* coding.c (Fdefine_coding_system_internal): Use AREF where
[bpt/emacs.git] / src / fns.c
... / ...
CommitLineData
1/* Random utility Lisp functions.
2
3Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software: you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20#include <config.h>
21
22#include <unistd.h>
23#include <time.h>
24
25#include <intprops.h>
26
27#include "lisp.h"
28#include "commands.h"
29#include "character.h"
30#include "coding.h"
31#include "buffer.h"
32#include "keyboard.h"
33#include "keymap.h"
34#include "intervals.h"
35#include "frame.h"
36#include "window.h"
37#include "blockinput.h"
38#ifdef HAVE_MENUS
39#if defined (HAVE_X_WINDOWS)
40#include "xterm.h"
41#endif
42#endif /* HAVE_MENUS */
43
44Lisp_Object Qstring_lessp;
45static Lisp_Object Qprovide, Qrequire;
46static Lisp_Object Qyes_or_no_p_history;
47Lisp_Object Qcursor_in_echo_area;
48static Lisp_Object Qwidget_type;
49static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
50
51static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
52
53static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
54\f
55DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
58{
59 return arg;
60}
61
62DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64All integers representable in Lisp, i.e. between `most-negative-fixnum'
65and `most-positive-fixnum', inclusive, are equally likely.
66
67With positive integer LIMIT, return random number in interval [0,LIMIT).
68With argument t, set the random number seed from the current time and pid.
69With a string argument, set the seed based on the string's contents.
70Other values of LIMIT are ignored.
71
72See Info node `(elisp)Random Numbers' for more details. */)
73 (Lisp_Object limit)
74{
75 EMACS_INT val;
76
77 if (EQ (limit, Qt))
78 init_random ();
79 else if (STRINGP (limit))
80 seed_random (SSDATA (limit), SBYTES (limit));
81
82 val = get_random ();
83 if (NATNUMP (limit) && XFASTINT (limit) != 0)
84 val %= XFASTINT (limit);
85 return make_number (val);
86}
87\f
88/* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
91
92/* Random data-structure functions. */
93
94DEFUN ("length", Flength, Slength, 1, 1, 0,
95 doc: /* Return the length of vector, list or string SEQUENCE.
96A byte-code function object is also allowed.
97If the string contains multibyte characters, this is not necessarily
98the number of bytes in the string; it is the number of characters.
99To get the number of bytes, use `string-bytes'. */)
100 (register Lisp_Object sequence)
101{
102 register Lisp_Object val;
103
104 if (STRINGP (sequence))
105 XSETFASTINT (val, SCHARS (sequence));
106 else if (VECTORP (sequence))
107 XSETFASTINT (val, ASIZE (sequence));
108 else if (CHAR_TABLE_P (sequence))
109 XSETFASTINT (val, MAX_CHAR);
110 else if (BOOL_VECTOR_P (sequence))
111 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
112 else if (COMPILEDP (sequence))
113 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
114 else if (CONSP (sequence))
115 {
116 EMACS_INT i = 0;
117
118 do
119 {
120 ++i;
121 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
122 {
123 if (MOST_POSITIVE_FIXNUM < i)
124 error ("List too long");
125 QUIT;
126 }
127 sequence = XCDR (sequence);
128 }
129 while (CONSP (sequence));
130
131 CHECK_LIST_END (sequence, sequence);
132
133 val = make_number (i);
134 }
135 else if (NILP (sequence))
136 XSETFASTINT (val, 0);
137 else
138 wrong_type_argument (Qsequencep, sequence);
139
140 return val;
141}
142
143/* This does not check for quits. That is safe since it must terminate. */
144
145DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
146 doc: /* Return the length of a list, but avoid error or infinite loop.
147This function never gets an error. If LIST is not really a list,
148it returns 0. If LIST is circular, it returns a finite value
149which is at least the number of distinct elements. */)
150 (Lisp_Object list)
151{
152 Lisp_Object tail, halftail;
153 double hilen = 0;
154 uintmax_t lolen = 1;
155
156 if (! CONSP (list))
157 return make_number (0);
158
159 /* halftail is used to detect circular lists. */
160 for (tail = halftail = list; ; )
161 {
162 tail = XCDR (tail);
163 if (! CONSP (tail))
164 break;
165 if (EQ (tail, halftail))
166 break;
167 lolen++;
168 if ((lolen & 1) == 0)
169 {
170 halftail = XCDR (halftail);
171 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
172 {
173 QUIT;
174 if (lolen == 0)
175 hilen += UINTMAX_MAX + 1.0;
176 }
177 }
178 }
179
180 /* If the length does not fit into a fixnum, return a float.
181 On all known practical machines this returns an upper bound on
182 the true length. */
183 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
184}
185
186DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
187 doc: /* Return the number of bytes in STRING.
188If STRING is multibyte, this may be greater than the length of STRING. */)
189 (Lisp_Object string)
190{
191 CHECK_STRING (string);
192 return make_number (SBYTES (string));
193}
194
195DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
196 doc: /* Return t if two strings have identical contents.
197Case is significant, but text properties are ignored.
198Symbols are also allowed; their print names are used instead. */)
199 (register Lisp_Object s1, Lisp_Object s2)
200{
201 if (SYMBOLP (s1))
202 s1 = SYMBOL_NAME (s1);
203 if (SYMBOLP (s2))
204 s2 = SYMBOL_NAME (s2);
205 CHECK_STRING (s1);
206 CHECK_STRING (s2);
207
208 if (SCHARS (s1) != SCHARS (s2)
209 || SBYTES (s1) != SBYTES (s2)
210 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
211 return Qnil;
212 return Qt;
213}
214
215DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
216 doc: /* Compare the contents of two strings, converting to multibyte if needed.
217The arguments START1, END1, START2, and END2, if non-nil, are
218positions specifying which parts of STR1 or STR2 to compare. In
219string STR1, compare the part between START1 (inclusive) and END1
220\(exclusive). If START1 is nil, it defaults to 0, the beginning of
221the string; if END1 is nil, it defaults to the length of the string.
222Likewise, in string STR2, compare the part between START2 and END2.
223
224The strings are compared by the numeric values of their characters.
225For instance, STR1 is "less than" STR2 if its first differing
226character has a smaller numeric value. If IGNORE-CASE is non-nil,
227characters are converted to lower-case before comparing them. Unibyte
228strings are converted to multibyte for comparison.
229
230The value is t if the strings (or specified portions) match.
231If string STR1 is less, the value is a negative number N;
232 - 1 - N is the number of characters that match at the beginning.
233If string STR1 is greater, the value is a positive number N;
234 N - 1 is the number of characters that match at the beginning. */)
235 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
236{
237 register ptrdiff_t end1_char, end2_char;
238 register ptrdiff_t i1, i1_byte, i2, i2_byte;
239
240 CHECK_STRING (str1);
241 CHECK_STRING (str2);
242 if (NILP (start1))
243 start1 = make_number (0);
244 if (NILP (start2))
245 start2 = make_number (0);
246 CHECK_NATNUM (start1);
247 CHECK_NATNUM (start2);
248 if (! NILP (end1))
249 CHECK_NATNUM (end1);
250 if (! NILP (end2))
251 CHECK_NATNUM (end2);
252
253 end1_char = SCHARS (str1);
254 if (! NILP (end1) && end1_char > XINT (end1))
255 end1_char = XINT (end1);
256 if (end1_char < XINT (start1))
257 args_out_of_range (str1, start1);
258
259 end2_char = SCHARS (str2);
260 if (! NILP (end2) && end2_char > XINT (end2))
261 end2_char = XINT (end2);
262 if (end2_char < XINT (start2))
263 args_out_of_range (str2, start2);
264
265 i1 = XINT (start1);
266 i2 = XINT (start2);
267
268 i1_byte = string_char_to_byte (str1, i1);
269 i2_byte = string_char_to_byte (str2, i2);
270
271 while (i1 < end1_char && i2 < end2_char)
272 {
273 /* When we find a mismatch, we must compare the
274 characters, not just the bytes. */
275 int c1, c2;
276
277 if (STRING_MULTIBYTE (str1))
278 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
279 else
280 {
281 c1 = SREF (str1, i1++);
282 MAKE_CHAR_MULTIBYTE (c1);
283 }
284
285 if (STRING_MULTIBYTE (str2))
286 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
287 else
288 {
289 c2 = SREF (str2, i2++);
290 MAKE_CHAR_MULTIBYTE (c2);
291 }
292
293 if (c1 == c2)
294 continue;
295
296 if (! NILP (ignore_case))
297 {
298 Lisp_Object tem;
299
300 tem = Fupcase (make_number (c1));
301 c1 = XINT (tem);
302 tem = Fupcase (make_number (c2));
303 c2 = XINT (tem);
304 }
305
306 if (c1 == c2)
307 continue;
308
309 /* Note that I1 has already been incremented
310 past the character that we are comparing;
311 hence we don't add or subtract 1 here. */
312 if (c1 < c2)
313 return make_number (- i1 + XINT (start1));
314 else
315 return make_number (i1 - XINT (start1));
316 }
317
318 if (i1 < end1_char)
319 return make_number (i1 - XINT (start1) + 1);
320 if (i2 < end2_char)
321 return make_number (- i1 + XINT (start1) - 1);
322
323 return Qt;
324}
325
326DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
327 doc: /* Return t if first arg string is less than second in lexicographic order.
328Case is significant.
329Symbols are also allowed; their print names are used instead. */)
330 (register Lisp_Object s1, Lisp_Object s2)
331{
332 register ptrdiff_t end;
333 register ptrdiff_t i1, i1_byte, i2, i2_byte;
334
335 if (SYMBOLP (s1))
336 s1 = SYMBOL_NAME (s1);
337 if (SYMBOLP (s2))
338 s2 = SYMBOL_NAME (s2);
339 CHECK_STRING (s1);
340 CHECK_STRING (s2);
341
342 i1 = i1_byte = i2 = i2_byte = 0;
343
344 end = SCHARS (s1);
345 if (end > SCHARS (s2))
346 end = SCHARS (s2);
347
348 while (i1 < end)
349 {
350 /* When we find a mismatch, we must compare the
351 characters, not just the bytes. */
352 int c1, c2;
353
354 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
355 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
356
357 if (c1 != c2)
358 return c1 < c2 ? Qt : Qnil;
359 }
360 return i1 < SCHARS (s2) ? Qt : Qnil;
361}
362\f
363static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
364 enum Lisp_Type target_type, bool last_special);
365
366/* ARGSUSED */
367Lisp_Object
368concat2 (Lisp_Object s1, Lisp_Object s2)
369{
370 Lisp_Object args[2];
371 args[0] = s1;
372 args[1] = s2;
373 return concat (2, args, Lisp_String, 0);
374}
375
376/* ARGSUSED */
377Lisp_Object
378concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
379{
380 Lisp_Object args[3];
381 args[0] = s1;
382 args[1] = s2;
383 args[2] = s3;
384 return concat (3, args, Lisp_String, 0);
385}
386
387DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
388 doc: /* Concatenate all the arguments and make the result a list.
389The result is a list whose elements are the elements of all the arguments.
390Each argument may be a list, vector or string.
391The last argument is not copied, just used as the tail of the new list.
392usage: (append &rest SEQUENCES) */)
393 (ptrdiff_t nargs, Lisp_Object *args)
394{
395 return concat (nargs, args, Lisp_Cons, 1);
396}
397
398DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
399 doc: /* Concatenate all the arguments and make the result a string.
400The result is a string whose elements are the elements of all the arguments.
401Each argument may be a string or a list or vector of characters (integers).
402usage: (concat &rest SEQUENCES) */)
403 (ptrdiff_t nargs, Lisp_Object *args)
404{
405 return concat (nargs, args, Lisp_String, 0);
406}
407
408DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
409 doc: /* Concatenate all the arguments and make the result a vector.
410The result is a vector whose elements are the elements of all the arguments.
411Each argument may be a list, vector or string.
412usage: (vconcat &rest SEQUENCES) */)
413 (ptrdiff_t nargs, Lisp_Object *args)
414{
415 return concat (nargs, args, Lisp_Vectorlike, 0);
416}
417
418
419DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
420 doc: /* Return a copy of a list, vector, string or char-table.
421The elements of a list or vector are not copied; they are shared
422with the original. */)
423 (Lisp_Object arg)
424{
425 if (NILP (arg)) return arg;
426
427 if (CHAR_TABLE_P (arg))
428 {
429 return copy_char_table (arg);
430 }
431
432 if (BOOL_VECTOR_P (arg))
433 {
434 Lisp_Object val;
435 ptrdiff_t size_in_chars
436 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
437 / BOOL_VECTOR_BITS_PER_CHAR);
438
439 val = Fmake_bool_vector (Flength (arg), Qnil);
440 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
441 size_in_chars);
442 return val;
443 }
444
445 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
446 wrong_type_argument (Qsequencep, arg);
447
448 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
449}
450
451/* This structure holds information of an argument of `concat' that is
452 a string and has text properties to be copied. */
453struct textprop_rec
454{
455 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
456 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
457 ptrdiff_t to; /* refer to VAL (the target string) */
458};
459
460static Lisp_Object
461concat (ptrdiff_t nargs, Lisp_Object *args,
462 enum Lisp_Type target_type, bool last_special)
463{
464 Lisp_Object val;
465 Lisp_Object tail;
466 Lisp_Object this;
467 ptrdiff_t toindex;
468 ptrdiff_t toindex_byte = 0;
469 EMACS_INT result_len;
470 EMACS_INT result_len_byte;
471 ptrdiff_t argnum;
472 Lisp_Object last_tail;
473 Lisp_Object prev;
474 bool some_multibyte;
475 /* When we make a multibyte string, we can't copy text properties
476 while concatenating each string because the length of resulting
477 string can't be decided until we finish the whole concatenation.
478 So, we record strings that have text properties to be copied
479 here, and copy the text properties after the concatenation. */
480 struct textprop_rec *textprops = NULL;
481 /* Number of elements in textprops. */
482 ptrdiff_t num_textprops = 0;
483 USE_SAFE_ALLOCA;
484
485 tail = Qnil;
486
487 /* In append, the last arg isn't treated like the others */
488 if (last_special && nargs > 0)
489 {
490 nargs--;
491 last_tail = args[nargs];
492 }
493 else
494 last_tail = Qnil;
495
496 /* Check each argument. */
497 for (argnum = 0; argnum < nargs; argnum++)
498 {
499 this = args[argnum];
500 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
501 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
502 wrong_type_argument (Qsequencep, this);
503 }
504
505 /* Compute total length in chars of arguments in RESULT_LEN.
506 If desired output is a string, also compute length in bytes
507 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
508 whether the result should be a multibyte string. */
509 result_len_byte = 0;
510 result_len = 0;
511 some_multibyte = 0;
512 for (argnum = 0; argnum < nargs; argnum++)
513 {
514 EMACS_INT len;
515 this = args[argnum];
516 len = XFASTINT (Flength (this));
517 if (target_type == Lisp_String)
518 {
519 /* We must count the number of bytes needed in the string
520 as well as the number of characters. */
521 ptrdiff_t i;
522 Lisp_Object ch;
523 int c;
524 ptrdiff_t this_len_byte;
525
526 if (VECTORP (this) || COMPILEDP (this))
527 for (i = 0; i < len; i++)
528 {
529 ch = AREF (this, i);
530 CHECK_CHARACTER (ch);
531 c = XFASTINT (ch);
532 this_len_byte = CHAR_BYTES (c);
533 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
534 string_overflow ();
535 result_len_byte += this_len_byte;
536 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
537 some_multibyte = 1;
538 }
539 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
540 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
541 else if (CONSP (this))
542 for (; CONSP (this); this = XCDR (this))
543 {
544 ch = XCAR (this);
545 CHECK_CHARACTER (ch);
546 c = XFASTINT (ch);
547 this_len_byte = CHAR_BYTES (c);
548 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
549 string_overflow ();
550 result_len_byte += this_len_byte;
551 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
552 some_multibyte = 1;
553 }
554 else if (STRINGP (this))
555 {
556 if (STRING_MULTIBYTE (this))
557 {
558 some_multibyte = 1;
559 this_len_byte = SBYTES (this);
560 }
561 else
562 this_len_byte = count_size_as_multibyte (SDATA (this),
563 SCHARS (this));
564 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
565 string_overflow ();
566 result_len_byte += this_len_byte;
567 }
568 }
569
570 result_len += len;
571 if (MOST_POSITIVE_FIXNUM < result_len)
572 memory_full (SIZE_MAX);
573 }
574
575 if (! some_multibyte)
576 result_len_byte = result_len;
577
578 /* Create the output object. */
579 if (target_type == Lisp_Cons)
580 val = Fmake_list (make_number (result_len), Qnil);
581 else if (target_type == Lisp_Vectorlike)
582 val = Fmake_vector (make_number (result_len), Qnil);
583 else if (some_multibyte)
584 val = make_uninit_multibyte_string (result_len, result_len_byte);
585 else
586 val = make_uninit_string (result_len);
587
588 /* In `append', if all but last arg are nil, return last arg. */
589 if (target_type == Lisp_Cons && EQ (val, Qnil))
590 return last_tail;
591
592 /* Copy the contents of the args into the result. */
593 if (CONSP (val))
594 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
595 else
596 toindex = 0, toindex_byte = 0;
597
598 prev = Qnil;
599 if (STRINGP (val))
600 SAFE_NALLOCA (textprops, 1, nargs);
601
602 for (argnum = 0; argnum < nargs; argnum++)
603 {
604 Lisp_Object thislen;
605 ptrdiff_t thisleni = 0;
606 register ptrdiff_t thisindex = 0;
607 register ptrdiff_t thisindex_byte = 0;
608
609 this = args[argnum];
610 if (!CONSP (this))
611 thislen = Flength (this), thisleni = XINT (thislen);
612
613 /* Between strings of the same kind, copy fast. */
614 if (STRINGP (this) && STRINGP (val)
615 && STRING_MULTIBYTE (this) == some_multibyte)
616 {
617 ptrdiff_t thislen_byte = SBYTES (this);
618
619 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
620 if (string_intervals (this))
621 {
622 textprops[num_textprops].argnum = argnum;
623 textprops[num_textprops].from = 0;
624 textprops[num_textprops++].to = toindex;
625 }
626 toindex_byte += thislen_byte;
627 toindex += thisleni;
628 }
629 /* Copy a single-byte string to a multibyte string. */
630 else if (STRINGP (this) && STRINGP (val))
631 {
632 if (string_intervals (this))
633 {
634 textprops[num_textprops].argnum = argnum;
635 textprops[num_textprops].from = 0;
636 textprops[num_textprops++].to = toindex;
637 }
638 toindex_byte += copy_text (SDATA (this),
639 SDATA (val) + toindex_byte,
640 SCHARS (this), 0, 1);
641 toindex += thisleni;
642 }
643 else
644 /* Copy element by element. */
645 while (1)
646 {
647 register Lisp_Object elt;
648
649 /* Fetch next element of `this' arg into `elt', or break if
650 `this' is exhausted. */
651 if (NILP (this)) break;
652 if (CONSP (this))
653 elt = XCAR (this), this = XCDR (this);
654 else if (thisindex >= thisleni)
655 break;
656 else if (STRINGP (this))
657 {
658 int c;
659 if (STRING_MULTIBYTE (this))
660 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
661 thisindex,
662 thisindex_byte);
663 else
664 {
665 c = SREF (this, thisindex); thisindex++;
666 if (some_multibyte && !ASCII_CHAR_P (c))
667 c = BYTE8_TO_CHAR (c);
668 }
669 XSETFASTINT (elt, c);
670 }
671 else if (BOOL_VECTOR_P (this))
672 {
673 int byte;
674 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
675 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
676 elt = Qt;
677 else
678 elt = Qnil;
679 thisindex++;
680 }
681 else
682 {
683 elt = AREF (this, thisindex);
684 thisindex++;
685 }
686
687 /* Store this element into the result. */
688 if (toindex < 0)
689 {
690 XSETCAR (tail, elt);
691 prev = tail;
692 tail = XCDR (tail);
693 }
694 else if (VECTORP (val))
695 {
696 ASET (val, toindex, elt);
697 toindex++;
698 }
699 else
700 {
701 int c;
702 CHECK_CHARACTER (elt);
703 c = XFASTINT (elt);
704 if (some_multibyte)
705 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
706 else
707 SSET (val, toindex_byte++, c);
708 toindex++;
709 }
710 }
711 }
712 if (!NILP (prev))
713 XSETCDR (prev, last_tail);
714
715 if (num_textprops > 0)
716 {
717 Lisp_Object props;
718 ptrdiff_t last_to_end = -1;
719
720 for (argnum = 0; argnum < num_textprops; argnum++)
721 {
722 this = args[textprops[argnum].argnum];
723 props = text_property_list (this,
724 make_number (0),
725 make_number (SCHARS (this)),
726 Qnil);
727 /* If successive arguments have properties, be sure that the
728 value of `composition' property be the copy. */
729 if (last_to_end == textprops[argnum].to)
730 make_composition_value_copy (props);
731 add_text_properties_from_list (val, props,
732 make_number (textprops[argnum].to));
733 last_to_end = textprops[argnum].to + SCHARS (this);
734 }
735 }
736
737 SAFE_FREE ();
738 return val;
739}
740\f
741static Lisp_Object string_char_byte_cache_string;
742static ptrdiff_t string_char_byte_cache_charpos;
743static ptrdiff_t string_char_byte_cache_bytepos;
744
745void
746clear_string_char_byte_cache (void)
747{
748 string_char_byte_cache_string = Qnil;
749}
750
751/* Return the byte index corresponding to CHAR_INDEX in STRING. */
752
753ptrdiff_t
754string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
755{
756 ptrdiff_t i_byte;
757 ptrdiff_t best_below, best_below_byte;
758 ptrdiff_t best_above, best_above_byte;
759
760 best_below = best_below_byte = 0;
761 best_above = SCHARS (string);
762 best_above_byte = SBYTES (string);
763 if (best_above == best_above_byte)
764 return char_index;
765
766 if (EQ (string, string_char_byte_cache_string))
767 {
768 if (string_char_byte_cache_charpos < char_index)
769 {
770 best_below = string_char_byte_cache_charpos;
771 best_below_byte = string_char_byte_cache_bytepos;
772 }
773 else
774 {
775 best_above = string_char_byte_cache_charpos;
776 best_above_byte = string_char_byte_cache_bytepos;
777 }
778 }
779
780 if (char_index - best_below < best_above - char_index)
781 {
782 unsigned char *p = SDATA (string) + best_below_byte;
783
784 while (best_below < char_index)
785 {
786 p += BYTES_BY_CHAR_HEAD (*p);
787 best_below++;
788 }
789 i_byte = p - SDATA (string);
790 }
791 else
792 {
793 unsigned char *p = SDATA (string) + best_above_byte;
794
795 while (best_above > char_index)
796 {
797 p--;
798 while (!CHAR_HEAD_P (*p)) p--;
799 best_above--;
800 }
801 i_byte = p - SDATA (string);
802 }
803
804 string_char_byte_cache_bytepos = i_byte;
805 string_char_byte_cache_charpos = char_index;
806 string_char_byte_cache_string = string;
807
808 return i_byte;
809}
810\f
811/* Return the character index corresponding to BYTE_INDEX in STRING. */
812
813ptrdiff_t
814string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
815{
816 ptrdiff_t i, i_byte;
817 ptrdiff_t best_below, best_below_byte;
818 ptrdiff_t best_above, best_above_byte;
819
820 best_below = best_below_byte = 0;
821 best_above = SCHARS (string);
822 best_above_byte = SBYTES (string);
823 if (best_above == best_above_byte)
824 return byte_index;
825
826 if (EQ (string, string_char_byte_cache_string))
827 {
828 if (string_char_byte_cache_bytepos < byte_index)
829 {
830 best_below = string_char_byte_cache_charpos;
831 best_below_byte = string_char_byte_cache_bytepos;
832 }
833 else
834 {
835 best_above = string_char_byte_cache_charpos;
836 best_above_byte = string_char_byte_cache_bytepos;
837 }
838 }
839
840 if (byte_index - best_below_byte < best_above_byte - byte_index)
841 {
842 unsigned char *p = SDATA (string) + best_below_byte;
843 unsigned char *pend = SDATA (string) + byte_index;
844
845 while (p < pend)
846 {
847 p += BYTES_BY_CHAR_HEAD (*p);
848 best_below++;
849 }
850 i = best_below;
851 i_byte = p - SDATA (string);
852 }
853 else
854 {
855 unsigned char *p = SDATA (string) + best_above_byte;
856 unsigned char *pbeg = SDATA (string) + byte_index;
857
858 while (p > pbeg)
859 {
860 p--;
861 while (!CHAR_HEAD_P (*p)) p--;
862 best_above--;
863 }
864 i = best_above;
865 i_byte = p - SDATA (string);
866 }
867
868 string_char_byte_cache_bytepos = i_byte;
869 string_char_byte_cache_charpos = i;
870 string_char_byte_cache_string = string;
871
872 return i;
873}
874\f
875/* Convert STRING to a multibyte string. */
876
877static Lisp_Object
878string_make_multibyte (Lisp_Object string)
879{
880 unsigned char *buf;
881 ptrdiff_t nbytes;
882 Lisp_Object ret;
883 USE_SAFE_ALLOCA;
884
885 if (STRING_MULTIBYTE (string))
886 return string;
887
888 nbytes = count_size_as_multibyte (SDATA (string),
889 SCHARS (string));
890 /* If all the chars are ASCII, they won't need any more bytes
891 once converted. In that case, we can return STRING itself. */
892 if (nbytes == SBYTES (string))
893 return string;
894
895 buf = SAFE_ALLOCA (nbytes);
896 copy_text (SDATA (string), buf, SBYTES (string),
897 0, 1);
898
899 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
900 SAFE_FREE ();
901
902 return ret;
903}
904
905
906/* Convert STRING (if unibyte) to a multibyte string without changing
907 the number of characters. Characters 0200 trough 0237 are
908 converted to eight-bit characters. */
909
910Lisp_Object
911string_to_multibyte (Lisp_Object string)
912{
913 unsigned char *buf;
914 ptrdiff_t nbytes;
915 Lisp_Object ret;
916 USE_SAFE_ALLOCA;
917
918 if (STRING_MULTIBYTE (string))
919 return string;
920
921 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
922 /* If all the chars are ASCII, they won't need any more bytes once
923 converted. */
924 if (nbytes == SBYTES (string))
925 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
926
927 buf = SAFE_ALLOCA (nbytes);
928 memcpy (buf, SDATA (string), SBYTES (string));
929 str_to_multibyte (buf, nbytes, SBYTES (string));
930
931 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
932 SAFE_FREE ();
933
934 return ret;
935}
936
937
938/* Convert STRING to a single-byte string. */
939
940Lisp_Object
941string_make_unibyte (Lisp_Object string)
942{
943 ptrdiff_t nchars;
944 unsigned char *buf;
945 Lisp_Object ret;
946 USE_SAFE_ALLOCA;
947
948 if (! STRING_MULTIBYTE (string))
949 return string;
950
951 nchars = SCHARS (string);
952
953 buf = SAFE_ALLOCA (nchars);
954 copy_text (SDATA (string), buf, SBYTES (string),
955 1, 0);
956
957 ret = make_unibyte_string ((char *) buf, nchars);
958 SAFE_FREE ();
959
960 return ret;
961}
962
963DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
964 1, 1, 0,
965 doc: /* Return the multibyte equivalent of STRING.
966If STRING is unibyte and contains non-ASCII characters, the function
967`unibyte-char-to-multibyte' is used to convert each unibyte character
968to a multibyte character. In this case, the returned string is a
969newly created string with no text properties. If STRING is multibyte
970or entirely ASCII, it is returned unchanged. In particular, when
971STRING is unibyte and entirely ASCII, the returned string is unibyte.
972\(When the characters are all ASCII, Emacs primitives will treat the
973string the same way whether it is unibyte or multibyte.) */)
974 (Lisp_Object string)
975{
976 CHECK_STRING (string);
977
978 return string_make_multibyte (string);
979}
980
981DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
982 1, 1, 0,
983 doc: /* Return the unibyte equivalent of STRING.
984Multibyte character codes are converted to unibyte according to
985`nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
986If the lookup in the translation table fails, this function takes just
987the low 8 bits of each character. */)
988 (Lisp_Object string)
989{
990 CHECK_STRING (string);
991
992 return string_make_unibyte (string);
993}
994
995DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
996 1, 1, 0,
997 doc: /* Return a unibyte string with the same individual bytes as STRING.
998If STRING is unibyte, the result is STRING itself.
999Otherwise it is a newly created string, with no text properties.
1000If STRING is multibyte and contains a character of charset
1001`eight-bit', it is converted to the corresponding single byte. */)
1002 (Lisp_Object string)
1003{
1004 CHECK_STRING (string);
1005
1006 if (STRING_MULTIBYTE (string))
1007 {
1008 ptrdiff_t bytes = SBYTES (string);
1009 unsigned char *str = xmalloc (bytes);
1010
1011 memcpy (str, SDATA (string), bytes);
1012 bytes = str_as_unibyte (str, bytes);
1013 string = make_unibyte_string ((char *) str, bytes);
1014 xfree (str);
1015 }
1016 return string;
1017}
1018
1019DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1020 1, 1, 0,
1021 doc: /* Return a multibyte string with the same individual bytes as STRING.
1022If STRING is multibyte, the result is STRING itself.
1023Otherwise it is a newly created string, with no text properties.
1024
1025If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1026part of a correct utf-8 sequence), it is converted to the corresponding
1027multibyte character of charset `eight-bit'.
1028See also `string-to-multibyte'.
1029
1030Beware, this often doesn't really do what you think it does.
1031It is similar to (decode-coding-string STRING 'utf-8-emacs).
1032If you're not sure, whether to use `string-as-multibyte' or
1033`string-to-multibyte', use `string-to-multibyte'. */)
1034 (Lisp_Object string)
1035{
1036 CHECK_STRING (string);
1037
1038 if (! STRING_MULTIBYTE (string))
1039 {
1040 Lisp_Object new_string;
1041 ptrdiff_t nchars, nbytes;
1042
1043 parse_str_as_multibyte (SDATA (string),
1044 SBYTES (string),
1045 &nchars, &nbytes);
1046 new_string = make_uninit_multibyte_string (nchars, nbytes);
1047 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1048 if (nbytes != SBYTES (string))
1049 str_as_multibyte (SDATA (new_string), nbytes,
1050 SBYTES (string), NULL);
1051 string = new_string;
1052 set_string_intervals (string, NULL);
1053 }
1054 return string;
1055}
1056
1057DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1058 1, 1, 0,
1059 doc: /* Return a multibyte string with the same individual chars as STRING.
1060If STRING is multibyte, the result is STRING itself.
1061Otherwise it is a newly created string, with no text properties.
1062
1063If STRING is unibyte and contains an 8-bit byte, it is converted to
1064the corresponding multibyte character of charset `eight-bit'.
1065
1066This differs from `string-as-multibyte' by converting each byte of a correct
1067utf-8 sequence to an eight-bit character, not just bytes that don't form a
1068correct sequence. */)
1069 (Lisp_Object string)
1070{
1071 CHECK_STRING (string);
1072
1073 return string_to_multibyte (string);
1074}
1075
1076DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1077 1, 1, 0,
1078 doc: /* Return a unibyte string with the same individual chars as STRING.
1079If STRING is unibyte, the result is STRING itself.
1080Otherwise it is a newly created string, with no text properties,
1081where each `eight-bit' character is converted to the corresponding byte.
1082If STRING contains a non-ASCII, non-`eight-bit' character,
1083an error is signaled. */)
1084 (Lisp_Object string)
1085{
1086 CHECK_STRING (string);
1087
1088 if (STRING_MULTIBYTE (string))
1089 {
1090 ptrdiff_t chars = SCHARS (string);
1091 unsigned char *str = xmalloc (chars);
1092 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1093
1094 if (converted < chars)
1095 error ("Can't convert the %"pD"dth character to unibyte", converted);
1096 string = make_unibyte_string ((char *) str, chars);
1097 xfree (str);
1098 }
1099 return string;
1100}
1101
1102\f
1103DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1104 doc: /* Return a copy of ALIST.
1105This is an alist which represents the same mapping from objects to objects,
1106but does not share the alist structure with ALIST.
1107The objects mapped (cars and cdrs of elements of the alist)
1108are shared, however.
1109Elements of ALIST that are not conses are also shared. */)
1110 (Lisp_Object alist)
1111{
1112 register Lisp_Object tem;
1113
1114 CHECK_LIST (alist);
1115 if (NILP (alist))
1116 return alist;
1117 alist = concat (1, &alist, Lisp_Cons, 0);
1118 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1119 {
1120 register Lisp_Object car;
1121 car = XCAR (tem);
1122
1123 if (CONSP (car))
1124 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1125 }
1126 return alist;
1127}
1128
1129DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1130 doc: /* Return a new string whose contents are a substring of STRING.
1131The returned string consists of the characters between index FROM
1132\(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1133zero-indexed: 0 means the first character of STRING. Negative values
1134are counted from the end of STRING. If TO is nil, the substring runs
1135to the end of STRING.
1136
1137The STRING argument may also be a vector. In that case, the return
1138value is a new vector that contains the elements between index FROM
1139\(inclusive) and index TO (exclusive) of that vector argument. */)
1140 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1141{
1142 Lisp_Object res;
1143 ptrdiff_t size;
1144 EMACS_INT from_char, to_char;
1145
1146 CHECK_VECTOR_OR_STRING (string);
1147 CHECK_NUMBER (from);
1148
1149 if (STRINGP (string))
1150 size = SCHARS (string);
1151 else
1152 size = ASIZE (string);
1153
1154 if (NILP (to))
1155 to_char = size;
1156 else
1157 {
1158 CHECK_NUMBER (to);
1159
1160 to_char = XINT (to);
1161 if (to_char < 0)
1162 to_char += size;
1163 }
1164
1165 from_char = XINT (from);
1166 if (from_char < 0)
1167 from_char += size;
1168 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1169 args_out_of_range_3 (string, make_number (from_char),
1170 make_number (to_char));
1171
1172 if (STRINGP (string))
1173 {
1174 ptrdiff_t to_byte =
1175 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1176 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1177 res = make_specified_string (SSDATA (string) + from_byte,
1178 to_char - from_char, to_byte - from_byte,
1179 STRING_MULTIBYTE (string));
1180 copy_text_properties (make_number (from_char), make_number (to_char),
1181 string, make_number (0), res, Qnil);
1182 }
1183 else
1184 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1185
1186 return res;
1187}
1188
1189
1190DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1191 doc: /* Return a substring of STRING, without text properties.
1192It starts at index FROM and ends before TO.
1193TO may be nil or omitted; then the substring runs to the end of STRING.
1194If FROM is nil or omitted, the substring starts at the beginning of STRING.
1195If FROM or TO is negative, it counts from the end.
1196
1197With one argument, just copy STRING without its properties. */)
1198 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1199{
1200 ptrdiff_t size;
1201 EMACS_INT from_char, to_char;
1202 ptrdiff_t from_byte, to_byte;
1203
1204 CHECK_STRING (string);
1205
1206 size = SCHARS (string);
1207
1208 if (NILP (from))
1209 from_char = 0;
1210 else
1211 {
1212 CHECK_NUMBER (from);
1213 from_char = XINT (from);
1214 if (from_char < 0)
1215 from_char += size;
1216 }
1217
1218 if (NILP (to))
1219 to_char = size;
1220 else
1221 {
1222 CHECK_NUMBER (to);
1223 to_char = XINT (to);
1224 if (to_char < 0)
1225 to_char += size;
1226 }
1227
1228 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1229 args_out_of_range_3 (string, make_number (from_char),
1230 make_number (to_char));
1231
1232 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1233 to_byte =
1234 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1235 return make_specified_string (SSDATA (string) + from_byte,
1236 to_char - from_char, to_byte - from_byte,
1237 STRING_MULTIBYTE (string));
1238}
1239
1240/* Extract a substring of STRING, giving start and end positions
1241 both in characters and in bytes. */
1242
1243Lisp_Object
1244substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1245 ptrdiff_t to, ptrdiff_t to_byte)
1246{
1247 Lisp_Object res;
1248 ptrdiff_t size;
1249
1250 CHECK_VECTOR_OR_STRING (string);
1251
1252 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1253
1254 if (!(0 <= from && from <= to && to <= size))
1255 args_out_of_range_3 (string, make_number (from), make_number (to));
1256
1257 if (STRINGP (string))
1258 {
1259 res = make_specified_string (SSDATA (string) + from_byte,
1260 to - from, to_byte - from_byte,
1261 STRING_MULTIBYTE (string));
1262 copy_text_properties (make_number (from), make_number (to),
1263 string, make_number (0), res, Qnil);
1264 }
1265 else
1266 res = Fvector (to - from, aref_addr (string, from));
1267
1268 return res;
1269}
1270\f
1271DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1272 doc: /* Take cdr N times on LIST, return the result. */)
1273 (Lisp_Object n, Lisp_Object list)
1274{
1275 EMACS_INT i, num;
1276 CHECK_NUMBER (n);
1277 num = XINT (n);
1278 for (i = 0; i < num && !NILP (list); i++)
1279 {
1280 QUIT;
1281 CHECK_LIST_CONS (list, list);
1282 list = XCDR (list);
1283 }
1284 return list;
1285}
1286
1287DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1288 doc: /* Return the Nth element of LIST.
1289N counts from zero. If LIST is not that long, nil is returned. */)
1290 (Lisp_Object n, Lisp_Object list)
1291{
1292 return Fcar (Fnthcdr (n, list));
1293}
1294
1295DEFUN ("elt", Felt, Selt, 2, 2, 0,
1296 doc: /* Return element of SEQUENCE at index N. */)
1297 (register Lisp_Object sequence, Lisp_Object n)
1298{
1299 CHECK_NUMBER (n);
1300 if (CONSP (sequence) || NILP (sequence))
1301 return Fcar (Fnthcdr (n, sequence));
1302
1303 /* Faref signals a "not array" error, so check here. */
1304 CHECK_ARRAY (sequence, Qsequencep);
1305 return Faref (sequence, n);
1306}
1307
1308DEFUN ("member", Fmember, Smember, 2, 2, 0,
1309 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1310The value is actually the tail of LIST whose car is ELT. */)
1311 (register Lisp_Object elt, Lisp_Object list)
1312{
1313 register Lisp_Object tail;
1314 for (tail = list; CONSP (tail); tail = XCDR (tail))
1315 {
1316 register Lisp_Object tem;
1317 CHECK_LIST_CONS (tail, list);
1318 tem = XCAR (tail);
1319 if (! NILP (Fequal (elt, tem)))
1320 return tail;
1321 QUIT;
1322 }
1323 return Qnil;
1324}
1325
1326DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1327 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1328The value is actually the tail of LIST whose car is ELT. */)
1329 (register Lisp_Object elt, Lisp_Object list)
1330{
1331 while (1)
1332 {
1333 if (!CONSP (list) || EQ (XCAR (list), elt))
1334 break;
1335
1336 list = XCDR (list);
1337 if (!CONSP (list) || EQ (XCAR (list), elt))
1338 break;
1339
1340 list = XCDR (list);
1341 if (!CONSP (list) || EQ (XCAR (list), elt))
1342 break;
1343
1344 list = XCDR (list);
1345 QUIT;
1346 }
1347
1348 CHECK_LIST (list);
1349 return list;
1350}
1351
1352DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1353 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1354The value is actually the tail of LIST whose car is ELT. */)
1355 (register Lisp_Object elt, Lisp_Object list)
1356{
1357 register Lisp_Object tail;
1358
1359 if (!FLOATP (elt))
1360 return Fmemq (elt, list);
1361
1362 for (tail = list; CONSP (tail); tail = XCDR (tail))
1363 {
1364 register Lisp_Object tem;
1365 CHECK_LIST_CONS (tail, list);
1366 tem = XCAR (tail);
1367 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1368 return tail;
1369 QUIT;
1370 }
1371 return Qnil;
1372}
1373
1374DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1375 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1376The value is actually the first element of LIST whose car is KEY.
1377Elements of LIST that are not conses are ignored. */)
1378 (Lisp_Object key, Lisp_Object list)
1379{
1380 while (1)
1381 {
1382 if (!CONSP (list)
1383 || (CONSP (XCAR (list))
1384 && EQ (XCAR (XCAR (list)), key)))
1385 break;
1386
1387 list = XCDR (list);
1388 if (!CONSP (list)
1389 || (CONSP (XCAR (list))
1390 && EQ (XCAR (XCAR (list)), key)))
1391 break;
1392
1393 list = XCDR (list);
1394 if (!CONSP (list)
1395 || (CONSP (XCAR (list))
1396 && EQ (XCAR (XCAR (list)), key)))
1397 break;
1398
1399 list = XCDR (list);
1400 QUIT;
1401 }
1402
1403 return CAR (list);
1404}
1405
1406/* Like Fassq but never report an error and do not allow quits.
1407 Use only on lists known never to be circular. */
1408
1409Lisp_Object
1410assq_no_quit (Lisp_Object key, Lisp_Object list)
1411{
1412 while (CONSP (list)
1413 && (!CONSP (XCAR (list))
1414 || !EQ (XCAR (XCAR (list)), key)))
1415 list = XCDR (list);
1416
1417 return CAR_SAFE (list);
1418}
1419
1420DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1421 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1422The value is actually the first element of LIST whose car equals KEY. */)
1423 (Lisp_Object key, Lisp_Object list)
1424{
1425 Lisp_Object car;
1426
1427 while (1)
1428 {
1429 if (!CONSP (list)
1430 || (CONSP (XCAR (list))
1431 && (car = XCAR (XCAR (list)),
1432 EQ (car, key) || !NILP (Fequal (car, key)))))
1433 break;
1434
1435 list = XCDR (list);
1436 if (!CONSP (list)
1437 || (CONSP (XCAR (list))
1438 && (car = XCAR (XCAR (list)),
1439 EQ (car, key) || !NILP (Fequal (car, key)))))
1440 break;
1441
1442 list = XCDR (list);
1443 if (!CONSP (list)
1444 || (CONSP (XCAR (list))
1445 && (car = XCAR (XCAR (list)),
1446 EQ (car, key) || !NILP (Fequal (car, key)))))
1447 break;
1448
1449 list = XCDR (list);
1450 QUIT;
1451 }
1452
1453 return CAR (list);
1454}
1455
1456/* Like Fassoc but never report an error and do not allow quits.
1457 Use only on lists known never to be circular. */
1458
1459Lisp_Object
1460assoc_no_quit (Lisp_Object key, Lisp_Object list)
1461{
1462 while (CONSP (list)
1463 && (!CONSP (XCAR (list))
1464 || (!EQ (XCAR (XCAR (list)), key)
1465 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1466 list = XCDR (list);
1467
1468 return CONSP (list) ? XCAR (list) : Qnil;
1469}
1470
1471DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1472 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1473The value is actually the first element of LIST whose cdr is KEY. */)
1474 (register Lisp_Object key, Lisp_Object list)
1475{
1476 while (1)
1477 {
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCDR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && EQ (XCDR (XCAR (list)), key)))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list)
1491 || (CONSP (XCAR (list))
1492 && EQ (XCDR (XCAR (list)), key)))
1493 break;
1494
1495 list = XCDR (list);
1496 QUIT;
1497 }
1498
1499 return CAR (list);
1500}
1501
1502DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1503 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1504The value is actually the first element of LIST whose cdr equals KEY. */)
1505 (Lisp_Object key, Lisp_Object list)
1506{
1507 Lisp_Object cdr;
1508
1509 while (1)
1510 {
1511 if (!CONSP (list)
1512 || (CONSP (XCAR (list))
1513 && (cdr = XCDR (XCAR (list)),
1514 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1515 break;
1516
1517 list = XCDR (list);
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && (cdr = XCDR (XCAR (list)),
1521 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1522 break;
1523
1524 list = XCDR (list);
1525 if (!CONSP (list)
1526 || (CONSP (XCAR (list))
1527 && (cdr = XCDR (XCAR (list)),
1528 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 return CAR (list);
1536}
1537\f
1538DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1539 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1540More precisely, this function skips any members `eq' to ELT at the
1541front of LIST, then removes members `eq' to ELT from the remaining
1542sublist by modifying its list structure, then returns the resulting
1543list.
1544
1545Write `(setq foo (delq element foo))' to be sure of correctly changing
1546the value of a list `foo'. */)
1547 (register Lisp_Object elt, Lisp_Object list)
1548{
1549 register Lisp_Object tail, prev;
1550 register Lisp_Object tem;
1551
1552 tail = list;
1553 prev = Qnil;
1554 while (!NILP (tail))
1555 {
1556 CHECK_LIST_CONS (tail, list);
1557 tem = XCAR (tail);
1558 if (EQ (elt, tem))
1559 {
1560 if (NILP (prev))
1561 list = XCDR (tail);
1562 else
1563 Fsetcdr (prev, XCDR (tail));
1564 }
1565 else
1566 prev = tail;
1567 tail = XCDR (tail);
1568 QUIT;
1569 }
1570 return list;
1571}
1572
1573DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1574 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1575SEQ must be a sequence (i.e. a list, a vector, or a string).
1576The return value is a sequence of the same type.
1577
1578If SEQ is a list, this behaves like `delq', except that it compares
1579with `equal' instead of `eq'. In particular, it may remove elements
1580by altering the list structure.
1581
1582If SEQ is not a list, deletion is never performed destructively;
1583instead this function creates and returns a new vector or string.
1584
1585Write `(setq foo (delete element foo))' to be sure of correctly
1586changing the value of a sequence `foo'. */)
1587 (Lisp_Object elt, Lisp_Object seq)
1588{
1589 if (VECTORP (seq))
1590 {
1591 ptrdiff_t i, n;
1592
1593 for (i = n = 0; i < ASIZE (seq); ++i)
1594 if (NILP (Fequal (AREF (seq, i), elt)))
1595 ++n;
1596
1597 if (n != ASIZE (seq))
1598 {
1599 struct Lisp_Vector *p = allocate_vector (n);
1600
1601 for (i = n = 0; i < ASIZE (seq); ++i)
1602 if (NILP (Fequal (AREF (seq, i), elt)))
1603 p->contents[n++] = AREF (seq, i);
1604
1605 XSETVECTOR (seq, p);
1606 }
1607 }
1608 else if (STRINGP (seq))
1609 {
1610 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1611 int c;
1612
1613 for (i = nchars = nbytes = ibyte = 0;
1614 i < SCHARS (seq);
1615 ++i, ibyte += cbytes)
1616 {
1617 if (STRING_MULTIBYTE (seq))
1618 {
1619 c = STRING_CHAR (SDATA (seq) + ibyte);
1620 cbytes = CHAR_BYTES (c);
1621 }
1622 else
1623 {
1624 c = SREF (seq, i);
1625 cbytes = 1;
1626 }
1627
1628 if (!INTEGERP (elt) || c != XINT (elt))
1629 {
1630 ++nchars;
1631 nbytes += cbytes;
1632 }
1633 }
1634
1635 if (nchars != SCHARS (seq))
1636 {
1637 Lisp_Object tem;
1638
1639 tem = make_uninit_multibyte_string (nchars, nbytes);
1640 if (!STRING_MULTIBYTE (seq))
1641 STRING_SET_UNIBYTE (tem);
1642
1643 for (i = nchars = nbytes = ibyte = 0;
1644 i < SCHARS (seq);
1645 ++i, ibyte += cbytes)
1646 {
1647 if (STRING_MULTIBYTE (seq))
1648 {
1649 c = STRING_CHAR (SDATA (seq) + ibyte);
1650 cbytes = CHAR_BYTES (c);
1651 }
1652 else
1653 {
1654 c = SREF (seq, i);
1655 cbytes = 1;
1656 }
1657
1658 if (!INTEGERP (elt) || c != XINT (elt))
1659 {
1660 unsigned char *from = SDATA (seq) + ibyte;
1661 unsigned char *to = SDATA (tem) + nbytes;
1662 ptrdiff_t n;
1663
1664 ++nchars;
1665 nbytes += cbytes;
1666
1667 for (n = cbytes; n--; )
1668 *to++ = *from++;
1669 }
1670 }
1671
1672 seq = tem;
1673 }
1674 }
1675 else
1676 {
1677 Lisp_Object tail, prev;
1678
1679 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1680 {
1681 CHECK_LIST_CONS (tail, seq);
1682
1683 if (!NILP (Fequal (elt, XCAR (tail))))
1684 {
1685 if (NILP (prev))
1686 seq = XCDR (tail);
1687 else
1688 Fsetcdr (prev, XCDR (tail));
1689 }
1690 else
1691 prev = tail;
1692 QUIT;
1693 }
1694 }
1695
1696 return seq;
1697}
1698
1699DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1700 doc: /* Reverse LIST by modifying cdr pointers.
1701Return the reversed list. Expects a properly nil-terminated list. */)
1702 (Lisp_Object list)
1703{
1704 register Lisp_Object prev, tail, next;
1705
1706 if (NILP (list)) return list;
1707 prev = Qnil;
1708 tail = list;
1709 while (!NILP (tail))
1710 {
1711 QUIT;
1712 CHECK_LIST_CONS (tail, tail);
1713 next = XCDR (tail);
1714 Fsetcdr (tail, prev);
1715 prev = tail;
1716 tail = next;
1717 }
1718 return prev;
1719}
1720
1721DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1722 doc: /* Reverse LIST, copying. Return the reversed list.
1723See also the function `nreverse', which is used more often. */)
1724 (Lisp_Object list)
1725{
1726 Lisp_Object new;
1727
1728 for (new = Qnil; CONSP (list); list = XCDR (list))
1729 {
1730 QUIT;
1731 new = Fcons (XCAR (list), new);
1732 }
1733 CHECK_LIST_END (list, list);
1734 return new;
1735}
1736\f
1737Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1738
1739DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1740 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1741Returns the sorted list. LIST is modified by side effects.
1742PREDICATE is called with two elements of LIST, and should return non-nil
1743if the first element should sort before the second. */)
1744 (Lisp_Object list, Lisp_Object predicate)
1745{
1746 Lisp_Object front, back;
1747 register Lisp_Object len, tem;
1748 struct gcpro gcpro1, gcpro2;
1749 EMACS_INT length;
1750
1751 front = list;
1752 len = Flength (list);
1753 length = XINT (len);
1754 if (length < 2)
1755 return list;
1756
1757 XSETINT (len, (length / 2) - 1);
1758 tem = Fnthcdr (len, list);
1759 back = Fcdr (tem);
1760 Fsetcdr (tem, Qnil);
1761
1762 GCPRO2 (front, back);
1763 front = Fsort (front, predicate);
1764 back = Fsort (back, predicate);
1765 UNGCPRO;
1766 return merge (front, back, predicate);
1767}
1768
1769Lisp_Object
1770merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1771{
1772 Lisp_Object value;
1773 register Lisp_Object tail;
1774 Lisp_Object tem;
1775 register Lisp_Object l1, l2;
1776 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1777
1778 l1 = org_l1;
1779 l2 = org_l2;
1780 tail = Qnil;
1781 value = Qnil;
1782
1783 /* It is sufficient to protect org_l1 and org_l2.
1784 When l1 and l2 are updated, we copy the new values
1785 back into the org_ vars. */
1786 GCPRO4 (org_l1, org_l2, pred, value);
1787
1788 while (1)
1789 {
1790 if (NILP (l1))
1791 {
1792 UNGCPRO;
1793 if (NILP (tail))
1794 return l2;
1795 Fsetcdr (tail, l2);
1796 return value;
1797 }
1798 if (NILP (l2))
1799 {
1800 UNGCPRO;
1801 if (NILP (tail))
1802 return l1;
1803 Fsetcdr (tail, l1);
1804 return value;
1805 }
1806 tem = call2 (pred, Fcar (l2), Fcar (l1));
1807 if (NILP (tem))
1808 {
1809 tem = l1;
1810 l1 = Fcdr (l1);
1811 org_l1 = l1;
1812 }
1813 else
1814 {
1815 tem = l2;
1816 l2 = Fcdr (l2);
1817 org_l2 = l2;
1818 }
1819 if (NILP (tail))
1820 value = tem;
1821 else
1822 Fsetcdr (tail, tem);
1823 tail = tem;
1824 }
1825}
1826
1827\f
1828/* This does not check for quits. That is safe since it must terminate. */
1829
1830DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1831 doc: /* Extract a value from a property list.
1832PLIST is a property list, which is a list of the form
1833\(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1834corresponding to the given PROP, or nil if PROP is not one of the
1835properties on the list. This function never signals an error. */)
1836 (Lisp_Object plist, Lisp_Object prop)
1837{
1838 Lisp_Object tail, halftail;
1839
1840 /* halftail is used to detect circular lists. */
1841 tail = halftail = plist;
1842 while (CONSP (tail) && CONSP (XCDR (tail)))
1843 {
1844 if (EQ (prop, XCAR (tail)))
1845 return XCAR (XCDR (tail));
1846
1847 tail = XCDR (XCDR (tail));
1848 halftail = XCDR (halftail);
1849 if (EQ (tail, halftail))
1850 break;
1851 }
1852
1853 return Qnil;
1854}
1855
1856DEFUN ("get", Fget, Sget, 2, 2, 0,
1857 doc: /* Return the value of SYMBOL's PROPNAME property.
1858This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1859 (Lisp_Object symbol, Lisp_Object propname)
1860{
1861 CHECK_SYMBOL (symbol);
1862 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1863}
1864
1865DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1866 doc: /* Change value in PLIST of PROP to VAL.
1867PLIST is a property list, which is a list of the form
1868\(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1869If PROP is already a property on the list, its value is set to VAL,
1870otherwise the new PROP VAL pair is added. The new plist is returned;
1871use `(setq x (plist-put x prop val))' to be sure to use the new value.
1872The PLIST is modified by side effects. */)
1873 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1874{
1875 register Lisp_Object tail, prev;
1876 Lisp_Object newcell;
1877 prev = Qnil;
1878 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1879 tail = XCDR (XCDR (tail)))
1880 {
1881 if (EQ (prop, XCAR (tail)))
1882 {
1883 Fsetcar (XCDR (tail), val);
1884 return plist;
1885 }
1886
1887 prev = tail;
1888 QUIT;
1889 }
1890 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1891 if (NILP (prev))
1892 return newcell;
1893 else
1894 Fsetcdr (XCDR (prev), newcell);
1895 return plist;
1896}
1897
1898DEFUN ("put", Fput, Sput, 3, 3, 0,
1899 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1900It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1901 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1902{
1903 CHECK_SYMBOL (symbol);
1904 set_symbol_plist
1905 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1906 return value;
1907}
1908\f
1909DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1910 doc: /* Extract a value from a property list, comparing with `equal'.
1911PLIST is a property list, which is a list of the form
1912\(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1913corresponding to the given PROP, or nil if PROP is not
1914one of the properties on the list. */)
1915 (Lisp_Object plist, Lisp_Object prop)
1916{
1917 Lisp_Object tail;
1918
1919 for (tail = plist;
1920 CONSP (tail) && CONSP (XCDR (tail));
1921 tail = XCDR (XCDR (tail)))
1922 {
1923 if (! NILP (Fequal (prop, XCAR (tail))))
1924 return XCAR (XCDR (tail));
1925
1926 QUIT;
1927 }
1928
1929 CHECK_LIST_END (tail, prop);
1930
1931 return Qnil;
1932}
1933
1934DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1935 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1936PLIST is a property list, which is a list of the form
1937\(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1938If PROP is already a property on the list, its value is set to VAL,
1939otherwise the new PROP VAL pair is added. The new plist is returned;
1940use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1941The PLIST is modified by side effects. */)
1942 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1943{
1944 register Lisp_Object tail, prev;
1945 Lisp_Object newcell;
1946 prev = Qnil;
1947 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1948 tail = XCDR (XCDR (tail)))
1949 {
1950 if (! NILP (Fequal (prop, XCAR (tail))))
1951 {
1952 Fsetcar (XCDR (tail), val);
1953 return plist;
1954 }
1955
1956 prev = tail;
1957 QUIT;
1958 }
1959 newcell = Fcons (prop, Fcons (val, Qnil));
1960 if (NILP (prev))
1961 return newcell;
1962 else
1963 Fsetcdr (XCDR (prev), newcell);
1964 return plist;
1965}
1966\f
1967DEFUN ("eql", Feql, Seql, 2, 2, 0,
1968 doc: /* Return t if the two args are the same Lisp object.
1969Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1970 (Lisp_Object obj1, Lisp_Object obj2)
1971{
1972 if (FLOATP (obj1))
1973 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1974 else
1975 return EQ (obj1, obj2) ? Qt : Qnil;
1976}
1977
1978DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1979 doc: /* Return t if two Lisp objects have similar structure and contents.
1980They must have the same data type.
1981Conses are compared by comparing the cars and the cdrs.
1982Vectors and strings are compared element by element.
1983Numbers are compared by value, but integers cannot equal floats.
1984 (Use `=' if you want integers and floats to be able to be equal.)
1985Symbols must match exactly. */)
1986 (register Lisp_Object o1, Lisp_Object o2)
1987{
1988 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1989}
1990
1991DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1992 doc: /* Return t if two Lisp objects have similar structure and contents.
1993This is like `equal' except that it compares the text properties
1994of strings. (`equal' ignores text properties.) */)
1995 (register Lisp_Object o1, Lisp_Object o2)
1996{
1997 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1998}
1999
2000/* DEPTH is current depth of recursion. Signal an error if it
2001 gets too deep.
2002 PROPS means compare string text properties too. */
2003
2004static bool
2005internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2006{
2007 if (depth > 200)
2008 error ("Stack overflow in equal");
2009
2010 tail_recurse:
2011 QUIT;
2012 if (EQ (o1, o2))
2013 return 1;
2014 if (XTYPE (o1) != XTYPE (o2))
2015 return 0;
2016
2017 switch (XTYPE (o1))
2018 {
2019 case Lisp_Float:
2020 {
2021 double d1, d2;
2022
2023 d1 = extract_float (o1);
2024 d2 = extract_float (o2);
2025 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2026 though they are not =. */
2027 return d1 == d2 || (d1 != d1 && d2 != d2);
2028 }
2029
2030 case Lisp_Cons:
2031 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2032 return 0;
2033 o1 = XCDR (o1);
2034 o2 = XCDR (o2);
2035 goto tail_recurse;
2036
2037 case Lisp_Misc:
2038 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2039 return 0;
2040 if (OVERLAYP (o1))
2041 {
2042 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2043 depth + 1, props)
2044 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2045 depth + 1, props))
2046 return 0;
2047 o1 = XOVERLAY (o1)->plist;
2048 o2 = XOVERLAY (o2)->plist;
2049 goto tail_recurse;
2050 }
2051 if (MARKERP (o1))
2052 {
2053 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2054 && (XMARKER (o1)->buffer == 0
2055 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2056 }
2057 break;
2058
2059 case Lisp_Vectorlike:
2060 {
2061 register int i;
2062 ptrdiff_t size = ASIZE (o1);
2063 /* Pseudovectors have the type encoded in the size field, so this test
2064 actually checks that the objects have the same type as well as the
2065 same size. */
2066 if (ASIZE (o2) != size)
2067 return 0;
2068 /* Boolvectors are compared much like strings. */
2069 if (BOOL_VECTOR_P (o1))
2070 {
2071 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2072 return 0;
2073 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2074 ((XBOOL_VECTOR (o1)->size
2075 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2076 / BOOL_VECTOR_BITS_PER_CHAR)))
2077 return 0;
2078 return 1;
2079 }
2080 if (WINDOW_CONFIGURATIONP (o1))
2081 return compare_window_configurations (o1, o2, 0);
2082
2083 /* Aside from them, only true vectors, char-tables, compiled
2084 functions, and fonts (font-spec, font-entity, font-object)
2085 are sensible to compare, so eliminate the others now. */
2086 if (size & PSEUDOVECTOR_FLAG)
2087 {
2088 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2089 < PVEC_COMPILED)
2090 return 0;
2091 size &= PSEUDOVECTOR_SIZE_MASK;
2092 }
2093 for (i = 0; i < size; i++)
2094 {
2095 Lisp_Object v1, v2;
2096 v1 = AREF (o1, i);
2097 v2 = AREF (o2, i);
2098 if (!internal_equal (v1, v2, depth + 1, props))
2099 return 0;
2100 }
2101 return 1;
2102 }
2103 break;
2104
2105 case Lisp_String:
2106 if (SCHARS (o1) != SCHARS (o2))
2107 return 0;
2108 if (SBYTES (o1) != SBYTES (o2))
2109 return 0;
2110 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2111 return 0;
2112 if (props && !compare_string_intervals (o1, o2))
2113 return 0;
2114 return 1;
2115
2116 default:
2117 break;
2118 }
2119
2120 return 0;
2121}
2122\f
2123
2124DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2125 doc: /* Store each element of ARRAY with ITEM.
2126ARRAY is a vector, string, char-table, or bool-vector. */)
2127 (Lisp_Object array, Lisp_Object item)
2128{
2129 register ptrdiff_t size, idx;
2130
2131 if (VECTORP (array))
2132 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2133 ASET (array, idx, item);
2134 else if (CHAR_TABLE_P (array))
2135 {
2136 int i;
2137
2138 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2139 set_char_table_contents (array, i, item);
2140 set_char_table_defalt (array, item);
2141 }
2142 else if (STRINGP (array))
2143 {
2144 register unsigned char *p = SDATA (array);
2145 int charval;
2146 CHECK_CHARACTER (item);
2147 charval = XFASTINT (item);
2148 size = SCHARS (array);
2149 if (STRING_MULTIBYTE (array))
2150 {
2151 unsigned char str[MAX_MULTIBYTE_LENGTH];
2152 int len = CHAR_STRING (charval, str);
2153 ptrdiff_t size_byte = SBYTES (array);
2154
2155 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2156 || SCHARS (array) * len != size_byte)
2157 error ("Attempt to change byte length of a string");
2158 for (idx = 0; idx < size_byte; idx++)
2159 *p++ = str[idx % len];
2160 }
2161 else
2162 for (idx = 0; idx < size; idx++)
2163 p[idx] = charval;
2164 }
2165 else if (BOOL_VECTOR_P (array))
2166 {
2167 register unsigned char *p = XBOOL_VECTOR (array)->data;
2168 size =
2169 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2170 / BOOL_VECTOR_BITS_PER_CHAR);
2171
2172 if (size)
2173 {
2174 memset (p, ! NILP (item) ? -1 : 0, size);
2175
2176 /* Clear any extraneous bits in the last byte. */
2177 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2178 }
2179 }
2180 else
2181 wrong_type_argument (Qarrayp, array);
2182 return array;
2183}
2184
2185DEFUN ("clear-string", Fclear_string, Sclear_string,
2186 1, 1, 0,
2187 doc: /* Clear the contents of STRING.
2188This makes STRING unibyte and may change its length. */)
2189 (Lisp_Object string)
2190{
2191 ptrdiff_t len;
2192 CHECK_STRING (string);
2193 len = SBYTES (string);
2194 memset (SDATA (string), 0, len);
2195 STRING_SET_CHARS (string, len);
2196 STRING_SET_UNIBYTE (string);
2197 return Qnil;
2198}
2199\f
2200/* ARGSUSED */
2201Lisp_Object
2202nconc2 (Lisp_Object s1, Lisp_Object s2)
2203{
2204 Lisp_Object args[2];
2205 args[0] = s1;
2206 args[1] = s2;
2207 return Fnconc (2, args);
2208}
2209
2210DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2211 doc: /* Concatenate any number of lists by altering them.
2212Only the last argument is not altered, and need not be a list.
2213usage: (nconc &rest LISTS) */)
2214 (ptrdiff_t nargs, Lisp_Object *args)
2215{
2216 ptrdiff_t argnum;
2217 register Lisp_Object tail, tem, val;
2218
2219 val = tail = Qnil;
2220
2221 for (argnum = 0; argnum < nargs; argnum++)
2222 {
2223 tem = args[argnum];
2224 if (NILP (tem)) continue;
2225
2226 if (NILP (val))
2227 val = tem;
2228
2229 if (argnum + 1 == nargs) break;
2230
2231 CHECK_LIST_CONS (tem, tem);
2232
2233 while (CONSP (tem))
2234 {
2235 tail = tem;
2236 tem = XCDR (tail);
2237 QUIT;
2238 }
2239
2240 tem = args[argnum + 1];
2241 Fsetcdr (tail, tem);
2242 if (NILP (tem))
2243 args[argnum + 1] = tail;
2244 }
2245
2246 return val;
2247}
2248\f
2249/* This is the guts of all mapping functions.
2250 Apply FN to each element of SEQ, one by one,
2251 storing the results into elements of VALS, a C vector of Lisp_Objects.
2252 LENI is the length of VALS, which should also be the length of SEQ. */
2253
2254static void
2255mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2256{
2257 register Lisp_Object tail;
2258 Lisp_Object dummy;
2259 register EMACS_INT i;
2260 struct gcpro gcpro1, gcpro2, gcpro3;
2261
2262 if (vals)
2263 {
2264 /* Don't let vals contain any garbage when GC happens. */
2265 for (i = 0; i < leni; i++)
2266 vals[i] = Qnil;
2267
2268 GCPRO3 (dummy, fn, seq);
2269 gcpro1.var = vals;
2270 gcpro1.nvars = leni;
2271 }
2272 else
2273 GCPRO2 (fn, seq);
2274 /* We need not explicitly protect `tail' because it is used only on lists, and
2275 1) lists are not relocated and 2) the list is marked via `seq' so will not
2276 be freed */
2277
2278 if (VECTORP (seq) || COMPILEDP (seq))
2279 {
2280 for (i = 0; i < leni; i++)
2281 {
2282 dummy = call1 (fn, AREF (seq, i));
2283 if (vals)
2284 vals[i] = dummy;
2285 }
2286 }
2287 else if (BOOL_VECTOR_P (seq))
2288 {
2289 for (i = 0; i < leni; i++)
2290 {
2291 unsigned char byte;
2292 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2293 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2294 dummy = call1 (fn, dummy);
2295 if (vals)
2296 vals[i] = dummy;
2297 }
2298 }
2299 else if (STRINGP (seq))
2300 {
2301 ptrdiff_t i_byte;
2302
2303 for (i = 0, i_byte = 0; i < leni;)
2304 {
2305 int c;
2306 ptrdiff_t i_before = i;
2307
2308 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2309 XSETFASTINT (dummy, c);
2310 dummy = call1 (fn, dummy);
2311 if (vals)
2312 vals[i_before] = dummy;
2313 }
2314 }
2315 else /* Must be a list, since Flength did not get an error */
2316 {
2317 tail = seq;
2318 for (i = 0; i < leni && CONSP (tail); i++)
2319 {
2320 dummy = call1 (fn, XCAR (tail));
2321 if (vals)
2322 vals[i] = dummy;
2323 tail = XCDR (tail);
2324 }
2325 }
2326
2327 UNGCPRO;
2328}
2329
2330DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2331 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2332In between each pair of results, stick in SEPARATOR. Thus, " " as
2333SEPARATOR results in spaces between the values returned by FUNCTION.
2334SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2335 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2336{
2337 Lisp_Object len;
2338 register EMACS_INT leni;
2339 EMACS_INT nargs;
2340 ptrdiff_t i;
2341 register Lisp_Object *args;
2342 struct gcpro gcpro1;
2343 Lisp_Object ret;
2344 USE_SAFE_ALLOCA;
2345
2346 len = Flength (sequence);
2347 if (CHAR_TABLE_P (sequence))
2348 wrong_type_argument (Qlistp, sequence);
2349 leni = XINT (len);
2350 nargs = leni + leni - 1;
2351 if (nargs < 0) return empty_unibyte_string;
2352
2353 SAFE_ALLOCA_LISP (args, nargs);
2354
2355 GCPRO1 (separator);
2356 mapcar1 (leni, args, function, sequence);
2357 UNGCPRO;
2358
2359 for (i = leni - 1; i > 0; i--)
2360 args[i + i] = args[i];
2361
2362 for (i = 1; i < nargs; i += 2)
2363 args[i] = separator;
2364
2365 ret = Fconcat (nargs, args);
2366 SAFE_FREE ();
2367
2368 return ret;
2369}
2370
2371DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2372 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2373The result is a list just as long as SEQUENCE.
2374SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2375 (Lisp_Object function, Lisp_Object sequence)
2376{
2377 register Lisp_Object len;
2378 register EMACS_INT leni;
2379 register Lisp_Object *args;
2380 Lisp_Object ret;
2381 USE_SAFE_ALLOCA;
2382
2383 len = Flength (sequence);
2384 if (CHAR_TABLE_P (sequence))
2385 wrong_type_argument (Qlistp, sequence);
2386 leni = XFASTINT (len);
2387
2388 SAFE_ALLOCA_LISP (args, leni);
2389
2390 mapcar1 (leni, args, function, sequence);
2391
2392 ret = Flist (leni, args);
2393 SAFE_FREE ();
2394
2395 return ret;
2396}
2397
2398DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2399 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2400Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2401SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2402 (Lisp_Object function, Lisp_Object sequence)
2403{
2404 register EMACS_INT leni;
2405
2406 leni = XFASTINT (Flength (sequence));
2407 if (CHAR_TABLE_P (sequence))
2408 wrong_type_argument (Qlistp, sequence);
2409 mapcar1 (leni, 0, function, sequence);
2410
2411 return sequence;
2412}
2413\f
2414/* This is how C code calls `yes-or-no-p' and allows the user
2415 to redefined it.
2416
2417 Anything that calls this function must protect from GC! */
2418
2419Lisp_Object
2420do_yes_or_no_p (Lisp_Object prompt)
2421{
2422 return call1 (intern ("yes-or-no-p"), prompt);
2423}
2424
2425/* Anything that calls this function must protect from GC! */
2426
2427DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2428 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2429PROMPT is the string to display to ask the question. It should end in
2430a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2431
2432The user must confirm the answer with RET, and can edit it until it
2433has been confirmed.
2434
2435Under a windowing system a dialog box will be used if `last-nonmenu-event'
2436is nil, and `use-dialog-box' is non-nil. */)
2437 (Lisp_Object prompt)
2438{
2439 register Lisp_Object ans;
2440 Lisp_Object args[2];
2441 struct gcpro gcpro1;
2442
2443 CHECK_STRING (prompt);
2444
2445#ifdef HAVE_MENUS
2446 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2447 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2448 && use_dialog_box
2449 && have_menus_p ())
2450 {
2451 Lisp_Object pane, menu, obj;
2452 redisplay_preserve_echo_area (4);
2453 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2454 Fcons (Fcons (build_string ("No"), Qnil),
2455 Qnil));
2456 GCPRO1 (pane);
2457 menu = Fcons (prompt, pane);
2458 obj = Fx_popup_dialog (Qt, menu, Qnil);
2459 UNGCPRO;
2460 return obj;
2461 }
2462#endif /* HAVE_MENUS */
2463
2464 args[0] = prompt;
2465 args[1] = build_string ("(yes or no) ");
2466 prompt = Fconcat (2, args);
2467
2468 GCPRO1 (prompt);
2469
2470 while (1)
2471 {
2472 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2473 Qyes_or_no_p_history, Qnil,
2474 Qnil));
2475 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2476 {
2477 UNGCPRO;
2478 return Qt;
2479 }
2480 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2481 {
2482 UNGCPRO;
2483 return Qnil;
2484 }
2485
2486 Fding (Qnil);
2487 Fdiscard_input ();
2488 message ("Please answer yes or no.");
2489 Fsleep_for (make_number (2), Qnil);
2490 }
2491}
2492\f
2493DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2494 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2495
2496Each of the three load averages is multiplied by 100, then converted
2497to integer.
2498
2499When USE-FLOATS is non-nil, floats will be used instead of integers.
2500These floats are not multiplied by 100.
2501
2502If the 5-minute or 15-minute load averages are not available, return a
2503shortened list, containing only those averages which are available.
2504
2505An error is thrown if the load average can't be obtained. In some
2506cases making it work would require Emacs being installed setuid or
2507setgid so that it can read kernel information, and that usually isn't
2508advisable. */)
2509 (Lisp_Object use_floats)
2510{
2511 double load_ave[3];
2512 int loads = getloadavg (load_ave, 3);
2513 Lisp_Object ret = Qnil;
2514
2515 if (loads < 0)
2516 error ("load-average not implemented for this operating system");
2517
2518 while (loads-- > 0)
2519 {
2520 Lisp_Object load = (NILP (use_floats)
2521 ? make_number (100.0 * load_ave[loads])
2522 : make_float (load_ave[loads]));
2523 ret = Fcons (load, ret);
2524 }
2525
2526 return ret;
2527}
2528\f
2529static Lisp_Object Qsubfeatures;
2530
2531DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2532 doc: /* Return t if FEATURE is present in this Emacs.
2533
2534Use this to conditionalize execution of lisp code based on the
2535presence or absence of Emacs or environment extensions.
2536Use `provide' to declare that a feature is available. This function
2537looks at the value of the variable `features'. The optional argument
2538SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2539 (Lisp_Object feature, Lisp_Object subfeature)
2540{
2541 register Lisp_Object tem;
2542 CHECK_SYMBOL (feature);
2543 tem = Fmemq (feature, Vfeatures);
2544 if (!NILP (tem) && !NILP (subfeature))
2545 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2546 return (NILP (tem)) ? Qnil : Qt;
2547}
2548
2549DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2550 doc: /* Announce that FEATURE is a feature of the current Emacs.
2551The optional argument SUBFEATURES should be a list of symbols listing
2552particular subfeatures supported in this version of FEATURE. */)
2553 (Lisp_Object feature, Lisp_Object subfeatures)
2554{
2555 register Lisp_Object tem;
2556 CHECK_SYMBOL (feature);
2557 CHECK_LIST (subfeatures);
2558 if (!NILP (Vautoload_queue))
2559 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2560 Vautoload_queue);
2561 tem = Fmemq (feature, Vfeatures);
2562 if (NILP (tem))
2563 Vfeatures = Fcons (feature, Vfeatures);
2564 if (!NILP (subfeatures))
2565 Fput (feature, Qsubfeatures, subfeatures);
2566 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2567
2568 /* Run any load-hooks for this file. */
2569 tem = Fassq (feature, Vafter_load_alist);
2570 if (CONSP (tem))
2571 Fprogn (XCDR (tem));
2572
2573 return feature;
2574}
2575\f
2576/* `require' and its subroutines. */
2577
2578/* List of features currently being require'd, innermost first. */
2579
2580static Lisp_Object require_nesting_list;
2581
2582static Lisp_Object
2583require_unwind (Lisp_Object old_value)
2584{
2585 return require_nesting_list = old_value;
2586}
2587
2588DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2589 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2590If FEATURE is not a member of the list `features', then the feature
2591is not loaded; so load the file FILENAME.
2592If FILENAME is omitted, the printname of FEATURE is used as the file name,
2593and `load' will try to load this name appended with the suffix `.elc' or
2594`.el', in that order. The name without appended suffix will not be used.
2595See `get-load-suffixes' for the complete list of suffixes.
2596If the optional third argument NOERROR is non-nil,
2597then return nil if the file is not found instead of signaling an error.
2598Normally the return value is FEATURE.
2599The normal messages at start and end of loading FILENAME are suppressed. */)
2600 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2601{
2602 Lisp_Object tem;
2603 struct gcpro gcpro1, gcpro2;
2604 bool from_file = load_in_progress;
2605
2606 CHECK_SYMBOL (feature);
2607
2608 /* Record the presence of `require' in this file
2609 even if the feature specified is already loaded.
2610 But not more than once in any file,
2611 and not when we aren't loading or reading from a file. */
2612 if (!from_file)
2613 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2614 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2615 from_file = 1;
2616
2617 if (from_file)
2618 {
2619 tem = Fcons (Qrequire, feature);
2620 if (NILP (Fmember (tem, Vcurrent_load_list)))
2621 LOADHIST_ATTACH (tem);
2622 }
2623 tem = Fmemq (feature, Vfeatures);
2624
2625 if (NILP (tem))
2626 {
2627 ptrdiff_t count = SPECPDL_INDEX ();
2628 int nesting = 0;
2629
2630 /* This is to make sure that loadup.el gives a clear picture
2631 of what files are preloaded and when. */
2632 if (! NILP (Vpurify_flag))
2633 error ("(require %s) while preparing to dump",
2634 SDATA (SYMBOL_NAME (feature)));
2635
2636 /* A certain amount of recursive `require' is legitimate,
2637 but if we require the same feature recursively 3 times,
2638 signal an error. */
2639 tem = require_nesting_list;
2640 while (! NILP (tem))
2641 {
2642 if (! NILP (Fequal (feature, XCAR (tem))))
2643 nesting++;
2644 tem = XCDR (tem);
2645 }
2646 if (nesting > 3)
2647 error ("Recursive `require' for feature `%s'",
2648 SDATA (SYMBOL_NAME (feature)));
2649
2650 /* Update the list for any nested `require's that occur. */
2651 record_unwind_protect (require_unwind, require_nesting_list);
2652 require_nesting_list = Fcons (feature, require_nesting_list);
2653
2654 /* Value saved here is to be restored into Vautoload_queue */
2655 record_unwind_protect (un_autoload, Vautoload_queue);
2656 Vautoload_queue = Qt;
2657
2658 /* Load the file. */
2659 GCPRO2 (feature, filename);
2660 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2661 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2662 UNGCPRO;
2663
2664 /* If load failed entirely, return nil. */
2665 if (NILP (tem))
2666 return unbind_to (count, Qnil);
2667
2668 tem = Fmemq (feature, Vfeatures);
2669 if (NILP (tem))
2670 error ("Required feature `%s' was not provided",
2671 SDATA (SYMBOL_NAME (feature)));
2672
2673 /* Once loading finishes, don't undo it. */
2674 Vautoload_queue = Qt;
2675 feature = unbind_to (count, feature);
2676 }
2677
2678 return feature;
2679}
2680\f
2681/* Primitives for work of the "widget" library.
2682 In an ideal world, this section would not have been necessary.
2683 However, lisp function calls being as slow as they are, it turns
2684 out that some functions in the widget library (wid-edit.el) are the
2685 bottleneck of Widget operation. Here is their translation to C,
2686 for the sole reason of efficiency. */
2687
2688DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2689 doc: /* Return non-nil if PLIST has the property PROP.
2690PLIST is a property list, which is a list of the form
2691\(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2692Unlike `plist-get', this allows you to distinguish between a missing
2693property and a property with the value nil.
2694The value is actually the tail of PLIST whose car is PROP. */)
2695 (Lisp_Object plist, Lisp_Object prop)
2696{
2697 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2698 {
2699 QUIT;
2700 plist = XCDR (plist);
2701 plist = CDR (plist);
2702 }
2703 return plist;
2704}
2705
2706DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2707 doc: /* In WIDGET, set PROPERTY to VALUE.
2708The value can later be retrieved with `widget-get'. */)
2709 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2710{
2711 CHECK_CONS (widget);
2712 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2713 return value;
2714}
2715
2716DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2717 doc: /* In WIDGET, get the value of PROPERTY.
2718The value could either be specified when the widget was created, or
2719later with `widget-put'. */)
2720 (Lisp_Object widget, Lisp_Object property)
2721{
2722 Lisp_Object tmp;
2723
2724 while (1)
2725 {
2726 if (NILP (widget))
2727 return Qnil;
2728 CHECK_CONS (widget);
2729 tmp = Fplist_member (XCDR (widget), property);
2730 if (CONSP (tmp))
2731 {
2732 tmp = XCDR (tmp);
2733 return CAR (tmp);
2734 }
2735 tmp = XCAR (widget);
2736 if (NILP (tmp))
2737 return Qnil;
2738 widget = Fget (tmp, Qwidget_type);
2739 }
2740}
2741
2742DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2743 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2744ARGS are passed as extra arguments to the function.
2745usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2746 (ptrdiff_t nargs, Lisp_Object *args)
2747{
2748 /* This function can GC. */
2749 Lisp_Object newargs[3];
2750 struct gcpro gcpro1, gcpro2;
2751 Lisp_Object result;
2752
2753 newargs[0] = Fwidget_get (args[0], args[1]);
2754 newargs[1] = args[0];
2755 newargs[2] = Flist (nargs - 2, args + 2);
2756 GCPRO2 (newargs[0], newargs[2]);
2757 result = Fapply (3, newargs);
2758 UNGCPRO;
2759 return result;
2760}
2761
2762#ifdef HAVE_LANGINFO_CODESET
2763#include <langinfo.h>
2764#endif
2765
2766DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2767 doc: /* Access locale data ITEM for the current C locale, if available.
2768ITEM should be one of the following:
2769
2770`codeset', returning the character set as a string (locale item CODESET);
2771
2772`days', returning a 7-element vector of day names (locale items DAY_n);
2773
2774`months', returning a 12-element vector of month names (locale items MON_n);
2775
2776`paper', returning a list (WIDTH HEIGHT) for the default paper size,
2777 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2778
2779If the system can't provide such information through a call to
2780`nl_langinfo', or if ITEM isn't from the list above, return nil.
2781
2782See also Info node `(libc)Locales'.
2783
2784The data read from the system are decoded using `locale-coding-system'. */)
2785 (Lisp_Object item)
2786{
2787 char *str = NULL;
2788#ifdef HAVE_LANGINFO_CODESET
2789 Lisp_Object val;
2790 if (EQ (item, Qcodeset))
2791 {
2792 str = nl_langinfo (CODESET);
2793 return build_string (str);
2794 }
2795#ifdef DAY_1
2796 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2797 {
2798 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2799 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2800 int i;
2801 struct gcpro gcpro1;
2802 GCPRO1 (v);
2803 synchronize_system_time_locale ();
2804 for (i = 0; i < 7; i++)
2805 {
2806 str = nl_langinfo (days[i]);
2807 val = build_unibyte_string (str);
2808 /* Fixme: Is this coding system necessarily right, even if
2809 it is consistent with CODESET? If not, what to do? */
2810 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2811 0));
2812 }
2813 UNGCPRO;
2814 return v;
2815 }
2816#endif /* DAY_1 */
2817#ifdef MON_1
2818 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2819 {
2820 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2821 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2822 MON_8, MON_9, MON_10, MON_11, MON_12};
2823 int i;
2824 struct gcpro gcpro1;
2825 GCPRO1 (v);
2826 synchronize_system_time_locale ();
2827 for (i = 0; i < 12; i++)
2828 {
2829 str = nl_langinfo (months[i]);
2830 val = build_unibyte_string (str);
2831 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2832 0));
2833 }
2834 UNGCPRO;
2835 return v;
2836 }
2837#endif /* MON_1 */
2838/* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2839 but is in the locale files. This could be used by ps-print. */
2840#ifdef PAPER_WIDTH
2841 else if (EQ (item, Qpaper))
2842 {
2843 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2844 make_number (nl_langinfo (PAPER_HEIGHT)));
2845 }
2846#endif /* PAPER_WIDTH */
2847#endif /* HAVE_LANGINFO_CODESET*/
2848 return Qnil;
2849}
2850\f
2851/* base64 encode/decode functions (RFC 2045).
2852 Based on code from GNU recode. */
2853
2854#define MIME_LINE_LENGTH 76
2855
2856#define IS_ASCII(Character) \
2857 ((Character) < 128)
2858#define IS_BASE64(Character) \
2859 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2860#define IS_BASE64_IGNORABLE(Character) \
2861 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2862 || (Character) == '\f' || (Character) == '\r')
2863
2864/* Used by base64_decode_1 to retrieve a non-base64-ignorable
2865 character or return retval if there are no characters left to
2866 process. */
2867#define READ_QUADRUPLET_BYTE(retval) \
2868 do \
2869 { \
2870 if (i == length) \
2871 { \
2872 if (nchars_return) \
2873 *nchars_return = nchars; \
2874 return (retval); \
2875 } \
2876 c = from[i++]; \
2877 } \
2878 while (IS_BASE64_IGNORABLE (c))
2879
2880/* Table of characters coding the 64 values. */
2881static const char base64_value_to_char[64] =
2882{
2883 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2884 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2885 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2886 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2887 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2888 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2889 '8', '9', '+', '/' /* 60-63 */
2890};
2891
2892/* Table of base64 values for first 128 characters. */
2893static const short base64_char_to_value[128] =
2894{
2895 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2896 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2897 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2898 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2899 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2900 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2901 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2902 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2903 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2904 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2905 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2906 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2907 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2908};
2909
2910/* The following diagram shows the logical steps by which three octets
2911 get transformed into four base64 characters.
2912
2913 .--------. .--------. .--------.
2914 |aaaaaabb| |bbbbcccc| |ccdddddd|
2915 `--------' `--------' `--------'
2916 6 2 4 4 2 6
2917 .--------+--------+--------+--------.
2918 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2919 `--------+--------+--------+--------'
2920
2921 .--------+--------+--------+--------.
2922 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2923 `--------+--------+--------+--------'
2924
2925 The octets are divided into 6 bit chunks, which are then encoded into
2926 base64 characters. */
2927
2928
2929static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2930static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2931 ptrdiff_t *);
2932
2933DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2934 2, 3, "r",
2935 doc: /* Base64-encode the region between BEG and END.
2936Return the length of the encoded text.
2937Optional third argument NO-LINE-BREAK means do not break long lines
2938into shorter lines. */)
2939 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2940{
2941 char *encoded;
2942 ptrdiff_t allength, length;
2943 ptrdiff_t ibeg, iend, encoded_length;
2944 ptrdiff_t old_pos = PT;
2945 USE_SAFE_ALLOCA;
2946
2947 validate_region (&beg, &end);
2948
2949 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2950 iend = CHAR_TO_BYTE (XFASTINT (end));
2951 move_gap_both (XFASTINT (beg), ibeg);
2952
2953 /* We need to allocate enough room for encoding the text.
2954 We need 33 1/3% more space, plus a newline every 76
2955 characters, and then we round up. */
2956 length = iend - ibeg;
2957 allength = length + length/3 + 1;
2958 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2959
2960 encoded = SAFE_ALLOCA (allength);
2961 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2962 encoded, length, NILP (no_line_break),
2963 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2964 if (encoded_length > allength)
2965 emacs_abort ();
2966
2967 if (encoded_length < 0)
2968 {
2969 /* The encoding wasn't possible. */
2970 SAFE_FREE ();
2971 error ("Multibyte character in data for base64 encoding");
2972 }
2973
2974 /* Now we have encoded the region, so we insert the new contents
2975 and delete the old. (Insert first in order to preserve markers.) */
2976 SET_PT_BOTH (XFASTINT (beg), ibeg);
2977 insert (encoded, encoded_length);
2978 SAFE_FREE ();
2979 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2980
2981 /* If point was outside of the region, restore it exactly; else just
2982 move to the beginning of the region. */
2983 if (old_pos >= XFASTINT (end))
2984 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2985 else if (old_pos > XFASTINT (beg))
2986 old_pos = XFASTINT (beg);
2987 SET_PT (old_pos);
2988
2989 /* We return the length of the encoded text. */
2990 return make_number (encoded_length);
2991}
2992
2993DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2994 1, 2, 0,
2995 doc: /* Base64-encode STRING and return the result.
2996Optional second argument NO-LINE-BREAK means do not break long lines
2997into shorter lines. */)
2998 (Lisp_Object string, Lisp_Object no_line_break)
2999{
3000 ptrdiff_t allength, length, encoded_length;
3001 char *encoded;
3002 Lisp_Object encoded_string;
3003 USE_SAFE_ALLOCA;
3004
3005 CHECK_STRING (string);
3006
3007 /* We need to allocate enough room for encoding the text.
3008 We need 33 1/3% more space, plus a newline every 76
3009 characters, and then we round up. */
3010 length = SBYTES (string);
3011 allength = length + length/3 + 1;
3012 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3013
3014 /* We need to allocate enough room for decoding the text. */
3015 encoded = SAFE_ALLOCA (allength);
3016
3017 encoded_length = base64_encode_1 (SSDATA (string),
3018 encoded, length, NILP (no_line_break),
3019 STRING_MULTIBYTE (string));
3020 if (encoded_length > allength)
3021 emacs_abort ();
3022
3023 if (encoded_length < 0)
3024 {
3025 /* The encoding wasn't possible. */
3026 SAFE_FREE ();
3027 error ("Multibyte character in data for base64 encoding");
3028 }
3029
3030 encoded_string = make_unibyte_string (encoded, encoded_length);
3031 SAFE_FREE ();
3032
3033 return encoded_string;
3034}
3035
3036static ptrdiff_t
3037base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3038 bool line_break, bool multibyte)
3039{
3040 int counter = 0;
3041 ptrdiff_t i = 0;
3042 char *e = to;
3043 int c;
3044 unsigned int value;
3045 int bytes;
3046
3047 while (i < length)
3048 {
3049 if (multibyte)
3050 {
3051 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3052 if (CHAR_BYTE8_P (c))
3053 c = CHAR_TO_BYTE8 (c);
3054 else if (c >= 256)
3055 return -1;
3056 i += bytes;
3057 }
3058 else
3059 c = from[i++];
3060
3061 /* Wrap line every 76 characters. */
3062
3063 if (line_break)
3064 {
3065 if (counter < MIME_LINE_LENGTH / 4)
3066 counter++;
3067 else
3068 {
3069 *e++ = '\n';
3070 counter = 1;
3071 }
3072 }
3073
3074 /* Process first byte of a triplet. */
3075
3076 *e++ = base64_value_to_char[0x3f & c >> 2];
3077 value = (0x03 & c) << 4;
3078
3079 /* Process second byte of a triplet. */
3080
3081 if (i == length)
3082 {
3083 *e++ = base64_value_to_char[value];
3084 *e++ = '=';
3085 *e++ = '=';
3086 break;
3087 }
3088
3089 if (multibyte)
3090 {
3091 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3092 if (CHAR_BYTE8_P (c))
3093 c = CHAR_TO_BYTE8 (c);
3094 else if (c >= 256)
3095 return -1;
3096 i += bytes;
3097 }
3098 else
3099 c = from[i++];
3100
3101 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3102 value = (0x0f & c) << 2;
3103
3104 /* Process third byte of a triplet. */
3105
3106 if (i == length)
3107 {
3108 *e++ = base64_value_to_char[value];
3109 *e++ = '=';
3110 break;
3111 }
3112
3113 if (multibyte)
3114 {
3115 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3116 if (CHAR_BYTE8_P (c))
3117 c = CHAR_TO_BYTE8 (c);
3118 else if (c >= 256)
3119 return -1;
3120 i += bytes;
3121 }
3122 else
3123 c = from[i++];
3124
3125 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3126 *e++ = base64_value_to_char[0x3f & c];
3127 }
3128
3129 return e - to;
3130}
3131
3132
3133DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3134 2, 2, "r",
3135 doc: /* Base64-decode the region between BEG and END.
3136Return the length of the decoded text.
3137If the region can't be decoded, signal an error and don't modify the buffer. */)
3138 (Lisp_Object beg, Lisp_Object end)
3139{
3140 ptrdiff_t ibeg, iend, length, allength;
3141 char *decoded;
3142 ptrdiff_t old_pos = PT;
3143 ptrdiff_t decoded_length;
3144 ptrdiff_t inserted_chars;
3145 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3146 USE_SAFE_ALLOCA;
3147
3148 validate_region (&beg, &end);
3149
3150 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3151 iend = CHAR_TO_BYTE (XFASTINT (end));
3152
3153 length = iend - ibeg;
3154
3155 /* We need to allocate enough room for decoding the text. If we are
3156 working on a multibyte buffer, each decoded code may occupy at
3157 most two bytes. */
3158 allength = multibyte ? length * 2 : length;
3159 decoded = SAFE_ALLOCA (allength);
3160
3161 move_gap_both (XFASTINT (beg), ibeg);
3162 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3163 decoded, length,
3164 multibyte, &inserted_chars);
3165 if (decoded_length > allength)
3166 emacs_abort ();
3167
3168 if (decoded_length < 0)
3169 {
3170 /* The decoding wasn't possible. */
3171 SAFE_FREE ();
3172 error ("Invalid base64 data");
3173 }
3174
3175 /* Now we have decoded the region, so we insert the new contents
3176 and delete the old. (Insert first in order to preserve markers.) */
3177 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3178 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3179 SAFE_FREE ();
3180
3181 /* Delete the original text. */
3182 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3183 iend + decoded_length, 1);
3184
3185 /* If point was outside of the region, restore it exactly; else just
3186 move to the beginning of the region. */
3187 if (old_pos >= XFASTINT (end))
3188 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3189 else if (old_pos > XFASTINT (beg))
3190 old_pos = XFASTINT (beg);
3191 SET_PT (old_pos > ZV ? ZV : old_pos);
3192
3193 return make_number (inserted_chars);
3194}
3195
3196DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3197 1, 1, 0,
3198 doc: /* Base64-decode STRING and return the result. */)
3199 (Lisp_Object string)
3200{
3201 char *decoded;
3202 ptrdiff_t length, decoded_length;
3203 Lisp_Object decoded_string;
3204 USE_SAFE_ALLOCA;
3205
3206 CHECK_STRING (string);
3207
3208 length = SBYTES (string);
3209 /* We need to allocate enough room for decoding the text. */
3210 decoded = SAFE_ALLOCA (length);
3211
3212 /* The decoded result should be unibyte. */
3213 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3214 0, NULL);
3215 if (decoded_length > length)
3216 emacs_abort ();
3217 else if (decoded_length >= 0)
3218 decoded_string = make_unibyte_string (decoded, decoded_length);
3219 else
3220 decoded_string = Qnil;
3221
3222 SAFE_FREE ();
3223 if (!STRINGP (decoded_string))
3224 error ("Invalid base64 data");
3225
3226 return decoded_string;
3227}
3228
3229/* Base64-decode the data at FROM of LENGTH bytes into TO. If
3230 MULTIBYTE, the decoded result should be in multibyte
3231 form. If NCHARS_RETURN is not NULL, store the number of produced
3232 characters in *NCHARS_RETURN. */
3233
3234static ptrdiff_t
3235base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3236 bool multibyte, ptrdiff_t *nchars_return)
3237{
3238 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3239 char *e = to;
3240 unsigned char c;
3241 unsigned long value;
3242 ptrdiff_t nchars = 0;
3243
3244 while (1)
3245 {
3246 /* Process first byte of a quadruplet. */
3247
3248 READ_QUADRUPLET_BYTE (e-to);
3249
3250 if (!IS_BASE64 (c))
3251 return -1;
3252 value = base64_char_to_value[c] << 18;
3253
3254 /* Process second byte of a quadruplet. */
3255
3256 READ_QUADRUPLET_BYTE (-1);
3257
3258 if (!IS_BASE64 (c))
3259 return -1;
3260 value |= base64_char_to_value[c] << 12;
3261
3262 c = (unsigned char) (value >> 16);
3263 if (multibyte && c >= 128)
3264 e += BYTE8_STRING (c, e);
3265 else
3266 *e++ = c;
3267 nchars++;
3268
3269 /* Process third byte of a quadruplet. */
3270
3271 READ_QUADRUPLET_BYTE (-1);
3272
3273 if (c == '=')
3274 {
3275 READ_QUADRUPLET_BYTE (-1);
3276
3277 if (c != '=')
3278 return -1;
3279 continue;
3280 }
3281
3282 if (!IS_BASE64 (c))
3283 return -1;
3284 value |= base64_char_to_value[c] << 6;
3285
3286 c = (unsigned char) (0xff & value >> 8);
3287 if (multibyte && c >= 128)
3288 e += BYTE8_STRING (c, e);
3289 else
3290 *e++ = c;
3291 nchars++;
3292
3293 /* Process fourth byte of a quadruplet. */
3294
3295 READ_QUADRUPLET_BYTE (-1);
3296
3297 if (c == '=')
3298 continue;
3299
3300 if (!IS_BASE64 (c))
3301 return -1;
3302 value |= base64_char_to_value[c];
3303
3304 c = (unsigned char) (0xff & value);
3305 if (multibyte && c >= 128)
3306 e += BYTE8_STRING (c, e);
3307 else
3308 *e++ = c;
3309 nchars++;
3310 }
3311}
3312
3313
3314\f
3315/***********************************************************************
3316 ***** *****
3317 ***** Hash Tables *****
3318 ***** *****
3319 ***********************************************************************/
3320
3321/* Implemented by gerd@gnu.org. This hash table implementation was
3322 inspired by CMUCL hash tables. */
3323
3324/* Ideas:
3325
3326 1. For small tables, association lists are probably faster than
3327 hash tables because they have lower overhead.
3328
3329 For uses of hash tables where the O(1) behavior of table
3330 operations is not a requirement, it might therefore be a good idea
3331 not to hash. Instead, we could just do a linear search in the
3332 key_and_value vector of the hash table. This could be done
3333 if a `:linear-search t' argument is given to make-hash-table. */
3334
3335
3336/* The list of all weak hash tables. Don't staticpro this one. */
3337
3338static struct Lisp_Hash_Table *weak_hash_tables;
3339
3340/* Various symbols. */
3341
3342static Lisp_Object Qhash_table_p, Qkey, Qvalue, Qeql;
3343Lisp_Object Qeq, Qequal;
3344Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3345static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3346
3347\f
3348/***********************************************************************
3349 Utilities
3350 ***********************************************************************/
3351
3352/* If OBJ is a Lisp hash table, return a pointer to its struct
3353 Lisp_Hash_Table. Otherwise, signal an error. */
3354
3355static struct Lisp_Hash_Table *
3356check_hash_table (Lisp_Object obj)
3357{
3358 CHECK_HASH_TABLE (obj);
3359 return XHASH_TABLE (obj);
3360}
3361
3362
3363/* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3364 number. A number is "almost" a prime number if it is not divisible
3365 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3366
3367EMACS_INT
3368next_almost_prime (EMACS_INT n)
3369{
3370 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3371 for (n |= 1; ; n += 2)
3372 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3373 return n;
3374}
3375
3376
3377/* Find KEY in ARGS which has size NARGS. Don't consider indices for
3378 which USED[I] is non-zero. If found at index I in ARGS, set
3379 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3380 0. This function is used to extract a keyword/argument pair from
3381 a DEFUN parameter list. */
3382
3383static ptrdiff_t
3384get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3385{
3386 ptrdiff_t i;
3387
3388 for (i = 1; i < nargs; i++)
3389 if (!used[i - 1] && EQ (args[i - 1], key))
3390 {
3391 used[i - 1] = 1;
3392 used[i] = 1;
3393 return i;
3394 }
3395
3396 return 0;
3397}
3398
3399
3400/* Return a Lisp vector which has the same contents as VEC but has
3401 at least INCR_MIN more entries, where INCR_MIN is positive.
3402 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3403 than NITEMS_MAX. Entries in the resulting
3404 vector that are not copied from VEC are set to nil. */
3405
3406Lisp_Object
3407larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3408{
3409 struct Lisp_Vector *v;
3410 ptrdiff_t i, incr, incr_max, old_size, new_size;
3411 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3412 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3413 ? nitems_max : C_language_max);
3414 eassert (VECTORP (vec));
3415 eassert (0 < incr_min && -1 <= nitems_max);
3416 old_size = ASIZE (vec);
3417 incr_max = n_max - old_size;
3418 incr = max (incr_min, min (old_size >> 1, incr_max));
3419 if (incr_max < incr)
3420 memory_full (SIZE_MAX);
3421 new_size = old_size + incr;
3422 v = allocate_vector (new_size);
3423 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3424 for (i = old_size; i < new_size; ++i)
3425 v->contents[i] = Qnil;
3426 XSETVECTOR (vec, v);
3427 return vec;
3428}
3429
3430
3431/***********************************************************************
3432 Low-level Functions
3433 ***********************************************************************/
3434
3435static struct hash_table_test hashtest_eq;
3436struct hash_table_test hashtest_eql, hashtest_equal;
3437
3438/* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3439 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3440 KEY2 are the same. */
3441
3442static bool
3443cmpfn_eql (struct hash_table_test *ht,
3444 Lisp_Object key1,
3445 Lisp_Object key2)
3446{
3447 return (FLOATP (key1)
3448 && FLOATP (key2)
3449 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3450}
3451
3452
3453/* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3454 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3455 KEY2 are the same. */
3456
3457static bool
3458cmpfn_equal (struct hash_table_test *ht,
3459 Lisp_Object key1,
3460 Lisp_Object key2)
3461{
3462 return !NILP (Fequal (key1, key2));
3463}
3464
3465
3466/* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3467 HASH2 in hash table H using H->user_cmp_function. Value is true
3468 if KEY1 and KEY2 are the same. */
3469
3470static bool
3471cmpfn_user_defined (struct hash_table_test *ht,
3472 Lisp_Object key1,
3473 Lisp_Object key2)
3474{
3475 Lisp_Object args[3];
3476
3477 args[0] = ht->user_cmp_function;
3478 args[1] = key1;
3479 args[2] = key2;
3480 return !NILP (Ffuncall (3, args));
3481}
3482
3483
3484/* Value is a hash code for KEY for use in hash table H which uses
3485 `eq' to compare keys. The hash code returned is guaranteed to fit
3486 in a Lisp integer. */
3487
3488static EMACS_UINT
3489hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3490{
3491 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3492 return hash;
3493}
3494
3495/* Value is a hash code for KEY for use in hash table H which uses
3496 `eql' to compare keys. The hash code returned is guaranteed to fit
3497 in a Lisp integer. */
3498
3499static EMACS_UINT
3500hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3501{
3502 EMACS_UINT hash;
3503 if (FLOATP (key))
3504 hash = sxhash (key, 0);
3505 else
3506 hash = XHASH (key) ^ XTYPE (key);
3507 return hash;
3508}
3509
3510/* Value is a hash code for KEY for use in hash table H which uses
3511 `equal' to compare keys. The hash code returned is guaranteed to fit
3512 in a Lisp integer. */
3513
3514static EMACS_UINT
3515hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3516{
3517 EMACS_UINT hash = sxhash (key, 0);
3518 return hash;
3519}
3520
3521/* Value is a hash code for KEY for use in hash table H which uses as
3522 user-defined function to compare keys. The hash code returned is
3523 guaranteed to fit in a Lisp integer. */
3524
3525static EMACS_UINT
3526hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3527{
3528 Lisp_Object args[2], hash;
3529
3530 args[0] = ht->user_hash_function;
3531 args[1] = key;
3532 hash = Ffuncall (2, args);
3533 if (!INTEGERP (hash))
3534 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3535 return XUINT (hash);
3536}
3537
3538/* An upper bound on the size of a hash table index. It must fit in
3539 ptrdiff_t and be a valid Emacs fixnum. */
3540#define INDEX_SIZE_BOUND \
3541 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3542
3543/* Create and initialize a new hash table.
3544
3545 TEST specifies the test the hash table will use to compare keys.
3546 It must be either one of the predefined tests `eq', `eql' or
3547 `equal' or a symbol denoting a user-defined test named TEST with
3548 test and hash functions USER_TEST and USER_HASH.
3549
3550 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3551
3552 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3553 new size when it becomes full is computed by adding REHASH_SIZE to
3554 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3555 table's new size is computed by multiplying its old size with
3556 REHASH_SIZE.
3557
3558 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3559 be resized when the ratio of (number of entries in the table) /
3560 (table size) is >= REHASH_THRESHOLD.
3561
3562 WEAK specifies the weakness of the table. If non-nil, it must be
3563 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3564
3565Lisp_Object
3566make_hash_table (struct hash_table_test test,
3567 Lisp_Object size, Lisp_Object rehash_size,
3568 Lisp_Object rehash_threshold, Lisp_Object weak)
3569{
3570 struct Lisp_Hash_Table *h;
3571 Lisp_Object table;
3572 EMACS_INT index_size, sz;
3573 ptrdiff_t i;
3574 double index_float;
3575
3576 /* Preconditions. */
3577 eassert (SYMBOLP (test.name));
3578 eassert (INTEGERP (size) && XINT (size) >= 0);
3579 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3580 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3581 eassert (FLOATP (rehash_threshold)
3582 && 0 < XFLOAT_DATA (rehash_threshold)
3583 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3584
3585 if (XFASTINT (size) == 0)
3586 size = make_number (1);
3587
3588 sz = XFASTINT (size);
3589 index_float = sz / XFLOAT_DATA (rehash_threshold);
3590 index_size = (index_float < INDEX_SIZE_BOUND + 1
3591 ? next_almost_prime (index_float)
3592 : INDEX_SIZE_BOUND + 1);
3593 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3594 error ("Hash table too large");
3595
3596 /* Allocate a table and initialize it. */
3597 h = allocate_hash_table ();
3598
3599 /* Initialize hash table slots. */
3600 h->test = test;
3601 h->weak = weak;
3602 h->rehash_threshold = rehash_threshold;
3603 h->rehash_size = rehash_size;
3604 h->count = 0;
3605 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3606 h->hash = Fmake_vector (size, Qnil);
3607 h->next = Fmake_vector (size, Qnil);
3608 h->index = Fmake_vector (make_number (index_size), Qnil);
3609
3610 /* Set up the free list. */
3611 for (i = 0; i < sz - 1; ++i)
3612 set_hash_next_slot (h, i, make_number (i + 1));
3613 h->next_free = make_number (0);
3614
3615 XSET_HASH_TABLE (table, h);
3616 eassert (HASH_TABLE_P (table));
3617 eassert (XHASH_TABLE (table) == h);
3618
3619 /* Maybe add this hash table to the list of all weak hash tables. */
3620 if (NILP (h->weak))
3621 h->next_weak = NULL;
3622 else
3623 {
3624 h->next_weak = weak_hash_tables;
3625 weak_hash_tables = h;
3626 }
3627
3628 return table;
3629}
3630
3631
3632/* Return a copy of hash table H1. Keys and values are not copied,
3633 only the table itself is. */
3634
3635static Lisp_Object
3636copy_hash_table (struct Lisp_Hash_Table *h1)
3637{
3638 Lisp_Object table;
3639 struct Lisp_Hash_Table *h2;
3640
3641 h2 = allocate_hash_table ();
3642 *h2 = *h1;
3643 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3644 h2->hash = Fcopy_sequence (h1->hash);
3645 h2->next = Fcopy_sequence (h1->next);
3646 h2->index = Fcopy_sequence (h1->index);
3647 XSET_HASH_TABLE (table, h2);
3648
3649 /* Maybe add this hash table to the list of all weak hash tables. */
3650 if (!NILP (h2->weak))
3651 {
3652 h2->next_weak = weak_hash_tables;
3653 weak_hash_tables = h2;
3654 }
3655
3656 return table;
3657}
3658
3659
3660/* Resize hash table H if it's too full. If H cannot be resized
3661 because it's already too large, throw an error. */
3662
3663static void
3664maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3665{
3666 if (NILP (h->next_free))
3667 {
3668 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3669 EMACS_INT new_size, index_size, nsize;
3670 ptrdiff_t i;
3671 double index_float;
3672
3673 if (INTEGERP (h->rehash_size))
3674 new_size = old_size + XFASTINT (h->rehash_size);
3675 else
3676 {
3677 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3678 if (float_new_size < INDEX_SIZE_BOUND + 1)
3679 {
3680 new_size = float_new_size;
3681 if (new_size <= old_size)
3682 new_size = old_size + 1;
3683 }
3684 else
3685 new_size = INDEX_SIZE_BOUND + 1;
3686 }
3687 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3688 index_size = (index_float < INDEX_SIZE_BOUND + 1
3689 ? next_almost_prime (index_float)
3690 : INDEX_SIZE_BOUND + 1);
3691 nsize = max (index_size, 2 * new_size);
3692 if (INDEX_SIZE_BOUND < nsize)
3693 error ("Hash table too large to resize");
3694
3695#ifdef ENABLE_CHECKING
3696 if (HASH_TABLE_P (Vpurify_flag)
3697 && XHASH_TABLE (Vpurify_flag) == h)
3698 {
3699 Lisp_Object args[2];
3700 args[0] = build_string ("Growing hash table to: %d");
3701 args[1] = make_number (new_size);
3702 Fmessage (2, args);
3703 }
3704#endif
3705
3706 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3707 2 * (new_size - old_size), -1));
3708 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3709 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3710 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3711
3712 /* Update the free list. Do it so that new entries are added at
3713 the end of the free list. This makes some operations like
3714 maphash faster. */
3715 for (i = old_size; i < new_size - 1; ++i)
3716 set_hash_next_slot (h, i, make_number (i + 1));
3717
3718 if (!NILP (h->next_free))
3719 {
3720 Lisp_Object last, next;
3721
3722 last = h->next_free;
3723 while (next = HASH_NEXT (h, XFASTINT (last)),
3724 !NILP (next))
3725 last = next;
3726
3727 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3728 }
3729 else
3730 XSETFASTINT (h->next_free, old_size);
3731
3732 /* Rehash. */
3733 for (i = 0; i < old_size; ++i)
3734 if (!NILP (HASH_HASH (h, i)))
3735 {
3736 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3737 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3738 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3739 set_hash_index_slot (h, start_of_bucket, make_number (i));
3740 }
3741 }
3742}
3743
3744
3745/* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3746 the hash code of KEY. Value is the index of the entry in H
3747 matching KEY, or -1 if not found. */
3748
3749ptrdiff_t
3750hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3751{
3752 EMACS_UINT hash_code;
3753 ptrdiff_t start_of_bucket;
3754 Lisp_Object idx;
3755
3756 hash_code = h->test.hashfn (&h->test, key);
3757 eassert ((hash_code & ~INTMASK) == 0);
3758 if (hash)
3759 *hash = hash_code;
3760
3761 start_of_bucket = hash_code % ASIZE (h->index);
3762 idx = HASH_INDEX (h, start_of_bucket);
3763
3764 /* We need not gcpro idx since it's either an integer or nil. */
3765 while (!NILP (idx))
3766 {
3767 ptrdiff_t i = XFASTINT (idx);
3768 if (EQ (key, HASH_KEY (h, i))
3769 || (h->test.cmpfn
3770 && hash_code == XUINT (HASH_HASH (h, i))
3771 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3772 break;
3773 idx = HASH_NEXT (h, i);
3774 }
3775
3776 return NILP (idx) ? -1 : XFASTINT (idx);
3777}
3778
3779
3780/* Put an entry into hash table H that associates KEY with VALUE.
3781 HASH is a previously computed hash code of KEY.
3782 Value is the index of the entry in H matching KEY. */
3783
3784ptrdiff_t
3785hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3786 EMACS_UINT hash)
3787{
3788 ptrdiff_t start_of_bucket, i;
3789
3790 eassert ((hash & ~INTMASK) == 0);
3791
3792 /* Increment count after resizing because resizing may fail. */
3793 maybe_resize_hash_table (h);
3794 h->count++;
3795
3796 /* Store key/value in the key_and_value vector. */
3797 i = XFASTINT (h->next_free);
3798 h->next_free = HASH_NEXT (h, i);
3799 set_hash_key_slot (h, i, key);
3800 set_hash_value_slot (h, i, value);
3801
3802 /* Remember its hash code. */
3803 set_hash_hash_slot (h, i, make_number (hash));
3804
3805 /* Add new entry to its collision chain. */
3806 start_of_bucket = hash % ASIZE (h->index);
3807 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3808 set_hash_index_slot (h, start_of_bucket, make_number (i));
3809 return i;
3810}
3811
3812
3813/* Remove the entry matching KEY from hash table H, if there is one. */
3814
3815static void
3816hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3817{
3818 EMACS_UINT hash_code;
3819 ptrdiff_t start_of_bucket;
3820 Lisp_Object idx, prev;
3821
3822 hash_code = h->test.hashfn (&h->test, key);
3823 eassert ((hash_code & ~INTMASK) == 0);
3824 start_of_bucket = hash_code % ASIZE (h->index);
3825 idx = HASH_INDEX (h, start_of_bucket);
3826 prev = Qnil;
3827
3828 /* We need not gcpro idx, prev since they're either integers or nil. */
3829 while (!NILP (idx))
3830 {
3831 ptrdiff_t i = XFASTINT (idx);
3832
3833 if (EQ (key, HASH_KEY (h, i))
3834 || (h->test.cmpfn
3835 && hash_code == XUINT (HASH_HASH (h, i))
3836 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3837 {
3838 /* Take entry out of collision chain. */
3839 if (NILP (prev))
3840 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3841 else
3842 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3843
3844 /* Clear slots in key_and_value and add the slots to
3845 the free list. */
3846 set_hash_key_slot (h, i, Qnil);
3847 set_hash_value_slot (h, i, Qnil);
3848 set_hash_hash_slot (h, i, Qnil);
3849 set_hash_next_slot (h, i, h->next_free);
3850 h->next_free = make_number (i);
3851 h->count--;
3852 eassert (h->count >= 0);
3853 break;
3854 }
3855 else
3856 {
3857 prev = idx;
3858 idx = HASH_NEXT (h, i);
3859 }
3860 }
3861}
3862
3863
3864/* Clear hash table H. */
3865
3866static void
3867hash_clear (struct Lisp_Hash_Table *h)
3868{
3869 if (h->count > 0)
3870 {
3871 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3872
3873 for (i = 0; i < size; ++i)
3874 {
3875 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3876 set_hash_key_slot (h, i, Qnil);
3877 set_hash_value_slot (h, i, Qnil);
3878 set_hash_hash_slot (h, i, Qnil);
3879 }
3880
3881 for (i = 0; i < ASIZE (h->index); ++i)
3882 ASET (h->index, i, Qnil);
3883
3884 h->next_free = make_number (0);
3885 h->count = 0;
3886 }
3887}
3888
3889
3890\f
3891/************************************************************************
3892 Weak Hash Tables
3893 ************************************************************************/
3894
3895/* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3896 entries from the table that don't survive the current GC.
3897 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3898 true if anything was marked. */
3899
3900static bool
3901sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3902{
3903 ptrdiff_t bucket, n;
3904 bool marked;
3905
3906 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3907 marked = 0;
3908
3909 for (bucket = 0; bucket < n; ++bucket)
3910 {
3911 Lisp_Object idx, next, prev;
3912
3913 /* Follow collision chain, removing entries that
3914 don't survive this garbage collection. */
3915 prev = Qnil;
3916 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3917 {
3918 ptrdiff_t i = XFASTINT (idx);
3919 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3920 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3921 bool remove_p;
3922
3923 if (EQ (h->weak, Qkey))
3924 remove_p = !key_known_to_survive_p;
3925 else if (EQ (h->weak, Qvalue))
3926 remove_p = !value_known_to_survive_p;
3927 else if (EQ (h->weak, Qkey_or_value))
3928 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3929 else if (EQ (h->weak, Qkey_and_value))
3930 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3931 else
3932 emacs_abort ();
3933
3934 next = HASH_NEXT (h, i);
3935
3936 if (remove_entries_p)
3937 {
3938 if (remove_p)
3939 {
3940 /* Take out of collision chain. */
3941 if (NILP (prev))
3942 set_hash_index_slot (h, bucket, next);
3943 else
3944 set_hash_next_slot (h, XFASTINT (prev), next);
3945
3946 /* Add to free list. */
3947 set_hash_next_slot (h, i, h->next_free);
3948 h->next_free = idx;
3949
3950 /* Clear key, value, and hash. */
3951 set_hash_key_slot (h, i, Qnil);
3952 set_hash_value_slot (h, i, Qnil);
3953 set_hash_hash_slot (h, i, Qnil);
3954
3955 h->count--;
3956 }
3957 else
3958 {
3959 prev = idx;
3960 }
3961 }
3962 else
3963 {
3964 if (!remove_p)
3965 {
3966 /* Make sure key and value survive. */
3967 if (!key_known_to_survive_p)
3968 {
3969 mark_object (HASH_KEY (h, i));
3970 marked = 1;
3971 }
3972
3973 if (!value_known_to_survive_p)
3974 {
3975 mark_object (HASH_VALUE (h, i));
3976 marked = 1;
3977 }
3978 }
3979 }
3980 }
3981 }
3982
3983 return marked;
3984}
3985
3986/* Remove elements from weak hash tables that don't survive the
3987 current garbage collection. Remove weak tables that don't survive
3988 from Vweak_hash_tables. Called from gc_sweep. */
3989
3990void
3991sweep_weak_hash_tables (void)
3992{
3993 struct Lisp_Hash_Table *h, *used, *next;
3994 bool marked;
3995
3996 /* Mark all keys and values that are in use. Keep on marking until
3997 there is no more change. This is necessary for cases like
3998 value-weak table A containing an entry X -> Y, where Y is used in a
3999 key-weak table B, Z -> Y. If B comes after A in the list of weak
4000 tables, X -> Y might be removed from A, although when looking at B
4001 one finds that it shouldn't. */
4002 do
4003 {
4004 marked = 0;
4005 for (h = weak_hash_tables; h; h = h->next_weak)
4006 {
4007 if (h->header.size & ARRAY_MARK_FLAG)
4008 marked |= sweep_weak_table (h, 0);
4009 }
4010 }
4011 while (marked);
4012
4013 /* Remove tables and entries that aren't used. */
4014 for (h = weak_hash_tables, used = NULL; h; h = next)
4015 {
4016 next = h->next_weak;
4017
4018 if (h->header.size & ARRAY_MARK_FLAG)
4019 {
4020 /* TABLE is marked as used. Sweep its contents. */
4021 if (h->count > 0)
4022 sweep_weak_table (h, 1);
4023
4024 /* Add table to the list of used weak hash tables. */
4025 h->next_weak = used;
4026 used = h;
4027 }
4028 }
4029
4030 weak_hash_tables = used;
4031}
4032
4033
4034\f
4035/***********************************************************************
4036 Hash Code Computation
4037 ***********************************************************************/
4038
4039/* Maximum depth up to which to dive into Lisp structures. */
4040
4041#define SXHASH_MAX_DEPTH 3
4042
4043/* Maximum length up to which to take list and vector elements into
4044 account. */
4045
4046#define SXHASH_MAX_LEN 7
4047
4048/* Hash X, returning a value that fits into a Lisp integer. */
4049#define SXHASH_REDUCE(X) \
4050 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4051
4052/* Return a hash for string PTR which has length LEN. The hash value
4053 can be any EMACS_UINT value. */
4054
4055EMACS_UINT
4056hash_string (char const *ptr, ptrdiff_t len)
4057{
4058 char const *p = ptr;
4059 char const *end = p + len;
4060 unsigned char c;
4061 EMACS_UINT hash = 0;
4062
4063 while (p != end)
4064 {
4065 c = *p++;
4066 hash = sxhash_combine (hash, c);
4067 }
4068
4069 return hash;
4070}
4071
4072/* Return a hash for string PTR which has length LEN. The hash
4073 code returned is guaranteed to fit in a Lisp integer. */
4074
4075static EMACS_UINT
4076sxhash_string (char const *ptr, ptrdiff_t len)
4077{
4078 EMACS_UINT hash = hash_string (ptr, len);
4079 return SXHASH_REDUCE (hash);
4080}
4081
4082/* Return a hash for the floating point value VAL. */
4083
4084static EMACS_INT
4085sxhash_float (double val)
4086{
4087 EMACS_UINT hash = 0;
4088 enum {
4089 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4090 + (sizeof val % sizeof hash != 0))
4091 };
4092 union {
4093 double val;
4094 EMACS_UINT word[WORDS_PER_DOUBLE];
4095 } u;
4096 int i;
4097 u.val = val;
4098 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4099 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4100 hash = sxhash_combine (hash, u.word[i]);
4101 return SXHASH_REDUCE (hash);
4102}
4103
4104/* Return a hash for list LIST. DEPTH is the current depth in the
4105 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4106
4107static EMACS_UINT
4108sxhash_list (Lisp_Object list, int depth)
4109{
4110 EMACS_UINT hash = 0;
4111 int i;
4112
4113 if (depth < SXHASH_MAX_DEPTH)
4114 for (i = 0;
4115 CONSP (list) && i < SXHASH_MAX_LEN;
4116 list = XCDR (list), ++i)
4117 {
4118 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4119 hash = sxhash_combine (hash, hash2);
4120 }
4121
4122 if (!NILP (list))
4123 {
4124 EMACS_UINT hash2 = sxhash (list, depth + 1);
4125 hash = sxhash_combine (hash, hash2);
4126 }
4127
4128 return SXHASH_REDUCE (hash);
4129}
4130
4131
4132/* Return a hash for vector VECTOR. DEPTH is the current depth in
4133 the Lisp structure. */
4134
4135static EMACS_UINT
4136sxhash_vector (Lisp_Object vec, int depth)
4137{
4138 EMACS_UINT hash = ASIZE (vec);
4139 int i, n;
4140
4141 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4142 for (i = 0; i < n; ++i)
4143 {
4144 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4145 hash = sxhash_combine (hash, hash2);
4146 }
4147
4148 return SXHASH_REDUCE (hash);
4149}
4150
4151/* Return a hash for bool-vector VECTOR. */
4152
4153static EMACS_UINT
4154sxhash_bool_vector (Lisp_Object vec)
4155{
4156 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4157 int i, n;
4158
4159 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4160 for (i = 0; i < n; ++i)
4161 hash = sxhash_combine (hash, XBOOL_VECTOR (vec)->data[i]);
4162
4163 return SXHASH_REDUCE (hash);
4164}
4165
4166
4167/* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4168 structure. Value is an unsigned integer clipped to INTMASK. */
4169
4170EMACS_UINT
4171sxhash (Lisp_Object obj, int depth)
4172{
4173 EMACS_UINT hash;
4174
4175 if (depth > SXHASH_MAX_DEPTH)
4176 return 0;
4177
4178 switch (XTYPE (obj))
4179 {
4180 case_Lisp_Int:
4181 hash = XUINT (obj);
4182 break;
4183
4184 case Lisp_Misc:
4185 hash = XHASH (obj);
4186 break;
4187
4188 case Lisp_Symbol:
4189 obj = SYMBOL_NAME (obj);
4190 /* Fall through. */
4191
4192 case Lisp_String:
4193 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4194 break;
4195
4196 /* This can be everything from a vector to an overlay. */
4197 case Lisp_Vectorlike:
4198 if (VECTORP (obj))
4199 /* According to the CL HyperSpec, two arrays are equal only if
4200 they are `eq', except for strings and bit-vectors. In
4201 Emacs, this works differently. We have to compare element
4202 by element. */
4203 hash = sxhash_vector (obj, depth);
4204 else if (BOOL_VECTOR_P (obj))
4205 hash = sxhash_bool_vector (obj);
4206 else
4207 /* Others are `equal' if they are `eq', so let's take their
4208 address as hash. */
4209 hash = XHASH (obj);
4210 break;
4211
4212 case Lisp_Cons:
4213 hash = sxhash_list (obj, depth);
4214 break;
4215
4216 case Lisp_Float:
4217 hash = sxhash_float (XFLOAT_DATA (obj));
4218 break;
4219
4220 default:
4221 emacs_abort ();
4222 }
4223
4224 return hash;
4225}
4226
4227
4228\f
4229/***********************************************************************
4230 Lisp Interface
4231 ***********************************************************************/
4232
4233
4234DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4235 doc: /* Compute a hash code for OBJ and return it as integer. */)
4236 (Lisp_Object obj)
4237{
4238 EMACS_UINT hash = sxhash (obj, 0);
4239 return make_number (hash);
4240}
4241
4242
4243DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4244 doc: /* Create and return a new hash table.
4245
4246Arguments are specified as keyword/argument pairs. The following
4247arguments are defined:
4248
4249:test TEST -- TEST must be a symbol that specifies how to compare
4250keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4251`equal'. User-supplied test and hash functions can be specified via
4252`define-hash-table-test'.
4253
4254:size SIZE -- A hint as to how many elements will be put in the table.
4255Default is 65.
4256
4257:rehash-size REHASH-SIZE - Indicates how to expand the table when it
4258fills up. If REHASH-SIZE is an integer, increase the size by that
4259amount. If it is a float, it must be > 1.0, and the new size is the
4260old size multiplied by that factor. Default is 1.5.
4261
4262:rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4263Resize the hash table when the ratio (number of entries / table size)
4264is greater than or equal to THRESHOLD. Default is 0.8.
4265
4266:weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4267`key-or-value', or `key-and-value'. If WEAK is not nil, the table
4268returned is a weak table. Key/value pairs are removed from a weak
4269hash table when there are no non-weak references pointing to their
4270key, value, one of key or value, or both key and value, depending on
4271WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4272is nil.
4273
4274usage: (make-hash-table &rest KEYWORD-ARGS) */)
4275 (ptrdiff_t nargs, Lisp_Object *args)
4276{
4277 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4278 struct hash_table_test testdesc;
4279 char *used;
4280 ptrdiff_t i;
4281
4282 /* The vector `used' is used to keep track of arguments that
4283 have been consumed. */
4284 used = alloca (nargs * sizeof *used);
4285 memset (used, 0, nargs * sizeof *used);
4286
4287 /* See if there's a `:test TEST' among the arguments. */
4288 i = get_key_arg (QCtest, nargs, args, used);
4289 test = i ? args[i] : Qeql;
4290 if (EQ (test, Qeq))
4291 testdesc = hashtest_eq;
4292 else if (EQ (test, Qeql))
4293 testdesc = hashtest_eql;
4294 else if (EQ (test, Qequal))
4295 testdesc = hashtest_equal;
4296 else
4297 {
4298 /* See if it is a user-defined test. */
4299 Lisp_Object prop;
4300
4301 prop = Fget (test, Qhash_table_test);
4302 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4303 signal_error ("Invalid hash table test", test);
4304 testdesc.name = test;
4305 testdesc.user_cmp_function = XCAR (prop);
4306 testdesc.user_hash_function = XCAR (XCDR (prop));
4307 testdesc.hashfn = hashfn_user_defined;
4308 testdesc.cmpfn = cmpfn_user_defined;
4309 }
4310
4311 /* See if there's a `:size SIZE' argument. */
4312 i = get_key_arg (QCsize, nargs, args, used);
4313 size = i ? args[i] : Qnil;
4314 if (NILP (size))
4315 size = make_number (DEFAULT_HASH_SIZE);
4316 else if (!INTEGERP (size) || XINT (size) < 0)
4317 signal_error ("Invalid hash table size", size);
4318
4319 /* Look for `:rehash-size SIZE'. */
4320 i = get_key_arg (QCrehash_size, nargs, args, used);
4321 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4322 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4323 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4324 signal_error ("Invalid hash table rehash size", rehash_size);
4325
4326 /* Look for `:rehash-threshold THRESHOLD'. */
4327 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4328 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4329 if (! (FLOATP (rehash_threshold)
4330 && 0 < XFLOAT_DATA (rehash_threshold)
4331 && XFLOAT_DATA (rehash_threshold) <= 1))
4332 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4333
4334 /* Look for `:weakness WEAK'. */
4335 i = get_key_arg (QCweakness, nargs, args, used);
4336 weak = i ? args[i] : Qnil;
4337 if (EQ (weak, Qt))
4338 weak = Qkey_and_value;
4339 if (!NILP (weak)
4340 && !EQ (weak, Qkey)
4341 && !EQ (weak, Qvalue)
4342 && !EQ (weak, Qkey_or_value)
4343 && !EQ (weak, Qkey_and_value))
4344 signal_error ("Invalid hash table weakness", weak);
4345
4346 /* Now, all args should have been used up, or there's a problem. */
4347 for (i = 0; i < nargs; ++i)
4348 if (!used[i])
4349 signal_error ("Invalid argument list", args[i]);
4350
4351 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4352}
4353
4354
4355DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4356 doc: /* Return a copy of hash table TABLE. */)
4357 (Lisp_Object table)
4358{
4359 return copy_hash_table (check_hash_table (table));
4360}
4361
4362
4363DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4364 doc: /* Return the number of elements in TABLE. */)
4365 (Lisp_Object table)
4366{
4367 return make_number (check_hash_table (table)->count);
4368}
4369
4370
4371DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4372 Shash_table_rehash_size, 1, 1, 0,
4373 doc: /* Return the current rehash size of TABLE. */)
4374 (Lisp_Object table)
4375{
4376 return check_hash_table (table)->rehash_size;
4377}
4378
4379
4380DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4381 Shash_table_rehash_threshold, 1, 1, 0,
4382 doc: /* Return the current rehash threshold of TABLE. */)
4383 (Lisp_Object table)
4384{
4385 return check_hash_table (table)->rehash_threshold;
4386}
4387
4388
4389DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4390 doc: /* Return the size of TABLE.
4391The size can be used as an argument to `make-hash-table' to create
4392a hash table than can hold as many elements as TABLE holds
4393without need for resizing. */)
4394 (Lisp_Object table)
4395{
4396 struct Lisp_Hash_Table *h = check_hash_table (table);
4397 return make_number (HASH_TABLE_SIZE (h));
4398}
4399
4400
4401DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4402 doc: /* Return the test TABLE uses. */)
4403 (Lisp_Object table)
4404{
4405 return check_hash_table (table)->test.name;
4406}
4407
4408
4409DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4410 1, 1, 0,
4411 doc: /* Return the weakness of TABLE. */)
4412 (Lisp_Object table)
4413{
4414 return check_hash_table (table)->weak;
4415}
4416
4417
4418DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4419 doc: /* Return t if OBJ is a Lisp hash table object. */)
4420 (Lisp_Object obj)
4421{
4422 return HASH_TABLE_P (obj) ? Qt : Qnil;
4423}
4424
4425
4426DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4427 doc: /* Clear hash table TABLE and return it. */)
4428 (Lisp_Object table)
4429{
4430 hash_clear (check_hash_table (table));
4431 /* Be compatible with XEmacs. */
4432 return table;
4433}
4434
4435
4436DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4437 doc: /* Look up KEY in TABLE and return its associated value.
4438If KEY is not found, return DFLT which defaults to nil. */)
4439 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4440{
4441 struct Lisp_Hash_Table *h = check_hash_table (table);
4442 ptrdiff_t i = hash_lookup (h, key, NULL);
4443 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4444}
4445
4446
4447DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4448 doc: /* Associate KEY with VALUE in hash table TABLE.
4449If KEY is already present in table, replace its current value with
4450VALUE. In any case, return VALUE. */)
4451 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4452{
4453 struct Lisp_Hash_Table *h = check_hash_table (table);
4454 ptrdiff_t i;
4455 EMACS_UINT hash;
4456
4457 i = hash_lookup (h, key, &hash);
4458 if (i >= 0)
4459 set_hash_value_slot (h, i, value);
4460 else
4461 hash_put (h, key, value, hash);
4462
4463 return value;
4464}
4465
4466
4467DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4468 doc: /* Remove KEY from TABLE. */)
4469 (Lisp_Object key, Lisp_Object table)
4470{
4471 struct Lisp_Hash_Table *h = check_hash_table (table);
4472 hash_remove_from_table (h, key);
4473 return Qnil;
4474}
4475
4476
4477DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4478 doc: /* Call FUNCTION for all entries in hash table TABLE.
4479FUNCTION is called with two arguments, KEY and VALUE. */)
4480 (Lisp_Object function, Lisp_Object table)
4481{
4482 struct Lisp_Hash_Table *h = check_hash_table (table);
4483 Lisp_Object args[3];
4484 ptrdiff_t i;
4485
4486 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4487 if (!NILP (HASH_HASH (h, i)))
4488 {
4489 args[0] = function;
4490 args[1] = HASH_KEY (h, i);
4491 args[2] = HASH_VALUE (h, i);
4492 Ffuncall (3, args);
4493 }
4494
4495 return Qnil;
4496}
4497
4498
4499DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4500 Sdefine_hash_table_test, 3, 3, 0,
4501 doc: /* Define a new hash table test with name NAME, a symbol.
4502
4503In hash tables created with NAME specified as test, use TEST to
4504compare keys, and HASH for computing hash codes of keys.
4505
4506TEST must be a function taking two arguments and returning non-nil if
4507both arguments are the same. HASH must be a function taking one
4508argument and return an integer that is the hash code of the argument.
4509Hash code computation should use the whole value range of integers,
4510including negative integers. */)
4511 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4512{
4513 return Fput (name, Qhash_table_test, list2 (test, hash));
4514}
4515
4516
4517\f
4518/************************************************************************
4519 MD5, SHA-1, and SHA-2
4520 ************************************************************************/
4521
4522#include "md5.h"
4523#include "sha1.h"
4524#include "sha256.h"
4525#include "sha512.h"
4526
4527/* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4528
4529static Lisp_Object
4530secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4531{
4532 int i;
4533 ptrdiff_t size;
4534 EMACS_INT start_char = 0, end_char = 0;
4535 ptrdiff_t start_byte, end_byte;
4536 register EMACS_INT b, e;
4537 register struct buffer *bp;
4538 EMACS_INT temp;
4539 int digest_size;
4540 void *(*hash_func) (const char *, size_t, void *);
4541 Lisp_Object digest;
4542
4543 CHECK_SYMBOL (algorithm);
4544
4545 if (STRINGP (object))
4546 {
4547 if (NILP (coding_system))
4548 {
4549 /* Decide the coding-system to encode the data with. */
4550
4551 if (STRING_MULTIBYTE (object))
4552 /* use default, we can't guess correct value */
4553 coding_system = preferred_coding_system ();
4554 else
4555 coding_system = Qraw_text;
4556 }
4557
4558 if (NILP (Fcoding_system_p (coding_system)))
4559 {
4560 /* Invalid coding system. */
4561
4562 if (!NILP (noerror))
4563 coding_system = Qraw_text;
4564 else
4565 xsignal1 (Qcoding_system_error, coding_system);
4566 }
4567
4568 if (STRING_MULTIBYTE (object))
4569 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4570
4571 size = SCHARS (object);
4572
4573 if (!NILP (start))
4574 {
4575 CHECK_NUMBER (start);
4576
4577 start_char = XINT (start);
4578
4579 if (start_char < 0)
4580 start_char += size;
4581 }
4582
4583 if (NILP (end))
4584 end_char = size;
4585 else
4586 {
4587 CHECK_NUMBER (end);
4588
4589 end_char = XINT (end);
4590
4591 if (end_char < 0)
4592 end_char += size;
4593 }
4594
4595 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4596 args_out_of_range_3 (object, make_number (start_char),
4597 make_number (end_char));
4598
4599 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4600 end_byte =
4601 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4602 }
4603 else
4604 {
4605 struct buffer *prev = current_buffer;
4606
4607 record_unwind_current_buffer ();
4608
4609 CHECK_BUFFER (object);
4610
4611 bp = XBUFFER (object);
4612 set_buffer_internal (bp);
4613
4614 if (NILP (start))
4615 b = BEGV;
4616 else
4617 {
4618 CHECK_NUMBER_COERCE_MARKER (start);
4619 b = XINT (start);
4620 }
4621
4622 if (NILP (end))
4623 e = ZV;
4624 else
4625 {
4626 CHECK_NUMBER_COERCE_MARKER (end);
4627 e = XINT (end);
4628 }
4629
4630 if (b > e)
4631 temp = b, b = e, e = temp;
4632
4633 if (!(BEGV <= b && e <= ZV))
4634 args_out_of_range (start, end);
4635
4636 if (NILP (coding_system))
4637 {
4638 /* Decide the coding-system to encode the data with.
4639 See fileio.c:Fwrite-region */
4640
4641 if (!NILP (Vcoding_system_for_write))
4642 coding_system = Vcoding_system_for_write;
4643 else
4644 {
4645 bool force_raw_text = 0;
4646
4647 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4648 if (NILP (coding_system)
4649 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4650 {
4651 coding_system = Qnil;
4652 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4653 force_raw_text = 1;
4654 }
4655
4656 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4657 {
4658 /* Check file-coding-system-alist. */
4659 Lisp_Object args[4], val;
4660
4661 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4662 args[3] = Fbuffer_file_name (object);
4663 val = Ffind_operation_coding_system (4, args);
4664 if (CONSP (val) && !NILP (XCDR (val)))
4665 coding_system = XCDR (val);
4666 }
4667
4668 if (NILP (coding_system)
4669 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4670 {
4671 /* If we still have not decided a coding system, use the
4672 default value of buffer-file-coding-system. */
4673 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4674 }
4675
4676 if (!force_raw_text
4677 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4678 /* Confirm that VAL can surely encode the current region. */
4679 coding_system = call4 (Vselect_safe_coding_system_function,
4680 make_number (b), make_number (e),
4681 coding_system, Qnil);
4682
4683 if (force_raw_text)
4684 coding_system = Qraw_text;
4685 }
4686
4687 if (NILP (Fcoding_system_p (coding_system)))
4688 {
4689 /* Invalid coding system. */
4690
4691 if (!NILP (noerror))
4692 coding_system = Qraw_text;
4693 else
4694 xsignal1 (Qcoding_system_error, coding_system);
4695 }
4696 }
4697
4698 object = make_buffer_string (b, e, 0);
4699 set_buffer_internal (prev);
4700 /* Discard the unwind protect for recovering the current
4701 buffer. */
4702 specpdl_ptr--;
4703
4704 if (STRING_MULTIBYTE (object))
4705 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4706 start_byte = 0;
4707 end_byte = SBYTES (object);
4708 }
4709
4710 if (EQ (algorithm, Qmd5))
4711 {
4712 digest_size = MD5_DIGEST_SIZE;
4713 hash_func = md5_buffer;
4714 }
4715 else if (EQ (algorithm, Qsha1))
4716 {
4717 digest_size = SHA1_DIGEST_SIZE;
4718 hash_func = sha1_buffer;
4719 }
4720 else if (EQ (algorithm, Qsha224))
4721 {
4722 digest_size = SHA224_DIGEST_SIZE;
4723 hash_func = sha224_buffer;
4724 }
4725 else if (EQ (algorithm, Qsha256))
4726 {
4727 digest_size = SHA256_DIGEST_SIZE;
4728 hash_func = sha256_buffer;
4729 }
4730 else if (EQ (algorithm, Qsha384))
4731 {
4732 digest_size = SHA384_DIGEST_SIZE;
4733 hash_func = sha384_buffer;
4734 }
4735 else if (EQ (algorithm, Qsha512))
4736 {
4737 digest_size = SHA512_DIGEST_SIZE;
4738 hash_func = sha512_buffer;
4739 }
4740 else
4741 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4742
4743 /* allocate 2 x digest_size so that it can be re-used to hold the
4744 hexified value */
4745 digest = make_uninit_string (digest_size * 2);
4746
4747 hash_func (SSDATA (object) + start_byte,
4748 end_byte - start_byte,
4749 SSDATA (digest));
4750
4751 if (NILP (binary))
4752 {
4753 unsigned char *p = SDATA (digest);
4754 for (i = digest_size - 1; i >= 0; i--)
4755 {
4756 static char const hexdigit[16] = "0123456789abcdef";
4757 int p_i = p[i];
4758 p[2 * i] = hexdigit[p_i >> 4];
4759 p[2 * i + 1] = hexdigit[p_i & 0xf];
4760 }
4761 return digest;
4762 }
4763 else
4764 return make_unibyte_string (SSDATA (digest), digest_size);
4765}
4766
4767DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4768 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4769
4770A message digest is a cryptographic checksum of a document, and the
4771algorithm to calculate it is defined in RFC 1321.
4772
4773The two optional arguments START and END are character positions
4774specifying for which part of OBJECT the message digest should be
4775computed. If nil or omitted, the digest is computed for the whole
4776OBJECT.
4777
4778The MD5 message digest is computed from the result of encoding the
4779text in a coding system, not directly from the internal Emacs form of
4780the text. The optional fourth argument CODING-SYSTEM specifies which
4781coding system to encode the text with. It should be the same coding
4782system that you used or will use when actually writing the text into a
4783file.
4784
4785If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4786OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4787system would be chosen by default for writing this text into a file.
4788
4789If OBJECT is a string, the most preferred coding system (see the
4790command `prefer-coding-system') is used.
4791
4792If NOERROR is non-nil, silently assume the `raw-text' coding if the
4793guesswork fails. Normally, an error is signaled in such case. */)
4794 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4795{
4796 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4797}
4798
4799DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4800 doc: /* Return the secure hash of OBJECT, a buffer or string.
4801ALGORITHM is a symbol specifying the hash to use:
4802md5, sha1, sha224, sha256, sha384 or sha512.
4803
4804The two optional arguments START and END are positions specifying for
4805which part of OBJECT to compute the hash. If nil or omitted, uses the
4806whole OBJECT.
4807
4808If BINARY is non-nil, returns a string in binary form. */)
4809 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4810{
4811 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4812}
4813\f
4814void
4815syms_of_fns (void)
4816{
4817 DEFSYM (Qmd5, "md5");
4818 DEFSYM (Qsha1, "sha1");
4819 DEFSYM (Qsha224, "sha224");
4820 DEFSYM (Qsha256, "sha256");
4821 DEFSYM (Qsha384, "sha384");
4822 DEFSYM (Qsha512, "sha512");
4823
4824 /* Hash table stuff. */
4825 DEFSYM (Qhash_table_p, "hash-table-p");
4826 DEFSYM (Qeq, "eq");
4827 DEFSYM (Qeql, "eql");
4828 DEFSYM (Qequal, "equal");
4829 DEFSYM (QCtest, ":test");
4830 DEFSYM (QCsize, ":size");
4831 DEFSYM (QCrehash_size, ":rehash-size");
4832 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4833 DEFSYM (QCweakness, ":weakness");
4834 DEFSYM (Qkey, "key");
4835 DEFSYM (Qvalue, "value");
4836 DEFSYM (Qhash_table_test, "hash-table-test");
4837 DEFSYM (Qkey_or_value, "key-or-value");
4838 DEFSYM (Qkey_and_value, "key-and-value");
4839
4840 defsubr (&Ssxhash);
4841 defsubr (&Smake_hash_table);
4842 defsubr (&Scopy_hash_table);
4843 defsubr (&Shash_table_count);
4844 defsubr (&Shash_table_rehash_size);
4845 defsubr (&Shash_table_rehash_threshold);
4846 defsubr (&Shash_table_size);
4847 defsubr (&Shash_table_test);
4848 defsubr (&Shash_table_weakness);
4849 defsubr (&Shash_table_p);
4850 defsubr (&Sclrhash);
4851 defsubr (&Sgethash);
4852 defsubr (&Sputhash);
4853 defsubr (&Sremhash);
4854 defsubr (&Smaphash);
4855 defsubr (&Sdefine_hash_table_test);
4856
4857 DEFSYM (Qstring_lessp, "string-lessp");
4858 DEFSYM (Qprovide, "provide");
4859 DEFSYM (Qrequire, "require");
4860 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4861 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4862 DEFSYM (Qwidget_type, "widget-type");
4863
4864 staticpro (&string_char_byte_cache_string);
4865 string_char_byte_cache_string = Qnil;
4866
4867 require_nesting_list = Qnil;
4868 staticpro (&require_nesting_list);
4869
4870 Fset (Qyes_or_no_p_history, Qnil);
4871
4872 DEFVAR_LISP ("features", Vfeatures,
4873 doc: /* A list of symbols which are the features of the executing Emacs.
4874Used by `featurep' and `require', and altered by `provide'. */);
4875 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4876 DEFSYM (Qsubfeatures, "subfeatures");
4877
4878#ifdef HAVE_LANGINFO_CODESET
4879 DEFSYM (Qcodeset, "codeset");
4880 DEFSYM (Qdays, "days");
4881 DEFSYM (Qmonths, "months");
4882 DEFSYM (Qpaper, "paper");
4883#endif /* HAVE_LANGINFO_CODESET */
4884
4885 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4886 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4887This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4888invoked by mouse clicks and mouse menu items.
4889
4890On some platforms, file selection dialogs are also enabled if this is
4891non-nil. */);
4892 use_dialog_box = 1;
4893
4894 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4895 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4896This applies to commands from menus and tool bar buttons even when
4897they are initiated from the keyboard. If `use-dialog-box' is nil,
4898that disables the use of a file dialog, regardless of the value of
4899this variable. */);
4900 use_file_dialog = 1;
4901
4902 defsubr (&Sidentity);
4903 defsubr (&Srandom);
4904 defsubr (&Slength);
4905 defsubr (&Ssafe_length);
4906 defsubr (&Sstring_bytes);
4907 defsubr (&Sstring_equal);
4908 defsubr (&Scompare_strings);
4909 defsubr (&Sstring_lessp);
4910 defsubr (&Sappend);
4911 defsubr (&Sconcat);
4912 defsubr (&Svconcat);
4913 defsubr (&Scopy_sequence);
4914 defsubr (&Sstring_make_multibyte);
4915 defsubr (&Sstring_make_unibyte);
4916 defsubr (&Sstring_as_multibyte);
4917 defsubr (&Sstring_as_unibyte);
4918 defsubr (&Sstring_to_multibyte);
4919 defsubr (&Sstring_to_unibyte);
4920 defsubr (&Scopy_alist);
4921 defsubr (&Ssubstring);
4922 defsubr (&Ssubstring_no_properties);
4923 defsubr (&Snthcdr);
4924 defsubr (&Snth);
4925 defsubr (&Selt);
4926 defsubr (&Smember);
4927 defsubr (&Smemq);
4928 defsubr (&Smemql);
4929 defsubr (&Sassq);
4930 defsubr (&Sassoc);
4931 defsubr (&Srassq);
4932 defsubr (&Srassoc);
4933 defsubr (&Sdelq);
4934 defsubr (&Sdelete);
4935 defsubr (&Snreverse);
4936 defsubr (&Sreverse);
4937 defsubr (&Ssort);
4938 defsubr (&Splist_get);
4939 defsubr (&Sget);
4940 defsubr (&Splist_put);
4941 defsubr (&Sput);
4942 defsubr (&Slax_plist_get);
4943 defsubr (&Slax_plist_put);
4944 defsubr (&Seql);
4945 defsubr (&Sequal);
4946 defsubr (&Sequal_including_properties);
4947 defsubr (&Sfillarray);
4948 defsubr (&Sclear_string);
4949 defsubr (&Snconc);
4950 defsubr (&Smapcar);
4951 defsubr (&Smapc);
4952 defsubr (&Smapconcat);
4953 defsubr (&Syes_or_no_p);
4954 defsubr (&Sload_average);
4955 defsubr (&Sfeaturep);
4956 defsubr (&Srequire);
4957 defsubr (&Sprovide);
4958 defsubr (&Splist_member);
4959 defsubr (&Swidget_put);
4960 defsubr (&Swidget_get);
4961 defsubr (&Swidget_apply);
4962 defsubr (&Sbase64_encode_region);
4963 defsubr (&Sbase64_decode_region);
4964 defsubr (&Sbase64_encode_string);
4965 defsubr (&Sbase64_decode_string);
4966 defsubr (&Smd5);
4967 defsubr (&Ssecure_hash);
4968 defsubr (&Slocale_info);
4969
4970 {
4971 struct hash_table_test
4972 eq = { Qeq, Qnil, Qnil, NULL, hashfn_eq },
4973 eql = { Qeql, Qnil, Qnil, cmpfn_eql, hashfn_eql },
4974 equal = { Qequal, Qnil, Qnil, cmpfn_equal, hashfn_equal };
4975 hashtest_eq = eq;
4976 hashtest_eql = eql;
4977 hashtest_equal = equal;
4978 }
4979}