* lisp/emacs-lisp/cl-macs.el (cl--transform-lambda): Add back `declare' in
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
... / ...
CommitLineData
1;;; cl-loaddefs.el --- automatically extracted autoloads
2;;
3;;; Code:
4
5\f
6;;;### (autoloads (cl-prettyexpand cl-remprop cl--do-remf cl--set-getf
7;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl--set-frame-visible-p
11;;;;;; cl--map-overlays cl--map-intervals cl--map-keymap-recursively
12;;;;;; cl-notevery cl-notany cl-every cl-some cl-mapcon cl-mapcan
13;;;;;; cl-mapl cl-mapc cl-maplist cl-map cl--mapcar-many cl-equalp
14;;;;;; cl-coerce) "cl-extra" "cl-extra.el" "b7d4e24fe58609eaf4fb319c81eb829e")
15;;; Generated autoloads from cl-extra.el
16
17(autoload 'cl-coerce "cl-extra" "\
18Coerce OBJECT to type TYPE.
19TYPE is a Common Lisp type specifier.
20
21\(fn OBJECT TYPE)" nil nil)
22
23(autoload 'cl-equalp "cl-extra" "\
24Return t if two Lisp objects have similar structures and contents.
25This is like `equal', except that it accepts numerically equal
26numbers of different types (float vs. integer), and also compares
27strings case-insensitively.
28
29\(fn X Y)" nil nil)
30
31(autoload 'cl--mapcar-many "cl-extra" "\
32
33
34\(fn CL-FUNC CL-SEQS)" nil nil)
35
36(autoload 'cl-map "cl-extra" "\
37Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38TYPE is the sequence type to return.
39
40\(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41
42(autoload 'cl-maplist "cl-extra" "\
43Map FUNCTION to each sublist of LIST or LISTs.
44Like `cl-mapcar', except applies to lists and their cdr's rather than to
45the elements themselves.
46
47\(fn FUNCTION LIST...)" nil nil)
48
49(autoload 'cl-mapc "cl-extra" "\
50Like `cl-mapcar', but does not accumulate values returned by the function.
51
52\(fn FUNCTION SEQUENCE...)" nil nil)
53
54(autoload 'cl-mapl "cl-extra" "\
55Like `cl-maplist', but does not accumulate values returned by the function.
56
57\(fn FUNCTION LIST...)" nil nil)
58
59(autoload 'cl-mapcan "cl-extra" "\
60Like `cl-mapcar', but nconc's together the values returned by the function.
61
62\(fn FUNCTION SEQUENCE...)" nil nil)
63
64(autoload 'cl-mapcon "cl-extra" "\
65Like `cl-maplist', but nconc's together the values returned by the function.
66
67\(fn FUNCTION LIST...)" nil nil)
68
69(autoload 'cl-some "cl-extra" "\
70Return true if PREDICATE is true of any element of SEQ or SEQs.
71If so, return the true (non-nil) value returned by PREDICATE.
72
73\(fn PREDICATE SEQ...)" nil nil)
74
75(autoload 'cl-every "cl-extra" "\
76Return true if PREDICATE is true of every element of SEQ or SEQs.
77
78\(fn PREDICATE SEQ...)" nil nil)
79
80(autoload 'cl-notany "cl-extra" "\
81Return true if PREDICATE is false of every element of SEQ or SEQs.
82
83\(fn PREDICATE SEQ...)" nil nil)
84
85(autoload 'cl-notevery "cl-extra" "\
86Return true if PREDICATE is false of some element of SEQ or SEQs.
87
88\(fn PREDICATE SEQ...)" nil nil)
89
90(autoload 'cl--map-keymap-recursively "cl-extra" "\
91
92
93\(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
94
95(autoload 'cl--map-intervals "cl-extra" "\
96
97
98\(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
99
100(autoload 'cl--map-overlays "cl-extra" "\
101
102
103\(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
104
105(autoload 'cl--set-frame-visible-p "cl-extra" "\
106
107
108\(fn FRAME VAL)" nil nil)
109
110(autoload 'cl-gcd "cl-extra" "\
111Return the greatest common divisor of the arguments.
112
113\(fn &rest ARGS)" nil nil)
114
115(autoload 'cl-lcm "cl-extra" "\
116Return the least common multiple of the arguments.
117
118\(fn &rest ARGS)" nil nil)
119
120(autoload 'cl-isqrt "cl-extra" "\
121Return the integer square root of the argument.
122
123\(fn X)" nil nil)
124
125(autoload 'cl-floor "cl-extra" "\
126Return a list of the floor of X and the fractional part of X.
127With two arguments, return floor and remainder of their quotient.
128
129\(fn X &optional Y)" nil nil)
130
131(autoload 'cl-ceiling "cl-extra" "\
132Return a list of the ceiling of X and the fractional part of X.
133With two arguments, return ceiling and remainder of their quotient.
134
135\(fn X &optional Y)" nil nil)
136
137(autoload 'cl-truncate "cl-extra" "\
138Return a list of the integer part of X and the fractional part of X.
139With two arguments, return truncation and remainder of their quotient.
140
141\(fn X &optional Y)" nil nil)
142
143(autoload 'cl-round "cl-extra" "\
144Return a list of X rounded to the nearest integer and the remainder.
145With two arguments, return rounding and remainder of their quotient.
146
147\(fn X &optional Y)" nil nil)
148
149(autoload 'cl-mod "cl-extra" "\
150The remainder of X divided by Y, with the same sign as Y.
151
152\(fn X Y)" nil nil)
153
154(autoload 'cl-rem "cl-extra" "\
155The remainder of X divided by Y, with the same sign as X.
156
157\(fn X Y)" nil nil)
158
159(autoload 'cl-signum "cl-extra" "\
160Return 1 if X is positive, -1 if negative, 0 if zero.
161
162\(fn X)" nil nil)
163
164(autoload 'cl-random "cl-extra" "\
165Return a random nonnegative number less than LIM, an integer or float.
166Optional second arg STATE is a random-state object.
167
168\(fn LIM &optional STATE)" nil nil)
169
170(autoload 'cl-make-random-state "cl-extra" "\
171Return a copy of random-state STATE, or of the internal state if omitted.
172If STATE is t, return a new state object seeded from the time of day.
173
174\(fn &optional STATE)" nil nil)
175
176(autoload 'cl-random-state-p "cl-extra" "\
177Return t if OBJECT is a random-state object.
178
179\(fn OBJECT)" nil nil)
180
181(autoload 'cl-float-limits "cl-extra" "\
182Initialize the Common Lisp floating-point parameters.
183This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
184`cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
185`cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
186`cl-least-negative-normalized-float'.
187
188\(fn)" nil nil)
189
190(autoload 'cl-subseq "cl-extra" "\
191Return the subsequence of SEQ from START to END.
192If END is omitted, it defaults to the length of the sequence.
193If START or END is negative, it counts from the end.
194
195\(fn SEQ START &optional END)" nil nil)
196
197(autoload 'cl-concatenate "cl-extra" "\
198Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
199
200\(fn TYPE SEQUENCE...)" nil nil)
201
202(autoload 'cl-revappend "cl-extra" "\
203Equivalent to (append (reverse X) Y).
204
205\(fn X Y)" nil nil)
206
207(autoload 'cl-nreconc "cl-extra" "\
208Equivalent to (nconc (nreverse X) Y).
209
210\(fn X Y)" nil nil)
211
212(autoload 'cl-list-length "cl-extra" "\
213Return the length of list X. Return nil if list is circular.
214
215\(fn X)" nil nil)
216
217(autoload 'cl-tailp "cl-extra" "\
218Return true if SUBLIST is a tail of LIST.
219
220\(fn SUBLIST LIST)" nil nil)
221
222(autoload 'cl-get "cl-extra" "\
223Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
224
225\(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
226
227(put 'cl-get 'compiler-macro #'cl--compiler-macro-get)
228
229(autoload 'cl-getf "cl-extra" "\
230Search PROPLIST for property PROPNAME; return its value or DEFAULT.
231PROPLIST is a list of the sort returned by `symbol-plist'.
232
233\(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
234
235(autoload 'cl--set-getf "cl-extra" "\
236
237
238\(fn PLIST TAG VAL)" nil nil)
239
240(autoload 'cl--do-remf "cl-extra" "\
241
242
243\(fn PLIST TAG)" nil nil)
244
245(autoload 'cl-remprop "cl-extra" "\
246Remove from SYMBOL's plist the property PROPNAME and its value.
247
248\(fn SYMBOL PROPNAME)" nil nil)
249
250(autoload 'cl-prettyexpand "cl-extra" "\
251Expand macros in FORM and insert the pretty-printed result.
252Optional argument FULL non-nil means to expand all macros,
253including `cl-block' and `cl-eval-when'.
254
255\(fn FORM &optional FULL)" nil nil)
256
257;;;***
258\f
259;;;### (autoloads (cl--compiler-macro-adjoin cl-defsubst cl-compiler-macroexpand
260;;;;;; cl-define-compiler-macro cl-assert cl-check-type cl-typep
261;;;;;; cl-deftype cl-defstruct cl-callf2 cl-callf cl-letf* cl-letf
262;;;;;; cl-rotatef cl-shiftf cl-remf cl-psetf cl-declare cl-the cl-locally
263;;;;;; cl-multiple-value-setq cl-multiple-value-bind cl-symbol-macrolet
264;;;;;; cl-macrolet cl-labels cl-flet* cl-flet cl-progv cl-psetq
265;;;;;; cl-do-all-symbols cl-do-symbols cl-dotimes cl-dolist cl-do*
266;;;;;; cl-do cl-loop cl-return-from cl-return cl-block cl-etypecase
267;;;;;; cl-typecase cl-ecase cl-case cl-load-time-value cl-eval-when
268;;;;;; cl-destructuring-bind cl-function cl-defmacro cl-defun cl-gentemp
269;;;;;; cl-gensym cl--compiler-macro-cXXr cl--compiler-macro-list*)
270;;;;;; "cl-macs" "cl-macs.el" "f254af8368e40df51f8b6440ec764a6a")
271;;; Generated autoloads from cl-macs.el
272
273(autoload 'cl--compiler-macro-list* "cl-macs" "\
274
275
276\(fn FORM ARG &rest OTHERS)" nil nil)
277
278(autoload 'cl--compiler-macro-cXXr "cl-macs" "\
279
280
281\(fn FORM X)" nil nil)
282
283(autoload 'cl-gensym "cl-macs" "\
284Generate a new uninterned symbol.
285The name is made by appending a number to PREFIX, default \"G\".
286
287\(fn &optional PREFIX)" nil nil)
288
289(autoload 'cl-gentemp "cl-macs" "\
290Generate a new interned symbol with a unique name.
291The name is made by appending a number to PREFIX, default \"G\".
292
293\(fn &optional PREFIX)" nil nil)
294
295(autoload 'cl-defun "cl-macs" "\
296Define NAME as a function.
297Like normal `defun', except ARGLIST allows full Common Lisp conventions,
298and BODY is implicitly surrounded by (cl-block NAME ...).
299
300\(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
301
302(put 'cl-defun 'doc-string-elt '3)
303
304(put 'cl-defun 'lisp-indent-function '2)
305
306(autoload 'cl-defmacro "cl-macs" "\
307Define NAME as a macro.
308Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
309and BODY is implicitly surrounded by (cl-block NAME ...).
310
311\(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
312
313(put 'cl-defmacro 'doc-string-elt '3)
314
315(put 'cl-defmacro 'lisp-indent-function '2)
316
317(autoload 'cl-function "cl-macs" "\
318Introduce a function.
319Like normal `function', except that if argument is a lambda form,
320its argument list allows full Common Lisp conventions.
321
322\(fn FUNC)" nil t)
323
324(autoload 'cl-destructuring-bind "cl-macs" "\
325Bind the variables in ARGS to the result of EXPR and execute BODY.
326
327\(fn ARGS EXPR &rest BODY)" nil t)
328
329(put 'cl-destructuring-bind 'lisp-indent-function '2)
330
331(autoload 'cl-eval-when "cl-macs" "\
332Control when BODY is evaluated.
333If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
334If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
335If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
336
337\(fn (WHEN...) BODY...)" nil t)
338
339(put 'cl-eval-when 'lisp-indent-function '1)
340
341(autoload 'cl-load-time-value "cl-macs" "\
342Like `progn', but evaluates the body at load time.
343The result of the body appears to the compiler as a quoted constant.
344
345\(fn FORM &optional READ-ONLY)" nil t)
346
347(autoload 'cl-case "cl-macs" "\
348Eval EXPR and choose among clauses on that value.
349Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
350against each key in each KEYLIST; the corresponding BODY is evaluated.
351If no clause succeeds, cl-case returns nil. A single atom may be used in
352place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
353allowed only in the final clause, and matches if no other keys match.
354Key values are compared by `eql'.
355
356\(fn EXPR (KEYLIST BODY...)...)" nil t)
357
358(put 'cl-case 'lisp-indent-function '1)
359
360(autoload 'cl-ecase "cl-macs" "\
361Like `cl-case', but error if no case fits.
362`otherwise'-clauses are not allowed.
363
364\(fn EXPR (KEYLIST BODY...)...)" nil t)
365
366(put 'cl-ecase 'lisp-indent-function '1)
367
368(autoload 'cl-typecase "cl-macs" "\
369Evals EXPR, chooses among clauses on that value.
370Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
371satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
372cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
373final clause, and matches if no other keys match.
374
375\(fn EXPR (TYPE BODY...)...)" nil t)
376
377(put 'cl-typecase 'lisp-indent-function '1)
378
379(autoload 'cl-etypecase "cl-macs" "\
380Like `cl-typecase', but error if no case fits.
381`otherwise'-clauses are not allowed.
382
383\(fn EXPR (TYPE BODY...)...)" nil t)
384
385(put 'cl-etypecase 'lisp-indent-function '1)
386
387(autoload 'cl-block "cl-macs" "\
388Define a lexically-scoped block named NAME.
389NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
390to jump prematurely out of the block. This differs from `catch' and `throw'
391in two respects: First, the NAME is an unevaluated symbol rather than a
392quoted symbol or other form; and second, NAME is lexically rather than
393dynamically scoped: Only references to it within BODY will work. These
394references may appear inside macro expansions, but not inside functions
395called from BODY.
396
397\(fn NAME &rest BODY)" nil t)
398
399(put 'cl-block 'lisp-indent-function '1)
400
401(autoload 'cl-return "cl-macs" "\
402Return from the block named nil.
403This is equivalent to `(cl-return-from nil RESULT)'.
404
405\(fn &optional RESULT)" nil t)
406
407(autoload 'cl-return-from "cl-macs" "\
408Return from the block named NAME.
409This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
410returning RESULT from that form (or nil if RESULT is omitted).
411This is compatible with Common Lisp, but note that `defun' and
412`defmacro' do not create implicit blocks as they do in Common Lisp.
413
414\(fn NAME &optional RESULT)" nil t)
415
416(put 'cl-return-from 'lisp-indent-function '1)
417
418(autoload 'cl-loop "cl-macs" "\
419The Common Lisp `loop' macro.
420Valid clauses are:
421 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
422 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
423 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
424 always COND, never COND, thereis COND, collect EXPR into VAR,
425 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
426 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
427 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
428 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
429 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
430 finally return EXPR, named NAME.
431
432\(fn CLAUSE...)" nil t)
433
434(autoload 'cl-do "cl-macs" "\
435The Common Lisp `do' loop.
436
437\(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
438
439(put 'cl-do 'lisp-indent-function '2)
440
441(autoload 'cl-do* "cl-macs" "\
442The Common Lisp `do*' loop.
443
444\(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
445
446(put 'cl-do* 'lisp-indent-function '2)
447
448(autoload 'cl-dolist "cl-macs" "\
449Loop over a list.
450Evaluate BODY with VAR bound to each `car' from LIST, in turn.
451Then evaluate RESULT to get return value, default nil.
452An implicit nil block is established around the loop.
453
454\(fn (VAR LIST [RESULT]) BODY...)" nil t)
455
456(put 'cl-dolist 'lisp-indent-function '1)
457
458(autoload 'cl-dotimes "cl-macs" "\
459Loop a certain number of times.
460Evaluate BODY with VAR bound to successive integers from 0, inclusive,
461to COUNT, exclusive. Then evaluate RESULT to get return value, default
462nil.
463
464\(fn (VAR COUNT [RESULT]) BODY...)" nil t)
465
466(put 'cl-dotimes 'lisp-indent-function '1)
467
468(autoload 'cl-do-symbols "cl-macs" "\
469Loop over all symbols.
470Evaluate BODY with VAR bound to each interned symbol, or to each symbol
471from OBARRAY.
472
473\(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
474
475(put 'cl-do-symbols 'lisp-indent-function '1)
476
477(autoload 'cl-do-all-symbols "cl-macs" "\
478Like `cl-do-symbols', but use the default obarray.
479
480\(fn (VAR [RESULT]) BODY...)" nil t)
481
482(put 'cl-do-all-symbols 'lisp-indent-function '1)
483
484(autoload 'cl-psetq "cl-macs" "\
485Set SYMs to the values VALs in parallel.
486This is like `setq', except that all VAL forms are evaluated (in order)
487before assigning any symbols SYM to the corresponding values.
488
489\(fn SYM VAL SYM VAL ...)" nil t)
490
491(autoload 'cl-progv "cl-macs" "\
492Bind SYMBOLS to VALUES dynamically in BODY.
493The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
494Each symbol in the first list is bound to the corresponding value in the
495second list (or to nil if VALUES is shorter than SYMBOLS); then the
496BODY forms are executed and their result is returned. This is much like
497a `let' form, except that the list of symbols can be computed at run-time.
498
499\(fn SYMBOLS VALUES &rest BODY)" nil t)
500
501(put 'cl-progv 'lisp-indent-function '2)
502
503(autoload 'cl-flet "cl-macs" "\
504Make local function definitions.
505Like `cl-labels' but the definitions are not recursive.
506
507\(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
508
509(put 'cl-flet 'lisp-indent-function '1)
510
511(autoload 'cl-flet* "cl-macs" "\
512Make local function definitions.
513Like `cl-flet' but the definitions can refer to previous ones.
514
515\(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
516
517(put 'cl-flet* 'lisp-indent-function '1)
518
519(autoload 'cl-labels "cl-macs" "\
520Make temporary function bindings.
521The bindings can be recursive and the scoping is lexical, but capturing them
522in closures will only work if `lexical-binding' is in use.
523
524\(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
525
526(put 'cl-labels 'lisp-indent-function '1)
527
528(autoload 'cl-macrolet "cl-macs" "\
529Make temporary macro definitions.
530This is like `cl-flet', but for macros instead of functions.
531
532\(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
533
534(put 'cl-macrolet 'lisp-indent-function '1)
535
536(autoload 'cl-symbol-macrolet "cl-macs" "\
537Make symbol macro definitions.
538Within the body FORMs, references to the variable NAME will be replaced
539by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
540
541\(fn ((NAME EXPANSION) ...) FORM...)" nil t)
542
543(put 'cl-symbol-macrolet 'lisp-indent-function '1)
544
545(autoload 'cl-multiple-value-bind "cl-macs" "\
546Collect multiple return values.
547FORM must return a list; the BODY is then executed with the first N elements
548of this list bound (`let'-style) to each of the symbols SYM in turn. This
549is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
550simulate true multiple return values. For compatibility, (cl-values A B C) is
551a synonym for (list A B C).
552
553\(fn (SYM...) FORM BODY)" nil t)
554
555(put 'cl-multiple-value-bind 'lisp-indent-function '2)
556
557(autoload 'cl-multiple-value-setq "cl-macs" "\
558Collect multiple return values.
559FORM must return a list; the first N elements of this list are stored in
560each of the symbols SYM in turn. This is analogous to the Common Lisp
561`cl-multiple-value-setq' macro, using lists to simulate true multiple return
562values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
563
564\(fn (SYM...) FORM)" nil t)
565
566(put 'cl-multiple-value-setq 'lisp-indent-function '1)
567
568(autoload 'cl-locally "cl-macs" "\
569Equivalent to `progn'.
570
571\(fn &rest BODY)" nil t)
572
573(autoload 'cl-the "cl-macs" "\
574At present this ignores _TYPE and is simply equivalent to FORM.
575
576\(fn TYPE FORM)" nil t)
577
578(put 'cl-the 'lisp-indent-function '1)
579
580(autoload 'cl-declare "cl-macs" "\
581Declare SPECS about the current function while compiling.
582For instance
583
584 (cl-declare (warn 0))
585
586will turn off byte-compile warnings in the function.
587See Info node `(cl)Declarations' for details.
588
589\(fn &rest SPECS)" nil t)
590
591(autoload 'cl-psetf "cl-macs" "\
592Set PLACEs to the values VALs in parallel.
593This is like `setf', except that all VAL forms are evaluated (in order)
594before assigning any PLACEs to the corresponding values.
595
596\(fn PLACE VAL PLACE VAL ...)" nil t)
597
598(autoload 'cl-remf "cl-macs" "\
599Remove TAG from property list PLACE.
600PLACE may be a symbol, or any generalized variable allowed by `setf'.
601The form returns true if TAG was found and removed, nil otherwise.
602
603\(fn PLACE TAG)" nil t)
604
605(autoload 'cl-shiftf "cl-macs" "\
606Shift left among PLACEs.
607Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
608Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
609
610\(fn PLACE... VAL)" nil t)
611
612(autoload 'cl-rotatef "cl-macs" "\
613Rotate left among PLACEs.
614Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
615Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
616
617\(fn PLACE...)" nil t)
618
619(autoload 'cl-letf "cl-macs" "\
620Temporarily bind to PLACEs.
621This is the analogue of `let', but with generalized variables (in the
622sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
623VALUE, then the BODY forms are executed. On exit, either normally or
624because of a `throw' or error, the PLACEs are set back to their original
625values. Note that this macro is *not* available in Common Lisp.
626As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
627the PLACE is not modified before executing BODY.
628
629\(fn ((PLACE VALUE) ...) BODY...)" nil t)
630
631(put 'cl-letf 'lisp-indent-function '1)
632
633(autoload 'cl-letf* "cl-macs" "\
634Temporarily bind to PLACEs.
635Like `cl-letf' but where the bindings are performed one at a time,
636rather than all at the end (i.e. like `let*' rather than like `let').
637
638\(fn BINDINGS &rest BODY)" nil t)
639
640(put 'cl-letf* 'lisp-indent-function '1)
641
642(autoload 'cl-callf "cl-macs" "\
643Set PLACE to (FUNC PLACE ARGS...).
644FUNC should be an unquoted function name. PLACE may be a symbol,
645or any generalized variable allowed by `setf'.
646
647\(fn FUNC PLACE &rest ARGS)" nil t)
648
649(put 'cl-callf 'lisp-indent-function '2)
650
651(autoload 'cl-callf2 "cl-macs" "\
652Set PLACE to (FUNC ARG1 PLACE ARGS...).
653Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
654
655\(fn FUNC ARG1 PLACE ARGS...)" nil t)
656
657(put 'cl-callf2 'lisp-indent-function '3)
658
659(autoload 'cl-defstruct "cl-macs" "\
660Define a struct type.
661This macro defines a new data type called NAME that stores data
662in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
663copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
664You can use the accessors to set the corresponding slots, via `setf'.
665
666NAME may instead take the form (NAME OPTIONS...), where each
667OPTION is either a single keyword or (KEYWORD VALUE) where
668KEYWORD can be one of :conc-name, :constructor, :copier, :predicate,
669:type, :named, :initial-offset, :print-function, or :include.
670
671Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
672SLOT-OPTS are keyword-value pairs for that slot. Currently, only
673one keyword is supported, `:read-only'. If this has a non-nil
674value, that slot cannot be set via `setf'.
675
676\(fn NAME SLOTS...)" nil t)
677
678(put 'cl-defstruct 'doc-string-elt '2)
679
680(put 'cl-defstruct 'lisp-indent-function '1)
681
682(autoload 'cl-deftype "cl-macs" "\
683Define NAME as a new data type.
684The type name can then be used in `cl-typecase', `cl-check-type', etc.
685
686\(fn NAME ARGLIST &rest BODY)" nil t)
687
688(put 'cl-deftype 'doc-string-elt '3)
689
690(autoload 'cl-typep "cl-macs" "\
691Check that OBJECT is of type TYPE.
692TYPE is a Common Lisp-style type specifier.
693
694\(fn OBJECT TYPE)" nil nil)
695
696(autoload 'cl-check-type "cl-macs" "\
697Verify that FORM is of type TYPE; signal an error if not.
698STRING is an optional description of the desired type.
699
700\(fn FORM TYPE &optional STRING)" nil t)
701
702(autoload 'cl-assert "cl-macs" "\
703Verify that FORM returns non-nil; signal an error if not.
704Second arg SHOW-ARGS means to include arguments of FORM in message.
705Other args STRING and ARGS... are arguments to be passed to `error'.
706They are not evaluated unless the assertion fails. If STRING is
707omitted, a default message listing FORM itself is used.
708
709\(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
710
711(autoload 'cl-define-compiler-macro "cl-macs" "\
712Define a compiler-only macro.
713This is like `defmacro', but macro expansion occurs only if the call to
714FUNC is compiled (i.e., not interpreted). Compiler macros should be used
715for optimizing the way calls to FUNC are compiled; the form returned by
716BODY should do the same thing as a call to the normal function called
717FUNC, though possibly more efficiently. Note that, like regular macros,
718compiler macros are expanded repeatedly until no further expansions are
719possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
720original function call alone by declaring an initial `&whole foo' parameter
721and then returning foo.
722
723\(fn FUNC ARGS &rest BODY)" nil t)
724
725(autoload 'cl-compiler-macroexpand "cl-macs" "\
726Like `macroexpand', but for compiler macros.
727Expands FORM repeatedly until no further expansion is possible.
728Returns FORM unchanged if it has no compiler macro, or if it has a
729macro that returns its `&whole' argument.
730
731\(fn FORM)" nil nil)
732
733(autoload 'cl-defsubst "cl-macs" "\
734Define NAME as a function.
735Like `defun', except the function is automatically declared `inline',
736ARGLIST allows full Common Lisp conventions, and BODY is implicitly
737surrounded by (cl-block NAME ...).
738
739\(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
740
741(put 'cl-defsubst 'lisp-indent-function '2)
742
743(autoload 'cl--compiler-macro-adjoin "cl-macs" "\
744
745
746\(fn FORM A LIST &rest KEYS)" nil nil)
747
748;;;***
749\f
750;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
751;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
752;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
753;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
754;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
755;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
756;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
757;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
758;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
759;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
760;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
761;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
762;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "4c1e1191e82dc8d5449a5ec4d59efc10")
763;;; Generated autoloads from cl-seq.el
764
765(autoload 'cl-reduce "cl-seq" "\
766Reduce two-argument FUNCTION across SEQ.
767
768Keywords supported: :start :end :from-end :initial-value :key
769
770\(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
771
772(autoload 'cl-fill "cl-seq" "\
773Fill the elements of SEQ with ITEM.
774
775Keywords supported: :start :end
776
777\(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
778
779(autoload 'cl-replace "cl-seq" "\
780Replace the elements of SEQ1 with the elements of SEQ2.
781SEQ1 is destructively modified, then returned.
782
783Keywords supported: :start1 :end1 :start2 :end2
784
785\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
786
787(autoload 'cl-remove "cl-seq" "\
788Remove all occurrences of ITEM in SEQ.
789This is a non-destructive function; it makes a copy of SEQ if necessary
790to avoid corrupting the original SEQ.
791
792Keywords supported: :test :test-not :key :count :start :end :from-end
793
794\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
795
796(autoload 'cl-remove-if "cl-seq" "\
797Remove all items satisfying PREDICATE in SEQ.
798This is a non-destructive function; it makes a copy of SEQ if necessary
799to avoid corrupting the original SEQ.
800
801Keywords supported: :key :count :start :end :from-end
802
803\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
804
805(autoload 'cl-remove-if-not "cl-seq" "\
806Remove all items not satisfying PREDICATE in SEQ.
807This is a non-destructive function; it makes a copy of SEQ if necessary
808to avoid corrupting the original SEQ.
809
810Keywords supported: :key :count :start :end :from-end
811
812\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
813
814(autoload 'cl-delete "cl-seq" "\
815Remove all occurrences of ITEM in SEQ.
816This is a destructive function; it reuses the storage of SEQ whenever possible.
817
818Keywords supported: :test :test-not :key :count :start :end :from-end
819
820\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
821
822(autoload 'cl-delete-if "cl-seq" "\
823Remove all items satisfying PREDICATE in SEQ.
824This is a destructive function; it reuses the storage of SEQ whenever possible.
825
826Keywords supported: :key :count :start :end :from-end
827
828\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
829
830(autoload 'cl-delete-if-not "cl-seq" "\
831Remove all items not satisfying PREDICATE in SEQ.
832This is a destructive function; it reuses the storage of SEQ whenever possible.
833
834Keywords supported: :key :count :start :end :from-end
835
836\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
837
838(autoload 'cl-remove-duplicates "cl-seq" "\
839Return a copy of SEQ with all duplicate elements removed.
840
841Keywords supported: :test :test-not :key :start :end :from-end
842
843\(fn SEQ [KEYWORD VALUE]...)" nil nil)
844
845(autoload 'cl-delete-duplicates "cl-seq" "\
846Remove all duplicate elements from SEQ (destructively).
847
848Keywords supported: :test :test-not :key :start :end :from-end
849
850\(fn SEQ [KEYWORD VALUE]...)" nil nil)
851
852(autoload 'cl-substitute "cl-seq" "\
853Substitute NEW for OLD in SEQ.
854This is a non-destructive function; it makes a copy of SEQ if necessary
855to avoid corrupting the original SEQ.
856
857Keywords supported: :test :test-not :key :count :start :end :from-end
858
859\(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
860
861(autoload 'cl-substitute-if "cl-seq" "\
862Substitute NEW for all items satisfying PREDICATE in SEQ.
863This is a non-destructive function; it makes a copy of SEQ if necessary
864to avoid corrupting the original SEQ.
865
866Keywords supported: :key :count :start :end :from-end
867
868\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
869
870(autoload 'cl-substitute-if-not "cl-seq" "\
871Substitute NEW for all items not satisfying PREDICATE in SEQ.
872This is a non-destructive function; it makes a copy of SEQ if necessary
873to avoid corrupting the original SEQ.
874
875Keywords supported: :key :count :start :end :from-end
876
877\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
878
879(autoload 'cl-nsubstitute "cl-seq" "\
880Substitute NEW for OLD in SEQ.
881This is a destructive function; it reuses the storage of SEQ whenever possible.
882
883Keywords supported: :test :test-not :key :count :start :end :from-end
884
885\(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
886
887(autoload 'cl-nsubstitute-if "cl-seq" "\
888Substitute NEW for all items satisfying PREDICATE in SEQ.
889This is a destructive function; it reuses the storage of SEQ whenever possible.
890
891Keywords supported: :key :count :start :end :from-end
892
893\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
894
895(autoload 'cl-nsubstitute-if-not "cl-seq" "\
896Substitute NEW for all items not satisfying PREDICATE in SEQ.
897This is a destructive function; it reuses the storage of SEQ whenever possible.
898
899Keywords supported: :key :count :start :end :from-end
900
901\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
902
903(autoload 'cl-find "cl-seq" "\
904Find the first occurrence of ITEM in SEQ.
905Return the matching ITEM, or nil if not found.
906
907Keywords supported: :test :test-not :key :start :end :from-end
908
909\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
910
911(autoload 'cl-find-if "cl-seq" "\
912Find the first item satisfying PREDICATE in SEQ.
913Return the matching item, or nil if not found.
914
915Keywords supported: :key :start :end :from-end
916
917\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
918
919(autoload 'cl-find-if-not "cl-seq" "\
920Find the first item not satisfying PREDICATE in SEQ.
921Return the matching item, or nil if not found.
922
923Keywords supported: :key :start :end :from-end
924
925\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
926
927(autoload 'cl-position "cl-seq" "\
928Find the first occurrence of ITEM in SEQ.
929Return the index of the matching item, or nil if not found.
930
931Keywords supported: :test :test-not :key :start :end :from-end
932
933\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
934
935(autoload 'cl-position-if "cl-seq" "\
936Find the first item satisfying PREDICATE in SEQ.
937Return the index of the matching item, or nil if not found.
938
939Keywords supported: :key :start :end :from-end
940
941\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
942
943(autoload 'cl-position-if-not "cl-seq" "\
944Find the first item not satisfying PREDICATE in SEQ.
945Return the index of the matching item, or nil if not found.
946
947Keywords supported: :key :start :end :from-end
948
949\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
950
951(autoload 'cl-count "cl-seq" "\
952Count the number of occurrences of ITEM in SEQ.
953
954Keywords supported: :test :test-not :key :start :end
955
956\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
957
958(autoload 'cl-count-if "cl-seq" "\
959Count the number of items satisfying PREDICATE in SEQ.
960
961Keywords supported: :key :start :end
962
963\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
964
965(autoload 'cl-count-if-not "cl-seq" "\
966Count the number of items not satisfying PREDICATE in SEQ.
967
968Keywords supported: :key :start :end
969
970\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
971
972(autoload 'cl-mismatch "cl-seq" "\
973Compare SEQ1 with SEQ2, return index of first mismatching element.
974Return nil if the sequences match. If one sequence is a prefix of the
975other, the return value indicates the end of the shorter sequence.
976
977Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
978
979\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
980
981(autoload 'cl-search "cl-seq" "\
982Search for SEQ1 as a subsequence of SEQ2.
983Return the index of the leftmost element of the first match found;
984return nil if there are no matches.
985
986Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
987
988\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
989
990(autoload 'cl-sort "cl-seq" "\
991Sort the argument SEQ according to PREDICATE.
992This is a destructive function; it reuses the storage of SEQ if possible.
993
994Keywords supported: :key
995
996\(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
997
998(autoload 'cl-stable-sort "cl-seq" "\
999Sort the argument SEQ stably according to PREDICATE.
1000This is a destructive function; it reuses the storage of SEQ if possible.
1001
1002Keywords supported: :key
1003
1004\(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1005
1006(autoload 'cl-merge "cl-seq" "\
1007Destructively merge the two sequences to produce a new sequence.
1008TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1009sequences, and PREDICATE is a `less-than' predicate on the elements.
1010
1011Keywords supported: :key
1012
1013\(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1014
1015(autoload 'cl-member "cl-seq" "\
1016Find the first occurrence of ITEM in LIST.
1017Return the sublist of LIST whose car is ITEM.
1018
1019Keywords supported: :test :test-not :key
1020
1021\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1022
1023(put 'cl-member 'compiler-macro #'cl--compiler-macro-member)
1024
1025(autoload 'cl-member-if "cl-seq" "\
1026Find the first item satisfying PREDICATE in LIST.
1027Return the sublist of LIST whose car matches.
1028
1029Keywords supported: :key
1030
1031\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1032
1033(autoload 'cl-member-if-not "cl-seq" "\
1034Find the first item not satisfying PREDICATE in LIST.
1035Return the sublist of LIST whose car matches.
1036
1037Keywords supported: :key
1038
1039\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1040
1041(autoload 'cl--adjoin "cl-seq" "\
1042
1043
1044\(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1045
1046(autoload 'cl-assoc "cl-seq" "\
1047Find the first item whose car matches ITEM in LIST.
1048
1049Keywords supported: :test :test-not :key
1050
1051\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1052
1053(put 'cl-assoc 'compiler-macro #'cl--compiler-macro-assoc)
1054
1055(autoload 'cl-assoc-if "cl-seq" "\
1056Find the first item whose car satisfies PREDICATE in LIST.
1057
1058Keywords supported: :key
1059
1060\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1061
1062(autoload 'cl-assoc-if-not "cl-seq" "\
1063Find the first item whose car does not satisfy PREDICATE in LIST.
1064
1065Keywords supported: :key
1066
1067\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1068
1069(autoload 'cl-rassoc "cl-seq" "\
1070Find the first item whose cdr matches ITEM in LIST.
1071
1072Keywords supported: :test :test-not :key
1073
1074\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1075
1076(autoload 'cl-rassoc-if "cl-seq" "\
1077Find the first item whose cdr satisfies PREDICATE in LIST.
1078
1079Keywords supported: :key
1080
1081\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1082
1083(autoload 'cl-rassoc-if-not "cl-seq" "\
1084Find the first item whose cdr does not satisfy PREDICATE in LIST.
1085
1086Keywords supported: :key
1087
1088\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1089
1090(autoload 'cl-union "cl-seq" "\
1091Combine LIST1 and LIST2 using a set-union operation.
1092The resulting list contains all items that appear in either LIST1 or LIST2.
1093This is a non-destructive function; it makes a copy of the data if necessary
1094to avoid corrupting the original LIST1 and LIST2.
1095
1096Keywords supported: :test :test-not :key
1097
1098\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1099
1100(autoload 'cl-nunion "cl-seq" "\
1101Combine LIST1 and LIST2 using a set-union operation.
1102The resulting list contains all items that appear in either LIST1 or LIST2.
1103This is a destructive function; it reuses the storage of LIST1 and LIST2
1104whenever possible.
1105
1106Keywords supported: :test :test-not :key
1107
1108\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1109
1110(autoload 'cl-intersection "cl-seq" "\
1111Combine LIST1 and LIST2 using a set-intersection operation.
1112The resulting list contains all items that appear in both LIST1 and LIST2.
1113This is a non-destructive function; it makes a copy of the data if necessary
1114to avoid corrupting the original LIST1 and LIST2.
1115
1116Keywords supported: :test :test-not :key
1117
1118\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1119
1120(autoload 'cl-nintersection "cl-seq" "\
1121Combine LIST1 and LIST2 using a set-intersection operation.
1122The resulting list contains all items that appear in both LIST1 and LIST2.
1123This is a destructive function; it reuses the storage of LIST1 and LIST2
1124whenever possible.
1125
1126Keywords supported: :test :test-not :key
1127
1128\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1129
1130(autoload 'cl-set-difference "cl-seq" "\
1131Combine LIST1 and LIST2 using a set-difference operation.
1132The resulting list contains all items that appear in LIST1 but not LIST2.
1133This is a non-destructive function; it makes a copy of the data if necessary
1134to avoid corrupting the original LIST1 and LIST2.
1135
1136Keywords supported: :test :test-not :key
1137
1138\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1139
1140(autoload 'cl-nset-difference "cl-seq" "\
1141Combine LIST1 and LIST2 using a set-difference operation.
1142The resulting list contains all items that appear in LIST1 but not LIST2.
1143This is a destructive function; it reuses the storage of LIST1 and LIST2
1144whenever possible.
1145
1146Keywords supported: :test :test-not :key
1147
1148\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1149
1150(autoload 'cl-set-exclusive-or "cl-seq" "\
1151Combine LIST1 and LIST2 using a set-exclusive-or operation.
1152The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1153This is a non-destructive function; it makes a copy of the data if necessary
1154to avoid corrupting the original LIST1 and LIST2.
1155
1156Keywords supported: :test :test-not :key
1157
1158\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1159
1160(autoload 'cl-nset-exclusive-or "cl-seq" "\
1161Combine LIST1 and LIST2 using a set-exclusive-or operation.
1162The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1163This is a destructive function; it reuses the storage of LIST1 and LIST2
1164whenever possible.
1165
1166Keywords supported: :test :test-not :key
1167
1168\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1169
1170(autoload 'cl-subsetp "cl-seq" "\
1171Return true if LIST1 is a subset of LIST2.
1172I.e., if every element of LIST1 also appears in LIST2.
1173
1174Keywords supported: :test :test-not :key
1175
1176\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1177
1178(autoload 'cl-subst-if "cl-seq" "\
1179Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1180Return a copy of TREE with all matching elements replaced by NEW.
1181
1182Keywords supported: :key
1183
1184\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1185
1186(autoload 'cl-subst-if-not "cl-seq" "\
1187Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1188Return a copy of TREE with all non-matching elements replaced by NEW.
1189
1190Keywords supported: :key
1191
1192\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1193
1194(autoload 'cl-nsubst "cl-seq" "\
1195Substitute NEW for OLD everywhere in TREE (destructively).
1196Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1197to `setcar').
1198
1199Keywords supported: :test :test-not :key
1200
1201\(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1202
1203(autoload 'cl-nsubst-if "cl-seq" "\
1204Substitute NEW for elements matching PREDICATE in TREE (destructively).
1205Any element of TREE which matches is changed to NEW (via a call to `setcar').
1206
1207Keywords supported: :key
1208
1209\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1210
1211(autoload 'cl-nsubst-if-not "cl-seq" "\
1212Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1213Any element of TREE which matches is changed to NEW (via a call to `setcar').
1214
1215Keywords supported: :key
1216
1217\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1218
1219(autoload 'cl-sublis "cl-seq" "\
1220Perform substitutions indicated by ALIST in TREE (non-destructively).
1221Return a copy of TREE with all matching elements replaced.
1222
1223Keywords supported: :test :test-not :key
1224
1225\(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1226
1227(autoload 'cl-nsublis "cl-seq" "\
1228Perform substitutions indicated by ALIST in TREE (destructively).
1229Any matching element of TREE is changed via a call to `setcar'.
1230
1231Keywords supported: :test :test-not :key
1232
1233\(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1234
1235(autoload 'cl-tree-equal "cl-seq" "\
1236Return t if trees TREE1 and TREE2 have `eql' leaves.
1237Atoms are compared by `eql'; cons cells are compared recursively.
1238
1239Keywords supported: :test :test-not :key
1240
1241\(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1242
1243;;;***
1244\f
1245;; Local Variables:
1246;; version-control: never
1247;; no-byte-compile: t
1248;; no-update-autoloads: t
1249;; coding: utf-8
1250;; End:
1251;;; cl-loaddefs.el ends here