 {
1621 Lisp_Object v1;
1622 v1 = POP;
1623 TOP = Fequal (TOP, v1);
1624 break;
1625 }
1626
1627 case Bnthcdr:
1628 {
1629 Lisp_Object v1;
1630 BEFORE_POTENTIAL_GC ();
1631 v1 = POP;
1632 TOP = Fnthcdr (TOP, v1);
1633 AFTER_POTENTIAL_GC ();
1634 break;
1635 }
1636
1637 case Belt:
1638 {
1639 Lisp_Object v1, v2;
1640 if (CONSP (TOP))
1641 {
1642 /* Exchange args and then do nth. */
1643 EMACS_INT n;
1644 BEFORE_POTENTIAL_GC ();
1645 v2 = POP;
1646 v1 = TOP;
1647 CHECK_NUMBER (v2);
1648 AFTER_POTENTIAL_GC ();
1649 n = XINT (v2);
1650 immediate_quit = 1;
1651 while (--n >= 0 && CONSP (v1))
1652 v1 = XCDR (v1);
1653 immediate_quit = 0;
1654 TOP = CAR (v1);
1655 }
1656 else
1657 {
1658 BEFORE_POTENTIAL_GC ();
1659 v1 = POP;
1660 TOP = Felt (TOP, v1);
1661 AFTER_POTENTIAL_GC ();
1662 }
1663 break;
1664 }
1665
1666 case Bmember:
1667 {
1668 Lisp_Object v1;
1669 BEFORE_POTENTIAL_GC ();
1670 v1 = POP;
1671 TOP = Fmember (TOP, v1);
1672 AFTER_POTENTIAL_GC ();
1673 break;
1674 }
1675
1676 case Bassq:
1677 {
1678 Lisp_Object v1;
1679 BEFORE_POTENTIAL_GC ();
1680 v1 = POP;
1681 TOP = Fassq (TOP, v1);
1682 AFTER_POTENTIAL_GC ();
1683 break;
1684 }
1685
1686 case Bnreverse:
1687 BEFORE_POTENTIAL_GC ();
1688 TOP = Fnreverse (TOP);
1689 AFTER_POTENTIAL_GC ();
1690 break;
1691
1692 case Bsetcar:
1693 {
1694 Lisp_Object v1;
1695 BEFORE_POTENTIAL_GC ();
1696 v1 = POP;
1697 TOP = Fsetcar (TOP, v1);
1698 AFTER_POTENTIAL_GC ();
1699 break;
1700 }
1701
1702 case Bsetcdr:
1703 {
1704 Lisp_Object v1;
1705 BEFORE_POTENTIAL_GC ();
1706 v1 = POP;
1707 TOP = Fsetcdr (TOP, v1);
1708 AFTER_POTENTIAL_GC ();
1709 break;
1710 }
1711
1712 case Bcar_safe:
1713 {
1714 Lisp_Object v1;
1715 v1 = TOP;
1716 TOP = CAR_SAFE (v1);
1717 break;
1718 }
1719
1720 case Bcdr_safe:
1721 {
1722 Lisp_Object v1;
1723 v1 = TOP;
1724 TOP = CDR_SAFE (v1);
1725 break;
1726 }
1727
1728 case Bnconc:
1729 BEFORE_POTENTIAL_GC ();
1730 DISCARD (1);
1731 TOP = Fnconc (2, &TOP);
1732 AFTER_POTENTIAL_GC ();
1733 break;
1734
1735 case Bnumberp:
1736 TOP = (NUMBERP (TOP) ? Qt : Qnil);
1737 break;
1738
1739 case Bintegerp:
1740 TOP = INTEGERP (TOP) ? Qt : Qnil;
1741 break;
1742
1743#ifdef BYTE_CODE_SAFE
1744 case Bset_mark:
1745 BEFORE_POTENTIAL_GC ();
1746 error ("set-mark is an obsolete bytecode");
1747 AFTER_POTENTIAL_GC ();
1748 break;
1749 case Bscan_buffer:
1750 BEFORE_POTENTIAL_GC ();
1751 error ("scan-buffer is an obsolete bytecode");
1752 AFTER_POTENTIAL_GC ();
1753 break;
1754#endif
1755
1756 case 0:
1757 /* Actually this is Bstack_ref with offset 0, but we use Bdup
1758 for that instead. */
1759 /* case Bstack_ref: */
1760 abort ();
1761
1762 /* Handy byte-codes for lexical binding. */
1763 case Bstack_ref+1:
1764 case Bstack_ref+2:
1765 case Bstack_ref+3:
1766 case Bstack_ref+4:
1767 case Bstack_ref+5:
1768 {
1769 Lisp_Object *ptr = top - (op - Bstack_ref);
1770 PUSH (*ptr);
1771 break;
1772 }
1773 case Bstack_ref+6:
1774 {
1775 Lisp_Object *ptr = top - (FETCH);
1776 PUSH (*ptr);
1777 break;
1778 }
1779 case Bstack_ref+7:
1780 {
1781 Lisp_Object *ptr = top - (FETCH2);
1782 PUSH (*ptr);
1783 break;
1784 }
1785 case Bstack_set:
1786 /* stack-set-0 = discard; stack-set-1 = discard-1-preserve-tos. */
1787 {
1788 Lisp_Object *ptr = top - (FETCH);
1789 *ptr = POP;
1790 break;
1791 }
1792 case Bstack_set2:
1793 {
1794 Lisp_Object *ptr = top - (FETCH2);
1795 *ptr = POP;
1796 break;
1797 }
1798 case BdiscardN:
1799 op = FETCH;
1800 if (op & 0x80)
1801 {
1802 op &= 0x7F;
1803 top[-op] = TOP;
1804 }
1805 DISCARD (op);
1806 break;
1807
1808 case 255:
1809 default:
1810#ifdef BYTE_CODE_SAFE
1811 if (op < Bconstant)
1812 {
1813 abort ();
1814 }
1815 if ((op -= Bconstant) >= const_length)
1816 {
1817 abort ();
1818 }
1819 PUSH (vectorp[op]);
1820#else
1821 PUSH (vectorp[op - Bconstant]);
1822#endif
1823 }
1824 }
1825
1826 exit:
1827
1828 byte_stack_list = byte_stack_list->next;
1829
1830 /* Binds and unbinds are supposed to be compiled balanced. */
1831 if (SPECPDL_INDEX () != count)
1832#ifdef BYTE_CODE_SAFE
1833 error ("binding stack not balanced (serious byte compiler bug)");
1834#else
1835 abort ();
1836#endif
1837
1838 return result;
1839}
1840
1841void
1842syms_of_bytecode (void)
1843{
1844 DEFSYM (Qbytecode, "byte-code");
1845
1846 defsubr (&Sbyte_code);
1847
1848#ifdef BYTE_CODE_METER
1849
1850 DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter,
1851 doc: /* A vector of vectors which holds a histogram of byte-code usage.
1852\(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
1853opcode CODE has been executed.
1854\(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
1855indicates how many times the byte opcodes CODE1 and CODE2 have been
1856executed in succession. */);
1857
1858 DEFVAR_BOOL ("byte-metering-on", byte_metering_on,
1859 doc: /* If non-nil, keep profiling information on byte code usage.
1860The variable byte-code-meter indicates how often each byte opcode is used.
1861If a symbol has a property named `byte-code-meter' whose value is an
1862integer, it is incremented each time that symbol's function is called. */);
1863
1864 byte_metering_on = 0;
1865 Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
1866 DEFSYM (Qbyte_code_meter, "byte-code-meter");
1867 {
1868 int i = 256;
1869 while (i--)
1870 XVECTOR (Vbyte_code_meter)->contents[i] =
1871 Fmake_vector (make_number (256), make_number (0));
1872 }
1873#endif
1874}