entered into RCS
[bpt/emacs.git] / lisp / cl.el
CommitLineData
c0274f38
ER
1;;; cl.el --- Common-Lisp extensions for GNU Emacs Lisp.
2
1f8ca5e8
JB
3;; Copyright (C) 1987, 1988, 1989 Free Software Foundation, Inc.
4
5;; This file is part of GNU Emacs.
6
7;; GNU Emacs is distributed in the hope that it will be useful,
8;; but WITHOUT ANY WARRANTY. No author or distributor
9;; accepts responsibility to anyone for the consequences of using it
10;; or for whether it serves any particular purpose or works at all,
11;; unless he says so in writing. Refer to the GNU Emacs General Public
12;; License for full details.
13
14;; Everyone is granted permission to copy, modify and redistribute
15;; GNU Emacs, but only under the conditions described in the
16;; GNU Emacs General Public License. A copy of this license is
17;; supposed to have been given to you along with GNU Emacs so you
18;; can know your rights and responsibilities. It should be in a
19;; file named COPYING. Among other things, the copyright notice
20;; and this notice must be preserved on all copies.
21
22;;;;
23;;;; These are extensions to Emacs Lisp that provide some form of
24;;;; Common Lisp compatibility, beyond what is already built-in
25;;;; in Emacs Lisp.
26;;;;
27;;;; When developing them, I had the code spread among several files.
28;;;; This file 'cl.el' is a concatenation of those original files,
29;;;; minus some declarations that became redundant. The marks between
30;;;; the original files can be found easily, as they are lines that
31;;;; begin with four semicolons (as this does). The names of the
32;;;; original parts follow the four semicolons in uppercase, those
33;;;; names are GLOBAL, SYMBOLS, LISTS, SEQUENCES, CONDITIONALS,
34;;;; ITERATIONS, MULTIPLE VALUES, ARITH, SETF and DEFSTRUCT. If you
35;;;; add functions to this file, you might want to put them in a place
36;;;; that is compatible with the division above (or invent your own
37;;;; categories).
38;;;;
39;;;; To compile this file, make sure you load it first. This is
40;;;; because many things are implemented as macros and now that all
41;;;; the files are concatenated together one cannot ensure that
42;;;; declaration always precedes use.
43;;;;
44;;;; Bug reports, suggestions and comments,
45;;;; to quiroz@cs.rochester.edu
46
1f8ca5e8
JB
47(defvar cl-version "2.0 beta 29 October 1989")
48
49\f
50;;;; GLOBAL
51;;;; This file provides utilities and declarations that are global
52;;;; to Common Lisp and so might be used by more than one of the
53;;;; other libraries. Especially, I intend to keep here some
54;;;; utilities that help parsing/destructuring some difficult calls.
55;;;;
56;;;;
57;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
58;;;; (quiroz@cs.rochester.edu)
59
60;;; Too many pieces of the rest of this package use psetq. So it is unwise to
61;;; use here anything but plain Emacs Lisp! There is a neater recursive form
62;;; for the algorithm that deals with the bodies.
63
64(defmacro psetq (&rest body)
65 "(psetq {var value }...) => nil
66Like setq, but all the values are computed before any assignment is made."
67 (let ((length (length body)))
68 (cond ((/= (% length 2) 0)
69 (error "psetq needs an even number of arguments, %d given"
70 length))
71 ((null body)
72 '())
73 (t
74 (list 'prog1 nil
75 (let ((setqs '())
76 (bodyforms (reverse body)))
77 (while bodyforms
78 (let* ((value (car bodyforms))
79 (place (cadr bodyforms)))
80 (setq bodyforms (cddr bodyforms))
81 (if (null setqs)
82 (setq setqs (list 'setq place value))
83 (setq setqs (list 'setq place
84 (list 'prog1 value
85 setqs))))))
86 setqs))))))
87\f
88;;; utilities
89;;;
90;;; pair-with-newsyms takes a list and returns a list of lists of the
91;;; form (newsym form), such that a let* can then bind the evaluation
92;;; of the forms to the newsyms. The idea is to guarantee correct
93;;; order of evaluation of the subforms of a setf. It also returns a
94;;; list of the newsyms generated, in the corresponding order.
95
96(defun pair-with-newsyms (oldforms)
97 "PAIR-WITH-NEWSYMS OLDFORMS
98The top-level components of the list oldforms are paired with fresh
99symbols, the pairings list and the newsyms list are returned."
100 (do ((ptr oldforms (cdr ptr))
101 (bindings '())
102 (newsyms '()))
103 ((endp ptr) (values (nreverse bindings) (nreverse newsyms)))
104 (let ((newsym (gentemp)))
105 (setq bindings (cons (list newsym (car ptr)) bindings))
106 (setq newsyms (cons newsym newsyms)))))
107
108(defun zip-lists (evens odds)
109 "Merge two lists EVENS and ODDS, taking elts from each list alternatingly.
110EVENS and ODDS are two lists. ZIP-LISTS constructs a new list, whose
111even numbered elements (0,2,...) come from EVENS and whose odd numbered
112elements (1,3,...) come from ODDS.
113The construction stops when the shorter list is exhausted."
114 (do* ((p0 evens (cdr p0))
115 (p1 odds (cdr p1))
116 (even (car p0) (car p0))
117 (odd (car p1) (car p1))
118 (result '()))
119 ((or (endp p0) (endp p1))
120 (nreverse result))
121 (setq result
122 (cons odd (cons even result)))))
123
124(defun unzip-list (list)
125 "Extract even and odd elements of LIST into two separate lists.
126The argument LIST is separated in two strands, the even and the odd
127numbered elements. Numbering starts with 0, so the first element
128belongs in EVENS. No check is made that there is an even number of
129elements to start with."
130 (do* ((ptr list (cddr ptr))
131 (this (car ptr) (car ptr))
132 (next (cadr ptr) (cadr ptr))
133 (evens '())
134 (odds '()))
135 ((endp ptr)
136 (values (nreverse evens) (nreverse odds)))
137 (setq evens (cons this evens))
138 (setq odds (cons next odds))))
139\f
140(defun reassemble-argslists (argslists)
141 "(reassemble-argslists ARGSLISTS) => a list of lists
142ARGSLISTS is a list of sequences. Return a list of lists, the first
143sublist being all the entries coming from ELT 0 of the original
144sublists, the next those coming from ELT 1 and so on, until the
145shortest list is exhausted."
146 (let* ((minlen (apply 'min (mapcar 'length argslists)))
147 (result '()))
148 (dotimes (i minlen (nreverse result))
149 ;; capture all the elements at index i
150 (setq result
151 (cons (mapcar (function (lambda (sublist) (elt sublist i)))
152 argslists)
153 result)))))
154
155\f
156;;; Checking that a list of symbols contains no duplicates is a common
157;;; task when checking the legality of some macros. The check for 'eq
158;;; pairs can be too expensive, as it is quadratic on the length of
159;;; the list. I use a 4-pass, linear, counting approach. It surely
160;;; loses on small lists (less than 5 elements?), but should win for
161;;; larger lists. The fourth pass could be eliminated.
162;;; 10 dec 1986. Emacs Lisp has no REMPROP, so I just eliminated the
163;;; 4th pass.
164(defun duplicate-symbols-p (list)
165 "Find all symbols appearing more than once in LIST.
166Return a list of all such duplicates; nil if there are no duplicates."
167 (let ((duplicates '()) ;result built here
168 (propname (gensym)) ;we use a fresh property
169 )
170 ;; check validity
171 (unless (and (listp list)
172 (every 'symbolp list))
173 (error "a list of symbols is needed"))
174 ;; pass 1: mark
175 (dolist (x list)
176 (put x propname 0))
177 ;; pass 2: count
178 (dolist (x list)
179 (put x propname (1+ (get x propname))))
180 ;; pass 3: collect
181 (dolist (x list)
182 (if (> (get x propname) 1)
183 (setq duplicates (cons x duplicates))))
184 ;; pass 4: unmark. eliminated.
185 ;; (dolist (x list) (remprop x propname))
186 ;; return result
187 duplicates))
188
189;;;; end of cl-global.el
190\f
191;;;; SYMBOLS
192;;;; This file provides the gentemp function, which generates fresh
193;;;; symbols, plus some other minor Common Lisp symbol tools.
194;;;;
195;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
196;;;; (quiroz@cs.rochester.edu)
197
198;;; Keywords. There are no packages in Emacs Lisp, so this is only a
199;;; kludge around to let things be "as if" a keyword package was around.
200
201(defmacro defkeyword (x &optional docstring)
202 "Make symbol X a keyword (symbol whose value is itself).
203Optional second arg DOCSTRING is a documentation string for it."
204 (cond ((symbolp x)
205 (list 'defconst x (list 'quote x) docstring))
206 (t
207 (error "`%s' is not a symbol" (prin1-to-string x)))))
208
209(defun keywordp (sym)
210 "Return t if SYM is a keyword."
211 (if (and (symbolp sym) (char-equal (aref (symbol-name sym) 0) ?\:))
212 ;; looks like one, make sure value is right
213 (set sym sym)
214 nil))
215
216(defun keyword-of (sym)
217 "Return a keyword that is naturally associated with symbol SYM.
218If SYM is keyword, the value is SYM.
219Otherwise it is a keyword whose name is `:' followed by SYM's name."
220 (cond ((keywordp sym)
221 sym)
222 ((symbolp sym)
223 (let ((newsym (intern (concat ":" (symbol-name sym)))))
224 (set newsym newsym)))
225 (t
226 (error "expected a symbol, not `%s'" (prin1-to-string sym)))))
227\f
228;;; Temporary symbols.
229;;;
230
231(defvar *gentemp-index* 0
232 "Integer used by `gentemp' to produce new names.")
233
234(defvar *gentemp-prefix* "T$$_"
235 "Names generated by `gentemp begin' with this string by default.")
236
237(defun gentemp (&optional prefix oblist)
238 "Generate a fresh interned symbol.
239There are two optional arguments, PREFIX and OBLIST. PREFIX is the string
240that begins the new name, OBLIST is the obarray used to search for old
241names. The defaults are just right, YOU SHOULD NEVER NEED THESE ARGUMENTS
242IN YOUR OWN CODE."
243 (if (null prefix)
244 (setq prefix *gentemp-prefix*))
245 (if (null oblist)
246 (setq oblist obarray)) ;default for the intern functions
247 (let ((newsymbol nil)
248 (newname))
249 (while (not newsymbol)
250 (setq newname (concat prefix *gentemp-index*))
251 (setq *gentemp-index* (+ *gentemp-index* 1))
252 (if (not (intern-soft newname oblist))
253 (setq newsymbol (intern newname oblist))))
254 newsymbol))
255\f
256(defvar *gensym-index* 0
257 "Integer used by `gensym' to produce new names.")
258
259(defvar *gensym-prefix* "G$$_"
260 "Names generated by `gensym' begin with this string by default.")
261
262(defun gensym (&optional prefix)
263 "Generate a fresh uninterned symbol.
264Optional arg PREFIX is the string that begins the new name. Most people
265take just the default, except when debugging needs suggest otherwise."
266 (if (null prefix)
267 (setq prefix *gensym-prefix*))
268 (let ((newsymbol nil)
269 (newname ""))
270 (while (not newsymbol)
271 (setq newname (concat prefix *gensym-index*))
272 (setq *gensym-index* (+ *gensym-index* 1))
273 (if (not (intern-soft newname))
274 (setq newsymbol (make-symbol newname))))
275 newsymbol))
276
277;;;; end of cl-symbols.el
278\f
279;;;; CONDITIONALS
280;;;; This file provides some of the conditional constructs of
281;;;; Common Lisp. Total compatibility is again impossible, as the
282;;;; 'if' form is different in both languages, so only a good
283;;;; approximation is desired.
284;;;;
285;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
286;;;; (quiroz@cs.rochester.edu)
287
288;;; indentation info
289(put 'case 'lisp-indent-function 1)
290(put 'ecase 'lisp-indent-function 1)
291(put 'when 'lisp-indent-function 1)
292(put 'unless 'lisp-indent-function 1)
293
294;;; WHEN and UNLESS
295;;; These two forms are simplified ifs, with a single branch.
296
297(defmacro when (condition &rest body)
298 "(when CONDITION . BODY) => evaluate BODY if CONDITION is true."
299 (list* 'if (list 'not condition) '() body))
300
301(defmacro unless (condition &rest body)
302 "(unless CONDITION . BODY) => evaluate BODY if CONDITION is false."
303 (list* 'if condition '() body))
304\f
305;;; CASE and ECASE
306;;; CASE selects among several clauses, based on the value (evaluated)
307;;; of a expression and a list of (unevaluated) key values. ECASE is
308;;; the same, but signals an error if no clause is activated.
309
310(defmacro case (expr &rest cases)
311 "(case EXPR . CASES) => evals EXPR, chooses from CASES on that value.
312EXPR -> any form
313CASES -> list of clauses, non empty
314CLAUSE -> HEAD . BODY
315HEAD -> t = catch all, must be last clause
316 -> otherwise = same as t
317 -> nil = illegal
318 -> atom = activated if (eql EXPR HEAD)
319 -> list of atoms = activated if (memq EXPR HEAD)
320BODY -> list of forms, implicit PROGN is built around it.
321EXPR is evaluated only once."
322 (let* ((newsym (gentemp))
323 (clauses (case-clausify cases newsym)))
324 ;; convert case into a cond inside a let
325 (list 'let
326 (list (list newsym expr))
327 (list* 'cond (nreverse clauses)))))
328
329(defmacro ecase (expr &rest cases)
330 "(ecase EXPR . CASES) => like `case', but error if no case fits.
331`t'-clauses are not allowed."
332 (let* ((newsym (gentemp))
333 (clauses (case-clausify cases newsym)))
334 ;; check that no 't clause is present.
335 ;; case-clausify would put one such at the beginning of clauses
336 (if (eq (caar clauses) t)
337 (error "no clause-head should be `t' or `otherwise' for `ecase'"))
338 ;; insert error-catching clause
339 (setq clauses
340 (cons
341 (list 't (list 'error
342 "ecase on %s = %s failed to take any branch"
343 (list 'quote expr)
344 (list 'prin1-to-string newsym)))
345 clauses))
346 ;; generate code as usual
347 (list 'let
348 (list (list newsym expr))
349 (list* 'cond (nreverse clauses)))))
350
351\f
352(defun case-clausify (cases newsym)
353 "CASE-CLAUSIFY CASES NEWSYM => clauses for a 'cond'
354Converts the CASES of a [e]case macro into cond clauses to be
355evaluated inside a let that binds NEWSYM. Returns the clauses in
356reverse order."
357 (do* ((currentpos cases (cdr currentpos))
358 (nextpos (cdr cases) (cdr nextpos))
359 (curclause (car cases) (car currentpos))
360 (result '()))
361 ((endp currentpos) result)
362 (let ((head (car curclause))
363 (body (cdr curclause)))
364 ;; construct a cond-clause according to the head
365 (cond ((null head)
366 (error "case clauses cannot have null heads: `%s'"
367 (prin1-to-string curclause)))
368 ((or (eq head 't)
369 (eq head 'otherwise))
370 ;; check it is the last clause
371 (if (not (endp nextpos))
372 (error "clause with `t' or `otherwise' head must be last"))
373 ;; accept this clause as a 't' for cond
374 (setq result (cons (cons 't body) result)))
375 ((atom head)
376 (setq result
377 (cons (cons (list 'eql newsym (list 'quote head)) body)
378 result)))
379 ((listp head)
380 (setq result
381 (cons (cons (list 'memq newsym (list 'quote head)) body)
382 result)))
383 (t
384 ;; catch-all for this parser
385 (error "don't know how to parse case clause `%s'"
386 (prin1-to-string head)))))))
387
388;;;; end of cl-conditionals.el
389\f
390;;;; ITERATIONS
391;;;; This file provides simple iterative macros (a la Common Lisp)
392;;;; constructed on the basis of let, let* and while, which are the
393;;;; primitive binding/iteration constructs of Emacs Lisp
394;;;;
395;;;; The Common Lisp iterations use to have a block named nil
396;;;; wrapped around them, and allow declarations at the beginning
397;;;; of their bodies and you can return a value using (return ...).
398;;;; Nothing of the sort exists in Emacs Lisp, so I haven't tried
399;;;; to imitate these behaviors.
400;;;;
401;;;; Other than the above, the semantics of Common Lisp are
402;;;; correctly reproduced to the extent this was reasonable.
403;;;;
404;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
405;;;; (quiroz@cs.rochester.edu)
406
407;;; some lisp-indentation information
408(put 'do 'lisp-indent-function 2)
409(put 'do* 'lisp-indent-function 2)
410(put 'dolist 'lisp-indent-function 1)
411(put 'dotimes 'lisp-indent-function 1)
412(put 'do-symbols 'lisp-indent-function 1)
413(put 'do-all-symbols 'lisp-indent-function 1)
414
415\f
416(defmacro do (stepforms endforms &rest body)
417 "(do STEPFORMS ENDFORMS . BODY): Iterate BODY, stepping some local
418variables. STEPFORMS must be a list of symbols or lists. In the second
419case, the lists must start with a symbol and contain up to two more forms.
420In the STEPFORMS, a symbol is the same as a (symbol). The other two forms
421are the initial value (def. NIL) and the form to step (def. itself).
422
423The values used by initialization and stepping are computed in parallel.
424The ENDFORMS are a list (CONDITION . ENDBODY). If the CONDITION evaluates
425to true in any iteration, ENDBODY is evaluated and the last form in it is
426returned.
427
428The BODY (which may be empty) is evaluated at every iteration, with the
429symbols of the STEPFORMS bound to the initial or stepped values."
430
431 ;; check the syntax of the macro
432 (and (check-do-stepforms stepforms)
433 (check-do-endforms endforms))
434 ;; construct emacs-lisp equivalent
435 (let ((initlist (extract-do-inits stepforms))
436 (steplist (extract-do-steps stepforms))
437 (endcond (car endforms))
438 (endbody (cdr endforms)))
439 (cons 'let (cons initlist
440 (cons (cons 'while (cons (list 'not endcond)
441 (append body steplist)))
442 (append endbody))))))
443
444\f
445(defmacro do* (stepforms endforms &rest body)
446 "`do*' is to `do' as `let*' is to `let'.
447STEPFORMS must be a list of symbols or lists. In the second case, the
448lists must start with a symbol and contain up to two more forms. In the
449STEPFORMS, a symbol is the same as a (symbol). The other two forms are
450the initial value (def. NIL) and the form to step (def. itself).
451
452Initializations and steppings are done in the sequence they are written.
453
454The ENDFORMS are a list (CONDITION . ENDBODY). If the CONDITION evaluates
455to true in any iteration, ENDBODY is evaluated and the last form in it is
456returned.
457
458The BODY (which may be empty) is evaluated at every iteration, with
459the symbols of the STEPFORMS bound to the initial or stepped values."
460 ;; check the syntax of the macro
461 (and (check-do-stepforms stepforms)
462 (check-do-endforms endforms))
463 ;; construct emacs-lisp equivalent
464 (let ((initlist (extract-do-inits stepforms))
465 (steplist (extract-do*-steps stepforms))
466 (endcond (car endforms))
467 (endbody (cdr endforms)))
468 (cons 'let* (cons initlist
469 (cons (cons 'while (cons (list 'not endcond)
470 (append body steplist)))
471 (append endbody))))))
472
473\f
474;;; DO and DO* share the syntax checking functions that follow.
475
476(defun check-do-stepforms (forms)
477 "True if FORMS is a valid stepforms for the do[*] macro (q.v.)"
478 (if (nlistp forms)
479 (error "init/step form for do[*] should be a list, not `%s'"
480 (prin1-to-string forms))
481 (mapcar
482 (function
483 (lambda (entry)
484 (if (not (or (symbolp entry)
485 (and (listp entry)
486 (symbolp (car entry))
487 (< (length entry) 4))))
488 (error "init/step must be %s, not `%s'"
489 "symbol or (symbol [init [step]])"
490 (prin1-to-string entry)))))
491 forms)))
492
493(defun check-do-endforms (forms)
494 "True if FORMS is a valid endforms for the do[*] macro (q.v.)"
495 (if (nlistp forms)
496 (error "termination form for do macro should be a list, not `%s'"
497 (prin1-to-string forms))))
498
499(defun extract-do-inits (forms)
500 "Returns a list of the initializations (for do) in FORMS
501(a stepforms, see the do macro).
502FORMS is assumed syntactically valid."
503 (mapcar
504 (function
505 (lambda (entry)
506 (cond ((symbolp entry)
507 (list entry nil))
508 ((listp entry)
509 (list (car entry) (cadr entry))))))
510 forms))
511
512;;; There used to be a reason to deal with DO differently than with
513;;; DO*. The writing of PSETQ has made it largely unnecessary.
514
515(defun extract-do-steps (forms)
516 "EXTRACT-DO-STEPS FORMS => an s-expr.
517FORMS is the stepforms part of a DO macro (q.v.). This function constructs
518an s-expression that does the stepping at the end of an iteration."
519 (list (cons 'psetq (select-stepping-forms forms))))
520
521(defun extract-do*-steps (forms)
522 "EXTRACT-DO*-STEPS FORMS => an s-expr.
523FORMS is the stepforms part of a DO* macro (q.v.). This function constructs
524an s-expression that does the stepping at the end of an iteration."
525 (list (cons 'setq (select-stepping-forms forms))))
526
527(defun select-stepping-forms (forms)
528 "Separate only the forms that cause stepping."
529 (let ((result '()) ;ends up being (... var form ...)
530 (ptr forms) ;to traverse the forms
531 entry ;to explore each form in turn
532 )
533 (while ptr ;(not (endp entry)) might be safer
534 (setq entry (car ptr))
535 (cond ((and (listp entry) (= (length entry) 3))
536 (setq result (append ;append in reverse order!
537 (list (caddr entry) (car entry))
538 result))))
539 (setq ptr (cdr ptr))) ;step in the list of forms
540 (nreverse result)))
541\f
542;;; Other iterative constructs
543
544(defmacro dolist (stepform &rest body)
545 "(dolist (VAR LIST [RESULTFORM]) . BODY): do BODY for each elt of LIST.
546The RESULTFORM defaults to nil. The VAR is bound to successive elements
547of the value of LIST and remains bound (to the nil value) when the
548RESULTFORM is evaluated."
549 ;; check sanity
550 (cond
551 ((nlistp stepform)
552 (error "stepform for `dolist' should be (VAR LIST [RESULT]), not `%s'"
553 (prin1-to-string stepform)))
554 ((not (symbolp (car stepform)))
555 (error "first component of stepform should be a symbol, not `%s'"
556 (prin1-to-string (car stepform))))
557 ((> (length stepform) 3)
558 (error "too many components in stepform `%s'"
559 (prin1-to-string stepform))))
560 ;; generate code
561 (let* ((var (car stepform))
562 (listform (cadr stepform))
563 (resultform (caddr stepform)))
564 (list 'progn
565 (list 'mapcar
566 (list 'function
567 (cons 'lambda (cons (list var) body)))
568 listform)
569 (list 'let
570 (list (list var nil))
571 resultform))))
572
573(defmacro dotimes (stepform &rest body)
574 "(dotimes (VAR COUNTFORM [RESULTFORM]) . BODY): Repeat BODY, counting in VAR.
575The COUNTFORM should return a positive integer. The VAR is bound to
576successive integers from 0 to COUNTFORM - 1 and the BODY is repeated for
577each of them. At the end, the RESULTFORM is evaluated and its value
578returned. During this last evaluation, the VAR is still bound, and its
579value is the number of times the iteration occurred. An omitted RESULTFORM
580defaults to nil."
581 ;; check sanity
582 (cond
583 ((nlistp stepform)
584 (error "stepform for `dotimes' should be (VAR COUNT [RESULT]), not `%s'"
585 (prin1-to-string stepform)))
586 ((not (symbolp (car stepform)))
587 (error "first component of stepform should be a symbol, not `%s'"
588 (prin1-to-string (car stepform))))
589 ((> (length stepform) 3)
590 (error "too many components in stepform `%s'"
591 (prin1-to-string stepform))))
592 ;; generate code
593 (let* ((var (car stepform))
594 (countform (cadr stepform))
595 (resultform (caddr stepform))
596 (newsym (gentemp)))
597 (list
598 'let* (list (list newsym countform))
599 (list*
600 'do*
601 (list (list var 0 (list '+ var 1)))
602 (list (list '>= var newsym) resultform)
603 body))))
604\f
605(defmacro do-symbols (stepform &rest body)
606 "(do_symbols (VAR [OBARRAY [RESULTFORM]]) . BODY)
607The VAR is bound to each of the symbols in OBARRAY (def. obarray) and
608the BODY is repeatedly performed for each of those bindings. At the
609end, RESULTFORM (def. nil) is evaluated and its value returned.
610During this last evaluation, the VAR is still bound and its value is nil.
611See also the function `mapatoms'."
612 ;; check sanity
613 (cond
614 ((nlistp stepform)
615 (error "stepform for `do-symbols' should be (VAR OBARRAY [RESULT]), not `%s'"
616 (prin1-to-string stepform)))
617 ((not (symbolp (car stepform)))
618 (error "first component of stepform should be a symbol, not `%s'"
619 (prin1-to-string (car stepform))))
620 ((> (length stepform) 3)
621 (error "too many components in stepform `%s'"
622 (prin1-to-string stepform))))
623 ;; generate code
624 (let* ((var (car stepform))
625 (oblist (cadr stepform))
626 (resultform (caddr stepform)))
627 (list 'progn
628 (list 'mapatoms
629 (list 'function
630 (cons 'lambda (cons (list var) body)))
631 oblist)
632 (list 'let
633 (list (list var nil))
634 resultform))))
635
636
637(defmacro do-all-symbols (stepform &rest body)
638 "(do-all-symbols (VAR [RESULTFORM]) . BODY)
639Is the same as (do-symbols (VAR obarray RESULTFORM) . BODY)."
640 (list*
641 'do-symbols
642 (list (car stepform) 'obarray (cadr stepform))
643 body))
644\f
645(defmacro loop (&rest body)
646 "(loop . BODY) repeats BODY indefinitely and does not return.
647Normally BODY uses `throw' or `signal' to cause an exit.
648The forms in BODY should be lists, as non-lists are reserved for new features."
649 ;; check that the body doesn't have atomic forms
650 (if (nlistp body)
651 (error "body of `loop' should be a list of lists or nil")
652 ;; ok, it is a list, check for atomic components
653 (mapcar
654 (function (lambda (component)
655 (if (nlistp component)
656 (error "components of `loop' should be lists"))))
657 body)
658 ;; build the infinite loop
659 (cons 'while (cons 't body))))
660
661;;;; end of cl-iterations.el
662\f
663;;;; LISTS
664;;;; This file provides some of the lists machinery of Common-Lisp
665;;;; in a way compatible with Emacs Lisp. Especially, see the the
666;;;; typical c[ad]*r functions.
667;;;;
668;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
669;;;; (quiroz@cs.rochester.edu)
670
671(defvar *cl-valid-named-list-accessors*
672 '(first rest second third fourth fifth sixth seventh eighth ninth tenth))
673(defvar *cl-valid-nth-offsets*
674 '((second . 1)
675 (third . 2)
676 (fourth . 3)
677 (fifth . 4)
678 (sixth . 5)
679 (seventh . 6)
680 (eighth . 7)
681 (ninth . 8)
682 (tenth . 9)))
683
684(defun byte-compile-named-list-accessors (form)
685 "Generate code for (<accessor> FORM), where <accessor> is one of the named
686list accessors: first, second, ..., tenth, rest."
687 (let* ((fun (car form))
688 (arg (cadr form))
689 (valid *cl-valid-named-list-accessors*)
690 (offsets *cl-valid-nth-offsets*))
691 (if (or (null (cdr form)) (cddr form))
692 (error "%s needs exactly one argument, seen `%s'"
693 fun (prin1-to-string form)))
694 (if (not (memq fun valid))
695 (error "`%s' not in {first, ..., tenth, rest}" fun))
696 (cond ((eq fun 'first)
697 (byte-compile-form arg)
698 (setq byte-compile-depth (1- byte-compile-depth))
699 (byte-compile-out byte-car 0))
700 ((eq fun 'rest)
701 (byte-compile-form arg)
702 (setq byte-compile-depth (1- byte-compile-depth))
703 (byte-compile-out byte-cdr 0))
704 (t ;one of the others
705 (byte-compile-constant (cdr (assoc fun offsets)))
706 (byte-compile-form arg)
707 (setq byte-compile-depth (1- byte-compile-depth))
708 (byte-compile-out byte-nth 0)
709 ))))
710
711;;; Synonyms for list functions
712(defun first (x)
713 "Synonym for `car'"
714 (car x))
715(put 'first 'byte-compile 'byte-compile-named-list-accessors)
716
717(defun second (x)
718 "Return the second element of the list LIST."
719 (nth 1 x))
720(put 'second 'byte-compile 'byte-compile-named-list-accessors)
721
722(defun third (x)
723 "Return the third element of the list LIST."
724 (nth 2 x))
725(put 'third 'byte-compile 'byte-compile-named-list-accessors)
726
727(defun fourth (x)
728 "Return the fourth element of the list LIST."
729 (nth 3 x))
730(put 'fourth 'byte-compile 'byte-compile-named-list-accessors)
731
732(defun fifth (x)
733 "Return the fifth element of the list LIST."
734 (nth 4 x))
735(put 'fifth 'byte-compile 'byte-compile-named-list-accessors)
736
737(defun sixth (x)
738 "Return the sixth element of the list LIST."
739 (nth 5 x))
740(put 'sixth 'byte-compile 'byte-compile-named-list-accessors)
741
742(defun seventh (x)
743 "Return the seventh element of the list LIST."
744 (nth 6 x))
745(put 'seventh 'byte-compile 'byte-compile-named-list-accessors)
746
747(defun eighth (x)
748 "Return the eighth element of the list LIST."
749 (nth 7 x))
750(put 'eighth 'byte-compile 'byte-compile-named-list-accessors)
751
752(defun ninth (x)
753 "Return the ninth element of the list LIST."
754 (nth 8 x))
755(put 'ninth 'byte-compile 'byte-compile-named-list-accessors)
756
757(defun tenth (x)
758 "Return the tenth element of the list LIST."
759 (nth 9 x))
760(put 'tenth 'byte-compile 'byte-compile-named-list-accessors)
761
762(defun rest (x)
763 "Synonym for `cdr'"
764 (cdr x))
765(put 'rest 'byte-compile 'byte-compile-named-list-accessors)
766\f
767(defun endp (x)
768 "t if X is nil, nil if X is a cons; error otherwise."
769 (if (listp x)
770 (null x)
771 (error "endp received a non-cons, non-null argument `%s'"
772 (prin1-to-string x))))
773
774(defun last (x)
775 "Returns the last link in the list LIST."
776 (if (nlistp x)
777 (error "arg to `last' must be a list"))
778 (do ((current-cons x (cdr current-cons))
779 (next-cons (cdr x) (cdr next-cons)))
780 ((endp next-cons) current-cons)))
781
782(defun list-length (x) ;taken from CLtL sect. 15.2
783 "Returns the length of a non-circular list, or `nil' for a circular one."
784 (do ((n 0) ;counter
785 (fast x (cddr fast)) ;fast pointer, leaps by 2
786 (slow x (cdr slow)) ;slow pointer, leaps by 1
787 (ready nil)) ;indicates termination
788 (ready n)
789 (cond ((endp fast)
790 (setq ready t)) ;return n
791 ((endp (cdr fast))
792 (setq n (+ n 1))
793 (setq ready t)) ;return n+1
794 ((and (eq fast slow) (> n 0))
795 (setq n nil)
796 (setq ready t)) ;return nil
797 (t
798 (setq n (+ n 2)))))) ;just advance counter
799\f
800(defun butlast (list &optional n)
801 "Return a new list like LIST but sans the last N elements.
802N defaults to 1. If the list doesn't have N elements, nil is returned."
803 (if (null n) (setq n 1))
804 (reverse (nthcdr n (reverse list))))
805
806(defun list* (arg &rest others)
807 "Return a new list containing the first arguments consed onto the last arg.
808Thus, (list* 1 2 3 '(a b)) returns (1 2 3 a b)."
809 (if (null others)
810 arg
811 (let* ((allargs (cons arg others))
812 (front (butlast allargs))
813 (back (last allargs)))
814 (rplacd (last front) (car back))
815 front)))
816
817(defun adjoin (item list)
818 "Return a list which contains ITEM but is otherwise like LIST.
819If ITEM occurs in LIST, the value is LIST. Otherwise it is (cons ITEM LIST).
820When comparing ITEM against elements, `eql' is used."
821 (if (memq item list)
822 list
823 (cons item list)))
824
825(defun ldiff (list sublist)
826 "Return a new list like LIST but sans SUBLIST.
827SUBLIST must be one of the links in LIST; otherwise the value is LIST itself."
828 (do ((result '())
829 (curcons list (cdr curcons)))
830 ((or (endp curcons) (eq curcons sublist))
831 (reverse result))
832 (setq result (cons (car curcons) result))))
833\f
834;;; The popular c[ad]*r functions and other list accessors.
835
836;;; To implement this efficiently, a new byte compile handler is used to
837;;; generate the minimal code, saving one function call.
838
839(defun byte-compile-ca*d*r (form)
840 "Generate code for a (c[ad]+r argument). This realizes the various
841combinations of car and cdr whose names are supported in this implementation.
842To use this functionality for a given function,just give its name a
843'byte-compile property of 'byte-compile-ca*d*r"
844 (let* ((fun (car form))
845 (arg (cadr form))
846 (seq (mapcar (function (lambda (letter)
847 (if (= letter ?a)
848 'byte-car 'byte-cdr)))
849 (cdr (nreverse (cdr (append (symbol-name fun) nil)))))))
850 ;; SEQ is a list of byte-car and byte-cdr in the correct order.
851 (if (null seq)
852 (error "internal: `%s' cannot be compiled by byte-compile-ca*d*r"
853 (prin1-to-string form)))
854 (if (or (null (cdr form)) (cddr form))
855 (error "%s needs exactly one argument, seen `%s'"
856 fun (prin1-to-string form)))
857 (byte-compile-form arg)
858 (setq byte-compile-depth (1- byte-compile-depth))
859 ;; the rest of this code doesn't change the stack depth!
860 (while seq
861 (byte-compile-out (car seq) 0)
862 (setq seq (cdr seq)))))
863
864(defun caar (X)
865 "Return the car of the car of X."
866 (car (car X)))
867(put 'caar 'byte-compile 'byte-compile-ca*d*r)
868
869(defun cadr (X)
870 "Return the car of the cdr of X."
871 (car (cdr X)))
872(put 'cadr 'byte-compile 'byte-compile-ca*d*r)
873
874(defun cdar (X)
875 "Return the cdr of the car of X."
876 (cdr (car X)))
877(put 'cdar 'byte-compile 'byte-compile-ca*d*r)
878
879(defun cddr (X)
880 "Return the cdr of the cdr of X."
881 (cdr (cdr X)))
882(put 'cddr 'byte-compile 'byte-compile-ca*d*r)
883
884(defun caaar (X)
885 "Return the car of the car of the car of X."
886 (car (car (car X))))
887(put 'caaar 'byte-compile 'byte-compile-ca*d*r)
888
889(defun caadr (X)
890 "Return the car of the car of the cdr of X."
891 (car (car (cdr X))))
892(put 'caadr 'byte-compile 'byte-compile-ca*d*r)
893
894(defun cadar (X)
895 "Return the car of the cdr of the car of X."
896 (car (cdr (car X))))
897(put 'cadar 'byte-compile 'byte-compile-ca*d*r)
898
899(defun cdaar (X)
900 "Return the cdr of the car of the car of X."
901 (cdr (car (car X))))
902(put 'cdaar 'byte-compile 'byte-compile-ca*d*r)
903
904(defun caddr (X)
905 "Return the car of the cdr of the cdr of X."
906 (car (cdr (cdr X))))
907(put 'caddr 'byte-compile 'byte-compile-ca*d*r)
908
909(defun cdadr (X)
910 "Return the cdr of the car of the cdr of X."
911 (cdr (car (cdr X))))
912(put 'cdadr 'byte-compile 'byte-compile-ca*d*r)
913
914(defun cddar (X)
915 "Return the cdr of the cdr of the car of X."
916 (cdr (cdr (car X))))
917(put 'cddar 'byte-compile 'byte-compile-ca*d*r)
918
919(defun cdddr (X)
920 "Return the cdr of the cdr of the cdr of X."
921 (cdr (cdr (cdr X))))
922(put 'cdddr 'byte-compile 'byte-compile-ca*d*r)
923
924(defun caaaar (X)
925 "Return the car of the car of the car of the car of X."
926 (car (car (car (car X)))))
927(put 'caaaar 'byte-compile 'byte-compile-ca*d*r)
928
929(defun caaadr (X)
930 "Return the car of the car of the car of the cdr of X."
931 (car (car (car (cdr X)))))
932(put 'caaadr 'byte-compile 'byte-compile-ca*d*r)
933
934(defun caadar (X)
935 "Return the car of the car of the cdr of the car of X."
936 (car (car (cdr (car X)))))
937(put 'caadar 'byte-compile 'byte-compile-ca*d*r)
938
939(defun cadaar (X)
940 "Return the car of the cdr of the car of the car of X."
941 (car (cdr (car (car X)))))
942(put 'cadaar 'byte-compile 'byte-compile-ca*d*r)
943
944(defun cdaaar (X)
945 "Return the cdr of the car of the car of the car of X."
946 (cdr (car (car (car X)))))
947(put 'cdaaar 'byte-compile 'byte-compile-ca*d*r)
948
949(defun caaddr (X)
950 "Return the car of the car of the cdr of the cdr of X."
951 (car (car (cdr (cdr X)))))
952(put 'caaddr 'byte-compile 'byte-compile-ca*d*r)
953
954(defun cadadr (X)
955 "Return the car of the cdr of the car of the cdr of X."
956 (car (cdr (car (cdr X)))))
957(put 'cadadr 'byte-compile 'byte-compile-ca*d*r)
958
959(defun cdaadr (X)
960 "Return the cdr of the car of the car of the cdr of X."
961 (cdr (car (car (cdr X)))))
962(put 'cdaadr 'byte-compile 'byte-compile-ca*d*r)
963
964(defun caddar (X)
965 "Return the car of the cdr of the cdr of the car of X."
966 (car (cdr (cdr (car X)))))
967(put 'caddar 'byte-compile 'byte-compile-ca*d*r)
968
969(defun cdadar (X)
970 "Return the cdr of the car of the cdr of the car of X."
971 (cdr (car (cdr (car X)))))
972(put 'cdadar 'byte-compile 'byte-compile-ca*d*r)
973
974(defun cddaar (X)
975 "Return the cdr of the cdr of the car of the car of X."
976 (cdr (cdr (car (car X)))))
977(put 'cddaar 'byte-compile 'byte-compile-ca*d*r)
978
979(defun cadddr (X)
980 "Return the car of the cdr of the cdr of the cdr of X."
981 (car (cdr (cdr (cdr X)))))
982(put 'cadddr 'byte-compile 'byte-compile-ca*d*r)
983
984(defun cddadr (X)
985 "Return the cdr of the cdr of the car of the cdr of X."
986 (cdr (cdr (car (cdr X)))))
987(put 'cddadr 'byte-compile 'byte-compile-ca*d*r)
988
989(defun cdaddr (X)
990 "Return the cdr of the car of the cdr of the cdr of X."
991 (cdr (car (cdr (cdr X)))))
992(put 'cdaddr 'byte-compile 'byte-compile-ca*d*r)
993
994(defun cdddar (X)
995 "Return the cdr of the cdr of the cdr of the car of X."
996 (cdr (cdr (cdr (car X)))))
997(put 'cdddar 'byte-compile 'byte-compile-ca*d*r)
998
999(defun cddddr (X)
1000 "Return the cdr of the cdr of the cdr of the cdr of X."
1001 (cdr (cdr (cdr (cdr X)))))
1002(put 'cddddr 'byte-compile 'byte-compile-ca*d*r)
1003\f
1004;;; some inverses of the accessors are needed for setf purposes
1005
1006(defun setnth (n list newval)
1007 "Set (nth N LIST) to NEWVAL. Returns NEWVAL."
1008 (rplaca (nthcdr n list) newval))
1009
1010(defun setnthcdr (n list newval)
1011 "(setnthcdr N LIST NEWVAL) => NEWVAL
1012As a side effect, sets the Nth cdr of LIST to NEWVAL."
1013 (cond ((< n 0)
1014 (error "N must be 0 or greater, not %d" n))
1015 ((= n 0)
1016 (rplaca list (car newval))
1017 (rplacd list (cdr newval))
1018 newval)
1019 (t
1020 (rplacd (nthcdr (- n 1) list) newval))))
1021\f
1022;;; A-lists machinery
1023
1024(defun acons (key item alist)
1025 "Return a new alist with KEY paired with ITEM; otherwise like ALIST.
1026Does not copy ALIST."
1027 (cons (cons key item) alist))
1028
1029(defun pairlis (keys data &optional alist)
1030 "Return a new alist with each elt of KEYS paired with an elt of DATA;
1031optional 3rd arg ALIST is nconc'd at the end. KEYS and DATA must
1032have the same length."
1033 (unless (= (length keys) (length data))
1034 (error "keys and data should be the same length"))
1035 (do* ;;collect keys and data in front of alist
1036 ((kptr keys (cdr kptr)) ;traverses the keys
1037 (dptr data (cdr dptr)) ;traverses the data
1038 (key (car kptr) (car kptr)) ;current key
1039 (item (car dptr) (car dptr)) ;current data item
1040 (result alist))
1041 ((endp kptr) result)
1042 (setq result (acons key item result))))
1043
1044\f
1045;;;; SEQUENCES
1046;;;; Emacs Lisp provides many of the 'sequences' functionality of
1047;;;; Common Lisp. This file provides a few things that were left out.
1048;;;;
1049
1050
1051(defkeyword :test "Used to designate positive (selection) tests.")
1052(defkeyword :test-not "Used to designate negative (rejection) tests.")
1053(defkeyword :key "Used to designate component extractions.")
1054(defkeyword :predicate "Used to define matching of sequence components.")
1055(defkeyword :start "Inclusive low index in sequence")
1056(defkeyword :end "Exclusive high index in sequence")
1057(defkeyword :start1 "Inclusive low index in first of two sequences.")
1058(defkeyword :start2 "Inclusive low index in second of two sequences.")
1059(defkeyword :end1 "Exclusive high index in first of two sequences.")
1060(defkeyword :end2 "Exclusive high index in second of two sequences.")
1061(defkeyword :count "Number of elements to affect.")
1062(defkeyword :from-end "T when counting backwards.")
1063\f
1064(defun some (pred seq &rest moreseqs)
1065 "Test PREDICATE on each element of SEQUENCE; is it ever non-nil?
1066Extra args are additional sequences; PREDICATE gets one arg from each
1067sequence and we advance down all the sequences together in lock-step.
1068A sequence means either a list or a vector."
1069 (let ((args (reassemble-argslists (list* seq moreseqs))))
1070 (do* ((ready nil) ;flag: return when t
1071 (result nil) ;resulting value
1072 (applyval nil) ;result of applying pred once
1073 (remaining args
1074 (cdr remaining)) ;remaining argument sets
1075 (current (car remaining) ;current argument set
1076 (car remaining)))
1077 ((or ready (endp remaining)) result)
1078 (setq applyval (apply pred current))
1079 (when applyval
1080 (setq ready t)
1081 (setq result applyval)))))
1082
1083(defun every (pred seq &rest moreseqs)
1084 "Test PREDICATE on each element of SEQUENCE; is it always non-nil?
1085Extra args are additional sequences; PREDICATE gets one arg from each
1086sequence and we advance down all the sequences together in lock-step.
1087A sequence means either a list or a vector."
1088 (let ((args (reassemble-argslists (list* seq moreseqs))))
1089 (do* ((ready nil) ;flag: return when t
1090 (result t) ;resulting value
1091 (applyval nil) ;result of applying pred once
1092 (remaining args
1093 (cdr remaining)) ;remaining argument sets
1094 (current (car remaining) ;current argument set
1095 (car remaining)))
1096 ((or ready (endp remaining)) result)
1097 (setq applyval (apply pred current))
1098 (unless applyval
1099 (setq ready t)
1100 (setq result nil)))))
1101\f
1102(defun notany (pred seq &rest moreseqs)
1103 "Test PREDICATE on each element of SEQUENCE; is it always nil?
1104Extra args are additional sequences; PREDICATE gets one arg from each
1105sequence and we advance down all the sequences together in lock-step.
1106A sequence means either a list or a vector."
1107 (let ((args (reassemble-argslists (list* seq moreseqs))))
1108 (do* ((ready nil) ;flag: return when t
1109 (result t) ;resulting value
1110 (applyval nil) ;result of applying pred once
1111 (remaining args
1112 (cdr remaining)) ;remaining argument sets
1113 (current (car remaining) ;current argument set
1114 (car remaining)))
1115 ((or ready (endp remaining)) result)
1116 (setq applyval (apply pred current))
1117 (when applyval
1118 (setq ready t)
1119 (setq result nil)))))
1120
1121(defun notevery (pred seq &rest moreseqs)
1122 "Test PREDICATE on each element of SEQUENCE; is it sometimes nil?
1123Extra args are additional sequences; PREDICATE gets one arg from each
1124sequence and we advance down all the sequences together in lock-step.
1125A sequence means either a list or a vector."
1126 (let ((args (reassemble-argslists (list* seq moreseqs))))
1127 (do* ((ready nil) ;flag: return when t
1128 (result nil) ;resulting value
1129 (applyval nil) ;result of applying pred once
1130 (remaining args
1131 (cdr remaining)) ;remaining argument sets
1132 (current (car remaining) ;current argument set
1133 (car remaining)))
1134 ((or ready (endp remaining)) result)
1135 (setq applyval (apply pred current))
1136 (unless applyval
1137 (setq ready t)
1138 (setq result t)))))
1139\f
1140;;; More sequence functions that don't need keyword arguments
1141
1142(defun concatenate (type &rest sequences)
1143 "(concatenate TYPE &rest SEQUENCES) => a sequence
1144The sequence returned is of type TYPE (must be 'list, 'string, or 'vector) and
1145contains the concatenation of the elements of all the arguments, in the order
1146given."
1147 (let ((sequences (append sequences '(()))))
1148 (case type
1149 (list
1150 (apply (function append) sequences))
1151 (string
1152 (apply (function concat) sequences))
1153 (vector
1154 (apply (function vector) (apply (function append) sequences)))
1155 (t
1156 (error "type for concatenate `%s' not 'list, 'string or 'vector"
1157 (prin1-to-string type))))))
1158
1159(defun map (type function &rest sequences)
1160 "(map TYPE FUNCTION &rest SEQUENCES) => a sequence
1161The FUNCTION is called on each set of elements from the SEQUENCES \(stopping
1162when the shortest sequence is terminated\) and the results are possibly
1163returned in a sequence of type TYPE \(one of 'list, 'vector, 'string, or nil\)
1164giving NIL for TYPE gets rid of the values."
1165 (if (not (memq type (list 'list 'string 'vector nil)))
1166 (error "type for map `%s' not 'list, 'string, 'vector or nil"
1167 (prin1-to-string type)))
1168 (let ((argslists (reassemble-argslists sequences))
1169 results)
1170 (if (null type)
1171 (while argslists ;don't bother accumulating
1172 (apply function (car argslists))
1173 (setq argslists (cdr argslists)))
1174 (setq results (mapcar (function (lambda (args) (apply function args)))
1175 argslists))
1176 (case type
1177 (list
1178 results)
1179 (string
1180 (funcall (function concat) results))
1181 (vector
1182 (apply (function vector) results))))))
1183\f
1184;;; an inverse of elt is needed for setf purposes
1185
1186(defun setelt (seq n newval)
1187 "In SEQUENCE, set the Nth element to NEWVAL. Returns NEWVAL.
1188A sequence means either a list or a vector."
1189 (let ((l (length seq)))
1190 (if (or (< n 0) (>= n l))
1191 (error "N(%d) should be between 0 and %d" n l)
1192 ;; only two cases need be considered valid, as strings are arrays
1193 (cond ((listp seq)
1194 (setnth n seq newval))
1195 ((arrayp seq)
1196 (aset seq n newval))
1197 (t
1198 (error "SEQ should be a sequence, not `%s'"
1199 (prin1-to-string seq)))))))
1200\f
1201;;; Testing with keyword arguments.
1202;;;
1203;;; Many of the sequence functions use keywords to denote some stylized
1204;;; form of selecting entries in a sequence. The involved arguments
1205;;; are collected with a &rest marker (as Emacs Lisp doesn't have a &key
1206;;; marker), then they are passed to build-klist, who
1207;;; constructs an association list. That association list is used to
1208;;; test for satisfaction and matching.
1209
1210;;; DON'T USE MEMBER, NOR ANY FUNCTION THAT COULD TAKE KEYWORDS HERE!!!
1211
1212(defun build-klist (argslist acceptable &optional allow-other-keys)
1213 "Decode a keyword argument list ARGSLIST for keywords in ACCEPTABLE.
1214ARGSLIST is a list, presumably the &rest argument of a call, whose
1215even numbered elements must be keywords.
1216ACCEPTABLE is a list of keywords, the only ones that are truly acceptable.
1217The result is an alist containing the arguments named by the keywords
1218in ACCEPTABLE, or an error is signalled, if something failed.
1219If the third argument (an optional) is non-nil, other keys are acceptable."
1220 ;; check legality of the arguments, then destructure them
1221 (unless (and (listp argslist)
1222 (evenp (length argslist)))
1223 (error "build-klist: odd number of keyword-args"))
1224 (unless (and (listp acceptable)
1225 (every 'keywordp acceptable))
1226 (error "build-klist: second arg should be a list of keywords"))
1227 (multiple-value-bind
1228 (keywords forms)
1229 (unzip-list argslist)
1230 (unless (every 'keywordp keywords)
1231 (error "build-klist: expected keywords, found `%s'"
1232 (prin1-to-string keywords)))
1233 (unless (or allow-other-keys
1234 (every (function (lambda (keyword)
1235 (memq keyword acceptable)))
1236 keywords))
1237 (error "bad keyword[s]: %s not in %s"
1238 (prin1-to-string (mapcan (function (lambda (keyword)
1239 (if (memq keyword acceptable)
1240 nil
1241 (list keyword))))
1242 keywords))
1243 (prin1-to-string acceptable)))
1244 (do* ;;pick up the pieces
1245 ((auxlist ;auxiliary a-list, may
1246 (pairlis keywords forms)) ;contain repetitions and junk
1247 (ptr acceptable (cdr ptr)) ;pointer in acceptable
1248 (this (car ptr) (car ptr)) ;current acceptable keyword
1249 (auxval nil) ;used to move values around
1250 (alist '())) ;used to build the result
1251 ((endp ptr) alist)
1252 ;; if THIS appears in auxlist, use its value
1253 (when (setq auxval (assq this auxlist))
1254 (setq alist (cons auxval alist))))))
1255
1256
1257(defun extract-from-klist (klist key &optional default)
1258 "(extract-from-klist KLIST KEY [DEFAULT]) => value of KEY or DEFAULT
1259Extract value associated with KEY in KLIST (return DEFAULT if nil)."
1260 (let ((retrieved (cdr (assq key klist))))
1261 (or retrieved default)))
1262
1263(defun keyword-argument-supplied-p (klist key)
1264 "(keyword-argument-supplied-p KLIST KEY) => nil or something
1265NIL if KEY (a keyword) does not appear in the KLIST."
1266 (assq key klist))
1267
1268(defun add-to-klist (key item klist)
1269 "(ADD-TO-KLIST KEY ITEM KLIST) => new KLIST
1270Add association (KEY . ITEM) to KLIST."
1271 (setq klist (acons key item klist)))
1272
1273(defun elt-satisfies-test-p (item elt klist)
1274 "(elt-satisfies-test-p ITEM ELT KLIST) => t or nil
1275KLIST encodes a keyword-arguments test, as in CH. 14 of CLtL.
1276True if the given ITEM and ELT satisfy the test."
1277 (let ((test (extract-from-klist klist :test))
1278 (test-not (extract-from-klist klist :test-not))
1279 (keyfn (extract-from-klist klist :key 'identity)))
1280 (cond (test
1281 (funcall test item (funcall keyfn elt)))
1282 (test-not
1283 (not (funcall test-not item (funcall keyfn elt))))
1284 (t ;should never happen
1285 (error "neither :test nor :test-not in `%s'"
1286 (prin1-to-string klist))))))
1287
1288(defun elt-satisfies-if-p (item klist)
1289 "(elt-satisfies-if-p ITEM KLIST) => t or nil
1290True if an -if style function was called and ITEM satisfies the
1291predicate under :predicate in KLIST."
1292 (let ((predicate (extract-from-klist klist :predicate))
1293 (keyfn (extract-from-klist klist :key 'identity)))
1294 (funcall predicate item (funcall keyfn elt))))
1295
1296(defun elt-satisfies-if-not-p (item klist)
1297 "(elt-satisfies-if-not-p ITEM KLIST) => t or nil
1298KLIST encodes a keyword-arguments test, as in CH. 14 of CLtL.
1299True if an -if-not style function was called and ITEM does not satisfy
1300the predicate under :predicate in KLIST."
1301 (let ((predicate (extract-from-klist klist :predicate))
1302 (keyfn (extract-from-klist klist :key 'identity)))
1303 (not (funcall predicate item (funcall keyfn elt)))))
1304
1305(defun elts-match-under-klist-p (e1 e2 klist)
1306 "(elts-match-under-klist-p E1 E2 KLIST) => t or nil
1307KLIST encodes a keyword-arguments test, as in CH. 14 of CLtL.
1308True if elements E1 and E2 match under the tests encoded in KLIST."
1309 (let ((test (extract-from-klist klist :test))
1310 (test-not (extract-from-klist klist :test-not))
1311 (keyfn (extract-from-klist klist :key 'identity)))
1312 (if (and test test-not)
1313 (error "both :test and :test-not in `%s'"
1314 (prin1-to-string klist)))
1315 (cond (test
1316 (funcall test (funcall keyfn e1) (funcall keyfn e2)))
1317 (test-not
1318 (not (funcall test-not (funcall keyfn e1) (funcall keyfn e2))))
1319 (t ;should never happen
1320 (error "neither :test nor :test-not in `%s'"
1321 (prin1-to-string klist))))))
1322\f
1323;;; This macro simplifies using keyword args. It is less clumsy than using
1324;;; the primitives build-klist, etc... For instance, member could be written
1325;;; this way:
1326
1327;;; (defun member (item list &rest kargs)
1328;;; (with-keyword-args kargs (test test-not (key 'identity))
1329;;; ...))
1330
1331;;; Suggested by Robert Potter (potter@cs.rochester.edu, 15 Nov 1989)
1332
1333(defmacro with-keyword-args (keyargslist vardefs &rest body)
1334 "(WITH-KEYWORD-ARGS KEYARGSLIST VARDEFS . BODY)
1335KEYARGSLIST can be either a symbol or a list of one or two symbols.
1336In the second case, the second symbol is either T or NIL, indicating whether
1337keywords other than the mentioned ones are tolerable.
1338
1339VARDEFS is a list. Each entry is either a VAR (symbol) or matches
1340\(VAR [DEFAULT [KEYWORD]]). Just giving VAR is the same as giving
1341\(VAR nil :VAR).
1342
1343The BODY is executed in an environment where each VAR (a symbol) is bound to
1344the value present in the KEYARGSLIST provided, or to the DEFAULT. The value
1345is searched by using the keyword form of VAR (i.e., :VAR) or the optional
1346keyword if provided.
1347
1348Notice that this macro doesn't distinguish between a default value given
1349explicitly by the user and one provided by default. See also the more
1350primitive functions build-klist, add-to-klist, extract-from-klist,
1351keyword-argument-supplied-p, elt-satisfies-test-p, elt-satisfies-if-p,
1352elt-satisfies-if-not-p, elts-match-under-klist-p. They provide more complete,
1353if clumsier, control over this feature."
1354 (let (allow-other-keys)
1355 (if (listp keyargslist)
1356 (if (> (length keyargslist) 2)
1357 (error
1358 "`%s' should be SYMBOL, (SYMBOL), or (SYMBOL t-OR-nil)"
1359 (prin1-to-string keyargslist))
1360 (setq allow-other-keys (cadr keyargslist)
1361 keyargslist (car keyargslist))
1362 (if (not (and
1363 (symbolp keyargslist)
1364 (memq allow-other-keys '(t nil))))
1365 (error
1366 "first subform should be SYMBOL, (SYMBOL), or (SYMBOL t-OR-nil)"
1367 )))
1368 (if (symbolp keyargslist)
1369 (setq allow-other-keys nil)
1370 (error
1371 "first subform should be SYMBOL, (SYMBOL), or (SYMBOL t-OR-nil)")))
1372 (let (vars defaults keywords forms
1373 (klistname (gensym "KLIST_")))
1374 (mapcar (function (lambda (entry)
1375 (if (symbolp entry) ;defaulty case
1376 (setq entry (list entry nil (keyword-of entry))))
1377 (let* ((l (length entry))
1378 (v (car entry))
1379 (d (cadr entry))
1380 (k (caddr entry)))
1381 (if (or (< l 1) (> l 3))
1382 (error
1383 "`%s' must match (VAR [DEFAULT [KEYWORD]])"
1384 (prin1-to-string entry)))
1385 (if (or (null v) (not (symbolp v)))
1386 (error
1387 "bad variable `%s': must be non-null symbol"
1388 (prin1-to-string v)))
1389 (setq vars (cons v vars))
1390 (setq defaults (cons d defaults))
1391 (if (< l 3)
1392 (setq k (keyword-of v)))
1393 (if (and (= l 3)
1394 (or (null k)
1395 (not (keywordp k))))
1396 (error
1397 "bad keyword `%s'" (prin1-to-string k)))
1398 (setq keywords (cons k keywords))
1399 (setq forms (cons (list v (list 'extract-from-klist
1400 klistname
1401 k
1402 d))
1403 forms)))))
1404 vardefs)
1405 (append
1406 (list 'let* (nconc (list (list klistname
1407 (list 'build-klist keyargslist
1408 (list 'quote keywords)
1409 allow-other-keys)))
1410 (nreverse forms)))
1411 body))))
1412(put 'with-keyword-args 'lisp-indent-function 1)
1413
1414\f
1415;;; REDUCE
1416;;; It is here mostly as an example of how to use KLISTs.
1417;;;
1418;;; First of all, you need to declare the keywords (done elsewhere in this
1419;;; file):
1420;;; (defkeyword :from-end "syntax of sequence functions")
1421;;; (defkeyword :start "syntax of sequence functions")
1422;;; etc...
1423;;;
1424;;; Then, you capture all the possible keyword arguments with a &rest
1425;;; argument. You can pass that list downward again, of course, but
1426;;; internally you need to parse it into a KLIST (an alist, really). One uses
1427;;; (build-klist REST-ARGS ACCEPTABLE-KEYWORDS [ALLOW-OTHER]). You can then
1428;;; test for presence by using (keyword-argument-supplied-p KLIST KEY) and
1429;;; extract a value with (extract-from-klist KLIST KEY [DEFAULT]).
1430
1431(defun reduce (function sequence &rest kargs)
1432 "Apply FUNCTION (a function of two arguments) to succesive pairs of elements
1433from SEQUENCE. Some keyword arguments are valid after FUNCTION and SEQUENCE:
1434:from-end If non-nil, process the values backwards
1435:initial-value If given, prefix it to the SEQUENCE. Suffix, if :from-end
1436:start Restrict reduction to the subsequence from this index
1437:end Restrict reduction to the subsequence BEFORE this index.
1438If the sequence is empty and no :initial-value is given, the FUNCTION is
1439called on zero (not two) arguments. Otherwise, if there is exactly one
1440element in the combination of SEQUENCE and the initial value, that element is
1441returned."
1442 (let* ((klist (build-klist kargs '(:from-end :start :end :initial-value)))
1443 (length (length sequence))
1444 (from-end (extract-from-klist klist :from-end))
1445 (initial-value-given (keyword-argument-supplied-p
1446 klist :initial-value))
1447 (start (extract-from-klist kargs :start 0))
1448 (end (extract-from-klist kargs :end length)))
1449 (setq sequence (cl$subseq-as-list sequence start end))
1450 (if from-end
1451 (setq sequence (reverse sequence)))
1452 (if initial-value-given
1453 (setq sequence (cons (extract-from-klist klist :initial-value)
1454 sequence)))
1455 (if (null sequence)
1456 (funcall function) ;only use of 0 arguments
1457 (let* ((result (car sequence))
1458 (sequence (cdr sequence)))
1459 (while sequence
1460 (setq result (if from-end
1461 (funcall function (car sequence) result)
1462 (funcall function result (car sequence)))
1463 sequence (cdr sequence)))
1464 result))))
1465
1466(defun cl$subseq-as-list (sequence start end)
1467 "(cl$subseq-as-list SEQUENCE START END) => a list"
1468 (let ((list (append sequence nil))
1469 (length (length sequence))
1470 result)
1471 (if (< start 0)
1472 (error "start should be >= 0, not %d" start))
1473 (if (> end length)
1474 (error "end should be <= %d, not %d" length end))
1475 (if (and (zerop start) (= end length))
1476 list
1477 (let ((i start)
1478 (vector (apply 'vector list)))
1479 (while (/= i end)
1480 (setq result (cons (elt vector i) result))
1481 (setq i (+ i 1)))
1482 (nreverse result)))))
1483
1484;;;; end of cl-sequences.el
1485\f
1486;;;; Some functions with keyword arguments
1487;;;;
1488;;;; Both list and sequence functions are considered here together. This
1489;;;; doesn't fit any more with the original split of functions in files.
1490
1491(defun member (item list &rest kargs)
1492 "Look for ITEM in LIST; return first tail of LIST the car of whose first
1493cons cell tests the same as ITEM. Admits arguments :key, :test, and :test-not."
1494 (if (null kargs) ;treat this fast for efficiency
1495 (memq item list)
1496 (let* ((klist (build-klist kargs '(:test :test-not :key)))
1497 (test (extract-from-klist klist :test))
1498 (testnot (extract-from-klist klist :test-not))
1499 (key (extract-from-klist klist :key 'identity)))
1500 ;; another workaround allegledly for speed
1501 (if (and (or (eq test 'eq) (eq test 'eql)
1502 (eq test (symbol-function 'eq))
1503 (eq test (symbol-function 'eql)))
1504 (null testnot)
1505 (or (eq key 'identity) ;either by default or so given
1506 (eq key (function identity)) ;could this happen?
1507 (eq key (symbol-function 'identity)) ;sheer paranoia
1508 ))
1509 (memq item list)
1510 (if (and test testnot)
1511 (error ":test and :test-not both specified for member"))
1512 (if (not (or test testnot))
1513 (setq test 'eql))
1514 ;; final hack: remove the indirection through the function names
1515 (if testnot
1516 (if (symbolp testnot)
1517 (setq testnot (symbol-function testnot)))
1518 (if (symbolp test)
1519 (setq test (symbol-function test))))
1520 (if (symbolp key)
1521 (setq key (symbol-function key)))
1522 ;; ok, go for it
1523 (let ((ptr list)
1524 (done nil)
1525 (result '()))
1526 (if testnot
1527 (while (not (or done (endp ptr)))
1528 (cond ((not (funcall testnot item (funcall key (car ptr))))
1529 (setq done t)
1530 (setq result ptr)))
1531 (setq ptr (cdr ptr)))
1532 (while (not (or done (endp ptr)))
1533 (cond ((funcall test item (funcall key (car ptr)))
1534 (setq done t)
1535 (setq result ptr)))
1536 (setq ptr (cdr ptr))))
1537 result)))))
1538\f
1539;;;; MULTIPLE VALUES
1540;;;; This package approximates the behavior of the multiple-values
1541;;;; forms of Common Lisp.
1542;;;;
1543;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
1544;;;; (quiroz@cs.rochester.edu)
1545
1546;;; Lisp indentation information
1547(put 'multiple-value-bind 'lisp-indent-function 2)
1548(put 'multiple-value-setq 'lisp-indent-function 2)
1549(put 'multiple-value-list 'lisp-indent-function nil)
1550(put 'multiple-value-call 'lisp-indent-function 1)
1551(put 'multiple-value-prog1 'lisp-indent-function 1)
1552
1553;;; Global state of the package is kept here
1554(defvar *mvalues-values* nil
1555 "Most recently returned multiple-values")
1556(defvar *mvalues-count* nil
1557 "Count of multiple-values returned, or nil if the mechanism was not used")
1558\f
1559;;; values is the standard multiple-value-return form. Must be the
1560;;; last thing evaluated inside a function. If the caller is not
1561;;; expecting multiple values, only the first one is passed. (values)
1562;;; is the same as no-values returned (unaware callers see nil). The
1563;;; alternative (values-list <list>) is just a convenient shorthand
1564;;; and complements multiple-value-list.
1565
1566(defun values (&rest val-forms)
1567 "Produce multiple values (zero or more). Each arg is one value.
1568See also `multiple-value-bind', which is one way to examine the
1569multiple values produced by a form. If the containing form or caller
1570does not check specially to see multiple values, it will see only
1571the first value."
1572 (setq *mvalues-values* val-forms)
1573 (setq *mvalues-count* (length *mvalues-values*))
1574 (car *mvalues-values*))
1575
1576(defun values-list (&optional val-forms)
1577 "Produce multiple values (zero or mode). Each element of LIST is one value.
1578This is equivalent to (apply 'values LIST)."
1579 (cond ((nlistp val-forms)
1580 (error "Argument to values-list must be a list, not `%s'"
1581 (prin1-to-string val-forms))))
1582 (setq *mvalues-values* val-forms)
1583 (setq *mvalues-count* (length *mvalues-values*))
1584 (car *mvalues-values*))
1585\f
1586;;; Callers that want to see the multiple values use these macros.
1587
1588(defmacro multiple-value-list (form)
1589 "Execute FORM and return a list of all the (multiple) values FORM produces.
1590See `values' and `multiple-value-bind'."
1591 (list 'progn
1592 (list 'setq '*mvalues-count* nil)
1593 (list 'let (list (list 'it '(gensym)))
1594 (list 'set 'it form)
1595 (list 'if '*mvalues-count*
1596 (list 'copy-sequence '*mvalues-values*)
1597 (list 'progn
1598 (list 'setq '*mvalues-count* 1)
1599 (list 'setq '*mvalues-values*
1600 (list 'list (list 'symbol-value 'it)))
1601 (list 'copy-sequence '*mvalues-values*))))))
1602
1603(defmacro multiple-value-call (function &rest args)
1604 "Call FUNCTION on all the values produced by the remaining arguments.
1605(multiple-value-call '+ (values 1 2) (values 3 4)) is 10."
1606 (let* ((result (gentemp))
1607 (arg (gentemp)))
1608 (list 'apply (list 'function (eval function))
1609 (list 'let* (list (list result '()))
1610 (list 'dolist (list arg (list 'quote args) result)
1611 (list 'setq result
1612 (list 'append
1613 result
1614 (list 'multiple-value-list
1615 (list 'eval arg)))))))))
1616
1617(defmacro multiple-value-bind (vars form &rest body)
1618 "Bind VARS to the (multiple) values produced by FORM, then do BODY.
1619VARS is a list of variables; each is bound to one of FORM's values.
1620If FORM doesn't make enough values, the extra variables are bound to nil.
1621(Ordinary forms produce only one value; to produce more, use `values'.)
1622Extra values are ignored.
1623BODY (zero or more forms) is executed with the variables bound,
1624then the bindings are unwound."
1625 (let* ((vals (gentemp)) ;name for intermediate values
1626 (clauses (mv-bind-clausify ;convert into clauses usable
1627 vars vals))) ; in a let form
1628 (list* 'let*
1629 (cons (list vals (list 'multiple-value-list form))
1630 clauses)
1631 body)))
1632\f
1633(defmacro multiple-value-setq (vars form)
1634 "Set VARS to the (multiple) values produced by FORM.
1635VARS is a list of variables; each is set to one of FORM's values.
1636If FORM doesn't make enough values, the extra variables are set to nil.
1637(Ordinary forms produce only one value; to produce more, use `values'.)
1638Extra values are ignored."
1639 (let* ((vals (gentemp)) ;name for intermediate values
1640 (clauses (mv-bind-clausify ;convert into clauses usable
1641 vars vals))) ; in a setq (after append).
1642 (list 'let*
1643 (list (list vals (list 'multiple-value-list form)))
1644 (cons 'setq (apply (function append) clauses)))))
1645
1646(defmacro multiple-value-prog1 (form &rest body)
1647 "Evaluate FORM, then BODY, then produce the same values FORM produced.
1648Thus, (multiple-value-prog1 (values 1 2) (foobar)) produces values 1 and 2.
1649This is like `prog1' except that `prog1' would produce only one value,
1650which would be the first of FORM's values."
1651 (let* ((heldvalues (gentemp)))
1652 (cons 'let*
1653 (cons (list (list heldvalues (list 'multiple-value-list form)))
1654 (append body (list (list 'values-list heldvalues)))))))
1655
1656;;; utility functions
1657;;;
1658;;; mv-bind-clausify makes the pairs needed to have the variables in
1659;;; the variable list correspond with the values returned by the form.
1660;;; vals is a fresh symbol that intervenes in all the bindings.
1661
1662(defun mv-bind-clausify (vars vals)
1663 "MV-BIND-CLAUSIFY VARS VALS => Auxiliary list
1664Forms a list of pairs `(,(nth i vars) (nth i vals)) for i from 0 to
1665the length of VARS (a list of symbols). VALS is just a fresh symbol."
1666 (if (or (nlistp vars)
1667 (notevery 'symbolp vars))
1668 (error "expected a list of symbols, not `%s'"
1669 (prin1-to-string vars)))
1670 (let* ((nvars (length vars))
1671 (clauses '()))
1672 (dotimes (n nvars clauses)
1673 (setq clauses (cons (list (nth n vars)
1674 (list 'nth n vals)) clauses)))))
1675
1676;;;; end of cl-multiple-values.el
1677\f
1678;;;; ARITH
1679;;;; This file provides integer arithmetic extensions. Although
1680;;;; Emacs Lisp doesn't really support anything but integers, that
1681;;;; has still to be made to look more or less standard.
1682;;;;
1683;;;;
1684;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
1685;;;; (quiroz@cs.rochester.edu)
1686
1687
1688(defun plusp (number)
1689 "True if NUMBER is strictly greater than zero."
1690 (> number 0))
1691
1692(defun minusp (number)
1693 "True if NUMBER is strictly less than zero."
1694 (< number 0))
1695
1696(defun oddp (number)
1697 "True if INTEGER is not divisible by 2."
1698 (/= (% number 2) 0))
1699
1700(defun evenp (number)
1701 "True if INTEGER is divisible by 2."
1702 (= (% number 2) 0))
1703
1704(defun abs (number)
1705 "Return the absolute value of NUMBER."
1706 (if (< number 0)
1707 (- number)
1708 number))
1709
1710(defun signum (number)
1711 "Return -1, 0 or 1 according to the sign of NUMBER."
1712 (cond ((< number 0)
1713 -1)
1714 ((> number 0)
1715 1)
1716 (t ;exactly zero
1717 0)))
1718\f
1719(defun gcd (&rest integers)
1720 "Return the greatest common divisor of all the arguments.
1721The arguments must be integers. With no arguments, value is zero."
1722 (let ((howmany (length integers)))
1723 (cond ((= howmany 0)
1724 0)
1725 ((= howmany 1)
1726 (abs (car integers)))
1727 ((> howmany 2)
1728 (apply (function gcd)
1729 (cons (gcd (nth 0 integers) (nth 1 integers))
1730 (nthcdr 2 integers))))
1731 (t ;howmany=2
1732 ;; essentially the euclidean algorithm
1733 (when (zerop (* (nth 0 integers) (nth 1 integers)))
1734 (error "a zero argument is invalid for `gcd'"))
1735 (do* ((absa (abs (nth 0 integers))) ; better to operate only
1736 (absb (abs (nth 1 integers))) ;on positives.
1737 (dd (max absa absb)) ; setup correct order for the
1738 (ds (min absa absb)) ;succesive divisions.
1739 ;; intermediate results
1740 (q 0)
1741 (r 0)
1742 ;; final results
1743 (done nil) ; flag: end of iterations
1744 (result 0)) ; final value
1745 (done result)
1746 (setq q (/ dd ds))
1747 (setq r (% dd ds))
1748 (cond ((zerop r) (setq done t) (setq result ds))
1749 (t (setq dd ds) (setq ds r))))))))
1750
1751(defun lcm (integer &rest more)
1752 "Return the least common multiple of all the arguments.
1753The arguments must be integers and there must be at least one of them."
1754 (let ((howmany (length more))
1755 (a integer)
1756 (b (nth 0 more))
1757 prod ; intermediate product
1758 (yetmore (nthcdr 1 more)))
1759 (cond ((zerop howmany)
1760 (abs a))
1761 ((> howmany 1) ; recursive case
1762 (apply (function lcm)
1763 (cons (lcm a b) yetmore)))
1764 (t ; base case, just 2 args
1765 (setq prod (* a b))
1766 (cond
1767 ((zerop prod)
1768 0)
1769 (t
1770 (/ (abs prod) (gcd a b))))))))
1771\f
1772(defun isqrt (number)
1773 "Return the integer square root of NUMBER.
1774NUMBER must not be negative. Result is largest integer less than or
1775equal to the real square root of the argument."
1776 ;; The method used here is essentially the Newtonian iteration
1777 ;; x[n+1] <- (x[n] + Number/x[n]) / 2
1778 ;; suitably adapted to integer arithmetic.
1779 ;; Thanks to Philippe Schnoebelen <phs@lifia.imag.fr> for suggesting the
1780 ;; termination condition.
1781 (cond ((minusp number)
1782 (error "argument to `isqrt' (%d) must not be negative"
1783 number))
1784 ((zerop number)
1785 0)
1786 (t ;so (>= number 0)
1787 (do* ((approx 1) ;any positive integer will do
1788 (new 0) ;init value irrelevant
1789 (done nil))
1790 (done (if (> (* approx approx) number)
1791 (- approx 1)
1792 approx))
1793 (setq new (/ (+ approx (/ number approx)) 2)
1794 done (or (= new approx) (= new (+ approx 1)))
1795 approx new)))))
1796\f
1797(defun floor (number &optional divisor)
1798 "Divide DIVIDEND by DIVISOR, rounding toward minus infinity.
1799DIVISOR defaults to 1. The remainder is produced as a second value."
1800 (cond
1801 ((and (null divisor) ; trivial case
1802 (numberp number))
1803 (values number 0))
1804 (t ; do the division
1805 (multiple-value-bind
1806 (q r s)
1807 (safe-idiv number divisor)
1808 (cond ((zerop s)
1809 (values 0 0))
1810 ((plusp s)
1811 (values q r))
1812 (t ;opposite-signs case
1813 (if (zerop r)
1814 (values (- q) 0)
1815 (let ((q (- (+ q 1))))
1816 (values q (- number (* q divisor)))))))))))
1817
1818(defun ceiling (number &optional divisor)
1819 "Divide DIVIDEND by DIVISOR, rounding toward plus infinity.
1820DIVISOR defaults to 1. The remainder is produced as a second value."
1821 (cond
1822 ((and (null divisor) ; trivial case
1823 (numberp number))
1824 (values number 0))
1825 (t ; do the division
1826 (multiple-value-bind
1827 (q r s)
1828 (safe-idiv number divisor)
1829 (cond ((zerop s)
1830 (values 0 0))
1831 ((plusp s)
1832 (values (+ q 1) (- r divisor)))
1833 (t
1834 (values (- q) (+ number (* q divisor)))))))))
1835\f
1836(defun truncate (number &optional divisor)
1837 "Divide DIVIDEND by DIVISOR, rounding toward zero.
1838DIVISOR defaults to 1. The remainder is produced as a second value."
1839 (cond
1840 ((and (null divisor) ; trivial case
1841 (numberp number))
1842 (values number 0))
1843 (t ; do the division
1844 (multiple-value-bind
1845 (q r s)
1846 (safe-idiv number divisor)
1847 (cond ((zerop s)
1848 (values 0 0))
1849 ((plusp s) ;same as floor
1850 (values q r))
1851 (t ;same as ceiling
1852 (values (- q) (+ number (* q divisor)))))))))
1853
1854(defun round (number &optional divisor)
1855 "Divide DIVIDEND by DIVISOR, rounding to nearest integer.
1856DIVISOR defaults to 1. The remainder is produced as a second value."
1857 (cond ((and (null divisor) ; trivial case
1858 (numberp number))
1859 (values number 0))
1860 (t ; do the division
1861 (multiple-value-bind
1862 (q r s)
1863 (safe-idiv number divisor)
1864 (setq r (abs r))
1865 ;; adjust magnitudes first, and then signs
1866 (let ((other-r (- (abs divisor) r)))
1867 (cond ((> r other-r)
1868 (setq q (+ q 1)))
1869 ((and (= r other-r)
1870 (oddp q))
1871 ;; round to even is mandatory
1872 (setq q (+ q 1))))
1873 (setq q (* s q))
1874 (setq r (- number (* q divisor)))
1875 (values q r))))))
1876\f
1877(defun mod (number divisor)
1878 "Return remainder of X by Y (rounding quotient toward minus infinity).
1879That is, the remainder goes with the quotient produced by `floor'."
1880 (multiple-value-bind (q r) (floor number divisor)
1881 r))
1882
1883(defun rem (number divisor)
1884 "Return remainder of X by Y (rounding quotient toward zero).
1885That is, the remainder goes with the quotient produced by `truncate'."
1886 (multiple-value-bind (q r) (truncate number divisor)
1887 r))
1888
1889;;; internal utilities
1890;;;
1891;;; safe-idiv performs an integer division with positive numbers only.
1892;;; It is known that some machines/compilers implement weird remainder
1893;;; computations when working with negatives, so the idea here is to
1894;;; make sure we know what is coming back to the caller in all cases.
1895
1896;;; Signum computation fixed by mad@math.keio.JUNET (MAEDA Atusi)
1897
1898(defun safe-idiv (a b)
1899 "SAFE-IDIV A B => Q R S
1900Q=|A|/|B|, R is the rest, S is the sign of A/B."
1901 (unless (and (numberp a) (numberp b))
1902 (error "arguments to `safe-idiv' must be numbers"))
1903 (when (zerop b)
1904 (error "cannot divide %d by zero" a))
1905 (let* ((absa (abs a))
1906 (absb (abs b))
1907 (q (/ absa absb))
1908 (s (* (signum a) (signum b)))
1909 (r (- a (* (* s q) b))))
1910 (values q r s)))
1911
1912;;;; end of cl-arith.el
1913\f
1914;;;; SETF
1915;;;; This file provides the setf macro and friends. The purpose has
1916;;;; been modest, only the simplest defsetf forms are accepted.
1917;;;; Use it and enjoy.
1918;;;;
1919;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
1920;;;; (quiroz@cs.rochester.edu)
1921
1922
1923(defkeyword :setf-update-fn
1924 "Property, its value is the function setf must invoke to update a
1925generalized variable whose access form is a function call of the
1926symbol that has this property.")
1927
1928(defkeyword :setf-update-doc
1929 "Property of symbols that have a `defsetf' update function on them,
1930installed by the `defsetf' from its optional third argument.")
1931\f
1932(defmacro setf (&rest pairs)
1933 "Generalized `setq' that can set things other than variable values.
1934A use of `setf' looks like (setf {PLACE VALUE}...).
1935The behavior of (setf PLACE VALUE) is to access the generalized variable
1936at PLACE and store VALUE there. It returns VALUE. If there is more
1937than one PLACE and VALUE, each PLACE is set from its VALUE before
1938the next PLACE is evaluated."
1939 (let ((nforms (length pairs)))
1940 ;; check the number of subforms
1941 (cond ((/= (% nforms 2) 0)
1942 (error "odd number of arguments to `setf'"))
1943 ((= nforms 0)
1944 nil)
1945 ((> nforms 2)
1946 ;; this is the recursive case
1947 (cons 'progn
1948 (do* ;collect the place-value pairs
1949 ((args pairs (cddr args))
1950 (place (car args) (car args))
1951 (value (cadr args) (cadr args))
1952 (result '()))
1953 ((endp args) (nreverse result))
1954 (setq result
1955 (cons (list 'setf place value)
1956 result)))))
1957 (t ;i.e., nforms=2
1958 ;; this is the base case (SETF PLACE VALUE)
1959 (let* ((place (car pairs))
1960 (value (cadr pairs))
1961 (head nil)
1962 (updatefn nil))
1963 ;; dispatch on the type of the PLACE
1964 (cond ((symbolp place)
1965 (list 'setq place value))
1966 ((and (listp place)
1967 (setq head (car place))
1968 (symbolp head)
1969 (setq updatefn (get head :setf-update-fn)))
1970 (if (or (and (consp updatefn) (eq (car updatefn) 'lambda))
1971 (and (symbolp updatefn)
1972 (fboundp updatefn)
1973 (let ((defn (symbol-function updatefn)))
1974 (or (subrp defn)
1975 (and (consp defn)
1976 (eq (car defn) 'lambda))))))
1977 (cons updatefn (append (cdr place) (list value)))
1978 (multiple-value-bind
1979 (bindings newsyms)
1980 (pair-with-newsyms (append (cdr place) (list value)))
1981 ;; this let gets new symbols to ensure adequate
1982 ;; order of evaluation of the subforms.
1983 (list 'let
1984 bindings
1985 (cons updatefn newsyms)))))
1986 (t
1987 (error "no `setf' update-function for `%s'"
1988 (prin1-to-string place)))))))))
1989\f
1990(defmacro defsetf (accessfn updatefn &optional docstring)
1991 "Define how `setf' works on a certain kind of generalized variable.
1992A use of `defsetf' looks like (defsetf ACCESSFN UPDATEFN [DOCSTRING]).
1993ACCESSFN is a symbol. UPDATEFN is a function or macro which takes
1994one more argument than ACCESSFN does. DEFSETF defines the translation
1995of (SETF (ACCESFN . ARGS) NEWVAL) to be a form like (UPDATEFN ARGS... NEWVAL).
1996The function UPDATEFN must return its last arg, after performing the
1997updating called for."
1998 ;; reject ill-formed requests. too bad one can't test for functionp
1999 ;; or macrop.
2000 (when (not (symbolp accessfn))
2001 (error "first argument of `defsetf' must be a symbol, not `%s'"
2002 (prin1-to-string accessfn)))
2003 ;; update properties
2004 (list 'progn
2005 (list 'put (list 'quote accessfn)
2006 :setf-update-fn (list 'function updatefn))
2007 (list 'put (list 'quote accessfn) :setf-update-doc docstring)
2008 ;; any better thing to return?
2009 (list 'quote accessfn)))
2010\f
2011;;; This section provides the "default" setfs for Common-Emacs-Lisp
2012;;; The user will not normally add anything to this, although
2013;;; defstruct will introduce new ones as a matter of fact.
2014;;;
2015;;; Apply is a special case. The Common Lisp
2016;;; standard makes the case of apply be useful when the user writes
2017;;; something like (apply #'name ...), Emacs Lisp doesn't have the #
2018;;; stuff, but it has (function ...). Notice that V18 includes a new
2019;;; apply: this file is compatible with V18 and pre-V18 Emacses.
2020
2021;;; INCOMPATIBILITY: the SETF macro evaluates its arguments in the
2022;;; (correct) left to right sequence *before* checking for apply
2023;;; methods (which should really be an special case inside setf). Due
2024;;; to this, the lambda expression defsetf'd to apply will succeed in
2025;;; applying the right function even if the name was not quoted, but
2026;;; computed! That extension is not Common Lisp (nor is particularly
2027;;; useful, I think).
2028
2029(defsetf apply
2030 (lambda (&rest args)
2031 ;; dissasemble the calling form
2032 ;; "(((quote fn) x1 x2 ... xn) val)" (function instead of quote, too)
2033 (let* ((fnform (car args)) ;functional form
2034 (applyargs (append ;arguments "to apply fnform"
2035 (apply 'list* (butlast (cdr args)))
2036 (last args)))
2037 (newupdater nil)) ; its update-fn, if any
2038 (if (and (symbolp fnform)
2039 (setq newupdater (get fnform :setf-update-fn)))
2040 (apply newupdater applyargs)
2041 (error "can't `setf' to `%s'"
2042 (prin1-to-string fnform)))))
2043 "`apply' is a special case for `setf'")
2044
2045\f
2046(defsetf aref
2047 aset
2048 "`setf' inversion for `aref'")
2049
2050(defsetf nth
2051 setnth
2052 "`setf' inversion for `nth'")
2053
2054(defsetf nthcdr
2055 setnthcdr
2056 "`setf' inversion for `nthcdr'")
2057
2058(defsetf elt
2059 setelt
2060 "`setf' inversion for `elt'")
2061
2062(defsetf first
2063 (lambda (list val) (setnth 0 list val))
2064 "`setf' inversion for `first'")
2065
2066(defsetf second
2067 (lambda (list val) (setnth 1 list val))
2068 "`setf' inversion for `second'")
2069
2070(defsetf third
2071 (lambda (list val) (setnth 2 list val))
2072 "`setf' inversion for `third'")
2073
2074(defsetf fourth
2075 (lambda (list val) (setnth 3 list val))
2076 "`setf' inversion for `fourth'")
2077
2078(defsetf fifth
2079 (lambda (list val) (setnth 4 list val))
2080 "`setf' inversion for `fifth'")
2081
2082(defsetf sixth
2083 (lambda (list val) (setnth 5 list val))
2084 "`setf' inversion for `sixth'")
2085
2086(defsetf seventh
2087 (lambda (list val) (setnth 6 list val))
2088 "`setf' inversion for `seventh'")
2089\f
2090(defsetf eighth
2091 (lambda (list val) (setnth 7 list val))
2092 "`setf' inversion for `eighth'")
2093
2094(defsetf ninth
2095 (lambda (list val) (setnth 8 list val))
2096 "`setf' inversion for `ninth'")
2097
2098(defsetf tenth
2099 (lambda (list val) (setnth 9 list val))
2100 "`setf' inversion for `tenth'")
2101
2102(defsetf rest
2103 (lambda (list val) (setcdr list val))
2104 "`setf' inversion for `rest'")
2105
2106(defsetf car setcar "Replace the car of a cons")
2107
2108(defsetf cdr setcdr "Replace the cdr of a cons")
2109
2110(defsetf caar
2111 (lambda (list val) (setcar (nth 0 list) val))
2112 "`setf' inversion for `caar'")
2113
2114(defsetf cadr
2115 (lambda (list val) (setcar (cdr list) val))
2116 "`setf' inversion for `cadr'")
2117
2118(defsetf cdar
2119 (lambda (list val) (setcdr (car list) val))
2120 "`setf' inversion for `cdar'")
2121
2122(defsetf cddr
2123 (lambda (list val) (setcdr (cdr list) val))
2124 "`setf' inversion for `cddr'")
2125
2126(defsetf caaar
2127 (lambda (list val) (setcar (caar list) val))
2128 "`setf' inversion for `caaar'")
2129
2130(defsetf caadr
2131 (lambda (list val) (setcar (cadr list) val))
2132 "`setf' inversion for `caadr'")
2133
2134(defsetf cadar
2135 (lambda (list val) (setcar (cdar list) val))
2136 "`setf' inversion for `cadar'")
2137\f
2138(defsetf cdaar
2139 (lambda (list val) (setcdr (caar list) val))
2140 "`setf' inversion for `cdaar'")
2141
2142(defsetf caddr
2143 (lambda (list val) (setcar (cddr list) val))
2144 "`setf' inversion for `caddr'")
2145
2146(defsetf cdadr
2147 (lambda (list val) (setcdr (cadr list) val))
2148 "`setf' inversion for `cdadr'")
2149
2150(defsetf cddar
2151 (lambda (list val) (setcdr (cdar list) val))
2152 "`setf' inversion for `cddar'")
2153
2154(defsetf cdddr
2155 (lambda (list val) (setcdr (cddr list) val))
2156 "`setf' inversion for `cdddr'")
2157
2158(defsetf caaaar
2159 (lambda (list val) (setcar (caaar list) val))
2160 "`setf' inversion for `caaaar'")
2161
2162(defsetf caaadr
2163 (lambda (list val) (setcar (caadr list) val))
2164 "`setf' inversion for `caaadr'")
2165
2166(defsetf caadar
2167 (lambda (list val) (setcar (cadar list) val))
2168 "`setf' inversion for `caadar'")
2169
2170(defsetf cadaar
2171 (lambda (list val) (setcar (cdaar list) val))
2172 "`setf' inversion for `cadaar'")
2173
2174(defsetf cdaaar
2175 (lambda (list val) (setcdr (caar list) val))
2176 "`setf' inversion for `cdaaar'")
2177
2178(defsetf caaddr
2179 (lambda (list val) (setcar (caddr list) val))
2180 "`setf' inversion for `caaddr'")
2181\f
2182(defsetf cadadr
2183 (lambda (list val) (setcar (cdadr list) val))
2184 "`setf' inversion for `cadadr'")
2185
2186(defsetf cdaadr
2187 (lambda (list val) (setcdr (caadr list) val))
2188 "`setf' inversion for `cdaadr'")
2189
2190(defsetf caddar
2191 (lambda (list val) (setcar (cddar list) val))
2192 "`setf' inversion for `caddar'")
2193
2194(defsetf cdadar
2195 (lambda (list val) (setcdr (cadar list) val))
2196 "`setf' inversion for `cdadar'")
2197
2198(defsetf cddaar
2199 (lambda (list val) (setcdr (cdaar list) val))
2200 "`setf' inversion for `cddaar'")
2201
2202(defsetf cadddr
2203 (lambda (list val) (setcar (cdddr list) val))
2204 "`setf' inversion for `cadddr'")
2205
2206(defsetf cddadr
2207 (lambda (list val) (setcdr (cdadr list) val))
2208 "`setf' inversion for `cddadr'")
2209
2210(defsetf cdaddr
2211 (lambda (list val) (setcdr (caddr list) val))
2212 "`setf' inversion for `cdaddr'")
2213
2214(defsetf cdddar
2215 (lambda (list val) (setcdr (cddar list) val))
2216 "`setf' inversion for `cdddar'")
2217
2218(defsetf cddddr
2219 (lambda (list val) (setcdr (cddr list) val))
2220 "`setf' inversion for `cddddr'")
2221
2222(defsetf get put "`setf' inversion for `get' is `put'")
2223
2224(defsetf symbol-function fset
2225 "`setf' inversion for `symbol-function' is `fset'")
2226
2227(defsetf symbol-plist setplist
2228 "`setf' inversion for `symbol-plist' is `setplist'")
2229
2230(defsetf symbol-value set
2231 "`setf' inversion for `symbol-value' is `set'")
2232
2233(defsetf point goto-char
2234 "To set (point) to N, use (goto-char N)")
2235
2236;; how about defsetfing other Emacs forms?
2237\f
2238;;; Modify macros
2239;;;
2240;;; It could be nice to implement define-modify-macro, but I don't
2241;;; think it really pays.
2242
2243(defmacro incf (ref &optional delta)
2244 "(incf REF [DELTA]) -> increment the g.v. REF by DELTA (default 1)"
2245 (if (null delta)
2246 (setq delta 1))
2247 (list 'setf ref (list '+ ref delta)))
2248
2249(defmacro decf (ref &optional delta)
2250 "(decf REF [DELTA]) -> decrement the g.v. REF by DELTA (default 1)"
2251 (if (null delta)
2252 (setq delta 1))
2253 (list 'setf ref (list '- ref delta)))
2254
2255(defmacro push (item ref)
2256 "(push ITEM REF) -> cons ITEM at the head of the g.v. REF (a list)"
2257 (list 'setf ref (list 'cons item ref)))
2258
2259(defmacro pushnew (item ref)
2260 "(pushnew ITEM REF): adjoin ITEM at the head of the g.v. REF (a list)"
2261 (list 'setf ref (list 'adjoin item ref)))
2262
2263(defmacro pop (ref)
2264 "(pop REF) -> (prog1 (car REF) (setf REF (cdr REF)))"
2265 (let ((listname (gensym)))
2266 (list 'let (list (list listname ref))
2267 (list 'prog1
2268 (list 'car listname)
2269 (list 'setf ref (list 'cdr listname))))))
2270\f
2271;;; PSETF
2272;;;
2273;;; Psetf is the generalized variable equivalent of psetq. The right
2274;;; hand sides are evaluated and assigned (via setf) to the left hand
2275;;; sides. The evaluations are done in an environment where they
2276;;; appear to occur in parallel.
2277
2278(defmacro psetf (&rest body)
2279 "(psetf {var value }...) => nil
2280Like setf, but all the values are computed before any assignment is made."
2281 (let ((length (length body)))
2282 (cond ((/= (% length 2) 0)
2283 (error "psetf needs an even number of arguments, %d given"
2284 length))
2285 ((null body)
2286 '())
2287 (t
2288 (list 'prog1 nil
2289 (let ((setfs '())
2290 (bodyforms (reverse body)))
2291 (while bodyforms
2292 (let* ((value (car bodyforms))
2293 (place (cadr bodyforms)))
2294 (setq bodyforms (cddr bodyforms))
2295 (if (null setfs)
2296 (setq setfs (list 'setf place value))
2297 (setq setfs (list 'setf place
2298 (list 'prog1 value
2299 setfs))))))
2300 setfs))))))
2301\f
2302;;; SHIFTF and ROTATEF
2303;;;
2304
2305(defmacro shiftf (&rest forms)
2306 "(shiftf PLACE1 PLACE2... NEWVALUE)
2307Set PLACE1 to PLACE2, PLACE2 to PLACE3...
2308Each PLACE is set to the old value of the following PLACE,
2309and the last PLACE is set to the value NEWVALUE.
2310Returns the old value of PLACE1."
2311 (unless (> (length forms) 1)
2312 (error "`shiftf' needs more than one argument"))
2313 (let ((places (butlast forms))
2314 (newvalue (car (last forms))))
2315 ;; the places are accessed to fresh symbols
2316 (multiple-value-bind
2317 (bindings newsyms)
2318 (pair-with-newsyms places)
2319 (list 'let bindings
2320 (cons 'setf
2321 (zip-lists places
2322 (append (cdr newsyms) (list newvalue))))
2323 (car newsyms)))))
2324
2325(defmacro rotatef (&rest places)
2326 "(rotatef PLACE...) sets each PLACE to the old value of the following PLACE.
2327The last PLACE is set to the old value of the first PLACE.
2328Thus, the values rotate through the PLACEs. Returns nil."
2329 (if (null places)
2330 nil
2331 (multiple-value-bind
2332 (bindings newsyms)
2333 (pair-with-newsyms places)
2334 (list
2335 'let bindings
2336 (cons 'setf
2337 (zip-lists places
2338 (append (cdr newsyms) (list (car newsyms)))))
2339 nil))))
2340\f
2341;;;; STRUCTS
2342;;;; This file provides the structures mechanism. See the
2343;;;; documentation for Common-Lisp's defstruct. Mine doesn't
2344;;;; implement all the functionality of the standard, although some
2345;;;; more could be grafted if so desired. More details along with
2346;;;; the code.
2347;;;;
2348;;;;
2349;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
2350;;;; (quiroz@cs.rochester.edu)
2351
2352
2353(defkeyword :include "Syntax of `defstruct'")
2354(defkeyword :named "Syntax of `defstruct'")
2355(defkeyword :conc-name "Syntax of `defstruct'")
2356(defkeyword :copier "Syntax of `defstruct'")
2357(defkeyword :predicate "Syntax of `defstruct'")
2358(defkeyword :print-function "Syntax of `defstruct'")
2359(defkeyword :type "Syntax of `defstruct'")
2360(defkeyword :initial-offset "Syntax of `defstruct'")
2361
2362(defkeyword :structure-doc "Documentation string for a structure.")
2363(defkeyword :structure-slotsn "Number of slots in structure")
2364(defkeyword :structure-slots "List of the slot's names")
2365(defkeyword :structure-indices "List of (KEYWORD-NAME . INDEX)")
2366(defkeyword :structure-initforms "List of (KEYWORD-NAME . INITFORM)")
2367(defkeyword :structure-includes
2368 "() or list of a symbol, that this struct includes")
2369(defkeyword :structure-included-in
2370 "List of the structs that include this")
2371
2372\f
2373(defmacro defstruct (&rest args)
2374 "(defstruct NAME [DOC-STRING] . SLOTS) define NAME as structure type.
2375NAME must be a symbol, the name of the new structure. It could also
2376be a list (NAME . OPTIONS).
2377
2378Each option is either a symbol, or a list of a keyword symbol taken from the
2379list \{:conc-name, :copier, :constructor, :predicate, :include,
2380:print-function, :type, :initial-offset\}. The meanings of these are as in
2381CLtL, except that no BOA-constructors are provided, and the options
2382\{:print-fuction, :type, :initial-offset\} are ignored quietly. All these
2383structs are named, in the sense that their names can be used for type
2384discrimination.
2385
2386The DOC-STRING is established as the `structure-doc' property of NAME.
2387
2388The SLOTS are one or more of the following:
2389SYMBOL -- meaning the SYMBOL is the name of a SLOT of NAME
2390list of SYMBOL and VALUE -- meaning that VALUE is the initial value of
2391the slot.
2392`defstruct' defines functions `make-NAME', `NAME-p', `copy-NAME' for the
2393structure, and functions with the same name as the slots to access
2394them. `setf' of the accessors sets their values."
2395 (multiple-value-bind
2396 (name options docstring slotsn slots initlist)
2397 (parse$defstruct$args args)
2398 ;; Names for the member functions come from the options. The
2399 ;; slots* stuff collects info about the slots declared explicitly.
2400 (multiple-value-bind
2401 (conc-name constructor copier predicate
2402 moreslotsn moreslots moreinits included)
2403 (parse$defstruct$options name options slots)
2404 ;; The moreslots* stuff refers to slots gained as a consequence
2405 ;; of (:include clauses). -- Oct 89: Only one :include tolerated
2406 (when (and (numberp moreslotsn)
2407 (> moreslotsn 0))
2408 (setf slotsn (+ slotsn moreslotsn))
2409 (setf slots (append moreslots slots))
2410 (setf initlist (append moreinits initlist)))
2411 (unless (> slotsn 0)
2412 (error "%s needs at least one slot"
2413 (prin1-to-string name)))
2414 (let ((dups (duplicate-symbols-p slots)))
2415 (when dups
2416 (error "`%s' are duplicates"
2417 (prin1-to-string dups))))
2418 (setq initlist (simplify$inits slots initlist))
2419 (let (properties functions keywords accessors alterators returned)
2420 ;; compute properties of NAME
2421 (setq properties
2422 (append
2423 (list
2424 (list 'put (list 'quote name) :structure-doc
2425 docstring)
2426 (list 'put (list 'quote name) :structure-slotsn
2427 slotsn)
2428 (list 'put (list 'quote name) :structure-slots
2429 (list 'quote slots))
2430 (list 'put (list 'quote name) :structure-initforms
2431 (list 'quote initlist))
2432 (list 'put (list 'quote name) :structure-indices
2433 (list 'quote (extract$indices initlist))))
2434 ;; If this definition :includes another defstruct,
2435 ;; modify both property lists.
2436 (cond (included
2437 (list
2438 (list 'put
2439 (list 'quote name)
2440 :structure-includes
2441 (list 'quote included))
2442 (list 'pushnew
2443 (list 'quote name)
2444 (list 'get (list 'quote (car included))
2445 :structure-included-in))))
2446 (t
2447 (list
2448 (let ((old (gensym)))
2449 (list 'let
2450 (list (list old
2451 (list 'car
2452 (list 'get
2453 (list 'quote name)
2454 :structure-includes))))
2455 (list 'when old
2456 (list 'put
2457 old
2458 :structure-included-in
2459 (list 'delq
2460 (list 'quote name)
2461 ;; careful with destructive
2462 ;;manipulation!
2463 (list
2464 'append
2465 (list
2466 'get
2467 old
2468 :structure-included-in)
2469 '())
2470 )))))
2471 (list 'put
2472 (list 'quote name)
2473 :structure-includes
2474 '()))))
2475 ;; If this definition used to be :included in another, warn
2476 ;; that things make break. On the other hand, the redefinition
2477 ;; may be trivial, so don't call it an error.
2478 (let ((old (gensym)))
2479 (list
2480 (list 'let
2481 (list (list old (list 'get
2482 (list 'quote name)
2483 :structure-included-in)))
2484 (list 'when old
2485 (list 'message
2486 "`%s' redefined. Should redefine `%s'?"
2487 (list 'quote name)
2488 (list 'prin1-to-string old))))))))
2489
2490 ;; Compute functions associated with NAME. This is not
2491 ;; handling BOA constructors yet, but here would be the place.
2492 (setq functions
2493 (list
2494 (list 'fset (list 'quote constructor)
2495 (list 'function
2496 (list 'lambda (list '&rest 'args)
2497 (list 'make$structure$instance
2498 (list 'quote name)
2499 'args))))
2500 (list 'fset (list 'quote copier)
2501 (list 'function
2502 (list 'lambda (list 'struct)
2503 (list 'copy-sequence 'struct))))
2504 (let ((typetag (gensym)))
2505 (list 'fset (list 'quote predicate)
2506 (list
2507 'function
2508 (list
2509 'lambda (list 'thing)
2510 (list 'and
2511 (list 'vectorp 'thing)
2512 (list 'let
2513 (list (list typetag
2514 (list 'elt 'thing 0)))
2515 (list 'or
2516 (list
2517 'and
2518 (list 'eq
2519 typetag
2520 (list 'quote name))
2521 (list '=
2522 (list 'length 'thing)
2523 (1+ slotsn)))
2524 (list
2525 'memq
2526 typetag
2527 (list 'get
2528 (list 'quote name)
2529 :structure-included-in))))))
2530 )))))
2531 ;; compute accessors for NAME's slots
2532 (multiple-value-setq
2533 (accessors alterators keywords)
2534 (build$accessors$for name conc-name predicate slots slotsn))
2535 ;; generate returned value -- not defined by the standard
2536 (setq returned
2537 (list
2538 (cons 'vector
2539 (mapcar
2540 '(lambda (x) (list 'quote x))
2541 (cons name slots)))))
2542 ;; generate code
2543 (cons 'progn
2544 (nconc properties functions keywords
2545 accessors alterators returned))))))
2546\f
2547(defun parse$defstruct$args (args)
2548 "(parse$defstruct$args ARGS) => NAME OPTIONS DOCSTRING SLOTSN SLOTS INITLIST
2549NAME=symbol, OPTIONS=list of, DOCSTRING=string, SLOTSN=count of slots,
2550SLOTS=list of their names, INITLIST=alist (keyword . initform)."
2551 (let (name ;args=(symbol...) or ((symbol...)...)
2552 options ;args=((symbol . options) ...)
2553 (docstring "") ;args=(head docstring . slotargs)
2554 slotargs ;second or third cdr of args
2555 (slotsn 0) ;number of slots
2556 (slots '()) ;list of slot names
2557 (initlist '())) ;list of (slot keyword . initform)
2558 ;; extract name and options
2559 (cond ((symbolp (car args)) ;simple name
2560 (setq name (car args)
2561 options '()))
2562 ((and (listp (car args)) ;(name . options)
2563 (symbolp (caar args)))
2564 (setq name (caar args)
2565 options (cdar args)))
2566 (t
2567 (error "first arg to `defstruct' must be symbol or (symbol ...)")))
2568 (setq slotargs (cdr args))
2569 ;; is there a docstring?
2570 (when (stringp (car slotargs))
2571 (setq docstring (car slotargs)
2572 slotargs (cdr slotargs)))
2573 ;; now for the slots
2574 (multiple-value-bind
2575 (slotsn slots initlist)
2576 (process$slots slotargs)
2577 (values name options docstring slotsn slots initlist))))
2578\f
2579(defun process$slots (slots)
2580 "(process$slots SLOTS) => SLOTSN SLOTSLIST INITLIST
2581Converts a list of symbols or lists of symbol and form into the last 3
2582values returned by PARSE$DEFSTRUCT$ARGS."
2583 (let ((slotsn (length slots)) ;number of slots
2584 slotslist ;(slot1 slot2 ...)
2585 initlist) ;((:slot1 . init1) ...)
2586 (do*
2587 ((ptr slots (cdr ptr))
2588 (this (car ptr) (car ptr)))
2589 ((endp ptr))
2590 (cond ((symbolp this)
2591 (setq slotslist (cons this slotslist))
2592 (setq initlist (acons (keyword-of this) nil initlist)))
2593 ((and (listp this)
2594 (symbolp (car this)))
2595 (let ((name (car this))
2596 (form (cadr this)))
2597 ;; this silently ignores any slot options. bad...
2598 (setq slotslist (cons name slotslist))
2599 (setq initlist (acons (keyword-of name) form initlist))))
2600 (t
2601 (error "slot should be symbol or (symbol ...), not `%s'"
2602 (prin1-to-string this)))))
2603 (values slotsn (nreverse slotslist) (nreverse initlist))))
2604\f
2605(defun parse$defstruct$options (name options slots)
2606 "(parse$defstruct$options name OPTIONS SLOTS) => many values
2607A defstruct named NAME, with options list OPTIONS, has already slots SLOTS.
2608Parse the OPTIONS and return the updated form of the struct's slots and other
2609information. The values returned are:
2610
2611 CONC-NAME is the string to use as prefix/suffix in the methods,
2612 CONST is the name of the official constructor,
2613 COPIER is the name of the structure copier,
2614 PRED is the name of the type predicate,
2615 MORESLOTSN is the number of slots added by :include,
2616 MORESLOTS is the list of slots added by :include,
2617 MOREINITS is the list of initialization forms added by :include,
2618 INCLUDED is nil, or the list of the symbol added by :include"
2619 (let* ((namestring (symbol-name name))
2620 ;; to build the return values
2621 (conc-name (concat namestring "-"))
2622 (const (intern (concat "make-" namestring)))
2623 (copier (intern (concat "copy-" namestring)))
2624 (pred (intern (concat namestring "-p")))
2625 (moreslotsn 0)
2626 (moreslots '())
2627 (moreinits '())
2628 ;; auxiliaries
2629 option-head ;When an option is not a plain
2630 option-second ; keyword, it must be a list of
2631 option-rest ; the form (head second . rest)
2632 these-slotsn ;When :include is found, the
2633 these-slots ; info about the included
2634 these-inits ; structure is added here.
2635 included ;NIL or (list INCLUDED)
2636 )
2637 ;; Values above are the defaults. Now we read the options themselves
2638 (dolist (option options)
2639 ;; 2 cases arise, as options must be a keyword or a list
2640 (cond
2641 ((keywordp option)
2642 (case option
2643 (:named
2644 ) ;ignore silently
2645 (t
2646 (error "can't recognize option `%s'"
2647 (prin1-to-string option)))))
2648 ((and (listp option)
2649 (keywordp (setq option-head (car option))))
2650 (setq option-second (second option))
2651 (setq option-rest (nthcdr 2 option))
2652 (case option-head
2653 (:conc-name
2654 (setq conc-name
2655 (cond
2656 ((stringp option-second)
2657 option-second)
2658 ((null option-second)
2659 "")
2660 (t
2661 (error "`%s' is invalid as `conc-name'"
2662 (prin1-to-string option-second))))))
2663 (:copier
2664 (setq copier
2665 (cond
2666 ((and (symbolp option-second)
2667 (null option-rest))
2668 option-second)
2669 (t
2670 (error "can't recognize option `%s'"
2671 (prin1-to-string option))))))
2672\f
2673 (:constructor ;no BOA-constructors allowed
2674 (setq const
2675 (cond
2676 ((and (symbolp option-second)
2677 (null option-rest))
2678 option-second)
2679 (t
2680 (error "can't recognize option `%s'"
2681 (prin1-to-string option))))))
2682 (:predicate
2683 (setq pred
2684 (cond
2685 ((and (symbolp option-second)
2686 (null option-rest))
2687 option-second)
2688 (t
2689 (error "can't recognize option `%s'"
2690 (prin1-to-string option))))))
2691 (:include
2692 (unless (symbolp option-second)
2693 (error "arg to `:include' should be a symbol, not `%s'"
2694 (prin1-to-string option-second)))
2695 (setq these-slotsn (get option-second :structure-slotsn)
2696 these-slots (get option-second :structure-slots)
2697 these-inits (get option-second :structure-initforms))
2698 (unless (and (numberp these-slotsn)
2699 (> these-slotsn 0))
2700 (error "`%s' is not a valid structure"
2701 (prin1-to-string option-second)))
2702 (if included
2703 (error "`%s' already includes `%s', can't include `%s' too"
2704 name (car included) option-second)
2705 (push option-second included))
2706 (multiple-value-bind
2707 (xtra-slotsn xtra-slots xtra-inits)
2708 (process$slots option-rest)
2709 (when (> xtra-slotsn 0)
2710 (dolist (xslot xtra-slots)
2711 (unless (memq xslot these-slots)
2712 (error "`%s' is not a slot of `%s'"
2713 (prin1-to-string xslot)
2714 (prin1-to-string option-second))))
2715 (setq these-inits (append xtra-inits these-inits)))
2716 (setq moreslotsn (+ moreslotsn these-slotsn))
2717 (setq moreslots (append these-slots moreslots))
2718 (setq moreinits (append these-inits moreinits))))
2719 ((:print-function :type :initial-offset)
2720 ) ;ignore silently
2721 (t
2722 (error "can't recognize option `%s'"
2723 (prin1-to-string option)))))
2724 (t
2725 (error "can't recognize option `%s'"
2726 (prin1-to-string option)))))
2727 ;; Return values found
2728 (values conc-name const copier pred
2729 moreslotsn moreslots moreinits
2730 included)))
2731\f
2732(defun simplify$inits (slots initlist)
2733 "(simplify$inits SLOTS INITLIST) => new INITLIST
2734Removes from INITLIST - an ALIST - any shadowed bindings."
2735 (let ((result '()) ;built here
2736 key ;from the slot
2737 )
2738 (dolist (slot slots)
2739 (setq key (keyword-of slot))
2740 (setq result (acons key (cdr (assoc key initlist)) result)))
2741 (nreverse result)))
2742
2743(defun extract$indices (initlist)
2744 "(extract$indices INITLIST) => indices list
2745Kludge. From a list of pairs (keyword . form) build a list of pairs
2746of the form (keyword . position in list from 0). Useful to precompute
2747some of the work of MAKE$STRUCTURE$INSTANCE."
2748 (let ((result '())
2749 (index 0))
2750 (dolist (entry initlist (nreverse result))
2751 (setq result (acons (car entry) index result)
2752 index (+ index 1)))))
2753\f
2754(defun build$accessors$for (name conc-name predicate slots slotsn)
2755 "(build$accessors$for NAME PREDICATE SLOTS SLOTSN) => FSETS DEFSETFS KWDS
2756Generate the code for accesors and defsetfs of a structure called
2757NAME, whose slots are SLOTS. Also, establishes the keywords for the
2758slots names."
2759 (do ((i 0 (1+ i))
2760 (accessors '())
2761 (alterators '())
2762 (keywords '())
2763 (canonic "")) ;slot name with conc-name prepended
2764 ((>= i slotsn)
2765 (values
2766 (nreverse accessors) (nreverse alterators) (nreverse keywords)))
2767 (setq canonic (intern (concat conc-name (symbol-name (nth i slots)))))
2768 (setq accessors
2769 (cons
2770 (list 'fset (list 'quote canonic)
2771 (list 'function
2772 (list 'lambda (list 'object)
2773 (list 'cond
2774 (list (list predicate 'object)
2775 (list 'aref 'object (1+ i)))
2776 (list 't
2777 (list 'error
2778 "`%s' is not a struct %s"
2779 (list 'prin1-to-string
2780 'object)
2781 (list 'prin1-to-string
2782 (list 'quote
2783 name))))))))
2784 accessors))
2785 (setq alterators
2786 (cons
2787 (list 'defsetf canonic
2788 (list 'lambda (list 'object 'newval)
2789 (list 'cond
2790 (list (list predicate 'object)
2791 (list 'aset 'object (1+ i) 'newval))
2792 (list 't
2793 (list 'error
2794 "`%s' not a `%s'"
2795 (list 'prin1-to-string
2796 'object)
2797 (list 'prin1-to-string
2798 (list 'quote
2799 name)))))))
2800 alterators))
2801 (setq keywords
2802 (cons (list 'defkeyword (keyword-of (nth i slots)))
2803 keywords))))
2804\f
2805(defun make$structure$instance (name args)
2806 "(make$structure$instance NAME ARGS) => new struct NAME
2807A struct of type NAME is created, some slots might be initialized
2808according to ARGS (the &rest argument of MAKE-name)."
2809 (unless (symbolp name)
2810 (error "`%s' is not a possible name for a structure"
2811 (prin1-to-string name)))
2812 (let ((initforms (get name :structure-initforms))
2813 (slotsn (get name :structure-slotsn))
2814 (indices (get name :structure-indices))
2815 initalist ;pairlis'd on initforms
2816 initializers ;definitive initializers
2817 )
2818 ;; check sanity of the request
2819 (unless (and (numberp slotsn)
2820 (> slotsn 0))
2821 (error "`%s' is not a defined structure"
2822 (prin1-to-string name)))
2823 (unless (evenp (length args))
2824 (error "slot initializers `%s' not of even length"
2825 (prin1-to-string args)))
2826 ;; analyze the initializers provided by the call
2827 (multiple-value-bind
2828 (speckwds specvals) ;keywords and values given
2829 (unzip-list args) ; by the user
2830 ;; check that all the arguments are introduced by keywords
2831 (unless (every (function keywordp) speckwds)
2832 (error "all of the names in `%s' should be keywords"
2833 (prin1-to-string speckwds)))
2834 ;; check that all the keywords are known
2835 (dolist (kwd speckwds)
2836 (unless (numberp (cdr (assoc kwd indices)))
2837 (error "`%s' is not a valid slot name for %s"
2838 (prin1-to-string kwd) (prin1-to-string name))))
2839 ;; update initforms
2840 (setq initalist
2841 (pairlis speckwds
2842 (do* ;;protect values from further evaluation
2843 ((ptr specvals (cdr ptr))
2844 (val (car ptr) (car ptr))
2845 (result '()))
2846 ((endp ptr) (nreverse result))
2847 (setq result
2848 (cons (list 'quote val)
2849 result)))
2850 (copy-sequence initforms)))
2851 ;; compute definitive initializers
2852 (setq initializers
2853 (do* ;;gather the values of the most definitive forms
2854 ((ptr indices (cdr ptr))
2855 (key (caar ptr) (caar ptr))
2856 (result '()))
2857 ((endp ptr) (nreverse result))
2858 (setq result
2859 (cons (eval (cdr (assoc key initalist))) result))))
2860 ;; do real initialization
2861 (apply (function vector)
2862 (cons name initializers)))))
2863
2864;;;; end of cl-structs.el
2865\f
2866;;; For lisp-interaction mode, so that multiple values can be seen when passed
2867;;; back. Lies every now and then...
2868
2869(defvar - nil "form currently under evaluation")
2870(defvar + nil "previous -")
2871(defvar ++ nil "previous +")
2872(defvar +++ nil "previous ++")
2873(defvar / nil "list of values returned by +")
2874(defvar // nil "list of values returned by ++")
2875(defvar /// nil "list of values returned by +++")
2876(defvar * nil "(first) value of +")
2877(defvar ** nil "(first) value of ++")
2878(defvar *** nil "(first) value of +++")
2879
2880(defun cl-eval-print-last-sexp ()
2881 "Evaluate sexp before point; print value\(s\) into current buffer.
2882If the evaled form returns multiple values, they are shown one to a line.
2883The variables -, +, ++, +++, *, **, ***, /, //, /// have their usual meaning.
2884
2885It clears the multiple-value passing mechanism, and does not pass back
2886multiple values. Use this only if you are debugging cl.el and understand well
2887how the multiple-value stuff works, because it can be fooled into believing
2888that multiple values have been returned when they actually haven't, for
2889instance
2890 \(identity \(values nil 1\)\)
2891However, even when this fails, you can trust the first printed value to be
2892\(one of\) the returned value\(s\)."
2893 (interactive)
2894 ;; top level call, can reset mvalues
2895 (setq *mvalues-count* nil
2896 *mvalues-values* nil)
2897 (setq - (car (read-from-string
2898 (buffer-substring
2899 (let ((stab (syntax-table)))
2900 (unwind-protect
2901 (save-excursion
2902 (set-syntax-table emacs-lisp-mode-syntax-table)
2903 (forward-sexp -1)
2904 (point))
2905 (set-syntax-table stab)))
2906 (point)))))
2907 (setq *** **
2908 ** *
2909 * (eval -))
2910 (setq /// //
2911 // /
2912 / *mvalues-values*)
2913 (setq +++ ++
2914 ++ +
2915 + -)
2916 (cond ((or (null *mvalues-count*) ;mvalues mechanism not used
2917 (not (eq * (car *mvalues-values*))))
2918 (print * (current-buffer)))
2919 ((null /) ;no values returned
2920 (terpri (current-buffer)))
2921 (t ;more than zero mvalues
2922 (terpri (current-buffer))
2923 (mapcar (function (lambda (value)
2924 (prin1 value (current-buffer))
2925 (terpri (current-buffer))))
2926 /)))
2927 (setq *mvalues-count* nil ;make sure
2928 *mvalues-values* nil))
2929\f
2930;;;; More LISTS functions
2931;;;;
2932
2933;;; Some mapping functions on lists, commonly useful.
2934;;; They take no extra sequences, to go along with Emacs Lisp's MAPCAR.
2935
2936(defun mapc (function list)
2937 "(MAPC FUNCTION LIST) => LIST
2938Apply FUNCTION to each element of LIST, return LIST.
2939Like mapcar, but called only for effect."
2940 (let ((args list))
2941 (while args
2942 (funcall function (car args))
2943 (setq args (cdr args))))
2944 list)
2945
2946(defun maplist (function list)
2947 "(MAPLIST FUNCTION LIST) => list'ed results of FUNCTION on cdrs of LIST
2948Apply FUNCTION to successive sublists of LIST, return the list of the results"
2949 (let ((args list)
2950 results '())
2951 (while args
2952 (setq results (cons (funcall function args) results)
2953 args (cdr args)))
2954 (nreverse results)))
2955
2956(defun mapl (function list)
2957 "(MAPL FUNCTION LIST) => LIST
2958Apply FUNCTION to successive cdrs of LIST, return LIST.
2959Like maplist, but called only for effect."
2960 (let ((args list))
2961 (while args
2962 (funcall function args)
2963 (setq args (cdr args)))
2964 list))
2965
2966(defun mapcan (function list)
2967 "(MAPCAN FUNCTION LIST) => nconc'd results of FUNCTION on LIST
2968Apply FUNCTION to each element of LIST, nconc the results.
2969Beware: nconc destroys its first argument! See copy-list."
2970 (let ((args list)
2971 (results '()))
2972 (while args
2973 (setq results (nconc (funcall function (car args)) results)
2974 args (cdr args)))
2975 (nreverse results)))
2976
2977(defun mapcon (function list)
2978 "(MAPCON FUNCTION LIST) => nconc'd results of FUNCTION on cdrs of LIST
2979Apply FUNCTION to successive sublists of LIST, nconc the results.
2980Beware: nconc destroys its first argument! See copy-list."
2981 (let ((args list)
2982 (results '()))
2983 (while args
2984 (setq results (nconc (funcall function args) results)
2985 args (cdr args)))
2986 (nreverse results)))
2987
2988;;; Copiers
2989
2990(defun copy-list (list)
2991 "Build a copy of LIST"
2992 (append list '()))
2993
2994(defun copy-tree (tree)
2995 "Build a copy of the tree of conses TREE
2996The argument is a tree of conses, it is recursively copied down to
2997non conses. Circularity and sharing of substructure are not
2998necessarily preserved."
2999 (if (consp tree)
3000 (cons (copy-tree (car tree))
3001 (copy-tree (cdr tree)))
3002 tree))
3003
3004;;; reversals, and destructive manipulations of a list's spine
3005
3006(defun revappend (x y)
3007 "does what (append (reverse X) Y) would, only faster"
3008 (if (endp x)
3009 y
3010 (revappend (cdr x) (cons (car x) y))))
3011
3012(defun nreconc (x y)
3013 "does (nconc (nreverse X) Y) would, only faster
3014Destructive on X, be careful."
3015 (if (endp x)
3016 y
3017 ;; reuse the first cons of x, making it point to y
3018 (nreconc (cdr x) (prog1 x (rplacd x y)))))
3019
3020(defun nbutlast (list &optional n)
3021 "Side-effected LIST truncated N+1 conses from the end.
3022This is the destructive version of BUTLAST. Returns () and does not
3023modify the LIST argument if the length of the list is not at least N."
3024 (when (null n) (setf n 1))
3025 (let ((length (list-length list)))
3026 (cond ((null length)
3027 list)
3028 ((< length n)
3029 '())
3030 (t
3031 (setnthcdr (- length n) list nil)
3032 list))))
3033\f
3034;;; Substitutions
3035
3036(defun subst (new old tree)
3037 "NEW replaces OLD in a copy of TREE
3038Uses eql for the test."
3039 (subst-if new (function (lambda (x) (eql x old))) tree))
3040
3041(defun subst-if-not (new test tree)
3042 "NEW replaces any subtree or leaf that fails TEST in a copy of TREE"
3043 ;; (subst-if new (function (lambda (x) (not (funcall test x)))) tree)
3044 (cond ((not (funcall test tree))
3045 new)
3046 ((atom tree)
3047 tree)
3048 (t ;no match so far
3049 (let ((head (subst-if-not new test (car tree)))
3050 (tail (subst-if-not new test (cdr tree))))
3051 ;; If nothing changed, return originals. Else use the new
3052 ;; components to assemble a new tree.
3053 (if (and (eql head (car tree))
3054 (eql tail (cdr tree)))
3055 tree
3056 (cons head tail))))))
3057
3058(defun subst-if (new test tree)
3059 "NEW replaces any subtree or leaf that satisfies TEST in a copy of TREE"
3060 (cond ((funcall test tree)
3061 new)
3062 ((atom tree)
3063 tree)
3064 (t ;no match so far
3065 (let ((head (subst-if new test (car tree)))
3066 (tail (subst-if new test (cdr tree))))
3067 ;; If nothing changed, return originals. Else use the new
3068 ;; components to assemble a new tree.
3069 (if (and (eql head (car tree))
3070 (eql tail (cdr tree)))
3071 tree
3072 (cons head tail))))))
3073
3074(defun sublis (alist tree)
3075 "Use association list ALIST to modify a copy of TREE
3076If a subtree or leaf of TREE is a key in ALIST, it is replaced by the
3077associated value. Not exactly Common Lisp, but close in spirit and
3078compatible with the native Emacs Lisp ASSOC, which uses EQUAL."
3079 (let ((toplevel (assoc tree alist)))
3080 (cond (toplevel ;Bingo at top
3081 (cdr toplevel))
3082 ((atom tree) ;Give up on this
3083 tree)
3084 (t
3085 (let ((head (sublis alist (car tree)))
3086 (tail (sublis alist (cdr tree))))
3087 (if (and (eql head (car tree))
3088 (eql tail (cdr tree)))
3089 tree
3090 (cons head tail)))))))
3091
3092(defun member-if (predicate list)
3093 "PREDICATE is applied to the members of LIST. As soon as one of them
3094returns true, that tail of the list if returned. Else NIL."
3095 (catch 'found-member-if
3096 (while (not (endp list))
3097 (if (funcall predicate (car list))
3098 (throw 'found-member-if list)
3099 (setq list (cdr list))))
3100 nil))
3101
3102(defun member-if-not (predicate list)
3103 "PREDICATE is applied to the members of LIST. As soon as one of them
3104returns false, that tail of the list if returned. Else NIL."
3105 (catch 'found-member-if-not
3106 (while (not (endp list))
3107 (if (funcall predicate (car list))
3108 (setq list (cdr list))
3109 (throw 'found-member-if-not list)))
3110 nil))
3111
3112(defun tailp (sublist list)
3113 "(tailp SUBLIST LIST) => True if SUBLIST is a sublist of LIST."
3114 (catch 'tailp-found
3115 (while (not (endp list))
3116 (if (eq sublist list)
3117 (throw 'tailp-found t)
3118 (setq list (cdr list))))
3119 nil))
3120\f
3121;;; Suggestion of phr%widow.Berkeley.EDU@lilac.berkeley.edu
3122
3123(defmacro declare (&rest decls)
3124 "Ignore a Common-Lisp declaration."
3125 "declarations are ignored in this implementation")
3126
3127(defun proclaim (&rest decls)
3128 "Ignore a Common-Lisp proclamation."
3129 "declarations are ignored in this implementation")
3130
3131(defmacro the (type form)
3132 "(the TYPE FORM) macroexpands to FORM
3133No checking is even attempted. This is just for compatibility with
3134Common-Lisp codes."
3135 form)
3136
49116ac0 3137(provide 'cl)
c0274f38
ER
3138
3139;;; cl.el ends here