use an enum to select concat target type
[bpt/emacs.git] / src / fns.c
... / ...
CommitLineData
1/* Random utility Lisp functions.
2
3Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4Inc.
5
6This file is part of GNU Emacs.
7
8GNU Emacs is free software: you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21#include <config.h>
22
23#include <unistd.h>
24#include <time.h>
25
26#include <intprops.h>
27
28#include "lisp.h"
29#include "commands.h"
30#include "character.h"
31#include "coding.h"
32#include "buffer.h"
33#include "keyboard.h"
34#include "keymap.h"
35#include "intervals.h"
36#include "frame.h"
37#include "window.h"
38#include "blockinput.h"
39#if defined (HAVE_X_WINDOWS)
40#include "xterm.h"
41#endif
42
43Lisp_Object Qstring_lessp;
44static Lisp_Object Qprovide, Qrequire;
45static Lisp_Object Qyes_or_no_p_history;
46Lisp_Object Qcursor_in_echo_area;
47static Lisp_Object Qwidget_type;
48static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
49
50static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
51\f
52DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
53 doc: /* Return the argument unchanged. */)
54 (Lisp_Object arg)
55{
56 return arg;
57}
58
59DEFUN ("random", Frandom, Srandom, 0, 1, 0,
60 doc: /* Return a pseudo-random number.
61All integers representable in Lisp, i.e. between `most-negative-fixnum'
62and `most-positive-fixnum', inclusive, are equally likely.
63
64With positive integer LIMIT, return random number in interval [0,LIMIT).
65With argument t, set the random number seed from the current time and pid.
66With a string argument, set the seed based on the string's contents.
67Other values of LIMIT are ignored.
68
69See Info node `(elisp)Random Numbers' for more details. */)
70 (Lisp_Object limit)
71{
72 EMACS_INT val;
73
74 if (EQ (limit, Qt))
75 init_random ();
76 else if (STRINGP (limit))
77 seed_random (SSDATA (limit), SBYTES (limit));
78
79 val = get_random ();
80 if (INTEGERP (limit) && 0 < XINT (limit))
81 while (true)
82 {
83 /* Return the remainder, except reject the rare case where
84 get_random returns a number so close to INTMASK that the
85 remainder isn't random. */
86 EMACS_INT remainder = val % XINT (limit);
87 if (val - remainder <= INTMASK - XINT (limit) + 1)
88 return make_number (remainder);
89 val = get_random ();
90 }
91 return make_number (val);
92}
93\f
94/* Heuristic on how many iterations of a tight loop can be safely done
95 before it's time to do a QUIT. This must be a power of 2. */
96enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
97
98/* Random data-structure functions. */
99
100static void
101CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
102{
103 CHECK_TYPE (NILP (x), Qlistp, y);
104}
105
106DEFUN ("length", Flength, Slength, 1, 1, 0,
107 doc: /* Return the length of vector, list or string SEQUENCE.
108A byte-code function object is also allowed.
109If the string contains multibyte characters, this is not necessarily
110the number of bytes in the string; it is the number of characters.
111To get the number of bytes, use `string-bytes'. */)
112 (register Lisp_Object sequence)
113{
114 register Lisp_Object val;
115
116 if (STRINGP (sequence))
117 XSETFASTINT (val, SCHARS (sequence));
118 else if (VECTORP (sequence))
119 XSETFASTINT (val, ASIZE (sequence));
120 else if (CHAR_TABLE_P (sequence))
121 XSETFASTINT (val, MAX_CHAR);
122 else if (BOOL_VECTOR_P (sequence))
123 XSETFASTINT (val, bool_vector_size (sequence));
124 else if (COMPILEDP (sequence))
125 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
126 else if (CONSP (sequence))
127 {
128 EMACS_INT i = 0;
129
130 do
131 {
132 ++i;
133 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
134 {
135 if (MOST_POSITIVE_FIXNUM < i)
136 error ("List too long");
137 QUIT;
138 }
139 sequence = XCDR (sequence);
140 }
141 while (CONSP (sequence));
142
143 CHECK_LIST_END (sequence, sequence);
144
145 val = make_number (i);
146 }
147 else if (NILP (sequence))
148 XSETFASTINT (val, 0);
149 else
150 wrong_type_argument (Qsequencep, sequence);
151
152 return val;
153}
154
155DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
156 doc: /* Return the length of a list, but avoid error or infinite loop.
157This function never gets an error. If LIST is not really a list,
158it returns 0. If LIST is circular, it returns a finite value
159which is at least the number of distinct elements. */)
160 (Lisp_Object list)
161{
162 Lisp_Object tail, halftail;
163 double hilen = 0;
164 uintmax_t lolen = 1;
165
166 if (! CONSP (list))
167 return make_number (0);
168
169 /* halftail is used to detect circular lists. */
170 for (tail = halftail = list; ; )
171 {
172 tail = XCDR (tail);
173 if (! CONSP (tail))
174 break;
175 if (EQ (tail, halftail))
176 break;
177 lolen++;
178 if ((lolen & 1) == 0)
179 {
180 halftail = XCDR (halftail);
181 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
182 {
183 QUIT;
184 if (lolen == 0)
185 hilen += UINTMAX_MAX + 1.0;
186 }
187 }
188 }
189
190 /* If the length does not fit into a fixnum, return a float.
191 On all known practical machines this returns an upper bound on
192 the true length. */
193 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
194}
195
196DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
197 doc: /* Return the number of bytes in STRING.
198If STRING is multibyte, this may be greater than the length of STRING. */)
199 (Lisp_Object string)
200{
201 CHECK_STRING (string);
202 return make_number (SBYTES (string));
203}
204
205DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
206 doc: /* Return t if two strings have identical contents.
207Case is significant, but text properties are ignored.
208Symbols are also allowed; their print names are used instead. */)
209 (register Lisp_Object s1, Lisp_Object s2)
210{
211 if (SYMBOLP (s1))
212 s1 = SYMBOL_NAME (s1);
213 if (SYMBOLP (s2))
214 s2 = SYMBOL_NAME (s2);
215 CHECK_STRING (s1);
216 CHECK_STRING (s2);
217
218 if (SCHARS (s1) != SCHARS (s2)
219 || SBYTES (s1) != SBYTES (s2)
220 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
221 return Qnil;
222 return Qt;
223}
224
225DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
226 doc: /* Compare the contents of two strings, converting to multibyte if needed.
227The arguments START1, END1, START2, and END2, if non-nil, are
228positions specifying which parts of STR1 or STR2 to compare. In
229string STR1, compare the part between START1 (inclusive) and END1
230\(exclusive). If START1 is nil, it defaults to 0, the beginning of
231the string; if END1 is nil, it defaults to the length of the string.
232Likewise, in string STR2, compare the part between START2 and END2.
233Like in `substring', negative values are counted from the end.
234
235The strings are compared by the numeric values of their characters.
236For instance, STR1 is "less than" STR2 if its first differing
237character has a smaller numeric value. If IGNORE-CASE is non-nil,
238characters are converted to lower-case before comparing them. Unibyte
239strings are converted to multibyte for comparison.
240
241The value is t if the strings (or specified portions) match.
242If string STR1 is less, the value is a negative number N;
243 - 1 - N is the number of characters that match at the beginning.
244If string STR1 is greater, the value is a positive number N;
245 N - 1 is the number of characters that match at the beginning. */)
246 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2,
247 Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
248{
249 ptrdiff_t from1, to1, from2, to2, i1, i1_byte, i2, i2_byte;
250
251 CHECK_STRING (str1);
252 CHECK_STRING (str2);
253
254 validate_subarray (str1, start1, end1, SCHARS (str1), &from1, &to1);
255 validate_subarray (str2, start2, end2, SCHARS (str2), &from2, &to2);
256
257 i1 = from1;
258 i2 = from2;
259
260 i1_byte = string_char_to_byte (str1, i1);
261 i2_byte = string_char_to_byte (str2, i2);
262
263 while (i1 < to1 && i2 < to2)
264 {
265 /* When we find a mismatch, we must compare the
266 characters, not just the bytes. */
267 int c1, c2;
268
269 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c1, str1, i1, i1_byte);
270 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c2, str2, i2, i2_byte);
271
272 if (c1 == c2)
273 continue;
274
275 if (! NILP (ignore_case))
276 {
277 c1 = XINT (Fupcase (make_number (c1)));
278 c2 = XINT (Fupcase (make_number (c2)));
279 }
280
281 if (c1 == c2)
282 continue;
283
284 /* Note that I1 has already been incremented
285 past the character that we are comparing;
286 hence we don't add or subtract 1 here. */
287 if (c1 < c2)
288 return make_number (- i1 + from1);
289 else
290 return make_number (i1 - from1);
291 }
292
293 if (i1 < to1)
294 return make_number (i1 - from1 + 1);
295 if (i2 < to2)
296 return make_number (- i1 + from1 - 1);
297
298 return Qt;
299}
300
301DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
302 doc: /* Return t if first arg string is less than second in lexicographic order.
303Case is significant.
304Symbols are also allowed; their print names are used instead. */)
305 (register Lisp_Object s1, Lisp_Object s2)
306{
307 register ptrdiff_t end;
308 register ptrdiff_t i1, i1_byte, i2, i2_byte;
309
310 if (SYMBOLP (s1))
311 s1 = SYMBOL_NAME (s1);
312 if (SYMBOLP (s2))
313 s2 = SYMBOL_NAME (s2);
314 CHECK_STRING (s1);
315 CHECK_STRING (s2);
316
317 i1 = i1_byte = i2 = i2_byte = 0;
318
319 end = SCHARS (s1);
320 if (end > SCHARS (s2))
321 end = SCHARS (s2);
322
323 while (i1 < end)
324 {
325 /* When we find a mismatch, we must compare the
326 characters, not just the bytes. */
327 int c1, c2;
328
329 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
330 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
331
332 if (c1 != c2)
333 return c1 < c2 ? Qt : Qnil;
334 }
335 return i1 < SCHARS (s2) ? Qt : Qnil;
336}
337\f
338enum concat_target_type
339 {
340 concat_cons,
341 concat_string,
342 concat_vector
343 };
344
345static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
346 enum concat_target_type target_type, bool last_special);
347
348/* ARGSUSED */
349Lisp_Object
350concat2 (Lisp_Object s1, Lisp_Object s2)
351{
352 Lisp_Object args[2];
353 args[0] = s1;
354 args[1] = s2;
355 return concat (2, args, concat_string, 0);
356}
357
358/* ARGSUSED */
359Lisp_Object
360concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
361{
362 Lisp_Object args[3];
363 args[0] = s1;
364 args[1] = s2;
365 args[2] = s3;
366 return concat (3, args, concat_string, 0);
367}
368
369DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
370 doc: /* Concatenate all the arguments and make the result a list.
371The result is a list whose elements are the elements of all the arguments.
372Each argument may be a list, vector or string.
373The last argument is not copied, just used as the tail of the new list.
374usage: (append &rest SEQUENCES) */)
375 (ptrdiff_t nargs, Lisp_Object *args)
376{
377 return concat (nargs, args, concat_cons, 1);
378}
379
380DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
381 doc: /* Concatenate all the arguments and make the result a string.
382The result is a string whose elements are the elements of all the arguments.
383Each argument may be a string or a list or vector of characters (integers).
384usage: (concat &rest SEQUENCES) */)
385 (ptrdiff_t nargs, Lisp_Object *args)
386{
387 return concat (nargs, args, concat_string, 0);
388}
389
390DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
391 doc: /* Concatenate all the arguments and make the result a vector.
392The result is a vector whose elements are the elements of all the arguments.
393Each argument may be a list, vector or string.
394usage: (vconcat &rest SEQUENCES) */)
395 (ptrdiff_t nargs, Lisp_Object *args)
396{
397 return concat (nargs, args, concat_vector, 0);
398}
399
400
401DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
402 doc: /* Return a copy of a list, vector, string or char-table.
403The elements of a list or vector are not copied; they are shared
404with the original. */)
405 (Lisp_Object arg)
406{
407 if (NILP (arg)) return arg;
408
409 if (CHAR_TABLE_P (arg))
410 {
411 return copy_char_table (arg);
412 }
413
414 if (BOOL_VECTOR_P (arg))
415 {
416 EMACS_INT nbits = bool_vector_size (arg);
417 ptrdiff_t nbytes = bool_vector_bytes (nbits);
418 Lisp_Object val = make_uninit_bool_vector (nbits);
419 memcpy (bool_vector_data (val), bool_vector_data (arg), nbytes);
420 return val;
421 }
422
423 if (CONSP (arg))
424 return concat (1, &arg, concat_cons, 0);
425 else if (STRINGP (arg))
426 return concat (1, &arg, concat_string, 0);
427 else if (VECTORP (arg))
428 return concat (1, &arg, concat_vector, 0);
429 else
430 wrong_type_argument (Qsequencep, arg);
431}
432
433/* This structure holds information of an argument of `concat' that is
434 a string and has text properties to be copied. */
435struct textprop_rec
436{
437 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
438 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
439 ptrdiff_t to; /* refer to VAL (the target string) */
440};
441
442static Lisp_Object
443concat (ptrdiff_t nargs, Lisp_Object *args,
444 enum concat_target_type target_type, bool last_special)
445{
446 Lisp_Object val;
447 Lisp_Object tail;
448 Lisp_Object this;
449 ptrdiff_t toindex;
450 ptrdiff_t toindex_byte = 0;
451 EMACS_INT result_len;
452 EMACS_INT result_len_byte;
453 ptrdiff_t argnum;
454 Lisp_Object last_tail;
455 Lisp_Object prev;
456 bool some_multibyte;
457 /* When we make a multibyte string, we can't copy text properties
458 while concatenating each string because the length of resulting
459 string can't be decided until we finish the whole concatenation.
460 So, we record strings that have text properties to be copied
461 here, and copy the text properties after the concatenation. */
462 struct textprop_rec *textprops = NULL;
463 /* Number of elements in textprops. */
464 ptrdiff_t num_textprops = 0;
465 USE_SAFE_ALLOCA;
466
467 tail = Qnil;
468
469 /* In append, the last arg isn't treated like the others */
470 if (last_special && nargs > 0)
471 {
472 nargs--;
473 last_tail = args[nargs];
474 }
475 else
476 last_tail = Qnil;
477
478 /* Check each argument. */
479 for (argnum = 0; argnum < nargs; argnum++)
480 {
481 this = args[argnum];
482 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
483 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
484 wrong_type_argument (Qsequencep, this);
485 }
486
487 /* Compute total length in chars of arguments in RESULT_LEN.
488 If desired output is a string, also compute length in bytes
489 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
490 whether the result should be a multibyte string. */
491 result_len_byte = 0;
492 result_len = 0;
493 some_multibyte = 0;
494 for (argnum = 0; argnum < nargs; argnum++)
495 {
496 EMACS_INT len;
497 this = args[argnum];
498 len = XFASTINT (Flength (this));
499 if (target_type == concat_string)
500 {
501 /* We must count the number of bytes needed in the string
502 as well as the number of characters. */
503 ptrdiff_t i;
504 Lisp_Object ch;
505 int c;
506 ptrdiff_t this_len_byte;
507
508 if (VECTORP (this) || COMPILEDP (this))
509 for (i = 0; i < len; i++)
510 {
511 ch = AREF (this, i);
512 CHECK_CHARACTER (ch);
513 c = XFASTINT (ch);
514 this_len_byte = CHAR_BYTES (c);
515 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
516 string_overflow ();
517 result_len_byte += this_len_byte;
518 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
519 some_multibyte = 1;
520 }
521 else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
522 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
523 else if (CONSP (this))
524 for (; CONSP (this); this = XCDR (this))
525 {
526 ch = XCAR (this);
527 CHECK_CHARACTER (ch);
528 c = XFASTINT (ch);
529 this_len_byte = CHAR_BYTES (c);
530 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
531 string_overflow ();
532 result_len_byte += this_len_byte;
533 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
534 some_multibyte = 1;
535 }
536 else if (STRINGP (this))
537 {
538 if (STRING_MULTIBYTE (this))
539 {
540 some_multibyte = 1;
541 this_len_byte = SBYTES (this);
542 }
543 else
544 this_len_byte = count_size_as_multibyte (SDATA (this),
545 SCHARS (this));
546 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
547 string_overflow ();
548 result_len_byte += this_len_byte;
549 }
550 }
551
552 result_len += len;
553 if (MOST_POSITIVE_FIXNUM < result_len)
554 memory_full (SIZE_MAX);
555 }
556
557 if (! some_multibyte)
558 result_len_byte = result_len;
559
560 /* Create the output object. */
561 if (target_type == concat_cons)
562 val = Fmake_list (make_number (result_len), Qnil);
563 else if (target_type == concat_vector)
564 val = Fmake_vector (make_number (result_len), Qnil);
565 else if (some_multibyte)
566 val = make_uninit_multibyte_string (result_len, result_len_byte);
567 else
568 val = make_uninit_string (result_len);
569
570 /* In `append', if all but last arg are nil, return last arg. */
571 if (target_type == concat_cons && EQ (val, Qnil))
572 return last_tail;
573
574 /* Copy the contents of the args into the result. */
575 if (CONSP (val))
576 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
577 else
578 toindex = 0, toindex_byte = 0;
579
580 prev = Qnil;
581 if (STRINGP (val))
582 SAFE_NALLOCA (textprops, 1, nargs);
583
584 for (argnum = 0; argnum < nargs; argnum++)
585 {
586 Lisp_Object thislen;
587 ptrdiff_t thisleni = 0;
588 register ptrdiff_t thisindex = 0;
589 register ptrdiff_t thisindex_byte = 0;
590
591 this = args[argnum];
592 if (!CONSP (this))
593 thislen = Flength (this), thisleni = XINT (thislen);
594
595 /* Between strings of the same kind, copy fast. */
596 if (STRINGP (this) && STRINGP (val)
597 && STRING_MULTIBYTE (this) == some_multibyte)
598 {
599 ptrdiff_t thislen_byte = SBYTES (this);
600
601 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
602 if (string_intervals (this))
603 {
604 textprops[num_textprops].argnum = argnum;
605 textprops[num_textprops].from = 0;
606 textprops[num_textprops++].to = toindex;
607 }
608 toindex_byte += thislen_byte;
609 toindex += thisleni;
610 }
611 /* Copy a single-byte string to a multibyte string. */
612 else if (STRINGP (this) && STRINGP (val))
613 {
614 if (string_intervals (this))
615 {
616 textprops[num_textprops].argnum = argnum;
617 textprops[num_textprops].from = 0;
618 textprops[num_textprops++].to = toindex;
619 }
620 toindex_byte += copy_text (SDATA (this),
621 SDATA (val) + toindex_byte,
622 SCHARS (this), 0, 1);
623 toindex += thisleni;
624 }
625 else
626 /* Copy element by element. */
627 while (1)
628 {
629 register Lisp_Object elt;
630
631 /* Fetch next element of `this' arg into `elt', or break if
632 `this' is exhausted. */
633 if (NILP (this)) break;
634 if (CONSP (this))
635 elt = XCAR (this), this = XCDR (this);
636 else if (thisindex >= thisleni)
637 break;
638 else if (STRINGP (this))
639 {
640 int c;
641 if (STRING_MULTIBYTE (this))
642 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
643 thisindex,
644 thisindex_byte);
645 else
646 {
647 c = SREF (this, thisindex); thisindex++;
648 if (some_multibyte && !ASCII_CHAR_P (c))
649 c = BYTE8_TO_CHAR (c);
650 }
651 XSETFASTINT (elt, c);
652 }
653 else if (BOOL_VECTOR_P (this))
654 {
655 elt = bool_vector_ref (this, thisindex);
656 thisindex++;
657 }
658 else
659 {
660 elt = AREF (this, thisindex);
661 thisindex++;
662 }
663
664 /* Store this element into the result. */
665 if (toindex < 0)
666 {
667 XSETCAR (tail, elt);
668 prev = tail;
669 tail = XCDR (tail);
670 }
671 else if (VECTORP (val))
672 {
673 ASET (val, toindex, elt);
674 toindex++;
675 }
676 else
677 {
678 int c;
679 CHECK_CHARACTER (elt);
680 c = XFASTINT (elt);
681 if (some_multibyte)
682 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
683 else
684 SSET (val, toindex_byte++, c);
685 toindex++;
686 }
687 }
688 }
689 if (!NILP (prev))
690 XSETCDR (prev, last_tail);
691
692 if (num_textprops > 0)
693 {
694 Lisp_Object props;
695 ptrdiff_t last_to_end = -1;
696
697 for (argnum = 0; argnum < num_textprops; argnum++)
698 {
699 this = args[textprops[argnum].argnum];
700 props = text_property_list (this,
701 make_number (0),
702 make_number (SCHARS (this)),
703 Qnil);
704 /* If successive arguments have properties, be sure that the
705 value of `composition' property be the copy. */
706 if (last_to_end == textprops[argnum].to)
707 make_composition_value_copy (props);
708 add_text_properties_from_list (val, props,
709 make_number (textprops[argnum].to));
710 last_to_end = textprops[argnum].to + SCHARS (this);
711 }
712 }
713
714 SAFE_FREE ();
715 return val;
716}
717\f
718static Lisp_Object string_char_byte_cache_string;
719static ptrdiff_t string_char_byte_cache_charpos;
720static ptrdiff_t string_char_byte_cache_bytepos;
721
722void
723clear_string_char_byte_cache (void)
724{
725 string_char_byte_cache_string = Qnil;
726}
727
728/* Return the byte index corresponding to CHAR_INDEX in STRING. */
729
730ptrdiff_t
731string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
732{
733 ptrdiff_t i_byte;
734 ptrdiff_t best_below, best_below_byte;
735 ptrdiff_t best_above, best_above_byte;
736
737 best_below = best_below_byte = 0;
738 best_above = SCHARS (string);
739 best_above_byte = SBYTES (string);
740 if (best_above == best_above_byte)
741 return char_index;
742
743 if (EQ (string, string_char_byte_cache_string))
744 {
745 if (string_char_byte_cache_charpos < char_index)
746 {
747 best_below = string_char_byte_cache_charpos;
748 best_below_byte = string_char_byte_cache_bytepos;
749 }
750 else
751 {
752 best_above = string_char_byte_cache_charpos;
753 best_above_byte = string_char_byte_cache_bytepos;
754 }
755 }
756
757 if (char_index - best_below < best_above - char_index)
758 {
759 unsigned char *p = SDATA (string) + best_below_byte;
760
761 while (best_below < char_index)
762 {
763 p += BYTES_BY_CHAR_HEAD (*p);
764 best_below++;
765 }
766 i_byte = p - SDATA (string);
767 }
768 else
769 {
770 unsigned char *p = SDATA (string) + best_above_byte;
771
772 while (best_above > char_index)
773 {
774 p--;
775 while (!CHAR_HEAD_P (*p)) p--;
776 best_above--;
777 }
778 i_byte = p - SDATA (string);
779 }
780
781 string_char_byte_cache_bytepos = i_byte;
782 string_char_byte_cache_charpos = char_index;
783 string_char_byte_cache_string = string;
784
785 return i_byte;
786}
787\f
788/* Return the character index corresponding to BYTE_INDEX in STRING. */
789
790ptrdiff_t
791string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
792{
793 ptrdiff_t i, i_byte;
794 ptrdiff_t best_below, best_below_byte;
795 ptrdiff_t best_above, best_above_byte;
796
797 best_below = best_below_byte = 0;
798 best_above = SCHARS (string);
799 best_above_byte = SBYTES (string);
800 if (best_above == best_above_byte)
801 return byte_index;
802
803 if (EQ (string, string_char_byte_cache_string))
804 {
805 if (string_char_byte_cache_bytepos < byte_index)
806 {
807 best_below = string_char_byte_cache_charpos;
808 best_below_byte = string_char_byte_cache_bytepos;
809 }
810 else
811 {
812 best_above = string_char_byte_cache_charpos;
813 best_above_byte = string_char_byte_cache_bytepos;
814 }
815 }
816
817 if (byte_index - best_below_byte < best_above_byte - byte_index)
818 {
819 unsigned char *p = SDATA (string) + best_below_byte;
820 unsigned char *pend = SDATA (string) + byte_index;
821
822 while (p < pend)
823 {
824 p += BYTES_BY_CHAR_HEAD (*p);
825 best_below++;
826 }
827 i = best_below;
828 i_byte = p - SDATA (string);
829 }
830 else
831 {
832 unsigned char *p = SDATA (string) + best_above_byte;
833 unsigned char *pbeg = SDATA (string) + byte_index;
834
835 while (p > pbeg)
836 {
837 p--;
838 while (!CHAR_HEAD_P (*p)) p--;
839 best_above--;
840 }
841 i = best_above;
842 i_byte = p - SDATA (string);
843 }
844
845 string_char_byte_cache_bytepos = i_byte;
846 string_char_byte_cache_charpos = i;
847 string_char_byte_cache_string = string;
848
849 return i;
850}
851\f
852/* Convert STRING to a multibyte string. */
853
854static Lisp_Object
855string_make_multibyte (Lisp_Object string)
856{
857 unsigned char *buf;
858 ptrdiff_t nbytes;
859 Lisp_Object ret;
860 USE_SAFE_ALLOCA;
861
862 if (STRING_MULTIBYTE (string))
863 return string;
864
865 nbytes = count_size_as_multibyte (SDATA (string),
866 SCHARS (string));
867 /* If all the chars are ASCII, they won't need any more bytes
868 once converted. In that case, we can return STRING itself. */
869 if (nbytes == SBYTES (string))
870 return string;
871
872 buf = SAFE_ALLOCA (nbytes);
873 copy_text (SDATA (string), buf, SBYTES (string),
874 0, 1);
875
876 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
877 SAFE_FREE ();
878
879 return ret;
880}
881
882
883/* Convert STRING (if unibyte) to a multibyte string without changing
884 the number of characters. Characters 0200 trough 0237 are
885 converted to eight-bit characters. */
886
887Lisp_Object
888string_to_multibyte (Lisp_Object string)
889{
890 unsigned char *buf;
891 ptrdiff_t nbytes;
892 Lisp_Object ret;
893 USE_SAFE_ALLOCA;
894
895 if (STRING_MULTIBYTE (string))
896 return string;
897
898 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
899 /* If all the chars are ASCII, they won't need any more bytes once
900 converted. */
901 if (nbytes == SBYTES (string))
902 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
903
904 buf = SAFE_ALLOCA (nbytes);
905 memcpy (buf, SDATA (string), SBYTES (string));
906 str_to_multibyte (buf, nbytes, SBYTES (string));
907
908 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
909 SAFE_FREE ();
910
911 return ret;
912}
913
914
915/* Convert STRING to a single-byte string. */
916
917Lisp_Object
918string_make_unibyte (Lisp_Object string)
919{
920 ptrdiff_t nchars;
921 unsigned char *buf;
922 Lisp_Object ret;
923 USE_SAFE_ALLOCA;
924
925 if (! STRING_MULTIBYTE (string))
926 return string;
927
928 nchars = SCHARS (string);
929
930 buf = SAFE_ALLOCA (nchars);
931 copy_text (SDATA (string), buf, SBYTES (string),
932 1, 0);
933
934 ret = make_unibyte_string ((char *) buf, nchars);
935 SAFE_FREE ();
936
937 return ret;
938}
939
940DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
941 1, 1, 0,
942 doc: /* Return the multibyte equivalent of STRING.
943If STRING is unibyte and contains non-ASCII characters, the function
944`unibyte-char-to-multibyte' is used to convert each unibyte character
945to a multibyte character. In this case, the returned string is a
946newly created string with no text properties. If STRING is multibyte
947or entirely ASCII, it is returned unchanged. In particular, when
948STRING is unibyte and entirely ASCII, the returned string is unibyte.
949\(When the characters are all ASCII, Emacs primitives will treat the
950string the same way whether it is unibyte or multibyte.) */)
951 (Lisp_Object string)
952{
953 CHECK_STRING (string);
954
955 return string_make_multibyte (string);
956}
957
958DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
959 1, 1, 0,
960 doc: /* Return the unibyte equivalent of STRING.
961Multibyte character codes are converted to unibyte according to
962`nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
963If the lookup in the translation table fails, this function takes just
964the low 8 bits of each character. */)
965 (Lisp_Object string)
966{
967 CHECK_STRING (string);
968
969 return string_make_unibyte (string);
970}
971
972DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
973 1, 1, 0,
974 doc: /* Return a unibyte string with the same individual bytes as STRING.
975If STRING is unibyte, the result is STRING itself.
976Otherwise it is a newly created string, with no text properties.
977If STRING is multibyte and contains a character of charset
978`eight-bit', it is converted to the corresponding single byte. */)
979 (Lisp_Object string)
980{
981 CHECK_STRING (string);
982
983 if (STRING_MULTIBYTE (string))
984 {
985 unsigned char *str = (unsigned char *) xlispstrdup (string);
986 ptrdiff_t bytes = str_as_unibyte (str, SBYTES (string));
987
988 string = make_unibyte_string ((char *) str, bytes);
989 xfree (str);
990 }
991 return string;
992}
993
994DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
995 1, 1, 0,
996 doc: /* Return a multibyte string with the same individual bytes as STRING.
997If STRING is multibyte, the result is STRING itself.
998Otherwise it is a newly created string, with no text properties.
999
1000If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1001part of a correct utf-8 sequence), it is converted to the corresponding
1002multibyte character of charset `eight-bit'.
1003See also `string-to-multibyte'.
1004
1005Beware, this often doesn't really do what you think it does.
1006It is similar to (decode-coding-string STRING 'utf-8-emacs).
1007If you're not sure, whether to use `string-as-multibyte' or
1008`string-to-multibyte', use `string-to-multibyte'. */)
1009 (Lisp_Object string)
1010{
1011 CHECK_STRING (string);
1012
1013 if (! STRING_MULTIBYTE (string))
1014 {
1015 Lisp_Object new_string;
1016 ptrdiff_t nchars, nbytes;
1017
1018 parse_str_as_multibyte (SDATA (string),
1019 SBYTES (string),
1020 &nchars, &nbytes);
1021 new_string = make_uninit_multibyte_string (nchars, nbytes);
1022 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1023 if (nbytes != SBYTES (string))
1024 str_as_multibyte (SDATA (new_string), nbytes,
1025 SBYTES (string), NULL);
1026 string = new_string;
1027 set_string_intervals (string, NULL);
1028 }
1029 return string;
1030}
1031
1032DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1033 1, 1, 0,
1034 doc: /* Return a multibyte string with the same individual chars as STRING.
1035If STRING is multibyte, the result is STRING itself.
1036Otherwise it is a newly created string, with no text properties.
1037
1038If STRING is unibyte and contains an 8-bit byte, it is converted to
1039the corresponding multibyte character of charset `eight-bit'.
1040
1041This differs from `string-as-multibyte' by converting each byte of a correct
1042utf-8 sequence to an eight-bit character, not just bytes that don't form a
1043correct sequence. */)
1044 (Lisp_Object string)
1045{
1046 CHECK_STRING (string);
1047
1048 return string_to_multibyte (string);
1049}
1050
1051DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1052 1, 1, 0,
1053 doc: /* Return a unibyte string with the same individual chars as STRING.
1054If STRING is unibyte, the result is STRING itself.
1055Otherwise it is a newly created string, with no text properties,
1056where each `eight-bit' character is converted to the corresponding byte.
1057If STRING contains a non-ASCII, non-`eight-bit' character,
1058an error is signaled. */)
1059 (Lisp_Object string)
1060{
1061 CHECK_STRING (string);
1062
1063 if (STRING_MULTIBYTE (string))
1064 {
1065 ptrdiff_t chars = SCHARS (string);
1066 unsigned char *str = xmalloc_atomic (chars);
1067 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1068
1069 if (converted < chars)
1070 error ("Can't convert the %"pD"dth character to unibyte", converted);
1071 string = make_unibyte_string ((char *) str, chars);
1072 xfree (str);
1073 }
1074 return string;
1075}
1076
1077\f
1078DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1079 doc: /* Return a copy of ALIST.
1080This is an alist which represents the same mapping from objects to objects,
1081but does not share the alist structure with ALIST.
1082The objects mapped (cars and cdrs of elements of the alist)
1083are shared, however.
1084Elements of ALIST that are not conses are also shared. */)
1085 (Lisp_Object alist)
1086{
1087 register Lisp_Object tem;
1088
1089 CHECK_LIST (alist);
1090 if (NILP (alist))
1091 return alist;
1092 alist = concat (1, &alist, concat_cons, 0);
1093 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1094 {
1095 register Lisp_Object car;
1096 car = XCAR (tem);
1097
1098 if (CONSP (car))
1099 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1100 }
1101 return alist;
1102}
1103
1104/* Check that ARRAY can have a valid subarray [FROM..TO),
1105 given that its size is SIZE.
1106 If FROM is nil, use 0; if TO is nil, use SIZE.
1107 Count negative values backwards from the end.
1108 Set *IFROM and *ITO to the two indexes used. */
1109
1110void
1111validate_subarray (Lisp_Object array, Lisp_Object from, Lisp_Object to,
1112 ptrdiff_t size, ptrdiff_t *ifrom, ptrdiff_t *ito)
1113{
1114 EMACS_INT f, t;
1115
1116 if (INTEGERP (from))
1117 {
1118 f = XINT (from);
1119 if (f < 0)
1120 f += size;
1121 }
1122 else if (NILP (from))
1123 f = 0;
1124 else
1125 wrong_type_argument (Qintegerp, from);
1126
1127 if (INTEGERP (to))
1128 {
1129 t = XINT (to);
1130 if (t < 0)
1131 t += size;
1132 }
1133 else if (NILP (to))
1134 t = size;
1135 else
1136 wrong_type_argument (Qintegerp, to);
1137
1138 if (! (0 <= f && f <= t && t <= size))
1139 args_out_of_range_3 (array, from, to);
1140
1141 *ifrom = f;
1142 *ito = t;
1143}
1144
1145DEFUN ("substring", Fsubstring, Ssubstring, 1, 3, 0,
1146 doc: /* Return a new string whose contents are a substring of STRING.
1147The returned string consists of the characters between index FROM
1148\(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1149zero-indexed: 0 means the first character of STRING. Negative values
1150are counted from the end of STRING. If TO is nil, the substring runs
1151to the end of STRING.
1152
1153The STRING argument may also be a vector. In that case, the return
1154value is a new vector that contains the elements between index FROM
1155\(inclusive) and index TO (exclusive) of that vector argument.
1156
1157With one argument, just copy STRING (with properties, if any). */)
1158 (Lisp_Object string, Lisp_Object from, Lisp_Object to)
1159{
1160 Lisp_Object res;
1161 ptrdiff_t size, ifrom, ito;
1162
1163 if (STRINGP (string))
1164 size = SCHARS (string);
1165 else if (VECTORP (string))
1166 size = ASIZE (string);
1167 else
1168 wrong_type_argument (Qarrayp, string);
1169
1170 validate_subarray (string, from, to, size, &ifrom, &ito);
1171
1172 if (STRINGP (string))
1173 {
1174 ptrdiff_t from_byte
1175 = !ifrom ? 0 : string_char_to_byte (string, ifrom);
1176 ptrdiff_t to_byte
1177 = ito == size ? SBYTES (string) : string_char_to_byte (string, ito);
1178 res = make_specified_string (SSDATA (string) + from_byte,
1179 ito - ifrom, to_byte - from_byte,
1180 STRING_MULTIBYTE (string));
1181 copy_text_properties (make_number (ifrom), make_number (ito),
1182 string, make_number (0), res, Qnil);
1183 }
1184 else
1185 res = Fvector (ito - ifrom, aref_addr (string, ifrom));
1186
1187 return res;
1188}
1189
1190
1191DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1192 doc: /* Return a substring of STRING, without text properties.
1193It starts at index FROM and ends before TO.
1194TO may be nil or omitted; then the substring runs to the end of STRING.
1195If FROM is nil or omitted, the substring starts at the beginning of STRING.
1196If FROM or TO is negative, it counts from the end.
1197
1198With one argument, just copy STRING without its properties. */)
1199 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1200{
1201 ptrdiff_t from_char, to_char, from_byte, to_byte, size;
1202
1203 CHECK_STRING (string);
1204
1205 size = SCHARS (string);
1206 validate_subarray (string, from, to, size, &from_char, &to_char);
1207
1208 from_byte = !from_char ? 0 : string_char_to_byte (string, from_char);
1209 to_byte =
1210 to_char == size ? SBYTES (string) : string_char_to_byte (string, to_char);
1211 return make_specified_string (SSDATA (string) + from_byte,
1212 to_char - from_char, to_byte - from_byte,
1213 STRING_MULTIBYTE (string));
1214}
1215
1216/* Extract a substring of STRING, giving start and end positions
1217 both in characters and in bytes. */
1218
1219Lisp_Object
1220substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1221 ptrdiff_t to, ptrdiff_t to_byte)
1222{
1223 Lisp_Object res;
1224 ptrdiff_t size;
1225
1226 CHECK_VECTOR_OR_STRING (string);
1227
1228 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1229
1230 if (!(0 <= from && from <= to && to <= size))
1231 args_out_of_range_3 (string, make_number (from), make_number (to));
1232
1233 if (STRINGP (string))
1234 {
1235 res = make_specified_string (SSDATA (string) + from_byte,
1236 to - from, to_byte - from_byte,
1237 STRING_MULTIBYTE (string));
1238 copy_text_properties (make_number (from), make_number (to),
1239 string, make_number (0), res, Qnil);
1240 }
1241 else
1242 res = Fvector (to - from, aref_addr (string, from));
1243
1244 return res;
1245}
1246\f
1247DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1248 doc: /* Take cdr N times on LIST, return the result. */)
1249 (Lisp_Object n, Lisp_Object list)
1250{
1251 EMACS_INT i, num;
1252 CHECK_NUMBER (n);
1253 num = XINT (n);
1254 for (i = 0; i < num && !NILP (list); i++)
1255 {
1256 QUIT;
1257 CHECK_LIST_CONS (list, list);
1258 list = XCDR (list);
1259 }
1260 return list;
1261}
1262
1263DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1264 doc: /* Return the Nth element of LIST.
1265N counts from zero. If LIST is not that long, nil is returned. */)
1266 (Lisp_Object n, Lisp_Object list)
1267{
1268 return Fcar (Fnthcdr (n, list));
1269}
1270
1271DEFUN ("elt", Felt, Selt, 2, 2, 0,
1272 doc: /* Return element of SEQUENCE at index N. */)
1273 (register Lisp_Object sequence, Lisp_Object n)
1274{
1275 CHECK_NUMBER (n);
1276 if (CONSP (sequence) || NILP (sequence))
1277 return Fcar (Fnthcdr (n, sequence));
1278
1279 /* Faref signals a "not array" error, so check here. */
1280 CHECK_ARRAY (sequence, Qsequencep);
1281 return Faref (sequence, n);
1282}
1283
1284DEFUN ("member", Fmember, Smember, 2, 2, 0,
1285 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1286The value is actually the tail of LIST whose car is ELT. */)
1287 (register Lisp_Object elt, Lisp_Object list)
1288{
1289 register Lisp_Object tail;
1290 for (tail = list; CONSP (tail); tail = XCDR (tail))
1291 {
1292 register Lisp_Object tem;
1293 CHECK_LIST_CONS (tail, list);
1294 tem = XCAR (tail);
1295 if (! NILP (Fequal (elt, tem)))
1296 return tail;
1297 QUIT;
1298 }
1299 return Qnil;
1300}
1301
1302DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1303 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1304The value is actually the tail of LIST whose car is ELT. */)
1305 (register Lisp_Object elt, Lisp_Object list)
1306{
1307 while (1)
1308 {
1309 if (!CONSP (list) || EQ (XCAR (list), elt))
1310 break;
1311
1312 list = XCDR (list);
1313 if (!CONSP (list) || EQ (XCAR (list), elt))
1314 break;
1315
1316 list = XCDR (list);
1317 if (!CONSP (list) || EQ (XCAR (list), elt))
1318 break;
1319
1320 list = XCDR (list);
1321 QUIT;
1322 }
1323
1324 CHECK_LIST (list);
1325 return list;
1326}
1327
1328DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1329 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1330The value is actually the tail of LIST whose car is ELT. */)
1331 (register Lisp_Object elt, Lisp_Object list)
1332{
1333 register Lisp_Object tail;
1334
1335 for (tail = list; CONSP (tail); tail = XCDR (tail))
1336 {
1337 register Lisp_Object tem;
1338 CHECK_LIST_CONS (tail, list);
1339 tem = XCAR (tail);
1340 if (!NILP (Feql (elt, tem)))
1341 return tail;
1342 QUIT;
1343 }
1344 return Qnil;
1345}
1346
1347DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1348 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1349The value is actually the first element of LIST whose car is KEY.
1350Elements of LIST that are not conses are ignored. */)
1351 (Lisp_Object key, Lisp_Object list)
1352{
1353 while (1)
1354 {
1355 if (!CONSP (list)
1356 || (CONSP (XCAR (list))
1357 && EQ (XCAR (XCAR (list)), key)))
1358 break;
1359
1360 list = XCDR (list);
1361 if (!CONSP (list)
1362 || (CONSP (XCAR (list))
1363 && EQ (XCAR (XCAR (list)), key)))
1364 break;
1365
1366 list = XCDR (list);
1367 if (!CONSP (list)
1368 || (CONSP (XCAR (list))
1369 && EQ (XCAR (XCAR (list)), key)))
1370 break;
1371
1372 list = XCDR (list);
1373 QUIT;
1374 }
1375
1376 return CAR (list);
1377}
1378
1379/* Like Fassq but never report an error and do not allow quits.
1380 Use only on lists known never to be circular. */
1381
1382Lisp_Object
1383assq_no_quit (Lisp_Object key, Lisp_Object list)
1384{
1385 while (CONSP (list)
1386 && (!CONSP (XCAR (list))
1387 || !EQ (XCAR (XCAR (list)), key)))
1388 list = XCDR (list);
1389
1390 return CAR_SAFE (list);
1391}
1392
1393DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1394 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1395The value is actually the first element of LIST whose car equals KEY. */)
1396 (Lisp_Object key, Lisp_Object list)
1397{
1398 Lisp_Object car;
1399
1400 while (1)
1401 {
1402 if (!CONSP (list)
1403 || (CONSP (XCAR (list))
1404 && (car = XCAR (XCAR (list)),
1405 EQ (car, key) || !NILP (Fequal (car, key)))))
1406 break;
1407
1408 list = XCDR (list);
1409 if (!CONSP (list)
1410 || (CONSP (XCAR (list))
1411 && (car = XCAR (XCAR (list)),
1412 EQ (car, key) || !NILP (Fequal (car, key)))))
1413 break;
1414
1415 list = XCDR (list);
1416 if (!CONSP (list)
1417 || (CONSP (XCAR (list))
1418 && (car = XCAR (XCAR (list)),
1419 EQ (car, key) || !NILP (Fequal (car, key)))))
1420 break;
1421
1422 list = XCDR (list);
1423 QUIT;
1424 }
1425
1426 return CAR (list);
1427}
1428
1429/* Like Fassoc but never report an error and do not allow quits.
1430 Use only on lists known never to be circular. */
1431
1432Lisp_Object
1433assoc_no_quit (Lisp_Object key, Lisp_Object list)
1434{
1435 while (CONSP (list)
1436 && (!CONSP (XCAR (list))
1437 || (!EQ (XCAR (XCAR (list)), key)
1438 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1439 list = XCDR (list);
1440
1441 return CONSP (list) ? XCAR (list) : Qnil;
1442}
1443
1444DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1445 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1446The value is actually the first element of LIST whose cdr is KEY. */)
1447 (register Lisp_Object key, Lisp_Object list)
1448{
1449 while (1)
1450 {
1451 if (!CONSP (list)
1452 || (CONSP (XCAR (list))
1453 && EQ (XCDR (XCAR (list)), key)))
1454 break;
1455
1456 list = XCDR (list);
1457 if (!CONSP (list)
1458 || (CONSP (XCAR (list))
1459 && EQ (XCDR (XCAR (list)), key)))
1460 break;
1461
1462 list = XCDR (list);
1463 if (!CONSP (list)
1464 || (CONSP (XCAR (list))
1465 && EQ (XCDR (XCAR (list)), key)))
1466 break;
1467
1468 list = XCDR (list);
1469 QUIT;
1470 }
1471
1472 return CAR (list);
1473}
1474
1475DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1476 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1477The value is actually the first element of LIST whose cdr equals KEY. */)
1478 (Lisp_Object key, Lisp_Object list)
1479{
1480 Lisp_Object cdr;
1481
1482 while (1)
1483 {
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && (cdr = XCDR (XCAR (list)),
1487 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1488 break;
1489
1490 list = XCDR (list);
1491 if (!CONSP (list)
1492 || (CONSP (XCAR (list))
1493 && (cdr = XCDR (XCAR (list)),
1494 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1495 break;
1496
1497 list = XCDR (list);
1498 if (!CONSP (list)
1499 || (CONSP (XCAR (list))
1500 && (cdr = XCDR (XCAR (list)),
1501 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1502 break;
1503
1504 list = XCDR (list);
1505 QUIT;
1506 }
1507
1508 return CAR (list);
1509}
1510\f
1511DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1512 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1513More precisely, this function skips any members `eq' to ELT at the
1514front of LIST, then removes members `eq' to ELT from the remaining
1515sublist by modifying its list structure, then returns the resulting
1516list.
1517
1518Write `(setq foo (delq element foo))' to be sure of correctly changing
1519the value of a list `foo'. */)
1520 (register Lisp_Object elt, Lisp_Object list)
1521{
1522 Lisp_Object tail, tortoise, prev = Qnil;
1523 bool skip;
1524
1525 FOR_EACH_TAIL (tail, list, tortoise, skip)
1526 {
1527 Lisp_Object tem = XCAR (tail);
1528 if (EQ (elt, tem))
1529 {
1530 if (NILP (prev))
1531 list = XCDR (tail);
1532 else
1533 Fsetcdr (prev, XCDR (tail));
1534 }
1535 else
1536 prev = tail;
1537 }
1538 return list;
1539}
1540
1541DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1542 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1543SEQ must be a sequence (i.e. a list, a vector, or a string).
1544The return value is a sequence of the same type.
1545
1546If SEQ is a list, this behaves like `delq', except that it compares
1547with `equal' instead of `eq'. In particular, it may remove elements
1548by altering the list structure.
1549
1550If SEQ is not a list, deletion is never performed destructively;
1551instead this function creates and returns a new vector or string.
1552
1553Write `(setq foo (delete element foo))' to be sure of correctly
1554changing the value of a sequence `foo'. */)
1555 (Lisp_Object elt, Lisp_Object seq)
1556{
1557 if (VECTORP (seq))
1558 {
1559 ptrdiff_t i, n;
1560
1561 for (i = n = 0; i < ASIZE (seq); ++i)
1562 if (NILP (Fequal (AREF (seq, i), elt)))
1563 ++n;
1564
1565 if (n != ASIZE (seq))
1566 {
1567 struct Lisp_Vector *p = allocate_vector (n);
1568
1569 for (i = n = 0; i < ASIZE (seq); ++i)
1570 if (NILP (Fequal (AREF (seq, i), elt)))
1571 p->contents[n++] = AREF (seq, i);
1572
1573 XSETVECTOR (seq, p);
1574 }
1575 }
1576 else if (STRINGP (seq))
1577 {
1578 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1579 int c;
1580
1581 for (i = nchars = nbytes = ibyte = 0;
1582 i < SCHARS (seq);
1583 ++i, ibyte += cbytes)
1584 {
1585 if (STRING_MULTIBYTE (seq))
1586 {
1587 c = STRING_CHAR (SDATA (seq) + ibyte);
1588 cbytes = CHAR_BYTES (c);
1589 }
1590 else
1591 {
1592 c = SREF (seq, i);
1593 cbytes = 1;
1594 }
1595
1596 if (!INTEGERP (elt) || c != XINT (elt))
1597 {
1598 ++nchars;
1599 nbytes += cbytes;
1600 }
1601 }
1602
1603 if (nchars != SCHARS (seq))
1604 {
1605 Lisp_Object tem;
1606
1607 tem = make_uninit_multibyte_string (nchars, nbytes);
1608 if (!STRING_MULTIBYTE (seq))
1609 STRING_SET_UNIBYTE (tem);
1610
1611 for (i = nchars = nbytes = ibyte = 0;
1612 i < SCHARS (seq);
1613 ++i, ibyte += cbytes)
1614 {
1615 if (STRING_MULTIBYTE (seq))
1616 {
1617 c = STRING_CHAR (SDATA (seq) + ibyte);
1618 cbytes = CHAR_BYTES (c);
1619 }
1620 else
1621 {
1622 c = SREF (seq, i);
1623 cbytes = 1;
1624 }
1625
1626 if (!INTEGERP (elt) || c != XINT (elt))
1627 {
1628 unsigned char *from = SDATA (seq) + ibyte;
1629 unsigned char *to = SDATA (tem) + nbytes;
1630 ptrdiff_t n;
1631
1632 ++nchars;
1633 nbytes += cbytes;
1634
1635 for (n = cbytes; n--; )
1636 *to++ = *from++;
1637 }
1638 }
1639
1640 seq = tem;
1641 }
1642 }
1643 else
1644 {
1645 Lisp_Object tail, prev;
1646
1647 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1648 {
1649 CHECK_LIST_CONS (tail, seq);
1650
1651 if (!NILP (Fequal (elt, XCAR (tail))))
1652 {
1653 if (NILP (prev))
1654 seq = XCDR (tail);
1655 else
1656 Fsetcdr (prev, XCDR (tail));
1657 }
1658 else
1659 prev = tail;
1660 QUIT;
1661 }
1662 }
1663
1664 return seq;
1665}
1666
1667DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1668 doc: /* Reverse order of items in a list, vector or string SEQ.
1669If SEQ is a list, it should be nil-terminated.
1670This function may destructively modify SEQ to produce the value. */)
1671 (Lisp_Object seq)
1672{
1673 if (NILP (seq))
1674 return seq;
1675 else if (STRINGP (seq))
1676 return Freverse (seq);
1677 else if (CONSP (seq))
1678 {
1679 Lisp_Object prev, tail, next;
1680
1681 for (prev = Qnil, tail = seq; !NILP (tail); tail = next)
1682 {
1683 QUIT;
1684 CHECK_LIST_CONS (tail, tail);
1685 next = XCDR (tail);
1686 Fsetcdr (tail, prev);
1687 prev = tail;
1688 }
1689 seq = prev;
1690 }
1691 else if (VECTORP (seq))
1692 {
1693 ptrdiff_t i, size = ASIZE (seq);
1694
1695 for (i = 0; i < size / 2; i++)
1696 {
1697 Lisp_Object tem = AREF (seq, i);
1698 ASET (seq, i, AREF (seq, size - i - 1));
1699 ASET (seq, size - i - 1, tem);
1700 }
1701 }
1702 else if (BOOL_VECTOR_P (seq))
1703 {
1704 ptrdiff_t i, size = bool_vector_size (seq);
1705
1706 for (i = 0; i < size / 2; i++)
1707 {
1708 bool tem = bool_vector_bitref (seq, i);
1709 bool_vector_set (seq, i, bool_vector_bitref (seq, size - i - 1));
1710 bool_vector_set (seq, size - i - 1, tem);
1711 }
1712 }
1713 else
1714 wrong_type_argument (Qarrayp, seq);
1715 return seq;
1716}
1717
1718DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1719 doc: /* Return the reversed copy of list, vector, or string SEQ.
1720See also the function `nreverse', which is used more often. */)
1721 (Lisp_Object seq)
1722{
1723 Lisp_Object new;
1724
1725 if (NILP (seq))
1726 return Qnil;
1727 else if (CONSP (seq))
1728 {
1729 for (new = Qnil; CONSP (seq); seq = XCDR (seq))
1730 {
1731 QUIT;
1732 new = Fcons (XCAR (seq), new);
1733 }
1734 CHECK_LIST_END (seq, seq);
1735 }
1736 else if (VECTORP (seq))
1737 {
1738 ptrdiff_t i, size = ASIZE (seq);
1739
1740 new = make_uninit_vector (size);
1741 for (i = 0; i < size; i++)
1742 ASET (new, i, AREF (seq, size - i - 1));
1743 }
1744 else if (BOOL_VECTOR_P (seq))
1745 {
1746 ptrdiff_t i;
1747 EMACS_INT nbits = bool_vector_size (seq);
1748
1749 new = make_uninit_bool_vector (nbits);
1750 for (i = 0; i < nbits; i++)
1751 bool_vector_set (new, i, bool_vector_bitref (seq, nbits - i - 1));
1752 }
1753 else if (STRINGP (seq))
1754 {
1755 ptrdiff_t size = SCHARS (seq), bytes = SBYTES (seq);
1756
1757 if (size == bytes)
1758 {
1759 ptrdiff_t i;
1760
1761 new = make_uninit_string (size);
1762 for (i = 0; i < size; i++)
1763 SSET (new, i, SREF (seq, size - i - 1));
1764 }
1765 else
1766 {
1767 unsigned char *p, *q;
1768
1769 new = make_uninit_multibyte_string (size, bytes);
1770 p = SDATA (seq), q = SDATA (new) + bytes;
1771 while (q > SDATA (new))
1772 {
1773 int ch, len;
1774
1775 ch = STRING_CHAR_AND_LENGTH (p, len);
1776 p += len, q -= len;
1777 CHAR_STRING (ch, q);
1778 }
1779 }
1780 }
1781 else
1782 wrong_type_argument (Qsequencep, seq);
1783 return new;
1784}
1785\f
1786DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1787 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1788Returns the sorted list. LIST is modified by side effects.
1789PREDICATE is called with two elements of LIST, and should return non-nil
1790if the first element should sort before the second. */)
1791 (Lisp_Object list, Lisp_Object predicate)
1792{
1793 Lisp_Object front, back;
1794 register Lisp_Object len, tem;
1795 struct gcpro gcpro1, gcpro2;
1796 EMACS_INT length;
1797
1798 front = list;
1799 len = Flength (list);
1800 length = XINT (len);
1801 if (length < 2)
1802 return list;
1803
1804 XSETINT (len, (length / 2) - 1);
1805 tem = Fnthcdr (len, list);
1806 back = Fcdr (tem);
1807 Fsetcdr (tem, Qnil);
1808
1809 GCPRO2 (front, back);
1810 front = Fsort (front, predicate);
1811 back = Fsort (back, predicate);
1812 UNGCPRO;
1813 return merge (front, back, predicate);
1814}
1815
1816Lisp_Object
1817merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1818{
1819 Lisp_Object value;
1820 register Lisp_Object tail;
1821 Lisp_Object tem;
1822 register Lisp_Object l1, l2;
1823 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1824
1825 l1 = org_l1;
1826 l2 = org_l2;
1827 tail = Qnil;
1828 value = Qnil;
1829
1830 /* It is sufficient to protect org_l1 and org_l2.
1831 When l1 and l2 are updated, we copy the new values
1832 back into the org_ vars. */
1833 GCPRO4 (org_l1, org_l2, pred, value);
1834
1835 while (1)
1836 {
1837 if (NILP (l1))
1838 {
1839 UNGCPRO;
1840 if (NILP (tail))
1841 return l2;
1842 Fsetcdr (tail, l2);
1843 return value;
1844 }
1845 if (NILP (l2))
1846 {
1847 UNGCPRO;
1848 if (NILP (tail))
1849 return l1;
1850 Fsetcdr (tail, l1);
1851 return value;
1852 }
1853 tem = call2 (pred, Fcar (l2), Fcar (l1));
1854 if (NILP (tem))
1855 {
1856 tem = l1;
1857 l1 = Fcdr (l1);
1858 org_l1 = l1;
1859 }
1860 else
1861 {
1862 tem = l2;
1863 l2 = Fcdr (l2);
1864 org_l2 = l2;
1865 }
1866 if (NILP (tail))
1867 value = tem;
1868 else
1869 Fsetcdr (tail, tem);
1870 tail = tem;
1871 }
1872}
1873
1874\f
1875/* This does not check for quits. That is safe since it must terminate. */
1876
1877DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1878 doc: /* Extract a value from a property list.
1879PLIST is a property list, which is a list of the form
1880\(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1881corresponding to the given PROP, or nil if PROP is not one of the
1882properties on the list. This function never signals an error. */)
1883 (Lisp_Object plist, Lisp_Object prop)
1884{
1885 Lisp_Object tail, halftail;
1886
1887 /* halftail is used to detect circular lists. */
1888 tail = halftail = plist;
1889 while (CONSP (tail) && CONSP (XCDR (tail)))
1890 {
1891 if (EQ (prop, XCAR (tail)))
1892 return XCAR (XCDR (tail));
1893
1894 tail = XCDR (XCDR (tail));
1895 halftail = XCDR (halftail);
1896 if (EQ (tail, halftail))
1897 break;
1898 }
1899
1900 return Qnil;
1901}
1902
1903DEFUN ("get", Fget, Sget, 2, 2, 0,
1904 doc: /* Return the value of SYMBOL's PROPNAME property.
1905This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1906 (Lisp_Object symbol, Lisp_Object propname)
1907{
1908 CHECK_SYMBOL (symbol);
1909 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1910}
1911
1912DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1913 doc: /* Change value in PLIST of PROP to VAL.
1914PLIST is a property list, which is a list of the form
1915\(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1916If PROP is already a property on the list, its value is set to VAL,
1917otherwise the new PROP VAL pair is added. The new plist is returned;
1918use `(setq x (plist-put x prop val))' to be sure to use the new value.
1919The PLIST is modified by side effects. */)
1920 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1921{
1922 register Lisp_Object tail, prev;
1923 Lisp_Object newcell;
1924 prev = Qnil;
1925 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1926 tail = XCDR (XCDR (tail)))
1927 {
1928 if (EQ (prop, XCAR (tail)))
1929 {
1930 Fsetcar (XCDR (tail), val);
1931 return plist;
1932 }
1933
1934 prev = tail;
1935 QUIT;
1936 }
1937 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1938 if (NILP (prev))
1939 return newcell;
1940 else
1941 Fsetcdr (XCDR (prev), newcell);
1942 return plist;
1943}
1944
1945DEFUN ("put", Fput, Sput, 3, 3, 0,
1946 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1947It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1948 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1949{
1950 CHECK_SYMBOL (symbol);
1951 set_symbol_plist
1952 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1953 return value;
1954}
1955\f
1956DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1957 doc: /* Extract a value from a property list, comparing with `equal'.
1958PLIST is a property list, which is a list of the form
1959\(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1960corresponding to the given PROP, or nil if PROP is not
1961one of the properties on the list. */)
1962 (Lisp_Object plist, Lisp_Object prop)
1963{
1964 Lisp_Object tail;
1965
1966 for (tail = plist;
1967 CONSP (tail) && CONSP (XCDR (tail));
1968 tail = XCDR (XCDR (tail)))
1969 {
1970 if (! NILP (Fequal (prop, XCAR (tail))))
1971 return XCAR (XCDR (tail));
1972
1973 QUIT;
1974 }
1975
1976 CHECK_LIST_END (tail, prop);
1977
1978 return Qnil;
1979}
1980
1981DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1982 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1983PLIST is a property list, which is a list of the form
1984\(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1985If PROP is already a property on the list, its value is set to VAL,
1986otherwise the new PROP VAL pair is added. The new plist is returned;
1987use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1988The PLIST is modified by side effects. */)
1989 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1990{
1991 register Lisp_Object tail, prev;
1992 Lisp_Object newcell;
1993 prev = Qnil;
1994 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1995 tail = XCDR (XCDR (tail)))
1996 {
1997 if (! NILP (Fequal (prop, XCAR (tail))))
1998 {
1999 Fsetcar (XCDR (tail), val);
2000 return plist;
2001 }
2002
2003 prev = tail;
2004 QUIT;
2005 }
2006 newcell = list2 (prop, val);
2007 if (NILP (prev))
2008 return newcell;
2009 else
2010 Fsetcdr (XCDR (prev), newcell);
2011 return plist;
2012}
2013\f
2014DEFUN ("eql", Feql, Seql, 2, 2, 0,
2015 doc: /* Return t if the two args are the same Lisp object.
2016Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2017 (Lisp_Object obj1, Lisp_Object obj2)
2018{
2019 return scm_is_true (scm_eqv_p (obj1, obj2)) ? Qt : Qnil;
2020}
2021
2022DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2023 doc: /* Return t if two Lisp objects have similar structure and contents.
2024They must have the same data type.
2025Conses are compared by comparing the cars and the cdrs.
2026Vectors and strings are compared element by element.
2027Numbers are compared by value, but integers cannot equal floats.
2028 (Use `=' if you want integers and floats to be able to be equal.)
2029Symbols must match exactly. */)
2030 (register Lisp_Object o1, Lisp_Object o2)
2031{
2032 return scm_is_true (scm_equal_p (o1, o2)) ? Qt : Qnil;
2033}
2034
2035SCM compare_text_properties = SCM_BOOL_F;
2036
2037DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2038 doc: /* Return t if two Lisp objects have similar structure and contents.
2039This is like `equal' except that it compares the text properties
2040of strings. (`equal' ignores text properties.) */)
2041 (register Lisp_Object o1, Lisp_Object o2)
2042{
2043 Lisp_Object tem;
2044
2045 scm_dynwind_begin (0);
2046 scm_dynwind_fluid (compare_text_properties, SCM_BOOL_T);
2047 tem = Fequal (o1, o2);
2048 scm_dynwind_end ();
2049 return tem;
2050}
2051
2052static SCM
2053misc_equal_p (SCM o1, SCM o2)
2054{
2055 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2056 return SCM_BOOL_F;
2057 if (OVERLAYP (o1))
2058 {
2059 if (NILP (Fequal (OVERLAY_START (o1), OVERLAY_START (o2)))
2060 || NILP (Fequal (OVERLAY_END (o1), OVERLAY_END (o2))))
2061 return SCM_BOOL_F;
2062 return scm_equal_p (XOVERLAY (o1)->plist, XOVERLAY (o2)->plist);
2063 }
2064 if (MARKERP (o1))
2065 {
2066 struct Lisp_Marker *m1 = XMARKER (o1), *m2 = XMARKER (o2);
2067 return scm_from_bool (m1->buffer == m2->buffer
2068 && (m1->buffer == 0
2069 || m1->bytepos == m2->bytepos));
2070 }
2071 return SCM_BOOL_F;
2072}
2073
2074static SCM
2075vectorlike_equal_p (SCM o1, SCM o2)
2076{
2077 int i;
2078 ptrdiff_t size = ASIZE (o1);
2079 /* Pseudovectors have the type encoded in the size field, so this
2080 test actually checks that the objects have the same type as well
2081 as the same size. */
2082 if (ASIZE (o2) != size)
2083 return SCM_BOOL_F;
2084 /* Boolvectors are compared much like strings. */
2085 if (BOOL_VECTOR_P (o1))
2086 {
2087 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2088 return SCM_BOOL_F;
2089 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2090 ((XBOOL_VECTOR (o1)->size
2091 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2092 / BOOL_VECTOR_BITS_PER_CHAR)))
2093 return SCM_BOOL_F;
2094 return SCM_BOOL_T;
2095 }
2096 if (WINDOW_CONFIGURATIONP (o1))
2097 return scm_from_bool (compare_window_configurations (o1, o2, 0));
2098
2099 /* Aside from them, only true vectors, char-tables, compiled
2100 functions, and fonts (font-spec, font-entity, font-object) are
2101 sensible to compare, so eliminate the others now. */
2102 if (size & PSEUDOVECTOR_FLAG)
2103 {
2104 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2105 < PVEC_COMPILED)
2106 return SCM_BOOL_F;
2107 size &= PSEUDOVECTOR_SIZE_MASK;
2108 }
2109 for (i = 0; i < size; i++)
2110 {
2111 Lisp_Object v1, v2;
2112 v1 = AREF (o1, i);
2113 v2 = AREF (o2, i);
2114 if (scm_is_false (scm_equal_p (v1, v2)))
2115 return SCM_BOOL_F;
2116 }
2117 return SCM_BOOL_T;
2118}
2119
2120static SCM
2121string_equal_p (SCM o1, SCM o2)
2122{
2123 if (SCHARS (o1) != SCHARS (o2))
2124 return SCM_BOOL_F;
2125 if (SBYTES (o1) != SBYTES (o2))
2126 return SCM_BOOL_F;
2127 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2128 return SCM_BOOL_F;
2129 if (scm_is_true (scm_fluid_ref (compare_text_properties))
2130 && !compare_string_intervals (o1, o2))
2131 return SCM_BOOL_F;
2132 return SCM_BOOL_T;
2133}
2134\f
2135
2136DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2137 doc: /* Store each element of ARRAY with ITEM.
2138ARRAY is a vector, string, char-table, or bool-vector. */)
2139 (Lisp_Object array, Lisp_Object item)
2140{
2141 register ptrdiff_t size, idx;
2142
2143 if (VECTORP (array))
2144 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2145 ASET (array, idx, item);
2146 else if (CHAR_TABLE_P (array))
2147 {
2148 int i;
2149
2150 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2151 set_char_table_contents (array, i, item);
2152 set_char_table_defalt (array, item);
2153 }
2154 else if (STRINGP (array))
2155 {
2156 register unsigned char *p = SDATA (array);
2157 int charval;
2158 CHECK_CHARACTER (item);
2159 charval = XFASTINT (item);
2160 size = SCHARS (array);
2161 if (STRING_MULTIBYTE (array))
2162 {
2163 unsigned char str[MAX_MULTIBYTE_LENGTH];
2164 int len = CHAR_STRING (charval, str);
2165 ptrdiff_t size_byte = SBYTES (array);
2166
2167 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2168 || SCHARS (array) * len != size_byte)
2169 error ("Attempt to change byte length of a string");
2170 for (idx = 0; idx < size_byte; idx++)
2171 *p++ = str[idx % len];
2172 }
2173 else
2174 for (idx = 0; idx < size; idx++)
2175 p[idx] = charval;
2176 }
2177 else if (BOOL_VECTOR_P (array))
2178 return bool_vector_fill (array, item);
2179 else
2180 wrong_type_argument (Qarrayp, array);
2181 return array;
2182}
2183
2184DEFUN ("clear-string", Fclear_string, Sclear_string,
2185 1, 1, 0,
2186 doc: /* Clear the contents of STRING.
2187This makes STRING unibyte and may change its length. */)
2188 (Lisp_Object string)
2189{
2190 ptrdiff_t len;
2191 CHECK_STRING (string);
2192 len = SBYTES (string);
2193 memset (SDATA (string), 0, len);
2194 STRING_SET_CHARS (string, len);
2195 STRING_SET_UNIBYTE (string);
2196 return Qnil;
2197}
2198\f
2199/* ARGSUSED */
2200Lisp_Object
2201nconc2 (Lisp_Object s1, Lisp_Object s2)
2202{
2203 Lisp_Object args[2];
2204 args[0] = s1;
2205 args[1] = s2;
2206 return Fnconc (2, args);
2207}
2208
2209DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2210 doc: /* Concatenate any number of lists by altering them.
2211Only the last argument is not altered, and need not be a list.
2212usage: (nconc &rest LISTS) */)
2213 (ptrdiff_t nargs, Lisp_Object *args)
2214{
2215 ptrdiff_t argnum;
2216 register Lisp_Object tail, tem, val;
2217
2218 val = tail = Qnil;
2219
2220 for (argnum = 0; argnum < nargs; argnum++)
2221 {
2222 tem = args[argnum];
2223 if (NILP (tem)) continue;
2224
2225 if (NILP (val))
2226 val = tem;
2227
2228 if (argnum + 1 == nargs) break;
2229
2230 CHECK_LIST_CONS (tem, tem);
2231
2232 while (CONSP (tem))
2233 {
2234 tail = tem;
2235 tem = XCDR (tail);
2236 QUIT;
2237 }
2238
2239 tem = args[argnum + 1];
2240 Fsetcdr (tail, tem);
2241 if (NILP (tem))
2242 args[argnum + 1] = tail;
2243 }
2244
2245 return val;
2246}
2247\f
2248/* This is the guts of all mapping functions.
2249 Apply FN to each element of SEQ, one by one,
2250 storing the results into elements of VALS, a C vector of Lisp_Objects.
2251 LENI is the length of VALS, which should also be the length of SEQ. */
2252
2253static void
2254mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2255{
2256 register Lisp_Object tail;
2257 Lisp_Object dummy;
2258 register EMACS_INT i;
2259 struct gcpro gcpro1, gcpro2, gcpro3;
2260
2261 if (vals)
2262 {
2263 /* Don't let vals contain any garbage when GC happens. */
2264 for (i = 0; i < leni; i++)
2265 vals[i] = Qnil;
2266
2267 GCPRO3 (dummy, fn, seq);
2268 gcpro1.var = vals;
2269 gcpro1.nvars = leni;
2270 }
2271 else
2272 GCPRO2 (fn, seq);
2273 /* We need not explicitly protect `tail' because it is used only on lists, and
2274 1) lists are not relocated and 2) the list is marked via `seq' so will not
2275 be freed */
2276
2277 if (VECTORP (seq) || COMPILEDP (seq))
2278 {
2279 for (i = 0; i < leni; i++)
2280 {
2281 dummy = call1 (fn, AREF (seq, i));
2282 if (vals)
2283 vals[i] = dummy;
2284 }
2285 }
2286 else if (BOOL_VECTOR_P (seq))
2287 {
2288 for (i = 0; i < leni; i++)
2289 {
2290 dummy = call1 (fn, bool_vector_ref (seq, i));
2291 if (vals)
2292 vals[i] = dummy;
2293 }
2294 }
2295 else if (STRINGP (seq))
2296 {
2297 ptrdiff_t i_byte;
2298
2299 for (i = 0, i_byte = 0; i < leni;)
2300 {
2301 int c;
2302 ptrdiff_t i_before = i;
2303
2304 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2305 XSETFASTINT (dummy, c);
2306 dummy = call1 (fn, dummy);
2307 if (vals)
2308 vals[i_before] = dummy;
2309 }
2310 }
2311 else /* Must be a list, since Flength did not get an error */
2312 {
2313 tail = seq;
2314 for (i = 0; i < leni && CONSP (tail); i++)
2315 {
2316 dummy = call1 (fn, XCAR (tail));
2317 if (vals)
2318 vals[i] = dummy;
2319 tail = XCDR (tail);
2320 }
2321 }
2322
2323 UNGCPRO;
2324}
2325
2326DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2327 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2328In between each pair of results, stick in SEPARATOR. Thus, " " as
2329SEPARATOR results in spaces between the values returned by FUNCTION.
2330SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2331 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2332{
2333 Lisp_Object len;
2334 register EMACS_INT leni;
2335 EMACS_INT nargs;
2336 ptrdiff_t i;
2337 register Lisp_Object *args;
2338 struct gcpro gcpro1;
2339 Lisp_Object ret;
2340 USE_SAFE_ALLOCA;
2341
2342 len = Flength (sequence);
2343 if (CHAR_TABLE_P (sequence))
2344 wrong_type_argument (Qlistp, sequence);
2345 leni = XINT (len);
2346 nargs = leni + leni - 1;
2347 if (nargs < 0) return empty_unibyte_string;
2348
2349 SAFE_ALLOCA_LISP (args, nargs);
2350
2351 GCPRO1 (separator);
2352 mapcar1 (leni, args, function, sequence);
2353 UNGCPRO;
2354
2355 for (i = leni - 1; i > 0; i--)
2356 args[i + i] = args[i];
2357
2358 for (i = 1; i < nargs; i += 2)
2359 args[i] = separator;
2360
2361 ret = Fconcat (nargs, args);
2362 SAFE_FREE ();
2363
2364 return ret;
2365}
2366
2367DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2368 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2369The result is a list just as long as SEQUENCE.
2370SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2371 (Lisp_Object function, Lisp_Object sequence)
2372{
2373 register Lisp_Object len;
2374 register EMACS_INT leni;
2375 register Lisp_Object *args;
2376 Lisp_Object ret;
2377 USE_SAFE_ALLOCA;
2378
2379 len = Flength (sequence);
2380 if (CHAR_TABLE_P (sequence))
2381 wrong_type_argument (Qlistp, sequence);
2382 leni = XFASTINT (len);
2383
2384 SAFE_ALLOCA_LISP (args, leni);
2385
2386 mapcar1 (leni, args, function, sequence);
2387
2388 ret = Flist (leni, args);
2389 SAFE_FREE ();
2390
2391 return ret;
2392}
2393
2394DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2395 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2396Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2397SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2398 (Lisp_Object function, Lisp_Object sequence)
2399{
2400 register EMACS_INT leni;
2401
2402 leni = XFASTINT (Flength (sequence));
2403 if (CHAR_TABLE_P (sequence))
2404 wrong_type_argument (Qlistp, sequence);
2405 mapcar1 (leni, 0, function, sequence);
2406
2407 return sequence;
2408}
2409\f
2410/* This is how C code calls `yes-or-no-p' and allows the user
2411 to redefined it.
2412
2413 Anything that calls this function must protect from GC! */
2414
2415Lisp_Object
2416do_yes_or_no_p (Lisp_Object prompt)
2417{
2418 return call1 (intern ("yes-or-no-p"), prompt);
2419}
2420
2421/* Anything that calls this function must protect from GC! */
2422
2423DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2424 doc: /* Ask user a yes-or-no question.
2425Return t if answer is yes, and nil if the answer is no.
2426PROMPT is the string to display to ask the question. It should end in
2427a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2428
2429The user must confirm the answer with RET, and can edit it until it
2430has been confirmed.
2431
2432If dialog boxes are supported, a dialog box will be used
2433if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2434 (Lisp_Object prompt)
2435{
2436 register Lisp_Object ans;
2437 Lisp_Object args[2];
2438 struct gcpro gcpro1;
2439
2440 CHECK_STRING (prompt);
2441
2442 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2443 && use_dialog_box)
2444 {
2445 Lisp_Object pane, menu, obj;
2446 redisplay_preserve_echo_area (4);
2447 pane = list2 (Fcons (build_string ("Yes"), Qt),
2448 Fcons (build_string ("No"), Qnil));
2449 GCPRO1 (pane);
2450 menu = Fcons (prompt, pane);
2451 obj = Fx_popup_dialog (Qt, menu, Qnil);
2452 UNGCPRO;
2453 return obj;
2454 }
2455
2456 args[0] = prompt;
2457 args[1] = build_string ("(yes or no) ");
2458 prompt = Fconcat (2, args);
2459
2460 GCPRO1 (prompt);
2461
2462 while (1)
2463 {
2464 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2465 Qyes_or_no_p_history, Qnil,
2466 Qnil));
2467 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2468 {
2469 UNGCPRO;
2470 return Qt;
2471 }
2472 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2473 {
2474 UNGCPRO;
2475 return Qnil;
2476 }
2477
2478 Fding (Qnil);
2479 Fdiscard_input ();
2480 message1 ("Please answer yes or no.");
2481 Fsleep_for (make_number (2), Qnil);
2482 }
2483}
2484\f
2485DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2486 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2487
2488Each of the three load averages is multiplied by 100, then converted
2489to integer.
2490
2491When USE-FLOATS is non-nil, floats will be used instead of integers.
2492These floats are not multiplied by 100.
2493
2494If the 5-minute or 15-minute load averages are not available, return a
2495shortened list, containing only those averages which are available.
2496
2497An error is thrown if the load average can't be obtained. In some
2498cases making it work would require Emacs being installed setuid or
2499setgid so that it can read kernel information, and that usually isn't
2500advisable. */)
2501 (Lisp_Object use_floats)
2502{
2503 double load_ave[3];
2504 int loads = getloadavg (load_ave, 3);
2505 Lisp_Object ret = Qnil;
2506
2507 if (loads < 0)
2508 error ("load-average not implemented for this operating system");
2509
2510 while (loads-- > 0)
2511 {
2512 Lisp_Object load = (NILP (use_floats)
2513 ? make_number (100.0 * load_ave[loads])
2514 : make_float (load_ave[loads]));
2515 ret = Fcons (load, ret);
2516 }
2517
2518 return ret;
2519}
2520\f
2521static Lisp_Object Qsubfeatures;
2522
2523DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2524 doc: /* Return t if FEATURE is present in this Emacs.
2525
2526Use this to conditionalize execution of lisp code based on the
2527presence or absence of Emacs or environment extensions.
2528Use `provide' to declare that a feature is available. This function
2529looks at the value of the variable `features'. The optional argument
2530SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2531 (Lisp_Object feature, Lisp_Object subfeature)
2532{
2533 register Lisp_Object tem;
2534 CHECK_SYMBOL (feature);
2535 tem = Fmemq (feature, Vfeatures);
2536 if (!NILP (tem) && !NILP (subfeature))
2537 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2538 return (NILP (tem)) ? Qnil : Qt;
2539}
2540
2541static Lisp_Object Qfuncall;
2542
2543DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2544 doc: /* Announce that FEATURE is a feature of the current Emacs.
2545The optional argument SUBFEATURES should be a list of symbols listing
2546particular subfeatures supported in this version of FEATURE. */)
2547 (Lisp_Object feature, Lisp_Object subfeatures)
2548{
2549 register Lisp_Object tem;
2550 CHECK_SYMBOL (feature);
2551 CHECK_LIST (subfeatures);
2552 if (!NILP (Vautoload_queue))
2553 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2554 Vautoload_queue);
2555 tem = Fmemq (feature, Vfeatures);
2556 if (NILP (tem))
2557 Vfeatures = Fcons (feature, Vfeatures);
2558 if (!NILP (subfeatures))
2559 Fput (feature, Qsubfeatures, subfeatures);
2560 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2561
2562 /* Run any load-hooks for this file. */
2563 tem = Fassq (feature, Vafter_load_alist);
2564 if (CONSP (tem))
2565 Fmapc (Qfuncall, XCDR (tem));
2566
2567 return feature;
2568}
2569\f
2570/* `require' and its subroutines. */
2571
2572/* List of features currently being require'd, innermost first. */
2573
2574static Lisp_Object require_nesting_list;
2575
2576static void
2577require_unwind (Lisp_Object old_value)
2578{
2579 require_nesting_list = old_value;
2580}
2581
2582DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2583 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2584If FEATURE is not a member of the list `features', then the feature
2585is not loaded; so load the file FILENAME.
2586If FILENAME is omitted, the printname of FEATURE is used as the file name,
2587and `load' will try to load this name appended with the suffix `.elc' or
2588`.el', in that order. The name without appended suffix will not be used.
2589See `get-load-suffixes' for the complete list of suffixes.
2590If the optional third argument NOERROR is non-nil,
2591then return nil if the file is not found instead of signaling an error.
2592Normally the return value is FEATURE.
2593The normal messages at start and end of loading FILENAME are suppressed. */)
2594 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2595{
2596 Lisp_Object tem;
2597 struct gcpro gcpro1, gcpro2;
2598 bool from_file = load_in_progress;
2599
2600 CHECK_SYMBOL (feature);
2601
2602 /* Record the presence of `require' in this file
2603 even if the feature specified is already loaded.
2604 But not more than once in any file,
2605 and not when we aren't loading or reading from a file. */
2606 if (!from_file)
2607 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2608 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2609 from_file = 1;
2610
2611 if (from_file)
2612 {
2613 tem = Fcons (Qrequire, feature);
2614 if (NILP (Fmember (tem, Vcurrent_load_list)))
2615 LOADHIST_ATTACH (tem);
2616 }
2617 tem = Fmemq (feature, Vfeatures);
2618
2619 if (NILP (tem))
2620 {
2621 ptrdiff_t count = SPECPDL_INDEX ();
2622 int nesting = 0;
2623
2624 /* This is to make sure that loadup.el gives a clear picture
2625 of what files are preloaded and when. */
2626 if (! NILP (Vpurify_flag))
2627 error ("(require %s) while preparing to dump",
2628 SDATA (SYMBOL_NAME (feature)));
2629
2630 /* A certain amount of recursive `require' is legitimate,
2631 but if we require the same feature recursively 3 times,
2632 signal an error. */
2633 tem = require_nesting_list;
2634 while (! NILP (tem))
2635 {
2636 if (! NILP (Fequal (feature, XCAR (tem))))
2637 nesting++;
2638 tem = XCDR (tem);
2639 }
2640 if (nesting > 3)
2641 error ("Recursive `require' for feature `%s'",
2642 SDATA (SYMBOL_NAME (feature)));
2643
2644 /* Update the list for any nested `require's that occur. */
2645 record_unwind_protect (require_unwind, require_nesting_list);
2646 require_nesting_list = Fcons (feature, require_nesting_list);
2647
2648 /* Value saved here is to be restored into Vautoload_queue */
2649 record_unwind_protect (un_autoload, Vautoload_queue);
2650 Vautoload_queue = Qt;
2651
2652 /* Load the file. */
2653 GCPRO2 (feature, filename);
2654 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2655 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2656 UNGCPRO;
2657
2658 /* If load failed entirely, return nil. */
2659 if (NILP (tem))
2660 return unbind_to (count, Qnil);
2661
2662 tem = Fmemq (feature, Vfeatures);
2663 if (NILP (tem))
2664 error ("Required feature `%s' was not provided",
2665 SDATA (SYMBOL_NAME (feature)));
2666
2667 /* Once loading finishes, don't undo it. */
2668 Vautoload_queue = Qt;
2669 feature = unbind_to (count, feature);
2670 }
2671
2672 return feature;
2673}
2674\f
2675/* Primitives for work of the "widget" library.
2676 In an ideal world, this section would not have been necessary.
2677 However, lisp function calls being as slow as they are, it turns
2678 out that some functions in the widget library (wid-edit.el) are the
2679 bottleneck of Widget operation. Here is their translation to C,
2680 for the sole reason of efficiency. */
2681
2682DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2683 doc: /* Return non-nil if PLIST has the property PROP.
2684PLIST is a property list, which is a list of the form
2685\(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2686Unlike `plist-get', this allows you to distinguish between a missing
2687property and a property with the value nil.
2688The value is actually the tail of PLIST whose car is PROP. */)
2689 (Lisp_Object plist, Lisp_Object prop)
2690{
2691 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2692 {
2693 QUIT;
2694 plist = XCDR (plist);
2695 plist = CDR (plist);
2696 }
2697 return plist;
2698}
2699
2700DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2701 doc: /* In WIDGET, set PROPERTY to VALUE.
2702The value can later be retrieved with `widget-get'. */)
2703 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2704{
2705 CHECK_CONS (widget);
2706 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2707 return value;
2708}
2709
2710DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2711 doc: /* In WIDGET, get the value of PROPERTY.
2712The value could either be specified when the widget was created, or
2713later with `widget-put'. */)
2714 (Lisp_Object widget, Lisp_Object property)
2715{
2716 Lisp_Object tmp;
2717
2718 while (1)
2719 {
2720 if (NILP (widget))
2721 return Qnil;
2722 CHECK_CONS (widget);
2723 tmp = Fplist_member (XCDR (widget), property);
2724 if (CONSP (tmp))
2725 {
2726 tmp = XCDR (tmp);
2727 return CAR (tmp);
2728 }
2729 tmp = XCAR (widget);
2730 if (NILP (tmp))
2731 return Qnil;
2732 widget = Fget (tmp, Qwidget_type);
2733 }
2734}
2735
2736DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2737 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2738ARGS are passed as extra arguments to the function.
2739usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2740 (ptrdiff_t nargs, Lisp_Object *args)
2741{
2742 /* This function can GC. */
2743 Lisp_Object newargs[3];
2744 struct gcpro gcpro1, gcpro2;
2745 Lisp_Object result;
2746
2747 newargs[0] = Fwidget_get (args[0], args[1]);
2748 newargs[1] = args[0];
2749 newargs[2] = Flist (nargs - 2, args + 2);
2750 GCPRO2 (newargs[0], newargs[2]);
2751 result = Fapply (3, newargs);
2752 UNGCPRO;
2753 return result;
2754}
2755
2756#ifdef HAVE_LANGINFO_CODESET
2757#include <langinfo.h>
2758#endif
2759
2760DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2761 doc: /* Access locale data ITEM for the current C locale, if available.
2762ITEM should be one of the following:
2763
2764`codeset', returning the character set as a string (locale item CODESET);
2765
2766`days', returning a 7-element vector of day names (locale items DAY_n);
2767
2768`months', returning a 12-element vector of month names (locale items MON_n);
2769
2770`paper', returning a list (WIDTH HEIGHT) for the default paper size,
2771 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2772
2773If the system can't provide such information through a call to
2774`nl_langinfo', or if ITEM isn't from the list above, return nil.
2775
2776See also Info node `(libc)Locales'.
2777
2778The data read from the system are decoded using `locale-coding-system'. */)
2779 (Lisp_Object item)
2780{
2781 char *str = NULL;
2782#ifdef HAVE_LANGINFO_CODESET
2783 Lisp_Object val;
2784 if (EQ (item, Qcodeset))
2785 {
2786 str = nl_langinfo (CODESET);
2787 return build_string (str);
2788 }
2789#ifdef DAY_1
2790 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2791 {
2792 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2793 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2794 int i;
2795 struct gcpro gcpro1;
2796 GCPRO1 (v);
2797 synchronize_system_time_locale ();
2798 for (i = 0; i < 7; i++)
2799 {
2800 str = nl_langinfo (days[i]);
2801 val = build_unibyte_string (str);
2802 /* Fixme: Is this coding system necessarily right, even if
2803 it is consistent with CODESET? If not, what to do? */
2804 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2805 0));
2806 }
2807 UNGCPRO;
2808 return v;
2809 }
2810#endif /* DAY_1 */
2811#ifdef MON_1
2812 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2813 {
2814 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2815 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2816 MON_8, MON_9, MON_10, MON_11, MON_12};
2817 int i;
2818 struct gcpro gcpro1;
2819 GCPRO1 (v);
2820 synchronize_system_time_locale ();
2821 for (i = 0; i < 12; i++)
2822 {
2823 str = nl_langinfo (months[i]);
2824 val = build_unibyte_string (str);
2825 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2826 0));
2827 }
2828 UNGCPRO;
2829 return v;
2830 }
2831#endif /* MON_1 */
2832/* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2833 but is in the locale files. This could be used by ps-print. */
2834#ifdef PAPER_WIDTH
2835 else if (EQ (item, Qpaper))
2836 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2837#endif /* PAPER_WIDTH */
2838#endif /* HAVE_LANGINFO_CODESET*/
2839 return Qnil;
2840}
2841\f
2842/* base64 encode/decode functions (RFC 2045).
2843 Based on code from GNU recode. */
2844
2845#define MIME_LINE_LENGTH 76
2846
2847#define IS_ASCII(Character) \
2848 ((Character) < 128)
2849#define IS_BASE64(Character) \
2850 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2851#define IS_BASE64_IGNORABLE(Character) \
2852 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2853 || (Character) == '\f' || (Character) == '\r')
2854
2855/* Used by base64_decode_1 to retrieve a non-base64-ignorable
2856 character or return retval if there are no characters left to
2857 process. */
2858#define READ_QUADRUPLET_BYTE(retval) \
2859 do \
2860 { \
2861 if (i == length) \
2862 { \
2863 if (nchars_return) \
2864 *nchars_return = nchars; \
2865 return (retval); \
2866 } \
2867 c = from[i++]; \
2868 } \
2869 while (IS_BASE64_IGNORABLE (c))
2870
2871/* Table of characters coding the 64 values. */
2872static const char base64_value_to_char[64] =
2873{
2874 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2875 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2876 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2877 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2878 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2879 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2880 '8', '9', '+', '/' /* 60-63 */
2881};
2882
2883/* Table of base64 values for first 128 characters. */
2884static const short base64_char_to_value[128] =
2885{
2886 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2887 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2888 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2889 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2890 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2891 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2892 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2893 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2894 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2895 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2896 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2897 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2898 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2899};
2900
2901/* The following diagram shows the logical steps by which three octets
2902 get transformed into four base64 characters.
2903
2904 .--------. .--------. .--------.
2905 |aaaaaabb| |bbbbcccc| |ccdddddd|
2906 `--------' `--------' `--------'
2907 6 2 4 4 2 6
2908 .--------+--------+--------+--------.
2909 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2910 `--------+--------+--------+--------'
2911
2912 .--------+--------+--------+--------.
2913 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2914 `--------+--------+--------+--------'
2915
2916 The octets are divided into 6 bit chunks, which are then encoded into
2917 base64 characters. */
2918
2919
2920static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2921static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2922 ptrdiff_t *);
2923
2924DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2925 2, 3, "r",
2926 doc: /* Base64-encode the region between BEG and END.
2927Return the length of the encoded text.
2928Optional third argument NO-LINE-BREAK means do not break long lines
2929into shorter lines. */)
2930 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2931{
2932 char *encoded;
2933 ptrdiff_t allength, length;
2934 ptrdiff_t ibeg, iend, encoded_length;
2935 ptrdiff_t old_pos = PT;
2936 USE_SAFE_ALLOCA;
2937
2938 validate_region (&beg, &end);
2939
2940 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2941 iend = CHAR_TO_BYTE (XFASTINT (end));
2942 move_gap_both (XFASTINT (beg), ibeg);
2943
2944 /* We need to allocate enough room for encoding the text.
2945 We need 33 1/3% more space, plus a newline every 76
2946 characters, and then we round up. */
2947 length = iend - ibeg;
2948 allength = length + length/3 + 1;
2949 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2950
2951 encoded = SAFE_ALLOCA (allength);
2952 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2953 encoded, length, NILP (no_line_break),
2954 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2955 if (encoded_length > allength)
2956 emacs_abort ();
2957
2958 if (encoded_length < 0)
2959 {
2960 /* The encoding wasn't possible. */
2961 SAFE_FREE ();
2962 error ("Multibyte character in data for base64 encoding");
2963 }
2964
2965 /* Now we have encoded the region, so we insert the new contents
2966 and delete the old. (Insert first in order to preserve markers.) */
2967 SET_PT_BOTH (XFASTINT (beg), ibeg);
2968 insert (encoded, encoded_length);
2969 SAFE_FREE ();
2970 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2971
2972 /* If point was outside of the region, restore it exactly; else just
2973 move to the beginning of the region. */
2974 if (old_pos >= XFASTINT (end))
2975 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2976 else if (old_pos > XFASTINT (beg))
2977 old_pos = XFASTINT (beg);
2978 SET_PT (old_pos);
2979
2980 /* We return the length of the encoded text. */
2981 return make_number (encoded_length);
2982}
2983
2984DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2985 1, 2, 0,
2986 doc: /* Base64-encode STRING and return the result.
2987Optional second argument NO-LINE-BREAK means do not break long lines
2988into shorter lines. */)
2989 (Lisp_Object string, Lisp_Object no_line_break)
2990{
2991 ptrdiff_t allength, length, encoded_length;
2992 char *encoded;
2993 Lisp_Object encoded_string;
2994 USE_SAFE_ALLOCA;
2995
2996 CHECK_STRING (string);
2997
2998 /* We need to allocate enough room for encoding the text.
2999 We need 33 1/3% more space, plus a newline every 76
3000 characters, and then we round up. */
3001 length = SBYTES (string);
3002 allength = length + length/3 + 1;
3003 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3004
3005 /* We need to allocate enough room for decoding the text. */
3006 encoded = SAFE_ALLOCA (allength);
3007
3008 encoded_length = base64_encode_1 (SSDATA (string),
3009 encoded, length, NILP (no_line_break),
3010 STRING_MULTIBYTE (string));
3011 if (encoded_length > allength)
3012 emacs_abort ();
3013
3014 if (encoded_length < 0)
3015 {
3016 /* The encoding wasn't possible. */
3017 SAFE_FREE ();
3018 error ("Multibyte character in data for base64 encoding");
3019 }
3020
3021 encoded_string = make_unibyte_string (encoded, encoded_length);
3022 SAFE_FREE ();
3023
3024 return encoded_string;
3025}
3026
3027static ptrdiff_t
3028base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3029 bool line_break, bool multibyte)
3030{
3031 int counter = 0;
3032 ptrdiff_t i = 0;
3033 char *e = to;
3034 int c;
3035 unsigned int value;
3036 int bytes;
3037
3038 while (i < length)
3039 {
3040 if (multibyte)
3041 {
3042 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3043 if (CHAR_BYTE8_P (c))
3044 c = CHAR_TO_BYTE8 (c);
3045 else if (c >= 256)
3046 return -1;
3047 i += bytes;
3048 }
3049 else
3050 c = from[i++];
3051
3052 /* Wrap line every 76 characters. */
3053
3054 if (line_break)
3055 {
3056 if (counter < MIME_LINE_LENGTH / 4)
3057 counter++;
3058 else
3059 {
3060 *e++ = '\n';
3061 counter = 1;
3062 }
3063 }
3064
3065 /* Process first byte of a triplet. */
3066
3067 *e++ = base64_value_to_char[0x3f & c >> 2];
3068 value = (0x03 & c) << 4;
3069
3070 /* Process second byte of a triplet. */
3071
3072 if (i == length)
3073 {
3074 *e++ = base64_value_to_char[value];
3075 *e++ = '=';
3076 *e++ = '=';
3077 break;
3078 }
3079
3080 if (multibyte)
3081 {
3082 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3083 if (CHAR_BYTE8_P (c))
3084 c = CHAR_TO_BYTE8 (c);
3085 else if (c >= 256)
3086 return -1;
3087 i += bytes;
3088 }
3089 else
3090 c = from[i++];
3091
3092 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3093 value = (0x0f & c) << 2;
3094
3095 /* Process third byte of a triplet. */
3096
3097 if (i == length)
3098 {
3099 *e++ = base64_value_to_char[value];
3100 *e++ = '=';
3101 break;
3102 }
3103
3104 if (multibyte)
3105 {
3106 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3107 if (CHAR_BYTE8_P (c))
3108 c = CHAR_TO_BYTE8 (c);
3109 else if (c >= 256)
3110 return -1;
3111 i += bytes;
3112 }
3113 else
3114 c = from[i++];
3115
3116 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3117 *e++ = base64_value_to_char[0x3f & c];
3118 }
3119
3120 return e - to;
3121}
3122
3123
3124DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3125 2, 2, "r",
3126 doc: /* Base64-decode the region between BEG and END.
3127Return the length of the decoded text.
3128If the region can't be decoded, signal an error and don't modify the buffer. */)
3129 (Lisp_Object beg, Lisp_Object end)
3130{
3131 ptrdiff_t ibeg, iend, length, allength;
3132 char *decoded;
3133 ptrdiff_t old_pos = PT;
3134 ptrdiff_t decoded_length;
3135 ptrdiff_t inserted_chars;
3136 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3137 USE_SAFE_ALLOCA;
3138
3139 validate_region (&beg, &end);
3140
3141 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3142 iend = CHAR_TO_BYTE (XFASTINT (end));
3143
3144 length = iend - ibeg;
3145
3146 /* We need to allocate enough room for decoding the text. If we are
3147 working on a multibyte buffer, each decoded code may occupy at
3148 most two bytes. */
3149 allength = multibyte ? length * 2 : length;
3150 decoded = SAFE_ALLOCA (allength);
3151
3152 move_gap_both (XFASTINT (beg), ibeg);
3153 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3154 decoded, length,
3155 multibyte, &inserted_chars);
3156 if (decoded_length > allength)
3157 emacs_abort ();
3158
3159 if (decoded_length < 0)
3160 {
3161 /* The decoding wasn't possible. */
3162 SAFE_FREE ();
3163 error ("Invalid base64 data");
3164 }
3165
3166 /* Now we have decoded the region, so we insert the new contents
3167 and delete the old. (Insert first in order to preserve markers.) */
3168 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3169 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3170 SAFE_FREE ();
3171
3172 /* Delete the original text. */
3173 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3174 iend + decoded_length, 1);
3175
3176 /* If point was outside of the region, restore it exactly; else just
3177 move to the beginning of the region. */
3178 if (old_pos >= XFASTINT (end))
3179 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3180 else if (old_pos > XFASTINT (beg))
3181 old_pos = XFASTINT (beg);
3182 SET_PT (old_pos > ZV ? ZV : old_pos);
3183
3184 return make_number (inserted_chars);
3185}
3186
3187DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3188 1, 1, 0,
3189 doc: /* Base64-decode STRING and return the result. */)
3190 (Lisp_Object string)
3191{
3192 char *decoded;
3193 ptrdiff_t length, decoded_length;
3194 Lisp_Object decoded_string;
3195 USE_SAFE_ALLOCA;
3196
3197 CHECK_STRING (string);
3198
3199 length = SBYTES (string);
3200 /* We need to allocate enough room for decoding the text. */
3201 decoded = SAFE_ALLOCA (length);
3202
3203 /* The decoded result should be unibyte. */
3204 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3205 0, NULL);
3206 if (decoded_length > length)
3207 emacs_abort ();
3208 else if (decoded_length >= 0)
3209 decoded_string = make_unibyte_string (decoded, decoded_length);
3210 else
3211 decoded_string = Qnil;
3212
3213 SAFE_FREE ();
3214 if (!STRINGP (decoded_string))
3215 error ("Invalid base64 data");
3216
3217 return decoded_string;
3218}
3219
3220/* Base64-decode the data at FROM of LENGTH bytes into TO. If
3221 MULTIBYTE, the decoded result should be in multibyte
3222 form. If NCHARS_RETURN is not NULL, store the number of produced
3223 characters in *NCHARS_RETURN. */
3224
3225static ptrdiff_t
3226base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3227 bool multibyte, ptrdiff_t *nchars_return)
3228{
3229 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3230 char *e = to;
3231 unsigned char c;
3232 unsigned long value;
3233 ptrdiff_t nchars = 0;
3234
3235 while (1)
3236 {
3237 /* Process first byte of a quadruplet. */
3238
3239 READ_QUADRUPLET_BYTE (e-to);
3240
3241 if (!IS_BASE64 (c))
3242 return -1;
3243 value = base64_char_to_value[c] << 18;
3244
3245 /* Process second byte of a quadruplet. */
3246
3247 READ_QUADRUPLET_BYTE (-1);
3248
3249 if (!IS_BASE64 (c))
3250 return -1;
3251 value |= base64_char_to_value[c] << 12;
3252
3253 c = (unsigned char) (value >> 16);
3254 if (multibyte && c >= 128)
3255 e += BYTE8_STRING (c, e);
3256 else
3257 *e++ = c;
3258 nchars++;
3259
3260 /* Process third byte of a quadruplet. */
3261
3262 READ_QUADRUPLET_BYTE (-1);
3263
3264 if (c == '=')
3265 {
3266 READ_QUADRUPLET_BYTE (-1);
3267
3268 if (c != '=')
3269 return -1;
3270 continue;
3271 }
3272
3273 if (!IS_BASE64 (c))
3274 return -1;
3275 value |= base64_char_to_value[c] << 6;
3276
3277 c = (unsigned char) (0xff & value >> 8);
3278 if (multibyte && c >= 128)
3279 e += BYTE8_STRING (c, e);
3280 else
3281 *e++ = c;
3282 nchars++;
3283
3284 /* Process fourth byte of a quadruplet. */
3285
3286 READ_QUADRUPLET_BYTE (-1);
3287
3288 if (c == '=')
3289 continue;
3290
3291 if (!IS_BASE64 (c))
3292 return -1;
3293 value |= base64_char_to_value[c];
3294
3295 c = (unsigned char) (0xff & value);
3296 if (multibyte && c >= 128)
3297 e += BYTE8_STRING (c, e);
3298 else
3299 *e++ = c;
3300 nchars++;
3301 }
3302}
3303
3304
3305\f
3306/***********************************************************************
3307 ***** *****
3308 ***** Hash Tables *****
3309 ***** *****
3310 ***********************************************************************/
3311
3312/* Implemented by gerd@gnu.org. This hash table implementation was
3313 inspired by CMUCL hash tables. */
3314
3315/* Ideas:
3316
3317 1. For small tables, association lists are probably faster than
3318 hash tables because they have lower overhead.
3319
3320 For uses of hash tables where the O(1) behavior of table
3321 operations is not a requirement, it might therefore be a good idea
3322 not to hash. Instead, we could just do a linear search in the
3323 key_and_value vector of the hash table. This could be done
3324 if a `:linear-search t' argument is given to make-hash-table. */
3325
3326/* Various symbols. */
3327
3328static Lisp_Object Qhash_table_p;
3329static Lisp_Object Qkey, Qvalue, Qeql;
3330Lisp_Object Qeq, Qequal;
3331Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3332static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3333
3334\f
3335/***********************************************************************
3336 Utilities
3337 ***********************************************************************/
3338
3339static void
3340CHECK_HASH_TABLE (Lisp_Object x)
3341{
3342 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3343}
3344
3345static void
3346set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3347{
3348 h->key_and_value = key_and_value;
3349}
3350static void
3351set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3352{
3353 h->next = next;
3354}
3355static void
3356set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3357{
3358 gc_aset (h->next, idx, val);
3359}
3360static void
3361set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3362{
3363 h->hash = hash;
3364}
3365static void
3366set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3367{
3368 gc_aset (h->hash, idx, val);
3369}
3370static void
3371set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3372{
3373 h->index = index;
3374}
3375static void
3376set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3377{
3378 gc_aset (h->index, idx, val);
3379}
3380
3381/* If OBJ is a Lisp hash table, return a pointer to its struct
3382 Lisp_Hash_Table. Otherwise, signal an error. */
3383
3384static struct Lisp_Hash_Table *
3385check_hash_table (Lisp_Object obj)
3386{
3387 CHECK_HASH_TABLE (obj);
3388 return XHASH_TABLE (obj);
3389}
3390
3391
3392/* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3393 number. A number is "almost" a prime number if it is not divisible
3394 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3395
3396EMACS_INT
3397next_almost_prime (EMACS_INT n)
3398{
3399 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3400 for (n |= 1; ; n += 2)
3401 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3402 return n;
3403}
3404
3405
3406/* Find KEY in ARGS which has size NARGS. Don't consider indices for
3407 which USED[I] is non-zero. If found at index I in ARGS, set
3408 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3409 0. This function is used to extract a keyword/argument pair from
3410 a DEFUN parameter list. */
3411
3412static ptrdiff_t
3413get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3414{
3415 ptrdiff_t i;
3416
3417 for (i = 1; i < nargs; i++)
3418 if (!used[i - 1] && EQ (args[i - 1], key))
3419 {
3420 used[i - 1] = 1;
3421 used[i] = 1;
3422 return i;
3423 }
3424
3425 return 0;
3426}
3427
3428
3429/* Return a Lisp vector which has the same contents as VEC but has
3430 at least INCR_MIN more entries, where INCR_MIN is positive.
3431 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3432 than NITEMS_MAX. Entries in the resulting
3433 vector that are not copied from VEC are set to nil. */
3434
3435Lisp_Object
3436larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3437{
3438 struct Lisp_Vector *v;
3439 ptrdiff_t i, incr, incr_max, old_size, new_size;
3440 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3441 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3442 ? nitems_max : C_language_max);
3443 eassert (VECTORP (vec));
3444 eassert (0 < incr_min && -1 <= nitems_max);
3445 old_size = ASIZE (vec);
3446 incr_max = n_max - old_size;
3447 incr = max (incr_min, min (old_size >> 1, incr_max));
3448 if (incr_max < incr)
3449 memory_full (SIZE_MAX);
3450 new_size = old_size + incr;
3451 v = allocate_vector (new_size);
3452 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3453 for (i = old_size; i < new_size; ++i)
3454 v->contents[i] = Qnil;
3455 XSETVECTOR (vec, v);
3456 return vec;
3457}
3458
3459
3460/***********************************************************************
3461 Low-level Functions
3462 ***********************************************************************/
3463
3464static struct hash_table_test hashtest_eq;
3465struct hash_table_test hashtest_eql, hashtest_equal;
3466
3467/* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3468 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3469 KEY2 are the same. */
3470
3471static bool
3472cmpfn_eql (struct hash_table_test *ht,
3473 Lisp_Object key1,
3474 Lisp_Object key2)
3475{
3476 return (FLOATP (key1)
3477 && FLOATP (key2)
3478 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3479}
3480
3481
3482/* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3483 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3484 KEY2 are the same. */
3485
3486static bool
3487cmpfn_equal (struct hash_table_test *ht,
3488 Lisp_Object key1,
3489 Lisp_Object key2)
3490{
3491 return !NILP (Fequal (key1, key2));
3492}
3493
3494
3495/* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3496 HASH2 in hash table H using H->user_cmp_function. Value is true
3497 if KEY1 and KEY2 are the same. */
3498
3499static bool
3500cmpfn_user_defined (struct hash_table_test *ht,
3501 Lisp_Object key1,
3502 Lisp_Object key2)
3503{
3504 Lisp_Object args[3];
3505
3506 args[0] = ht->user_cmp_function;
3507 args[1] = key1;
3508 args[2] = key2;
3509 return !NILP (Ffuncall (3, args));
3510}
3511
3512
3513/* Value is a hash code for KEY for use in hash table H which uses
3514 `eq' to compare keys. The hash code returned is guaranteed to fit
3515 in a Lisp integer. */
3516
3517static EMACS_UINT
3518hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3519{
3520 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3521 return hash;
3522}
3523
3524/* Value is a hash code for KEY for use in hash table H which uses
3525 `eql' to compare keys. The hash code returned is guaranteed to fit
3526 in a Lisp integer. */
3527
3528static EMACS_UINT
3529hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3530{
3531 EMACS_UINT hash;
3532 if (FLOATP (key))
3533 hash = sxhash (key, 0);
3534 else
3535 hash = XHASH (key) ^ XTYPE (key);
3536 return hash;
3537}
3538
3539/* Value is a hash code for KEY for use in hash table H which uses
3540 `equal' to compare keys. The hash code returned is guaranteed to fit
3541 in a Lisp integer. */
3542
3543static EMACS_UINT
3544hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3545{
3546 EMACS_UINT hash = sxhash (key, 0);
3547 return hash;
3548}
3549
3550/* Value is a hash code for KEY for use in hash table H which uses as
3551 user-defined function to compare keys. The hash code returned is
3552 guaranteed to fit in a Lisp integer. */
3553
3554static EMACS_UINT
3555hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3556{
3557 Lisp_Object args[2], hash;
3558
3559 args[0] = ht->user_hash_function;
3560 args[1] = key;
3561 hash = Ffuncall (2, args);
3562 return hashfn_eq (ht, hash);
3563}
3564
3565/* An upper bound on the size of a hash table index. It must fit in
3566 ptrdiff_t and be a valid Emacs fixnum. */
3567#define INDEX_SIZE_BOUND \
3568 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3569
3570/* Create and initialize a new hash table.
3571
3572 TEST specifies the test the hash table will use to compare keys.
3573 It must be either one of the predefined tests `eq', `eql' or
3574 `equal' or a symbol denoting a user-defined test named TEST with
3575 test and hash functions USER_TEST and USER_HASH.
3576
3577 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3578
3579 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3580 new size when it becomes full is computed by adding REHASH_SIZE to
3581 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3582 table's new size is computed by multiplying its old size with
3583 REHASH_SIZE.
3584
3585 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3586 be resized when the ratio of (number of entries in the table) /
3587 (table size) is >= REHASH_THRESHOLD.
3588
3589 WEAK specifies the weakness of the table. If non-nil, it must be
3590 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3591
3592Lisp_Object
3593make_hash_table (struct hash_table_test test,
3594 Lisp_Object size, Lisp_Object rehash_size,
3595 Lisp_Object rehash_threshold, Lisp_Object weak)
3596{
3597 struct Lisp_Hash_Table *h;
3598 Lisp_Object table;
3599 EMACS_INT index_size, sz;
3600 ptrdiff_t i;
3601 double index_float;
3602
3603 /* Preconditions. */
3604 eassert (SYMBOLP (test.name));
3605 eassert (INTEGERP (size) && XINT (size) >= 0);
3606 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3607 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3608 eassert (FLOATP (rehash_threshold)
3609 && 0 < XFLOAT_DATA (rehash_threshold)
3610 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3611
3612 if (XFASTINT (size) == 0)
3613 size = make_number (1);
3614
3615 sz = XFASTINT (size);
3616 index_float = sz / XFLOAT_DATA (rehash_threshold);
3617 index_size = (index_float < INDEX_SIZE_BOUND + 1
3618 ? next_almost_prime (index_float)
3619 : INDEX_SIZE_BOUND + 1);
3620 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3621 error ("Hash table too large");
3622
3623 /* Allocate a table and initialize it. */
3624 h = allocate_hash_table ();
3625
3626 /* Initialize hash table slots. */
3627 h->test = test;
3628 h->weak = weak;
3629 h->rehash_threshold = rehash_threshold;
3630 h->rehash_size = rehash_size;
3631 h->count = 0;
3632 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3633 h->hash = Fmake_vector (size, Qnil);
3634 h->next = Fmake_vector (size, Qnil);
3635 h->index = Fmake_vector (make_number (index_size), Qnil);
3636
3637 /* Set up the free list. */
3638 for (i = 0; i < sz - 1; ++i)
3639 set_hash_next_slot (h, i, make_number (i + 1));
3640 h->next_free = make_number (0);
3641
3642 XSET_HASH_TABLE (table, h);
3643 eassert (HASH_TABLE_P (table));
3644 eassert (XHASH_TABLE (table) == h);
3645
3646 return table;
3647}
3648
3649
3650/* Return a copy of hash table H1. Keys and values are not copied,
3651 only the table itself is. */
3652
3653static Lisp_Object
3654copy_hash_table (struct Lisp_Hash_Table *h1)
3655{
3656 Lisp_Object table;
3657 struct Lisp_Hash_Table *h2;
3658
3659 h2 = allocate_hash_table ();
3660 *h2 = *h1;
3661 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3662 h2->hash = Fcopy_sequence (h1->hash);
3663 h2->next = Fcopy_sequence (h1->next);
3664 h2->index = Fcopy_sequence (h1->index);
3665 XSET_HASH_TABLE (table, h2);
3666
3667 return table;
3668}
3669
3670
3671/* Resize hash table H if it's too full. If H cannot be resized
3672 because it's already too large, throw an error. */
3673
3674static void
3675maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3676{
3677 if (NILP (h->next_free))
3678 {
3679 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3680 EMACS_INT new_size, index_size, nsize;
3681 ptrdiff_t i;
3682 double index_float;
3683
3684 if (INTEGERP (h->rehash_size))
3685 new_size = old_size + XFASTINT (h->rehash_size);
3686 else
3687 {
3688 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3689 if (float_new_size < INDEX_SIZE_BOUND + 1)
3690 {
3691 new_size = float_new_size;
3692 if (new_size <= old_size)
3693 new_size = old_size + 1;
3694 }
3695 else
3696 new_size = INDEX_SIZE_BOUND + 1;
3697 }
3698 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3699 index_size = (index_float < INDEX_SIZE_BOUND + 1
3700 ? next_almost_prime (index_float)
3701 : INDEX_SIZE_BOUND + 1);
3702 nsize = max (index_size, 2 * new_size);
3703 if (INDEX_SIZE_BOUND < nsize)
3704 error ("Hash table too large to resize");
3705
3706#ifdef ENABLE_CHECKING
3707 if (HASH_TABLE_P (Vpurify_flag)
3708 && XHASH_TABLE (Vpurify_flag) == h)
3709 {
3710 Lisp_Object args[2];
3711 args[0] = build_string ("Growing hash table to: %d");
3712 args[1] = make_number (new_size);
3713 Fmessage (2, args);
3714 }
3715#endif
3716
3717 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3718 2 * (new_size - old_size), -1));
3719 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3720 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3721 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3722
3723 /* Update the free list. Do it so that new entries are added at
3724 the end of the free list. This makes some operations like
3725 maphash faster. */
3726 for (i = old_size; i < new_size - 1; ++i)
3727 set_hash_next_slot (h, i, make_number (i + 1));
3728
3729 if (!NILP (h->next_free))
3730 {
3731 Lisp_Object last, next;
3732
3733 last = h->next_free;
3734 while (next = HASH_NEXT (h, XFASTINT (last)),
3735 !NILP (next))
3736 last = next;
3737
3738 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3739 }
3740 else
3741 XSETFASTINT (h->next_free, old_size);
3742
3743 /* Rehash. */
3744 for (i = 0; i < old_size; ++i)
3745 if (!NILP (HASH_HASH (h, i)))
3746 {
3747 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3748 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3749 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3750 set_hash_index_slot (h, start_of_bucket, make_number (i));
3751 }
3752 }
3753}
3754
3755
3756/* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3757 the hash code of KEY. Value is the index of the entry in H
3758 matching KEY, or -1 if not found. */
3759
3760ptrdiff_t
3761hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3762{
3763 EMACS_UINT hash_code;
3764 ptrdiff_t start_of_bucket;
3765 Lisp_Object idx;
3766
3767 hash_code = h->test.hashfn (&h->test, key);
3768 eassert ((hash_code & ~INTMASK) == 0);
3769 if (hash)
3770 *hash = hash_code;
3771
3772 start_of_bucket = hash_code % ASIZE (h->index);
3773 idx = HASH_INDEX (h, start_of_bucket);
3774
3775 /* We need not gcpro idx since it's either an integer or nil. */
3776 while (!NILP (idx))
3777 {
3778 ptrdiff_t i = XFASTINT (idx);
3779 if (EQ (key, HASH_KEY (h, i))
3780 || (h->test.cmpfn
3781 && hash_code == XUINT (HASH_HASH (h, i))
3782 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3783 break;
3784 idx = HASH_NEXT (h, i);
3785 }
3786
3787 return NILP (idx) ? -1 : XFASTINT (idx);
3788}
3789
3790
3791/* Put an entry into hash table H that associates KEY with VALUE.
3792 HASH is a previously computed hash code of KEY.
3793 Value is the index of the entry in H matching KEY. */
3794
3795ptrdiff_t
3796hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3797 EMACS_UINT hash)
3798{
3799 ptrdiff_t start_of_bucket, i;
3800
3801 eassert ((hash & ~INTMASK) == 0);
3802
3803 /* Increment count after resizing because resizing may fail. */
3804 maybe_resize_hash_table (h);
3805 h->count++;
3806
3807 /* Store key/value in the key_and_value vector. */
3808 i = XFASTINT (h->next_free);
3809 h->next_free = HASH_NEXT (h, i);
3810 set_hash_key_slot (h, i, key);
3811 set_hash_value_slot (h, i, value);
3812
3813 /* Remember its hash code. */
3814 set_hash_hash_slot (h, i, make_number (hash));
3815
3816 /* Add new entry to its collision chain. */
3817 start_of_bucket = hash % ASIZE (h->index);
3818 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3819 set_hash_index_slot (h, start_of_bucket, make_number (i));
3820 return i;
3821}
3822
3823
3824/* Remove the entry matching KEY from hash table H, if there is one. */
3825
3826static void
3827hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3828{
3829 EMACS_UINT hash_code;
3830 ptrdiff_t start_of_bucket;
3831 Lisp_Object idx, prev;
3832
3833 hash_code = h->test.hashfn (&h->test, key);
3834 eassert ((hash_code & ~INTMASK) == 0);
3835 start_of_bucket = hash_code % ASIZE (h->index);
3836 idx = HASH_INDEX (h, start_of_bucket);
3837 prev = Qnil;
3838
3839 /* We need not gcpro idx, prev since they're either integers or nil. */
3840 while (!NILP (idx))
3841 {
3842 ptrdiff_t i = XFASTINT (idx);
3843
3844 if (EQ (key, HASH_KEY (h, i))
3845 || (h->test.cmpfn
3846 && hash_code == XUINT (HASH_HASH (h, i))
3847 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3848 {
3849 /* Take entry out of collision chain. */
3850 if (NILP (prev))
3851 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3852 else
3853 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3854
3855 /* Clear slots in key_and_value and add the slots to
3856 the free list. */
3857 set_hash_key_slot (h, i, Qnil);
3858 set_hash_value_slot (h, i, Qnil);
3859 set_hash_hash_slot (h, i, Qnil);
3860 set_hash_next_slot (h, i, h->next_free);
3861 h->next_free = make_number (i);
3862 h->count--;
3863 eassert (h->count >= 0);
3864 break;
3865 }
3866 else
3867 {
3868 prev = idx;
3869 idx = HASH_NEXT (h, i);
3870 }
3871 }
3872}
3873
3874
3875/* Clear hash table H. */
3876
3877static void
3878hash_clear (struct Lisp_Hash_Table *h)
3879{
3880 if (h->count > 0)
3881 {
3882 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3883
3884 for (i = 0; i < size; ++i)
3885 {
3886 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3887 set_hash_key_slot (h, i, Qnil);
3888 set_hash_value_slot (h, i, Qnil);
3889 set_hash_hash_slot (h, i, Qnil);
3890 }
3891
3892 for (i = 0; i < ASIZE (h->index); ++i)
3893 ASET (h->index, i, Qnil);
3894
3895 h->next_free = make_number (0);
3896 h->count = 0;
3897 }
3898}
3899
3900
3901\f
3902/***********************************************************************
3903 Hash Code Computation
3904 ***********************************************************************/
3905
3906/* Maximum depth up to which to dive into Lisp structures. */
3907
3908#define SXHASH_MAX_DEPTH 3
3909
3910/* Maximum length up to which to take list and vector elements into
3911 account. */
3912
3913#define SXHASH_MAX_LEN 7
3914
3915/* Return a hash for string PTR which has length LEN. The hash value
3916 can be any EMACS_UINT value. */
3917
3918EMACS_UINT
3919hash_string (char const *ptr, ptrdiff_t len)
3920{
3921 char const *p = ptr;
3922 char const *end = p + len;
3923 unsigned char c;
3924 EMACS_UINT hash = 0;
3925
3926 while (p != end)
3927 {
3928 c = *p++;
3929 hash = sxhash_combine (hash, c);
3930 }
3931
3932 return hash;
3933}
3934
3935/* Return a hash for string PTR which has length LEN. The hash
3936 code returned is guaranteed to fit in a Lisp integer. */
3937
3938static EMACS_UINT
3939sxhash_string (char const *ptr, ptrdiff_t len)
3940{
3941 EMACS_UINT hash = hash_string (ptr, len);
3942 return SXHASH_REDUCE (hash);
3943}
3944
3945/* Return a hash for the floating point value VAL. */
3946
3947static EMACS_UINT
3948sxhash_float (double val)
3949{
3950 EMACS_UINT hash = 0;
3951 enum {
3952 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
3953 + (sizeof val % sizeof hash != 0))
3954 };
3955 union {
3956 double val;
3957 EMACS_UINT word[WORDS_PER_DOUBLE];
3958 } u;
3959 int i;
3960 u.val = val;
3961 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
3962 for (i = 0; i < WORDS_PER_DOUBLE; i++)
3963 hash = sxhash_combine (hash, u.word[i]);
3964 return SXHASH_REDUCE (hash);
3965}
3966
3967/* Return a hash for list LIST. DEPTH is the current depth in the
3968 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
3969
3970static EMACS_UINT
3971sxhash_list (Lisp_Object list, int depth)
3972{
3973 EMACS_UINT hash = 0;
3974 int i;
3975
3976 if (depth < SXHASH_MAX_DEPTH)
3977 for (i = 0;
3978 CONSP (list) && i < SXHASH_MAX_LEN;
3979 list = XCDR (list), ++i)
3980 {
3981 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
3982 hash = sxhash_combine (hash, hash2);
3983 }
3984
3985 if (!NILP (list))
3986 {
3987 EMACS_UINT hash2 = sxhash (list, depth + 1);
3988 hash = sxhash_combine (hash, hash2);
3989 }
3990
3991 return SXHASH_REDUCE (hash);
3992}
3993
3994
3995/* Return a hash for vector VECTOR. DEPTH is the current depth in
3996 the Lisp structure. */
3997
3998static EMACS_UINT
3999sxhash_vector (Lisp_Object vec, int depth)
4000{
4001 EMACS_UINT hash = ASIZE (vec);
4002 int i, n;
4003
4004 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4005 for (i = 0; i < n; ++i)
4006 {
4007 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4008 hash = sxhash_combine (hash, hash2);
4009 }
4010
4011 return SXHASH_REDUCE (hash);
4012}
4013
4014/* Return a hash for bool-vector VECTOR. */
4015
4016static EMACS_UINT
4017sxhash_bool_vector (Lisp_Object vec)
4018{
4019 EMACS_INT size = bool_vector_size (vec);
4020 EMACS_UINT hash = size;
4021 int i, n;
4022
4023 n = min (SXHASH_MAX_LEN, bool_vector_words (size));
4024 for (i = 0; i < n; ++i)
4025 hash = sxhash_combine (hash, bool_vector_data (vec)[i]);
4026
4027 return SXHASH_REDUCE (hash);
4028}
4029
4030
4031/* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4032 structure. Value is an unsigned integer clipped to INTMASK. */
4033
4034EMACS_UINT
4035sxhash (Lisp_Object obj, int depth)
4036{
4037 EMACS_UINT hash;
4038
4039 if (depth > SXHASH_MAX_DEPTH)
4040 return 0;
4041
4042 switch (XTYPE (obj))
4043 {
4044 case_Lisp_Int:
4045 hash = XUINT (obj);
4046 break;
4047
4048 case Lisp_Misc:
4049 hash = XHASH (obj);
4050 break;
4051
4052 case Lisp_Symbol:
4053 obj = SYMBOL_NAME (obj);
4054 /* Fall through. */
4055
4056 case Lisp_String:
4057 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4058 break;
4059
4060 /* This can be everything from a vector to an overlay. */
4061 case Lisp_Vectorlike:
4062 if (VECTORP (obj))
4063 /* According to the CL HyperSpec, two arrays are equal only if
4064 they are `eq', except for strings and bit-vectors. In
4065 Emacs, this works differently. We have to compare element
4066 by element. */
4067 hash = sxhash_vector (obj, depth);
4068 else if (BOOL_VECTOR_P (obj))
4069 hash = sxhash_bool_vector (obj);
4070 else
4071 /* Others are `equal' if they are `eq', so let's take their
4072 address as hash. */
4073 hash = XHASH (obj);
4074 break;
4075
4076 case Lisp_Cons:
4077 hash = sxhash_list (obj, depth);
4078 break;
4079
4080 case Lisp_Float:
4081 hash = sxhash_float (XFLOAT_DATA (obj));
4082 break;
4083
4084 default:
4085 emacs_abort ();
4086 }
4087
4088 return hash;
4089}
4090
4091
4092\f
4093/***********************************************************************
4094 Lisp Interface
4095 ***********************************************************************/
4096
4097
4098DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4099 doc: /* Compute a hash code for OBJ and return it as integer. */)
4100 (Lisp_Object obj)
4101{
4102 EMACS_UINT hash = sxhash (obj, 0);
4103 return make_number (hash);
4104}
4105
4106
4107DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4108 doc: /* Create and return a new hash table.
4109
4110Arguments are specified as keyword/argument pairs. The following
4111arguments are defined:
4112
4113:test TEST -- TEST must be a symbol that specifies how to compare
4114keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4115`equal'. User-supplied test and hash functions can be specified via
4116`define-hash-table-test'.
4117
4118:size SIZE -- A hint as to how many elements will be put in the table.
4119Default is 65.
4120
4121:rehash-size REHASH-SIZE - Indicates how to expand the table when it
4122fills up. If REHASH-SIZE is an integer, increase the size by that
4123amount. If it is a float, it must be > 1.0, and the new size is the
4124old size multiplied by that factor. Default is 1.5.
4125
4126:rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4127Resize the hash table when the ratio (number of entries / table size)
4128is greater than or equal to THRESHOLD. Default is 0.8.
4129
4130:weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4131`key-or-value', or `key-and-value'. If WEAK is not nil, the table
4132returned is a weak table. Key/value pairs are removed from a weak
4133hash table when there are no non-weak references pointing to their
4134key, value, one of key or value, or both key and value, depending on
4135WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4136is nil.
4137
4138usage: (make-hash-table &rest KEYWORD-ARGS) */)
4139 (ptrdiff_t nargs, Lisp_Object *args)
4140{
4141 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4142 struct hash_table_test testdesc;
4143 char *used;
4144 ptrdiff_t i;
4145
4146 /* The vector `used' is used to keep track of arguments that
4147 have been consumed. */
4148 used = alloca (nargs * sizeof *used);
4149 memset (used, 0, nargs * sizeof *used);
4150
4151 /* See if there's a `:test TEST' among the arguments. */
4152 i = get_key_arg (QCtest, nargs, args, used);
4153 test = i ? args[i] : Qeql;
4154 if (EQ (test, Qeq))
4155 testdesc = hashtest_eq;
4156 else if (EQ (test, Qeql))
4157 testdesc = hashtest_eql;
4158 else if (EQ (test, Qequal))
4159 testdesc = hashtest_equal;
4160 else
4161 {
4162 /* See if it is a user-defined test. */
4163 Lisp_Object prop;
4164
4165 prop = Fget (test, Qhash_table_test);
4166 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4167 signal_error ("Invalid hash table test", test);
4168 testdesc.name = test;
4169 testdesc.user_cmp_function = XCAR (prop);
4170 testdesc.user_hash_function = XCAR (XCDR (prop));
4171 testdesc.hashfn = hashfn_user_defined;
4172 testdesc.cmpfn = cmpfn_user_defined;
4173 }
4174
4175 /* See if there's a `:size SIZE' argument. */
4176 i = get_key_arg (QCsize, nargs, args, used);
4177 size = i ? args[i] : Qnil;
4178 if (NILP (size))
4179 size = make_number (DEFAULT_HASH_SIZE);
4180 else if (!INTEGERP (size) || XINT (size) < 0)
4181 signal_error ("Invalid hash table size", size);
4182
4183 /* Look for `:rehash-size SIZE'. */
4184 i = get_key_arg (QCrehash_size, nargs, args, used);
4185 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4186 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4187 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4188 signal_error ("Invalid hash table rehash size", rehash_size);
4189
4190 /* Look for `:rehash-threshold THRESHOLD'. */
4191 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4192 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4193 if (! (FLOATP (rehash_threshold)
4194 && 0 < XFLOAT_DATA (rehash_threshold)
4195 && XFLOAT_DATA (rehash_threshold) <= 1))
4196 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4197
4198 /* Look for `:weakness WEAK'. */
4199 i = get_key_arg (QCweakness, nargs, args, used);
4200 weak = i ? args[i] : Qnil;
4201 if (EQ (weak, Qt))
4202 weak = Qkey_and_value;
4203 if (!NILP (weak)
4204 && !EQ (weak, Qkey)
4205 && !EQ (weak, Qvalue)
4206 && !EQ (weak, Qkey_or_value)
4207 && !EQ (weak, Qkey_and_value))
4208 signal_error ("Invalid hash table weakness", weak);
4209
4210 /* Now, all args should have been used up, or there's a problem. */
4211 for (i = 0; i < nargs; ++i)
4212 if (!used[i])
4213 signal_error ("Invalid argument list", args[i]);
4214
4215 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4216}
4217
4218
4219DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4220 doc: /* Return a copy of hash table TABLE. */)
4221 (Lisp_Object table)
4222{
4223 return copy_hash_table (check_hash_table (table));
4224}
4225
4226
4227DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4228 doc: /* Return the number of elements in TABLE. */)
4229 (Lisp_Object table)
4230{
4231 return make_number (check_hash_table (table)->count);
4232}
4233
4234
4235DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4236 Shash_table_rehash_size, 1, 1, 0,
4237 doc: /* Return the current rehash size of TABLE. */)
4238 (Lisp_Object table)
4239{
4240 return check_hash_table (table)->rehash_size;
4241}
4242
4243
4244DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4245 Shash_table_rehash_threshold, 1, 1, 0,
4246 doc: /* Return the current rehash threshold of TABLE. */)
4247 (Lisp_Object table)
4248{
4249 return check_hash_table (table)->rehash_threshold;
4250}
4251
4252
4253DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4254 doc: /* Return the size of TABLE.
4255The size can be used as an argument to `make-hash-table' to create
4256a hash table than can hold as many elements as TABLE holds
4257without need for resizing. */)
4258 (Lisp_Object table)
4259{
4260 struct Lisp_Hash_Table *h = check_hash_table (table);
4261 return make_number (HASH_TABLE_SIZE (h));
4262}
4263
4264
4265DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4266 doc: /* Return the test TABLE uses. */)
4267 (Lisp_Object table)
4268{
4269 return check_hash_table (table)->test.name;
4270}
4271
4272
4273DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4274 1, 1, 0,
4275 doc: /* Return the weakness of TABLE. */)
4276 (Lisp_Object table)
4277{
4278 return check_hash_table (table)->weak;
4279}
4280
4281
4282DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4283 doc: /* Return t if OBJ is a Lisp hash table object. */)
4284 (Lisp_Object obj)
4285{
4286 return HASH_TABLE_P (obj) ? Qt : Qnil;
4287}
4288
4289
4290DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4291 doc: /* Clear hash table TABLE and return it. */)
4292 (Lisp_Object table)
4293{
4294 hash_clear (check_hash_table (table));
4295 /* Be compatible with XEmacs. */
4296 return table;
4297}
4298
4299
4300DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4301 doc: /* Look up KEY in TABLE and return its associated value.
4302If KEY is not found, return DFLT which defaults to nil. */)
4303 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4304{
4305 struct Lisp_Hash_Table *h = check_hash_table (table);
4306 ptrdiff_t i = hash_lookup (h, key, NULL);
4307 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4308}
4309
4310
4311DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4312 doc: /* Associate KEY with VALUE in hash table TABLE.
4313If KEY is already present in table, replace its current value with
4314VALUE. In any case, return VALUE. */)
4315 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4316{
4317 struct Lisp_Hash_Table *h = check_hash_table (table);
4318 ptrdiff_t i;
4319 EMACS_UINT hash;
4320
4321 i = hash_lookup (h, key, &hash);
4322 if (i >= 0)
4323 set_hash_value_slot (h, i, value);
4324 else
4325 hash_put (h, key, value, hash);
4326
4327 return value;
4328}
4329
4330
4331DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4332 doc: /* Remove KEY from TABLE. */)
4333 (Lisp_Object key, Lisp_Object table)
4334{
4335 struct Lisp_Hash_Table *h = check_hash_table (table);
4336 hash_remove_from_table (h, key);
4337 return Qnil;
4338}
4339
4340
4341DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4342 doc: /* Call FUNCTION for all entries in hash table TABLE.
4343FUNCTION is called with two arguments, KEY and VALUE.
4344`maphash' always returns nil. */)
4345 (Lisp_Object function, Lisp_Object table)
4346{
4347 struct Lisp_Hash_Table *h = check_hash_table (table);
4348 Lisp_Object args[3];
4349 ptrdiff_t i;
4350
4351 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4352 if (!NILP (HASH_HASH (h, i)))
4353 {
4354 args[0] = function;
4355 args[1] = HASH_KEY (h, i);
4356 args[2] = HASH_VALUE (h, i);
4357 Ffuncall (3, args);
4358 }
4359
4360 return Qnil;
4361}
4362
4363
4364DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4365 Sdefine_hash_table_test, 3, 3, 0,
4366 doc: /* Define a new hash table test with name NAME, a symbol.
4367
4368In hash tables created with NAME specified as test, use TEST to
4369compare keys, and HASH for computing hash codes of keys.
4370
4371TEST must be a function taking two arguments and returning non-nil if
4372both arguments are the same. HASH must be a function taking one
4373argument and returning an object that is the hash code of the argument.
4374It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4375returns nil, then (funcall TEST x1 x2) also returns nil. */)
4376 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4377{
4378 return Fput (name, Qhash_table_test, list2 (test, hash));
4379}
4380
4381
4382\f
4383/************************************************************************
4384 MD5, SHA-1, and SHA-2
4385 ************************************************************************/
4386
4387#include "md5.h"
4388#include "sha1.h"
4389#include "sha256.h"
4390#include "sha512.h"
4391
4392/* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4393
4394static Lisp_Object
4395secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start,
4396 Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror,
4397 Lisp_Object binary)
4398{
4399 int i;
4400 ptrdiff_t size, start_char = 0, start_byte, end_char = 0, end_byte;
4401 register EMACS_INT b, e;
4402 register struct buffer *bp;
4403 EMACS_INT temp;
4404 int digest_size;
4405 void *(*hash_func) (const char *, size_t, void *);
4406 Lisp_Object digest;
4407
4408 CHECK_SYMBOL (algorithm);
4409
4410 if (STRINGP (object))
4411 {
4412 if (NILP (coding_system))
4413 {
4414 /* Decide the coding-system to encode the data with. */
4415
4416 if (STRING_MULTIBYTE (object))
4417 /* use default, we can't guess correct value */
4418 coding_system = preferred_coding_system ();
4419 else
4420 coding_system = Qraw_text;
4421 }
4422
4423 if (NILP (Fcoding_system_p (coding_system)))
4424 {
4425 /* Invalid coding system. */
4426
4427 if (!NILP (noerror))
4428 coding_system = Qraw_text;
4429 else
4430 xsignal1 (Qcoding_system_error, coding_system);
4431 }
4432
4433 if (STRING_MULTIBYTE (object))
4434 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4435
4436 size = SCHARS (object);
4437 validate_subarray (object, start, end, size, &start_char, &end_char);
4438
4439 start_byte = !start_char ? 0 : string_char_to_byte (object, start_char);
4440 end_byte = (end_char == size
4441 ? SBYTES (object)
4442 : string_char_to_byte (object, end_char));
4443 }
4444 else
4445 {
4446 struct buffer *prev = current_buffer;
4447
4448 record_unwind_current_buffer ();
4449
4450 CHECK_BUFFER (object);
4451
4452 bp = XBUFFER (object);
4453 set_buffer_internal (bp);
4454
4455 if (NILP (start))
4456 b = BEGV;
4457 else
4458 {
4459 CHECK_NUMBER_COERCE_MARKER (start);
4460 b = XINT (start);
4461 }
4462
4463 if (NILP (end))
4464 e = ZV;
4465 else
4466 {
4467 CHECK_NUMBER_COERCE_MARKER (end);
4468 e = XINT (end);
4469 }
4470
4471 if (b > e)
4472 temp = b, b = e, e = temp;
4473
4474 if (!(BEGV <= b && e <= ZV))
4475 args_out_of_range (start, end);
4476
4477 if (NILP (coding_system))
4478 {
4479 /* Decide the coding-system to encode the data with.
4480 See fileio.c:Fwrite-region */
4481
4482 if (!NILP (Vcoding_system_for_write))
4483 coding_system = Vcoding_system_for_write;
4484 else
4485 {
4486 bool force_raw_text = 0;
4487
4488 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4489 if (NILP (coding_system)
4490 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4491 {
4492 coding_system = Qnil;
4493 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4494 force_raw_text = 1;
4495 }
4496
4497 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4498 {
4499 /* Check file-coding-system-alist. */
4500 Lisp_Object args[4], val;
4501
4502 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4503 args[3] = Fbuffer_file_name (object);
4504 val = Ffind_operation_coding_system (4, args);
4505 if (CONSP (val) && !NILP (XCDR (val)))
4506 coding_system = XCDR (val);
4507 }
4508
4509 if (NILP (coding_system)
4510 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4511 {
4512 /* If we still have not decided a coding system, use the
4513 default value of buffer-file-coding-system. */
4514 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4515 }
4516
4517 if (!force_raw_text
4518 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4519 /* Confirm that VAL can surely encode the current region. */
4520 coding_system = call4 (Vselect_safe_coding_system_function,
4521 make_number (b), make_number (e),
4522 coding_system, Qnil);
4523
4524 if (force_raw_text)
4525 coding_system = Qraw_text;
4526 }
4527
4528 if (NILP (Fcoding_system_p (coding_system)))
4529 {
4530 /* Invalid coding system. */
4531
4532 if (!NILP (noerror))
4533 coding_system = Qraw_text;
4534 else
4535 xsignal1 (Qcoding_system_error, coding_system);
4536 }
4537 }
4538
4539 object = make_buffer_string (b, e, 0);
4540 set_buffer_internal (prev);
4541 /* Discard the unwind protect for recovering the current
4542 buffer. */
4543 specpdl_ptr--;
4544
4545 if (STRING_MULTIBYTE (object))
4546 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4547 start_byte = 0;
4548 end_byte = SBYTES (object);
4549 }
4550
4551 if (EQ (algorithm, Qmd5))
4552 {
4553 digest_size = MD5_DIGEST_SIZE;
4554 hash_func = md5_buffer;
4555 }
4556 else if (EQ (algorithm, Qsha1))
4557 {
4558 digest_size = SHA1_DIGEST_SIZE;
4559 hash_func = sha1_buffer;
4560 }
4561 else if (EQ (algorithm, Qsha224))
4562 {
4563 digest_size = SHA224_DIGEST_SIZE;
4564 hash_func = sha224_buffer;
4565 }
4566 else if (EQ (algorithm, Qsha256))
4567 {
4568 digest_size = SHA256_DIGEST_SIZE;
4569 hash_func = sha256_buffer;
4570 }
4571 else if (EQ (algorithm, Qsha384))
4572 {
4573 digest_size = SHA384_DIGEST_SIZE;
4574 hash_func = sha384_buffer;
4575 }
4576 else if (EQ (algorithm, Qsha512))
4577 {
4578 digest_size = SHA512_DIGEST_SIZE;
4579 hash_func = sha512_buffer;
4580 }
4581 else
4582 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4583
4584 /* allocate 2 x digest_size so that it can be re-used to hold the
4585 hexified value */
4586 digest = make_uninit_string (digest_size * 2);
4587
4588 hash_func (SSDATA (object) + start_byte,
4589 end_byte - start_byte,
4590 SSDATA (digest));
4591
4592 if (NILP (binary))
4593 {
4594 unsigned char *p = SDATA (digest);
4595 for (i = digest_size - 1; i >= 0; i--)
4596 {
4597 static char const hexdigit[16] = "0123456789abcdef";
4598 int p_i = p[i];
4599 p[2 * i] = hexdigit[p_i >> 4];
4600 p[2 * i + 1] = hexdigit[p_i & 0xf];
4601 }
4602 return digest;
4603 }
4604 else
4605 return make_unibyte_string (SSDATA (digest), digest_size);
4606}
4607
4608DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4609 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4610
4611A message digest is a cryptographic checksum of a document, and the
4612algorithm to calculate it is defined in RFC 1321.
4613
4614The two optional arguments START and END are character positions
4615specifying for which part of OBJECT the message digest should be
4616computed. If nil or omitted, the digest is computed for the whole
4617OBJECT.
4618
4619The MD5 message digest is computed from the result of encoding the
4620text in a coding system, not directly from the internal Emacs form of
4621the text. The optional fourth argument CODING-SYSTEM specifies which
4622coding system to encode the text with. It should be the same coding
4623system that you used or will use when actually writing the text into a
4624file.
4625
4626If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4627OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4628system would be chosen by default for writing this text into a file.
4629
4630If OBJECT is a string, the most preferred coding system (see the
4631command `prefer-coding-system') is used.
4632
4633If NOERROR is non-nil, silently assume the `raw-text' coding if the
4634guesswork fails. Normally, an error is signaled in such case. */)
4635 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4636{
4637 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4638}
4639
4640DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4641 doc: /* Return the secure hash of OBJECT, a buffer or string.
4642ALGORITHM is a symbol specifying the hash to use:
4643md5, sha1, sha224, sha256, sha384 or sha512.
4644
4645The two optional arguments START and END are positions specifying for
4646which part of OBJECT to compute the hash. If nil or omitted, uses the
4647whole OBJECT.
4648
4649If BINARY is non-nil, returns a string in binary form. */)
4650 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4651{
4652 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4653}
4654\f
4655void
4656init_fns_once (void)
4657{
4658 compare_text_properties = scm_make_fluid ();
4659 scm_set_smob_equalp (lisp_misc_tag, misc_equal_p);
4660 scm_set_smob_equalp (lisp_string_tag, string_equal_p);
4661 scm_set_smob_equalp (lisp_vectorlike_tag, vectorlike_equal_p);
4662}
4663
4664void
4665syms_of_fns (void)
4666{
4667#include "fns.x"
4668
4669 DEFSYM (Qmd5, "md5");
4670 DEFSYM (Qsha1, "sha1");
4671 DEFSYM (Qsha224, "sha224");
4672 DEFSYM (Qsha256, "sha256");
4673 DEFSYM (Qsha384, "sha384");
4674 DEFSYM (Qsha512, "sha512");
4675
4676 /* Hash table stuff. */
4677 DEFSYM (Qhash_table_p, "hash-table-p");
4678 DEFSYM (Qeq, "eq");
4679 DEFSYM (Qeql, "eql");
4680 DEFSYM (Qequal, "equal");
4681 DEFSYM (QCtest, ":test");
4682 DEFSYM (QCsize, ":size");
4683 DEFSYM (QCrehash_size, ":rehash-size");
4684 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4685 DEFSYM (QCweakness, ":weakness");
4686 DEFSYM (Qkey, "key");
4687 DEFSYM (Qvalue, "value");
4688 DEFSYM (Qhash_table_test, "hash-table-test");
4689 DEFSYM (Qkey_or_value, "key-or-value");
4690 DEFSYM (Qkey_and_value, "key-and-value");
4691
4692 DEFSYM (Qstring_lessp, "string-lessp");
4693 DEFSYM (Qprovide, "provide");
4694 DEFSYM (Qrequire, "require");
4695 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4696 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4697 DEFSYM (Qwidget_type, "widget-type");
4698
4699 staticpro (&string_char_byte_cache_string);
4700 string_char_byte_cache_string = Qnil;
4701
4702 require_nesting_list = Qnil;
4703 staticpro (&require_nesting_list);
4704
4705 Fset (Qyes_or_no_p_history, Qnil);
4706
4707 DEFVAR_LISP ("features", Vfeatures,
4708 doc: /* A list of symbols which are the features of the executing Emacs.
4709Used by `featurep' and `require', and altered by `provide'. */);
4710 Vfeatures = list1 (intern_c_string ("emacs"));
4711 DEFSYM (Qsubfeatures, "subfeatures");
4712 DEFSYM (Qfuncall, "funcall");
4713
4714#ifdef HAVE_LANGINFO_CODESET
4715 DEFSYM (Qcodeset, "codeset");
4716 DEFSYM (Qdays, "days");
4717 DEFSYM (Qmonths, "months");
4718 DEFSYM (Qpaper, "paper");
4719#endif /* HAVE_LANGINFO_CODESET */
4720
4721 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4722 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4723This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4724invoked by mouse clicks and mouse menu items.
4725
4726On some platforms, file selection dialogs are also enabled if this is
4727non-nil. */);
4728 use_dialog_box = 1;
4729
4730 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4731 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4732This applies to commands from menus and tool bar buttons even when
4733they are initiated from the keyboard. If `use-dialog-box' is nil,
4734that disables the use of a file dialog, regardless of the value of
4735this variable. */);
4736 use_file_dialog = 1;
4737
4738 hashtest_eq.name = Qeq;
4739 hashtest_eq.user_hash_function = Qnil;
4740 hashtest_eq.user_cmp_function = Qnil;
4741 hashtest_eq.cmpfn = 0;
4742 hashtest_eq.hashfn = hashfn_eq;
4743
4744 hashtest_eql.name = Qeql;
4745 hashtest_eql.user_hash_function = Qnil;
4746 hashtest_eql.user_cmp_function = Qnil;
4747 hashtest_eql.cmpfn = cmpfn_eql;
4748 hashtest_eql.hashfn = hashfn_eql;
4749
4750 hashtest_equal.name = Qequal;
4751 hashtest_equal.user_hash_function = Qnil;
4752 hashtest_equal.user_cmp_function = Qnil;
4753 hashtest_equal.cmpfn = cmpfn_equal;
4754 hashtest_equal.hashfn = hashfn_equal;
4755}