(ccl_driver) <CCL_Call>: Now CCL program ID to call may be
[bpt/emacs.git] / src / coding.c
... / ...
CommitLineData
1/* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22/*** TABLE OF CONTENTS ***
23
24 1. Preamble
25 2. Emacs' internal format (emacs-mule) handlers
26 3. ISO2022 handlers
27 4. Shift-JIS and BIG5 handlers
28 5. CCL handlers
29 6. End-of-line handlers
30 7. C library functions
31 8. Emacs Lisp library functions
32 9. Post-amble
33
34*/
35
36/*** GENERAL NOTE on CODING SYSTEM ***
37
38 Coding system is an encoding mechanism of one or more character
39 sets. Here's a list of coding systems which Emacs can handle. When
40 we say "decode", it means converting some other coding system to
41 Emacs' internal format (emacs-internal), and when we say "encode",
42 it means converting the coding system emacs-mule to some other
43 coding system.
44
45 0. Emacs' internal format (emacs-mule)
46
47 Emacs itself holds a multi-lingual character in a buffer and a string
48 in a special format. Details are described in section 2.
49
50 1. ISO2022
51
52 The most famous coding system for multiple character sets. X's
53 Compound Text, various EUCs (Extended Unix Code), and coding
54 systems used in Internet communication such as ISO-2022-JP are
55 all variants of ISO2022. Details are described in section 3.
56
57 2. SJIS (or Shift-JIS or MS-Kanji-Code)
58
59 A coding system to encode character sets: ASCII, JISX0201, and
60 JISX0208. Widely used for PC's in Japan. Details are described in
61 section 4.
62
63 3. BIG5
64
65 A coding system to encode character sets: ASCII and Big5. Widely
66 used by Chinese (mainly in Taiwan and Hong Kong). Details are
67 described in section 4. In this file, when we write "BIG5"
68 (all uppercase), we mean the coding system, and when we write
69 "Big5" (capitalized), we mean the character set.
70
71 4. Raw text
72
73 A coding system for a text containing random 8-bit code. Emacs does
74 no code conversion on such a text except for end-of-line format.
75
76 5. Other
77
78 If a user wants to read/write a text encoded in a coding system not
79 listed above, he can supply a decoder and an encoder for it in CCL
80 (Code Conversion Language) programs. Emacs executes the CCL program
81 while reading/writing.
82
83 Emacs represents a coding system by a Lisp symbol that has a property
84 `coding-system'. But, before actually using the coding system, the
85 information about it is set in a structure of type `struct
86 coding_system' for rapid processing. See section 6 for more details.
87
88*/
89
90/*** GENERAL NOTES on END-OF-LINE FORMAT ***
91
92 How end-of-line of a text is encoded depends on a system. For
93 instance, Unix's format is just one byte of `line-feed' code,
94 whereas DOS's format is two-byte sequence of `carriage-return' and
95 `line-feed' codes. MacOS's format is usually one byte of
96 `carriage-return'.
97
98 Since text characters encoding and end-of-line encoding are
99 independent, any coding system described above can take
100 any format of end-of-line. So, Emacs has information of format of
101 end-of-line in each coding-system. See section 6 for more details.
102
103*/
104
105/*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
106
107 These functions check if a text between SRC and SRC_END is encoded
108 in the coding system category XXX. Each returns an integer value in
109 which appropriate flag bits for the category XXX is set. The flag
110 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
111 template of these functions. */
112#if 0
113int
114detect_coding_emacs_mule (src, src_end)
115 unsigned char *src, *src_end;
116{
117 ...
118}
119#endif
120
121/*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
122
123 These functions decode SRC_BYTES length text at SOURCE encoded in
124 CODING to Emacs' internal format (emacs-mule). The resulting text
125 goes to a place pointed to by DESTINATION, the length of which
126 should not exceed DST_BYTES. These functions set the information of
127 original and decoded texts in the members produced, produced_char,
128 consumed, and consumed_char of the structure *CODING.
129
130 The return value is an integer (CODING_FINISH_XXX) indicating how
131 the decoding finished.
132
133 DST_BYTES zero means that source area and destination area are
134 overlapped, which means that we can produce a decoded text until it
135 reaches at the head of not-yet-decoded source text.
136
137 Below is a template of these functions. */
138#if 0
139decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
140 struct coding_system *coding;
141 unsigned char *source, *destination;
142 int src_bytes, dst_bytes;
143{
144 ...
145}
146#endif
147
148/*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
149
150 These functions encode SRC_BYTES length text at SOURCE of Emacs'
151 internal format (emacs-mule) to CODING. The resulting text goes to
152 a place pointed to by DESTINATION, the length of which should not
153 exceed DST_BYTES. These functions set the information of
154 original and encoded texts in the members produced, produced_char,
155 consumed, and consumed_char of the structure *CODING.
156
157 The return value is an integer (CODING_FINISH_XXX) indicating how
158 the encoding finished.
159
160 DST_BYTES zero means that source area and destination area are
161 overlapped, which means that we can produce a decoded text until it
162 reaches at the head of not-yet-decoded source text.
163
164 Below is a template of these functions. */
165#if 0
166encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
167 struct coding_system *coding;
168 unsigned char *source, *destination;
169 int src_bytes, dst_bytes;
170{
171 ...
172}
173#endif
174
175/*** COMMONLY USED MACROS ***/
176
177/* The following three macros ONE_MORE_BYTE, TWO_MORE_BYTES, and
178 THREE_MORE_BYTES safely get one, two, and three bytes from the
179 source text respectively. If there are not enough bytes in the
180 source, they jump to `label_end_of_loop'. The caller should set
181 variables `src' and `src_end' to appropriate areas in advance. */
182
183#define ONE_MORE_BYTE(c1) \
184 do { \
185 if (src < src_end) \
186 c1 = *src++; \
187 else \
188 goto label_end_of_loop; \
189 } while (0)
190
191#define TWO_MORE_BYTES(c1, c2) \
192 do { \
193 if (src + 1 < src_end) \
194 c1 = *src++, c2 = *src++; \
195 else \
196 goto label_end_of_loop; \
197 } while (0)
198
199#define THREE_MORE_BYTES(c1, c2, c3) \
200 do { \
201 if (src + 2 < src_end) \
202 c1 = *src++, c2 = *src++, c3 = *src++; \
203 else \
204 goto label_end_of_loop; \
205 } while (0)
206
207/* The following three macros DECODE_CHARACTER_ASCII,
208 DECODE_CHARACTER_DIMENSION1, and DECODE_CHARACTER_DIMENSION2 put
209 the multi-byte form of a character of each class at the place
210 pointed by `dst'. The caller should set the variable `dst' to
211 point to an appropriate area and the variable `coding' to point to
212 the coding-system of the currently decoding text in advance. */
213
214/* Decode one ASCII character C. */
215
216#define DECODE_CHARACTER_ASCII(c) \
217 do { \
218 if (COMPOSING_P (coding->composing)) \
219 { \
220 *dst++ = 0xA0, *dst++ = (c) | 0x80; \
221 coding->composed_chars++; \
222 if (((c) | 0x80) < 0xA0) \
223 coding->fake_multibyte = 1; \
224 } \
225 else \
226 { \
227 *dst++ = (c); \
228 coding->produced_char++; \
229 if ((c) >= 0x80) \
230 coding->fake_multibyte = 1; \
231 } \
232 } while (0)
233
234/* Decode one DIMENSION1 character whose charset is CHARSET and whose
235 position-code is C. */
236
237#define DECODE_CHARACTER_DIMENSION1(charset, c) \
238 do { \
239 unsigned char leading_code = CHARSET_LEADING_CODE_BASE (charset); \
240 if (COMPOSING_P (coding->composing)) \
241 { \
242 *dst++ = leading_code + 0x20; \
243 coding->composed_chars++; \
244 } \
245 else \
246 { \
247 *dst++ = leading_code; \
248 coding->produced_char++; \
249 } \
250 if (leading_code = CHARSET_LEADING_CODE_EXT (charset)) \
251 *dst++ = leading_code; \
252 *dst++ = (c) | 0x80; \
253 if (((c) | 0x80) < 0xA0) \
254 coding->fake_multibyte = 1; \
255 } while (0)
256
257/* Decode one DIMENSION2 character whose charset is CHARSET and whose
258 position-codes are C1 and C2. */
259
260#define DECODE_CHARACTER_DIMENSION2(charset, c1, c2) \
261 do { \
262 DECODE_CHARACTER_DIMENSION1 (charset, c1); \
263 *dst++ = (c2) | 0x80; \
264 if (((c2) | 0x80) < 0xA0) \
265 coding->fake_multibyte = 1; \
266 } while (0)
267
268\f
269/*** 1. Preamble ***/
270
271#include <stdio.h>
272
273#ifdef emacs
274
275#include <config.h>
276#include "lisp.h"
277#include "buffer.h"
278#include "charset.h"
279#include "ccl.h"
280#include "coding.h"
281#include "window.h"
282
283#else /* not emacs */
284
285#include "mulelib.h"
286
287#endif /* not emacs */
288
289Lisp_Object Qcoding_system, Qeol_type;
290Lisp_Object Qbuffer_file_coding_system;
291Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
292Lisp_Object Qno_conversion, Qundecided;
293Lisp_Object Qcoding_system_history;
294Lisp_Object Qsafe_charsets;
295Lisp_Object Qvalid_codes;
296
297extern Lisp_Object Qinsert_file_contents, Qwrite_region;
298Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
299Lisp_Object Qstart_process, Qopen_network_stream;
300Lisp_Object Qtarget_idx;
301
302Lisp_Object Vselect_safe_coding_system_function;
303
304/* Mnemonic string for each format of end-of-line. */
305Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
306/* Mnemonic string to indicate format of end-of-line is not yet
307 decided. */
308Lisp_Object eol_mnemonic_undecided;
309
310/* Format of end-of-line decided by system. This is CODING_EOL_LF on
311 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
312int system_eol_type;
313
314#ifdef emacs
315
316Lisp_Object Vcoding_system_list, Vcoding_system_alist;
317
318Lisp_Object Qcoding_system_p, Qcoding_system_error;
319
320/* Coding system emacs-mule and raw-text are for converting only
321 end-of-line format. */
322Lisp_Object Qemacs_mule, Qraw_text;
323
324/* Coding-systems are handed between Emacs Lisp programs and C internal
325 routines by the following three variables. */
326/* Coding-system for reading files and receiving data from process. */
327Lisp_Object Vcoding_system_for_read;
328/* Coding-system for writing files and sending data to process. */
329Lisp_Object Vcoding_system_for_write;
330/* Coding-system actually used in the latest I/O. */
331Lisp_Object Vlast_coding_system_used;
332
333/* A vector of length 256 which contains information about special
334 Latin codes (especially for dealing with Microsoft codes). */
335Lisp_Object Vlatin_extra_code_table;
336
337/* Flag to inhibit code conversion of end-of-line format. */
338int inhibit_eol_conversion;
339
340/* Flag to make buffer-file-coding-system inherit from process-coding. */
341int inherit_process_coding_system;
342
343/* Coding system to be used to encode text for terminal display. */
344struct coding_system terminal_coding;
345
346/* Coding system to be used to encode text for terminal display when
347 terminal coding system is nil. */
348struct coding_system safe_terminal_coding;
349
350/* Coding system of what is sent from terminal keyboard. */
351struct coding_system keyboard_coding;
352
353/* Default coding system to be used to write a file. */
354struct coding_system default_buffer_file_coding;
355
356Lisp_Object Vfile_coding_system_alist;
357Lisp_Object Vprocess_coding_system_alist;
358Lisp_Object Vnetwork_coding_system_alist;
359
360#endif /* emacs */
361
362Lisp_Object Qcoding_category, Qcoding_category_index;
363
364/* List of symbols `coding-category-xxx' ordered by priority. */
365Lisp_Object Vcoding_category_list;
366
367/* Table of coding categories (Lisp symbols). */
368Lisp_Object Vcoding_category_table;
369
370/* Table of names of symbol for each coding-category. */
371char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
372 "coding-category-emacs-mule",
373 "coding-category-sjis",
374 "coding-category-iso-7",
375 "coding-category-iso-7-tight",
376 "coding-category-iso-8-1",
377 "coding-category-iso-8-2",
378 "coding-category-iso-7-else",
379 "coding-category-iso-8-else",
380 "coding-category-ccl",
381 "coding-category-big5",
382 "coding-category-raw-text",
383 "coding-category-binary"
384};
385
386/* Table of pointers to coding systems corresponding to each coding
387 categories. */
388struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
389
390/* Table of coding category masks. Nth element is a mask for a coding
391 cateogry of which priority is Nth. */
392static
393int coding_priorities[CODING_CATEGORY_IDX_MAX];
394
395/* Flag to tell if we look up translation table on character code
396 conversion. */
397Lisp_Object Venable_character_translation;
398/* Standard translation table to look up on decoding (reading). */
399Lisp_Object Vstandard_translation_table_for_decode;
400/* Standard translation table to look up on encoding (writing). */
401Lisp_Object Vstandard_translation_table_for_encode;
402
403Lisp_Object Qtranslation_table;
404Lisp_Object Qtranslation_table_id;
405Lisp_Object Qtranslation_table_for_decode;
406Lisp_Object Qtranslation_table_for_encode;
407
408/* Alist of charsets vs revision number. */
409Lisp_Object Vcharset_revision_alist;
410
411/* Default coding systems used for process I/O. */
412Lisp_Object Vdefault_process_coding_system;
413
414\f
415/*** 2. Emacs internal format (emacs-mule) handlers ***/
416
417/* Emacs' internal format for encoding multiple character sets is a
418 kind of multi-byte encoding, i.e. characters are encoded by
419 variable-length sequences of one-byte codes. ASCII characters
420 and control characters (e.g. `tab', `newline') are represented by
421 one-byte sequences which are their ASCII codes, in the range 0x00
422 through 0x7F. The other characters are represented by a sequence
423 of `base leading-code', optional `extended leading-code', and one
424 or two `position-code's. The length of the sequence is determined
425 by the base leading-code. Leading-code takes the range 0x80
426 through 0x9F, whereas extended leading-code and position-code take
427 the range 0xA0 through 0xFF. See `charset.h' for more details
428 about leading-code and position-code.
429
430 There's one exception to this rule. Special leading-code
431 `leading-code-composition' denotes that the following several
432 characters should be composed into one character. Leading-codes of
433 components (except for ASCII) are added 0x20. An ASCII character
434 component is represented by a 2-byte sequence of `0xA0' and
435 `ASCII-code + 0x80'. See also the comments in `charset.h' for the
436 details of composite character. Hence, we can summarize the code
437 range as follows:
438
439 --- CODE RANGE of Emacs' internal format ---
440 (character set) (range)
441 ASCII 0x00 .. 0x7F
442 ELSE (1st byte) 0x80 .. 0x9F
443 (rest bytes) 0xA0 .. 0xFF
444 ---------------------------------------------
445
446 */
447
448enum emacs_code_class_type emacs_code_class[256];
449
450/* Go to the next statement only if *SRC is accessible and the code is
451 greater than 0xA0. */
452#define CHECK_CODE_RANGE_A0_FF \
453 do { \
454 if (src >= src_end) \
455 goto label_end_of_switch; \
456 else if (*src++ < 0xA0) \
457 return 0; \
458 } while (0)
459
460/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
461 Check if a text is encoded in Emacs' internal format. If it is,
462 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
463
464int
465detect_coding_emacs_mule (src, src_end)
466 unsigned char *src, *src_end;
467{
468 unsigned char c;
469 int composing = 0;
470
471 while (src < src_end)
472 {
473 c = *src++;
474
475 if (composing)
476 {
477 if (c < 0xA0)
478 composing = 0;
479 else
480 c -= 0x20;
481 }
482
483 switch (emacs_code_class[c])
484 {
485 case EMACS_ascii_code:
486 case EMACS_linefeed_code:
487 break;
488
489 case EMACS_control_code:
490 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
491 return 0;
492 break;
493
494 case EMACS_invalid_code:
495 return 0;
496
497 case EMACS_leading_code_composition: /* c == 0x80 */
498 if (composing)
499 CHECK_CODE_RANGE_A0_FF;
500 else
501 composing = 1;
502 break;
503
504 case EMACS_leading_code_4:
505 CHECK_CODE_RANGE_A0_FF;
506 /* fall down to check it two more times ... */
507
508 case EMACS_leading_code_3:
509 CHECK_CODE_RANGE_A0_FF;
510 /* fall down to check it one more time ... */
511
512 case EMACS_leading_code_2:
513 CHECK_CODE_RANGE_A0_FF;
514 break;
515
516 default:
517 label_end_of_switch:
518 break;
519 }
520 }
521 return CODING_CATEGORY_MASK_EMACS_MULE;
522}
523
524\f
525/*** 3. ISO2022 handlers ***/
526
527/* The following note describes the coding system ISO2022 briefly.
528 Since the intention of this note is to help understand the
529 functions in this file, some parts are NOT ACCURATE or OVERLY
530 SIMPLIFIED. For thorough understanding, please refer to the
531 original document of ISO2022.
532
533 ISO2022 provides many mechanisms to encode several character sets
534 in 7-bit and 8-bit environments. For 7-bite environments, all text
535 is encoded using bytes less than 128. This may make the encoded
536 text a little bit longer, but the text passes more easily through
537 several gateways, some of which strip off MSB (Most Signigant Bit).
538
539 There are two kinds of character sets: control character set and
540 graphic character set. The former contains control characters such
541 as `newline' and `escape' to provide control functions (control
542 functions are also provided by escape sequences). The latter
543 contains graphic characters such as 'A' and '-'. Emacs recognizes
544 two control character sets and many graphic character sets.
545
546 Graphic character sets are classified into one of the following
547 four classes, according to the number of bytes (DIMENSION) and
548 number of characters in one dimension (CHARS) of the set:
549 - DIMENSION1_CHARS94
550 - DIMENSION1_CHARS96
551 - DIMENSION2_CHARS94
552 - DIMENSION2_CHARS96
553
554 In addition, each character set is assigned an identification tag,
555 unique for each set, called "final character" (denoted as <F>
556 hereafter). The <F> of each character set is decided by ECMA(*)
557 when it is registered in ISO. The code range of <F> is 0x30..0x7F
558 (0x30..0x3F are for private use only).
559
560 Note (*): ECMA = European Computer Manufacturers Association
561
562 Here are examples of graphic character set [NAME(<F>)]:
563 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
564 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
565 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
566 o DIMENSION2_CHARS96 -- none for the moment
567
568 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
569 C0 [0x00..0x1F] -- control character plane 0
570 GL [0x20..0x7F] -- graphic character plane 0
571 C1 [0x80..0x9F] -- control character plane 1
572 GR [0xA0..0xFF] -- graphic character plane 1
573
574 A control character set is directly designated and invoked to C0 or
575 C1 by an escape sequence. The most common case is that:
576 - ISO646's control character set is designated/invoked to C0, and
577 - ISO6429's control character set is designated/invoked to C1,
578 and usually these designations/invocations are omitted in encoded
579 text. In a 7-bit environment, only C0 can be used, and a control
580 character for C1 is encoded by an appropriate escape sequence to
581 fit into the environment. All control characters for C1 are
582 defined to have corresponding escape sequences.
583
584 A graphic character set is at first designated to one of four
585 graphic registers (G0 through G3), then these graphic registers are
586 invoked to GL or GR. These designations and invocations can be
587 done independently. The most common case is that G0 is invoked to
588 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
589 these invocations and designations are omitted in encoded text.
590 In a 7-bit environment, only GL can be used.
591
592 When a graphic character set of CHARS94 is invoked to GL, codes
593 0x20 and 0x7F of the GL area work as control characters SPACE and
594 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
595 be used.
596
597 There are two ways of invocation: locking-shift and single-shift.
598 With locking-shift, the invocation lasts until the next different
599 invocation, whereas with single-shift, the invocation affects the
600 following character only and doesn't affect the locking-shift
601 state. Invocations are done by the following control characters or
602 escape sequences:
603
604 ----------------------------------------------------------------------
605 abbrev function cntrl escape seq description
606 ----------------------------------------------------------------------
607 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
608 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
609 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
610 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
611 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
612 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
613 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
614 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
615 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
616 ----------------------------------------------------------------------
617 (*) These are not used by any known coding system.
618
619 Control characters for these functions are defined by macros
620 ISO_CODE_XXX in `coding.h'.
621
622 Designations are done by the following escape sequences:
623 ----------------------------------------------------------------------
624 escape sequence description
625 ----------------------------------------------------------------------
626 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
627 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
628 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
629 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
630 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
631 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
632 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
633 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
634 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
635 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
636 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
637 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
638 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
639 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
640 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
641 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
642 ----------------------------------------------------------------------
643
644 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
645 of dimension 1, chars 94, and final character <F>, etc...
646
647 Note (*): Although these designations are not allowed in ISO2022,
648 Emacs accepts them on decoding, and produces them on encoding
649 CHARS96 character sets in a coding system which is characterized as
650 7-bit environment, non-locking-shift, and non-single-shift.
651
652 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
653 '(' can be omitted. We refer to this as "short-form" hereafter.
654
655 Now you may notice that there are a lot of ways for encoding the
656 same multilingual text in ISO2022. Actually, there exist many
657 coding systems such as Compound Text (used in X11's inter client
658 communication, ISO-2022-JP (used in Japanese internet), ISO-2022-KR
659 (used in Korean internet), EUC (Extended UNIX Code, used in Asian
660 localized platforms), and all of these are variants of ISO2022.
661
662 In addition to the above, Emacs handles two more kinds of escape
663 sequences: ISO6429's direction specification and Emacs' private
664 sequence for specifying character composition.
665
666 ISO6429's direction specification takes the following form:
667 o CSI ']' -- end of the current direction
668 o CSI '0' ']' -- end of the current direction
669 o CSI '1' ']' -- start of left-to-right text
670 o CSI '2' ']' -- start of right-to-left text
671 The control character CSI (0x9B: control sequence introducer) is
672 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
673
674 Character composition specification takes the following form:
675 o ESC '0' -- start character composition
676 o ESC '1' -- end character composition
677 Since these are not standard escape sequences of any ISO standard,
678 the use of them for these meaning is restricted to Emacs only. */
679
680enum iso_code_class_type iso_code_class[256];
681
682#define CHARSET_OK(idx, charset) \
683 (coding_system_table[idx] \
684 && (coding_system_table[idx]->safe_charsets[charset] \
685 || (CODING_SPEC_ISO_REQUESTED_DESIGNATION \
686 (coding_system_table[idx], charset) \
687 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)))
688
689#define SHIFT_OUT_OK(idx) \
690 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
691
692/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
693 Check if a text is encoded in ISO2022. If it is, returns an
694 integer in which appropriate flag bits any of:
695 CODING_CATEGORY_MASK_ISO_7
696 CODING_CATEGORY_MASK_ISO_7_TIGHT
697 CODING_CATEGORY_MASK_ISO_8_1
698 CODING_CATEGORY_MASK_ISO_8_2
699 CODING_CATEGORY_MASK_ISO_7_ELSE
700 CODING_CATEGORY_MASK_ISO_8_ELSE
701 are set. If a code which should never appear in ISO2022 is found,
702 returns 0. */
703
704int
705detect_coding_iso2022 (src, src_end)
706 unsigned char *src, *src_end;
707{
708 int mask = CODING_CATEGORY_MASK_ISO;
709 int mask_found = 0;
710 int reg[4], shift_out = 0, single_shifting = 0;
711 int c, c1, i, charset;
712
713 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
714 while (mask && src < src_end)
715 {
716 c = *src++;
717 switch (c)
718 {
719 case ISO_CODE_ESC:
720 single_shifting = 0;
721 if (src >= src_end)
722 break;
723 c = *src++;
724 if (c >= '(' && c <= '/')
725 {
726 /* Designation sequence for a charset of dimension 1. */
727 if (src >= src_end)
728 break;
729 c1 = *src++;
730 if (c1 < ' ' || c1 >= 0x80
731 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
732 /* Invalid designation sequence. Just ignore. */
733 break;
734 reg[(c - '(') % 4] = charset;
735 }
736 else if (c == '$')
737 {
738 /* Designation sequence for a charset of dimension 2. */
739 if (src >= src_end)
740 break;
741 c = *src++;
742 if (c >= '@' && c <= 'B')
743 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
744 reg[0] = charset = iso_charset_table[1][0][c];
745 else if (c >= '(' && c <= '/')
746 {
747 if (src >= src_end)
748 break;
749 c1 = *src++;
750 if (c1 < ' ' || c1 >= 0x80
751 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
752 /* Invalid designation sequence. Just ignore. */
753 break;
754 reg[(c - '(') % 4] = charset;
755 }
756 else
757 /* Invalid designation sequence. Just ignore. */
758 break;
759 }
760 else if (c == 'N' || c == 'O')
761 {
762 /* ESC <Fe> for SS2 or SS3. */
763 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
764 break;
765 }
766 else if (c == '0' || c == '1' || c == '2')
767 /* ESC <Fp> for start/end composition. Just ignore. */
768 break;
769 else
770 /* Invalid escape sequence. Just ignore. */
771 break;
772
773 /* We found a valid designation sequence for CHARSET. */
774 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
775 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset))
776 mask_found |= CODING_CATEGORY_MASK_ISO_7;
777 else
778 mask &= ~CODING_CATEGORY_MASK_ISO_7;
779 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset))
780 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
781 else
782 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
783 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset))
784 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
785 else
786 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
787 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset))
788 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
789 else
790 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
791 break;
792
793 case ISO_CODE_SO:
794 single_shifting = 0;
795 if (shift_out == 0
796 && (reg[1] >= 0
797 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
798 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
799 {
800 /* Locking shift out. */
801 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
802 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
803 }
804 break;
805
806 case ISO_CODE_SI:
807 single_shifting = 0;
808 if (shift_out == 1)
809 {
810 /* Locking shift in. */
811 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
812 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
813 }
814 break;
815
816 case ISO_CODE_CSI:
817 single_shifting = 0;
818 case ISO_CODE_SS2:
819 case ISO_CODE_SS3:
820 {
821 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
822
823 if (c != ISO_CODE_CSI)
824 {
825 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
826 & CODING_FLAG_ISO_SINGLE_SHIFT)
827 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
828 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
829 & CODING_FLAG_ISO_SINGLE_SHIFT)
830 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
831 single_shifting = 1;
832 }
833 if (VECTORP (Vlatin_extra_code_table)
834 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
835 {
836 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
837 & CODING_FLAG_ISO_LATIN_EXTRA)
838 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
839 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
840 & CODING_FLAG_ISO_LATIN_EXTRA)
841 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
842 }
843 mask &= newmask;
844 mask_found |= newmask;
845 }
846 break;
847
848 default:
849 if (c < 0x80)
850 {
851 single_shifting = 0;
852 break;
853 }
854 else if (c < 0xA0)
855 {
856 single_shifting = 0;
857 if (VECTORP (Vlatin_extra_code_table)
858 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
859 {
860 int newmask = 0;
861
862 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
863 & CODING_FLAG_ISO_LATIN_EXTRA)
864 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
865 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
866 & CODING_FLAG_ISO_LATIN_EXTRA)
867 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
868 mask &= newmask;
869 mask_found |= newmask;
870 }
871 else
872 return 0;
873 }
874 else
875 {
876 unsigned char *src_begin = src;
877
878 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
879 | CODING_CATEGORY_MASK_ISO_7_ELSE);
880 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
881 /* Check the length of succeeding codes of the range
882 0xA0..0FF. If the byte length is odd, we exclude
883 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
884 when we are not single shifting. */
885 if (!single_shifting)
886 {
887 while (src < src_end && *src >= 0xA0)
888 src++;
889 if ((src - src_begin - 1) & 1 && src < src_end)
890 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
891 else
892 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
893 }
894 }
895 break;
896 }
897 }
898
899 return (mask & mask_found);
900}
901
902/* Decode a character of which charset is CHARSET and the 1st position
903 code is C1. If dimension of CHARSET is 2, the 2nd position code is
904 fetched from SRC and set to C2. If CHARSET is negative, it means
905 that we are decoding ill formed text, and what we can do is just to
906 read C1 as is. */
907
908#define DECODE_ISO_CHARACTER(charset, c1) \
909 do { \
910 int c_alt, charset_alt = (charset); \
911 if (COMPOSING_HEAD_P (coding->composing)) \
912 { \
913 *dst++ = LEADING_CODE_COMPOSITION; \
914 if (COMPOSING_WITH_RULE_P (coding->composing)) \
915 /* To tell composition rules are embeded. */ \
916 *dst++ = 0xFF; \
917 coding->composing += 2; \
918 } \
919 if (charset_alt >= 0) \
920 { \
921 if (CHARSET_DIMENSION (charset_alt) == 2) \
922 { \
923 ONE_MORE_BYTE (c2); \
924 if (iso_code_class[(c2) & 0x7F] != ISO_0x20_or_0x7F \
925 && iso_code_class[(c2) & 0x7F] != ISO_graphic_plane_0) \
926 { \
927 src--; \
928 charset_alt = CHARSET_ASCII; \
929 } \
930 } \
931 if (!NILP (translation_table) \
932 && ((c_alt = translate_char (translation_table, \
933 -1, charset_alt, c1, c2)) >= 0)) \
934 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
935 } \
936 if (charset_alt == CHARSET_ASCII || charset_alt < 0) \
937 DECODE_CHARACTER_ASCII (c1); \
938 else if (CHARSET_DIMENSION (charset_alt) == 1) \
939 DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \
940 else \
941 DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
942 if (COMPOSING_WITH_RULE_P (coding->composing)) \
943 /* To tell a composition rule follows. */ \
944 coding->composing = COMPOSING_WITH_RULE_RULE; \
945 } while (0)
946
947/* Set designation state into CODING. */
948#define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
949 do { \
950 int charset; \
951 \
952 if (final_char < '0' || final_char >= 128) \
953 goto label_invalid_code; \
954 charset = ISO_CHARSET_TABLE (make_number (dimension), \
955 make_number (chars), \
956 make_number (final_char)); \
957 if (charset >= 0 \
958 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
959 || coding->safe_charsets[charset])) \
960 { \
961 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
962 && reg == 0 \
963 && charset == CHARSET_ASCII) \
964 { \
965 /* We should insert this designation sequence as is so \
966 that it is surely written back to a file. */ \
967 coding->spec.iso2022.last_invalid_designation_register = -1; \
968 goto label_invalid_code; \
969 } \
970 coding->spec.iso2022.last_invalid_designation_register = -1; \
971 if ((coding->mode & CODING_MODE_DIRECTION) \
972 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
973 charset = CHARSET_REVERSE_CHARSET (charset); \
974 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
975 } \
976 else \
977 { \
978 coding->spec.iso2022.last_invalid_designation_register = reg; \
979 goto label_invalid_code; \
980 } \
981 } while (0)
982
983/* Return 0 if there's a valid composing sequence starting at SRC and
984 ending before SRC_END, else return -1. */
985
986int
987check_composing_code (coding, src, src_end)
988 struct coding_system *coding;
989 unsigned char *src, *src_end;
990{
991 int charset, c, c1, dim;
992
993 while (src < src_end)
994 {
995 c = *src++;
996 if (c >= 0x20)
997 continue;
998 if (c != ISO_CODE_ESC || src >= src_end)
999 return -1;
1000 c = *src++;
1001 if (c == '1') /* end of compsition */
1002 return 0;
1003 if (src + 2 >= src_end
1004 || !coding->flags & CODING_FLAG_ISO_DESIGNATION)
1005 return -1;
1006
1007 dim = (c == '$');
1008 if (dim == 1)
1009 c = (*src >= '@' && *src <= 'B') ? '(' : *src++;
1010 if (c >= '(' && c <= '/')
1011 {
1012 c1 = *src++;
1013 if ((c1 < ' ' || c1 >= 0x80)
1014 || (charset = iso_charset_table[dim][c >= ','][c1]) < 0
1015 || ! coding->safe_charsets[charset]
1016 || (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
1017 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1018 return -1;
1019 }
1020 else
1021 return -1;
1022 }
1023
1024 /* We have not found the sequence "ESC 1". */
1025 return -1;
1026}
1027
1028/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1029
1030int
1031decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1032 struct coding_system *coding;
1033 unsigned char *source, *destination;
1034 int src_bytes, dst_bytes;
1035{
1036 unsigned char *src = source;
1037 unsigned char *src_end = source + src_bytes;
1038 unsigned char *dst = destination;
1039 unsigned char *dst_end = destination + dst_bytes;
1040 /* Since the maximum bytes produced by each loop is 7, we subtract 6
1041 from DST_END to assure that overflow checking is necessary only
1042 at the head of loop. */
1043 unsigned char *adjusted_dst_end = dst_end - 6;
1044 int charset;
1045 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1046 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1047 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1048 Lisp_Object translation_table
1049 = coding->translation_table_for_decode;
1050 int result = CODING_FINISH_NORMAL;
1051
1052 if (!NILP (Venable_character_translation) && NILP (translation_table))
1053 translation_table = Vstandard_translation_table_for_decode;
1054
1055 coding->produced_char = 0;
1056 coding->fake_multibyte = 0;
1057 while (src < src_end && (dst_bytes
1058 ? (dst < adjusted_dst_end)
1059 : (dst < src - 6)))
1060 {
1061 /* SRC_BASE remembers the start position in source in each loop.
1062 The loop will be exited when there's not enough source text
1063 to analyze long escape sequence or 2-byte code (within macros
1064 ONE_MORE_BYTE or TWO_MORE_BYTES). In that case, SRC is reset
1065 to SRC_BASE before exiting. */
1066 unsigned char *src_base = src;
1067 int c1 = *src++, c2;
1068
1069 switch (iso_code_class [c1])
1070 {
1071 case ISO_0x20_or_0x7F:
1072 if (!coding->composing
1073 && (charset0 < 0 || CHARSET_CHARS (charset0) == 94))
1074 {
1075 /* This is SPACE or DEL. */
1076 *dst++ = c1;
1077 coding->produced_char++;
1078 break;
1079 }
1080 /* This is a graphic character, we fall down ... */
1081
1082 case ISO_graphic_plane_0:
1083 if (coding->composing == COMPOSING_WITH_RULE_RULE)
1084 {
1085 /* This is a composition rule. */
1086 *dst++ = c1 | 0x80;
1087 coding->composing = COMPOSING_WITH_RULE_TAIL;
1088 }
1089 else
1090 DECODE_ISO_CHARACTER (charset0, c1);
1091 break;
1092
1093 case ISO_0xA0_or_0xFF:
1094 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1095 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1096 goto label_invalid_code;
1097 /* This is a graphic character, we fall down ... */
1098
1099 case ISO_graphic_plane_1:
1100 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1101 goto label_invalid_code;
1102 else
1103 DECODE_ISO_CHARACTER (charset1, c1);
1104 break;
1105
1106 case ISO_control_code:
1107 /* All ISO2022 control characters in this class have the
1108 same representation in Emacs internal format. */
1109 if (c1 == '\n'
1110 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1111 && (coding->eol_type == CODING_EOL_CR
1112 || coding->eol_type == CODING_EOL_CRLF))
1113 {
1114 result = CODING_FINISH_INCONSISTENT_EOL;
1115 goto label_end_of_loop_2;
1116 }
1117 *dst++ = c1;
1118 coding->produced_char++;
1119 if (c1 >= 0x80)
1120 coding->fake_multibyte = 1;
1121 break;
1122
1123 case ISO_carriage_return:
1124 if (coding->eol_type == CODING_EOL_CR)
1125 *dst++ = '\n';
1126 else if (coding->eol_type == CODING_EOL_CRLF)
1127 {
1128 ONE_MORE_BYTE (c1);
1129 if (c1 == ISO_CODE_LF)
1130 *dst++ = '\n';
1131 else
1132 {
1133 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1134 {
1135 result = CODING_FINISH_INCONSISTENT_EOL;
1136 goto label_end_of_loop_2;
1137 }
1138 src--;
1139 *dst++ = '\r';
1140 }
1141 }
1142 else
1143 *dst++ = c1;
1144 coding->produced_char++;
1145 break;
1146
1147 case ISO_shift_out:
1148 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1149 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1150 goto label_invalid_code;
1151 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1152 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1153 break;
1154
1155 case ISO_shift_in:
1156 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1157 goto label_invalid_code;
1158 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1159 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1160 break;
1161
1162 case ISO_single_shift_2_7:
1163 case ISO_single_shift_2:
1164 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1165 goto label_invalid_code;
1166 /* SS2 is handled as an escape sequence of ESC 'N' */
1167 c1 = 'N';
1168 goto label_escape_sequence;
1169
1170 case ISO_single_shift_3:
1171 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1172 goto label_invalid_code;
1173 /* SS2 is handled as an escape sequence of ESC 'O' */
1174 c1 = 'O';
1175 goto label_escape_sequence;
1176
1177 case ISO_control_sequence_introducer:
1178 /* CSI is handled as an escape sequence of ESC '[' ... */
1179 c1 = '[';
1180 goto label_escape_sequence;
1181
1182 case ISO_escape:
1183 ONE_MORE_BYTE (c1);
1184 label_escape_sequence:
1185 /* Escape sequences handled by Emacs are invocation,
1186 designation, direction specification, and character
1187 composition specification. */
1188 switch (c1)
1189 {
1190 case '&': /* revision of following character set */
1191 ONE_MORE_BYTE (c1);
1192 if (!(c1 >= '@' && c1 <= '~'))
1193 goto label_invalid_code;
1194 ONE_MORE_BYTE (c1);
1195 if (c1 != ISO_CODE_ESC)
1196 goto label_invalid_code;
1197 ONE_MORE_BYTE (c1);
1198 goto label_escape_sequence;
1199
1200 case '$': /* designation of 2-byte character set */
1201 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1202 goto label_invalid_code;
1203 ONE_MORE_BYTE (c1);
1204 if (c1 >= '@' && c1 <= 'B')
1205 { /* designation of JISX0208.1978, GB2312.1980,
1206 or JISX0208.1980 */
1207 DECODE_DESIGNATION (0, 2, 94, c1);
1208 }
1209 else if (c1 >= 0x28 && c1 <= 0x2B)
1210 { /* designation of DIMENSION2_CHARS94 character set */
1211 ONE_MORE_BYTE (c2);
1212 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1213 }
1214 else if (c1 >= 0x2C && c1 <= 0x2F)
1215 { /* designation of DIMENSION2_CHARS96 character set */
1216 ONE_MORE_BYTE (c2);
1217 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1218 }
1219 else
1220 goto label_invalid_code;
1221 break;
1222
1223 case 'n': /* invocation of locking-shift-2 */
1224 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1225 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1226 goto label_invalid_code;
1227 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1228 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1229 break;
1230
1231 case 'o': /* invocation of locking-shift-3 */
1232 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1233 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1234 goto label_invalid_code;
1235 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1236 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1237 break;
1238
1239 case 'N': /* invocation of single-shift-2 */
1240 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1241 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1242 goto label_invalid_code;
1243 ONE_MORE_BYTE (c1);
1244 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1245 DECODE_ISO_CHARACTER (charset, c1);
1246 break;
1247
1248 case 'O': /* invocation of single-shift-3 */
1249 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1250 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1251 goto label_invalid_code;
1252 ONE_MORE_BYTE (c1);
1253 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1254 DECODE_ISO_CHARACTER (charset, c1);
1255 break;
1256
1257 case '0': case '2': /* start composing */
1258 /* Before processing composing, we must be sure that all
1259 characters being composed are supported by CODING.
1260 If not, we must give up composing. */
1261 if (check_composing_code (coding, src, src_end) == 0)
1262 {
1263 /* We are looking at a valid composition sequence. */
1264 coding->composing = (c1 == '0'
1265 ? COMPOSING_NO_RULE_HEAD
1266 : COMPOSING_WITH_RULE_HEAD);
1267 coding->composed_chars = 0;
1268 }
1269 else
1270 {
1271 *dst++ = ISO_CODE_ESC;
1272 *dst++ = c1;
1273 coding->produced_char += 2;
1274 }
1275 break;
1276
1277 case '1': /* end composing */
1278 if (!coding->composing)
1279 {
1280 *dst++ = ISO_CODE_ESC;
1281 *dst++ = c1;
1282 coding->produced_char += 2;
1283 break;
1284 }
1285
1286 if (coding->composed_chars > 0)
1287 {
1288 if (coding->composed_chars == 1)
1289 {
1290 unsigned char *this_char_start = dst;
1291 int this_bytes;
1292
1293 /* Only one character is in the composing
1294 sequence. Make it a normal character. */
1295 while (*--this_char_start != LEADING_CODE_COMPOSITION);
1296 dst = (this_char_start
1297 + (coding->composing == COMPOSING_NO_RULE_TAIL
1298 ? 1 : 2));
1299 *dst -= 0x20;
1300 if (*dst == 0x80)
1301 *++dst &= 0x7F;
1302 this_bytes = BYTES_BY_CHAR_HEAD (*dst);
1303 while (this_bytes--) *this_char_start++ = *dst++;
1304 dst = this_char_start;
1305 }
1306 coding->produced_char++;
1307 }
1308 coding->composing = COMPOSING_NO;
1309 break;
1310
1311 case '[': /* specification of direction */
1312 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1313 goto label_invalid_code;
1314 /* For the moment, nested direction is not supported.
1315 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1316 left-to-right, and nozero means right-to-left. */
1317 ONE_MORE_BYTE (c1);
1318 switch (c1)
1319 {
1320 case ']': /* end of the current direction */
1321 coding->mode &= ~CODING_MODE_DIRECTION;
1322
1323 case '0': /* end of the current direction */
1324 case '1': /* start of left-to-right direction */
1325 ONE_MORE_BYTE (c1);
1326 if (c1 == ']')
1327 coding->mode &= ~CODING_MODE_DIRECTION;
1328 else
1329 goto label_invalid_code;
1330 break;
1331
1332 case '2': /* start of right-to-left direction */
1333 ONE_MORE_BYTE (c1);
1334 if (c1 == ']')
1335 coding->mode |= CODING_MODE_DIRECTION;
1336 else
1337 goto label_invalid_code;
1338 break;
1339
1340 default:
1341 goto label_invalid_code;
1342 }
1343 break;
1344
1345 default:
1346 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1347 goto label_invalid_code;
1348 if (c1 >= 0x28 && c1 <= 0x2B)
1349 { /* designation of DIMENSION1_CHARS94 character set */
1350 ONE_MORE_BYTE (c2);
1351 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
1352 }
1353 else if (c1 >= 0x2C && c1 <= 0x2F)
1354 { /* designation of DIMENSION1_CHARS96 character set */
1355 ONE_MORE_BYTE (c2);
1356 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
1357 }
1358 else
1359 {
1360 goto label_invalid_code;
1361 }
1362 }
1363 /* We must update these variables now. */
1364 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1365 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1366 break;
1367
1368 label_invalid_code:
1369 while (src_base < src)
1370 *dst++ = *src_base++;
1371 coding->fake_multibyte = 1;
1372 }
1373 continue;
1374
1375 label_end_of_loop:
1376 result = CODING_FINISH_INSUFFICIENT_SRC;
1377 label_end_of_loop_2:
1378 src = src_base;
1379 break;
1380 }
1381
1382 if (src < src_end)
1383 {
1384 if (result == CODING_FINISH_NORMAL)
1385 result = CODING_FINISH_INSUFFICIENT_DST;
1386 else if (result != CODING_FINISH_INCONSISTENT_EOL
1387 && coding->mode & CODING_MODE_LAST_BLOCK)
1388 {
1389 /* This is the last block of the text to be decoded. We had
1390 better just flush out all remaining codes in the text
1391 although they are not valid characters. */
1392 src_bytes = src_end - src;
1393 if (dst_bytes && (dst_end - dst < src_bytes))
1394 src_bytes = dst_end - dst;
1395 bcopy (src, dst, src_bytes);
1396 dst += src_bytes;
1397 src += src_bytes;
1398 coding->fake_multibyte = 1;
1399 }
1400 }
1401
1402 coding->consumed = coding->consumed_char = src - source;
1403 coding->produced = dst - destination;
1404 return result;
1405}
1406
1407/* ISO2022 encoding stuff. */
1408
1409/*
1410 It is not enough to say just "ISO2022" on encoding, we have to
1411 specify more details. In Emacs, each coding system of ISO2022
1412 variant has the following specifications:
1413 1. Initial designation to G0 thru G3.
1414 2. Allows short-form designation?
1415 3. ASCII should be designated to G0 before control characters?
1416 4. ASCII should be designated to G0 at end of line?
1417 5. 7-bit environment or 8-bit environment?
1418 6. Use locking-shift?
1419 7. Use Single-shift?
1420 And the following two are only for Japanese:
1421 8. Use ASCII in place of JIS0201-1976-Roman?
1422 9. Use JISX0208-1983 in place of JISX0208-1978?
1423 These specifications are encoded in `coding->flags' as flag bits
1424 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
1425 details.
1426*/
1427
1428/* Produce codes (escape sequence) for designating CHARSET to graphic
1429 register REG. If <final-char> of CHARSET is '@', 'A', or 'B' and
1430 the coding system CODING allows, produce designation sequence of
1431 short-form. */
1432
1433#define ENCODE_DESIGNATION(charset, reg, coding) \
1434 do { \
1435 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
1436 char *intermediate_char_94 = "()*+"; \
1437 char *intermediate_char_96 = ",-./"; \
1438 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
1439 if (revision < 255) \
1440 { \
1441 *dst++ = ISO_CODE_ESC; \
1442 *dst++ = '&'; \
1443 *dst++ = '@' + revision; \
1444 } \
1445 *dst++ = ISO_CODE_ESC; \
1446 if (CHARSET_DIMENSION (charset) == 1) \
1447 { \
1448 if (CHARSET_CHARS (charset) == 94) \
1449 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1450 else \
1451 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1452 } \
1453 else \
1454 { \
1455 *dst++ = '$'; \
1456 if (CHARSET_CHARS (charset) == 94) \
1457 { \
1458 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
1459 || reg != 0 \
1460 || final_char < '@' || final_char > 'B') \
1461 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1462 } \
1463 else \
1464 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1465 } \
1466 *dst++ = final_char; \
1467 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1468 } while (0)
1469
1470/* The following two macros produce codes (control character or escape
1471 sequence) for ISO2022 single-shift functions (single-shift-2 and
1472 single-shift-3). */
1473
1474#define ENCODE_SINGLE_SHIFT_2 \
1475 do { \
1476 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1477 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
1478 else \
1479 { \
1480 *dst++ = ISO_CODE_SS2; \
1481 coding->fake_multibyte = 1; \
1482 } \
1483 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1484 } while (0)
1485
1486#define ENCODE_SINGLE_SHIFT_3 \
1487 do { \
1488 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1489 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
1490 else \
1491 { \
1492 *dst++ = ISO_CODE_SS3; \
1493 coding->fake_multibyte = 1; \
1494 } \
1495 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1496 } while (0)
1497
1498/* The following four macros produce codes (control character or
1499 escape sequence) for ISO2022 locking-shift functions (shift-in,
1500 shift-out, locking-shift-2, and locking-shift-3). */
1501
1502#define ENCODE_SHIFT_IN \
1503 do { \
1504 *dst++ = ISO_CODE_SI; \
1505 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
1506 } while (0)
1507
1508#define ENCODE_SHIFT_OUT \
1509 do { \
1510 *dst++ = ISO_CODE_SO; \
1511 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
1512 } while (0)
1513
1514#define ENCODE_LOCKING_SHIFT_2 \
1515 do { \
1516 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
1517 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
1518 } while (0)
1519
1520#define ENCODE_LOCKING_SHIFT_3 \
1521 do { \
1522 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
1523 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
1524 } while (0)
1525
1526/* Produce codes for a DIMENSION1 character whose character set is
1527 CHARSET and whose position-code is C1. Designation and invocation
1528 sequences are also produced in advance if necessary. */
1529
1530
1531#define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
1532 do { \
1533 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1534 { \
1535 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1536 *dst++ = c1 & 0x7F; \
1537 else \
1538 *dst++ = c1 | 0x80; \
1539 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1540 break; \
1541 } \
1542 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1543 { \
1544 *dst++ = c1 & 0x7F; \
1545 break; \
1546 } \
1547 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1548 { \
1549 *dst++ = c1 | 0x80; \
1550 break; \
1551 } \
1552 else if (coding->flags & CODING_FLAG_ISO_SAFE \
1553 && !coding->safe_charsets[charset]) \
1554 { \
1555 /* We should not encode this character, instead produce one or \
1556 two `?'s. */ \
1557 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1558 if (CHARSET_WIDTH (charset) == 2) \
1559 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1560 break; \
1561 } \
1562 else \
1563 /* Since CHARSET is not yet invoked to any graphic planes, we \
1564 must invoke it, or, at first, designate it to some graphic \
1565 register. Then repeat the loop to actually produce the \
1566 character. */ \
1567 dst = encode_invocation_designation (charset, coding, dst); \
1568 } while (1)
1569
1570/* Produce codes for a DIMENSION2 character whose character set is
1571 CHARSET and whose position-codes are C1 and C2. Designation and
1572 invocation codes are also produced in advance if necessary. */
1573
1574#define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
1575 do { \
1576 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1577 { \
1578 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1579 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
1580 else \
1581 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
1582 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1583 break; \
1584 } \
1585 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1586 { \
1587 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
1588 break; \
1589 } \
1590 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1591 { \
1592 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
1593 break; \
1594 } \
1595 else if (coding->flags & CODING_FLAG_ISO_SAFE \
1596 && !coding->safe_charsets[charset]) \
1597 { \
1598 /* We should not encode this character, instead produce one or \
1599 two `?'s. */ \
1600 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1601 if (CHARSET_WIDTH (charset) == 2) \
1602 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1603 break; \
1604 } \
1605 else \
1606 /* Since CHARSET is not yet invoked to any graphic planes, we \
1607 must invoke it, or, at first, designate it to some graphic \
1608 register. Then repeat the loop to actually produce the \
1609 character. */ \
1610 dst = encode_invocation_designation (charset, coding, dst); \
1611 } while (1)
1612
1613#define ENCODE_ISO_CHARACTER(charset, c1, c2) \
1614 do { \
1615 int c_alt, charset_alt; \
1616 if (!NILP (translation_table) \
1617 && ((c_alt = translate_char (translation_table, -1, \
1618 charset, c1, c2)) \
1619 >= 0)) \
1620 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
1621 else \
1622 charset_alt = charset; \
1623 if (CHARSET_DEFINED_P (charset_alt)) \
1624 { \
1625 if (CHARSET_DIMENSION (charset_alt) == 1) \
1626 { \
1627 if (charset == CHARSET_ASCII \
1628 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
1629 charset_alt = charset_latin_jisx0201; \
1630 ENCODE_ISO_CHARACTER_DIMENSION1 (charset_alt, c1); \
1631 } \
1632 else \
1633 { \
1634 if (charset == charset_jisx0208 \
1635 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
1636 charset_alt = charset_jisx0208_1978; \
1637 ENCODE_ISO_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
1638 } \
1639 } \
1640 else \
1641 { \
1642 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1643 { \
1644 *dst++ = charset & 0x7f; \
1645 *dst++ = c1 & 0x7f; \
1646 if (c2) \
1647 *dst++ = c2 & 0x7f; \
1648 } \
1649 else \
1650 { \
1651 *dst++ = charset; \
1652 *dst++ = c1; \
1653 if (c2) \
1654 *dst++ = c2; \
1655 } \
1656 } \
1657 if (! COMPOSING_P (coding->composing)) \
1658 coding->consumed_char++; \
1659 } while (0)
1660
1661/* Produce designation and invocation codes at a place pointed by DST
1662 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
1663 Return new DST. */
1664
1665unsigned char *
1666encode_invocation_designation (charset, coding, dst)
1667 int charset;
1668 struct coding_system *coding;
1669 unsigned char *dst;
1670{
1671 int reg; /* graphic register number */
1672
1673 /* At first, check designations. */
1674 for (reg = 0; reg < 4; reg++)
1675 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
1676 break;
1677
1678 if (reg >= 4)
1679 {
1680 /* CHARSET is not yet designated to any graphic registers. */
1681 /* At first check the requested designation. */
1682 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1683 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
1684 /* Since CHARSET requests no special designation, designate it
1685 to graphic register 0. */
1686 reg = 0;
1687
1688 ENCODE_DESIGNATION (charset, reg, coding);
1689 }
1690
1691 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
1692 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
1693 {
1694 /* Since the graphic register REG is not invoked to any graphic
1695 planes, invoke it to graphic plane 0. */
1696 switch (reg)
1697 {
1698 case 0: /* graphic register 0 */
1699 ENCODE_SHIFT_IN;
1700 break;
1701
1702 case 1: /* graphic register 1 */
1703 ENCODE_SHIFT_OUT;
1704 break;
1705
1706 case 2: /* graphic register 2 */
1707 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1708 ENCODE_SINGLE_SHIFT_2;
1709 else
1710 ENCODE_LOCKING_SHIFT_2;
1711 break;
1712
1713 case 3: /* graphic register 3 */
1714 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1715 ENCODE_SINGLE_SHIFT_3;
1716 else
1717 ENCODE_LOCKING_SHIFT_3;
1718 break;
1719 }
1720 }
1721 return dst;
1722}
1723
1724/* The following two macros produce codes for indicating composition. */
1725#define ENCODE_COMPOSITION_NO_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '0'
1726#define ENCODE_COMPOSITION_WITH_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '2'
1727#define ENCODE_COMPOSITION_END *dst++ = ISO_CODE_ESC, *dst++ = '1'
1728
1729/* The following three macros produce codes for indicating direction
1730 of text. */
1731#define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
1732 do { \
1733 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
1734 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
1735 else \
1736 *dst++ = ISO_CODE_CSI; \
1737 } while (0)
1738
1739#define ENCODE_DIRECTION_R2L \
1740 ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '2', *dst++ = ']'
1741
1742#define ENCODE_DIRECTION_L2R \
1743 ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '0', *dst++ = ']'
1744
1745/* Produce codes for designation and invocation to reset the graphic
1746 planes and registers to initial state. */
1747#define ENCODE_RESET_PLANE_AND_REGISTER \
1748 do { \
1749 int reg; \
1750 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
1751 ENCODE_SHIFT_IN; \
1752 for (reg = 0; reg < 4; reg++) \
1753 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
1754 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
1755 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
1756 ENCODE_DESIGNATION \
1757 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
1758 } while (0)
1759
1760/* Produce designation sequences of charsets in the line started from
1761 SRC to a place pointed by *DSTP, and update DSTP.
1762
1763 If the current block ends before any end-of-line, we may fail to
1764 find all the necessary designations. */
1765
1766void
1767encode_designation_at_bol (coding, table, src, src_end, dstp)
1768 struct coding_system *coding;
1769 Lisp_Object table;
1770 unsigned char *src, *src_end, **dstp;
1771{
1772 int charset, c, found = 0, reg;
1773 /* Table of charsets to be designated to each graphic register. */
1774 int r[4];
1775 unsigned char *dst = *dstp;
1776
1777 for (reg = 0; reg < 4; reg++)
1778 r[reg] = -1;
1779
1780 while (src < src_end && *src != '\n' && found < 4)
1781 {
1782 int bytes = BYTES_BY_CHAR_HEAD (*src);
1783
1784 if (NILP (table))
1785 charset = CHARSET_AT (src);
1786 else
1787 {
1788 int c_alt;
1789 unsigned char c1, c2;
1790
1791 SPLIT_STRING(src, bytes, charset, c1, c2);
1792 if ((c_alt = translate_char (table, -1, charset, c1, c2)) >= 0)
1793 charset = CHAR_CHARSET (c_alt);
1794 }
1795
1796 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1797 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
1798 {
1799 found++;
1800 r[reg] = charset;
1801 }
1802
1803 src += bytes;
1804 }
1805
1806 if (found)
1807 {
1808 for (reg = 0; reg < 4; reg++)
1809 if (r[reg] >= 0
1810 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
1811 ENCODE_DESIGNATION (r[reg], reg, coding);
1812 *dstp = dst;
1813 }
1814}
1815
1816/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
1817
1818int
1819encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1820 struct coding_system *coding;
1821 unsigned char *source, *destination;
1822 int src_bytes, dst_bytes;
1823{
1824 unsigned char *src = source;
1825 unsigned char *src_end = source + src_bytes;
1826 unsigned char *dst = destination;
1827 unsigned char *dst_end = destination + dst_bytes;
1828 /* Since the maximum bytes produced by each loop is 20, we subtract 19
1829 from DST_END to assure overflow checking is necessary only at the
1830 head of loop. */
1831 unsigned char *adjusted_dst_end = dst_end - 19;
1832 Lisp_Object translation_table
1833 = coding->translation_table_for_encode;
1834 int result = CODING_FINISH_NORMAL;
1835
1836 if (!NILP (Venable_character_translation) && NILP (translation_table))
1837 translation_table = Vstandard_translation_table_for_encode;
1838
1839 coding->consumed_char = 0;
1840 coding->fake_multibyte = 0;
1841 while (src < src_end && (dst_bytes
1842 ? (dst < adjusted_dst_end)
1843 : (dst < src - 19)))
1844 {
1845 /* SRC_BASE remembers the start position in source in each loop.
1846 The loop will be exited when there's not enough source text
1847 to analyze multi-byte codes (within macros ONE_MORE_BYTE,
1848 TWO_MORE_BYTES, and THREE_MORE_BYTES). In that case, SRC is
1849 reset to SRC_BASE before exiting. */
1850 unsigned char *src_base = src;
1851 int charset, c1, c2, c3, c4;
1852
1853 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
1854 && CODING_SPEC_ISO_BOL (coding))
1855 {
1856 /* We have to produce designation sequences if any now. */
1857 encode_designation_at_bol (coding, translation_table,
1858 src, src_end, &dst);
1859 CODING_SPEC_ISO_BOL (coding) = 0;
1860 }
1861
1862 c1 = *src++;
1863 /* If we are seeing a component of a composite character, we are
1864 seeing a leading-code encoded irregularly for composition, or
1865 a composition rule if composing with rule. We must set C1 to
1866 a normal leading-code or an ASCII code. If we are not seeing
1867 a composite character, we must reset composition,
1868 designation, and invocation states. */
1869 if (COMPOSING_P (coding->composing))
1870 {
1871 if (c1 < 0xA0)
1872 {
1873 /* We are not in a composite character any longer. */
1874 coding->composing = COMPOSING_NO;
1875 ENCODE_RESET_PLANE_AND_REGISTER;
1876 ENCODE_COMPOSITION_END;
1877 }
1878 else
1879 {
1880 if (coding->composing == COMPOSING_WITH_RULE_RULE)
1881 {
1882 *dst++ = c1 & 0x7F;
1883 coding->composing = COMPOSING_WITH_RULE_HEAD;
1884 continue;
1885 }
1886 else if (coding->composing == COMPOSING_WITH_RULE_HEAD)
1887 coding->composing = COMPOSING_WITH_RULE_RULE;
1888 if (c1 == 0xA0)
1889 {
1890 /* This is an ASCII component. */
1891 ONE_MORE_BYTE (c1);
1892 c1 &= 0x7F;
1893 }
1894 else
1895 /* This is a leading-code of non ASCII component. */
1896 c1 -= 0x20;
1897 }
1898 }
1899
1900 /* Now encode one character. C1 is a control character, an
1901 ASCII character, or a leading-code of multi-byte character. */
1902 switch (emacs_code_class[c1])
1903 {
1904 case EMACS_ascii_code:
1905 c2 = 0;
1906 ENCODE_ISO_CHARACTER (CHARSET_ASCII, c1, /* dummy */ c2);
1907 break;
1908
1909 case EMACS_control_code:
1910 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
1911 ENCODE_RESET_PLANE_AND_REGISTER;
1912 *dst++ = c1;
1913 coding->consumed_char++;
1914 break;
1915
1916 case EMACS_carriage_return_code:
1917 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
1918 {
1919 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
1920 ENCODE_RESET_PLANE_AND_REGISTER;
1921 *dst++ = c1;
1922 coding->consumed_char++;
1923 break;
1924 }
1925 /* fall down to treat '\r' as '\n' ... */
1926
1927 case EMACS_linefeed_code:
1928 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
1929 ENCODE_RESET_PLANE_AND_REGISTER;
1930 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
1931 bcopy (coding->spec.iso2022.initial_designation,
1932 coding->spec.iso2022.current_designation,
1933 sizeof coding->spec.iso2022.initial_designation);
1934 if (coding->eol_type == CODING_EOL_LF
1935 || coding->eol_type == CODING_EOL_UNDECIDED)
1936 *dst++ = ISO_CODE_LF;
1937 else if (coding->eol_type == CODING_EOL_CRLF)
1938 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
1939 else
1940 *dst++ = ISO_CODE_CR;
1941 CODING_SPEC_ISO_BOL (coding) = 1;
1942 coding->consumed_char++;
1943 break;
1944
1945 case EMACS_leading_code_2:
1946 ONE_MORE_BYTE (c2);
1947 c3 = 0;
1948 if (c2 < 0xA0)
1949 {
1950 /* invalid sequence */
1951 *dst++ = c1;
1952 src--;
1953 coding->consumed_char++;
1954 }
1955 else
1956 ENCODE_ISO_CHARACTER (c1, c2, /* dummy */ c3);
1957 break;
1958
1959 case EMACS_leading_code_3:
1960 TWO_MORE_BYTES (c2, c3);
1961 c4 = 0;
1962 if (c2 < 0xA0 || c3 < 0xA0)
1963 {
1964 /* invalid sequence */
1965 *dst++ = c1;
1966 src -= 2;
1967 coding->consumed_char++;
1968 }
1969 else if (c1 < LEADING_CODE_PRIVATE_11)
1970 ENCODE_ISO_CHARACTER (c1, c2, c3);
1971 else
1972 ENCODE_ISO_CHARACTER (c2, c3, /* dummy */ c4);
1973 break;
1974
1975 case EMACS_leading_code_4:
1976 THREE_MORE_BYTES (c2, c3, c4);
1977 if (c2 < 0xA0 || c3 < 0xA0 || c4 < 0xA0)
1978 {
1979 /* invalid sequence */
1980 *dst++ = c1;
1981 src -= 3;
1982 coding->consumed_char++;
1983 }
1984 else
1985 ENCODE_ISO_CHARACTER (c2, c3, c4);
1986 break;
1987
1988 case EMACS_leading_code_composition:
1989 ONE_MORE_BYTE (c2);
1990 if (c2 < 0xA0)
1991 {
1992 /* invalid sequence */
1993 *dst++ = c1;
1994 src--;
1995 coding->consumed_char++;
1996 }
1997 else if (c2 == 0xFF)
1998 {
1999 ENCODE_RESET_PLANE_AND_REGISTER;
2000 coding->composing = COMPOSING_WITH_RULE_HEAD;
2001 ENCODE_COMPOSITION_WITH_RULE_START;
2002 coding->consumed_char++;
2003 }
2004 else
2005 {
2006 ENCODE_RESET_PLANE_AND_REGISTER;
2007 /* Rewind one byte because it is a character code of
2008 composition elements. */
2009 src--;
2010 coding->composing = COMPOSING_NO_RULE_HEAD;
2011 ENCODE_COMPOSITION_NO_RULE_START;
2012 coding->consumed_char++;
2013 }
2014 break;
2015
2016 case EMACS_invalid_code:
2017 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2018 ENCODE_RESET_PLANE_AND_REGISTER;
2019 *dst++ = c1;
2020 coding->consumed_char++;
2021 break;
2022 }
2023 continue;
2024 label_end_of_loop:
2025 result = CODING_FINISH_INSUFFICIENT_SRC;
2026 src = src_base;
2027 break;
2028 }
2029
2030 if (src < src_end && result == CODING_FINISH_NORMAL)
2031 result = CODING_FINISH_INSUFFICIENT_DST;
2032
2033 /* If this is the last block of the text to be encoded, we must
2034 reset graphic planes and registers to the initial state, and
2035 flush out the carryover if any. */
2036 if (coding->mode & CODING_MODE_LAST_BLOCK)
2037 {
2038 ENCODE_RESET_PLANE_AND_REGISTER;
2039 if (COMPOSING_P (coding->composing))
2040 ENCODE_COMPOSITION_END;
2041 if (result == CODING_FINISH_INSUFFICIENT_SRC)
2042 {
2043 while (src < src_end && dst < dst_end)
2044 *dst++ = *src++;
2045 }
2046 }
2047 coding->consumed = src - source;
2048 coding->produced = coding->produced_char = dst - destination;
2049 return result;
2050}
2051
2052\f
2053/*** 4. SJIS and BIG5 handlers ***/
2054
2055/* Although SJIS and BIG5 are not ISO's coding system, they are used
2056 quite widely. So, for the moment, Emacs supports them in the bare
2057 C code. But, in the future, they may be supported only by CCL. */
2058
2059/* SJIS is a coding system encoding three character sets: ASCII, right
2060 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2061 as is. A character of charset katakana-jisx0201 is encoded by
2062 "position-code + 0x80". A character of charset japanese-jisx0208
2063 is encoded in 2-byte but two position-codes are divided and shifted
2064 so that it fit in the range below.
2065
2066 --- CODE RANGE of SJIS ---
2067 (character set) (range)
2068 ASCII 0x00 .. 0x7F
2069 KATAKANA-JISX0201 0xA0 .. 0xDF
2070 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2071 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2072 -------------------------------
2073
2074*/
2075
2076/* BIG5 is a coding system encoding two character sets: ASCII and
2077 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2078 character set and is encoded in two-byte.
2079
2080 --- CODE RANGE of BIG5 ---
2081 (character set) (range)
2082 ASCII 0x00 .. 0x7F
2083 Big5 (1st byte) 0xA1 .. 0xFE
2084 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2085 --------------------------
2086
2087 Since the number of characters in Big5 is larger than maximum
2088 characters in Emacs' charset (96x96), it can't be handled as one
2089 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2090 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2091 contains frequently used characters and the latter contains less
2092 frequently used characters. */
2093
2094/* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2095 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2096 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2097 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2098
2099/* Number of Big5 characters which have the same code in 1st byte. */
2100#define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2101
2102#define DECODE_BIG5(b1, b2, charset, c1, c2) \
2103 do { \
2104 unsigned int temp \
2105 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2106 if (b1 < 0xC9) \
2107 charset = charset_big5_1; \
2108 else \
2109 { \
2110 charset = charset_big5_2; \
2111 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2112 } \
2113 c1 = temp / (0xFF - 0xA1) + 0x21; \
2114 c2 = temp % (0xFF - 0xA1) + 0x21; \
2115 } while (0)
2116
2117#define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2118 do { \
2119 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2120 if (charset == charset_big5_2) \
2121 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2122 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2123 b2 = temp % BIG5_SAME_ROW; \
2124 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2125 } while (0)
2126
2127#define DECODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \
2128 do { \
2129 int c_alt, charset_alt = (charset); \
2130 if (!NILP (translation_table) \
2131 && ((c_alt = translate_char (translation_table, \
2132 -1, (charset), c1, c2)) >= 0)) \
2133 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
2134 if (charset_alt == CHARSET_ASCII || charset_alt < 0) \
2135 DECODE_CHARACTER_ASCII (c1); \
2136 else if (CHARSET_DIMENSION (charset_alt) == 1) \
2137 DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \
2138 else \
2139 DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
2140 } while (0)
2141
2142#define ENCODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \
2143 do { \
2144 int c_alt, charset_alt; \
2145 if (!NILP (translation_table) \
2146 && ((c_alt = translate_char (translation_table, -1, \
2147 charset, c1, c2)) \
2148 >= 0)) \
2149 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
2150 else \
2151 charset_alt = charset; \
2152 if (charset_alt == charset_ascii) \
2153 *dst++ = c1; \
2154 else if (CHARSET_DIMENSION (charset_alt) == 1) \
2155 { \
2156 if (sjis_p && charset_alt == charset_katakana_jisx0201) \
2157 *dst++ = c1; \
2158 else if (sjis_p && charset_alt == charset_latin_jisx0201) \
2159 *dst++ = c1 & 0x7F; \
2160 else \
2161 { \
2162 *dst++ = charset_alt, *dst++ = c1; \
2163 coding->fake_multibyte = 1; \
2164 } \
2165 } \
2166 else \
2167 { \
2168 c1 &= 0x7F, c2 &= 0x7F; \
2169 if (sjis_p && (charset_alt == charset_jisx0208 \
2170 || charset_alt == charset_jisx0208_1978))\
2171 { \
2172 unsigned char s1, s2; \
2173 \
2174 ENCODE_SJIS (c1, c2, s1, s2); \
2175 *dst++ = s1, *dst++ = s2; \
2176 coding->fake_multibyte = 1; \
2177 } \
2178 else if (!sjis_p \
2179 && (charset_alt == charset_big5_1 \
2180 || charset_alt == charset_big5_2)) \
2181 { \
2182 unsigned char b1, b2; \
2183 \
2184 ENCODE_BIG5 (charset_alt, c1, c2, b1, b2); \
2185 *dst++ = b1, *dst++ = b2; \
2186 } \
2187 else \
2188 { \
2189 *dst++ = charset_alt, *dst++ = c1, *dst++ = c2; \
2190 coding->fake_multibyte = 1; \
2191 } \
2192 } \
2193 coding->consumed_char++; \
2194 } while (0);
2195
2196/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2197 Check if a text is encoded in SJIS. If it is, return
2198 CODING_CATEGORY_MASK_SJIS, else return 0. */
2199
2200int
2201detect_coding_sjis (src, src_end)
2202 unsigned char *src, *src_end;
2203{
2204 unsigned char c;
2205
2206 while (src < src_end)
2207 {
2208 c = *src++;
2209 if ((c >= 0x80 && c < 0xA0) || c >= 0xE0)
2210 {
2211 if (src < src_end && *src++ < 0x40)
2212 return 0;
2213 }
2214 }
2215 return CODING_CATEGORY_MASK_SJIS;
2216}
2217
2218/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2219 Check if a text is encoded in BIG5. If it is, return
2220 CODING_CATEGORY_MASK_BIG5, else return 0. */
2221
2222int
2223detect_coding_big5 (src, src_end)
2224 unsigned char *src, *src_end;
2225{
2226 unsigned char c;
2227
2228 while (src < src_end)
2229 {
2230 c = *src++;
2231 if (c >= 0xA1)
2232 {
2233 if (src >= src_end)
2234 break;
2235 c = *src++;
2236 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
2237 return 0;
2238 }
2239 }
2240 return CODING_CATEGORY_MASK_BIG5;
2241}
2242
2243/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2244 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2245
2246int
2247decode_coding_sjis_big5 (coding, source, destination,
2248 src_bytes, dst_bytes, sjis_p)
2249 struct coding_system *coding;
2250 unsigned char *source, *destination;
2251 int src_bytes, dst_bytes;
2252 int sjis_p;
2253{
2254 unsigned char *src = source;
2255 unsigned char *src_end = source + src_bytes;
2256 unsigned char *dst = destination;
2257 unsigned char *dst_end = destination + dst_bytes;
2258 /* Since the maximum bytes produced by each loop is 4, we subtract 3
2259 from DST_END to assure overflow checking is necessary only at the
2260 head of loop. */
2261 unsigned char *adjusted_dst_end = dst_end - 3;
2262 Lisp_Object translation_table
2263 = coding->translation_table_for_decode;
2264 int result = CODING_FINISH_NORMAL;
2265
2266 if (!NILP (Venable_character_translation) && NILP (translation_table))
2267 translation_table = Vstandard_translation_table_for_decode;
2268
2269 coding->produced_char = 0;
2270 coding->fake_multibyte = 0;
2271 while (src < src_end && (dst_bytes
2272 ? (dst < adjusted_dst_end)
2273 : (dst < src - 3)))
2274 {
2275 /* SRC_BASE remembers the start position in source in each loop.
2276 The loop will be exited when there's not enough source text
2277 to analyze two-byte character (within macro ONE_MORE_BYTE).
2278 In that case, SRC is reset to SRC_BASE before exiting. */
2279 unsigned char *src_base = src;
2280 unsigned char c1 = *src++, c2, c3, c4;
2281
2282 if (c1 < 0x20)
2283 {
2284 if (c1 == '\r')
2285 {
2286 if (coding->eol_type == CODING_EOL_CRLF)
2287 {
2288 ONE_MORE_BYTE (c2);
2289 if (c2 == '\n')
2290 *dst++ = c2;
2291 else if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2292 {
2293 result = CODING_FINISH_INCONSISTENT_EOL;
2294 goto label_end_of_loop_2;
2295 }
2296 else
2297 /* To process C2 again, SRC is subtracted by 1. */
2298 *dst++ = c1, src--;
2299 }
2300 else if (coding->eol_type == CODING_EOL_CR)
2301 *dst++ = '\n';
2302 else
2303 *dst++ = c1;
2304 }
2305 else if (c1 == '\n'
2306 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2307 && (coding->eol_type == CODING_EOL_CR
2308 || coding->eol_type == CODING_EOL_CRLF))
2309 {
2310 result = CODING_FINISH_INCONSISTENT_EOL;
2311 goto label_end_of_loop_2;
2312 }
2313 else
2314 *dst++ = c1;
2315 coding->produced_char++;
2316 }
2317 else if (c1 < 0x80)
2318 {
2319 c2 = 0; /* avoid warning */
2320 DECODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2);
2321 }
2322 else
2323 {
2324 if (sjis_p)
2325 {
2326 if (c1 < 0xA0 || (c1 >= 0xE0 && c1 < 0xF0))
2327 {
2328 /* SJIS -> JISX0208 */
2329 ONE_MORE_BYTE (c2);
2330 if (c2 >= 0x40 && c2 != 0x7F && c2 <= 0xFC)
2331 {
2332 DECODE_SJIS (c1, c2, c3, c4);
2333 DECODE_SJIS_BIG5_CHARACTER (charset_jisx0208, c3, c4);
2334 }
2335 else
2336 goto label_invalid_code_2;
2337 }
2338 else if (c1 < 0xE0)
2339 /* SJIS -> JISX0201-Kana */
2340 {
2341 c2 = 0; /* avoid warning */
2342 DECODE_SJIS_BIG5_CHARACTER (charset_katakana_jisx0201, c1,
2343 /* dummy */ c2);
2344 }
2345 else
2346 goto label_invalid_code_1;
2347 }
2348 else
2349 {
2350 /* BIG5 -> Big5 */
2351 if (c1 >= 0xA1 && c1 <= 0xFE)
2352 {
2353 ONE_MORE_BYTE (c2);
2354 if ((c2 >= 0x40 && c2 <= 0x7E) || (c2 >= 0xA1 && c2 <= 0xFE))
2355 {
2356 int charset;
2357
2358 DECODE_BIG5 (c1, c2, charset, c3, c4);
2359 DECODE_SJIS_BIG5_CHARACTER (charset, c3, c4);
2360 }
2361 else
2362 goto label_invalid_code_2;
2363 }
2364 else
2365 goto label_invalid_code_1;
2366 }
2367 }
2368 continue;
2369
2370 label_invalid_code_1:
2371 *dst++ = c1;
2372 coding->produced_char++;
2373 coding->fake_multibyte = 1;
2374 continue;
2375
2376 label_invalid_code_2:
2377 *dst++ = c1; *dst++= c2;
2378 coding->produced_char += 2;
2379 coding->fake_multibyte = 1;
2380 continue;
2381
2382 label_end_of_loop:
2383 result = CODING_FINISH_INSUFFICIENT_SRC;
2384 label_end_of_loop_2:
2385 src = src_base;
2386 break;
2387 }
2388
2389 if (src < src_end)
2390 {
2391 if (result == CODING_FINISH_NORMAL)
2392 result = CODING_FINISH_INSUFFICIENT_DST;
2393 else if (result != CODING_FINISH_INCONSISTENT_EOL
2394 && coding->mode & CODING_MODE_LAST_BLOCK)
2395 {
2396 src_bytes = src_end - src;
2397 if (dst_bytes && (dst_end - dst < src_bytes))
2398 src_bytes = dst_end - dst;
2399 bcopy (dst, src, src_bytes);
2400 src += src_bytes;
2401 dst += src_bytes;
2402 coding->fake_multibyte = 1;
2403 }
2404 }
2405
2406 coding->consumed = coding->consumed_char = src - source;
2407 coding->produced = dst - destination;
2408 return result;
2409}
2410
2411/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2412 This function can encode `charset_ascii', `charset_katakana_jisx0201',
2413 `charset_jisx0208', `charset_big5_1', and `charset_big5-2'. We are
2414 sure that all these charsets are registered as official charset
2415 (i.e. do not have extended leading-codes). Characters of other
2416 charsets are produced without any encoding. If SJIS_P is 1, encode
2417 SJIS text, else encode BIG5 text. */
2418
2419int
2420encode_coding_sjis_big5 (coding, source, destination,
2421 src_bytes, dst_bytes, sjis_p)
2422 struct coding_system *coding;
2423 unsigned char *source, *destination;
2424 int src_bytes, dst_bytes;
2425 int sjis_p;
2426{
2427 unsigned char *src = source;
2428 unsigned char *src_end = source + src_bytes;
2429 unsigned char *dst = destination;
2430 unsigned char *dst_end = destination + dst_bytes;
2431 /* Since the maximum bytes produced by each loop is 2, we subtract 1
2432 from DST_END to assure overflow checking is necessary only at the
2433 head of loop. */
2434 unsigned char *adjusted_dst_end = dst_end - 1;
2435 Lisp_Object translation_table
2436 = coding->translation_table_for_encode;
2437 int result = CODING_FINISH_NORMAL;
2438
2439 if (!NILP (Venable_character_translation) && NILP (translation_table))
2440 translation_table = Vstandard_translation_table_for_encode;
2441
2442 coding->consumed_char = 0;
2443 coding->fake_multibyte = 0;
2444 while (src < src_end && (dst_bytes
2445 ? (dst < adjusted_dst_end)
2446 : (dst < src - 1)))
2447 {
2448 /* SRC_BASE remembers the start position in source in each loop.
2449 The loop will be exited when there's not enough source text
2450 to analyze multi-byte codes (within macros ONE_MORE_BYTE and
2451 TWO_MORE_BYTES). In that case, SRC is reset to SRC_BASE
2452 before exiting. */
2453 unsigned char *src_base = src;
2454 unsigned char c1 = *src++, c2, c3, c4;
2455
2456 if (coding->composing)
2457 {
2458 if (c1 == 0xA0)
2459 {
2460 ONE_MORE_BYTE (c1);
2461 c1 &= 0x7F;
2462 }
2463 else if (c1 >= 0xA0)
2464 c1 -= 0x20;
2465 else
2466 coding->composing = 0;
2467 }
2468
2469 switch (emacs_code_class[c1])
2470 {
2471 case EMACS_ascii_code:
2472 ENCODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2);
2473 break;
2474
2475 case EMACS_control_code:
2476 *dst++ = c1;
2477 coding->consumed_char++;
2478 break;
2479
2480 case EMACS_carriage_return_code:
2481 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2482 {
2483 *dst++ = c1;
2484 coding->consumed_char++;
2485 break;
2486 }
2487 /* fall down to treat '\r' as '\n' ... */
2488
2489 case EMACS_linefeed_code:
2490 if (coding->eol_type == CODING_EOL_LF
2491 || coding->eol_type == CODING_EOL_UNDECIDED)
2492 *dst++ = '\n';
2493 else if (coding->eol_type == CODING_EOL_CRLF)
2494 *dst++ = '\r', *dst++ = '\n';
2495 else
2496 *dst++ = '\r';
2497 coding->consumed_char++;
2498 break;
2499
2500 case EMACS_leading_code_2:
2501 ONE_MORE_BYTE (c2);
2502 ENCODE_SJIS_BIG5_CHARACTER (c1, c2, /* dummy */ c3);
2503 break;
2504
2505 case EMACS_leading_code_3:
2506 TWO_MORE_BYTES (c2, c3);
2507 ENCODE_SJIS_BIG5_CHARACTER (c1, c2, c3);
2508 break;
2509
2510 case EMACS_leading_code_4:
2511 THREE_MORE_BYTES (c2, c3, c4);
2512 ENCODE_SJIS_BIG5_CHARACTER (c2, c3, c4);
2513 break;
2514
2515 case EMACS_leading_code_composition:
2516 coding->composing = 1;
2517 break;
2518
2519 default: /* i.e. case EMACS_invalid_code: */
2520 *dst++ = c1;
2521 coding->consumed_char++;
2522 }
2523 continue;
2524
2525 label_end_of_loop:
2526 result = CODING_FINISH_INSUFFICIENT_SRC;
2527 src = src_base;
2528 break;
2529 }
2530
2531 if (result == CODING_FINISH_NORMAL
2532 && src < src_end)
2533 result = CODING_FINISH_INSUFFICIENT_DST;
2534 coding->consumed = src - source;
2535 coding->produced = coding->produced_char = dst - destination;
2536 return result;
2537}
2538
2539\f
2540/*** 5. CCL handlers ***/
2541
2542/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2543 Check if a text is encoded in a coding system of which
2544 encoder/decoder are written in CCL program. If it is, return
2545 CODING_CATEGORY_MASK_CCL, else return 0. */
2546
2547int
2548detect_coding_ccl (src, src_end)
2549 unsigned char *src, *src_end;
2550{
2551 unsigned char *valid;
2552
2553 /* No coding system is assigned to coding-category-ccl. */
2554 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
2555 return 0;
2556
2557 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
2558 while (src < src_end)
2559 {
2560 if (! valid[*src]) return 0;
2561 src++;
2562 }
2563 return CODING_CATEGORY_MASK_CCL;
2564}
2565
2566\f
2567/*** 6. End-of-line handlers ***/
2568
2569/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2570 This function is called only when `coding->eol_type' is
2571 CODING_EOL_CRLF or CODING_EOL_CR. */
2572
2573int
2574decode_eol (coding, source, destination, src_bytes, dst_bytes)
2575 struct coding_system *coding;
2576 unsigned char *source, *destination;
2577 int src_bytes, dst_bytes;
2578{
2579 unsigned char *src = source;
2580 unsigned char *src_end = source + src_bytes;
2581 unsigned char *dst = destination;
2582 unsigned char *dst_end = destination + dst_bytes;
2583 unsigned char c;
2584 int result = CODING_FINISH_NORMAL;
2585
2586 coding->fake_multibyte = 0;
2587
2588 if (src_bytes <= 0)
2589 {
2590 coding->produced = coding->produced_char = 0;
2591 coding->consumed = coding->consumed_char = 0;
2592 return result;
2593 }
2594
2595 switch (coding->eol_type)
2596 {
2597 case CODING_EOL_CRLF:
2598 {
2599 /* Since the maximum bytes produced by each loop is 2, we
2600 subtract 1 from DST_END to assure overflow checking is
2601 necessary only at the head of loop. */
2602 unsigned char *adjusted_dst_end = dst_end - 1;
2603
2604 while (src < src_end && (dst_bytes
2605 ? (dst < adjusted_dst_end)
2606 : (dst < src - 1)))
2607 {
2608 unsigned char *src_base = src;
2609
2610 c = *src++;
2611 if (c == '\r')
2612 {
2613 ONE_MORE_BYTE (c);
2614 if (c == '\n')
2615 *dst++ = c;
2616 else
2617 {
2618 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2619 {
2620 result = CODING_FINISH_INCONSISTENT_EOL;
2621 goto label_end_of_loop_2;
2622 }
2623 src--;
2624 *dst++ = '\r';
2625 if (BASE_LEADING_CODE_P (c))
2626 coding->fake_multibyte = 1;
2627 }
2628 }
2629 else if (c == '\n'
2630 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
2631 {
2632 result = CODING_FINISH_INCONSISTENT_EOL;
2633 goto label_end_of_loop_2;
2634 }
2635 else
2636 {
2637 *dst++ = c;
2638 if (BASE_LEADING_CODE_P (c))
2639 coding->fake_multibyte = 1;
2640 }
2641 continue;
2642
2643 label_end_of_loop:
2644 result = CODING_FINISH_INSUFFICIENT_SRC;
2645 label_end_of_loop_2:
2646 src = src_base;
2647 break;
2648 }
2649 if (src < src_end)
2650 {
2651 if (result == CODING_FINISH_NORMAL)
2652 result = CODING_FINISH_INSUFFICIENT_DST;
2653 else if (result != CODING_FINISH_INCONSISTENT_EOL
2654 && coding->mode & CODING_MODE_LAST_BLOCK)
2655 {
2656 /* This is the last block of the text to be decoded.
2657 We flush out all remaining codes. */
2658 src_bytes = src_end - src;
2659 if (dst_bytes && (dst_end - dst < src_bytes))
2660 src_bytes = dst_end - dst;
2661 bcopy (src, dst, src_bytes);
2662 dst += src_bytes;
2663 src += src_bytes;
2664 }
2665 }
2666 }
2667 break;
2668
2669 case CODING_EOL_CR:
2670 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2671 {
2672 while (src < src_end)
2673 {
2674 if ((c = *src++) == '\n')
2675 break;
2676 if (BASE_LEADING_CODE_P (c))
2677 coding->fake_multibyte = 1;
2678 }
2679 if (*--src == '\n')
2680 {
2681 src_bytes = src - source;
2682 result = CODING_FINISH_INCONSISTENT_EOL;
2683 }
2684 }
2685 if (dst_bytes && src_bytes > dst_bytes)
2686 {
2687 result = CODING_FINISH_INSUFFICIENT_DST;
2688 src_bytes = dst_bytes;
2689 }
2690 if (dst_bytes)
2691 bcopy (source, destination, src_bytes);
2692 else
2693 safe_bcopy (source, destination, src_bytes);
2694 src = source + src_bytes;
2695 while (src_bytes--) if (*dst++ == '\r') dst[-1] = '\n';
2696 break;
2697
2698 default: /* i.e. case: CODING_EOL_LF */
2699 if (dst_bytes && src_bytes > dst_bytes)
2700 {
2701 result = CODING_FINISH_INSUFFICIENT_DST;
2702 src_bytes = dst_bytes;
2703 }
2704 if (dst_bytes)
2705 bcopy (source, destination, src_bytes);
2706 else
2707 safe_bcopy (source, destination, src_bytes);
2708 src += src_bytes;
2709 dst += src_bytes;
2710 coding->fake_multibyte = 1;
2711 break;
2712 }
2713
2714 coding->consumed = coding->consumed_char = src - source;
2715 coding->produced = coding->produced_char = dst - destination;
2716 return result;
2717}
2718
2719/* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
2720 format of end-of-line according to `coding->eol_type'. If
2721 `coding->mode & CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code
2722 '\r' in source text also means end-of-line. */
2723
2724int
2725encode_eol (coding, source, destination, src_bytes, dst_bytes)
2726 struct coding_system *coding;
2727 unsigned char *source, *destination;
2728 int src_bytes, dst_bytes;
2729{
2730 unsigned char *src = source;
2731 unsigned char *dst = destination;
2732 int result = CODING_FINISH_NORMAL;
2733
2734 coding->fake_multibyte = 0;
2735
2736 if (coding->eol_type == CODING_EOL_CRLF)
2737 {
2738 unsigned char c;
2739 unsigned char *src_end = source + src_bytes;
2740 unsigned char *dst_end = destination + dst_bytes;
2741 /* Since the maximum bytes produced by each loop is 2, we
2742 subtract 1 from DST_END to assure overflow checking is
2743 necessary only at the head of loop. */
2744 unsigned char *adjusted_dst_end = dst_end - 1;
2745
2746 while (src < src_end && (dst_bytes
2747 ? (dst < adjusted_dst_end)
2748 : (dst < src - 1)))
2749 {
2750 c = *src++;
2751 if (c == '\n'
2752 || (c == '\r' && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY)))
2753 *dst++ = '\r', *dst++ = '\n';
2754 else
2755 {
2756 *dst++ = c;
2757 if (BASE_LEADING_CODE_P (c))
2758 coding->fake_multibyte = 1;
2759 }
2760 }
2761 if (src < src_end)
2762 result = CODING_FINISH_INSUFFICIENT_DST;
2763 }
2764 else
2765 {
2766 unsigned char c;
2767
2768 if (dst_bytes && src_bytes > dst_bytes)
2769 {
2770 src_bytes = dst_bytes;
2771 result = CODING_FINISH_INSUFFICIENT_DST;
2772 }
2773 if (dst_bytes)
2774 bcopy (source, destination, src_bytes);
2775 else
2776 safe_bcopy (source, destination, src_bytes);
2777 dst_bytes = src_bytes;
2778 if (coding->eol_type == CODING_EOL_CR)
2779 {
2780 while (src_bytes--)
2781 {
2782 if ((c = *dst++) == '\n')
2783 dst[-1] = '\r';
2784 else if (BASE_LEADING_CODE_P (c))
2785 coding->fake_multibyte = 1;
2786 }
2787 }
2788 else
2789 {
2790 if (coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
2791 {
2792 while (src_bytes--)
2793 if (*dst++ == '\r') dst[-1] = '\n';
2794 }
2795 coding->fake_multibyte = 1;
2796 }
2797 src = source + dst_bytes;
2798 dst = destination + dst_bytes;
2799 }
2800
2801 coding->consumed = coding->consumed_char = src - source;
2802 coding->produced = coding->produced_char = dst - destination;
2803 return result;
2804}
2805
2806\f
2807/*** 7. C library functions ***/
2808
2809/* In Emacs Lisp, coding system is represented by a Lisp symbol which
2810 has a property `coding-system'. The value of this property is a
2811 vector of length 5 (called as coding-vector). Among elements of
2812 this vector, the first (element[0]) and the fifth (element[4])
2813 carry important information for decoding/encoding. Before
2814 decoding/encoding, this information should be set in fields of a
2815 structure of type `coding_system'.
2816
2817 A value of property `coding-system' can be a symbol of another
2818 subsidiary coding-system. In that case, Emacs gets coding-vector
2819 from that symbol.
2820
2821 `element[0]' contains information to be set in `coding->type'. The
2822 value and its meaning is as follows:
2823
2824 0 -- coding_type_emacs_mule
2825 1 -- coding_type_sjis
2826 2 -- coding_type_iso2022
2827 3 -- coding_type_big5
2828 4 -- coding_type_ccl encoder/decoder written in CCL
2829 nil -- coding_type_no_conversion
2830 t -- coding_type_undecided (automatic conversion on decoding,
2831 no-conversion on encoding)
2832
2833 `element[4]' contains information to be set in `coding->flags' and
2834 `coding->spec'. The meaning varies by `coding->type'.
2835
2836 If `coding->type' is `coding_type_iso2022', element[4] is a vector
2837 of length 32 (of which the first 13 sub-elements are used now).
2838 Meanings of these sub-elements are:
2839
2840 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
2841 If the value is an integer of valid charset, the charset is
2842 assumed to be designated to graphic register N initially.
2843
2844 If the value is minus, it is a minus value of charset which
2845 reserves graphic register N, which means that the charset is
2846 not designated initially but should be designated to graphic
2847 register N just before encoding a character in that charset.
2848
2849 If the value is nil, graphic register N is never used on
2850 encoding.
2851
2852 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
2853 Each value takes t or nil. See the section ISO2022 of
2854 `coding.h' for more information.
2855
2856 If `coding->type' is `coding_type_big5', element[4] is t to denote
2857 BIG5-ETen or nil to denote BIG5-HKU.
2858
2859 If `coding->type' takes the other value, element[4] is ignored.
2860
2861 Emacs Lisp's coding system also carries information about format of
2862 end-of-line in a value of property `eol-type'. If the value is
2863 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
2864 means CODING_EOL_CR. If it is not integer, it should be a vector
2865 of subsidiary coding systems of which property `eol-type' has one
2866 of above values.
2867
2868*/
2869
2870/* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
2871 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
2872 is setup so that no conversion is necessary and return -1, else
2873 return 0. */
2874
2875int
2876setup_coding_system (coding_system, coding)
2877 Lisp_Object coding_system;
2878 struct coding_system *coding;
2879{
2880 Lisp_Object coding_spec, coding_type, eol_type, plist;
2881 Lisp_Object val;
2882 int i;
2883
2884 /* Initialize some fields required for all kinds of coding systems. */
2885 coding->symbol = coding_system;
2886 coding->common_flags = 0;
2887 coding->mode = 0;
2888 coding->heading_ascii = -1;
2889 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
2890
2891 if (NILP (coding_system))
2892 goto label_invalid_coding_system;
2893
2894 coding_spec = Fget (coding_system, Qcoding_system);
2895
2896 if (!VECTORP (coding_spec)
2897 || XVECTOR (coding_spec)->size != 5
2898 || !CONSP (XVECTOR (coding_spec)->contents[3]))
2899 goto label_invalid_coding_system;
2900
2901 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
2902 if (VECTORP (eol_type))
2903 {
2904 coding->eol_type = CODING_EOL_UNDECIDED;
2905 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
2906 }
2907 else if (XFASTINT (eol_type) == 1)
2908 {
2909 coding->eol_type = CODING_EOL_CRLF;
2910 coding->common_flags
2911 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2912 }
2913 else if (XFASTINT (eol_type) == 2)
2914 {
2915 coding->eol_type = CODING_EOL_CR;
2916 coding->common_flags
2917 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2918 }
2919 else
2920 coding->eol_type = CODING_EOL_LF;
2921
2922 coding_type = XVECTOR (coding_spec)->contents[0];
2923 /* Try short cut. */
2924 if (SYMBOLP (coding_type))
2925 {
2926 if (EQ (coding_type, Qt))
2927 {
2928 coding->type = coding_type_undecided;
2929 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
2930 }
2931 else
2932 coding->type = coding_type_no_conversion;
2933 return 0;
2934 }
2935
2936 /* Initialize remaining fields. */
2937 coding->composing = 0;
2938 coding->composed_chars = 0;
2939
2940 /* Get values of coding system properties:
2941 `post-read-conversion', `pre-write-conversion',
2942 `translation-table-for-decode', `translation-table-for-encode'. */
2943 plist = XVECTOR (coding_spec)->contents[3];
2944 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
2945 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
2946 val = Fplist_get (plist, Qtranslation_table_for_decode);
2947 if (SYMBOLP (val))
2948 val = Fget (val, Qtranslation_table_for_decode);
2949 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
2950 val = Fplist_get (plist, Qtranslation_table_for_encode);
2951 if (SYMBOLP (val))
2952 val = Fget (val, Qtranslation_table_for_encode);
2953 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
2954 val = Fplist_get (plist, Qcoding_category);
2955 if (!NILP (val))
2956 {
2957 val = Fget (val, Qcoding_category_index);
2958 if (INTEGERP (val))
2959 coding->category_idx = XINT (val);
2960 else
2961 goto label_invalid_coding_system;
2962 }
2963 else
2964 goto label_invalid_coding_system;
2965
2966 val = Fplist_get (plist, Qsafe_charsets);
2967 if (EQ (val, Qt))
2968 {
2969 for (i = 0; i <= MAX_CHARSET; i++)
2970 coding->safe_charsets[i] = 1;
2971 }
2972 else
2973 {
2974 bzero (coding->safe_charsets, MAX_CHARSET + 1);
2975 while (CONSP (val))
2976 {
2977 if ((i = get_charset_id (XCONS (val)->car)) >= 0)
2978 coding->safe_charsets[i] = 1;
2979 val = XCONS (val)->cdr;
2980 }
2981 }
2982
2983 switch (XFASTINT (coding_type))
2984 {
2985 case 0:
2986 coding->type = coding_type_emacs_mule;
2987 if (!NILP (coding->post_read_conversion))
2988 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
2989 if (!NILP (coding->pre_write_conversion))
2990 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
2991 break;
2992
2993 case 1:
2994 coding->type = coding_type_sjis;
2995 coding->common_flags
2996 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2997 break;
2998
2999 case 2:
3000 coding->type = coding_type_iso2022;
3001 coding->common_flags
3002 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3003 {
3004 Lisp_Object val, temp;
3005 Lisp_Object *flags;
3006 int i, charset, reg_bits = 0;
3007
3008 val = XVECTOR (coding_spec)->contents[4];
3009
3010 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3011 goto label_invalid_coding_system;
3012
3013 flags = XVECTOR (val)->contents;
3014 coding->flags
3015 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3016 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3017 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3018 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3019 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3020 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3021 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3022 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3023 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3024 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3025 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3026 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3027 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3028 );
3029
3030 /* Invoke graphic register 0 to plane 0. */
3031 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3032 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3033 CODING_SPEC_ISO_INVOCATION (coding, 1)
3034 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3035 /* Not single shifting at first. */
3036 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3037 /* Beginning of buffer should also be regarded as bol. */
3038 CODING_SPEC_ISO_BOL (coding) = 1;
3039
3040 for (charset = 0; charset <= MAX_CHARSET; charset++)
3041 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3042 val = Vcharset_revision_alist;
3043 while (CONSP (val))
3044 {
3045 charset = get_charset_id (Fcar_safe (XCONS (val)->car));
3046 if (charset >= 0
3047 && (temp = Fcdr_safe (XCONS (val)->car), INTEGERP (temp))
3048 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3049 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3050 val = XCONS (val)->cdr;
3051 }
3052
3053 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3054 FLAGS[REG] can be one of below:
3055 integer CHARSET: CHARSET occupies register I,
3056 t: designate nothing to REG initially, but can be used
3057 by any charsets,
3058 list of integer, nil, or t: designate the first
3059 element (if integer) to REG initially, the remaining
3060 elements (if integer) is designated to REG on request,
3061 if an element is t, REG can be used by any charsets,
3062 nil: REG is never used. */
3063 for (charset = 0; charset <= MAX_CHARSET; charset++)
3064 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3065 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3066 for (i = 0; i < 4; i++)
3067 {
3068 if (INTEGERP (flags[i])
3069 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
3070 || (charset = get_charset_id (flags[i])) >= 0)
3071 {
3072 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3073 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3074 }
3075 else if (EQ (flags[i], Qt))
3076 {
3077 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3078 reg_bits |= 1 << i;
3079 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3080 }
3081 else if (CONSP (flags[i]))
3082 {
3083 Lisp_Object tail;
3084 tail = flags[i];
3085
3086 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3087 if (INTEGERP (XCONS (tail)->car)
3088 && (charset = XINT (XCONS (tail)->car),
3089 CHARSET_VALID_P (charset))
3090 || (charset = get_charset_id (XCONS (tail)->car)) >= 0)
3091 {
3092 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3093 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3094 }
3095 else
3096 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3097 tail = XCONS (tail)->cdr;
3098 while (CONSP (tail))
3099 {
3100 if (INTEGERP (XCONS (tail)->car)
3101 && (charset = XINT (XCONS (tail)->car),
3102 CHARSET_VALID_P (charset))
3103 || (charset = get_charset_id (XCONS (tail)->car)) >= 0)
3104 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3105 = i;
3106 else if (EQ (XCONS (tail)->car, Qt))
3107 reg_bits |= 1 << i;
3108 tail = XCONS (tail)->cdr;
3109 }
3110 }
3111 else
3112 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3113
3114 CODING_SPEC_ISO_DESIGNATION (coding, i)
3115 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3116 }
3117
3118 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3119 {
3120 /* REG 1 can be used only by locking shift in 7-bit env. */
3121 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3122 reg_bits &= ~2;
3123 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3124 /* Without any shifting, only REG 0 and 1 can be used. */
3125 reg_bits &= 3;
3126 }
3127
3128 if (reg_bits)
3129 for (charset = 0; charset <= MAX_CHARSET; charset++)
3130 {
3131 if (CHARSET_VALID_P (charset))
3132 {
3133 /* There exist some default graphic registers to be
3134 used CHARSET. */
3135
3136 /* We had better avoid designating a charset of
3137 CHARS96 to REG 0 as far as possible. */
3138 if (CHARSET_CHARS (charset) == 96)
3139 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3140 = (reg_bits & 2
3141 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3142 else
3143 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3144 = (reg_bits & 1
3145 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3146 }
3147 }
3148 }
3149 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3150 coding->spec.iso2022.last_invalid_designation_register = -1;
3151 break;
3152
3153 case 3:
3154 coding->type = coding_type_big5;
3155 coding->common_flags
3156 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3157 coding->flags
3158 = (NILP (XVECTOR (coding_spec)->contents[4])
3159 ? CODING_FLAG_BIG5_HKU
3160 : CODING_FLAG_BIG5_ETEN);
3161 break;
3162
3163 case 4:
3164 coding->type = coding_type_ccl;
3165 coding->common_flags
3166 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3167 {
3168 Lisp_Object val;
3169 Lisp_Object decoder, encoder;
3170
3171 val = XVECTOR (coding_spec)->contents[4];
3172 if (CONSP (val)
3173 && SYMBOLP (XCONS (val)->car)
3174 && !NILP (decoder = Fget (XCONS (val)->car, Qccl_program_idx))
3175 && !NILP (decoder = Fcdr (Faref (Vccl_program_table, decoder)))
3176 && SYMBOLP (XCONS (val)->cdr)
3177 && !NILP (encoder = Fget (XCONS (val)->cdr, Qccl_program_idx))
3178 && !NILP (encoder = Fcdr (Faref (Vccl_program_table, encoder))))
3179 {
3180 setup_ccl_program (&(coding->spec.ccl.decoder), decoder);
3181 setup_ccl_program (&(coding->spec.ccl.encoder), encoder);
3182 }
3183 else
3184 goto label_invalid_coding_system;
3185
3186 bzero (coding->spec.ccl.valid_codes, 256);
3187 val = Fplist_get (plist, Qvalid_codes);
3188 if (CONSP (val))
3189 {
3190 Lisp_Object this;
3191
3192 for (; CONSP (val); val = XCONS (val)->cdr)
3193 {
3194 this = XCONS (val)->car;
3195 if (INTEGERP (this)
3196 && XINT (this) >= 0 && XINT (this) < 256)
3197 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3198 else if (CONSP (this)
3199 && INTEGERP (XCONS (this)->car)
3200 && INTEGERP (XCONS (this)->cdr))
3201 {
3202 int start = XINT (XCONS (this)->car);
3203 int end = XINT (XCONS (this)->cdr);
3204
3205 if (start >= 0 && start <= end && end < 256)
3206 while (start <= end)
3207 coding->spec.ccl.valid_codes[start++] = 1;
3208 }
3209 }
3210 }
3211 }
3212 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3213 break;
3214
3215 case 5:
3216 coding->type = coding_type_raw_text;
3217 break;
3218
3219 default:
3220 goto label_invalid_coding_system;
3221 }
3222 return 0;
3223
3224 label_invalid_coding_system:
3225 coding->type = coding_type_no_conversion;
3226 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3227 coding->common_flags = 0;
3228 coding->eol_type = CODING_EOL_LF;
3229 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3230 return -1;
3231}
3232
3233/* Setup raw-text or one of its subsidiaries in the structure
3234 coding_system CODING according to the already setup value eol_type
3235 in CODING. CODING should be setup for some coding system in
3236 advance. */
3237
3238void
3239setup_raw_text_coding_system (coding)
3240 struct coding_system *coding;
3241{
3242 if (coding->type != coding_type_raw_text)
3243 {
3244 coding->symbol = Qraw_text;
3245 coding->type = coding_type_raw_text;
3246 if (coding->eol_type != CODING_EOL_UNDECIDED)
3247 {
3248 Lisp_Object subsidiaries;
3249 subsidiaries = Fget (Qraw_text, Qeol_type);
3250
3251 if (VECTORP (subsidiaries)
3252 && XVECTOR (subsidiaries)->size == 3)
3253 coding->symbol
3254 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3255 }
3256 setup_coding_system (coding->symbol, coding);
3257 }
3258 return;
3259}
3260
3261/* Emacs has a mechanism to automatically detect a coding system if it
3262 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3263 it's impossible to distinguish some coding systems accurately
3264 because they use the same range of codes. So, at first, coding
3265 systems are categorized into 7, those are:
3266
3267 o coding-category-emacs-mule
3268
3269 The category for a coding system which has the same code range
3270 as Emacs' internal format. Assigned the coding-system (Lisp
3271 symbol) `emacs-mule' by default.
3272
3273 o coding-category-sjis
3274
3275 The category for a coding system which has the same code range
3276 as SJIS. Assigned the coding-system (Lisp
3277 symbol) `japanese-shift-jis' by default.
3278
3279 o coding-category-iso-7
3280
3281 The category for a coding system which has the same code range
3282 as ISO2022 of 7-bit environment. This doesn't use any locking
3283 shift and single shift functions. This can encode/decode all
3284 charsets. Assigned the coding-system (Lisp symbol)
3285 `iso-2022-7bit' by default.
3286
3287 o coding-category-iso-7-tight
3288
3289 Same as coding-category-iso-7 except that this can
3290 encode/decode only the specified charsets.
3291
3292 o coding-category-iso-8-1
3293
3294 The category for a coding system which has the same code range
3295 as ISO2022 of 8-bit environment and graphic plane 1 used only
3296 for DIMENSION1 charset. This doesn't use any locking shift
3297 and single shift functions. Assigned the coding-system (Lisp
3298 symbol) `iso-latin-1' by default.
3299
3300 o coding-category-iso-8-2
3301
3302 The category for a coding system which has the same code range
3303 as ISO2022 of 8-bit environment and graphic plane 1 used only
3304 for DIMENSION2 charset. This doesn't use any locking shift
3305 and single shift functions. Assigned the coding-system (Lisp
3306 symbol) `japanese-iso-8bit' by default.
3307
3308 o coding-category-iso-7-else
3309
3310 The category for a coding system which has the same code range
3311 as ISO2022 of 7-bit environemnt but uses locking shift or
3312 single shift functions. Assigned the coding-system (Lisp
3313 symbol) `iso-2022-7bit-lock' by default.
3314
3315 o coding-category-iso-8-else
3316
3317 The category for a coding system which has the same code range
3318 as ISO2022 of 8-bit environemnt but uses locking shift or
3319 single shift functions. Assigned the coding-system (Lisp
3320 symbol) `iso-2022-8bit-ss2' by default.
3321
3322 o coding-category-big5
3323
3324 The category for a coding system which has the same code range
3325 as BIG5. Assigned the coding-system (Lisp symbol)
3326 `cn-big5' by default.
3327
3328 o coding-category-ccl
3329
3330 The category for a coding system of which encoder/decoder is
3331 written in CCL programs. The default value is nil, i.e., no
3332 coding system is assigned.
3333
3334 o coding-category-binary
3335
3336 The category for a coding system not categorized in any of the
3337 above. Assigned the coding-system (Lisp symbol)
3338 `no-conversion' by default.
3339
3340 Each of them is a Lisp symbol and the value is an actual
3341 `coding-system's (this is also a Lisp symbol) assigned by a user.
3342 What Emacs does actually is to detect a category of coding system.
3343 Then, it uses a `coding-system' assigned to it. If Emacs can't
3344 decide only one possible category, it selects a category of the
3345 highest priority. Priorities of categories are also specified by a
3346 user in a Lisp variable `coding-category-list'.
3347
3348*/
3349
3350static
3351int ascii_skip_code[256];
3352
3353/* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3354 If it detects possible coding systems, return an integer in which
3355 appropriate flag bits are set. Flag bits are defined by macros
3356 CODING_CATEGORY_MASK_XXX in `coding.h'.
3357
3358 How many ASCII characters are at the head is returned as *SKIP. */
3359
3360static int
3361detect_coding_mask (source, src_bytes, priorities, skip)
3362 unsigned char *source;
3363 int src_bytes, *priorities, *skip;
3364{
3365 register unsigned char c;
3366 unsigned char *src = source, *src_end = source + src_bytes;
3367 unsigned int mask;
3368 int i;
3369
3370 /* At first, skip all ASCII characters and control characters except
3371 for three ISO2022 specific control characters. */
3372 ascii_skip_code[ISO_CODE_SO] = 0;
3373 ascii_skip_code[ISO_CODE_SI] = 0;
3374 ascii_skip_code[ISO_CODE_ESC] = 0;
3375
3376 label_loop_detect_coding:
3377 while (src < src_end && ascii_skip_code[*src]) src++;
3378 *skip = src - source;
3379
3380 if (src >= src_end)
3381 /* We found nothing other than ASCII. There's nothing to do. */
3382 return 0;
3383
3384 c = *src;
3385 /* The text seems to be encoded in some multilingual coding system.
3386 Now, try to find in which coding system the text is encoded. */
3387 if (c < 0x80)
3388 {
3389 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3390 /* C is an ISO2022 specific control code of C0. */
3391 mask = detect_coding_iso2022 (src, src_end);
3392 if (mask == 0)
3393 {
3394 /* No valid ISO2022 code follows C. Try again. */
3395 src++;
3396 if (c == ISO_CODE_ESC)
3397 ascii_skip_code[ISO_CODE_ESC] = 1;
3398 else
3399 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3400 goto label_loop_detect_coding;
3401 }
3402 if (priorities)
3403 goto label_return_highest_only;
3404 }
3405 else
3406 {
3407 int try;
3408
3409 if (c < 0xA0)
3410 {
3411 /* C is the first byte of SJIS character code,
3412 or a leading-code of Emacs' internal format (emacs-mule). */
3413 try = CODING_CATEGORY_MASK_SJIS | CODING_CATEGORY_MASK_EMACS_MULE;
3414
3415 /* Or, if C is a special latin extra code,
3416 or is an ISO2022 specific control code of C1 (SS2 or SS3),
3417 or is an ISO2022 control-sequence-introducer (CSI),
3418 we should also consider the possibility of ISO2022 codings. */
3419 if ((VECTORP (Vlatin_extra_code_table)
3420 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3421 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
3422 || (c == ISO_CODE_CSI
3423 && (src < src_end
3424 && (*src == ']'
3425 || ((*src == '0' || *src == '1' || *src == '2')
3426 && src + 1 < src_end
3427 && src[1] == ']')))))
3428 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
3429 | CODING_CATEGORY_MASK_ISO_8BIT);
3430 }
3431 else
3432 /* C is a character of ISO2022 in graphic plane right,
3433 or a SJIS's 1-byte character code (i.e. JISX0201),
3434 or the first byte of BIG5's 2-byte code. */
3435 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
3436 | CODING_CATEGORY_MASK_ISO_8BIT
3437 | CODING_CATEGORY_MASK_SJIS
3438 | CODING_CATEGORY_MASK_BIG5);
3439
3440 /* Or, we may have to consider the possibility of CCL. */
3441 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
3442 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
3443 ->spec.ccl.valid_codes)[c])
3444 try |= CODING_CATEGORY_MASK_CCL;
3445
3446 mask = 0;
3447 if (priorities)
3448 {
3449 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3450 {
3451 if (priorities[i] & try & CODING_CATEGORY_MASK_ISO)
3452 mask = detect_coding_iso2022 (src, src_end);
3453 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
3454 mask = detect_coding_sjis (src, src_end);
3455 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
3456 mask = detect_coding_big5 (src, src_end);
3457 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
3458 mask = detect_coding_emacs_mule (src, src_end);
3459 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
3460 mask = detect_coding_ccl (src, src_end);
3461 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
3462 mask = CODING_CATEGORY_MASK_RAW_TEXT;
3463 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
3464 mask = CODING_CATEGORY_MASK_BINARY;
3465 if (mask)
3466 goto label_return_highest_only;
3467 }
3468 return CODING_CATEGORY_MASK_RAW_TEXT;
3469 }
3470 if (try & CODING_CATEGORY_MASK_ISO)
3471 mask |= detect_coding_iso2022 (src, src_end);
3472 if (try & CODING_CATEGORY_MASK_SJIS)
3473 mask |= detect_coding_sjis (src, src_end);
3474 if (try & CODING_CATEGORY_MASK_BIG5)
3475 mask |= detect_coding_big5 (src, src_end);
3476 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
3477 mask |= detect_coding_emacs_mule (src, src_end);
3478 if (try & CODING_CATEGORY_MASK_CCL)
3479 mask |= detect_coding_ccl (src, src_end);
3480 }
3481 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
3482
3483 label_return_highest_only:
3484 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3485 {
3486 if (mask & priorities[i])
3487 return priorities[i];
3488 }
3489 return CODING_CATEGORY_MASK_RAW_TEXT;
3490}
3491
3492/* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
3493 The information of the detected coding system is set in CODING. */
3494
3495void
3496detect_coding (coding, src, src_bytes)
3497 struct coding_system *coding;
3498 unsigned char *src;
3499 int src_bytes;
3500{
3501 unsigned int idx;
3502 int skip, mask, i;
3503 Lisp_Object val;
3504
3505 val = Vcoding_category_list;
3506 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip);
3507 coding->heading_ascii = skip;
3508
3509 if (!mask) return;
3510
3511 /* We found a single coding system of the highest priority in MASK. */
3512 idx = 0;
3513 while (mask && ! (mask & 1)) mask >>= 1, idx++;
3514 if (! mask)
3515 idx = CODING_CATEGORY_IDX_RAW_TEXT;
3516
3517 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[idx])->value;
3518
3519 if (coding->eol_type != CODING_EOL_UNDECIDED)
3520 {
3521 Lisp_Object tmp;
3522
3523 tmp = Fget (val, Qeol_type);
3524 if (VECTORP (tmp))
3525 val = XVECTOR (tmp)->contents[coding->eol_type];
3526 }
3527 setup_coding_system (val, coding);
3528 /* Set this again because setup_coding_system reset this member. */
3529 coding->heading_ascii = skip;
3530}
3531
3532/* Detect how end-of-line of a text of length SRC_BYTES pointed by
3533 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
3534 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
3535
3536 How many non-eol characters are at the head is returned as *SKIP. */
3537
3538#define MAX_EOL_CHECK_COUNT 3
3539
3540static int
3541detect_eol_type (source, src_bytes, skip)
3542 unsigned char *source;
3543 int src_bytes, *skip;
3544{
3545 unsigned char *src = source, *src_end = src + src_bytes;
3546 unsigned char c;
3547 int total = 0; /* How many end-of-lines are found so far. */
3548 int eol_type = CODING_EOL_UNDECIDED;
3549 int this_eol_type;
3550
3551 *skip = 0;
3552
3553 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
3554 {
3555 c = *src++;
3556 if (c == '\n' || c == '\r')
3557 {
3558 if (*skip == 0)
3559 *skip = src - 1 - source;
3560 total++;
3561 if (c == '\n')
3562 this_eol_type = CODING_EOL_LF;
3563 else if (src >= src_end || *src != '\n')
3564 this_eol_type = CODING_EOL_CR;
3565 else
3566 this_eol_type = CODING_EOL_CRLF, src++;
3567
3568 if (eol_type == CODING_EOL_UNDECIDED)
3569 /* This is the first end-of-line. */
3570 eol_type = this_eol_type;
3571 else if (eol_type != this_eol_type)
3572 {
3573 /* The found type is different from what found before. */
3574 eol_type = CODING_EOL_INCONSISTENT;
3575 break;
3576 }
3577 }
3578 }
3579
3580 if (*skip == 0)
3581 *skip = src_end - source;
3582 return eol_type;
3583}
3584
3585/* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
3586 is encoded. If it detects an appropriate format of end-of-line, it
3587 sets the information in *CODING. */
3588
3589void
3590detect_eol (coding, src, src_bytes)
3591 struct coding_system *coding;
3592 unsigned char *src;
3593 int src_bytes;
3594{
3595 Lisp_Object val;
3596 int skip;
3597 int eol_type = detect_eol_type (src, src_bytes, &skip);
3598
3599 if (coding->heading_ascii > skip)
3600 coding->heading_ascii = skip;
3601 else
3602 skip = coding->heading_ascii;
3603
3604 if (eol_type == CODING_EOL_UNDECIDED)
3605 return;
3606 if (eol_type == CODING_EOL_INCONSISTENT)
3607 {
3608#if 0
3609 /* This code is suppressed until we find a better way to
3610 distinguish raw text file and binary file. */
3611
3612 /* If we have already detected that the coding is raw-text, the
3613 coding should actually be no-conversion. */
3614 if (coding->type == coding_type_raw_text)
3615 {
3616 setup_coding_system (Qno_conversion, coding);
3617 return;
3618 }
3619 /* Else, let's decode only text code anyway. */
3620#endif /* 0 */
3621 eol_type = CODING_EOL_LF;
3622 }
3623
3624 val = Fget (coding->symbol, Qeol_type);
3625 if (VECTORP (val) && XVECTOR (val)->size == 3)
3626 {
3627 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
3628 coding->heading_ascii = skip;
3629 }
3630}
3631
3632#define CONVERSION_BUFFER_EXTRA_ROOM 256
3633
3634#define DECODING_BUFFER_MAG(coding) \
3635 (coding->type == coding_type_iso2022 \
3636 ? 3 \
3637 : ((coding->type == coding_type_sjis || coding->type == coding_type_big5) \
3638 ? 2 \
3639 : (coding->type == coding_type_raw_text \
3640 ? 1 \
3641 : (coding->type == coding_type_ccl \
3642 ? coding->spec.ccl.decoder.buf_magnification \
3643 : 2))))
3644
3645/* Return maximum size (bytes) of a buffer enough for decoding
3646 SRC_BYTES of text encoded in CODING. */
3647
3648int
3649decoding_buffer_size (coding, src_bytes)
3650 struct coding_system *coding;
3651 int src_bytes;
3652{
3653 return (src_bytes * DECODING_BUFFER_MAG (coding)
3654 + CONVERSION_BUFFER_EXTRA_ROOM);
3655}
3656
3657/* Return maximum size (bytes) of a buffer enough for encoding
3658 SRC_BYTES of text to CODING. */
3659
3660int
3661encoding_buffer_size (coding, src_bytes)
3662 struct coding_system *coding;
3663 int src_bytes;
3664{
3665 int magnification;
3666
3667 if (coding->type == coding_type_ccl)
3668 magnification = coding->spec.ccl.encoder.buf_magnification;
3669 else
3670 magnification = 3;
3671
3672 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
3673}
3674
3675#ifndef MINIMUM_CONVERSION_BUFFER_SIZE
3676#define MINIMUM_CONVERSION_BUFFER_SIZE 1024
3677#endif
3678
3679char *conversion_buffer;
3680int conversion_buffer_size;
3681
3682/* Return a pointer to a SIZE bytes of buffer to be used for encoding
3683 or decoding. Sufficient memory is allocated automatically. If we
3684 run out of memory, return NULL. */
3685
3686char *
3687get_conversion_buffer (size)
3688 int size;
3689{
3690 if (size > conversion_buffer_size)
3691 {
3692 char *buf;
3693 int real_size = conversion_buffer_size * 2;
3694
3695 while (real_size < size) real_size *= 2;
3696 buf = (char *) xmalloc (real_size);
3697 xfree (conversion_buffer);
3698 conversion_buffer = buf;
3699 conversion_buffer_size = real_size;
3700 }
3701 return conversion_buffer;
3702}
3703
3704int
3705ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
3706 struct coding_system *coding;
3707 unsigned char *source, *destination;
3708 int src_bytes, dst_bytes, encodep;
3709{
3710 struct ccl_program *ccl
3711 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
3712 int result;
3713
3714 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
3715
3716 coding->produced = ccl_driver (ccl, source, destination,
3717 src_bytes, dst_bytes, &(coding->consumed));
3718 coding->produced_char
3719 = (encodep
3720 ? coding->produced
3721 : multibyte_chars_in_text (destination, coding->produced));
3722 coding->consumed_char
3723 = multibyte_chars_in_text (source, coding->consumed);
3724
3725 switch (ccl->status)
3726 {
3727 case CCL_STAT_SUSPEND_BY_SRC:
3728 result = CODING_FINISH_INSUFFICIENT_SRC;
3729 break;
3730 case CCL_STAT_SUSPEND_BY_DST:
3731 result = CODING_FINISH_INSUFFICIENT_DST;
3732 break;
3733 case CCL_STAT_QUIT:
3734 case CCL_STAT_INVALID_CMD:
3735 result = CODING_FINISH_INTERRUPT;
3736 break;
3737 default:
3738 result = CODING_FINISH_NORMAL;
3739 break;
3740 }
3741 return result;
3742}
3743
3744/* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
3745 decoding, it may detect coding system and format of end-of-line if
3746 those are not yet decided.
3747
3748 This function does not make full use of DESTINATION buffer. For
3749 instance, if coding->type is coding_type_iso2022, it uses only
3750 (DST_BYTES - 7) bytes of DESTINATION buffer. In the case that
3751 DST_BYTES is decided by the function decoding_buffer_size, it
3752 contains extra 256 bytes (defined by CONVERSION_BUFFER_EXTRA_ROOM).
3753 So, this function can decode the full SOURCE. But, in the other
3754 case, if you want to avoid carry over, you must supply at least 7
3755 bytes more area in DESTINATION buffer than expected maximum bytes
3756 that will be produced by this function. */
3757
3758int
3759decode_coding (coding, source, destination, src_bytes, dst_bytes)
3760 struct coding_system *coding;
3761 unsigned char *source, *destination;
3762 int src_bytes, dst_bytes;
3763{
3764 int result;
3765
3766 if (src_bytes <= 0
3767 && coding->type != coding_type_ccl
3768 && ! (coding->mode & CODING_MODE_LAST_BLOCK
3769 && CODING_REQUIRE_FLUSHING (coding)))
3770 {
3771 coding->produced = coding->produced_char = 0;
3772 coding->consumed = coding->consumed_char = 0;
3773 coding->fake_multibyte = 0;
3774 return CODING_FINISH_NORMAL;
3775 }
3776
3777 if (coding->type == coding_type_undecided)
3778 detect_coding (coding, source, src_bytes);
3779
3780 if (coding->eol_type == CODING_EOL_UNDECIDED)
3781 detect_eol (coding, source, src_bytes);
3782
3783 switch (coding->type)
3784 {
3785 case coding_type_emacs_mule:
3786 case coding_type_undecided:
3787 case coding_type_raw_text:
3788 if (coding->eol_type == CODING_EOL_LF
3789 || coding->eol_type == CODING_EOL_UNDECIDED)
3790 goto label_no_conversion;
3791 result = decode_eol (coding, source, destination, src_bytes, dst_bytes);
3792 break;
3793
3794 case coding_type_sjis:
3795 result = decode_coding_sjis_big5 (coding, source, destination,
3796 src_bytes, dst_bytes, 1);
3797 break;
3798
3799 case coding_type_iso2022:
3800 result = decode_coding_iso2022 (coding, source, destination,
3801 src_bytes, dst_bytes);
3802 break;
3803
3804 case coding_type_big5:
3805 result = decode_coding_sjis_big5 (coding, source, destination,
3806 src_bytes, dst_bytes, 0);
3807 break;
3808
3809 case coding_type_ccl:
3810 result = ccl_coding_driver (coding, source, destination,
3811 src_bytes, dst_bytes, 0);
3812 break;
3813
3814 default: /* i.e. case coding_type_no_conversion: */
3815 label_no_conversion:
3816 if (dst_bytes && src_bytes > dst_bytes)
3817 {
3818 coding->produced = dst_bytes;
3819 result = CODING_FINISH_INSUFFICIENT_DST;
3820 }
3821 else
3822 {
3823 coding->produced = src_bytes;
3824 result = CODING_FINISH_NORMAL;
3825 }
3826 if (dst_bytes)
3827 bcopy (source, destination, coding->produced);
3828 else
3829 safe_bcopy (source, destination, coding->produced);
3830 coding->fake_multibyte = 1;
3831 coding->consumed
3832 = coding->consumed_char = coding->produced_char = coding->produced;
3833 break;
3834 }
3835
3836 return result;
3837}
3838
3839/* See "GENERAL NOTES about `encode_coding_XXX ()' functions".
3840
3841 This function does not make full use of DESTINATION buffer. For
3842 instance, if coding->type is coding_type_iso2022, it uses only
3843 (DST_BYTES - 20) bytes of DESTINATION buffer. In the case that
3844 DST_BYTES is decided by the function encoding_buffer_size, it
3845 contains extra 256 bytes (defined by CONVERSION_BUFFER_EXTRA_ROOM).
3846 So, this function can encode the full SOURCE. But, in the other
3847 case, if you want to avoid carry over, you must supply at least 20
3848 bytes more area in DESTINATION buffer than expected maximum bytes
3849 that will be produced by this function. */
3850
3851int
3852encode_coding (coding, source, destination, src_bytes, dst_bytes)
3853 struct coding_system *coding;
3854 unsigned char *source, *destination;
3855 int src_bytes, dst_bytes;
3856{
3857 int result;
3858
3859 if (src_bytes <= 0
3860 && ! (coding->mode & CODING_MODE_LAST_BLOCK
3861 && CODING_REQUIRE_FLUSHING (coding)))
3862 {
3863 coding->produced = coding->produced_char = 0;
3864 coding->consumed = coding->consumed_char = 0;
3865 coding->fake_multibyte = 0;
3866 return CODING_FINISH_NORMAL;
3867 }
3868
3869 switch (coding->type)
3870 {
3871 case coding_type_emacs_mule:
3872 case coding_type_undecided:
3873 case coding_type_raw_text:
3874 if (coding->eol_type == CODING_EOL_LF
3875 || coding->eol_type == CODING_EOL_UNDECIDED)
3876 goto label_no_conversion;
3877 result = encode_eol (coding, source, destination, src_bytes, dst_bytes);
3878 break;
3879
3880 case coding_type_sjis:
3881 result = encode_coding_sjis_big5 (coding, source, destination,
3882 src_bytes, dst_bytes, 1);
3883 break;
3884
3885 case coding_type_iso2022:
3886 result = encode_coding_iso2022 (coding, source, destination,
3887 src_bytes, dst_bytes);
3888 break;
3889
3890 case coding_type_big5:
3891 result = encode_coding_sjis_big5 (coding, source, destination,
3892 src_bytes, dst_bytes, 0);
3893 break;
3894
3895 case coding_type_ccl:
3896 result = ccl_coding_driver (coding, source, destination,
3897 src_bytes, dst_bytes, 1);
3898 break;
3899
3900 default: /* i.e. case coding_type_no_conversion: */
3901 label_no_conversion:
3902 if (dst_bytes && src_bytes > dst_bytes)
3903 {
3904 coding->produced = dst_bytes;
3905 result = CODING_FINISH_INSUFFICIENT_DST;
3906 }
3907 else
3908 {
3909 coding->produced = src_bytes;
3910 result = CODING_FINISH_NORMAL;
3911 }
3912 if (dst_bytes)
3913 bcopy (source, destination, coding->produced);
3914 else
3915 safe_bcopy (source, destination, coding->produced);
3916 if (coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
3917 {
3918 unsigned char *p = destination, *pend = p + coding->produced;
3919 while (p < pend)
3920 if (*p++ == '\015') p[-1] = '\n';
3921 }
3922 coding->fake_multibyte = 1;
3923 coding->consumed
3924 = coding->consumed_char = coding->produced_char = coding->produced;
3925 break;
3926 }
3927
3928 return result;
3929}
3930
3931/* Scan text in the region between *BEG and *END (byte positions),
3932 skip characters which we don't have to decode by coding system
3933 CODING at the head and tail, then set *BEG and *END to the region
3934 of the text we actually have to convert. The caller should move
3935 the gap out of the region in advance.
3936
3937 If STR is not NULL, *BEG and *END are indices into STR. */
3938
3939static void
3940shrink_decoding_region (beg, end, coding, str)
3941 int *beg, *end;
3942 struct coding_system *coding;
3943 unsigned char *str;
3944{
3945 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
3946 int eol_conversion;
3947 Lisp_Object translation_table;
3948
3949 if (coding->type == coding_type_ccl
3950 || coding->type == coding_type_undecided
3951 || !NILP (coding->post_read_conversion))
3952 {
3953 /* We can't skip any data. */
3954 return;
3955 }
3956 else if (coding->type == coding_type_no_conversion)
3957 {
3958 /* We need no conversion, but don't have to skip any data here.
3959 Decoding routine handles them effectively anyway. */
3960 return;
3961 }
3962
3963 translation_table = coding->translation_table_for_decode;
3964 if (NILP (translation_table) && !NILP (Venable_character_translation))
3965 translation_table = Vstandard_translation_table_for_decode;
3966 if (CHAR_TABLE_P (translation_table))
3967 {
3968 int i;
3969 for (i = 0; i < 128; i++)
3970 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
3971 break;
3972 if (i < 128)
3973 /* Some ASCII character should be tranlsated. We give up
3974 shrinking. */
3975 return;
3976 }
3977
3978 eol_conversion = (coding->eol_type != CODING_EOL_LF);
3979
3980 if ((! eol_conversion) && (coding->heading_ascii >= 0))
3981 /* Detection routine has already found how much we can skip at the
3982 head. */
3983 *beg += coding->heading_ascii;
3984
3985 if (str)
3986 {
3987 begp_orig = begp = str + *beg;
3988 endp_orig = endp = str + *end;
3989 }
3990 else
3991 {
3992 begp_orig = begp = BYTE_POS_ADDR (*beg);
3993 endp_orig = endp = begp + *end - *beg;
3994 }
3995
3996 switch (coding->type)
3997 {
3998 case coding_type_emacs_mule:
3999 case coding_type_raw_text:
4000 if (eol_conversion)
4001 {
4002 if (coding->heading_ascii < 0)
4003 while (begp < endp && *begp != '\r' && *begp < 0x80) begp++;
4004 while (begp < endp && endp[-1] != '\r' && endp[-1] < 0x80)
4005 endp--;
4006 /* Do not consider LF as ascii if preceded by CR, since that
4007 confuses eol decoding. */
4008 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4009 endp++;
4010 }
4011 else
4012 begp = endp;
4013 break;
4014
4015 case coding_type_sjis:
4016 case coding_type_big5:
4017 /* We can skip all ASCII characters at the head. */
4018 if (coding->heading_ascii < 0)
4019 {
4020 if (eol_conversion)
4021 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4022 else
4023 while (begp < endp && *begp < 0x80) begp++;
4024 }
4025 /* We can skip all ASCII characters at the tail except for the
4026 second byte of SJIS or BIG5 code. */
4027 if (eol_conversion)
4028 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4029 else
4030 while (begp < endp && endp[-1] < 0x80) endp--;
4031 /* Do not consider LF as ascii if preceded by CR, since that
4032 confuses eol decoding. */
4033 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4034 endp++;
4035 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
4036 endp++;
4037 break;
4038
4039 default: /* i.e. case coding_type_iso2022: */
4040 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4041 /* We can't skip any data. */
4042 break;
4043 if (coding->heading_ascii < 0)
4044 {
4045 /* We can skip all ASCII characters at the head except for a
4046 few control codes. */
4047 while (begp < endp && (c = *begp) < 0x80
4048 && c != ISO_CODE_CR && c != ISO_CODE_SO
4049 && c != ISO_CODE_SI && c != ISO_CODE_ESC
4050 && (!eol_conversion || c != ISO_CODE_LF))
4051 begp++;
4052 }
4053 switch (coding->category_idx)
4054 {
4055 case CODING_CATEGORY_IDX_ISO_8_1:
4056 case CODING_CATEGORY_IDX_ISO_8_2:
4057 /* We can skip all ASCII characters at the tail. */
4058 if (eol_conversion)
4059 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
4060 else
4061 while (begp < endp && endp[-1] < 0x80) endp--;
4062 /* Do not consider LF as ascii if preceded by CR, since that
4063 confuses eol decoding. */
4064 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4065 endp++;
4066 break;
4067
4068 case CODING_CATEGORY_IDX_ISO_7:
4069 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
4070 {
4071 /* We can skip all charactes at the tail except for 8-bit
4072 codes and ESC and the following 2-byte at the tail. */
4073 unsigned char *eight_bit = NULL;
4074
4075 if (eol_conversion)
4076 while (begp < endp
4077 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
4078 {
4079 if (!eight_bit && c & 0x80) eight_bit = endp;
4080 endp--;
4081 }
4082 else
4083 while (begp < endp
4084 && (c = endp[-1]) != ISO_CODE_ESC)
4085 {
4086 if (!eight_bit && c & 0x80) eight_bit = endp;
4087 endp--;
4088 }
4089 /* Do not consider LF as ascii if preceded by CR, since that
4090 confuses eol decoding. */
4091 if (begp < endp && endp < endp_orig
4092 && endp[-1] == '\r' && endp[0] == '\n')
4093 endp++;
4094 if (begp < endp && endp[-1] == ISO_CODE_ESC)
4095 {
4096 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
4097 /* This is an ASCII designation sequence. We can
4098 surely skip the tail. But, if we have
4099 encountered an 8-bit code, skip only the codes
4100 after that. */
4101 endp = eight_bit ? eight_bit : endp + 2;
4102 else
4103 /* Hmmm, we can't skip the tail. */
4104 endp = endp_orig;
4105 }
4106 else if (eight_bit)
4107 endp = eight_bit;
4108 }
4109 }
4110 }
4111 *beg += begp - begp_orig;
4112 *end += endp - endp_orig;
4113 return;
4114}
4115
4116/* Like shrink_decoding_region but for encoding. */
4117
4118static void
4119shrink_encoding_region (beg, end, coding, str)
4120 int *beg, *end;
4121 struct coding_system *coding;
4122 unsigned char *str;
4123{
4124 unsigned char *begp_orig, *begp, *endp_orig, *endp;
4125 int eol_conversion;
4126 Lisp_Object translation_table;
4127
4128 if (coding->type == coding_type_ccl)
4129 /* We can't skip any data. */
4130 return;
4131 else if (coding->type == coding_type_no_conversion)
4132 {
4133 /* We need no conversion. */
4134 *beg = *end;
4135 return;
4136 }
4137
4138 translation_table = coding->translation_table_for_encode;
4139 if (NILP (translation_table) && !NILP (Venable_character_translation))
4140 translation_table = Vstandard_translation_table_for_encode;
4141 if (CHAR_TABLE_P (translation_table))
4142 {
4143 int i;
4144 for (i = 0; i < 128; i++)
4145 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4146 break;
4147 if (i < 128)
4148 /* Some ASCII character should be tranlsated. We give up
4149 shrinking. */
4150 return;
4151 }
4152
4153 if (str)
4154 {
4155 begp_orig = begp = str + *beg;
4156 endp_orig = endp = str + *end;
4157 }
4158 else
4159 {
4160 begp_orig = begp = BYTE_POS_ADDR (*beg);
4161 endp_orig = endp = begp + *end - *beg;
4162 }
4163
4164 eol_conversion = (coding->eol_type == CODING_EOL_CR
4165 || coding->eol_type == CODING_EOL_CRLF);
4166
4167 /* Here, we don't have to check coding->pre_write_conversion because
4168 the caller is expected to have handled it already. */
4169 switch (coding->type)
4170 {
4171 case coding_type_undecided:
4172 case coding_type_emacs_mule:
4173 case coding_type_raw_text:
4174 if (eol_conversion)
4175 {
4176 while (begp < endp && *begp != '\n') begp++;
4177 while (begp < endp && endp[-1] != '\n') endp--;
4178 }
4179 else
4180 begp = endp;
4181 break;
4182
4183 case coding_type_iso2022:
4184 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4185 /* We can't skip any data. */
4186 break;
4187 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
4188 {
4189 unsigned char *bol = begp;
4190 while (begp < endp && *begp < 0x80)
4191 {
4192 begp++;
4193 if (begp[-1] == '\n')
4194 bol = begp;
4195 }
4196 begp = bol;
4197 goto label_skip_tail;
4198 }
4199 /* fall down ... */
4200
4201 default:
4202 /* We can skip all ASCII characters at the head and tail. */
4203 if (eol_conversion)
4204 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
4205 else
4206 while (begp < endp && *begp < 0x80) begp++;
4207 label_skip_tail:
4208 if (eol_conversion)
4209 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
4210 else
4211 while (begp < endp && *(endp - 1) < 0x80) endp--;
4212 break;
4213 }
4214
4215 *beg += begp - begp_orig;
4216 *end += endp - endp_orig;
4217 return;
4218}
4219
4220/* As shrinking conversion region requires some overhead, we don't try
4221 shrinking if the length of conversion region is less than this
4222 value. */
4223static int shrink_conversion_region_threshhold = 1024;
4224
4225#define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
4226 do { \
4227 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
4228 { \
4229 if (encodep) shrink_encoding_region (beg, end, coding, str); \
4230 else shrink_decoding_region (beg, end, coding, str); \
4231 } \
4232 } while (0)
4233
4234/* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
4235 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
4236 coding system CODING, and return the status code of code conversion
4237 (currently, this value has no meaning).
4238
4239 How many characters (and bytes) are converted to how many
4240 characters (and bytes) are recorded in members of the structure
4241 CODING.
4242
4243 If REPLACE is nonzero, we do various things as if the original text
4244 is deleted and a new text is inserted. See the comments in
4245 replace_range (insdel.c) to know what we are doing. */
4246
4247int
4248code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
4249 int from, from_byte, to, to_byte, encodep, replace;
4250 struct coding_system *coding;
4251{
4252 int len = to - from, len_byte = to_byte - from_byte;
4253 int require, inserted, inserted_byte;
4254 int head_skip, tail_skip, total_skip;
4255 Lisp_Object saved_coding_symbol;
4256 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
4257 int first = 1;
4258 int fake_multibyte = 0;
4259 unsigned char *src, *dst;
4260 Lisp_Object deletion;
4261 int orig_point = PT, orig_len = len;
4262 int prev_Z;
4263
4264 deletion = Qnil;
4265 saved_coding_symbol = Qnil;
4266
4267 if (from < PT && PT < to)
4268 {
4269 TEMP_SET_PT_BOTH (from, from_byte);
4270 orig_point = from;
4271 }
4272
4273 if (replace)
4274 {
4275 int saved_from = from;
4276
4277 prepare_to_modify_buffer (from, to, &from);
4278 if (saved_from != from)
4279 {
4280 to = from + len;
4281 if (multibyte)
4282 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
4283 else
4284 from_byte = from, to_byte = to;
4285 len_byte = to_byte - from_byte;
4286 }
4287 }
4288
4289 if (! encodep && CODING_REQUIRE_DETECTION (coding))
4290 {
4291 /* We must detect encoding of text and eol format. */
4292
4293 if (from < GPT && to > GPT)
4294 move_gap_both (from, from_byte);
4295 if (coding->type == coding_type_undecided)
4296 {
4297 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
4298 if (coding->type == coding_type_undecided)
4299 /* It seems that the text contains only ASCII, but we
4300 should not left it undecided because the deeper
4301 decoding routine (decode_coding) tries to detect the
4302 encodings again in vain. */
4303 coding->type = coding_type_emacs_mule;
4304 }
4305 if (coding->eol_type == CODING_EOL_UNDECIDED)
4306 {
4307 saved_coding_symbol = coding->symbol;
4308 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
4309 if (coding->eol_type == CODING_EOL_UNDECIDED)
4310 coding->eol_type = CODING_EOL_LF;
4311 /* We had better recover the original eol format if we
4312 encounter an inconsitent eol format while decoding. */
4313 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4314 }
4315 }
4316
4317 coding->consumed_char = len, coding->consumed = len_byte;
4318
4319 if (encodep
4320 ? ! CODING_REQUIRE_ENCODING (coding)
4321 : ! CODING_REQUIRE_DECODING (coding))
4322 {
4323 coding->produced = len_byte;
4324 if (multibyte
4325 && ! replace
4326 /* See the comment of the member heading_ascii in coding.h. */
4327 && coding->heading_ascii < len_byte)
4328 {
4329 /* We still may have to combine byte at the head and the
4330 tail of the text in the region. */
4331 if (from < GPT && GPT < to)
4332 move_gap_both (to, to_byte);
4333 len = multibyte_chars_in_text (BYTE_POS_ADDR (from_byte), len_byte);
4334 adjust_after_insert (from, from_byte, to, to_byte, len);
4335 coding->produced_char = len;
4336 }
4337 else
4338 {
4339 if (!replace)
4340 adjust_after_insert (from, from_byte, to, to_byte, len_byte);
4341 coding->produced_char = len_byte;
4342 }
4343 return 0;
4344 }
4345
4346 /* Now we convert the text. */
4347
4348 /* For encoding, we must process pre-write-conversion in advance. */
4349 if (encodep
4350 && ! NILP (coding->pre_write_conversion)
4351 && SYMBOLP (coding->pre_write_conversion)
4352 && ! NILP (Ffboundp (coding->pre_write_conversion)))
4353 {
4354 /* The function in pre-write-conversion may put a new text in a
4355 new buffer. */
4356 struct buffer *prev = current_buffer;
4357 Lisp_Object new;
4358
4359 call2 (coding->pre_write_conversion,
4360 make_number (from), make_number (to));
4361 if (current_buffer != prev)
4362 {
4363 len = ZV - BEGV;
4364 new = Fcurrent_buffer ();
4365 set_buffer_internal_1 (prev);
4366 del_range_2 (from, from_byte, to, to_byte);
4367 TEMP_SET_PT_BOTH (from, from_byte);
4368 insert_from_buffer (XBUFFER (new), 1, len, 0);
4369 Fkill_buffer (new);
4370 if (orig_point >= to)
4371 orig_point += len - orig_len;
4372 else if (orig_point > from)
4373 orig_point = from;
4374 orig_len = len;
4375 to = from + len;
4376 from_byte = multibyte ? CHAR_TO_BYTE (from) : from_byte;
4377 to_byte = multibyte ? CHAR_TO_BYTE (to) : to;
4378 len_byte = to_byte - from_byte;
4379 TEMP_SET_PT_BOTH (from, from_byte);
4380 }
4381 }
4382
4383 if (replace)
4384 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
4385
4386 /* Try to skip the heading and tailing ASCIIs. */
4387 {
4388 int from_byte_orig = from_byte, to_byte_orig = to_byte;
4389
4390 if (from < GPT && GPT < to)
4391 move_gap_both (from, from_byte);
4392 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
4393 if (from_byte == to_byte
4394 && coding->type != coding_type_ccl
4395 && ! (coding->mode & CODING_MODE_LAST_BLOCK
4396 && CODING_REQUIRE_FLUSHING (coding)))
4397 {
4398 coding->produced = len_byte;
4399 coding->produced_char = multibyte ? len : len_byte;
4400 if (!replace)
4401 /* We must record and adjust for this new text now. */
4402 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
4403 return 0;
4404 }
4405
4406 head_skip = from_byte - from_byte_orig;
4407 tail_skip = to_byte_orig - to_byte;
4408 total_skip = head_skip + tail_skip;
4409 from += head_skip;
4410 to -= tail_skip;
4411 len -= total_skip; len_byte -= total_skip;
4412 }
4413
4414 /* The code conversion routine can not preserve text properties for
4415 now. So, we must remove all text properties in the region.
4416 Here, we must suppress all modification hooks. */
4417 if (replace)
4418 {
4419 int saved_inhibit_modification_hooks = inhibit_modification_hooks;
4420 inhibit_modification_hooks = 1;
4421 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
4422 inhibit_modification_hooks = saved_inhibit_modification_hooks;
4423 }
4424
4425 /* For converion, we must put the gap before the text in addition to
4426 making the gap larger for efficient decoding. The required gap
4427 size starts from 2000 which is the magic number used in make_gap.
4428 But, after one batch of conversion, it will be incremented if we
4429 find that it is not enough . */
4430 require = 2000;
4431
4432 if (GAP_SIZE < require)
4433 make_gap (require - GAP_SIZE);
4434 move_gap_both (from, from_byte);
4435
4436 inserted = inserted_byte = 0;
4437 src = GAP_END_ADDR, dst = GPT_ADDR;
4438
4439 GAP_SIZE += len_byte;
4440 ZV -= len;
4441 Z -= len;
4442 ZV_BYTE -= len_byte;
4443 Z_BYTE -= len_byte;
4444
4445 if (GPT - BEG < beg_unchanged)
4446 beg_unchanged = GPT - BEG;
4447 if (Z - GPT < end_unchanged)
4448 end_unchanged = Z - GPT;
4449
4450 for (;;)
4451 {
4452 int result;
4453
4454 /* The buffer memory is changed from:
4455 +--------+converted-text+---------+-------original-text------+---+
4456 |<-from->|<--inserted-->|---------|<-----------len---------->|---|
4457 |<------------------- GAP_SIZE -------------------->| */
4458 if (encodep)
4459 result = encode_coding (coding, src, dst, len_byte, 0);
4460 else
4461 result = decode_coding (coding, src, dst, len_byte, 0);
4462 /* to:
4463 +--------+-------converted-text--------+--+---original-text--+---+
4464 |<-from->|<--inserted-->|<--produced-->|--|<-(len-consumed)->|---|
4465 |<------------------- GAP_SIZE -------------------->| */
4466 if (coding->fake_multibyte)
4467 fake_multibyte = 1;
4468
4469 if (!encodep && !multibyte)
4470 coding->produced_char = coding->produced;
4471 inserted += coding->produced_char;
4472 inserted_byte += coding->produced;
4473 len_byte -= coding->consumed;
4474 src += coding->consumed;
4475 dst += inserted_byte;
4476
4477 if (result == CODING_FINISH_NORMAL)
4478 {
4479 src += len_byte;
4480 break;
4481 }
4482 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
4483 {
4484 unsigned char *pend = dst, *p = pend - inserted_byte;
4485 Lisp_Object eol_type;
4486
4487 /* Encode LFs back to the original eol format (CR or CRLF). */
4488 if (coding->eol_type == CODING_EOL_CR)
4489 {
4490 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
4491 }
4492 else
4493 {
4494 int count = 0;
4495
4496 while (p < pend) if (*p++ == '\n') count++;
4497 if (src - dst < count)
4498 {
4499 /* We don't have sufficient room for encoding LFs
4500 back to CRLF. We must record converted and
4501 not-yet-converted text back to the buffer
4502 content, enlarge the gap, then record them out of
4503 the buffer contents again. */
4504 int add = len_byte + inserted_byte;
4505
4506 GAP_SIZE -= add;
4507 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
4508 GPT += inserted_byte; GPT_BYTE += inserted_byte;
4509 make_gap (count - GAP_SIZE);
4510 GAP_SIZE += add;
4511 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
4512 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
4513 /* Don't forget to update SRC, DST, and PEND. */
4514 src = GAP_END_ADDR - len_byte;
4515 dst = GPT_ADDR + inserted_byte;
4516 pend = dst;
4517 }
4518 inserted += count;
4519 inserted_byte += count;
4520 coding->produced += count;
4521 p = dst = pend + count;
4522 while (count)
4523 {
4524 *--p = *--pend;
4525 if (*p == '\n') count--, *--p = '\r';
4526 }
4527 }
4528
4529 /* Suppress eol-format conversion in the further conversion. */
4530 coding->eol_type = CODING_EOL_LF;
4531
4532 /* Set the coding system symbol to that for Unix-like EOL. */
4533 eol_type = Fget (saved_coding_symbol, Qeol_type);
4534 if (VECTORP (eol_type)
4535 && XVECTOR (eol_type)->size == 3
4536 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
4537 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
4538 else
4539 coding->symbol = saved_coding_symbol;
4540
4541 continue;
4542 }
4543 if (len_byte <= 0)
4544 {
4545 if (coding->type != coding_type_ccl
4546 || coding->mode & CODING_MODE_LAST_BLOCK)
4547 break;
4548 coding->mode |= CODING_MODE_LAST_BLOCK;
4549 continue;
4550 }
4551 if (result == CODING_FINISH_INSUFFICIENT_SRC)
4552 {
4553 /* The source text ends in invalid codes. Let's just
4554 make them valid buffer contents, and finish conversion. */
4555 inserted += len_byte;
4556 inserted_byte += len_byte;
4557 while (len_byte--)
4558 *dst++ = *src++;
4559 fake_multibyte = 1;
4560 break;
4561 }
4562 if (result == CODING_FINISH_INTERRUPT)
4563 {
4564 /* The conversion procedure was interrupted by a user. */
4565 fake_multibyte = 1;
4566 break;
4567 }
4568 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
4569 if (coding->consumed < 1)
4570 {
4571 /* It's quite strange to require more memory without
4572 consuming any bytes. Perhaps CCL program bug. */
4573 fake_multibyte = 1;
4574 break;
4575 }
4576 if (first)
4577 {
4578 /* We have just done the first batch of conversion which was
4579 stoped because of insufficient gap. Let's reconsider the
4580 required gap size (i.e. SRT - DST) now.
4581
4582 We have converted ORIG bytes (== coding->consumed) into
4583 NEW bytes (coding->produced). To convert the remaining
4584 LEN bytes, we may need REQUIRE bytes of gap, where:
4585 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
4586 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
4587 Here, we are sure that NEW >= ORIG. */
4588 float ratio = coding->produced - coding->consumed;
4589 ratio /= coding->consumed;
4590 require = len_byte * ratio;
4591 first = 0;
4592 }
4593 if ((src - dst) < (require + 2000))
4594 {
4595 /* See the comment above the previous call of make_gap. */
4596 int add = len_byte + inserted_byte;
4597
4598 GAP_SIZE -= add;
4599 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
4600 GPT += inserted_byte; GPT_BYTE += inserted_byte;
4601 make_gap (require + 2000);
4602 GAP_SIZE += add;
4603 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
4604 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
4605 /* Don't forget to update SRC, DST. */
4606 src = GAP_END_ADDR - len_byte;
4607 dst = GPT_ADDR + inserted_byte;
4608 }
4609 }
4610 if (src - dst > 0) *dst = 0; /* Put an anchor. */
4611
4612 if (multibyte
4613 && (encodep
4614 || fake_multibyte
4615 || (to - from) != (to_byte - from_byte)))
4616 inserted = multibyte_chars_in_text (GPT_ADDR, inserted_byte);
4617
4618 /* If we have shrinked the conversion area, adjust it now. */
4619 if (total_skip > 0)
4620 {
4621 if (tail_skip > 0)
4622 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
4623 inserted += total_skip; inserted_byte += total_skip;
4624 GAP_SIZE += total_skip;
4625 GPT -= head_skip; GPT_BYTE -= head_skip;
4626 ZV -= total_skip; ZV_BYTE -= total_skip;
4627 Z -= total_skip; Z_BYTE -= total_skip;
4628 from -= head_skip; from_byte -= head_skip;
4629 to += tail_skip; to_byte += tail_skip;
4630 }
4631
4632 prev_Z = Z;
4633 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
4634 inserted = Z - prev_Z;
4635
4636 if (! encodep && ! NILP (coding->post_read_conversion))
4637 {
4638 Lisp_Object val;
4639
4640 if (from != PT)
4641 TEMP_SET_PT_BOTH (from, from_byte);
4642 prev_Z = Z;
4643 val = call1 (coding->post_read_conversion, make_number (inserted));
4644 CHECK_NUMBER (val, 0);
4645 inserted += Z - prev_Z;
4646 }
4647
4648 if (orig_point >= from)
4649 {
4650 if (orig_point >= from + orig_len)
4651 orig_point += inserted - orig_len;
4652 else
4653 orig_point = from;
4654 TEMP_SET_PT (orig_point);
4655 }
4656
4657 signal_after_change (from, to - from, inserted);
4658
4659 {
4660 coding->consumed = to_byte - from_byte;
4661 coding->consumed_char = to - from;
4662 coding->produced = inserted_byte;
4663 coding->produced_char = inserted;
4664 }
4665
4666 return 0;
4667}
4668
4669Lisp_Object
4670code_convert_string (str, coding, encodep, nocopy)
4671 Lisp_Object str;
4672 struct coding_system *coding;
4673 int encodep, nocopy;
4674{
4675 int len;
4676 char *buf;
4677 int from = 0, to = XSTRING (str)->size;
4678 int to_byte = STRING_BYTES (XSTRING (str));
4679 struct gcpro gcpro1;
4680 Lisp_Object saved_coding_symbol;
4681 int result;
4682
4683 saved_coding_symbol = Qnil;
4684 if (encodep && !NILP (coding->pre_write_conversion)
4685 || !encodep && !NILP (coding->post_read_conversion))
4686 {
4687 /* Since we have to call Lisp functions which assume target text
4688 is in a buffer, after setting a temporary buffer, call
4689 code_convert_region. */
4690 int count = specpdl_ptr - specpdl;
4691 struct buffer *prev = current_buffer;
4692
4693 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4694 temp_output_buffer_setup (" *code-converting-work*");
4695 set_buffer_internal (XBUFFER (Vstandard_output));
4696 if (encodep)
4697 insert_from_string (str, 0, 0, to, to_byte, 0);
4698 else
4699 {
4700 /* We must insert the contents of STR as is without
4701 unibyte<->multibyte conversion. */
4702 current_buffer->enable_multibyte_characters = Qnil;
4703 insert_from_string (str, 0, 0, to_byte, to_byte, 0);
4704 current_buffer->enable_multibyte_characters = Qt;
4705 }
4706 code_convert_region (BEGV, BEGV_BYTE, ZV, ZV_BYTE, coding, encodep, 1);
4707 if (encodep)
4708 /* We must return the buffer contents as unibyte string. */
4709 current_buffer->enable_multibyte_characters = Qnil;
4710 str = make_buffer_string (BEGV, ZV, 0);
4711 set_buffer_internal (prev);
4712 return unbind_to (count, str);
4713 }
4714
4715 if (! encodep && CODING_REQUIRE_DETECTION (coding))
4716 {
4717 /* See the comments in code_convert_region. */
4718 if (coding->type == coding_type_undecided)
4719 {
4720 detect_coding (coding, XSTRING (str)->data, to_byte);
4721 if (coding->type == coding_type_undecided)
4722 coding->type = coding_type_emacs_mule;
4723 }
4724 if (coding->eol_type == CODING_EOL_UNDECIDED)
4725 {
4726 saved_coding_symbol = coding->symbol;
4727 detect_eol (coding, XSTRING (str)->data, to_byte);
4728 if (coding->eol_type == CODING_EOL_UNDECIDED)
4729 coding->eol_type = CODING_EOL_LF;
4730 /* We had better recover the original eol format if we
4731 encounter an inconsitent eol format while decoding. */
4732 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4733 }
4734 }
4735
4736 if (encodep
4737 ? ! CODING_REQUIRE_ENCODING (coding)
4738 : ! CODING_REQUIRE_DECODING (coding))
4739 from = to_byte;
4740 else
4741 {
4742 /* Try to skip the heading and tailing ASCIIs. */
4743 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
4744 encodep);
4745 }
4746 if (from == to_byte
4747 && coding->type != coding_type_ccl)
4748 return (nocopy ? str : Fcopy_sequence (str));
4749
4750 if (encodep)
4751 len = encoding_buffer_size (coding, to_byte - from);
4752 else
4753 len = decoding_buffer_size (coding, to_byte - from);
4754 len += from + STRING_BYTES (XSTRING (str)) - to_byte;
4755 GCPRO1 (str);
4756 buf = get_conversion_buffer (len);
4757 UNGCPRO;
4758
4759 if (from > 0)
4760 bcopy (XSTRING (str)->data, buf, from);
4761 result = (encodep
4762 ? encode_coding (coding, XSTRING (str)->data + from,
4763 buf + from, to_byte - from, len)
4764 : decode_coding (coding, XSTRING (str)->data + from,
4765 buf + from, to_byte - from, len));
4766 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
4767 {
4768 /* We simple try to decode the whole string again but without
4769 eol-conversion this time. */
4770 coding->eol_type = CODING_EOL_LF;
4771 coding->symbol = saved_coding_symbol;
4772 return code_convert_string (str, coding, encodep, nocopy);
4773 }
4774
4775 bcopy (XSTRING (str)->data + to_byte, buf + from + coding->produced,
4776 STRING_BYTES (XSTRING (str)) - to_byte);
4777
4778 len = from + STRING_BYTES (XSTRING (str)) - to_byte;
4779 if (encodep)
4780 str = make_unibyte_string (buf, len + coding->produced);
4781 else
4782 {
4783 int chars= (coding->fake_multibyte
4784 ? multibyte_chars_in_text (buf + from, coding->produced)
4785 : coding->produced_char);
4786 str = make_multibyte_string (buf, len + chars, len + coding->produced);
4787 }
4788
4789 return str;
4790}
4791
4792\f
4793#ifdef emacs
4794/*** 8. Emacs Lisp library functions ***/
4795
4796DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
4797 "Return t if OBJECT is nil or a coding-system.\n\
4798See the documentation of `make-coding-system' for information\n\
4799about coding-system objects.")
4800 (obj)
4801 Lisp_Object obj;
4802{
4803 if (NILP (obj))
4804 return Qt;
4805 if (!SYMBOLP (obj))
4806 return Qnil;
4807 /* Get coding-spec vector for OBJ. */
4808 obj = Fget (obj, Qcoding_system);
4809 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
4810 ? Qt : Qnil);
4811}
4812
4813DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
4814 Sread_non_nil_coding_system, 1, 1, 0,
4815 "Read a coding system from the minibuffer, prompting with string PROMPT.")
4816 (prompt)
4817 Lisp_Object prompt;
4818{
4819 Lisp_Object val;
4820 do
4821 {
4822 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
4823 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
4824 }
4825 while (XSTRING (val)->size == 0);
4826 return (Fintern (val, Qnil));
4827}
4828
4829DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
4830 "Read a coding system from the minibuffer, prompting with string PROMPT.\n\
4831If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.")
4832 (prompt, default_coding_system)
4833 Lisp_Object prompt, default_coding_system;
4834{
4835 Lisp_Object val;
4836 if (SYMBOLP (default_coding_system))
4837 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
4838 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
4839 Qt, Qnil, Qcoding_system_history,
4840 default_coding_system, Qnil);
4841 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
4842}
4843
4844DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
4845 1, 1, 0,
4846 "Check validity of CODING-SYSTEM.\n\
4847If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.\n\
4848It is valid if it is a symbol with a non-nil `coding-system' property.\n\
4849The value of property should be a vector of length 5.")
4850 (coding_system)
4851 Lisp_Object coding_system;
4852{
4853 CHECK_SYMBOL (coding_system, 0);
4854 if (!NILP (Fcoding_system_p (coding_system)))
4855 return coding_system;
4856 while (1)
4857 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
4858}
4859\f
4860Lisp_Object
4861detect_coding_system (src, src_bytes, highest)
4862 unsigned char *src;
4863 int src_bytes, highest;
4864{
4865 int coding_mask, eol_type;
4866 Lisp_Object val, tmp;
4867 int dummy;
4868
4869 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy);
4870 eol_type = detect_eol_type (src, src_bytes, &dummy);
4871 if (eol_type == CODING_EOL_INCONSISTENT)
4872 eol_type = CODING_EOL_UNDECIDED;
4873
4874 if (!coding_mask)
4875 {
4876 val = Qundecided;
4877 if (eol_type != CODING_EOL_UNDECIDED)
4878 {
4879 Lisp_Object val2;
4880 val2 = Fget (Qundecided, Qeol_type);
4881 if (VECTORP (val2))
4882 val = XVECTOR (val2)->contents[eol_type];
4883 }
4884 return (highest ? val : Fcons (val, Qnil));
4885 }
4886
4887 /* At first, gather possible coding systems in VAL. */
4888 val = Qnil;
4889 for (tmp = Vcoding_category_list; !NILP (tmp); tmp = XCONS (tmp)->cdr)
4890 {
4891 int idx
4892 = XFASTINT (Fget (XCONS (tmp)->car, Qcoding_category_index));
4893 if (coding_mask & (1 << idx))
4894 {
4895 val = Fcons (Fsymbol_value (XCONS (tmp)->car), val);
4896 if (highest)
4897 break;
4898 }
4899 }
4900 if (!highest)
4901 val = Fnreverse (val);
4902
4903 /* Then, replace the elements with subsidiary coding systems. */
4904 for (tmp = val; !NILP (tmp); tmp = XCONS (tmp)->cdr)
4905 {
4906 if (eol_type != CODING_EOL_UNDECIDED
4907 && eol_type != CODING_EOL_INCONSISTENT)
4908 {
4909 Lisp_Object eol;
4910 eol = Fget (XCONS (tmp)->car, Qeol_type);
4911 if (VECTORP (eol))
4912 XCONS (tmp)->car = XVECTOR (eol)->contents[eol_type];
4913 }
4914 }
4915 return (highest ? XCONS (val)->car : val);
4916}
4917
4918DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
4919 2, 3, 0,
4920 "Detect coding system of the text in the region between START and END.\n\
4921Return a list of possible coding systems ordered by priority.\n\
4922\n\
4923If only ASCII characters are found, it returns a list of single element\n\
4924`undecided' or its subsidiary coding system according to a detected\n\
4925end-of-line format.\n\
4926\n\
4927If optional argument HIGHEST is non-nil, return the coding system of\n\
4928highest priority.")
4929 (start, end, highest)
4930 Lisp_Object start, end, highest;
4931{
4932 int from, to;
4933 int from_byte, to_byte;
4934
4935 CHECK_NUMBER_COERCE_MARKER (start, 0);
4936 CHECK_NUMBER_COERCE_MARKER (end, 1);
4937
4938 validate_region (&start, &end);
4939 from = XINT (start), to = XINT (end);
4940 from_byte = CHAR_TO_BYTE (from);
4941 to_byte = CHAR_TO_BYTE (to);
4942
4943 if (from < GPT && to >= GPT)
4944 move_gap_both (to, to_byte);
4945
4946 return detect_coding_system (BYTE_POS_ADDR (from_byte),
4947 to_byte - from_byte,
4948 !NILP (highest));
4949}
4950
4951DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
4952 1, 2, 0,
4953 "Detect coding system of the text in STRING.\n\
4954Return a list of possible coding systems ordered by priority.\n\
4955\n\
4956If only ASCII characters are found, it returns a list of single element\n\
4957`undecided' or its subsidiary coding system according to a detected\n\
4958end-of-line format.\n\
4959\n\
4960If optional argument HIGHEST is non-nil, return the coding system of\n\
4961highest priority.")
4962 (string, highest)
4963 Lisp_Object string, highest;
4964{
4965 CHECK_STRING (string, 0);
4966
4967 return detect_coding_system (XSTRING (string)->data,
4968 STRING_BYTES (XSTRING (string)),
4969 !NILP (highest));
4970}
4971
4972Lisp_Object
4973code_convert_region1 (start, end, coding_system, encodep)
4974 Lisp_Object start, end, coding_system;
4975 int encodep;
4976{
4977 struct coding_system coding;
4978 int from, to, len;
4979
4980 CHECK_NUMBER_COERCE_MARKER (start, 0);
4981 CHECK_NUMBER_COERCE_MARKER (end, 1);
4982 CHECK_SYMBOL (coding_system, 2);
4983
4984 validate_region (&start, &end);
4985 from = XFASTINT (start);
4986 to = XFASTINT (end);
4987
4988 if (NILP (coding_system))
4989 return make_number (to - from);
4990
4991 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
4992 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
4993
4994 coding.mode |= CODING_MODE_LAST_BLOCK;
4995 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
4996 &coding, encodep, 1);
4997 Vlast_coding_system_used = coding.symbol;
4998 return make_number (coding.produced_char);
4999}
5000
5001DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
5002 3, 3, "r\nzCoding system: ",
5003 "Decode the current region by specified coding system.\n\
5004When called from a program, takes three arguments:\n\
5005START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
5006This function sets `last-coding-system-used' to the precise coding system\n\
5007used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5008not fully specified.)\n\
5009It returns the length of the decoded text.")
5010 (start, end, coding_system)
5011 Lisp_Object start, end, coding_system;
5012{
5013 return code_convert_region1 (start, end, coding_system, 0);
5014}
5015
5016DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
5017 3, 3, "r\nzCoding system: ",
5018 "Encode the current region by specified coding system.\n\
5019When called from a program, takes three arguments:\n\
5020START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
5021This function sets `last-coding-system-used' to the precise coding system\n\
5022used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5023not fully specified.)\n\
5024It returns the length of the encoded text.")
5025 (start, end, coding_system)
5026 Lisp_Object start, end, coding_system;
5027{
5028 return code_convert_region1 (start, end, coding_system, 1);
5029}
5030
5031Lisp_Object
5032code_convert_string1 (string, coding_system, nocopy, encodep)
5033 Lisp_Object string, coding_system, nocopy;
5034 int encodep;
5035{
5036 struct coding_system coding;
5037
5038 CHECK_STRING (string, 0);
5039 CHECK_SYMBOL (coding_system, 1);
5040
5041 if (NILP (coding_system))
5042 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
5043
5044 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
5045 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
5046
5047 coding.mode |= CODING_MODE_LAST_BLOCK;
5048 Vlast_coding_system_used = coding.symbol;
5049 return code_convert_string (string, &coding, encodep, !NILP (nocopy));
5050}
5051
5052DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
5053 2, 3, 0,
5054 "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\
5055Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
5056if the decoding operation is trivial.\n\
5057This function sets `last-coding-system-used' to the precise coding system\n\
5058used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5059not fully specified.)")
5060 (string, coding_system, nocopy)
5061 Lisp_Object string, coding_system, nocopy;
5062{
5063 return code_convert_string1 (string, coding_system, nocopy, 0);
5064}
5065
5066DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
5067 2, 3, 0,
5068 "Encode STRING to CODING-SYSTEM, and return the result.\n\
5069Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
5070if the encoding operation is trivial.\n\
5071This function sets `last-coding-system-used' to the precise coding system\n\
5072used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5073not fully specified.)")
5074 (string, coding_system, nocopy)
5075 Lisp_Object string, coding_system, nocopy;
5076{
5077 return code_convert_string1 (string, coding_system, nocopy, 1);
5078}
5079
5080/* Encode or decode STRING according to CODING_SYSTEM.
5081 Do not set Vlast_coding_system_used. */
5082
5083Lisp_Object
5084code_convert_string_norecord (string, coding_system, encodep)
5085 Lisp_Object string, coding_system;
5086 int encodep;
5087{
5088 struct coding_system coding;
5089
5090 CHECK_STRING (string, 0);
5091 CHECK_SYMBOL (coding_system, 1);
5092
5093 if (NILP (coding_system))
5094 return string;
5095
5096 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
5097 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
5098
5099 coding.mode |= CODING_MODE_LAST_BLOCK;
5100 return code_convert_string (string, &coding, encodep, Qt);
5101}
5102\f
5103DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
5104 "Decode a Japanese character which has CODE in shift_jis encoding.\n\
5105Return the corresponding character.")
5106 (code)
5107 Lisp_Object code;
5108{
5109 unsigned char c1, c2, s1, s2;
5110 Lisp_Object val;
5111
5112 CHECK_NUMBER (code, 0);
5113 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
5114 if (s1 == 0)
5115 {
5116 if (s2 < 0x80)
5117 XSETFASTINT (val, s2);
5118 else if (s2 >= 0xA0 || s2 <= 0xDF)
5119 XSETFASTINT (val,
5120 MAKE_NON_ASCII_CHAR (charset_katakana_jisx0201, s2, 0));
5121 else
5122 error ("Invalid Shift JIS code: %x", XFASTINT (code));
5123 }
5124 else
5125 {
5126 if ((s1 < 0x80 || s1 > 0x9F && s1 < 0xE0 || s1 > 0xEF)
5127 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
5128 error ("Invalid Shift JIS code: %x", XFASTINT (code));
5129 DECODE_SJIS (s1, s2, c1, c2);
5130 XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset_jisx0208, c1, c2));
5131 }
5132 return val;
5133}
5134
5135DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
5136 "Encode a Japanese character CHAR to shift_jis encoding.\n\
5137Return the corresponding code in SJIS.")
5138 (ch)
5139 Lisp_Object ch;
5140{
5141 int charset, c1, c2, s1, s2;
5142 Lisp_Object val;
5143
5144 CHECK_NUMBER (ch, 0);
5145 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
5146 if (charset == CHARSET_ASCII)
5147 {
5148 val = ch;
5149 }
5150 else if (charset == charset_jisx0208
5151 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
5152 {
5153 ENCODE_SJIS (c1, c2, s1, s2);
5154 XSETFASTINT (val, (s1 << 8) | s2);
5155 }
5156 else if (charset == charset_katakana_jisx0201
5157 && c1 > 0x20 && c2 < 0xE0)
5158 {
5159 XSETFASTINT (val, c1 | 0x80);
5160 }
5161 else
5162 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
5163 return val;
5164}
5165
5166DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
5167 "Decode a Big5 character which has CODE in BIG5 coding system.\n\
5168Return the corresponding character.")
5169 (code)
5170 Lisp_Object code;
5171{
5172 int charset;
5173 unsigned char b1, b2, c1, c2;
5174 Lisp_Object val;
5175
5176 CHECK_NUMBER (code, 0);
5177 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
5178 if (b1 == 0)
5179 {
5180 if (b2 >= 0x80)
5181 error ("Invalid BIG5 code: %x", XFASTINT (code));
5182 val = code;
5183 }
5184 else
5185 {
5186 if ((b1 < 0xA1 || b1 > 0xFE)
5187 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
5188 error ("Invalid BIG5 code: %x", XFASTINT (code));
5189 DECODE_BIG5 (b1, b2, charset, c1, c2);
5190 XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset, c1, c2));
5191 }
5192 return val;
5193}
5194
5195DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
5196 "Encode the Big5 character CHAR to BIG5 coding system.\n\
5197Return the corresponding character code in Big5.")
5198 (ch)
5199 Lisp_Object ch;
5200{
5201 int charset, c1, c2, b1, b2;
5202 Lisp_Object val;
5203
5204 CHECK_NUMBER (ch, 0);
5205 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
5206 if (charset == CHARSET_ASCII)
5207 {
5208 val = ch;
5209 }
5210 else if ((charset == charset_big5_1
5211 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
5212 || (charset == charset_big5_2
5213 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
5214 {
5215 ENCODE_BIG5 (charset, c1, c2, b1, b2);
5216 XSETFASTINT (val, (b1 << 8) | b2);
5217 }
5218 else
5219 error ("Can't encode to Big5: %d", XFASTINT (ch));
5220 return val;
5221}
5222\f
5223DEFUN ("set-terminal-coding-system-internal",
5224 Fset_terminal_coding_system_internal,
5225 Sset_terminal_coding_system_internal, 1, 1, 0, "")
5226 (coding_system)
5227 Lisp_Object coding_system;
5228{
5229 CHECK_SYMBOL (coding_system, 0);
5230 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
5231 /* We had better not send unsafe characters to terminal. */
5232 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
5233
5234 return Qnil;
5235}
5236
5237DEFUN ("set-safe-terminal-coding-system-internal",
5238 Fset_safe_terminal_coding_system_internal,
5239 Sset_safe_terminal_coding_system_internal, 1, 1, 0, "")
5240 (coding_system)
5241 Lisp_Object coding_system;
5242{
5243 CHECK_SYMBOL (coding_system, 0);
5244 setup_coding_system (Fcheck_coding_system (coding_system),
5245 &safe_terminal_coding);
5246 return Qnil;
5247}
5248
5249DEFUN ("terminal-coding-system",
5250 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
5251 "Return coding system specified for terminal output.")
5252 ()
5253{
5254 return terminal_coding.symbol;
5255}
5256
5257DEFUN ("set-keyboard-coding-system-internal",
5258 Fset_keyboard_coding_system_internal,
5259 Sset_keyboard_coding_system_internal, 1, 1, 0, "")
5260 (coding_system)
5261 Lisp_Object coding_system;
5262{
5263 CHECK_SYMBOL (coding_system, 0);
5264 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
5265 return Qnil;
5266}
5267
5268DEFUN ("keyboard-coding-system",
5269 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
5270 "Return coding system specified for decoding keyboard input.")
5271 ()
5272{
5273 return keyboard_coding.symbol;
5274}
5275
5276\f
5277DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
5278 Sfind_operation_coding_system, 1, MANY, 0,
5279 "Choose a coding system for an operation based on the target name.\n\
5280The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).\n\
5281DECODING-SYSTEM is the coding system to use for decoding\n\
5282\(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system\n\
5283for encoding (in case OPERATION does encoding).\n\
5284\n\
5285The first argument OPERATION specifies an I/O primitive:\n\
5286 For file I/O, `insert-file-contents' or `write-region'.\n\
5287 For process I/O, `call-process', `call-process-region', or `start-process'.\n\
5288 For network I/O, `open-network-stream'.\n\
5289\n\
5290The remaining arguments should be the same arguments that were passed\n\
5291to the primitive. Depending on which primitive, one of those arguments\n\
5292is selected as the TARGET. For example, if OPERATION does file I/O,\n\
5293whichever argument specifies the file name is TARGET.\n\
5294\n\
5295TARGET has a meaning which depends on OPERATION:\n\
5296 For file I/O, TARGET is a file name.\n\
5297 For process I/O, TARGET is a process name.\n\
5298 For network I/O, TARGET is a service name or a port number\n\
5299\n\
5300This function looks up what specified for TARGET in,\n\
5301`file-coding-system-alist', `process-coding-system-alist',\n\
5302or `network-coding-system-alist' depending on OPERATION.\n\
5303They may specify a coding system, a cons of coding systems,\n\
5304or a function symbol to call.\n\
5305In the last case, we call the function with one argument,\n\
5306which is a list of all the arguments given to this function.")
5307 (nargs, args)
5308 int nargs;
5309 Lisp_Object *args;
5310{
5311 Lisp_Object operation, target_idx, target, val;
5312 register Lisp_Object chain;
5313
5314 if (nargs < 2)
5315 error ("Too few arguments");
5316 operation = args[0];
5317 if (!SYMBOLP (operation)
5318 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
5319 error ("Invalid first arguement");
5320 if (nargs < 1 + XINT (target_idx))
5321 error ("Too few arguments for operation: %s",
5322 XSYMBOL (operation)->name->data);
5323 target = args[XINT (target_idx) + 1];
5324 if (!(STRINGP (target)
5325 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
5326 error ("Invalid %dth argument", XINT (target_idx) + 1);
5327
5328 chain = ((EQ (operation, Qinsert_file_contents)
5329 || EQ (operation, Qwrite_region))
5330 ? Vfile_coding_system_alist
5331 : (EQ (operation, Qopen_network_stream)
5332 ? Vnetwork_coding_system_alist
5333 : Vprocess_coding_system_alist));
5334 if (NILP (chain))
5335 return Qnil;
5336
5337 for (; CONSP (chain); chain = XCONS (chain)->cdr)
5338 {
5339 Lisp_Object elt;
5340 elt = XCONS (chain)->car;
5341
5342 if (CONSP (elt)
5343 && ((STRINGP (target)
5344 && STRINGP (XCONS (elt)->car)
5345 && fast_string_match (XCONS (elt)->car, target) >= 0)
5346 || (INTEGERP (target) && EQ (target, XCONS (elt)->car))))
5347 {
5348 val = XCONS (elt)->cdr;
5349 /* Here, if VAL is both a valid coding system and a valid
5350 function symbol, we return VAL as a coding system. */
5351 if (CONSP (val))
5352 return val;
5353 if (! SYMBOLP (val))
5354 return Qnil;
5355 if (! NILP (Fcoding_system_p (val)))
5356 return Fcons (val, val);
5357 if (! NILP (Ffboundp (val)))
5358 {
5359 val = call1 (val, Flist (nargs, args));
5360 if (CONSP (val))
5361 return val;
5362 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
5363 return Fcons (val, val);
5364 }
5365 return Qnil;
5366 }
5367 }
5368 return Qnil;
5369}
5370
5371DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
5372 Supdate_coding_systems_internal, 0, 0, 0,
5373 "Update internal database for ISO2022 and CCL based coding systems.\n\
5374When values of the following coding categories are changed, you must\n\
5375call this function:\n\
5376 coding-category-iso-7, coding-category-iso-7-tight,\n\
5377 coding-category-iso-8-1, coding-category-iso-8-2,\n\
5378 coding-category-iso-7-else, coding-category-iso-8-else,\n\
5379 coding-category-ccl")
5380 ()
5381{
5382 int i;
5383
5384 for (i = CODING_CATEGORY_IDX_ISO_7; i <= CODING_CATEGORY_IDX_CCL; i++)
5385 {
5386 Lisp_Object val;
5387
5388 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[i])->value;
5389 if (!NILP (val))
5390 {
5391 if (! coding_system_table[i])
5392 coding_system_table[i] = ((struct coding_system *)
5393 xmalloc (sizeof (struct coding_system)));
5394 setup_coding_system (val, coding_system_table[i]);
5395 }
5396 else if (coding_system_table[i])
5397 {
5398 xfree (coding_system_table[i]);
5399 coding_system_table[i] = NULL;
5400 }
5401 }
5402
5403 return Qnil;
5404}
5405
5406DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
5407 Sset_coding_priority_internal, 0, 0, 0,
5408 "Update internal database for the current value of `coding-category-list'.\n\
5409This function is internal use only.")
5410 ()
5411{
5412 int i = 0, idx;
5413 Lisp_Object val;
5414
5415 val = Vcoding_category_list;
5416
5417 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
5418 {
5419 if (! SYMBOLP (XCONS (val)->car))
5420 break;
5421 idx = XFASTINT (Fget (XCONS (val)->car, Qcoding_category_index));
5422 if (idx >= CODING_CATEGORY_IDX_MAX)
5423 break;
5424 coding_priorities[i++] = (1 << idx);
5425 val = XCONS (val)->cdr;
5426 }
5427 /* If coding-category-list is valid and contains all coding
5428 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
5429 the following code saves Emacs from craching. */
5430 while (i < CODING_CATEGORY_IDX_MAX)
5431 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
5432
5433 return Qnil;
5434}
5435
5436#endif /* emacs */
5437
5438\f
5439/*** 9. Post-amble ***/
5440
5441void
5442init_coding ()
5443{
5444 conversion_buffer = (char *) xmalloc (MINIMUM_CONVERSION_BUFFER_SIZE);
5445}
5446
5447void
5448init_coding_once ()
5449{
5450 int i;
5451
5452 /* Emacs' internal format specific initialize routine. */
5453 for (i = 0; i <= 0x20; i++)
5454 emacs_code_class[i] = EMACS_control_code;
5455 emacs_code_class[0x0A] = EMACS_linefeed_code;
5456 emacs_code_class[0x0D] = EMACS_carriage_return_code;
5457 for (i = 0x21 ; i < 0x7F; i++)
5458 emacs_code_class[i] = EMACS_ascii_code;
5459 emacs_code_class[0x7F] = EMACS_control_code;
5460 emacs_code_class[0x80] = EMACS_leading_code_composition;
5461 for (i = 0x81; i < 0xFF; i++)
5462 emacs_code_class[i] = EMACS_invalid_code;
5463 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
5464 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
5465 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
5466 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
5467
5468 /* ISO2022 specific initialize routine. */
5469 for (i = 0; i < 0x20; i++)
5470 iso_code_class[i] = ISO_control_code;
5471 for (i = 0x21; i < 0x7F; i++)
5472 iso_code_class[i] = ISO_graphic_plane_0;
5473 for (i = 0x80; i < 0xA0; i++)
5474 iso_code_class[i] = ISO_control_code;
5475 for (i = 0xA1; i < 0xFF; i++)
5476 iso_code_class[i] = ISO_graphic_plane_1;
5477 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
5478 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
5479 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
5480 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
5481 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
5482 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
5483 iso_code_class[ISO_CODE_ESC] = ISO_escape;
5484 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
5485 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
5486 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
5487
5488 conversion_buffer_size = MINIMUM_CONVERSION_BUFFER_SIZE;
5489
5490 setup_coding_system (Qnil, &keyboard_coding);
5491 setup_coding_system (Qnil, &terminal_coding);
5492 setup_coding_system (Qnil, &safe_terminal_coding);
5493 setup_coding_system (Qnil, &default_buffer_file_coding);
5494
5495 bzero (coding_system_table, sizeof coding_system_table);
5496
5497 bzero (ascii_skip_code, sizeof ascii_skip_code);
5498 for (i = 0; i < 128; i++)
5499 ascii_skip_code[i] = 1;
5500
5501#if defined (MSDOS) || defined (WINDOWSNT)
5502 system_eol_type = CODING_EOL_CRLF;
5503#else
5504 system_eol_type = CODING_EOL_LF;
5505#endif
5506}
5507
5508#ifdef emacs
5509
5510void
5511syms_of_coding ()
5512{
5513 Qtarget_idx = intern ("target-idx");
5514 staticpro (&Qtarget_idx);
5515
5516 Qcoding_system_history = intern ("coding-system-history");
5517 staticpro (&Qcoding_system_history);
5518 Fset (Qcoding_system_history, Qnil);
5519
5520 /* Target FILENAME is the first argument. */
5521 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
5522 /* Target FILENAME is the third argument. */
5523 Fput (Qwrite_region, Qtarget_idx, make_number (2));
5524
5525 Qcall_process = intern ("call-process");
5526 staticpro (&Qcall_process);
5527 /* Target PROGRAM is the first argument. */
5528 Fput (Qcall_process, Qtarget_idx, make_number (0));
5529
5530 Qcall_process_region = intern ("call-process-region");
5531 staticpro (&Qcall_process_region);
5532 /* Target PROGRAM is the third argument. */
5533 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
5534
5535 Qstart_process = intern ("start-process");
5536 staticpro (&Qstart_process);
5537 /* Target PROGRAM is the third argument. */
5538 Fput (Qstart_process, Qtarget_idx, make_number (2));
5539
5540 Qopen_network_stream = intern ("open-network-stream");
5541 staticpro (&Qopen_network_stream);
5542 /* Target SERVICE is the fourth argument. */
5543 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
5544
5545 Qcoding_system = intern ("coding-system");
5546 staticpro (&Qcoding_system);
5547
5548 Qeol_type = intern ("eol-type");
5549 staticpro (&Qeol_type);
5550
5551 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
5552 staticpro (&Qbuffer_file_coding_system);
5553
5554 Qpost_read_conversion = intern ("post-read-conversion");
5555 staticpro (&Qpost_read_conversion);
5556
5557 Qpre_write_conversion = intern ("pre-write-conversion");
5558 staticpro (&Qpre_write_conversion);
5559
5560 Qno_conversion = intern ("no-conversion");
5561 staticpro (&Qno_conversion);
5562
5563 Qundecided = intern ("undecided");
5564 staticpro (&Qundecided);
5565
5566 Qcoding_system_p = intern ("coding-system-p");
5567 staticpro (&Qcoding_system_p);
5568
5569 Qcoding_system_error = intern ("coding-system-error");
5570 staticpro (&Qcoding_system_error);
5571
5572 Fput (Qcoding_system_error, Qerror_conditions,
5573 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
5574 Fput (Qcoding_system_error, Qerror_message,
5575 build_string ("Invalid coding system"));
5576
5577 Qcoding_category = intern ("coding-category");
5578 staticpro (&Qcoding_category);
5579 Qcoding_category_index = intern ("coding-category-index");
5580 staticpro (&Qcoding_category_index);
5581
5582 Vcoding_category_table
5583 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
5584 staticpro (&Vcoding_category_table);
5585 {
5586 int i;
5587 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
5588 {
5589 XVECTOR (Vcoding_category_table)->contents[i]
5590 = intern (coding_category_name[i]);
5591 Fput (XVECTOR (Vcoding_category_table)->contents[i],
5592 Qcoding_category_index, make_number (i));
5593 }
5594 }
5595
5596 Qtranslation_table = intern ("translation-table");
5597 staticpro (&Qtranslation_table);
5598 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
5599
5600 Qtranslation_table_id = intern ("translation-table-id");
5601 staticpro (&Qtranslation_table_id);
5602
5603 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
5604 staticpro (&Qtranslation_table_for_decode);
5605
5606 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
5607 staticpro (&Qtranslation_table_for_encode);
5608
5609 Qsafe_charsets = intern ("safe-charsets");
5610 staticpro (&Qsafe_charsets);
5611
5612 Qvalid_codes = intern ("valid-codes");
5613 staticpro (&Qvalid_codes);
5614
5615 Qemacs_mule = intern ("emacs-mule");
5616 staticpro (&Qemacs_mule);
5617
5618 Qraw_text = intern ("raw-text");
5619 staticpro (&Qraw_text);
5620
5621 defsubr (&Scoding_system_p);
5622 defsubr (&Sread_coding_system);
5623 defsubr (&Sread_non_nil_coding_system);
5624 defsubr (&Scheck_coding_system);
5625 defsubr (&Sdetect_coding_region);
5626 defsubr (&Sdetect_coding_string);
5627 defsubr (&Sdecode_coding_region);
5628 defsubr (&Sencode_coding_region);
5629 defsubr (&Sdecode_coding_string);
5630 defsubr (&Sencode_coding_string);
5631 defsubr (&Sdecode_sjis_char);
5632 defsubr (&Sencode_sjis_char);
5633 defsubr (&Sdecode_big5_char);
5634 defsubr (&Sencode_big5_char);
5635 defsubr (&Sset_terminal_coding_system_internal);
5636 defsubr (&Sset_safe_terminal_coding_system_internal);
5637 defsubr (&Sterminal_coding_system);
5638 defsubr (&Sset_keyboard_coding_system_internal);
5639 defsubr (&Skeyboard_coding_system);
5640 defsubr (&Sfind_operation_coding_system);
5641 defsubr (&Supdate_coding_systems_internal);
5642 defsubr (&Sset_coding_priority_internal);
5643
5644 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
5645 "List of coding systems.\n\
5646\n\
5647Do not alter the value of this variable manually. This variable should be\n\
5648updated by the functions `make-coding-system' and\n\
5649`define-coding-system-alias'.");
5650 Vcoding_system_list = Qnil;
5651
5652 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
5653 "Alist of coding system names.\n\
5654Each element is one element list of coding system name.\n\
5655This variable is given to `completing-read' as TABLE argument.\n\
5656\n\
5657Do not alter the value of this variable manually. This variable should be\n\
5658updated by the functions `make-coding-system' and\n\
5659`define-coding-system-alias'.");
5660 Vcoding_system_alist = Qnil;
5661
5662 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
5663 "List of coding-categories (symbols) ordered by priority.");
5664 {
5665 int i;
5666
5667 Vcoding_category_list = Qnil;
5668 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
5669 Vcoding_category_list
5670 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
5671 Vcoding_category_list);
5672 }
5673
5674 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
5675 "Specify the coding system for read operations.\n\
5676It is useful to bind this variable with `let', but do not set it globally.\n\
5677If the value is a coding system, it is used for decoding on read operation.\n\
5678If not, an appropriate element is used from one of the coding system alists:\n\
5679There are three such tables, `file-coding-system-alist',\n\
5680`process-coding-system-alist', and `network-coding-system-alist'.");
5681 Vcoding_system_for_read = Qnil;
5682
5683 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
5684 "Specify the coding system for write operations.\n\
5685Programs bind this variable with `let', but you should not set it globally.\n\
5686If the value is a coding system, it is used for encoding of output,\n\
5687when writing it to a file and when sending it to a file or subprocess.\n\
5688\n\
5689If this does not specify a coding system, an appropriate element\n\
5690is used from one of the coding system alists:\n\
5691There are three such tables, `file-coding-system-alist',\n\
5692`process-coding-system-alist', and `network-coding-system-alist'.\n\
5693For output to files, if the above procedure does not specify a coding system,\n\
5694the value of `buffer-file-coding-system' is used.");
5695 Vcoding_system_for_write = Qnil;
5696
5697 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
5698 "Coding system used in the latest file or process I/O.");
5699 Vlast_coding_system_used = Qnil;
5700
5701 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
5702 "*Non-nil means always inhibit code conversion of end-of-line format.\n\
5703See info node `Coding Systems' and info node `Text and Binary' concerning\n\
5704such conversion.");
5705 inhibit_eol_conversion = 0;
5706
5707 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
5708 "Non-nil means process buffer inherits coding system of process output.\n\
5709Bind it to t if the process output is to be treated as if it were a file\n\
5710read from some filesystem.");
5711 inherit_process_coding_system = 0;
5712
5713 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
5714 "Alist to decide a coding system to use for a file I/O operation.\n\
5715The format is ((PATTERN . VAL) ...),\n\
5716where PATTERN is a regular expression matching a file name,\n\
5717VAL is a coding system, a cons of coding systems, or a function symbol.\n\
5718If VAL is a coding system, it is used for both decoding and encoding\n\
5719the file contents.\n\
5720If VAL is a cons of coding systems, the car part is used for decoding,\n\
5721and the cdr part is used for encoding.\n\
5722If VAL is a function symbol, the function must return a coding system\n\
5723or a cons of coding systems which are used as above.\n\
5724\n\
5725See also the function `find-operation-coding-system'\n\
5726and the variable `auto-coding-alist'.");
5727 Vfile_coding_system_alist = Qnil;
5728
5729 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
5730 "Alist to decide a coding system to use for a process I/O operation.\n\
5731The format is ((PATTERN . VAL) ...),\n\
5732where PATTERN is a regular expression matching a program name,\n\
5733VAL is a coding system, a cons of coding systems, or a function symbol.\n\
5734If VAL is a coding system, it is used for both decoding what received\n\
5735from the program and encoding what sent to the program.\n\
5736If VAL is a cons of coding systems, the car part is used for decoding,\n\
5737and the cdr part is used for encoding.\n\
5738If VAL is a function symbol, the function must return a coding system\n\
5739or a cons of coding systems which are used as above.\n\
5740\n\
5741See also the function `find-operation-coding-system'.");
5742 Vprocess_coding_system_alist = Qnil;
5743
5744 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
5745 "Alist to decide a coding system to use for a network I/O operation.\n\
5746The format is ((PATTERN . VAL) ...),\n\
5747where PATTERN is a regular expression matching a network service name\n\
5748or is a port number to connect to,\n\
5749VAL is a coding system, a cons of coding systems, or a function symbol.\n\
5750If VAL is a coding system, it is used for both decoding what received\n\
5751from the network stream and encoding what sent to the network stream.\n\
5752If VAL is a cons of coding systems, the car part is used for decoding,\n\
5753and the cdr part is used for encoding.\n\
5754If VAL is a function symbol, the function must return a coding system\n\
5755or a cons of coding systems which are used as above.\n\
5756\n\
5757See also the function `find-operation-coding-system'.");
5758 Vnetwork_coding_system_alist = Qnil;
5759
5760 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
5761 "*String displayed in mode line for UNIX-like (LF) end-of-line format.");
5762 eol_mnemonic_unix = build_string (":");
5763
5764 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
5765 "*String displayed in mode line for DOS-like (CRLF) end-of-line format.");
5766 eol_mnemonic_dos = build_string ("\\");
5767
5768 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
5769 "*String displayed in mode line for MAC-like (CR) end-of-line format.");
5770 eol_mnemonic_mac = build_string ("/");
5771
5772 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
5773 "*String displayed in mode line when end-of-line format is not yet determined.");
5774 eol_mnemonic_undecided = build_string (":");
5775
5776 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
5777 "*Non-nil enables character translation while encoding and decoding.");
5778 Venable_character_translation = Qt;
5779
5780 DEFVAR_LISP ("standard-translation-table-for-decode",
5781 &Vstandard_translation_table_for_decode,
5782 "Table for translating characters while decoding.");
5783 Vstandard_translation_table_for_decode = Qnil;
5784
5785 DEFVAR_LISP ("standard-translation-table-for-encode",
5786 &Vstandard_translation_table_for_encode,
5787 "Table for translationg characters while encoding.");
5788 Vstandard_translation_table_for_encode = Qnil;
5789
5790 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
5791 "Alist of charsets vs revision numbers.\n\
5792While encoding, if a charset (car part of an element) is found,\n\
5793designate it with the escape sequence identifing revision (cdr part of the element).");
5794 Vcharset_revision_alist = Qnil;
5795
5796 DEFVAR_LISP ("default-process-coding-system",
5797 &Vdefault_process_coding_system,
5798 "Cons of coding systems used for process I/O by default.\n\
5799The car part is used for decoding a process output,\n\
5800the cdr part is used for encoding a text to be sent to a process.");
5801 Vdefault_process_coding_system = Qnil;
5802
5803 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
5804 "Table of extra Latin codes in the range 128..159 (inclusive).\n\
5805This is a vector of length 256.\n\
5806If Nth element is non-nil, the existence of code N in a file\n\
5807\(or output of subprocess) doesn't prevent it to be detected as\n\
5808a coding system of ISO 2022 variant which has a flag\n\
5809`accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file\n\
5810or reading output of a subprocess.\n\
5811Only 128th through 159th elements has a meaning.");
5812 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
5813
5814 DEFVAR_LISP ("select-safe-coding-system-function",
5815 &Vselect_safe_coding_system_function,
5816 "Function to call to select safe coding system for encoding a text.\n\
5817\n\
5818If set, this function is called to force a user to select a proper\n\
5819coding system which can encode the text in the case that a default\n\
5820coding system used in each operation can't encode the text.\n\
5821\n\
5822The default value is `select-safe-coding-system' (which see).");
5823 Vselect_safe_coding_system_function = Qnil;
5824
5825}
5826
5827#endif /* emacs */