* buffer.h (BSET): Remove.
[bpt/emacs.git] / src / editfns.c
... / ...
CommitLineData
1/* Lisp functions pertaining to editing.
2
3Copyright (C) 1985-1987, 1989, 1993-2012 Free Software Foundation, Inc.
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software: you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21#include <config.h>
22#include <sys/types.h>
23#include <stdio.h>
24#include <setjmp.h>
25
26#ifdef HAVE_PWD_H
27#include <pwd.h>
28#endif
29
30#include <unistd.h>
31
32#ifdef HAVE_SYS_UTSNAME_H
33#include <sys/utsname.h>
34#endif
35
36#include "lisp.h"
37
38/* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41#include "systime.h"
42
43#if defined HAVE_SYS_RESOURCE_H
44#include <sys/resource.h>
45#endif
46
47#include <float.h>
48#include <limits.h>
49#include <intprops.h>
50#include <strftime.h>
51#include <verify.h>
52
53#include "intervals.h"
54#include "character.h"
55#include "buffer.h"
56#include "coding.h"
57#include "frame.h"
58#include "window.h"
59#include "blockinput.h"
60
61#ifndef USE_CRT_DLL
62extern char **environ;
63#endif
64
65#define TM_YEAR_BASE 1900
66
67#ifdef WINDOWSNT
68extern Lisp_Object w32_get_internal_run_time (void);
69#endif
70
71static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
72 int, struct tm *);
73static int tm_diff (struct tm *, struct tm *);
74static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
75
76static Lisp_Object Qbuffer_access_fontify_functions;
77
78/* Symbol for the text property used to mark fields. */
79
80Lisp_Object Qfield;
81
82/* A special value for Qfield properties. */
83
84static Lisp_Object Qboundary;
85
86
87void
88init_editfns (void)
89{
90 const char *user_name;
91 register char *p;
92 struct passwd *pw; /* password entry for the current user */
93 Lisp_Object tem;
94
95 /* Set up system_name even when dumping. */
96 init_system_name ();
97
98#ifndef CANNOT_DUMP
99 /* Don't bother with this on initial start when just dumping out */
100 if (!initialized)
101 return;
102#endif /* not CANNOT_DUMP */
103
104 pw = getpwuid (getuid ());
105#ifdef MSDOS
106 /* We let the real user name default to "root" because that's quite
107 accurate on MSDOG and because it lets Emacs find the init file.
108 (The DVX libraries override the Djgpp libraries here.) */
109 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
110#else
111 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
112#endif
113
114 /* Get the effective user name, by consulting environment variables,
115 or the effective uid if those are unset. */
116 user_name = getenv ("LOGNAME");
117 if (!user_name)
118#ifdef WINDOWSNT
119 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
120#else /* WINDOWSNT */
121 user_name = getenv ("USER");
122#endif /* WINDOWSNT */
123 if (!user_name)
124 {
125 pw = getpwuid (geteuid ());
126 user_name = pw ? pw->pw_name : "unknown";
127 }
128 Vuser_login_name = build_string (user_name);
129
130 /* If the user name claimed in the environment vars differs from
131 the real uid, use the claimed name to find the full name. */
132 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
133 if (! NILP (tem))
134 tem = Vuser_login_name;
135 else
136 {
137 uid_t euid = geteuid ();
138 tem = make_fixnum_or_float (euid);
139 }
140 Vuser_full_name = Fuser_full_name (tem);
141
142 p = getenv ("NAME");
143 if (p)
144 Vuser_full_name = build_string (p);
145 else if (NILP (Vuser_full_name))
146 Vuser_full_name = build_string ("unknown");
147
148#ifdef HAVE_SYS_UTSNAME_H
149 {
150 struct utsname uts;
151 uname (&uts);
152 Voperating_system_release = build_string (uts.release);
153 }
154#else
155 Voperating_system_release = Qnil;
156#endif
157}
158\f
159DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
160 doc: /* Convert arg CHAR to a string containing that character.
161usage: (char-to-string CHAR) */)
162 (Lisp_Object character)
163{
164 int c, len;
165 unsigned char str[MAX_MULTIBYTE_LENGTH];
166
167 CHECK_CHARACTER (character);
168 c = XFASTINT (character);
169
170 len = CHAR_STRING (c, str);
171 return make_string_from_bytes ((char *) str, 1, len);
172}
173
174DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
175 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
176 (Lisp_Object byte)
177{
178 unsigned char b;
179 CHECK_NUMBER (byte);
180 if (XINT (byte) < 0 || XINT (byte) > 255)
181 error ("Invalid byte");
182 b = XINT (byte);
183 return make_string_from_bytes ((char *) &b, 1, 1);
184}
185
186DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
187 doc: /* Return the first character in STRING. */)
188 (register Lisp_Object string)
189{
190 register Lisp_Object val;
191 CHECK_STRING (string);
192 if (SCHARS (string))
193 {
194 if (STRING_MULTIBYTE (string))
195 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
196 else
197 XSETFASTINT (val, SREF (string, 0));
198 }
199 else
200 XSETFASTINT (val, 0);
201 return val;
202}
203
204DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
205 doc: /* Return value of point, as an integer.
206Beginning of buffer is position (point-min). */)
207 (void)
208{
209 Lisp_Object temp;
210 XSETFASTINT (temp, PT);
211 return temp;
212}
213
214DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
215 doc: /* Return value of point, as a marker object. */)
216 (void)
217{
218 return build_marker (current_buffer, PT, PT_BYTE);
219}
220
221DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
222 doc: /* Set point to POSITION, a number or marker.
223Beginning of buffer is position (point-min), end is (point-max).
224
225The return value is POSITION. */)
226 (register Lisp_Object position)
227{
228 ptrdiff_t pos;
229
230 if (MARKERP (position)
231 && current_buffer == XMARKER (position)->buffer)
232 {
233 pos = marker_position (position);
234 if (pos < BEGV)
235 SET_PT_BOTH (BEGV, BEGV_BYTE);
236 else if (pos > ZV)
237 SET_PT_BOTH (ZV, ZV_BYTE);
238 else
239 SET_PT_BOTH (pos, marker_byte_position (position));
240
241 return position;
242 }
243
244 CHECK_NUMBER_COERCE_MARKER (position);
245
246 pos = clip_to_bounds (BEGV, XINT (position), ZV);
247 SET_PT (pos);
248 return position;
249}
250
251
252/* Return the start or end position of the region.
253 BEGINNINGP non-zero means return the start.
254 If there is no region active, signal an error. */
255
256static Lisp_Object
257region_limit (int beginningp)
258{
259 Lisp_Object m;
260
261 if (!NILP (Vtransient_mark_mode)
262 && NILP (Vmark_even_if_inactive)
263 && NILP (BVAR (current_buffer, mark_active)))
264 xsignal0 (Qmark_inactive);
265
266 m = Fmarker_position (BVAR (current_buffer, mark));
267 if (NILP (m))
268 error ("The mark is not set now, so there is no region");
269
270 /* Clip to the current narrowing (bug#11770). */
271 return make_number ((PT < XFASTINT (m)) == (beginningp != 0)
272 ? PT
273 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
274}
275
276DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
277 doc: /* Return the integer value of point or mark, whichever is smaller. */)
278 (void)
279{
280 return region_limit (1);
281}
282
283DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
284 doc: /* Return the integer value of point or mark, whichever is larger. */)
285 (void)
286{
287 return region_limit (0);
288}
289
290DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
291 doc: /* Return this buffer's mark, as a marker object.
292Watch out! Moving this marker changes the mark position.
293If you set the marker not to point anywhere, the buffer will have no mark. */)
294 (void)
295{
296 return BVAR (current_buffer, mark);
297}
298
299\f
300/* Find all the overlays in the current buffer that touch position POS.
301 Return the number found, and store them in a vector in VEC
302 of length LEN. */
303
304static ptrdiff_t
305overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
306{
307 Lisp_Object overlay, start, end;
308 struct Lisp_Overlay *tail;
309 ptrdiff_t startpos, endpos;
310 ptrdiff_t idx = 0;
311
312 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
313 {
314 XSETMISC (overlay, tail);
315
316 end = OVERLAY_END (overlay);
317 endpos = OVERLAY_POSITION (end);
318 if (endpos < pos)
319 break;
320 start = OVERLAY_START (overlay);
321 startpos = OVERLAY_POSITION (start);
322 if (startpos <= pos)
323 {
324 if (idx < len)
325 vec[idx] = overlay;
326 /* Keep counting overlays even if we can't return them all. */
327 idx++;
328 }
329 }
330
331 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
332 {
333 XSETMISC (overlay, tail);
334
335 start = OVERLAY_START (overlay);
336 startpos = OVERLAY_POSITION (start);
337 if (pos < startpos)
338 break;
339 end = OVERLAY_END (overlay);
340 endpos = OVERLAY_POSITION (end);
341 if (pos <= endpos)
342 {
343 if (idx < len)
344 vec[idx] = overlay;
345 idx++;
346 }
347 }
348
349 return idx;
350}
351
352/* Return the value of property PROP, in OBJECT at POSITION.
353 It's the value of PROP that a char inserted at POSITION would get.
354 OBJECT is optional and defaults to the current buffer.
355 If OBJECT is a buffer, then overlay properties are considered as well as
356 text properties.
357 If OBJECT is a window, then that window's buffer is used, but
358 window-specific overlays are considered only if they are associated
359 with OBJECT. */
360Lisp_Object
361get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
362{
363 CHECK_NUMBER_COERCE_MARKER (position);
364
365 if (NILP (object))
366 XSETBUFFER (object, current_buffer);
367 else if (WINDOWP (object))
368 object = XWINDOW (object)->buffer;
369
370 if (!BUFFERP (object))
371 /* pos-property only makes sense in buffers right now, since strings
372 have no overlays and no notion of insertion for which stickiness
373 could be obeyed. */
374 return Fget_text_property (position, prop, object);
375 else
376 {
377 EMACS_INT posn = XINT (position);
378 ptrdiff_t noverlays;
379 Lisp_Object *overlay_vec, tem;
380 struct buffer *obuf = current_buffer;
381
382 set_buffer_temp (XBUFFER (object));
383
384 /* First try with room for 40 overlays. */
385 noverlays = 40;
386 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
387 noverlays = overlays_around (posn, overlay_vec, noverlays);
388
389 /* If there are more than 40,
390 make enough space for all, and try again. */
391 if (noverlays > 40)
392 {
393 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
394 noverlays = overlays_around (posn, overlay_vec, noverlays);
395 }
396 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
397
398 set_buffer_temp (obuf);
399
400 /* Now check the overlays in order of decreasing priority. */
401 while (--noverlays >= 0)
402 {
403 Lisp_Object ol = overlay_vec[noverlays];
404 tem = Foverlay_get (ol, prop);
405 if (!NILP (tem))
406 {
407 /* Check the overlay is indeed active at point. */
408 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
409 if ((OVERLAY_POSITION (start) == posn
410 && XMARKER (start)->insertion_type == 1)
411 || (OVERLAY_POSITION (finish) == posn
412 && XMARKER (finish)->insertion_type == 0))
413 ; /* The overlay will not cover a char inserted at point. */
414 else
415 {
416 return tem;
417 }
418 }
419 }
420
421 { /* Now check the text properties. */
422 int stickiness = text_property_stickiness (prop, position, object);
423 if (stickiness > 0)
424 return Fget_text_property (position, prop, object);
425 else if (stickiness < 0
426 && XINT (position) > BUF_BEGV (XBUFFER (object)))
427 return Fget_text_property (make_number (XINT (position) - 1),
428 prop, object);
429 else
430 return Qnil;
431 }
432 }
433}
434
435/* Find the field surrounding POS in *BEG and *END. If POS is nil,
436 the value of point is used instead. If BEG or END is null,
437 means don't store the beginning or end of the field.
438
439 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
440 results; they do not effect boundary behavior.
441
442 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
443 position of a field, then the beginning of the previous field is
444 returned instead of the beginning of POS's field (since the end of a
445 field is actually also the beginning of the next input field, this
446 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
447 true case, if two fields are separated by a field with the special
448 value `boundary', and POS lies within it, then the two separated
449 fields are considered to be adjacent, and POS between them, when
450 finding the beginning and ending of the "merged" field.
451
452 Either BEG or END may be 0, in which case the corresponding value
453 is not stored. */
454
455static void
456find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
457 Lisp_Object beg_limit,
458 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
459{
460 /* Fields right before and after the point. */
461 Lisp_Object before_field, after_field;
462 /* 1 if POS counts as the start of a field. */
463 int at_field_start = 0;
464 /* 1 if POS counts as the end of a field. */
465 int at_field_end = 0;
466
467 if (NILP (pos))
468 XSETFASTINT (pos, PT);
469 else
470 CHECK_NUMBER_COERCE_MARKER (pos);
471
472 after_field
473 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
474 before_field
475 = (XFASTINT (pos) > BEGV
476 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
477 Qfield, Qnil, NULL)
478 /* Using nil here would be a more obvious choice, but it would
479 fail when the buffer starts with a non-sticky field. */
480 : after_field);
481
482 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
483 and POS is at beginning of a field, which can also be interpreted
484 as the end of the previous field. Note that the case where if
485 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
486 more natural one; then we avoid treating the beginning of a field
487 specially. */
488 if (NILP (merge_at_boundary))
489 {
490 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
491 if (!EQ (field, after_field))
492 at_field_end = 1;
493 if (!EQ (field, before_field))
494 at_field_start = 1;
495 if (NILP (field) && at_field_start && at_field_end)
496 /* If an inserted char would have a nil field while the surrounding
497 text is non-nil, we're probably not looking at a
498 zero-length field, but instead at a non-nil field that's
499 not intended for editing (such as comint's prompts). */
500 at_field_end = at_field_start = 0;
501 }
502
503 /* Note about special `boundary' fields:
504
505 Consider the case where the point (`.') is between the fields `x' and `y':
506
507 xxxx.yyyy
508
509 In this situation, if merge_at_boundary is true, we consider the
510 `x' and `y' fields as forming one big merged field, and so the end
511 of the field is the end of `y'.
512
513 However, if `x' and `y' are separated by a special `boundary' field
514 (a field with a `field' char-property of 'boundary), then we ignore
515 this special field when merging adjacent fields. Here's the same
516 situation, but with a `boundary' field between the `x' and `y' fields:
517
518 xxx.BBBByyyy
519
520 Here, if point is at the end of `x', the beginning of `y', or
521 anywhere in-between (within the `boundary' field), we merge all
522 three fields and consider the beginning as being the beginning of
523 the `x' field, and the end as being the end of the `y' field. */
524
525 if (beg)
526 {
527 if (at_field_start)
528 /* POS is at the edge of a field, and we should consider it as
529 the beginning of the following field. */
530 *beg = XFASTINT (pos);
531 else
532 /* Find the previous field boundary. */
533 {
534 Lisp_Object p = pos;
535 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
536 /* Skip a `boundary' field. */
537 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
538 beg_limit);
539
540 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
541 beg_limit);
542 *beg = NILP (p) ? BEGV : XFASTINT (p);
543 }
544 }
545
546 if (end)
547 {
548 if (at_field_end)
549 /* POS is at the edge of a field, and we should consider it as
550 the end of the previous field. */
551 *end = XFASTINT (pos);
552 else
553 /* Find the next field boundary. */
554 {
555 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
556 /* Skip a `boundary' field. */
557 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
558 end_limit);
559
560 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
561 end_limit);
562 *end = NILP (pos) ? ZV : XFASTINT (pos);
563 }
564 }
565}
566
567\f
568DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
569 doc: /* Delete the field surrounding POS.
570A field is a region of text with the same `field' property.
571If POS is nil, the value of point is used for POS. */)
572 (Lisp_Object pos)
573{
574 ptrdiff_t beg, end;
575 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
576 if (beg != end)
577 del_range (beg, end);
578 return Qnil;
579}
580
581DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
582 doc: /* Return the contents of the field surrounding POS as a string.
583A field is a region of text with the same `field' property.
584If POS is nil, the value of point is used for POS. */)
585 (Lisp_Object pos)
586{
587 ptrdiff_t beg, end;
588 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
589 return make_buffer_string (beg, end, 1);
590}
591
592DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
593 doc: /* Return the contents of the field around POS, without text properties.
594A field is a region of text with the same `field' property.
595If POS is nil, the value of point is used for POS. */)
596 (Lisp_Object pos)
597{
598 ptrdiff_t beg, end;
599 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
600 return make_buffer_string (beg, end, 0);
601}
602
603DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
604 doc: /* Return the beginning of the field surrounding POS.
605A field is a region of text with the same `field' property.
606If POS is nil, the value of point is used for POS.
607If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
608field, then the beginning of the *previous* field is returned.
609If LIMIT is non-nil, it is a buffer position; if the beginning of the field
610is before LIMIT, then LIMIT will be returned instead. */)
611 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
612{
613 ptrdiff_t beg;
614 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
615 return make_number (beg);
616}
617
618DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
619 doc: /* Return the end of the field surrounding POS.
620A field is a region of text with the same `field' property.
621If POS is nil, the value of point is used for POS.
622If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
623then the end of the *following* field is returned.
624If LIMIT is non-nil, it is a buffer position; if the end of the field
625is after LIMIT, then LIMIT will be returned instead. */)
626 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
627{
628 ptrdiff_t end;
629 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
630 return make_number (end);
631}
632
633DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
634 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
635A field is a region of text with the same `field' property.
636
637If NEW-POS is nil, then use the current point instead, and move point
638to the resulting constrained position, in addition to returning that
639position.
640
641If OLD-POS is at the boundary of two fields, then the allowable
642positions for NEW-POS depends on the value of the optional argument
643ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
644constrained to the field that has the same `field' char-property
645as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
646is non-nil, NEW-POS is constrained to the union of the two adjacent
647fields. Additionally, if two fields are separated by another field with
648the special value `boundary', then any point within this special field is
649also considered to be `on the boundary'.
650
651If the optional argument ONLY-IN-LINE is non-nil and constraining
652NEW-POS would move it to a different line, NEW-POS is returned
653unconstrained. This useful for commands that move by line, like
654\\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
655only in the case where they can still move to the right line.
656
657If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
658a non-nil property of that name, then any field boundaries are ignored.
659
660Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
661 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
662{
663 /* If non-zero, then the original point, before re-positioning. */
664 ptrdiff_t orig_point = 0;
665 int fwd;
666 Lisp_Object prev_old, prev_new;
667
668 if (NILP (new_pos))
669 /* Use the current point, and afterwards, set it. */
670 {
671 orig_point = PT;
672 XSETFASTINT (new_pos, PT);
673 }
674
675 CHECK_NUMBER_COERCE_MARKER (new_pos);
676 CHECK_NUMBER_COERCE_MARKER (old_pos);
677
678 fwd = (XINT (new_pos) > XINT (old_pos));
679
680 prev_old = make_number (XINT (old_pos) - 1);
681 prev_new = make_number (XINT (new_pos) - 1);
682
683 if (NILP (Vinhibit_field_text_motion)
684 && !EQ (new_pos, old_pos)
685 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
686 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
687 /* To recognize field boundaries, we must also look at the
688 previous positions; we could use `get_pos_property'
689 instead, but in itself that would fail inside non-sticky
690 fields (like comint prompts). */
691 || (XFASTINT (new_pos) > BEGV
692 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
693 || (XFASTINT (old_pos) > BEGV
694 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
695 && (NILP (inhibit_capture_property)
696 /* Field boundaries are again a problem; but now we must
697 decide the case exactly, so we need to call
698 `get_pos_property' as well. */
699 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
700 && (XFASTINT (old_pos) <= BEGV
701 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
702 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
703 /* It is possible that NEW_POS is not within the same field as
704 OLD_POS; try to move NEW_POS so that it is. */
705 {
706 ptrdiff_t shortage;
707 Lisp_Object field_bound;
708
709 if (fwd)
710 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
711 else
712 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
713
714 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
715 other side of NEW_POS, which would mean that NEW_POS is
716 already acceptable, and it's not necessary to constrain it
717 to FIELD_BOUND. */
718 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
719 /* NEW_POS should be constrained, but only if either
720 ONLY_IN_LINE is nil (in which case any constraint is OK),
721 or NEW_POS and FIELD_BOUND are on the same line (in which
722 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
723 && (NILP (only_in_line)
724 /* This is the ONLY_IN_LINE case, check that NEW_POS and
725 FIELD_BOUND are on the same line by seeing whether
726 there's an intervening newline or not. */
727 || (scan_buffer ('\n',
728 XFASTINT (new_pos), XFASTINT (field_bound),
729 fwd ? -1 : 1, &shortage, 1),
730 shortage != 0)))
731 /* Constrain NEW_POS to FIELD_BOUND. */
732 new_pos = field_bound;
733
734 if (orig_point && XFASTINT (new_pos) != orig_point)
735 /* The NEW_POS argument was originally nil, so automatically set PT. */
736 SET_PT (XFASTINT (new_pos));
737 }
738
739 return new_pos;
740}
741
742\f
743DEFUN ("line-beginning-position",
744 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
745 doc: /* Return the character position of the first character on the current line.
746With argument N not nil or 1, move forward N - 1 lines first.
747If scan reaches end of buffer, return that position.
748
749The returned position is of the first character in the logical order,
750i.e. the one that has the smallest character position.
751
752This function constrains the returned position to the current field
753unless that would be on a different line than the original,
754unconstrained result. If N is nil or 1, and a front-sticky field
755starts at point, the scan stops as soon as it starts. To ignore field
756boundaries bind `inhibit-field-text-motion' to t.
757
758This function does not move point. */)
759 (Lisp_Object n)
760{
761 ptrdiff_t orig, orig_byte, end;
762 ptrdiff_t count = SPECPDL_INDEX ();
763 specbind (Qinhibit_point_motion_hooks, Qt);
764
765 if (NILP (n))
766 XSETFASTINT (n, 1);
767 else
768 CHECK_NUMBER (n);
769
770 orig = PT;
771 orig_byte = PT_BYTE;
772 Fforward_line (make_number (XINT (n) - 1));
773 end = PT;
774
775 SET_PT_BOTH (orig, orig_byte);
776
777 unbind_to (count, Qnil);
778
779 /* Return END constrained to the current input field. */
780 return Fconstrain_to_field (make_number (end), make_number (orig),
781 XINT (n) != 1 ? Qt : Qnil,
782 Qt, Qnil);
783}
784
785DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
786 doc: /* Return the character position of the last character on the current line.
787With argument N not nil or 1, move forward N - 1 lines first.
788If scan reaches end of buffer, return that position.
789
790The returned position is of the last character in the logical order,
791i.e. the character whose buffer position is the largest one.
792
793This function constrains the returned position to the current field
794unless that would be on a different line than the original,
795unconstrained result. If N is nil or 1, and a rear-sticky field ends
796at point, the scan stops as soon as it starts. To ignore field
797boundaries bind `inhibit-field-text-motion' to t.
798
799This function does not move point. */)
800 (Lisp_Object n)
801{
802 ptrdiff_t clipped_n;
803 ptrdiff_t end_pos;
804 ptrdiff_t orig = PT;
805
806 if (NILP (n))
807 XSETFASTINT (n, 1);
808 else
809 CHECK_NUMBER (n);
810
811 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
812 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
813
814 /* Return END_POS constrained to the current input field. */
815 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
816 Qnil, Qt, Qnil);
817}
818
819\f
820Lisp_Object
821save_excursion_save (void)
822{
823 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
824 == current_buffer);
825
826 return Fcons (Fpoint_marker (),
827 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
828 Fcons (visible ? Qt : Qnil,
829 Fcons (BVAR (current_buffer, mark_active),
830 selected_window))));
831}
832
833Lisp_Object
834save_excursion_restore (Lisp_Object info)
835{
836 Lisp_Object tem, tem1, omark, nmark;
837 struct gcpro gcpro1, gcpro2, gcpro3;
838 int visible_p;
839
840 tem = Fmarker_buffer (XCAR (info));
841 /* If buffer being returned to is now deleted, avoid error */
842 /* Otherwise could get error here while unwinding to top level
843 and crash */
844 /* In that case, Fmarker_buffer returns nil now. */
845 if (NILP (tem))
846 return Qnil;
847
848 omark = nmark = Qnil;
849 GCPRO3 (info, omark, nmark);
850
851 Fset_buffer (tem);
852
853 /* Point marker. */
854 tem = XCAR (info);
855 Fgoto_char (tem);
856 unchain_marker (XMARKER (tem));
857
858 /* Mark marker. */
859 info = XCDR (info);
860 tem = XCAR (info);
861 omark = Fmarker_position (BVAR (current_buffer, mark));
862 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
863 nmark = Fmarker_position (tem);
864 unchain_marker (XMARKER (tem));
865
866 /* visible */
867 info = XCDR (info);
868 visible_p = !NILP (XCAR (info));
869
870#if 0 /* We used to make the current buffer visible in the selected window
871 if that was true previously. That avoids some anomalies.
872 But it creates others, and it wasn't documented, and it is simpler
873 and cleaner never to alter the window/buffer connections. */
874 tem1 = Fcar (tem);
875 if (!NILP (tem1)
876 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
877 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
878#endif /* 0 */
879
880 /* Mark active */
881 info = XCDR (info);
882 tem = XCAR (info);
883 tem1 = BVAR (current_buffer, mark_active);
884 bset_mark_active (current_buffer, tem);
885
886 /* If mark is active now, and either was not active
887 or was at a different place, run the activate hook. */
888 if (! NILP (tem))
889 {
890 if (! EQ (omark, nmark))
891 {
892 tem = intern ("activate-mark-hook");
893 Frun_hooks (1, &tem);
894 }
895 }
896 /* If mark has ceased to be active, run deactivate hook. */
897 else if (! NILP (tem1))
898 {
899 tem = intern ("deactivate-mark-hook");
900 Frun_hooks (1, &tem);
901 }
902
903 /* If buffer was visible in a window, and a different window was
904 selected, and the old selected window is still showing this
905 buffer, restore point in that window. */
906 tem = XCDR (info);
907 if (visible_p
908 && !EQ (tem, selected_window)
909 && (tem1 = XWINDOW (tem)->buffer,
910 (/* Window is live... */
911 BUFFERP (tem1)
912 /* ...and it shows the current buffer. */
913 && XBUFFER (tem1) == current_buffer)))
914 Fset_window_point (tem, make_number (PT));
915
916 UNGCPRO;
917 return Qnil;
918}
919
920DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
921 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
922Executes BODY just like `progn'.
923The values of point, mark and the current buffer are restored
924even in case of abnormal exit (throw or error).
925The state of activation of the mark is also restored.
926
927This construct does not save `deactivate-mark', and therefore
928functions that change the buffer will still cause deactivation
929of the mark at the end of the command. To prevent that, bind
930`deactivate-mark' with `let'.
931
932If you only want to save the current buffer but not point nor mark,
933then just use `save-current-buffer', or even `with-current-buffer'.
934
935usage: (save-excursion &rest BODY) */)
936 (Lisp_Object args)
937{
938 register Lisp_Object val;
939 ptrdiff_t count = SPECPDL_INDEX ();
940
941 record_unwind_protect (save_excursion_restore, save_excursion_save ());
942
943 val = Fprogn (args);
944 return unbind_to (count, val);
945}
946
947DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
948 doc: /* Record which buffer is current; execute BODY; make that buffer current.
949BODY is executed just like `progn'.
950usage: (save-current-buffer &rest BODY) */)
951 (Lisp_Object args)
952{
953 Lisp_Object val;
954 ptrdiff_t count = SPECPDL_INDEX ();
955
956 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
957
958 val = Fprogn (args);
959 return unbind_to (count, val);
960}
961\f
962DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
963 doc: /* Return the number of characters in the current buffer.
964If BUFFER, return the number of characters in that buffer instead. */)
965 (Lisp_Object buffer)
966{
967 if (NILP (buffer))
968 return make_number (Z - BEG);
969 else
970 {
971 CHECK_BUFFER (buffer);
972 return make_number (BUF_Z (XBUFFER (buffer))
973 - BUF_BEG (XBUFFER (buffer)));
974 }
975}
976
977DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
978 doc: /* Return the minimum permissible value of point in the current buffer.
979This is 1, unless narrowing (a buffer restriction) is in effect. */)
980 (void)
981{
982 Lisp_Object temp;
983 XSETFASTINT (temp, BEGV);
984 return temp;
985}
986
987DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
988 doc: /* Return a marker to the minimum permissible value of point in this buffer.
989This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
990 (void)
991{
992 return build_marker (current_buffer, BEGV, BEGV_BYTE);
993}
994
995DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
996 doc: /* Return the maximum permissible value of point in the current buffer.
997This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
998is in effect, in which case it is less. */)
999 (void)
1000{
1001 Lisp_Object temp;
1002 XSETFASTINT (temp, ZV);
1003 return temp;
1004}
1005
1006DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1007 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1008This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1009is in effect, in which case it is less. */)
1010 (void)
1011{
1012 return build_marker (current_buffer, ZV, ZV_BYTE);
1013}
1014
1015DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1016 doc: /* Return the position of the gap, in the current buffer.
1017See also `gap-size'. */)
1018 (void)
1019{
1020 Lisp_Object temp;
1021 XSETFASTINT (temp, GPT);
1022 return temp;
1023}
1024
1025DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1026 doc: /* Return the size of the current buffer's gap.
1027See also `gap-position'. */)
1028 (void)
1029{
1030 Lisp_Object temp;
1031 XSETFASTINT (temp, GAP_SIZE);
1032 return temp;
1033}
1034
1035DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1036 doc: /* Return the byte position for character position POSITION.
1037If POSITION is out of range, the value is nil. */)
1038 (Lisp_Object position)
1039{
1040 CHECK_NUMBER_COERCE_MARKER (position);
1041 if (XINT (position) < BEG || XINT (position) > Z)
1042 return Qnil;
1043 return make_number (CHAR_TO_BYTE (XINT (position)));
1044}
1045
1046DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1047 doc: /* Return the character position for byte position BYTEPOS.
1048If BYTEPOS is out of range, the value is nil. */)
1049 (Lisp_Object bytepos)
1050{
1051 CHECK_NUMBER (bytepos);
1052 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1053 return Qnil;
1054 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1055}
1056\f
1057DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1058 doc: /* Return the character following point, as a number.
1059At the end of the buffer or accessible region, return 0. */)
1060 (void)
1061{
1062 Lisp_Object temp;
1063 if (PT >= ZV)
1064 XSETFASTINT (temp, 0);
1065 else
1066 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1067 return temp;
1068}
1069
1070DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1071 doc: /* Return the character preceding point, as a number.
1072At the beginning of the buffer or accessible region, return 0. */)
1073 (void)
1074{
1075 Lisp_Object temp;
1076 if (PT <= BEGV)
1077 XSETFASTINT (temp, 0);
1078 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1079 {
1080 ptrdiff_t pos = PT_BYTE;
1081 DEC_POS (pos);
1082 XSETFASTINT (temp, FETCH_CHAR (pos));
1083 }
1084 else
1085 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1086 return temp;
1087}
1088
1089DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1090 doc: /* Return t if point is at the beginning of the buffer.
1091If the buffer is narrowed, this means the beginning of the narrowed part. */)
1092 (void)
1093{
1094 if (PT == BEGV)
1095 return Qt;
1096 return Qnil;
1097}
1098
1099DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1100 doc: /* Return t if point is at the end of the buffer.
1101If the buffer is narrowed, this means the end of the narrowed part. */)
1102 (void)
1103{
1104 if (PT == ZV)
1105 return Qt;
1106 return Qnil;
1107}
1108
1109DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1110 doc: /* Return t if point is at the beginning of a line. */)
1111 (void)
1112{
1113 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1114 return Qt;
1115 return Qnil;
1116}
1117
1118DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1119 doc: /* Return t if point is at the end of a line.
1120`End of a line' includes point being at the end of the buffer. */)
1121 (void)
1122{
1123 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1124 return Qt;
1125 return Qnil;
1126}
1127
1128DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1129 doc: /* Return character in current buffer at position POS.
1130POS is an integer or a marker and defaults to point.
1131If POS is out of range, the value is nil. */)
1132 (Lisp_Object pos)
1133{
1134 register ptrdiff_t pos_byte;
1135
1136 if (NILP (pos))
1137 {
1138 pos_byte = PT_BYTE;
1139 XSETFASTINT (pos, PT);
1140 }
1141
1142 if (MARKERP (pos))
1143 {
1144 pos_byte = marker_byte_position (pos);
1145 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1146 return Qnil;
1147 }
1148 else
1149 {
1150 CHECK_NUMBER_COERCE_MARKER (pos);
1151 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1152 return Qnil;
1153
1154 pos_byte = CHAR_TO_BYTE (XINT (pos));
1155 }
1156
1157 return make_number (FETCH_CHAR (pos_byte));
1158}
1159
1160DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1161 doc: /* Return character in current buffer preceding position POS.
1162POS is an integer or a marker and defaults to point.
1163If POS is out of range, the value is nil. */)
1164 (Lisp_Object pos)
1165{
1166 register Lisp_Object val;
1167 register ptrdiff_t pos_byte;
1168
1169 if (NILP (pos))
1170 {
1171 pos_byte = PT_BYTE;
1172 XSETFASTINT (pos, PT);
1173 }
1174
1175 if (MARKERP (pos))
1176 {
1177 pos_byte = marker_byte_position (pos);
1178
1179 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1180 return Qnil;
1181 }
1182 else
1183 {
1184 CHECK_NUMBER_COERCE_MARKER (pos);
1185
1186 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1187 return Qnil;
1188
1189 pos_byte = CHAR_TO_BYTE (XINT (pos));
1190 }
1191
1192 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1193 {
1194 DEC_POS (pos_byte);
1195 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1196 }
1197 else
1198 {
1199 pos_byte--;
1200 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1201 }
1202 return val;
1203}
1204\f
1205DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1206 doc: /* Return the name under which the user logged in, as a string.
1207This is based on the effective uid, not the real uid.
1208Also, if the environment variables LOGNAME or USER are set,
1209that determines the value of this function.
1210
1211If optional argument UID is an integer or a float, return the login name
1212of the user with that uid, or nil if there is no such user. */)
1213 (Lisp_Object uid)
1214{
1215 struct passwd *pw;
1216 uid_t id;
1217
1218 /* Set up the user name info if we didn't do it before.
1219 (That can happen if Emacs is dumpable
1220 but you decide to run `temacs -l loadup' and not dump. */
1221 if (INTEGERP (Vuser_login_name))
1222 init_editfns ();
1223
1224 if (NILP (uid))
1225 return Vuser_login_name;
1226
1227 CONS_TO_INTEGER (uid, uid_t, id);
1228 BLOCK_INPUT;
1229 pw = getpwuid (id);
1230 UNBLOCK_INPUT;
1231 return (pw ? build_string (pw->pw_name) : Qnil);
1232}
1233
1234DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1235 0, 0, 0,
1236 doc: /* Return the name of the user's real uid, as a string.
1237This ignores the environment variables LOGNAME and USER, so it differs from
1238`user-login-name' when running under `su'. */)
1239 (void)
1240{
1241 /* Set up the user name info if we didn't do it before.
1242 (That can happen if Emacs is dumpable
1243 but you decide to run `temacs -l loadup' and not dump. */
1244 if (INTEGERP (Vuser_login_name))
1245 init_editfns ();
1246 return Vuser_real_login_name;
1247}
1248
1249DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1250 doc: /* Return the effective uid of Emacs.
1251Value is an integer or a float, depending on the value. */)
1252 (void)
1253{
1254 uid_t euid = geteuid ();
1255 return make_fixnum_or_float (euid);
1256}
1257
1258DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1259 doc: /* Return the real uid of Emacs.
1260Value is an integer or a float, depending on the value. */)
1261 (void)
1262{
1263 uid_t uid = getuid ();
1264 return make_fixnum_or_float (uid);
1265}
1266
1267DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1268 doc: /* Return the full name of the user logged in, as a string.
1269If the full name corresponding to Emacs's userid is not known,
1270return "unknown".
1271
1272If optional argument UID is an integer or float, return the full name
1273of the user with that uid, or nil if there is no such user.
1274If UID is a string, return the full name of the user with that login
1275name, or nil if there is no such user. */)
1276 (Lisp_Object uid)
1277{
1278 struct passwd *pw;
1279 register char *p, *q;
1280 Lisp_Object full;
1281
1282 if (NILP (uid))
1283 return Vuser_full_name;
1284 else if (NUMBERP (uid))
1285 {
1286 uid_t u;
1287 CONS_TO_INTEGER (uid, uid_t, u);
1288 BLOCK_INPUT;
1289 pw = getpwuid (u);
1290 UNBLOCK_INPUT;
1291 }
1292 else if (STRINGP (uid))
1293 {
1294 BLOCK_INPUT;
1295 pw = getpwnam (SSDATA (uid));
1296 UNBLOCK_INPUT;
1297 }
1298 else
1299 error ("Invalid UID specification");
1300
1301 if (!pw)
1302 return Qnil;
1303
1304 p = USER_FULL_NAME;
1305 /* Chop off everything after the first comma. */
1306 q = strchr (p, ',');
1307 full = make_string (p, q ? q - p : strlen (p));
1308
1309#ifdef AMPERSAND_FULL_NAME
1310 p = SSDATA (full);
1311 q = strchr (p, '&');
1312 /* Substitute the login name for the &, upcasing the first character. */
1313 if (q)
1314 {
1315 register char *r;
1316 Lisp_Object login;
1317
1318 login = Fuser_login_name (make_number (pw->pw_uid));
1319 r = alloca (strlen (p) + SCHARS (login) + 1);
1320 memcpy (r, p, q - p);
1321 r[q - p] = 0;
1322 strcat (r, SSDATA (login));
1323 r[q - p] = upcase ((unsigned char) r[q - p]);
1324 strcat (r, q + 1);
1325 full = build_string (r);
1326 }
1327#endif /* AMPERSAND_FULL_NAME */
1328
1329 return full;
1330}
1331
1332DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1333 doc: /* Return the host name of the machine you are running on, as a string. */)
1334 (void)
1335{
1336 return Vsystem_name;
1337}
1338
1339const char *
1340get_system_name (void)
1341{
1342 if (STRINGP (Vsystem_name))
1343 return SSDATA (Vsystem_name);
1344 else
1345 return "";
1346}
1347
1348DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1349 doc: /* Return the process ID of Emacs, as a number. */)
1350 (void)
1351{
1352 pid_t pid = getpid ();
1353 return make_fixnum_or_float (pid);
1354}
1355
1356\f
1357
1358#ifndef TIME_T_MIN
1359# define TIME_T_MIN TYPE_MINIMUM (time_t)
1360#endif
1361#ifndef TIME_T_MAX
1362# define TIME_T_MAX TYPE_MAXIMUM (time_t)
1363#endif
1364
1365/* Report that a time value is out of range for Emacs. */
1366void
1367time_overflow (void)
1368{
1369 error ("Specified time is not representable");
1370}
1371
1372/* Return the upper part of the time T (everything but the bottom 16 bits). */
1373static EMACS_INT
1374hi_time (time_t t)
1375{
1376 time_t hi = t >> 16;
1377
1378 /* Check for overflow, helping the compiler for common cases where
1379 no runtime check is needed, and taking care not to convert
1380 negative numbers to unsigned before comparing them. */
1381 if (! ((! TYPE_SIGNED (time_t)
1382 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1383 || MOST_NEGATIVE_FIXNUM <= hi)
1384 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1385 || hi <= MOST_POSITIVE_FIXNUM)))
1386 time_overflow ();
1387
1388 return hi;
1389}
1390
1391/* Return the bottom 16 bits of the time T. */
1392static int
1393lo_time (time_t t)
1394{
1395 return t & ((1 << 16) - 1);
1396}
1397
1398DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1399 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1400The time is returned as a list of integers (HIGH LOW USEC PSEC).
1401HIGH has the most significant bits of the seconds, while LOW has the
1402least significant 16 bits. USEC and PSEC are the microsecond and
1403picosecond counts. */)
1404 (void)
1405{
1406 return make_lisp_time (current_emacs_time ());
1407}
1408
1409DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1410 0, 0, 0,
1411 doc: /* Return the current run time used by Emacs.
1412The time is returned as a list (HIGH LOW USEC PSEC), using the same
1413style as (current-time).
1414
1415On systems that can't determine the run time, `get-internal-run-time'
1416does the same thing as `current-time'. */)
1417 (void)
1418{
1419#ifdef HAVE_GETRUSAGE
1420 struct rusage usage;
1421 time_t secs;
1422 int usecs;
1423
1424 if (getrusage (RUSAGE_SELF, &usage) < 0)
1425 /* This shouldn't happen. What action is appropriate? */
1426 xsignal0 (Qerror);
1427
1428 /* Sum up user time and system time. */
1429 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1430 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1431 if (usecs >= 1000000)
1432 {
1433 usecs -= 1000000;
1434 secs++;
1435 }
1436 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1437#else /* ! HAVE_GETRUSAGE */
1438#ifdef WINDOWSNT
1439 return w32_get_internal_run_time ();
1440#else /* ! WINDOWSNT */
1441 return Fcurrent_time ();
1442#endif /* WINDOWSNT */
1443#endif /* HAVE_GETRUSAGE */
1444}
1445\f
1446
1447/* Make a Lisp list that represents the time T with fraction TAIL. */
1448static Lisp_Object
1449make_time_tail (time_t t, Lisp_Object tail)
1450{
1451 return Fcons (make_number (hi_time (t)),
1452 Fcons (make_number (lo_time (t)), tail));
1453}
1454
1455/* Make a Lisp list that represents the system time T. */
1456static Lisp_Object
1457make_time (time_t t)
1458{
1459 return make_time_tail (t, Qnil);
1460}
1461
1462/* Make a Lisp list that represents the Emacs time T. T may be an
1463 invalid time, with a slightly negative tv_nsec value such as
1464 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1465 correspondingly negative picosecond count. */
1466Lisp_Object
1467make_lisp_time (EMACS_TIME t)
1468{
1469 int ns = EMACS_NSECS (t);
1470 return make_time_tail (EMACS_SECS (t),
1471 list2 (make_number (ns / 1000),
1472 make_number (ns % 1000 * 1000)));
1473}
1474
1475/* Decode a Lisp list SPECIFIED_TIME that represents a time.
1476 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1477 Return nonzero if successful. */
1478static int
1479disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1480 Lisp_Object *plow, Lisp_Object *pusec,
1481 Lisp_Object *ppsec)
1482{
1483 if (CONSP (specified_time))
1484 {
1485 Lisp_Object low = XCDR (specified_time);
1486 Lisp_Object usec = make_number (0);
1487 Lisp_Object psec = make_number (0);
1488 if (CONSP (low))
1489 {
1490 Lisp_Object low_tail = XCDR (low);
1491 low = XCAR (low);
1492 if (CONSP (low_tail))
1493 {
1494 usec = XCAR (low_tail);
1495 low_tail = XCDR (low_tail);
1496 if (CONSP (low_tail))
1497 psec = XCAR (low_tail);
1498 }
1499 else if (!NILP (low_tail))
1500 usec = low_tail;
1501 }
1502
1503 *phigh = XCAR (specified_time);
1504 *plow = low;
1505 *pusec = usec;
1506 *ppsec = psec;
1507 return 1;
1508 }
1509
1510 return 0;
1511}
1512
1513/* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1514 list, generate the corresponding time value.
1515
1516 If RESULT is not null, store into *RESULT the converted time;
1517 this can fail if the converted time does not fit into EMACS_TIME.
1518 If *DRESULT is not null, store into *DRESULT the number of
1519 seconds since the start of the POSIX Epoch.
1520
1521 Return nonzero if successful. */
1522int
1523decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1524 Lisp_Object psec,
1525 EMACS_TIME *result, double *dresult)
1526{
1527 EMACS_INT hi, lo, us, ps;
1528 if (! (INTEGERP (high) && INTEGERP (low)
1529 && INTEGERP (usec) && INTEGERP (psec)))
1530 return 0;
1531 hi = XINT (high);
1532 lo = XINT (low);
1533 us = XINT (usec);
1534 ps = XINT (psec);
1535
1536 /* Normalize out-of-range lower-order components by carrying
1537 each overflow into the next higher-order component. */
1538 us += ps / 1000000 - (ps % 1000000 < 0);
1539 lo += us / 1000000 - (us % 1000000 < 0);
1540 hi += lo >> 16;
1541 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1542 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1543 lo &= (1 << 16) - 1;
1544
1545 if (result)
1546 {
1547 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1548 && hi <= TIME_T_MAX >> 16)
1549 {
1550 /* Return the greatest representable time that is not greater
1551 than the requested time. */
1552 time_t sec = hi;
1553 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1554 }
1555 else
1556 {
1557 /* Overflow in the highest-order component. */
1558 return 0;
1559 }
1560 }
1561
1562 if (dresult)
1563 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1564
1565 return 1;
1566}
1567
1568/* Decode a Lisp list SPECIFIED_TIME that represents a time.
1569 If SPECIFIED_TIME is nil, use the current time.
1570
1571 Round the time down to the nearest EMACS_TIME value.
1572 Return seconds since the Epoch.
1573 Signal an error if unsuccessful. */
1574EMACS_TIME
1575lisp_time_argument (Lisp_Object specified_time)
1576{
1577 EMACS_TIME t;
1578 if (NILP (specified_time))
1579 t = current_emacs_time ();
1580 else
1581 {
1582 Lisp_Object high, low, usec, psec;
1583 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1584 && decode_time_components (high, low, usec, psec, &t, 0)))
1585 error ("Invalid time specification");
1586 }
1587 return t;
1588}
1589
1590/* Like lisp_time_argument, except decode only the seconds part,
1591 do not allow out-of-range time stamps, do not check the subseconds part,
1592 and always round down. */
1593static time_t
1594lisp_seconds_argument (Lisp_Object specified_time)
1595{
1596 if (NILP (specified_time))
1597 return time (NULL);
1598 else
1599 {
1600 Lisp_Object high, low, usec, psec;
1601 EMACS_TIME t;
1602 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1603 && decode_time_components (high, low, make_number (0),
1604 make_number (0), &t, 0)))
1605 error ("Invalid time specification");
1606 return EMACS_SECS (t);
1607 }
1608}
1609
1610DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1611 doc: /* Return the current time, as a float number of seconds since the epoch.
1612If SPECIFIED-TIME is given, it is the time to convert to float
1613instead of the current time. The argument should have the form
1614(HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1615you can use times from `current-time' and from `file-attributes'.
1616SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1617considered obsolete.
1618
1619WARNING: Since the result is floating point, it may not be exact.
1620If precise time stamps are required, use either `current-time',
1621or (if you need time as a string) `format-time-string'. */)
1622 (Lisp_Object specified_time)
1623{
1624 double t;
1625 if (NILP (specified_time))
1626 {
1627 EMACS_TIME now = current_emacs_time ();
1628 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1629 }
1630 else
1631 {
1632 Lisp_Object high, low, usec, psec;
1633 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1634 && decode_time_components (high, low, usec, psec, 0, &t)))
1635 error ("Invalid time specification");
1636 }
1637 return make_float (t);
1638}
1639
1640/* Write information into buffer S of size MAXSIZE, according to the
1641 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1642 Default to Universal Time if UT is nonzero, local time otherwise.
1643 Use NS as the number of nanoseconds in the %N directive.
1644 Return the number of bytes written, not including the terminating
1645 '\0'. If S is NULL, nothing will be written anywhere; so to
1646 determine how many bytes would be written, use NULL for S and
1647 ((size_t) -1) for MAXSIZE.
1648
1649 This function behaves like nstrftime, except it allows null
1650 bytes in FORMAT and it does not support nanoseconds. */
1651static size_t
1652emacs_nmemftime (char *s, size_t maxsize, const char *format,
1653 size_t format_len, const struct tm *tp, int ut, int ns)
1654{
1655 size_t total = 0;
1656
1657 /* Loop through all the null-terminated strings in the format
1658 argument. Normally there's just one null-terminated string, but
1659 there can be arbitrarily many, concatenated together, if the
1660 format contains '\0' bytes. nstrftime stops at the first
1661 '\0' byte so we must invoke it separately for each such string. */
1662 for (;;)
1663 {
1664 size_t len;
1665 size_t result;
1666
1667 if (s)
1668 s[0] = '\1';
1669
1670 result = nstrftime (s, maxsize, format, tp, ut, ns);
1671
1672 if (s)
1673 {
1674 if (result == 0 && s[0] != '\0')
1675 return 0;
1676 s += result + 1;
1677 }
1678
1679 maxsize -= result + 1;
1680 total += result;
1681 len = strlen (format);
1682 if (len == format_len)
1683 return total;
1684 total++;
1685 format += len + 1;
1686 format_len -= len + 1;
1687 }
1688}
1689
1690DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1691 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1692TIME is specified as (HIGH LOW USEC PSEC), as returned by
1693`current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1694is also still accepted.
1695The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1696as Universal Time; nil means describe TIME in the local time zone.
1697The value is a copy of FORMAT-STRING, but with certain constructs replaced
1698by text that describes the specified date and time in TIME:
1699
1700%Y is the year, %y within the century, %C the century.
1701%G is the year corresponding to the ISO week, %g within the century.
1702%m is the numeric month.
1703%b and %h are the locale's abbreviated month name, %B the full name.
1704%d is the day of the month, zero-padded, %e is blank-padded.
1705%u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1706%a is the locale's abbreviated name of the day of week, %A the full name.
1707%U is the week number starting on Sunday, %W starting on Monday,
1708 %V according to ISO 8601.
1709%j is the day of the year.
1710
1711%H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1712 only blank-padded, %l is like %I blank-padded.
1713%p is the locale's equivalent of either AM or PM.
1714%M is the minute.
1715%S is the second.
1716%N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1717%Z is the time zone name, %z is the numeric form.
1718%s is the number of seconds since 1970-01-01 00:00:00 +0000.
1719
1720%c is the locale's date and time format.
1721%x is the locale's "preferred" date format.
1722%D is like "%m/%d/%y".
1723
1724%R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1725%X is the locale's "preferred" time format.
1726
1727Finally, %n is a newline, %t is a tab, %% is a literal %.
1728
1729Certain flags and modifiers are available with some format controls.
1730The flags are `_', `-', `^' and `#'. For certain characters X,
1731%_X is like %X, but padded with blanks; %-X is like %X,
1732but without padding. %^X is like %X, but with all textual
1733characters up-cased; %#X is like %X, but with letter-case of
1734all textual characters reversed.
1735%NX (where N stands for an integer) is like %X,
1736but takes up at least N (a number) positions.
1737The modifiers are `E' and `O'. For certain characters X,
1738%EX is a locale's alternative version of %X;
1739%OX is like %X, but uses the locale's number symbols.
1740
1741For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1742
1743usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1744 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1745{
1746 EMACS_TIME t = lisp_time_argument (timeval);
1747 struct tm tm;
1748
1749 CHECK_STRING (format_string);
1750 format_string = code_convert_string_norecord (format_string,
1751 Vlocale_coding_system, 1);
1752 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1753 t, ! NILP (universal), &tm);
1754}
1755
1756static Lisp_Object
1757format_time_string (char const *format, ptrdiff_t formatlen,
1758 EMACS_TIME t, int ut, struct tm *tmp)
1759{
1760 char buffer[4000];
1761 char *buf = buffer;
1762 ptrdiff_t size = sizeof buffer;
1763 size_t len;
1764 Lisp_Object bufstring;
1765 int ns = EMACS_NSECS (t);
1766 struct tm *tm;
1767 USE_SAFE_ALLOCA;
1768
1769 while (1)
1770 {
1771 time_t *taddr = emacs_secs_addr (&t);
1772 BLOCK_INPUT;
1773
1774 synchronize_system_time_locale ();
1775
1776 tm = ut ? gmtime (taddr) : localtime (taddr);
1777 if (! tm)
1778 {
1779 UNBLOCK_INPUT;
1780 time_overflow ();
1781 }
1782 *tmp = *tm;
1783
1784 buf[0] = '\1';
1785 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1786 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1787 break;
1788
1789 /* Buffer was too small, so make it bigger and try again. */
1790 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1791 UNBLOCK_INPUT;
1792 if (STRING_BYTES_BOUND <= len)
1793 string_overflow ();
1794 size = len + 1;
1795 buf = SAFE_ALLOCA (size);
1796 }
1797
1798 UNBLOCK_INPUT;
1799 bufstring = make_unibyte_string (buf, len);
1800 SAFE_FREE ();
1801 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1802}
1803
1804DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1805 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1806The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1807as from `current-time' and `file-attributes', or nil to use the
1808current time. The obsolete form (HIGH . LOW) is also still accepted.
1809The list has the following nine members: SEC is an integer between 0
1810and 60; SEC is 60 for a leap second, which only some operating systems
1811support. MINUTE is an integer between 0 and 59. HOUR is an integer
1812between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1813integer between 1 and 12. YEAR is an integer indicating the
1814four-digit year. DOW is the day of week, an integer between 0 and 6,
1815where 0 is Sunday. DST is t if daylight saving time is in effect,
1816otherwise nil. ZONE is an integer indicating the number of seconds
1817east of Greenwich. (Note that Common Lisp has different meanings for
1818DOW and ZONE.) */)
1819 (Lisp_Object specified_time)
1820{
1821 time_t time_spec = lisp_seconds_argument (specified_time);
1822 struct tm save_tm;
1823 struct tm *decoded_time;
1824 Lisp_Object list_args[9];
1825
1826 BLOCK_INPUT;
1827 decoded_time = localtime (&time_spec);
1828 if (decoded_time)
1829 save_tm = *decoded_time;
1830 UNBLOCK_INPUT;
1831 if (! (decoded_time
1832 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1833 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1834 time_overflow ();
1835 XSETFASTINT (list_args[0], save_tm.tm_sec);
1836 XSETFASTINT (list_args[1], save_tm.tm_min);
1837 XSETFASTINT (list_args[2], save_tm.tm_hour);
1838 XSETFASTINT (list_args[3], save_tm.tm_mday);
1839 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1840 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1841 cast below avoids overflow in int arithmetics. */
1842 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1843 XSETFASTINT (list_args[6], save_tm.tm_wday);
1844 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1845
1846 BLOCK_INPUT;
1847 decoded_time = gmtime (&time_spec);
1848 if (decoded_time == 0)
1849 list_args[8] = Qnil;
1850 else
1851 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1852 UNBLOCK_INPUT;
1853 return Flist (9, list_args);
1854}
1855
1856/* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1857 the result is representable as an int. Assume OFFSET is small and
1858 nonnegative. */
1859static int
1860check_tm_member (Lisp_Object obj, int offset)
1861{
1862 EMACS_INT n;
1863 CHECK_NUMBER (obj);
1864 n = XINT (obj);
1865 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1866 time_overflow ();
1867 return n - offset;
1868}
1869
1870DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1871 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1872This is the reverse operation of `decode-time', which see.
1873ZONE defaults to the current time zone rule. This can
1874be a string or t (as from `set-time-zone-rule'), or it can be a list
1875\(as from `current-time-zone') or an integer (as from `decode-time')
1876applied without consideration for daylight saving time.
1877
1878You can pass more than 7 arguments; then the first six arguments
1879are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1880The intervening arguments are ignored.
1881This feature lets (apply 'encode-time (decode-time ...)) work.
1882
1883Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1884for example, a DAY of 0 means the day preceding the given month.
1885Year numbers less than 100 are treated just like other year numbers.
1886If you want them to stand for years in this century, you must do that yourself.
1887
1888Years before 1970 are not guaranteed to work. On some systems,
1889year values as low as 1901 do work.
1890
1891usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1892 (ptrdiff_t nargs, Lisp_Object *args)
1893{
1894 time_t value;
1895 struct tm tm;
1896 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1897
1898 tm.tm_sec = check_tm_member (args[0], 0);
1899 tm.tm_min = check_tm_member (args[1], 0);
1900 tm.tm_hour = check_tm_member (args[2], 0);
1901 tm.tm_mday = check_tm_member (args[3], 0);
1902 tm.tm_mon = check_tm_member (args[4], 1);
1903 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1904 tm.tm_isdst = -1;
1905
1906 if (CONSP (zone))
1907 zone = XCAR (zone);
1908 if (NILP (zone))
1909 {
1910 BLOCK_INPUT;
1911 value = mktime (&tm);
1912 UNBLOCK_INPUT;
1913 }
1914 else
1915 {
1916 char tzbuf[100];
1917 const char *tzstring;
1918 char **oldenv = environ, **newenv;
1919
1920 if (EQ (zone, Qt))
1921 tzstring = "UTC0";
1922 else if (STRINGP (zone))
1923 tzstring = SSDATA (zone);
1924 else if (INTEGERP (zone))
1925 {
1926 EMACS_INT abszone = eabs (XINT (zone));
1927 EMACS_INT zone_hr = abszone / (60*60);
1928 int zone_min = (abszone/60) % 60;
1929 int zone_sec = abszone % 60;
1930 sprintf (tzbuf, "XXX%s%"pI"d:%02d:%02d", "-" + (XINT (zone) < 0),
1931 zone_hr, zone_min, zone_sec);
1932 tzstring = tzbuf;
1933 }
1934 else
1935 error ("Invalid time zone specification");
1936
1937 BLOCK_INPUT;
1938
1939 /* Set TZ before calling mktime; merely adjusting mktime's returned
1940 value doesn't suffice, since that would mishandle leap seconds. */
1941 set_time_zone_rule (tzstring);
1942
1943 value = mktime (&tm);
1944
1945 /* Restore TZ to previous value. */
1946 newenv = environ;
1947 environ = oldenv;
1948#ifdef LOCALTIME_CACHE
1949 tzset ();
1950#endif
1951 UNBLOCK_INPUT;
1952
1953 xfree (newenv);
1954 }
1955
1956 if (value == (time_t) -1)
1957 time_overflow ();
1958
1959 return make_time (value);
1960}
1961
1962DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1963 doc: /* Return the current local time, as a human-readable string.
1964Programs can use this function to decode a time,
1965since the number of columns in each field is fixed
1966if the year is in the range 1000-9999.
1967The format is `Sun Sep 16 01:03:52 1973'.
1968However, see also the functions `decode-time' and `format-time-string'
1969which provide a much more powerful and general facility.
1970
1971If SPECIFIED-TIME is given, it is a time to format instead of the
1972current time. The argument should have the form (HIGH LOW . IGNORED).
1973Thus, you can use times obtained from `current-time' and from
1974`file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1975but this is considered obsolete. */)
1976 (Lisp_Object specified_time)
1977{
1978 time_t value = lisp_seconds_argument (specified_time);
1979 struct tm *tm;
1980 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1981 int len IF_LINT (= 0);
1982
1983 /* Convert to a string in ctime format, except without the trailing
1984 newline, and without the 4-digit year limit. Don't use asctime
1985 or ctime, as they might dump core if the year is outside the
1986 range -999 .. 9999. */
1987 BLOCK_INPUT;
1988 tm = localtime (&value);
1989 if (tm)
1990 {
1991 static char const wday_name[][4] =
1992 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
1993 static char const mon_name[][4] =
1994 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1995 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
1996 printmax_t year_base = TM_YEAR_BASE;
1997
1998 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
1999 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2000 tm->tm_hour, tm->tm_min, tm->tm_sec,
2001 tm->tm_year + year_base);
2002 }
2003 UNBLOCK_INPUT;
2004 if (! tm)
2005 time_overflow ();
2006
2007 return make_unibyte_string (buf, len);
2008}
2009
2010/* Yield A - B, measured in seconds.
2011 This function is copied from the GNU C Library. */
2012static int
2013tm_diff (struct tm *a, struct tm *b)
2014{
2015 /* Compute intervening leap days correctly even if year is negative.
2016 Take care to avoid int overflow in leap day calculations,
2017 but it's OK to assume that A and B are close to each other. */
2018 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2019 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2020 int a100 = a4 / 25 - (a4 % 25 < 0);
2021 int b100 = b4 / 25 - (b4 % 25 < 0);
2022 int a400 = a100 >> 2;
2023 int b400 = b100 >> 2;
2024 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2025 int years = a->tm_year - b->tm_year;
2026 int days = (365 * years + intervening_leap_days
2027 + (a->tm_yday - b->tm_yday));
2028 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2029 + (a->tm_min - b->tm_min))
2030 + (a->tm_sec - b->tm_sec));
2031}
2032
2033DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2034 doc: /* Return the offset and name for the local time zone.
2035This returns a list of the form (OFFSET NAME).
2036OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2037 A negative value means west of Greenwich.
2038NAME is a string giving the name of the time zone.
2039If SPECIFIED-TIME is given, the time zone offset is determined from it
2040instead of using the current time. The argument should have the form
2041(HIGH LOW . IGNORED). Thus, you can use times obtained from
2042`current-time' and from `file-attributes'. SPECIFIED-TIME can also
2043have the form (HIGH . LOW), but this is considered obsolete.
2044
2045Some operating systems cannot provide all this information to Emacs;
2046in this case, `current-time-zone' returns a list containing nil for
2047the data it can't find. */)
2048 (Lisp_Object specified_time)
2049{
2050 EMACS_TIME value;
2051 int offset;
2052 struct tm *t;
2053 struct tm localtm;
2054 Lisp_Object zone_offset, zone_name;
2055
2056 zone_offset = Qnil;
2057 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2058 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2059 BLOCK_INPUT;
2060 t = gmtime (emacs_secs_addr (&value));
2061 if (t)
2062 offset = tm_diff (&localtm, t);
2063 UNBLOCK_INPUT;
2064
2065 if (t)
2066 {
2067 zone_offset = make_number (offset);
2068 if (SCHARS (zone_name) == 0)
2069 {
2070 /* No local time zone name is available; use "+-NNNN" instead. */
2071 int m = offset / 60;
2072 int am = offset < 0 ? - m : m;
2073 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2074 zone_name = make_formatted_string (buf, "%c%02d%02d",
2075 (offset < 0 ? '-' : '+'),
2076 am / 60, am % 60);
2077 }
2078 }
2079
2080 return list2 (zone_offset, zone_name);
2081}
2082
2083/* This holds the value of `environ' produced by the previous
2084 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2085 has never been called. */
2086static char **environbuf;
2087
2088/* This holds the startup value of the TZ environment variable so it
2089 can be restored if the user calls set-time-zone-rule with a nil
2090 argument. */
2091static char *initial_tz;
2092
2093DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2094 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2095If TZ is nil, use implementation-defined default time zone information.
2096If TZ is t, use Universal Time.
2097
2098Instead of calling this function, you typically want (setenv "TZ" TZ).
2099That changes both the environment of the Emacs process and the
2100variable `process-environment', whereas `set-time-zone-rule' affects
2101only the former. */)
2102 (Lisp_Object tz)
2103{
2104 const char *tzstring;
2105 char **old_environbuf;
2106
2107 if (! (NILP (tz) || EQ (tz, Qt)))
2108 CHECK_STRING (tz);
2109
2110 BLOCK_INPUT;
2111
2112 /* When called for the first time, save the original TZ. */
2113 old_environbuf = environbuf;
2114 if (!old_environbuf)
2115 initial_tz = (char *) getenv ("TZ");
2116
2117 if (NILP (tz))
2118 tzstring = initial_tz;
2119 else if (EQ (tz, Qt))
2120 tzstring = "UTC0";
2121 else
2122 tzstring = SSDATA (tz);
2123
2124 set_time_zone_rule (tzstring);
2125 environbuf = environ;
2126
2127 UNBLOCK_INPUT;
2128
2129 xfree (old_environbuf);
2130 return Qnil;
2131}
2132
2133#ifdef LOCALTIME_CACHE
2134
2135/* These two values are known to load tz files in buggy implementations,
2136 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2137 Their values shouldn't matter in non-buggy implementations.
2138 We don't use string literals for these strings,
2139 since if a string in the environment is in readonly
2140 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2141 See Sun bugs 1113095 and 1114114, ``Timezone routines
2142 improperly modify environment''. */
2143
2144static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2145static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2146
2147#endif
2148
2149/* Set the local time zone rule to TZSTRING.
2150 This allocates memory into `environ', which it is the caller's
2151 responsibility to free. */
2152
2153void
2154set_time_zone_rule (const char *tzstring)
2155{
2156 ptrdiff_t envptrs;
2157 char **from, **to, **newenv;
2158
2159 /* Make the ENVIRON vector longer with room for TZSTRING. */
2160 for (from = environ; *from; from++)
2161 continue;
2162 envptrs = from - environ + 2;
2163 newenv = to = xmalloc (envptrs * sizeof *newenv
2164 + (tzstring ? strlen (tzstring) + 4 : 0));
2165
2166 /* Add TZSTRING to the end of environ, as a value for TZ. */
2167 if (tzstring)
2168 {
2169 char *t = (char *) (to + envptrs);
2170 strcpy (t, "TZ=");
2171 strcat (t, tzstring);
2172 *to++ = t;
2173 }
2174
2175 /* Copy the old environ vector elements into NEWENV,
2176 but don't copy the TZ variable.
2177 So we have only one definition of TZ, which came from TZSTRING. */
2178 for (from = environ; *from; from++)
2179 if (strncmp (*from, "TZ=", 3) != 0)
2180 *to++ = *from;
2181 *to = 0;
2182
2183 environ = newenv;
2184
2185 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2186 the TZ variable is stored. If we do not have a TZSTRING,
2187 TO points to the vector slot which has the terminating null. */
2188
2189#ifdef LOCALTIME_CACHE
2190 {
2191 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2192 "US/Pacific" that loads a tz file, then changes to a value like
2193 "XXX0" that does not load a tz file, and then changes back to
2194 its original value, the last change is (incorrectly) ignored.
2195 Also, if TZ changes twice in succession to values that do
2196 not load a tz file, tzset can dump core (see Sun bug#1225179).
2197 The following code works around these bugs. */
2198
2199 if (tzstring)
2200 {
2201 /* Temporarily set TZ to a value that loads a tz file
2202 and that differs from tzstring. */
2203 char *tz = *newenv;
2204 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2205 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2206 tzset ();
2207 *newenv = tz;
2208 }
2209 else
2210 {
2211 /* The implied tzstring is unknown, so temporarily set TZ to
2212 two different values that each load a tz file. */
2213 *to = set_time_zone_rule_tz1;
2214 to[1] = 0;
2215 tzset ();
2216 *to = set_time_zone_rule_tz2;
2217 tzset ();
2218 *to = 0;
2219 }
2220
2221 /* Now TZ has the desired value, and tzset can be invoked safely. */
2222 }
2223
2224 tzset ();
2225#endif
2226}
2227\f
2228/* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2229 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2230 type of object is Lisp_String). INHERIT is passed to
2231 INSERT_FROM_STRING_FUNC as the last argument. */
2232
2233static void
2234general_insert_function (void (*insert_func)
2235 (const char *, ptrdiff_t),
2236 void (*insert_from_string_func)
2237 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2238 ptrdiff_t, ptrdiff_t, int),
2239 int inherit, ptrdiff_t nargs, Lisp_Object *args)
2240{
2241 ptrdiff_t argnum;
2242 register Lisp_Object val;
2243
2244 for (argnum = 0; argnum < nargs; argnum++)
2245 {
2246 val = args[argnum];
2247 if (CHARACTERP (val))
2248 {
2249 int c = XFASTINT (val);
2250 unsigned char str[MAX_MULTIBYTE_LENGTH];
2251 int len;
2252
2253 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2254 len = CHAR_STRING (c, str);
2255 else
2256 {
2257 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2258 len = 1;
2259 }
2260 (*insert_func) ((char *) str, len);
2261 }
2262 else if (STRINGP (val))
2263 {
2264 (*insert_from_string_func) (val, 0, 0,
2265 SCHARS (val),
2266 SBYTES (val),
2267 inherit);
2268 }
2269 else
2270 wrong_type_argument (Qchar_or_string_p, val);
2271 }
2272}
2273
2274void
2275insert1 (Lisp_Object arg)
2276{
2277 Finsert (1, &arg);
2278}
2279
2280
2281/* Callers passing one argument to Finsert need not gcpro the
2282 argument "array", since the only element of the array will
2283 not be used after calling insert or insert_from_string, so
2284 we don't care if it gets trashed. */
2285
2286DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2287 doc: /* Insert the arguments, either strings or characters, at point.
2288Point and before-insertion markers move forward to end up
2289 after the inserted text.
2290Any other markers at the point of insertion remain before the text.
2291
2292If the current buffer is multibyte, unibyte strings are converted
2293to multibyte for insertion (see `string-make-multibyte').
2294If the current buffer is unibyte, multibyte strings are converted
2295to unibyte for insertion (see `string-make-unibyte').
2296
2297When operating on binary data, it may be necessary to preserve the
2298original bytes of a unibyte string when inserting it into a multibyte
2299buffer; to accomplish this, apply `string-as-multibyte' to the string
2300and insert the result.
2301
2302usage: (insert &rest ARGS) */)
2303 (ptrdiff_t nargs, Lisp_Object *args)
2304{
2305 general_insert_function (insert, insert_from_string, 0, nargs, args);
2306 return Qnil;
2307}
2308
2309DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2310 0, MANY, 0,
2311 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2312Point and before-insertion markers move forward to end up
2313 after the inserted text.
2314Any other markers at the point of insertion remain before the text.
2315
2316If the current buffer is multibyte, unibyte strings are converted
2317to multibyte for insertion (see `unibyte-char-to-multibyte').
2318If the current buffer is unibyte, multibyte strings are converted
2319to unibyte for insertion.
2320
2321usage: (insert-and-inherit &rest ARGS) */)
2322 (ptrdiff_t nargs, Lisp_Object *args)
2323{
2324 general_insert_function (insert_and_inherit, insert_from_string, 1,
2325 nargs, args);
2326 return Qnil;
2327}
2328
2329DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2330 doc: /* Insert strings or characters at point, relocating markers after the text.
2331Point and markers move forward to end up after the inserted text.
2332
2333If the current buffer is multibyte, unibyte strings are converted
2334to multibyte for insertion (see `unibyte-char-to-multibyte').
2335If the current buffer is unibyte, multibyte strings are converted
2336to unibyte for insertion.
2337
2338usage: (insert-before-markers &rest ARGS) */)
2339 (ptrdiff_t nargs, Lisp_Object *args)
2340{
2341 general_insert_function (insert_before_markers,
2342 insert_from_string_before_markers, 0,
2343 nargs, args);
2344 return Qnil;
2345}
2346
2347DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2348 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2349 doc: /* Insert text at point, relocating markers and inheriting properties.
2350Point and markers move forward to end up after the inserted text.
2351
2352If the current buffer is multibyte, unibyte strings are converted
2353to multibyte for insertion (see `unibyte-char-to-multibyte').
2354If the current buffer is unibyte, multibyte strings are converted
2355to unibyte for insertion.
2356
2357usage: (insert-before-markers-and-inherit &rest ARGS) */)
2358 (ptrdiff_t nargs, Lisp_Object *args)
2359{
2360 general_insert_function (insert_before_markers_and_inherit,
2361 insert_from_string_before_markers, 1,
2362 nargs, args);
2363 return Qnil;
2364}
2365\f
2366DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2367 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2368 (prefix-numeric-value current-prefix-arg)\
2369 t))",
2370 doc: /* Insert COUNT copies of CHARACTER.
2371Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2372of these ways:
2373
2374 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2375 Completion is available; if you type a substring of the name
2376 preceded by an asterisk `*', Emacs shows all names which include
2377 that substring, not necessarily at the beginning of the name.
2378
2379 - As a hexadecimal code point, e.g. 263A. Note that code points in
2380 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2381 the Unicode code space).
2382
2383 - As a code point with a radix specified with #, e.g. #o21430
2384 (octal), #x2318 (hex), or #10r8984 (decimal).
2385
2386If called interactively, COUNT is given by the prefix argument. If
2387omitted or nil, it defaults to 1.
2388
2389Inserting the character(s) relocates point and before-insertion
2390markers in the same ways as the function `insert'.
2391
2392The optional third argument INHERIT, if non-nil, says to inherit text
2393properties from adjoining text, if those properties are sticky. If
2394called interactively, INHERIT is t. */)
2395 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2396{
2397 int i, stringlen;
2398 register ptrdiff_t n;
2399 int c, len;
2400 unsigned char str[MAX_MULTIBYTE_LENGTH];
2401 char string[4000];
2402
2403 CHECK_CHARACTER (character);
2404 if (NILP (count))
2405 XSETFASTINT (count, 1);
2406 CHECK_NUMBER (count);
2407 c = XFASTINT (character);
2408
2409 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2410 len = CHAR_STRING (c, str);
2411 else
2412 str[0] = c, len = 1;
2413 if (XINT (count) <= 0)
2414 return Qnil;
2415 if (BUF_BYTES_MAX / len < XINT (count))
2416 buffer_overflow ();
2417 n = XINT (count) * len;
2418 stringlen = min (n, sizeof string - sizeof string % len);
2419 for (i = 0; i < stringlen; i++)
2420 string[i] = str[i % len];
2421 while (n > stringlen)
2422 {
2423 QUIT;
2424 if (!NILP (inherit))
2425 insert_and_inherit (string, stringlen);
2426 else
2427 insert (string, stringlen);
2428 n -= stringlen;
2429 }
2430 if (!NILP (inherit))
2431 insert_and_inherit (string, n);
2432 else
2433 insert (string, n);
2434 return Qnil;
2435}
2436
2437DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2438 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2439Both arguments are required.
2440BYTE is a number of the range 0..255.
2441
2442If BYTE is 128..255 and the current buffer is multibyte, the
2443corresponding eight-bit character is inserted.
2444
2445Point, and before-insertion markers, are relocated as in the function `insert'.
2446The optional third arg INHERIT, if non-nil, says to inherit text properties
2447from adjoining text, if those properties are sticky. */)
2448 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2449{
2450 CHECK_NUMBER (byte);
2451 if (XINT (byte) < 0 || XINT (byte) > 255)
2452 args_out_of_range_3 (byte, make_number (0), make_number (255));
2453 if (XINT (byte) >= 128
2454 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2455 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2456 return Finsert_char (byte, count, inherit);
2457}
2458
2459\f
2460/* Making strings from buffer contents. */
2461
2462/* Return a Lisp_String containing the text of the current buffer from
2463 START to END. If text properties are in use and the current buffer
2464 has properties in the range specified, the resulting string will also
2465 have them, if PROPS is nonzero.
2466
2467 We don't want to use plain old make_string here, because it calls
2468 make_uninit_string, which can cause the buffer arena to be
2469 compacted. make_string has no way of knowing that the data has
2470 been moved, and thus copies the wrong data into the string. This
2471 doesn't effect most of the other users of make_string, so it should
2472 be left as is. But we should use this function when conjuring
2473 buffer substrings. */
2474
2475Lisp_Object
2476make_buffer_string (ptrdiff_t start, ptrdiff_t end, int props)
2477{
2478 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2479 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2480
2481 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2482}
2483
2484/* Return a Lisp_String containing the text of the current buffer from
2485 START / START_BYTE to END / END_BYTE.
2486
2487 If text properties are in use and the current buffer
2488 has properties in the range specified, the resulting string will also
2489 have them, if PROPS is nonzero.
2490
2491 We don't want to use plain old make_string here, because it calls
2492 make_uninit_string, which can cause the buffer arena to be
2493 compacted. make_string has no way of knowing that the data has
2494 been moved, and thus copies the wrong data into the string. This
2495 doesn't effect most of the other users of make_string, so it should
2496 be left as is. But we should use this function when conjuring
2497 buffer substrings. */
2498
2499Lisp_Object
2500make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2501 ptrdiff_t end, ptrdiff_t end_byte, int props)
2502{
2503 Lisp_Object result, tem, tem1;
2504
2505 if (start < GPT && GPT < end)
2506 move_gap (start);
2507
2508 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2509 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2510 else
2511 result = make_uninit_string (end - start);
2512 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2513
2514 /* If desired, update and copy the text properties. */
2515 if (props)
2516 {
2517 update_buffer_properties (start, end);
2518
2519 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2520 tem1 = Ftext_properties_at (make_number (start), Qnil);
2521
2522 if (XINT (tem) != end || !NILP (tem1))
2523 copy_intervals_to_string (result, current_buffer, start,
2524 end - start);
2525 }
2526
2527 return result;
2528}
2529
2530/* Call Vbuffer_access_fontify_functions for the range START ... END
2531 in the current buffer, if necessary. */
2532
2533static void
2534update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2535{
2536 /* If this buffer has some access functions,
2537 call them, specifying the range of the buffer being accessed. */
2538 if (!NILP (Vbuffer_access_fontify_functions))
2539 {
2540 Lisp_Object args[3];
2541 Lisp_Object tem;
2542
2543 args[0] = Qbuffer_access_fontify_functions;
2544 XSETINT (args[1], start);
2545 XSETINT (args[2], end);
2546
2547 /* But don't call them if we can tell that the work
2548 has already been done. */
2549 if (!NILP (Vbuffer_access_fontified_property))
2550 {
2551 tem = Ftext_property_any (args[1], args[2],
2552 Vbuffer_access_fontified_property,
2553 Qnil, Qnil);
2554 if (! NILP (tem))
2555 Frun_hook_with_args (3, args);
2556 }
2557 else
2558 Frun_hook_with_args (3, args);
2559 }
2560}
2561
2562DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2563 doc: /* Return the contents of part of the current buffer as a string.
2564The two arguments START and END are character positions;
2565they can be in either order.
2566The string returned is multibyte if the buffer is multibyte.
2567
2568This function copies the text properties of that part of the buffer
2569into the result string; if you don't want the text properties,
2570use `buffer-substring-no-properties' instead. */)
2571 (Lisp_Object start, Lisp_Object end)
2572{
2573 register ptrdiff_t b, e;
2574
2575 validate_region (&start, &end);
2576 b = XINT (start);
2577 e = XINT (end);
2578
2579 return make_buffer_string (b, e, 1);
2580}
2581
2582DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2583 Sbuffer_substring_no_properties, 2, 2, 0,
2584 doc: /* Return the characters of part of the buffer, without the text properties.
2585The two arguments START and END are character positions;
2586they can be in either order. */)
2587 (Lisp_Object start, Lisp_Object end)
2588{
2589 register ptrdiff_t b, e;
2590
2591 validate_region (&start, &end);
2592 b = XINT (start);
2593 e = XINT (end);
2594
2595 return make_buffer_string (b, e, 0);
2596}
2597
2598DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2599 doc: /* Return the contents of the current buffer as a string.
2600If narrowing is in effect, this function returns only the visible part
2601of the buffer. */)
2602 (void)
2603{
2604 return make_buffer_string (BEGV, ZV, 1);
2605}
2606
2607DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2608 1, 3, 0,
2609 doc: /* Insert before point a substring of the contents of BUFFER.
2610BUFFER may be a buffer or a buffer name.
2611Arguments START and END are character positions specifying the substring.
2612They default to the values of (point-min) and (point-max) in BUFFER. */)
2613 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2614{
2615 register EMACS_INT b, e, temp;
2616 register struct buffer *bp, *obuf;
2617 Lisp_Object buf;
2618
2619 buf = Fget_buffer (buffer);
2620 if (NILP (buf))
2621 nsberror (buffer);
2622 bp = XBUFFER (buf);
2623 if (NILP (BVAR (bp, name)))
2624 error ("Selecting deleted buffer");
2625
2626 if (NILP (start))
2627 b = BUF_BEGV (bp);
2628 else
2629 {
2630 CHECK_NUMBER_COERCE_MARKER (start);
2631 b = XINT (start);
2632 }
2633 if (NILP (end))
2634 e = BUF_ZV (bp);
2635 else
2636 {
2637 CHECK_NUMBER_COERCE_MARKER (end);
2638 e = XINT (end);
2639 }
2640
2641 if (b > e)
2642 temp = b, b = e, e = temp;
2643
2644 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2645 args_out_of_range (start, end);
2646
2647 obuf = current_buffer;
2648 set_buffer_internal_1 (bp);
2649 update_buffer_properties (b, e);
2650 set_buffer_internal_1 (obuf);
2651
2652 insert_from_buffer (bp, b, e - b, 0);
2653 return Qnil;
2654}
2655
2656DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2657 6, 6, 0,
2658 doc: /* Compare two substrings of two buffers; return result as number.
2659the value is -N if first string is less after N-1 chars,
2660+N if first string is greater after N-1 chars, or 0 if strings match.
2661Each substring is represented as three arguments: BUFFER, START and END.
2662That makes six args in all, three for each substring.
2663
2664The value of `case-fold-search' in the current buffer
2665determines whether case is significant or ignored. */)
2666 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2667{
2668 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2669 register struct buffer *bp1, *bp2;
2670 register Lisp_Object trt
2671 = (!NILP (BVAR (current_buffer, case_fold_search))
2672 ? BVAR (current_buffer, case_canon_table) : Qnil);
2673 ptrdiff_t chars = 0;
2674 ptrdiff_t i1, i2, i1_byte, i2_byte;
2675
2676 /* Find the first buffer and its substring. */
2677
2678 if (NILP (buffer1))
2679 bp1 = current_buffer;
2680 else
2681 {
2682 Lisp_Object buf1;
2683 buf1 = Fget_buffer (buffer1);
2684 if (NILP (buf1))
2685 nsberror (buffer1);
2686 bp1 = XBUFFER (buf1);
2687 if (NILP (BVAR (bp1, name)))
2688 error ("Selecting deleted buffer");
2689 }
2690
2691 if (NILP (start1))
2692 begp1 = BUF_BEGV (bp1);
2693 else
2694 {
2695 CHECK_NUMBER_COERCE_MARKER (start1);
2696 begp1 = XINT (start1);
2697 }
2698 if (NILP (end1))
2699 endp1 = BUF_ZV (bp1);
2700 else
2701 {
2702 CHECK_NUMBER_COERCE_MARKER (end1);
2703 endp1 = XINT (end1);
2704 }
2705
2706 if (begp1 > endp1)
2707 temp = begp1, begp1 = endp1, endp1 = temp;
2708
2709 if (!(BUF_BEGV (bp1) <= begp1
2710 && begp1 <= endp1
2711 && endp1 <= BUF_ZV (bp1)))
2712 args_out_of_range (start1, end1);
2713
2714 /* Likewise for second substring. */
2715
2716 if (NILP (buffer2))
2717 bp2 = current_buffer;
2718 else
2719 {
2720 Lisp_Object buf2;
2721 buf2 = Fget_buffer (buffer2);
2722 if (NILP (buf2))
2723 nsberror (buffer2);
2724 bp2 = XBUFFER (buf2);
2725 if (NILP (BVAR (bp2, name)))
2726 error ("Selecting deleted buffer");
2727 }
2728
2729 if (NILP (start2))
2730 begp2 = BUF_BEGV (bp2);
2731 else
2732 {
2733 CHECK_NUMBER_COERCE_MARKER (start2);
2734 begp2 = XINT (start2);
2735 }
2736 if (NILP (end2))
2737 endp2 = BUF_ZV (bp2);
2738 else
2739 {
2740 CHECK_NUMBER_COERCE_MARKER (end2);
2741 endp2 = XINT (end2);
2742 }
2743
2744 if (begp2 > endp2)
2745 temp = begp2, begp2 = endp2, endp2 = temp;
2746
2747 if (!(BUF_BEGV (bp2) <= begp2
2748 && begp2 <= endp2
2749 && endp2 <= BUF_ZV (bp2)))
2750 args_out_of_range (start2, end2);
2751
2752 i1 = begp1;
2753 i2 = begp2;
2754 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2755 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2756
2757 while (i1 < endp1 && i2 < endp2)
2758 {
2759 /* When we find a mismatch, we must compare the
2760 characters, not just the bytes. */
2761 int c1, c2;
2762
2763 QUIT;
2764
2765 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2766 {
2767 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2768 BUF_INC_POS (bp1, i1_byte);
2769 i1++;
2770 }
2771 else
2772 {
2773 c1 = BUF_FETCH_BYTE (bp1, i1);
2774 MAKE_CHAR_MULTIBYTE (c1);
2775 i1++;
2776 }
2777
2778 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2779 {
2780 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2781 BUF_INC_POS (bp2, i2_byte);
2782 i2++;
2783 }
2784 else
2785 {
2786 c2 = BUF_FETCH_BYTE (bp2, i2);
2787 MAKE_CHAR_MULTIBYTE (c2);
2788 i2++;
2789 }
2790
2791 if (!NILP (trt))
2792 {
2793 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2794 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2795 }
2796 if (c1 < c2)
2797 return make_number (- 1 - chars);
2798 if (c1 > c2)
2799 return make_number (chars + 1);
2800
2801 chars++;
2802 }
2803
2804 /* The strings match as far as they go.
2805 If one is shorter, that one is less. */
2806 if (chars < endp1 - begp1)
2807 return make_number (chars + 1);
2808 else if (chars < endp2 - begp2)
2809 return make_number (- chars - 1);
2810
2811 /* Same length too => they are equal. */
2812 return make_number (0);
2813}
2814\f
2815static Lisp_Object
2816subst_char_in_region_unwind (Lisp_Object arg)
2817{
2818 bset_undo_list (current_buffer, arg);
2819 return arg;
2820}
2821
2822static Lisp_Object
2823subst_char_in_region_unwind_1 (Lisp_Object arg)
2824{
2825 bset_filename (current_buffer, arg);
2826 return arg;
2827}
2828
2829DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2830 Ssubst_char_in_region, 4, 5, 0,
2831 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2832If optional arg NOUNDO is non-nil, don't record this change for undo
2833and don't mark the buffer as really changed.
2834Both characters must have the same length of multi-byte form. */)
2835 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2836{
2837 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2838 /* Keep track of the first change in the buffer:
2839 if 0 we haven't found it yet.
2840 if < 0 we've found it and we've run the before-change-function.
2841 if > 0 we've actually performed it and the value is its position. */
2842 ptrdiff_t changed = 0;
2843 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2844 unsigned char *p;
2845 ptrdiff_t count = SPECPDL_INDEX ();
2846#define COMBINING_NO 0
2847#define COMBINING_BEFORE 1
2848#define COMBINING_AFTER 2
2849#define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2850 int maybe_byte_combining = COMBINING_NO;
2851 ptrdiff_t last_changed = 0;
2852 int multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2853 int fromc, toc;
2854
2855 restart:
2856
2857 validate_region (&start, &end);
2858 CHECK_CHARACTER (fromchar);
2859 CHECK_CHARACTER (tochar);
2860 fromc = XFASTINT (fromchar);
2861 toc = XFASTINT (tochar);
2862
2863 if (multibyte_p)
2864 {
2865 len = CHAR_STRING (fromc, fromstr);
2866 if (CHAR_STRING (toc, tostr) != len)
2867 error ("Characters in `subst-char-in-region' have different byte-lengths");
2868 if (!ASCII_BYTE_P (*tostr))
2869 {
2870 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2871 complete multibyte character, it may be combined with the
2872 after bytes. If it is in the range 0xA0..0xFF, it may be
2873 combined with the before and after bytes. */
2874 if (!CHAR_HEAD_P (*tostr))
2875 maybe_byte_combining = COMBINING_BOTH;
2876 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2877 maybe_byte_combining = COMBINING_AFTER;
2878 }
2879 }
2880 else
2881 {
2882 len = 1;
2883 fromstr[0] = fromc;
2884 tostr[0] = toc;
2885 }
2886
2887 pos = XINT (start);
2888 pos_byte = CHAR_TO_BYTE (pos);
2889 stop = CHAR_TO_BYTE (XINT (end));
2890 end_byte = stop;
2891
2892 /* If we don't want undo, turn off putting stuff on the list.
2893 That's faster than getting rid of things,
2894 and it prevents even the entry for a first change.
2895 Also inhibit locking the file. */
2896 if (!changed && !NILP (noundo))
2897 {
2898 record_unwind_protect (subst_char_in_region_unwind,
2899 BVAR (current_buffer, undo_list));
2900 bset_undo_list (current_buffer, Qt);
2901 /* Don't do file-locking. */
2902 record_unwind_protect (subst_char_in_region_unwind_1,
2903 BVAR (current_buffer, filename));
2904 bset_filename (current_buffer, Qnil);
2905 }
2906
2907 if (pos_byte < GPT_BYTE)
2908 stop = min (stop, GPT_BYTE);
2909 while (1)
2910 {
2911 ptrdiff_t pos_byte_next = pos_byte;
2912
2913 if (pos_byte >= stop)
2914 {
2915 if (pos_byte >= end_byte) break;
2916 stop = end_byte;
2917 }
2918 p = BYTE_POS_ADDR (pos_byte);
2919 if (multibyte_p)
2920 INC_POS (pos_byte_next);
2921 else
2922 ++pos_byte_next;
2923 if (pos_byte_next - pos_byte == len
2924 && p[0] == fromstr[0]
2925 && (len == 1
2926 || (p[1] == fromstr[1]
2927 && (len == 2 || (p[2] == fromstr[2]
2928 && (len == 3 || p[3] == fromstr[3]))))))
2929 {
2930 if (changed < 0)
2931 /* We've already seen this and run the before-change-function;
2932 this time we only need to record the actual position. */
2933 changed = pos;
2934 else if (!changed)
2935 {
2936 changed = -1;
2937 modify_region (current_buffer, pos, XINT (end), 0);
2938
2939 if (! NILP (noundo))
2940 {
2941 if (MODIFF - 1 == SAVE_MODIFF)
2942 SAVE_MODIFF++;
2943 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2944 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2945 }
2946
2947 /* The before-change-function may have moved the gap
2948 or even modified the buffer so we should start over. */
2949 goto restart;
2950 }
2951
2952 /* Take care of the case where the new character
2953 combines with neighboring bytes. */
2954 if (maybe_byte_combining
2955 && (maybe_byte_combining == COMBINING_AFTER
2956 ? (pos_byte_next < Z_BYTE
2957 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2958 : ((pos_byte_next < Z_BYTE
2959 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2960 || (pos_byte > BEG_BYTE
2961 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2962 {
2963 Lisp_Object tem, string;
2964
2965 struct gcpro gcpro1;
2966
2967 tem = BVAR (current_buffer, undo_list);
2968 GCPRO1 (tem);
2969
2970 /* Make a multibyte string containing this single character. */
2971 string = make_multibyte_string ((char *) tostr, 1, len);
2972 /* replace_range is less efficient, because it moves the gap,
2973 but it handles combining correctly. */
2974 replace_range (pos, pos + 1, string,
2975 0, 0, 1);
2976 pos_byte_next = CHAR_TO_BYTE (pos);
2977 if (pos_byte_next > pos_byte)
2978 /* Before combining happened. We should not increment
2979 POS. So, to cancel the later increment of POS,
2980 decrease it now. */
2981 pos--;
2982 else
2983 INC_POS (pos_byte_next);
2984
2985 if (! NILP (noundo))
2986 bset_undo_list (current_buffer, tem);
2987
2988 UNGCPRO;
2989 }
2990 else
2991 {
2992 if (NILP (noundo))
2993 record_change (pos, 1);
2994 for (i = 0; i < len; i++) *p++ = tostr[i];
2995 }
2996 last_changed = pos + 1;
2997 }
2998 pos_byte = pos_byte_next;
2999 pos++;
3000 }
3001
3002 if (changed > 0)
3003 {
3004 signal_after_change (changed,
3005 last_changed - changed, last_changed - changed);
3006 update_compositions (changed, last_changed, CHECK_ALL);
3007 }
3008
3009 unbind_to (count, Qnil);
3010 return Qnil;
3011}
3012
3013
3014static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3015 Lisp_Object);
3016
3017/* Helper function for Ftranslate_region_internal.
3018
3019 Check if a character sequence at POS (POS_BYTE) matches an element
3020 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3021 element is found, return it. Otherwise return Qnil. */
3022
3023static Lisp_Object
3024check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3025 Lisp_Object val)
3026{
3027 int buf_size = 16, buf_used = 0;
3028 int *buf = alloca (sizeof (int) * buf_size);
3029
3030 for (; CONSP (val); val = XCDR (val))
3031 {
3032 Lisp_Object elt;
3033 ptrdiff_t len, i;
3034
3035 elt = XCAR (val);
3036 if (! CONSP (elt))
3037 continue;
3038 elt = XCAR (elt);
3039 if (! VECTORP (elt))
3040 continue;
3041 len = ASIZE (elt);
3042 if (len <= end - pos)
3043 {
3044 for (i = 0; i < len; i++)
3045 {
3046 if (buf_used <= i)
3047 {
3048 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3049 int len1;
3050
3051 if (buf_used == buf_size)
3052 {
3053 int *newbuf;
3054
3055 buf_size += 16;
3056 newbuf = alloca (sizeof (int) * buf_size);
3057 memcpy (newbuf, buf, sizeof (int) * buf_used);
3058 buf = newbuf;
3059 }
3060 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3061 pos_byte += len1;
3062 }
3063 if (XINT (AREF (elt, i)) != buf[i])
3064 break;
3065 }
3066 if (i == len)
3067 return XCAR (val);
3068 }
3069 }
3070 return Qnil;
3071}
3072
3073
3074DEFUN ("translate-region-internal", Ftranslate_region_internal,
3075 Stranslate_region_internal, 3, 3, 0,
3076 doc: /* Internal use only.
3077From START to END, translate characters according to TABLE.
3078TABLE is a string or a char-table; the Nth character in it is the
3079mapping for the character with code N.
3080It returns the number of characters changed. */)
3081 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3082{
3083 register unsigned char *tt; /* Trans table. */
3084 register int nc; /* New character. */
3085 int cnt; /* Number of changes made. */
3086 ptrdiff_t size; /* Size of translate table. */
3087 ptrdiff_t pos, pos_byte, end_pos;
3088 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3089 int string_multibyte IF_LINT (= 0);
3090
3091 validate_region (&start, &end);
3092 if (CHAR_TABLE_P (table))
3093 {
3094 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3095 error ("Not a translation table");
3096 size = MAX_CHAR;
3097 tt = NULL;
3098 }
3099 else
3100 {
3101 CHECK_STRING (table);
3102
3103 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3104 table = string_make_unibyte (table);
3105 string_multibyte = SCHARS (table) < SBYTES (table);
3106 size = SBYTES (table);
3107 tt = SDATA (table);
3108 }
3109
3110 pos = XINT (start);
3111 pos_byte = CHAR_TO_BYTE (pos);
3112 end_pos = XINT (end);
3113 modify_region (current_buffer, pos, end_pos, 0);
3114
3115 cnt = 0;
3116 for (; pos < end_pos; )
3117 {
3118 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3119 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3120 int len, str_len;
3121 int oc;
3122 Lisp_Object val;
3123
3124 if (multibyte)
3125 oc = STRING_CHAR_AND_LENGTH (p, len);
3126 else
3127 oc = *p, len = 1;
3128 if (oc < size)
3129 {
3130 if (tt)
3131 {
3132 /* Reload as signal_after_change in last iteration may GC. */
3133 tt = SDATA (table);
3134 if (string_multibyte)
3135 {
3136 str = tt + string_char_to_byte (table, oc);
3137 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3138 }
3139 else
3140 {
3141 nc = tt[oc];
3142 if (! ASCII_BYTE_P (nc) && multibyte)
3143 {
3144 str_len = BYTE8_STRING (nc, buf);
3145 str = buf;
3146 }
3147 else
3148 {
3149 str_len = 1;
3150 str = tt + oc;
3151 }
3152 }
3153 }
3154 else
3155 {
3156 nc = oc;
3157 val = CHAR_TABLE_REF (table, oc);
3158 if (CHARACTERP (val))
3159 {
3160 nc = XFASTINT (val);
3161 str_len = CHAR_STRING (nc, buf);
3162 str = buf;
3163 }
3164 else if (VECTORP (val) || (CONSP (val)))
3165 {
3166 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3167 where TO is TO-CHAR or [TO-CHAR ...]. */
3168 nc = -1;
3169 }
3170 }
3171
3172 if (nc != oc && nc >= 0)
3173 {
3174 /* Simple one char to one char translation. */
3175 if (len != str_len)
3176 {
3177 Lisp_Object string;
3178
3179 /* This is less efficient, because it moves the gap,
3180 but it should handle multibyte characters correctly. */
3181 string = make_multibyte_string ((char *) str, 1, str_len);
3182 replace_range (pos, pos + 1, string, 1, 0, 1);
3183 len = str_len;
3184 }
3185 else
3186 {
3187 record_change (pos, 1);
3188 while (str_len-- > 0)
3189 *p++ = *str++;
3190 signal_after_change (pos, 1, 1);
3191 update_compositions (pos, pos + 1, CHECK_BORDER);
3192 }
3193 ++cnt;
3194 }
3195 else if (nc < 0)
3196 {
3197 Lisp_Object string;
3198
3199 if (CONSP (val))
3200 {
3201 val = check_translation (pos, pos_byte, end_pos, val);
3202 if (NILP (val))
3203 {
3204 pos_byte += len;
3205 pos++;
3206 continue;
3207 }
3208 /* VAL is ([FROM-CHAR ...] . TO). */
3209 len = ASIZE (XCAR (val));
3210 val = XCDR (val);
3211 }
3212 else
3213 len = 1;
3214
3215 if (VECTORP (val))
3216 {
3217 string = Fconcat (1, &val);
3218 }
3219 else
3220 {
3221 string = Fmake_string (make_number (1), val);
3222 }
3223 replace_range (pos, pos + len, string, 1, 0, 1);
3224 pos_byte += SBYTES (string);
3225 pos += SCHARS (string);
3226 cnt += SCHARS (string);
3227 end_pos += SCHARS (string) - len;
3228 continue;
3229 }
3230 }
3231 pos_byte += len;
3232 pos++;
3233 }
3234
3235 return make_number (cnt);
3236}
3237
3238DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3239 doc: /* Delete the text between START and END.
3240If called interactively, delete the region between point and mark.
3241This command deletes buffer text without modifying the kill ring. */)
3242 (Lisp_Object start, Lisp_Object end)
3243{
3244 validate_region (&start, &end);
3245 del_range (XINT (start), XINT (end));
3246 return Qnil;
3247}
3248
3249DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3250 Sdelete_and_extract_region, 2, 2, 0,
3251 doc: /* Delete the text between START and END and return it. */)
3252 (Lisp_Object start, Lisp_Object end)
3253{
3254 validate_region (&start, &end);
3255 if (XINT (start) == XINT (end))
3256 return empty_unibyte_string;
3257 return del_range_1 (XINT (start), XINT (end), 1, 1);
3258}
3259\f
3260DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3261 doc: /* Remove restrictions (narrowing) from current buffer.
3262This allows the buffer's full text to be seen and edited. */)
3263 (void)
3264{
3265 if (BEG != BEGV || Z != ZV)
3266 current_buffer->clip_changed = 1;
3267 BEGV = BEG;
3268 BEGV_BYTE = BEG_BYTE;
3269 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3270 /* Changing the buffer bounds invalidates any recorded current column. */
3271 invalidate_current_column ();
3272 return Qnil;
3273}
3274
3275DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3276 doc: /* Restrict editing in this buffer to the current region.
3277The rest of the text becomes temporarily invisible and untouchable
3278but is not deleted; if you save the buffer in a file, the invisible
3279text is included in the file. \\[widen] makes all visible again.
3280See also `save-restriction'.
3281
3282When calling from a program, pass two arguments; positions (integers
3283or markers) bounding the text that should remain visible. */)
3284 (register Lisp_Object start, Lisp_Object end)
3285{
3286 CHECK_NUMBER_COERCE_MARKER (start);
3287 CHECK_NUMBER_COERCE_MARKER (end);
3288
3289 if (XINT (start) > XINT (end))
3290 {
3291 Lisp_Object tem;
3292 tem = start; start = end; end = tem;
3293 }
3294
3295 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3296 args_out_of_range (start, end);
3297
3298 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3299 current_buffer->clip_changed = 1;
3300
3301 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3302 SET_BUF_ZV (current_buffer, XFASTINT (end));
3303 if (PT < XFASTINT (start))
3304 SET_PT (XFASTINT (start));
3305 if (PT > XFASTINT (end))
3306 SET_PT (XFASTINT (end));
3307 /* Changing the buffer bounds invalidates any recorded current column. */
3308 invalidate_current_column ();
3309 return Qnil;
3310}
3311
3312Lisp_Object
3313save_restriction_save (void)
3314{
3315 if (BEGV == BEG && ZV == Z)
3316 /* The common case that the buffer isn't narrowed.
3317 We return just the buffer object, which save_restriction_restore
3318 recognizes as meaning `no restriction'. */
3319 return Fcurrent_buffer ();
3320 else
3321 /* We have to save a restriction, so return a pair of markers, one
3322 for the beginning and one for the end. */
3323 {
3324 Lisp_Object beg, end;
3325
3326 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3327 end = build_marker (current_buffer, ZV, ZV_BYTE);
3328
3329 /* END must move forward if text is inserted at its exact location. */
3330 XMARKER (end)->insertion_type = 1;
3331
3332 return Fcons (beg, end);
3333 }
3334}
3335
3336Lisp_Object
3337save_restriction_restore (Lisp_Object data)
3338{
3339 struct buffer *cur = NULL;
3340 struct buffer *buf = (CONSP (data)
3341 ? XMARKER (XCAR (data))->buffer
3342 : XBUFFER (data));
3343
3344 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3345 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3346 is the case if it is or has an indirect buffer), then make
3347 sure it is current before we update BEGV, so
3348 set_buffer_internal takes care of managing those markers. */
3349 cur = current_buffer;
3350 set_buffer_internal (buf);
3351 }
3352
3353 if (CONSP (data))
3354 /* A pair of marks bounding a saved restriction. */
3355 {
3356 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3357 struct Lisp_Marker *end = XMARKER (XCDR (data));
3358 eassert (buf == end->buffer);
3359
3360 if (buf /* Verify marker still points to a buffer. */
3361 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3362 /* The restriction has changed from the saved one, so restore
3363 the saved restriction. */
3364 {
3365 ptrdiff_t pt = BUF_PT (buf);
3366
3367 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3368 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3369
3370 if (pt < beg->charpos || pt > end->charpos)
3371 /* The point is outside the new visible range, move it inside. */
3372 SET_BUF_PT_BOTH (buf,
3373 clip_to_bounds (beg->charpos, pt, end->charpos),
3374 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3375 end->bytepos));
3376
3377 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3378 }
3379 /* These aren't needed anymore, so don't wait for GC. */
3380 free_marker (XCAR (data));
3381 free_marker (XCDR (data));
3382 free_cons (XCONS (data));
3383 }
3384 else
3385 /* A buffer, which means that there was no old restriction. */
3386 {
3387 if (buf /* Verify marker still points to a buffer. */
3388 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3389 /* The buffer has been narrowed, get rid of the narrowing. */
3390 {
3391 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3392 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3393
3394 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3395 }
3396 }
3397
3398 /* Changing the buffer bounds invalidates any recorded current column. */
3399 invalidate_current_column ();
3400
3401 if (cur)
3402 set_buffer_internal (cur);
3403
3404 return Qnil;
3405}
3406
3407DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3408 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3409The buffer's restrictions make parts of the beginning and end invisible.
3410\(They are set up with `narrow-to-region' and eliminated with `widen'.)
3411This special form, `save-restriction', saves the current buffer's restrictions
3412when it is entered, and restores them when it is exited.
3413So any `narrow-to-region' within BODY lasts only until the end of the form.
3414The old restrictions settings are restored
3415even in case of abnormal exit (throw or error).
3416
3417The value returned is the value of the last form in BODY.
3418
3419Note: if you are using both `save-excursion' and `save-restriction',
3420use `save-excursion' outermost:
3421 (save-excursion (save-restriction ...))
3422
3423usage: (save-restriction &rest BODY) */)
3424 (Lisp_Object body)
3425{
3426 register Lisp_Object val;
3427 ptrdiff_t count = SPECPDL_INDEX ();
3428
3429 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3430 val = Fprogn (body);
3431 return unbind_to (count, val);
3432}
3433\f
3434/* Buffer for the most recent text displayed by Fmessage_box. */
3435static char *message_text;
3436
3437/* Allocated length of that buffer. */
3438static ptrdiff_t message_length;
3439
3440DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3441 doc: /* Display a message at the bottom of the screen.
3442The message also goes into the `*Messages*' buffer.
3443\(In keyboard macros, that's all it does.)
3444Return the message.
3445
3446The first argument is a format control string, and the rest are data
3447to be formatted under control of the string. See `format' for details.
3448
3449Note: Use (message "%s" VALUE) to print the value of expressions and
3450variables to avoid accidentally interpreting `%' as format specifiers.
3451
3452If the first argument is nil or the empty string, the function clears
3453any existing message; this lets the minibuffer contents show. See
3454also `current-message'.
3455
3456usage: (message FORMAT-STRING &rest ARGS) */)
3457 (ptrdiff_t nargs, Lisp_Object *args)
3458{
3459 if (NILP (args[0])
3460 || (STRINGP (args[0])
3461 && SBYTES (args[0]) == 0))
3462 {
3463 message (0);
3464 return args[0];
3465 }
3466 else
3467 {
3468 register Lisp_Object val;
3469 val = Fformat (nargs, args);
3470 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3471 return val;
3472 }
3473}
3474
3475DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3476 doc: /* Display a message, in a dialog box if possible.
3477If a dialog box is not available, use the echo area.
3478The first argument is a format control string, and the rest are data
3479to be formatted under control of the string. See `format' for details.
3480
3481If the first argument is nil or the empty string, clear any existing
3482message; let the minibuffer contents show.
3483
3484usage: (message-box FORMAT-STRING &rest ARGS) */)
3485 (ptrdiff_t nargs, Lisp_Object *args)
3486{
3487 if (NILP (args[0]))
3488 {
3489 message (0);
3490 return Qnil;
3491 }
3492 else
3493 {
3494 register Lisp_Object val;
3495 val = Fformat (nargs, args);
3496#ifdef HAVE_MENUS
3497 /* The MS-DOS frames support popup menus even though they are
3498 not FRAME_WINDOW_P. */
3499 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3500 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3501 {
3502 Lisp_Object pane, menu;
3503 struct gcpro gcpro1;
3504 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3505 GCPRO1 (pane);
3506 menu = Fcons (val, pane);
3507 Fx_popup_dialog (Qt, menu, Qt);
3508 UNGCPRO;
3509 return val;
3510 }
3511#endif /* HAVE_MENUS */
3512 /* Copy the data so that it won't move when we GC. */
3513 if (SBYTES (val) > message_length)
3514 {
3515 ptrdiff_t new_length = SBYTES (val) + 80;
3516 message_text = xrealloc (message_text, new_length);
3517 message_length = new_length;
3518 }
3519 memcpy (message_text, SDATA (val), SBYTES (val));
3520 message2 (message_text, SBYTES (val),
3521 STRING_MULTIBYTE (val));
3522 return val;
3523 }
3524}
3525
3526DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3527 doc: /* Display a message in a dialog box or in the echo area.
3528If this command was invoked with the mouse, use a dialog box if
3529`use-dialog-box' is non-nil.
3530Otherwise, use the echo area.
3531The first argument is a format control string, and the rest are data
3532to be formatted under control of the string. See `format' for details.
3533
3534If the first argument is nil or the empty string, clear any existing
3535message; let the minibuffer contents show.
3536
3537usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3538 (ptrdiff_t nargs, Lisp_Object *args)
3539{
3540#ifdef HAVE_MENUS
3541 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3542 && use_dialog_box)
3543 return Fmessage_box (nargs, args);
3544#endif
3545 return Fmessage (nargs, args);
3546}
3547
3548DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3549 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3550 (void)
3551{
3552 return current_message ();
3553}
3554
3555
3556DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3557 doc: /* Return a copy of STRING with text properties added.
3558First argument is the string to copy.
3559Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3560properties to add to the result.
3561usage: (propertize STRING &rest PROPERTIES) */)
3562 (ptrdiff_t nargs, Lisp_Object *args)
3563{
3564 Lisp_Object properties, string;
3565 struct gcpro gcpro1, gcpro2;
3566 ptrdiff_t i;
3567
3568 /* Number of args must be odd. */
3569 if ((nargs & 1) == 0)
3570 error ("Wrong number of arguments");
3571
3572 properties = string = Qnil;
3573 GCPRO2 (properties, string);
3574
3575 /* First argument must be a string. */
3576 CHECK_STRING (args[0]);
3577 string = Fcopy_sequence (args[0]);
3578
3579 for (i = 1; i < nargs; i += 2)
3580 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3581
3582 Fadd_text_properties (make_number (0),
3583 make_number (SCHARS (string)),
3584 properties, string);
3585 RETURN_UNGCPRO (string);
3586}
3587
3588DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3589 doc: /* Format a string out of a format-string and arguments.
3590The first argument is a format control string.
3591The other arguments are substituted into it to make the result, a string.
3592
3593The format control string may contain %-sequences meaning to substitute
3594the next available argument:
3595
3596%s means print a string argument. Actually, prints any object, with `princ'.
3597%d means print as number in decimal (%o octal, %x hex).
3598%X is like %x, but uses upper case.
3599%e means print a number in exponential notation.
3600%f means print a number in decimal-point notation.
3601%g means print a number in exponential notation
3602 or decimal-point notation, whichever uses fewer characters.
3603%c means print a number as a single character.
3604%S means print any object as an s-expression (using `prin1').
3605
3606The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3607Use %% to put a single % into the output.
3608
3609A %-sequence may contain optional flag, width, and precision
3610specifiers, as follows:
3611
3612 %<flags><width><precision>character
3613
3614where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3615
3616The + flag character inserts a + before any positive number, while a
3617space inserts a space before any positive number; these flags only
3618affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3619The - and 0 flags affect the width specifier, as described below.
3620
3621The # flag means to use an alternate display form for %o, %x, %X, %e,
3622%f, and %g sequences: for %o, it ensures that the result begins with
3623\"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3624for %e, %f, and %g, it causes a decimal point to be included even if
3625the precision is zero.
3626
3627The width specifier supplies a lower limit for the length of the
3628printed representation. The padding, if any, normally goes on the
3629left, but it goes on the right if the - flag is present. The padding
3630character is normally a space, but it is 0 if the 0 flag is present.
3631The 0 flag is ignored if the - flag is present, or the format sequence
3632is something other than %d, %e, %f, and %g.
3633
3634For %e, %f, and %g sequences, the number after the "." in the
3635precision specifier says how many decimal places to show; if zero, the
3636decimal point itself is omitted. For %s and %S, the precision
3637specifier truncates the string to the given width.
3638
3639usage: (format STRING &rest OBJECTS) */)
3640 (ptrdiff_t nargs, Lisp_Object *args)
3641{
3642 ptrdiff_t n; /* The number of the next arg to substitute */
3643 char initial_buffer[4000];
3644 char *buf = initial_buffer;
3645 ptrdiff_t bufsize = sizeof initial_buffer;
3646 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3647 char *p;
3648 Lisp_Object buf_save_value IF_LINT (= {0});
3649 register char *format, *end, *format_start;
3650 ptrdiff_t formatlen, nchars;
3651 /* Nonzero if the format is multibyte. */
3652 int multibyte_format = 0;
3653 /* Nonzero if the output should be a multibyte string,
3654 which is true if any of the inputs is one. */
3655 int multibyte = 0;
3656 /* When we make a multibyte string, we must pay attention to the
3657 byte combining problem, i.e., a byte may be combined with a
3658 multibyte character of the previous string. This flag tells if we
3659 must consider such a situation or not. */
3660 int maybe_combine_byte;
3661 Lisp_Object val;
3662 int arg_intervals = 0;
3663 USE_SAFE_ALLOCA;
3664
3665 /* discarded[I] is 1 if byte I of the format
3666 string was not copied into the output.
3667 It is 2 if byte I was not the first byte of its character. */
3668 char *discarded;
3669
3670 /* Each element records, for one argument,
3671 the start and end bytepos in the output string,
3672 whether the argument has been converted to string (e.g., due to "%S"),
3673 and whether the argument is a string with intervals.
3674 info[0] is unused. Unused elements have -1 for start. */
3675 struct info
3676 {
3677 ptrdiff_t start, end;
3678 int converted_to_string;
3679 int intervals;
3680 } *info = 0;
3681
3682 /* It should not be necessary to GCPRO ARGS, because
3683 the caller in the interpreter should take care of that. */
3684
3685 CHECK_STRING (args[0]);
3686 format_start = SSDATA (args[0]);
3687 formatlen = SBYTES (args[0]);
3688
3689 /* Allocate the info and discarded tables. */
3690 {
3691 ptrdiff_t i;
3692 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3693 memory_full (SIZE_MAX);
3694 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3695 discarded = (char *) &info[nargs + 1];
3696 for (i = 0; i < nargs + 1; i++)
3697 {
3698 info[i].start = -1;
3699 info[i].intervals = info[i].converted_to_string = 0;
3700 }
3701 memset (discarded, 0, formatlen);
3702 }
3703
3704 /* Try to determine whether the result should be multibyte.
3705 This is not always right; sometimes the result needs to be multibyte
3706 because of an object that we will pass through prin1,
3707 and in that case, we won't know it here. */
3708 multibyte_format = STRING_MULTIBYTE (args[0]);
3709 multibyte = multibyte_format;
3710 for (n = 1; !multibyte && n < nargs; n++)
3711 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3712 multibyte = 1;
3713
3714 /* If we start out planning a unibyte result,
3715 then discover it has to be multibyte, we jump back to retry. */
3716 retry:
3717
3718 p = buf;
3719 nchars = 0;
3720 n = 0;
3721
3722 /* Scan the format and store result in BUF. */
3723 format = format_start;
3724 end = format + formatlen;
3725 maybe_combine_byte = 0;
3726
3727 while (format != end)
3728 {
3729 /* The values of N and FORMAT when the loop body is entered. */
3730 ptrdiff_t n0 = n;
3731 char *format0 = format;
3732
3733 /* Bytes needed to represent the output of this conversion. */
3734 ptrdiff_t convbytes;
3735
3736 if (*format == '%')
3737 {
3738 /* General format specifications look like
3739
3740 '%' [flags] [field-width] [precision] format
3741
3742 where
3743
3744 flags ::= [-+0# ]+
3745 field-width ::= [0-9]+
3746 precision ::= '.' [0-9]*
3747
3748 If a field-width is specified, it specifies to which width
3749 the output should be padded with blanks, if the output
3750 string is shorter than field-width.
3751
3752 If precision is specified, it specifies the number of
3753 digits to print after the '.' for floats, or the max.
3754 number of chars to print from a string. */
3755
3756 int minus_flag = 0;
3757 int plus_flag = 0;
3758 int space_flag = 0;
3759 int sharp_flag = 0;
3760 int zero_flag = 0;
3761 ptrdiff_t field_width;
3762 int precision_given;
3763 uintmax_t precision = UINTMAX_MAX;
3764 char *num_end;
3765 char conversion;
3766
3767 while (1)
3768 {
3769 switch (*++format)
3770 {
3771 case '-': minus_flag = 1; continue;
3772 case '+': plus_flag = 1; continue;
3773 case ' ': space_flag = 1; continue;
3774 case '#': sharp_flag = 1; continue;
3775 case '0': zero_flag = 1; continue;
3776 }
3777 break;
3778 }
3779
3780 /* Ignore flags when sprintf ignores them. */
3781 space_flag &= ~ plus_flag;
3782 zero_flag &= ~ minus_flag;
3783
3784 {
3785 uintmax_t w = strtoumax (format, &num_end, 10);
3786 if (max_bufsize <= w)
3787 string_overflow ();
3788 field_width = w;
3789 }
3790 precision_given = *num_end == '.';
3791 if (precision_given)
3792 precision = strtoumax (num_end + 1, &num_end, 10);
3793 format = num_end;
3794
3795 if (format == end)
3796 error ("Format string ends in middle of format specifier");
3797
3798 memset (&discarded[format0 - format_start], 1, format - format0);
3799 conversion = *format;
3800 if (conversion == '%')
3801 goto copy_char;
3802 discarded[format - format_start] = 1;
3803 format++;
3804
3805 ++n;
3806 if (! (n < nargs))
3807 error ("Not enough arguments for format string");
3808
3809 /* For 'S', prin1 the argument, and then treat like 's'.
3810 For 's', princ any argument that is not a string or
3811 symbol. But don't do this conversion twice, which might
3812 happen after retrying. */
3813 if ((conversion == 'S'
3814 || (conversion == 's'
3815 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3816 {
3817 if (! info[n].converted_to_string)
3818 {
3819 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3820 args[n] = Fprin1_to_string (args[n], noescape);
3821 info[n].converted_to_string = 1;
3822 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3823 {
3824 multibyte = 1;
3825 goto retry;
3826 }
3827 }
3828 conversion = 's';
3829 }
3830 else if (conversion == 'c')
3831 {
3832 if (FLOATP (args[n]))
3833 {
3834 double d = XFLOAT_DATA (args[n]);
3835 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3836 }
3837
3838 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3839 {
3840 if (!multibyte)
3841 {
3842 multibyte = 1;
3843 goto retry;
3844 }
3845 args[n] = Fchar_to_string (args[n]);
3846 info[n].converted_to_string = 1;
3847 }
3848
3849 if (info[n].converted_to_string)
3850 conversion = 's';
3851 zero_flag = 0;
3852 }
3853
3854 if (SYMBOLP (args[n]))
3855 {
3856 args[n] = SYMBOL_NAME (args[n]);
3857 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3858 {
3859 multibyte = 1;
3860 goto retry;
3861 }
3862 }
3863
3864 if (conversion == 's')
3865 {
3866 /* handle case (precision[n] >= 0) */
3867
3868 ptrdiff_t width, padding, nbytes;
3869 ptrdiff_t nchars_string;
3870
3871 ptrdiff_t prec = -1;
3872 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3873 prec = precision;
3874
3875 /* lisp_string_width ignores a precision of 0, but GNU
3876 libc functions print 0 characters when the precision
3877 is 0. Imitate libc behavior here. Changing
3878 lisp_string_width is the right thing, and will be
3879 done, but meanwhile we work with it. */
3880
3881 if (prec == 0)
3882 width = nchars_string = nbytes = 0;
3883 else
3884 {
3885 ptrdiff_t nch, nby;
3886 width = lisp_string_width (args[n], prec, &nch, &nby);
3887 if (prec < 0)
3888 {
3889 nchars_string = SCHARS (args[n]);
3890 nbytes = SBYTES (args[n]);
3891 }
3892 else
3893 {
3894 nchars_string = nch;
3895 nbytes = nby;
3896 }
3897 }
3898
3899 convbytes = nbytes;
3900 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3901 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3902
3903 padding = width < field_width ? field_width - width : 0;
3904
3905 if (max_bufsize - padding <= convbytes)
3906 string_overflow ();
3907 convbytes += padding;
3908 if (convbytes <= buf + bufsize - p)
3909 {
3910 if (! minus_flag)
3911 {
3912 memset (p, ' ', padding);
3913 p += padding;
3914 nchars += padding;
3915 }
3916
3917 if (p > buf
3918 && multibyte
3919 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3920 && STRING_MULTIBYTE (args[n])
3921 && !CHAR_HEAD_P (SREF (args[n], 0)))
3922 maybe_combine_byte = 1;
3923
3924 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3925 nbytes,
3926 STRING_MULTIBYTE (args[n]), multibyte);
3927
3928 info[n].start = nchars;
3929 nchars += nchars_string;
3930 info[n].end = nchars;
3931
3932 if (minus_flag)
3933 {
3934 memset (p, ' ', padding);
3935 p += padding;
3936 nchars += padding;
3937 }
3938
3939 /* If this argument has text properties, record where
3940 in the result string it appears. */
3941 if (string_intervals (args[n]))
3942 info[n].intervals = arg_intervals = 1;
3943
3944 continue;
3945 }
3946 }
3947 else if (! (conversion == 'c' || conversion == 'd'
3948 || conversion == 'e' || conversion == 'f'
3949 || conversion == 'g' || conversion == 'i'
3950 || conversion == 'o' || conversion == 'x'
3951 || conversion == 'X'))
3952 error ("Invalid format operation %%%c",
3953 STRING_CHAR ((unsigned char *) format - 1));
3954 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3955 error ("Format specifier doesn't match argument type");
3956 else
3957 {
3958 enum
3959 {
3960 /* Maximum precision for a %f conversion such that the
3961 trailing output digit might be nonzero. Any precision
3962 larger than this will not yield useful information. */
3963 USEFUL_PRECISION_MAX =
3964 ((1 - DBL_MIN_EXP)
3965 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3966 : FLT_RADIX == 16 ? 4
3967 : -1)),
3968
3969 /* Maximum number of bytes generated by any format, if
3970 precision is no more than USEFUL_PRECISION_MAX.
3971 On all practical hosts, %f is the worst case. */
3972 SPRINTF_BUFSIZE =
3973 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3974
3975 /* Length of pM (that is, of pMd without the
3976 trailing "d"). */
3977 pMlen = sizeof pMd - 2
3978 };
3979 verify (0 < USEFUL_PRECISION_MAX);
3980
3981 int prec;
3982 ptrdiff_t padding, sprintf_bytes;
3983 uintmax_t excess_precision, numwidth;
3984 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3985
3986 char sprintf_buf[SPRINTF_BUFSIZE];
3987
3988 /* Copy of conversion specification, modified somewhat.
3989 At most three flags F can be specified at once. */
3990 char convspec[sizeof "%FFF.*d" + pMlen];
3991
3992 /* Avoid undefined behavior in underlying sprintf. */
3993 if (conversion == 'd' || conversion == 'i')
3994 sharp_flag = 0;
3995
3996 /* Create the copy of the conversion specification, with
3997 any width and precision removed, with ".*" inserted,
3998 and with pM inserted for integer formats. */
3999 {
4000 char *f = convspec;
4001 *f++ = '%';
4002 *f = '-'; f += minus_flag;
4003 *f = '+'; f += plus_flag;
4004 *f = ' '; f += space_flag;
4005 *f = '#'; f += sharp_flag;
4006 *f = '0'; f += zero_flag;
4007 *f++ = '.';
4008 *f++ = '*';
4009 if (conversion == 'd' || conversion == 'i'
4010 || conversion == 'o' || conversion == 'x'
4011 || conversion == 'X')
4012 {
4013 memcpy (f, pMd, pMlen);
4014 f += pMlen;
4015 zero_flag &= ~ precision_given;
4016 }
4017 *f++ = conversion;
4018 *f = '\0';
4019 }
4020
4021 prec = -1;
4022 if (precision_given)
4023 prec = min (precision, USEFUL_PRECISION_MAX);
4024
4025 /* Use sprintf to format this number into sprintf_buf. Omit
4026 padding and excess precision, though, because sprintf limits
4027 output length to INT_MAX.
4028
4029 There are four types of conversion: double, unsigned
4030 char (passed as int), wide signed int, and wide
4031 unsigned int. Treat them separately because the
4032 sprintf ABI is sensitive to which type is passed. Be
4033 careful about integer overflow, NaNs, infinities, and
4034 conversions; for example, the min and max macros are
4035 not suitable here. */
4036 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4037 {
4038 double x = (INTEGERP (args[n])
4039 ? XINT (args[n])
4040 : XFLOAT_DATA (args[n]));
4041 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4042 }
4043 else if (conversion == 'c')
4044 {
4045 /* Don't use sprintf here, as it might mishandle prec. */
4046 sprintf_buf[0] = XINT (args[n]);
4047 sprintf_bytes = prec != 0;
4048 }
4049 else if (conversion == 'd')
4050 {
4051 /* For float, maybe we should use "%1.0f"
4052 instead so it also works for values outside
4053 the integer range. */
4054 printmax_t x;
4055 if (INTEGERP (args[n]))
4056 x = XINT (args[n]);
4057 else
4058 {
4059 double d = XFLOAT_DATA (args[n]);
4060 if (d < 0)
4061 {
4062 x = TYPE_MINIMUM (printmax_t);
4063 if (x < d)
4064 x = d;
4065 }
4066 else
4067 {
4068 x = TYPE_MAXIMUM (printmax_t);
4069 if (d < x)
4070 x = d;
4071 }
4072 }
4073 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4074 }
4075 else
4076 {
4077 /* Don't sign-extend for octal or hex printing. */
4078 uprintmax_t x;
4079 if (INTEGERP (args[n]))
4080 x = XUINT (args[n]);
4081 else
4082 {
4083 double d = XFLOAT_DATA (args[n]);
4084 if (d < 0)
4085 x = 0;
4086 else
4087 {
4088 x = TYPE_MAXIMUM (uprintmax_t);
4089 if (d < x)
4090 x = d;
4091 }
4092 }
4093 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4094 }
4095
4096 /* Now the length of the formatted item is known, except it omits
4097 padding and excess precision. Deal with excess precision
4098 first. This happens only when the format specifies
4099 ridiculously large precision. */
4100 excess_precision = precision - prec;
4101 if (excess_precision)
4102 {
4103 if (conversion == 'e' || conversion == 'f'
4104 || conversion == 'g')
4105 {
4106 if ((conversion == 'g' && ! sharp_flag)
4107 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4108 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4109 excess_precision = 0;
4110 else
4111 {
4112 if (conversion == 'g')
4113 {
4114 char *dot = strchr (sprintf_buf, '.');
4115 if (!dot)
4116 excess_precision = 0;
4117 }
4118 }
4119 trailing_zeros = excess_precision;
4120 }
4121 else
4122 leading_zeros = excess_precision;
4123 }
4124
4125 /* Compute the total bytes needed for this item, including
4126 excess precision and padding. */
4127 numwidth = sprintf_bytes + excess_precision;
4128 padding = numwidth < field_width ? field_width - numwidth : 0;
4129 if (max_bufsize - sprintf_bytes <= excess_precision
4130 || max_bufsize - padding <= numwidth)
4131 string_overflow ();
4132 convbytes = numwidth + padding;
4133
4134 if (convbytes <= buf + bufsize - p)
4135 {
4136 /* Copy the formatted item from sprintf_buf into buf,
4137 inserting padding and excess-precision zeros. */
4138
4139 char *src = sprintf_buf;
4140 char src0 = src[0];
4141 int exponent_bytes = 0;
4142 int signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4143 int significand_bytes;
4144 if (zero_flag
4145 && ((src[signedp] >= '0' && src[signedp] <= '9')
4146 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4147 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4148 {
4149 leading_zeros += padding;
4150 padding = 0;
4151 }
4152
4153 if (excess_precision
4154 && (conversion == 'e' || conversion == 'g'))
4155 {
4156 char *e = strchr (src, 'e');
4157 if (e)
4158 exponent_bytes = src + sprintf_bytes - e;
4159 }
4160
4161 if (! minus_flag)
4162 {
4163 memset (p, ' ', padding);
4164 p += padding;
4165 nchars += padding;
4166 }
4167
4168 *p = src0;
4169 src += signedp;
4170 p += signedp;
4171 memset (p, '0', leading_zeros);
4172 p += leading_zeros;
4173 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4174 memcpy (p, src, significand_bytes);
4175 p += significand_bytes;
4176 src += significand_bytes;
4177 memset (p, '0', trailing_zeros);
4178 p += trailing_zeros;
4179 memcpy (p, src, exponent_bytes);
4180 p += exponent_bytes;
4181
4182 info[n].start = nchars;
4183 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4184 info[n].end = nchars;
4185
4186 if (minus_flag)
4187 {
4188 memset (p, ' ', padding);
4189 p += padding;
4190 nchars += padding;
4191 }
4192
4193 continue;
4194 }
4195 }
4196 }
4197 else
4198 copy_char:
4199 {
4200 /* Copy a single character from format to buf. */
4201
4202 char *src = format;
4203 unsigned char str[MAX_MULTIBYTE_LENGTH];
4204
4205 if (multibyte_format)
4206 {
4207 /* Copy a whole multibyte character. */
4208 if (p > buf
4209 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4210 && !CHAR_HEAD_P (*format))
4211 maybe_combine_byte = 1;
4212
4213 do
4214 format++;
4215 while (! CHAR_HEAD_P (*format));
4216
4217 convbytes = format - src;
4218 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4219 }
4220 else
4221 {
4222 unsigned char uc = *format++;
4223 if (! multibyte || ASCII_BYTE_P (uc))
4224 convbytes = 1;
4225 else
4226 {
4227 int c = BYTE8_TO_CHAR (uc);
4228 convbytes = CHAR_STRING (c, str);
4229 src = (char *) str;
4230 }
4231 }
4232
4233 if (convbytes <= buf + bufsize - p)
4234 {
4235 memcpy (p, src, convbytes);
4236 p += convbytes;
4237 nchars++;
4238 continue;
4239 }
4240 }
4241
4242 /* There wasn't enough room to store this conversion or single
4243 character. CONVBYTES says how much room is needed. Allocate
4244 enough room (and then some) and do it again. */
4245 {
4246 ptrdiff_t used = p - buf;
4247
4248 if (max_bufsize - used < convbytes)
4249 string_overflow ();
4250 bufsize = used + convbytes;
4251 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4252
4253 if (buf == initial_buffer)
4254 {
4255 buf = xmalloc (bufsize);
4256 sa_must_free = 1;
4257 buf_save_value = make_save_value (buf, 0);
4258 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4259 memcpy (buf, initial_buffer, used);
4260 }
4261 else
4262 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4263
4264 p = buf + used;
4265 }
4266
4267 format = format0;
4268 n = n0;
4269 }
4270
4271 if (bufsize < p - buf)
4272 abort ();
4273
4274 if (maybe_combine_byte)
4275 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4276 val = make_specified_string (buf, nchars, p - buf, multibyte);
4277
4278 /* If we allocated BUF with malloc, free it too. */
4279 SAFE_FREE ();
4280
4281 /* If the format string has text properties, or any of the string
4282 arguments has text properties, set up text properties of the
4283 result string. */
4284
4285 if (string_intervals (args[0]) || arg_intervals)
4286 {
4287 Lisp_Object len, new_len, props;
4288 struct gcpro gcpro1;
4289
4290 /* Add text properties from the format string. */
4291 len = make_number (SCHARS (args[0]));
4292 props = text_property_list (args[0], make_number (0), len, Qnil);
4293 GCPRO1 (props);
4294
4295 if (CONSP (props))
4296 {
4297 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4298 ptrdiff_t argn = 1;
4299 Lisp_Object list;
4300
4301 /* Adjust the bounds of each text property
4302 to the proper start and end in the output string. */
4303
4304 /* Put the positions in PROPS in increasing order, so that
4305 we can do (effectively) one scan through the position
4306 space of the format string. */
4307 props = Fnreverse (props);
4308
4309 /* BYTEPOS is the byte position in the format string,
4310 POSITION is the untranslated char position in it,
4311 TRANSLATED is the translated char position in BUF,
4312 and ARGN is the number of the next arg we will come to. */
4313 for (list = props; CONSP (list); list = XCDR (list))
4314 {
4315 Lisp_Object item;
4316 ptrdiff_t pos;
4317
4318 item = XCAR (list);
4319
4320 /* First adjust the property start position. */
4321 pos = XINT (XCAR (item));
4322
4323 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4324 up to this position. */
4325 for (; position < pos; bytepos++)
4326 {
4327 if (! discarded[bytepos])
4328 position++, translated++;
4329 else if (discarded[bytepos] == 1)
4330 {
4331 position++;
4332 if (translated == info[argn].start)
4333 {
4334 translated += info[argn].end - info[argn].start;
4335 argn++;
4336 }
4337 }
4338 }
4339
4340 XSETCAR (item, make_number (translated));
4341
4342 /* Likewise adjust the property end position. */
4343 pos = XINT (XCAR (XCDR (item)));
4344
4345 for (; position < pos; bytepos++)
4346 {
4347 if (! discarded[bytepos])
4348 position++, translated++;
4349 else if (discarded[bytepos] == 1)
4350 {
4351 position++;
4352 if (translated == info[argn].start)
4353 {
4354 translated += info[argn].end - info[argn].start;
4355 argn++;
4356 }
4357 }
4358 }
4359
4360 XSETCAR (XCDR (item), make_number (translated));
4361 }
4362
4363 add_text_properties_from_list (val, props, make_number (0));
4364 }
4365
4366 /* Add text properties from arguments. */
4367 if (arg_intervals)
4368 for (n = 1; n < nargs; ++n)
4369 if (info[n].intervals)
4370 {
4371 len = make_number (SCHARS (args[n]));
4372 new_len = make_number (info[n].end - info[n].start);
4373 props = text_property_list (args[n], make_number (0), len, Qnil);
4374 props = extend_property_ranges (props, new_len);
4375 /* If successive arguments have properties, be sure that
4376 the value of `composition' property be the copy. */
4377 if (n > 1 && info[n - 1].end)
4378 make_composition_value_copy (props);
4379 add_text_properties_from_list (val, props,
4380 make_number (info[n].start));
4381 }
4382
4383 UNGCPRO;
4384 }
4385
4386 return val;
4387}
4388
4389Lisp_Object
4390format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4391{
4392 Lisp_Object args[3];
4393 args[0] = build_string (string1);
4394 args[1] = arg0;
4395 args[2] = arg1;
4396 return Fformat (3, args);
4397}
4398\f
4399DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4400 doc: /* Return t if two characters match, optionally ignoring case.
4401Both arguments must be characters (i.e. integers).
4402Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4403 (register Lisp_Object c1, Lisp_Object c2)
4404{
4405 int i1, i2;
4406 /* Check they're chars, not just integers, otherwise we could get array
4407 bounds violations in downcase. */
4408 CHECK_CHARACTER (c1);
4409 CHECK_CHARACTER (c2);
4410
4411 if (XINT (c1) == XINT (c2))
4412 return Qt;
4413 if (NILP (BVAR (current_buffer, case_fold_search)))
4414 return Qnil;
4415
4416 i1 = XFASTINT (c1);
4417 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4418 && ! ASCII_CHAR_P (i1))
4419 {
4420 MAKE_CHAR_MULTIBYTE (i1);
4421 }
4422 i2 = XFASTINT (c2);
4423 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4424 && ! ASCII_CHAR_P (i2))
4425 {
4426 MAKE_CHAR_MULTIBYTE (i2);
4427 }
4428 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4429}
4430\f
4431/* Transpose the markers in two regions of the current buffer, and
4432 adjust the ones between them if necessary (i.e.: if the regions
4433 differ in size).
4434
4435 START1, END1 are the character positions of the first region.
4436 START1_BYTE, END1_BYTE are the byte positions.
4437 START2, END2 are the character positions of the second region.
4438 START2_BYTE, END2_BYTE are the byte positions.
4439
4440 Traverses the entire marker list of the buffer to do so, adding an
4441 appropriate amount to some, subtracting from some, and leaving the
4442 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4443
4444 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4445
4446static void
4447transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4448 ptrdiff_t start2, ptrdiff_t end2,
4449 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4450 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4451{
4452 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4453 register struct Lisp_Marker *marker;
4454
4455 /* Update point as if it were a marker. */
4456 if (PT < start1)
4457 ;
4458 else if (PT < end1)
4459 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4460 PT_BYTE + (end2_byte - end1_byte));
4461 else if (PT < start2)
4462 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4463 (PT_BYTE + (end2_byte - start2_byte)
4464 - (end1_byte - start1_byte)));
4465 else if (PT < end2)
4466 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4467 PT_BYTE - (start2_byte - start1_byte));
4468
4469 /* We used to adjust the endpoints here to account for the gap, but that
4470 isn't good enough. Even if we assume the caller has tried to move the
4471 gap out of our way, it might still be at start1 exactly, for example;
4472 and that places it `inside' the interval, for our purposes. The amount
4473 of adjustment is nontrivial if there's a `denormalized' marker whose
4474 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4475 the dirty work to Fmarker_position, below. */
4476
4477 /* The difference between the region's lengths */
4478 diff = (end2 - start2) - (end1 - start1);
4479 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4480
4481 /* For shifting each marker in a region by the length of the other
4482 region plus the distance between the regions. */
4483 amt1 = (end2 - start2) + (start2 - end1);
4484 amt2 = (end1 - start1) + (start2 - end1);
4485 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4486 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4487
4488 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4489 {
4490 mpos = marker->bytepos;
4491 if (mpos >= start1_byte && mpos < end2_byte)
4492 {
4493 if (mpos < end1_byte)
4494 mpos += amt1_byte;
4495 else if (mpos < start2_byte)
4496 mpos += diff_byte;
4497 else
4498 mpos -= amt2_byte;
4499 marker->bytepos = mpos;
4500 }
4501 mpos = marker->charpos;
4502 if (mpos >= start1 && mpos < end2)
4503 {
4504 if (mpos < end1)
4505 mpos += amt1;
4506 else if (mpos < start2)
4507 mpos += diff;
4508 else
4509 mpos -= amt2;
4510 }
4511 marker->charpos = mpos;
4512 }
4513}
4514
4515DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4516 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4517The regions should not be overlapping, because the size of the buffer is
4518never changed in a transposition.
4519
4520Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4521any markers that happen to be located in the regions.
4522
4523Transposing beyond buffer boundaries is an error. */)
4524 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4525{
4526 register ptrdiff_t start1, end1, start2, end2;
4527 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte;
4528 ptrdiff_t gap, len1, len_mid, len2;
4529 unsigned char *start1_addr, *start2_addr, *temp;
4530
4531 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4532 Lisp_Object buf;
4533
4534 XSETBUFFER (buf, current_buffer);
4535 cur_intv = buffer_intervals (current_buffer);
4536
4537 validate_region (&startr1, &endr1);
4538 validate_region (&startr2, &endr2);
4539
4540 start1 = XFASTINT (startr1);
4541 end1 = XFASTINT (endr1);
4542 start2 = XFASTINT (startr2);
4543 end2 = XFASTINT (endr2);
4544 gap = GPT;
4545
4546 /* Swap the regions if they're reversed. */
4547 if (start2 < end1)
4548 {
4549 register ptrdiff_t glumph = start1;
4550 start1 = start2;
4551 start2 = glumph;
4552 glumph = end1;
4553 end1 = end2;
4554 end2 = glumph;
4555 }
4556
4557 len1 = end1 - start1;
4558 len2 = end2 - start2;
4559
4560 if (start2 < end1)
4561 error ("Transposed regions overlap");
4562 /* Nothing to change for adjacent regions with one being empty */
4563 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4564 return Qnil;
4565
4566 /* The possibilities are:
4567 1. Adjacent (contiguous) regions, or separate but equal regions
4568 (no, really equal, in this case!), or
4569 2. Separate regions of unequal size.
4570
4571 The worst case is usually No. 2. It means that (aside from
4572 potential need for getting the gap out of the way), there also
4573 needs to be a shifting of the text between the two regions. So
4574 if they are spread far apart, we are that much slower... sigh. */
4575
4576 /* It must be pointed out that the really studly thing to do would
4577 be not to move the gap at all, but to leave it in place and work
4578 around it if necessary. This would be extremely efficient,
4579 especially considering that people are likely to do
4580 transpositions near where they are working interactively, which
4581 is exactly where the gap would be found. However, such code
4582 would be much harder to write and to read. So, if you are
4583 reading this comment and are feeling squirrely, by all means have
4584 a go! I just didn't feel like doing it, so I will simply move
4585 the gap the minimum distance to get it out of the way, and then
4586 deal with an unbroken array. */
4587
4588 /* Make sure the gap won't interfere, by moving it out of the text
4589 we will operate on. */
4590 if (start1 < gap && gap < end2)
4591 {
4592 if (gap - start1 < end2 - gap)
4593 move_gap (start1);
4594 else
4595 move_gap (end2);
4596 }
4597
4598 start1_byte = CHAR_TO_BYTE (start1);
4599 start2_byte = CHAR_TO_BYTE (start2);
4600 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4601 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4602
4603#ifdef BYTE_COMBINING_DEBUG
4604 if (end1 == start2)
4605 {
4606 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4607 len2_byte, start1, start1_byte)
4608 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4609 len1_byte, end2, start2_byte + len2_byte)
4610 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4611 len1_byte, end2, start2_byte + len2_byte))
4612 abort ();
4613 }
4614 else
4615 {
4616 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4617 len2_byte, start1, start1_byte)
4618 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4619 len1_byte, start2, start2_byte)
4620 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4621 len2_byte, end1, start1_byte + len1_byte)
4622 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4623 len1_byte, end2, start2_byte + len2_byte))
4624 abort ();
4625 }
4626#endif
4627
4628 /* Hmmm... how about checking to see if the gap is large
4629 enough to use as the temporary storage? That would avoid an
4630 allocation... interesting. Later, don't fool with it now. */
4631
4632 /* Working without memmove, for portability (sigh), so must be
4633 careful of overlapping subsections of the array... */
4634
4635 if (end1 == start2) /* adjacent regions */
4636 {
4637 modify_region (current_buffer, start1, end2, 0);
4638 record_change (start1, len1 + len2);
4639
4640 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4641 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4642 /* Don't use Fset_text_properties: that can cause GC, which can
4643 clobber objects stored in the tmp_intervals. */
4644 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4645 if (tmp_interval3)
4646 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4647
4648 /* First region smaller than second. */
4649 if (len1_byte < len2_byte)
4650 {
4651 USE_SAFE_ALLOCA;
4652
4653 temp = SAFE_ALLOCA (len2_byte);
4654
4655 /* Don't precompute these addresses. We have to compute them
4656 at the last minute, because the relocating allocator might
4657 have moved the buffer around during the xmalloc. */
4658 start1_addr = BYTE_POS_ADDR (start1_byte);
4659 start2_addr = BYTE_POS_ADDR (start2_byte);
4660
4661 memcpy (temp, start2_addr, len2_byte);
4662 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4663 memcpy (start1_addr, temp, len2_byte);
4664 SAFE_FREE ();
4665 }
4666 else
4667 /* First region not smaller than second. */
4668 {
4669 USE_SAFE_ALLOCA;
4670
4671 temp = SAFE_ALLOCA (len1_byte);
4672 start1_addr = BYTE_POS_ADDR (start1_byte);
4673 start2_addr = BYTE_POS_ADDR (start2_byte);
4674 memcpy (temp, start1_addr, len1_byte);
4675 memcpy (start1_addr, start2_addr, len2_byte);
4676 memcpy (start1_addr + len2_byte, temp, len1_byte);
4677 SAFE_FREE ();
4678 }
4679 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4680 len1, current_buffer, 0);
4681 graft_intervals_into_buffer (tmp_interval2, start1,
4682 len2, current_buffer, 0);
4683 update_compositions (start1, start1 + len2, CHECK_BORDER);
4684 update_compositions (start1 + len2, end2, CHECK_TAIL);
4685 }
4686 /* Non-adjacent regions, because end1 != start2, bleagh... */
4687 else
4688 {
4689 len_mid = start2_byte - (start1_byte + len1_byte);
4690
4691 if (len1_byte == len2_byte)
4692 /* Regions are same size, though, how nice. */
4693 {
4694 USE_SAFE_ALLOCA;
4695
4696 modify_region (current_buffer, start1, end1, 0);
4697 modify_region (current_buffer, start2, end2, 0);
4698 record_change (start1, len1);
4699 record_change (start2, len2);
4700 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4701 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4702
4703 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4704 if (tmp_interval3)
4705 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4706
4707 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4708 if (tmp_interval3)
4709 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4710
4711 temp = SAFE_ALLOCA (len1_byte);
4712 start1_addr = BYTE_POS_ADDR (start1_byte);
4713 start2_addr = BYTE_POS_ADDR (start2_byte);
4714 memcpy (temp, start1_addr, len1_byte);
4715 memcpy (start1_addr, start2_addr, len2_byte);
4716 memcpy (start2_addr, temp, len1_byte);
4717 SAFE_FREE ();
4718
4719 graft_intervals_into_buffer (tmp_interval1, start2,
4720 len1, current_buffer, 0);
4721 graft_intervals_into_buffer (tmp_interval2, start1,
4722 len2, current_buffer, 0);
4723 }
4724
4725 else if (len1_byte < len2_byte) /* Second region larger than first */
4726 /* Non-adjacent & unequal size, area between must also be shifted. */
4727 {
4728 USE_SAFE_ALLOCA;
4729
4730 modify_region (current_buffer, start1, end2, 0);
4731 record_change (start1, (end2 - start1));
4732 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4733 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4734 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4735
4736 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4737 if (tmp_interval3)
4738 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4739
4740 /* holds region 2 */
4741 temp = SAFE_ALLOCA (len2_byte);
4742 start1_addr = BYTE_POS_ADDR (start1_byte);
4743 start2_addr = BYTE_POS_ADDR (start2_byte);
4744 memcpy (temp, start2_addr, len2_byte);
4745 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4746 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4747 memcpy (start1_addr, temp, len2_byte);
4748 SAFE_FREE ();
4749
4750 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4751 len1, current_buffer, 0);
4752 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4753 len_mid, current_buffer, 0);
4754 graft_intervals_into_buffer (tmp_interval2, start1,
4755 len2, current_buffer, 0);
4756 }
4757 else
4758 /* Second region smaller than first. */
4759 {
4760 USE_SAFE_ALLOCA;
4761
4762 record_change (start1, (end2 - start1));
4763 modify_region (current_buffer, start1, end2, 0);
4764
4765 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4766 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4767 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4768
4769 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4770 if (tmp_interval3)
4771 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4772
4773 /* holds region 1 */
4774 temp = SAFE_ALLOCA (len1_byte);
4775 start1_addr = BYTE_POS_ADDR (start1_byte);
4776 start2_addr = BYTE_POS_ADDR (start2_byte);
4777 memcpy (temp, start1_addr, len1_byte);
4778 memcpy (start1_addr, start2_addr, len2_byte);
4779 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4780 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4781 SAFE_FREE ();
4782
4783 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4784 len1, current_buffer, 0);
4785 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4786 len_mid, current_buffer, 0);
4787 graft_intervals_into_buffer (tmp_interval2, start1,
4788 len2, current_buffer, 0);
4789 }
4790
4791 update_compositions (start1, start1 + len2, CHECK_BORDER);
4792 update_compositions (end2 - len1, end2, CHECK_BORDER);
4793 }
4794
4795 /* When doing multiple transpositions, it might be nice
4796 to optimize this. Perhaps the markers in any one buffer
4797 should be organized in some sorted data tree. */
4798 if (NILP (leave_markers))
4799 {
4800 transpose_markers (start1, end1, start2, end2,
4801 start1_byte, start1_byte + len1_byte,
4802 start2_byte, start2_byte + len2_byte);
4803 fix_start_end_in_overlays (start1, end2);
4804 }
4805
4806 signal_after_change (start1, end2 - start1, end2 - start1);
4807 return Qnil;
4808}
4809
4810\f
4811void
4812syms_of_editfns (void)
4813{
4814 environbuf = 0;
4815 initial_tz = 0;
4816
4817 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4818
4819 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4820 doc: /* Non-nil means text motion commands don't notice fields. */);
4821 Vinhibit_field_text_motion = Qnil;
4822
4823 DEFVAR_LISP ("buffer-access-fontify-functions",
4824 Vbuffer_access_fontify_functions,
4825 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4826Each function is called with two arguments which specify the range
4827of the buffer being accessed. */);
4828 Vbuffer_access_fontify_functions = Qnil;
4829
4830 {
4831 Lisp_Object obuf;
4832 obuf = Fcurrent_buffer ();
4833 /* Do this here, because init_buffer_once is too early--it won't work. */
4834 Fset_buffer (Vprin1_to_string_buffer);
4835 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4836 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4837 Qnil);
4838 Fset_buffer (obuf);
4839 }
4840
4841 DEFVAR_LISP ("buffer-access-fontified-property",
4842 Vbuffer_access_fontified_property,
4843 doc: /* Property which (if non-nil) indicates text has been fontified.
4844`buffer-substring' need not call the `buffer-access-fontify-functions'
4845functions if all the text being accessed has this property. */);
4846 Vbuffer_access_fontified_property = Qnil;
4847
4848 DEFVAR_LISP ("system-name", Vsystem_name,
4849 doc: /* The host name of the machine Emacs is running on. */);
4850
4851 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4852 doc: /* The full name of the user logged in. */);
4853
4854 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4855 doc: /* The user's name, taken from environment variables if possible. */);
4856
4857 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4858 doc: /* The user's name, based upon the real uid only. */);
4859
4860 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4861 doc: /* The release of the operating system Emacs is running on. */);
4862
4863 defsubr (&Spropertize);
4864 defsubr (&Schar_equal);
4865 defsubr (&Sgoto_char);
4866 defsubr (&Sstring_to_char);
4867 defsubr (&Schar_to_string);
4868 defsubr (&Sbyte_to_string);
4869 defsubr (&Sbuffer_substring);
4870 defsubr (&Sbuffer_substring_no_properties);
4871 defsubr (&Sbuffer_string);
4872
4873 defsubr (&Spoint_marker);
4874 defsubr (&Smark_marker);
4875 defsubr (&Spoint);
4876 defsubr (&Sregion_beginning);
4877 defsubr (&Sregion_end);
4878
4879 DEFSYM (Qfield, "field");
4880 DEFSYM (Qboundary, "boundary");
4881 defsubr (&Sfield_beginning);
4882 defsubr (&Sfield_end);
4883 defsubr (&Sfield_string);
4884 defsubr (&Sfield_string_no_properties);
4885 defsubr (&Sdelete_field);
4886 defsubr (&Sconstrain_to_field);
4887
4888 defsubr (&Sline_beginning_position);
4889 defsubr (&Sline_end_position);
4890
4891/* defsubr (&Smark); */
4892/* defsubr (&Sset_mark); */
4893 defsubr (&Ssave_excursion);
4894 defsubr (&Ssave_current_buffer);
4895
4896 defsubr (&Sbufsize);
4897 defsubr (&Spoint_max);
4898 defsubr (&Spoint_min);
4899 defsubr (&Spoint_min_marker);
4900 defsubr (&Spoint_max_marker);
4901 defsubr (&Sgap_position);
4902 defsubr (&Sgap_size);
4903 defsubr (&Sposition_bytes);
4904 defsubr (&Sbyte_to_position);
4905
4906 defsubr (&Sbobp);
4907 defsubr (&Seobp);
4908 defsubr (&Sbolp);
4909 defsubr (&Seolp);
4910 defsubr (&Sfollowing_char);
4911 defsubr (&Sprevious_char);
4912 defsubr (&Schar_after);
4913 defsubr (&Schar_before);
4914 defsubr (&Sinsert);
4915 defsubr (&Sinsert_before_markers);
4916 defsubr (&Sinsert_and_inherit);
4917 defsubr (&Sinsert_and_inherit_before_markers);
4918 defsubr (&Sinsert_char);
4919 defsubr (&Sinsert_byte);
4920
4921 defsubr (&Suser_login_name);
4922 defsubr (&Suser_real_login_name);
4923 defsubr (&Suser_uid);
4924 defsubr (&Suser_real_uid);
4925 defsubr (&Suser_full_name);
4926 defsubr (&Semacs_pid);
4927 defsubr (&Scurrent_time);
4928 defsubr (&Sget_internal_run_time);
4929 defsubr (&Sformat_time_string);
4930 defsubr (&Sfloat_time);
4931 defsubr (&Sdecode_time);
4932 defsubr (&Sencode_time);
4933 defsubr (&Scurrent_time_string);
4934 defsubr (&Scurrent_time_zone);
4935 defsubr (&Sset_time_zone_rule);
4936 defsubr (&Ssystem_name);
4937 defsubr (&Smessage);
4938 defsubr (&Smessage_box);
4939 defsubr (&Smessage_or_box);
4940 defsubr (&Scurrent_message);
4941 defsubr (&Sformat);
4942
4943 defsubr (&Sinsert_buffer_substring);
4944 defsubr (&Scompare_buffer_substrings);
4945 defsubr (&Ssubst_char_in_region);
4946 defsubr (&Stranslate_region_internal);
4947 defsubr (&Sdelete_region);
4948 defsubr (&Sdelete_and_extract_region);
4949 defsubr (&Swiden);
4950 defsubr (&Snarrow_to_region);
4951 defsubr (&Ssave_restriction);
4952 defsubr (&Stranspose_regions);
4953}