(run-python): Fix use of \n.
[bpt/emacs.git] / lispref / sequences.texi
... / ...
CommitLineData
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
3@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999
4@c Free Software Foundation, Inc.
5@c See the file elisp.texi for copying conditions.
6@setfilename ../info/sequences
7@node Sequences Arrays Vectors, Hash Tables, Lists, Top
8@chapter Sequences, Arrays, and Vectors
9@cindex sequence
10
11 Recall that the @dfn{sequence} type is the union of two other Lisp
12types: lists and arrays. In other words, any list is a sequence, and
13any array is a sequence. The common property that all sequences have is
14that each is an ordered collection of elements.
15
16 An @dfn{array} is a single primitive object that has a slot for each
17of its elements. All the elements are accessible in constant time, but
18the length of an existing array cannot be changed. Strings, vectors,
19char-tables and bool-vectors are the four types of arrays.
20
21 A list is a sequence of elements, but it is not a single primitive
22object; it is made of cons cells, one cell per element. Finding the
23@var{n}th element requires looking through @var{n} cons cells, so
24elements farther from the beginning of the list take longer to access.
25But it is possible to add elements to the list, or remove elements.
26
27 The following diagram shows the relationship between these types:
28
29@example
30@group
31 _____________________________________________
32 | |
33 | Sequence |
34 | ______ ________________________________ |
35 | | | | | |
36 | | List | | Array | |
37 | | | | ________ ________ | |
38 | |______| | | | | | | |
39 | | | Vector | | String | | |
40 | | |________| |________| | |
41 | | ____________ _____________ | |
42 | | | | | | | |
43 | | | Char-table | | Bool-vector | | |
44 | | |____________| |_____________| | |
45 | |________________________________| |
46 |_____________________________________________|
47@end group
48@end example
49
50 The elements of vectors and lists may be any Lisp objects. The
51elements of strings are all characters.
52
53@menu
54* Sequence Functions:: Functions that accept any kind of sequence.
55* Arrays:: Characteristics of arrays in Emacs Lisp.
56* Array Functions:: Functions specifically for arrays.
57* Vectors:: Special characteristics of Emacs Lisp vectors.
58* Vector Functions:: Functions specifically for vectors.
59* Char-Tables:: How to work with char-tables.
60* Bool-Vectors:: How to work with bool-vectors.
61@end menu
62
63@node Sequence Functions
64@section Sequences
65
66 In Emacs Lisp, a @dfn{sequence} is either a list or an array. The
67common property of all sequences is that they are ordered collections of
68elements. This section describes functions that accept any kind of
69sequence.
70
71@defun sequencep object
72Returns @code{t} if @var{object} is a list, vector,
73string, bool-vector, or char-table, @code{nil} otherwise.
74@end defun
75
76@defun length sequence
77@cindex string length
78@cindex list length
79@cindex vector length
80@cindex sequence length
81@cindex char-table length
82This function returns the number of elements in @var{sequence}. If
83@var{sequence} is a cons cell that is not a list (because the final
84@sc{cdr} is not @code{nil}), a @code{wrong-type-argument} error is
85signaled. For a char-table, the value returned is always one more
86than the maximum Emacs character code.
87
88@xref{List Elements}, for the related function @code{safe-length}.
89
90@example
91@group
92(length '(1 2 3))
93 @result{} 3
94@end group
95@group
96(length ())
97 @result{} 0
98@end group
99@group
100(length "foobar")
101 @result{} 6
102@end group
103@group
104(length [1 2 3])
105 @result{} 3
106@end group
107@group
108(length (make-bool-vector 5 nil))
109 @result{} 5
110@end group
111@end example
112@end defun
113
114@defun string-bytes string
115@cindex string, number of bytes
116This function returns the number of bytes in @var{string}.
117If @var{string} is a multibyte string, this is greater than
118@code{(length @var{string})}.
119@end defun
120
121@defun elt sequence index
122@cindex elements of sequences
123This function returns the element of @var{sequence} indexed by
124@var{index}. Legitimate values of @var{index} are integers ranging from
1250 up to one less than the length of @var{sequence}. If @var{sequence}
126is a list, then out-of-range values of @var{index} return @code{nil};
127otherwise, they trigger an @code{args-out-of-range} error.
128
129@example
130@group
131(elt [1 2 3 4] 2)
132 @result{} 3
133@end group
134@group
135(elt '(1 2 3 4) 2)
136 @result{} 3
137@end group
138@group
139;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
140(string (elt "1234" 2))
141 @result{} "3"
142@end group
143@group
144(elt [1 2 3 4] 4)
145 @error{} Args out of range: [1 2 3 4], 4
146@end group
147@group
148(elt [1 2 3 4] -1)
149 @error{} Args out of range: [1 2 3 4], -1
150@end group
151@end example
152
153This function generalizes @code{aref} (@pxref{Array Functions}) and
154@code{nth} (@pxref{List Elements}).
155@end defun
156
157@defun copy-sequence sequence
158@cindex copying sequences
159Returns a copy of @var{sequence}. The copy is the same type of object
160as the original sequence, and it has the same elements in the same order.
161
162Storing a new element into the copy does not affect the original
163@var{sequence}, and vice versa. However, the elements of the new
164sequence are not copies; they are identical (@code{eq}) to the elements
165of the original. Therefore, changes made within these elements, as
166found via the copied sequence, are also visible in the original
167sequence.
168
169If the sequence is a string with text properties, the property list in
170the copy is itself a copy, not shared with the original's property
171list. However, the actual values of the properties are shared.
172@xref{Text Properties}.
173
174See also @code{append} in @ref{Building Lists}, @code{concat} in
175@ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
176for other ways to copy sequences.
177
178@example
179@group
180(setq bar '(1 2))
181 @result{} (1 2)
182@end group
183@group
184(setq x (vector 'foo bar))
185 @result{} [foo (1 2)]
186@end group
187@group
188(setq y (copy-sequence x))
189 @result{} [foo (1 2)]
190@end group
191
192@group
193(eq x y)
194 @result{} nil
195@end group
196@group
197(equal x y)
198 @result{} t
199@end group
200@group
201(eq (elt x 1) (elt y 1))
202 @result{} t
203@end group
204
205@group
206;; @r{Replacing an element of one sequence.}
207(aset x 0 'quux)
208x @result{} [quux (1 2)]
209y @result{} [foo (1 2)]
210@end group
211
212@group
213;; @r{Modifying the inside of a shared element.}
214(setcar (aref x 1) 69)
215x @result{} [quux (69 2)]
216y @result{} [foo (69 2)]
217@end group
218@end example
219@end defun
220
221@node Arrays
222@section Arrays
223@cindex array
224
225 An @dfn{array} object has slots that hold a number of other Lisp
226objects, called the elements of the array. Any element of an array may
227be accessed in constant time. In contrast, an element of a list
228requires access time that is proportional to the position of the element
229in the list.
230
231 Emacs defines four types of array, all one-dimensional: @dfn{strings},
232@dfn{vectors}, @dfn{bool-vectors} and @dfn{char-tables}. A vector is a
233general array; its elements can be any Lisp objects. A string is a
234specialized array; its elements must be characters. Each type of array
235has its own read syntax.
236@xref{String Type}, and @ref{Vector Type}.
237
238 All four kinds of array share these characteristics:
239
240@itemize @bullet
241@item
242The first element of an array has index zero, the second element has
243index 1, and so on. This is called @dfn{zero-origin} indexing. For
244example, an array of four elements has indices 0, 1, 2, @w{and 3}.
245
246@item
247The length of the array is fixed once you create it; you cannot
248change the length of an existing array.
249
250@item
251The array is a constant, for evaluation---in other words, it evaluates
252to itself.
253
254@item
255The elements of an array may be referenced or changed with the functions
256@code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
257@end itemize
258
259 When you create an array, other than a char-table, you must specify
260its length. You cannot specify the length of a char-table, because that
261is determined by the range of character codes.
262
263 In principle, if you want an array of text characters, you could use
264either a string or a vector. In practice, we always choose strings for
265such applications, for four reasons:
266
267@itemize @bullet
268@item
269They occupy one-fourth the space of a vector of the same elements.
270
271@item
272Strings are printed in a way that shows the contents more clearly
273as text.
274
275@item
276Strings can hold text properties. @xref{Text Properties}.
277
278@item
279Many of the specialized editing and I/O facilities of Emacs accept only
280strings. For example, you cannot insert a vector of characters into a
281buffer the way you can insert a string. @xref{Strings and Characters}.
282@end itemize
283
284 By contrast, for an array of keyboard input characters (such as a key
285sequence), a vector may be necessary, because many keyboard input
286characters are outside the range that will fit in a string. @xref{Key
287Sequence Input}.
288
289@node Array Functions
290@section Functions that Operate on Arrays
291
292 In this section, we describe the functions that accept all types of
293arrays.
294
295@defun arrayp object
296This function returns @code{t} if @var{object} is an array (i.e., a
297vector, a string, a bool-vector or a char-table).
298
299@example
300@group
301(arrayp [a])
302 @result{} t
303(arrayp "asdf")
304 @result{} t
305(arrayp (syntax-table)) ;; @r{A char-table.}
306 @result{} t
307@end group
308@end example
309@end defun
310
311@defun aref array index
312@cindex array elements
313This function returns the @var{index}th element of @var{array}. The
314first element is at index zero.
315
316@example
317@group
318(setq primes [2 3 5 7 11 13])
319 @result{} [2 3 5 7 11 13]
320(aref primes 4)
321 @result{} 11
322@end group
323@group
324(aref "abcdefg" 1)
325 @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
326@end group
327@end example
328
329See also the function @code{elt}, in @ref{Sequence Functions}.
330@end defun
331
332@defun aset array index object
333This function sets the @var{index}th element of @var{array} to be
334@var{object}. It returns @var{object}.
335
336@example
337@group
338(setq w [foo bar baz])
339 @result{} [foo bar baz]
340(aset w 0 'fu)
341 @result{} fu
342w
343 @result{} [fu bar baz]
344@end group
345
346@group
347(setq x "asdfasfd")
348 @result{} "asdfasfd"
349(aset x 3 ?Z)
350 @result{} 90
351x
352 @result{} "asdZasfd"
353@end group
354@end example
355
356If @var{array} is a string and @var{object} is not a character, a
357@code{wrong-type-argument} error results. The function converts a
358unibyte string to multibyte if necessary to insert a character.
359@end defun
360
361@defun fillarray array object
362This function fills the array @var{array} with @var{object}, so that
363each element of @var{array} is @var{object}. It returns @var{array}.
364
365@example
366@group
367(setq a [a b c d e f g])
368 @result{} [a b c d e f g]
369(fillarray a 0)
370 @result{} [0 0 0 0 0 0 0]
371a
372 @result{} [0 0 0 0 0 0 0]
373@end group
374@group
375(setq s "When in the course")
376 @result{} "When in the course"
377(fillarray s ?-)
378 @result{} "------------------"
379@end group
380@end example
381
382If @var{array} is a string and @var{object} is not a character, a
383@code{wrong-type-argument} error results.
384@end defun
385
386The general sequence functions @code{copy-sequence} and @code{length}
387are often useful for objects known to be arrays. @xref{Sequence Functions}.
388
389@node Vectors
390@section Vectors
391@cindex vector
392
393 Arrays in Lisp, like arrays in most languages, are blocks of memory
394whose elements can be accessed in constant time. A @dfn{vector} is a
395general-purpose array of specified length; its elements can be any Lisp
396objects. (By contrast, a string can hold only characters as elements.)
397Vectors in Emacs are used for obarrays (vectors of symbols), and as part
398of keymaps (vectors of commands). They are also used internally as part
399of the representation of a byte-compiled function; if you print such a
400function, you will see a vector in it.
401
402 In Emacs Lisp, the indices of the elements of a vector start from zero
403and count up from there.
404
405 Vectors are printed with square brackets surrounding the elements.
406Thus, a vector whose elements are the symbols @code{a}, @code{b} and
407@code{a} is printed as @code{[a b a]}. You can write vectors in the
408same way in Lisp input.
409
410 A vector, like a string or a number, is considered a constant for
411evaluation: the result of evaluating it is the same vector. This does
412not evaluate or even examine the elements of the vector.
413@xref{Self-Evaluating Forms}.
414
415 Here are examples illustrating these principles:
416
417@example
418@group
419(setq avector [1 two '(three) "four" [five]])
420 @result{} [1 two (quote (three)) "four" [five]]
421(eval avector)
422 @result{} [1 two (quote (three)) "four" [five]]
423(eq avector (eval avector))
424 @result{} t
425@end group
426@end example
427
428@node Vector Functions
429@section Functions for Vectors
430
431 Here are some functions that relate to vectors:
432
433@defun vectorp object
434This function returns @code{t} if @var{object} is a vector.
435
436@example
437@group
438(vectorp [a])
439 @result{} t
440(vectorp "asdf")
441 @result{} nil
442@end group
443@end example
444@end defun
445
446@defun vector &rest objects
447This function creates and returns a vector whose elements are the
448arguments, @var{objects}.
449
450@example
451@group
452(vector 'foo 23 [bar baz] "rats")
453 @result{} [foo 23 [bar baz] "rats"]
454(vector)
455 @result{} []
456@end group
457@end example
458@end defun
459
460@defun make-vector length object
461This function returns a new vector consisting of @var{length} elements,
462each initialized to @var{object}.
463
464@example
465@group
466(setq sleepy (make-vector 9 'Z))
467 @result{} [Z Z Z Z Z Z Z Z Z]
468@end group
469@end example
470@end defun
471
472@defun vconcat &rest sequences
473@cindex copying vectors
474This function returns a new vector containing all the elements of the
475@var{sequences}. The arguments @var{sequences} may be any kind of
476arrays, including lists, vectors, or strings. If no @var{sequences} are
477given, an empty vector is returned.
478
479The value is a newly constructed vector that is not @code{eq} to any
480existing vector.
481
482@example
483@group
484(setq a (vconcat '(A B C) '(D E F)))
485 @result{} [A B C D E F]
486(eq a (vconcat a))
487 @result{} nil
488@end group
489@group
490(vconcat)
491 @result{} []
492(vconcat [A B C] "aa" '(foo (6 7)))
493 @result{} [A B C 97 97 foo (6 7)]
494@end group
495@end example
496
497The @code{vconcat} function also allows byte-code function objects as
498arguments. This is a special feature to make it easy to access the entire
499contents of a byte-code function object. @xref{Byte-Code Objects}.
500
501In Emacs versions before 21, the @code{vconcat} function allowed
502integers as arguments, converting them to strings of digits, but that
503feature has been eliminated. The proper way to convert an integer to
504a decimal number in this way is with @code{format} (@pxref{Formatting
505Strings}) or @code{number-to-string} (@pxref{String Conversion}).
506
507For other concatenation functions, see @code{mapconcat} in @ref{Mapping
508Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
509in @ref{Building Lists}.
510@end defun
511
512 The @code{append} function provides a way to convert a vector into a
513list with the same elements (@pxref{Building Lists}):
514
515@example
516@group
517(setq avector [1 two (quote (three)) "four" [five]])
518 @result{} [1 two (quote (three)) "four" [five]]
519(append avector nil)
520 @result{} (1 two (quote (three)) "four" [five])
521@end group
522@end example
523
524@node Char-Tables
525@section Char-Tables
526@cindex char-tables
527@cindex extra slots of char-table
528
529 A char-table is much like a vector, except that it is indexed by
530character codes. Any valid character code, without modifiers, can be
531used as an index in a char-table. You can access a char-table's
532elements with @code{aref} and @code{aset}, as with any array. In
533addition, a char-table can have @dfn{extra slots} to hold additional
534data not associated with particular character codes. Char-tables are
535constants when evaluated.
536
537@cindex subtype of char-table
538 Each char-table has a @dfn{subtype} which is a symbol. The subtype
539has two purposes: to distinguish char-tables meant for different uses,
540and to control the number of extra slots. For example, display tables
541are char-tables with @code{display-table} as the subtype, and syntax
542tables are char-tables with @code{syntax-table} as the subtype. A valid
543subtype must have a @code{char-table-extra-slots} property which is an
544integer between 0 and 10. This integer specifies the number of
545@dfn{extra slots} in the char-table.
546
547@cindex parent of char-table
548 A char-table can have a @dfn{parent}, which is another char-table. If
549it does, then whenever the char-table specifies @code{nil} for a
550particular character @var{c}, it inherits the value specified in the
551parent. In other words, @code{(aref @var{char-table} @var{c})} returns
552the value from the parent of @var{char-table} if @var{char-table} itself
553specifies @code{nil}.
554
555@cindex default value of char-table
556 A char-table can also have a @dfn{default value}. If so, then
557@code{(aref @var{char-table} @var{c})} returns the default value
558whenever the char-table does not specify any other non-@code{nil} value.
559
560@defun make-char-table subtype &optional init
561Return a newly created char-table, with subtype @var{subtype}. Each
562element is initialized to @var{init}, which defaults to @code{nil}. You
563cannot alter the subtype of a char-table after the char-table is
564created.
565
566There is no argument to specify the length of the char-table, because
567all char-tables have room for any valid character code as an index.
568@end defun
569
570@defun char-table-p object
571This function returns @code{t} if @var{object} is a char-table,
572otherwise @code{nil}.
573@end defun
574
575@defun char-table-subtype char-table
576This function returns the subtype symbol of @var{char-table}.
577@end defun
578
579@defun set-char-table-default char-table new-default
580This function sets the default value of @var{char-table} to
581@var{new-default}.
582
583There is no special function to access the default value of a char-table.
584To do that, use @code{(char-table-range @var{char-table} nil)}.
585@end defun
586
587@defun char-table-parent char-table
588This function returns the parent of @var{char-table}. The parent is
589always either @code{nil} or another char-table.
590@end defun
591
592@defun set-char-table-parent char-table new-parent
593This function sets the parent of @var{char-table} to @var{new-parent}.
594@end defun
595
596@defun char-table-extra-slot char-table n
597This function returns the contents of extra slot @var{n} of
598@var{char-table}. The number of extra slots in a char-table is
599determined by its subtype.
600@end defun
601
602@defun set-char-table-extra-slot char-table n value
603This function stores @var{value} in extra slot @var{n} of
604@var{char-table}.
605@end defun
606
607 A char-table can specify an element value for a single character code;
608it can also specify a value for an entire character set.
609
610@defun char-table-range char-table range
611This returns the value specified in @var{char-table} for a range of
612characters @var{range}. Here are the possibilities for @var{range}:
613
614@table @asis
615@item @code{nil}
616Refers to the default value.
617
618@item @var{char}
619Refers to the element for character @var{char}
620(supposing @var{char} is a valid character code).
621
622@item @var{charset}
623Refers to the value specified for the whole character set
624@var{charset} (@pxref{Character Sets}).
625
626@item @var{generic-char}
627A generic character stands for a character set; specifying the generic
628character as argument is equivalent to specifying the character set
629name. @xref{Splitting Characters}, for a description of generic characters.
630@end table
631@end defun
632
633@defun set-char-table-range char-table range value
634This function sets the value in @var{char-table} for a range of
635characters @var{range}. Here are the possibilities for @var{range}:
636
637@table @asis
638@item @code{nil}
639Refers to the default value.
640
641@item @code{t}
642Refers to the whole range of character codes.
643
644@item @var{char}
645Refers to the element for character @var{char}
646(supposing @var{char} is a valid character code).
647
648@item @var{charset}
649Refers to the value specified for the whole character set
650@var{charset} (@pxref{Character Sets}).
651
652@item @var{generic-char}
653A generic character stands for a character set; specifying the generic
654character as argument is equivalent to specifying the character set
655name. @xref{Splitting Characters}, for a description of generic characters.
656@end table
657@end defun
658
659@defun map-char-table function char-table
660This function calls @var{function} for each element of @var{char-table}.
661@var{function} is called with two arguments, a key and a value. The key
662is a possible @var{range} argument for @code{char-table-range}---either
663a valid character or a generic character---and the value is
664@code{(char-table-range @var{char-table} @var{key})}.
665
666Overall, the key-value pairs passed to @var{function} describe all the
667values stored in @var{char-table}.
668
669The return value is always @code{nil}; to make this function useful,
670@var{function} should have side effects. For example,
671here is how to examine each element of the syntax table:
672
673@example
674(let (accumulator)
675 (map-char-table
676 #'(lambda (key value)
677 (setq accumulator
678 (cons (list key value) accumulator)))
679 (syntax-table))
680 accumulator)
681@result{}
682((475008 nil) (474880 nil) (474752 nil) (474624 nil)
683 ... (5 (3)) (4 (3)) (3 (3)) (2 (3)) (1 (3)) (0 (3)))
684@end example
685@end defun
686
687@node Bool-Vectors
688@section Bool-vectors
689@cindex Bool-vectors
690
691 A bool-vector is much like a vector, except that it stores only the
692values @code{t} and @code{nil}. If you try to store any non-@code{nil}
693value into an element of the bool-vector, the effect is to store
694@code{t} there. As with all arrays, bool-vector indices start from 0,
695and the length cannot be changed once the bool-vector is created.
696Bool-vectors are constants when evaluated.
697
698 There are two special functions for working with bool-vectors; aside
699from that, you manipulate them with same functions used for other kinds
700of arrays.
701
702@defun make-bool-vector length initial
703Return a new bool-vector of @var{length} elements,
704each one initialized to @var{initial}.
705@end defun
706
707@defun bool-vector-p object
708This returns @code{t} if @var{object} is a bool-vector,
709and @code{nil} otherwise.
710@end defun
711
712 Here is an example of creating, examining, and updating a
713bool-vector. Note that the printed form represents up to 8 boolean
714values as a single character.
715
716@example
717(setq bv (make-bool-vector 5 t))
718 @result{} #&5"^_"
719(aref bv 1)
720 @result{} t
721(aset bv 3 nil)
722 @result{} nil
723bv
724 @result{} #&5"^W"
725@end example
726
727@noindent
728These results make sense because the binary codes for control-_ and
729control-W are 11111 and 10111, respectively.
730
731@ignore
732 arch-tag: fcf1084a-cd29-4adc-9f16-68586935b386
733@end ignore