Undo previous changes.
[bpt/emacs.git] / src / unexelf.c
CommitLineData
e40c4104
RS
1/* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992
2 Free Software Foundation, Inc.
d427b66a 3
3b7ad313 4This file is part of GNU Emacs.
e40c4104 5
3b7ad313
EN
6GNU Emacs is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
e40c4104 10
3b7ad313
EN
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs; see the file COPYING. If not, write to
18the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA.
d427b66a
JB
20
21In other words, you are welcome to use, share and improve this program.
22You are forbidden to forbid anyone else to use, share and improve
23what you give them. Help stamp out software-hoarding! */
24
25
26/*
27 * unexec.c - Convert a running program into an a.out file.
28 *
29 * Author: Spencer W. Thomas
30 * Computer Science Dept.
31 * University of Utah
32 * Date: Tue Mar 2 1982
33 * Modified heavily since then.
34 *
35 * Synopsis:
36 * unexec (new_name, a_name, data_start, bss_start, entry_address)
37 * char *new_name, *a_name;
38 * unsigned data_start, bss_start, entry_address;
39 *
40 * Takes a snapshot of the program and makes an a.out format file in the
41 * file named by the string argument new_name.
42 * If a_name is non-NULL, the symbol table will be taken from the given file.
43 * On some machines, an existing a_name file is required.
44 *
45 * The boundaries within the a.out file may be adjusted with the data_start
46 * and bss_start arguments. Either or both may be given as 0 for defaults.
47 *
48 * Data_start gives the boundary between the text segment and the data
49 * segment of the program. The text segment can contain shared, read-only
50 * program code and literal data, while the data segment is always unshared
51 * and unprotected. Data_start gives the lowest unprotected address.
52 * The value you specify may be rounded down to a suitable boundary
53 * as required by the machine you are using.
54 *
55 * Specifying zero for data_start means the boundary between text and data
56 * should not be the same as when the program was loaded.
57 * If NO_REMAP is defined, the argument data_start is ignored and the
58 * segment boundaries are never changed.
59 *
60 * Bss_start indicates how much of the data segment is to be saved in the
61 * a.out file and restored when the program is executed. It gives the lowest
62 * unsaved address, and is rounded up to a page boundary. The default when 0
63 * is given assumes that the entire data segment is to be stored, including
64 * the previous data and bss as well as any additional storage allocated with
65 * break (2).
66 *
67 * The new file is set up to start at entry_address.
68 *
69 * If you make improvements I'd like to get them too.
70 * harpo!utah-cs!thomas, thomas@Utah-20
71 *
72 */
73
74/* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
75 * ELF support added.
76 *
77 * Basic theory: the data space of the running process needs to be
78 * dumped to the output file. Normally we would just enlarge the size
79 * of .data, scooting everything down. But we can't do that in ELF,
80 * because there is often something between the .data space and the
81 * .bss space.
82 *
83 * In the temacs dump below, notice that the Global Offset Table
84 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
85 * .bss. It does not work to overlap .data with these fields.
86 *
87 * The solution is to create a new .data segment. This segment is
88 * filled with data from the current process. Since the contents of
89 * various sections refer to sections by index, the new .data segment
90 * is made the last in the table to avoid changing any existing index.
91
92 * This is an example of how the section headers are changed. "Addr"
93 * is a process virtual address. "Offset" is a file offset.
94
95raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
96
97temacs:
98
99 **** SECTION HEADER TABLE ****
100[No] Type Flags Addr Offset Size Name
101 Link Info Adralgn Entsize
102
103[1] 1 2 0x80480d4 0xd4 0x13 .interp
994a65f3 104 0 0 0x1 0
d427b66a
JB
105
106[2] 5 2 0x80480e8 0xe8 0x388 .hash
994a65f3 107 3 0 0x4 0x4
d427b66a
JB
108
109[3] 11 2 0x8048470 0x470 0x7f0 .dynsym
994a65f3 110 4 1 0x4 0x10
d427b66a
JB
111
112[4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
994a65f3 113 0 0 0x1 0
d427b66a
JB
114
115[5] 9 2 0x8049010 0x1010 0x338 .rel.plt
994a65f3 116 3 7 0x4 0x8
d427b66a
JB
117
118[6] 1 6 0x8049348 0x1348 0x3 .init
994a65f3 119 0 0 0x4 0
d427b66a
JB
120
121[7] 1 6 0x804934c 0x134c 0x680 .plt
994a65f3 122 0 0 0x4 0x4
d427b66a
JB
123
124[8] 1 6 0x80499cc 0x19cc 0x3c56f .text
994a65f3 125 0 0 0x4 0
d427b66a
JB
126
127[9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
994a65f3 128 0 0 0x4 0
d427b66a
JB
129
130[10] 1 2 0x8085f40 0x3df40 0x69c .rodata
994a65f3 131 0 0 0x4 0
d427b66a
JB
132
133[11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
994a65f3 134 0 0 0x4 0
d427b66a
JB
135
136[12] 1 3 0x8088330 0x3f330 0x20afc .data
994a65f3 137 0 0 0x4 0
d427b66a
JB
138
139[13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
994a65f3 140 0 0 0x4 0
d427b66a
JB
141
142[14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
994a65f3 143 0 0 0x4 0x4
d427b66a
JB
144
145[15] 6 3 0x80a9874 0x60874 0x80 .dynamic
994a65f3 146 4 0 0x4 0x8
d427b66a
JB
147
148[16] 8 3 0x80a98f4 0x608f4 0x449c .bss
994a65f3 149 0 0 0x4 0
d427b66a
JB
150
151[17] 2 0 0 0x608f4 0x9b90 .symtab
994a65f3 152 18 371 0x4 0x10
d427b66a
JB
153
154[18] 3 0 0 0x6a484 0x8526 .strtab
994a65f3 155 0 0 0x1 0
d427b66a
JB
156
157[19] 3 0 0 0x729aa 0x93 .shstrtab
994a65f3 158 0 0 0x1 0
d427b66a
JB
159
160[20] 1 0 0 0x72a3d 0x68b7 .comment
994a65f3 161 0 0 0x1 0
d427b66a
JB
162
163raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
164
165xemacs:
166
167 **** SECTION HEADER TABLE ****
168[No] Type Flags Addr Offset Size Name
169 Link Info Adralgn Entsize
170
171[1] 1 2 0x80480d4 0xd4 0x13 .interp
994a65f3 172 0 0 0x1 0
d427b66a
JB
173
174[2] 5 2 0x80480e8 0xe8 0x388 .hash
994a65f3 175 3 0 0x4 0x4
d427b66a
JB
176
177[3] 11 2 0x8048470 0x470 0x7f0 .dynsym
994a65f3 178 4 1 0x4 0x10
d427b66a
JB
179
180[4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
994a65f3 181 0 0 0x1 0
d427b66a
JB
182
183[5] 9 2 0x8049010 0x1010 0x338 .rel.plt
994a65f3 184 3 7 0x4 0x8
d427b66a
JB
185
186[6] 1 6 0x8049348 0x1348 0x3 .init
994a65f3 187 0 0 0x4 0
d427b66a
JB
188
189[7] 1 6 0x804934c 0x134c 0x680 .plt
994a65f3 190 0 0 0x4 0x4
d427b66a
JB
191
192[8] 1 6 0x80499cc 0x19cc 0x3c56f .text
994a65f3 193 0 0 0x4 0
d427b66a
JB
194
195[9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
994a65f3 196 0 0 0x4 0
d427b66a
JB
197
198[10] 1 2 0x8085f40 0x3df40 0x69c .rodata
994a65f3 199 0 0 0x4 0
d427b66a
JB
200
201[11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
994a65f3 202 0 0 0x4 0
d427b66a
JB
203
204[12] 1 3 0x8088330 0x3f330 0x20afc .data
994a65f3 205 0 0 0x4 0
d427b66a
JB
206
207[13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
994a65f3 208 0 0 0x4 0
d427b66a
JB
209
210[14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
994a65f3 211 0 0 0x4 0x4
d427b66a
JB
212
213[15] 6 3 0x80a9874 0x60874 0x80 .dynamic
994a65f3 214 4 0 0x4 0x8
d427b66a
JB
215
216[16] 8 3 0x80c6800 0x7d800 0 .bss
994a65f3 217 0 0 0x4 0
d427b66a
JB
218
219[17] 2 0 0 0x7d800 0x9b90 .symtab
994a65f3 220 18 371 0x4 0x10
d427b66a
JB
221
222[18] 3 0 0 0x87390 0x8526 .strtab
994a65f3 223 0 0 0x1 0
d427b66a
JB
224
225[19] 3 0 0 0x8f8b6 0x93 .shstrtab
994a65f3 226 0 0 0x1 0
d427b66a
JB
227
228[20] 1 0 0 0x8f949 0x68b7 .comment
994a65f3 229 0 0 0x1 0
d427b66a
JB
230
231[21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
994a65f3 232 0 0 0x4 0
d427b66a
JB
233
234 * This is an example of how the file header is changed. "Shoff" is
235 * the section header offset within the file. Since that table is
236 * after the new .data section, it is moved. "Shnum" is the number of
237 * sections, which we increment.
238 *
239 * "Phoff" is the file offset to the program header. "Phentsize" and
240 * "Shentsz" are the program and section header entries sizes respectively.
241 * These can be larger than the apparent struct sizes.
242
243raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
244
245temacs:
246
247 **** ELF HEADER ****
248Class Data Type Machine Version
249Entry Phoff Shoff Flags Ehsize
250Phentsize Phnum Shentsz Shnum Shstrndx
251
2521 1 2 3 1
2530x80499cc 0x34 0x792f4 0 0x34
2540x20 5 0x28 21 19
255
256raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
257
258xemacs:
259
260 **** ELF HEADER ****
261Class Data Type Machine Version
262Entry Phoff Shoff Flags Ehsize
263Phentsize Phnum Shentsz Shnum Shstrndx
264
2651 1 2 3 1
2660x80499cc 0x34 0x96200 0 0x34
2670x20 5 0x28 22 19
268
269 * These are the program headers. "Offset" is the file offset to the
270 * segment. "Vaddr" is the memory load address. "Filesz" is the
271 * segment size as it appears in the file, and "Memsz" is the size in
272 * memory. Below, the third segment is the code and the fourth is the
273 * data: the difference between Filesz and Memsz is .bss
274
275raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
276
277temacs:
278 ***** PROGRAM EXECUTION HEADER *****
279Type Offset Vaddr Paddr
280Filesz Memsz Flags Align
281
994a65f3
RM
2826 0x34 0x8048034 0
2830xa0 0xa0 5 0
d427b66a 284
994a65f3
RM
2853 0xd4 0 0
2860x13 0 4 0
d427b66a 287
994a65f3
RM
2881 0x34 0x8048034 0
2890x3f2f9 0x3f2f9 5 0x1000
d427b66a 290
994a65f3
RM
2911 0x3f330 0x8088330 0
2920x215c4 0x25a60 7 0x1000
d427b66a 293
994a65f3
RM
2942 0x60874 0x80a9874 0
2950x80 0 7 0
d427b66a
JB
296
297raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
298
299xemacs:
300 ***** PROGRAM EXECUTION HEADER *****
301Type Offset Vaddr Paddr
302Filesz Memsz Flags Align
303
994a65f3
RM
3046 0x34 0x8048034 0
3050xa0 0xa0 5 0
d427b66a 306
994a65f3
RM
3073 0xd4 0 0
3080x13 0 4 0
d427b66a 309
994a65f3
RM
3101 0x34 0x8048034 0
3110x3f2f9 0x3f2f9 5 0x1000
d427b66a 312
994a65f3
RM
3131 0x3f330 0x8088330 0
3140x3e4d0 0x3e4d0 7 0x1000
d427b66a 315
994a65f3
RM
3162 0x60874 0x80a9874 0
3170x80 0 7 0
d427b66a
JB
318
319
320 */
e40c4104 321\f
994a65f3
RM
322/* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
323 *
e40c4104 324 * The above mechanism does not work if the unexeced ELF file is being
994a65f3 325 * re-layout by other applications (such as `strip'). All the applications
e40c4104 326 * that re-layout the internal of ELF will layout all sections in ascending
994a65f3
RM
327 * order of their file offsets. After the re-layout, the data2 section will
328 * still be the LAST section in the section header vector, but its file offset
e40c4104 329 * is now being pushed far away down, and causes part of it not to be mapped
994a65f3 330 * in (ie. not covered by the load segment entry in PHDR vector), therefore
e40c4104
RS
331 * causes the new binary to fail.
332 *
333 * The solution is to modify the unexec algorithm to insert the new data2
334 * section header right before the new bss section header, so their file
994a65f3
RM
335 * offsets will be in the ascending order. Since some of the section's (all
336 * sections AFTER the bss section) indexes are now changed, we also need to
337 * modify some fields to make them point to the right sections. This is done
e40c4104 338 * by macro PATCH_INDEX. All the fields that need to be patched are:
994a65f3 339 *
e40c4104
RS
340 * 1. ELF header e_shstrndx field.
341 * 2. section header sh_link and sh_info field.
342 * 3. symbol table entry st_shndx field.
343 *
344 * The above example now should look like:
345
346 **** SECTION HEADER TABLE ****
347[No] Type Flags Addr Offset Size Name
348 Link Info Adralgn Entsize
349
350[1] 1 2 0x80480d4 0xd4 0x13 .interp
994a65f3 351 0 0 0x1 0
d427b66a 352
e40c4104 353[2] 5 2 0x80480e8 0xe8 0x388 .hash
994a65f3 354 3 0 0x4 0x4
e40c4104
RS
355
356[3] 11 2 0x8048470 0x470 0x7f0 .dynsym
994a65f3 357 4 1 0x4 0x10
e40c4104
RS
358
359[4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
994a65f3 360 0 0 0x1 0
e40c4104
RS
361
362[5] 9 2 0x8049010 0x1010 0x338 .rel.plt
994a65f3 363 3 7 0x4 0x8
e40c4104
RS
364
365[6] 1 6 0x8049348 0x1348 0x3 .init
994a65f3 366 0 0 0x4 0
e40c4104
RS
367
368[7] 1 6 0x804934c 0x134c 0x680 .plt
994a65f3 369 0 0 0x4 0x4
e40c4104
RS
370
371[8] 1 6 0x80499cc 0x19cc 0x3c56f .text
994a65f3 372 0 0 0x4 0
e40c4104
RS
373
374[9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
994a65f3 375 0 0 0x4 0
e40c4104
RS
376
377[10] 1 2 0x8085f40 0x3df40 0x69c .rodata
994a65f3 378 0 0 0x4 0
e40c4104
RS
379
380[11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
994a65f3 381 0 0 0x4 0
e40c4104
RS
382
383[12] 1 3 0x8088330 0x3f330 0x20afc .data
994a65f3 384 0 0 0x4 0
e40c4104
RS
385
386[13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
994a65f3 387 0 0 0x4 0
e40c4104
RS
388
389[14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
994a65f3 390 0 0 0x4 0x4
e40c4104
RS
391
392[15] 6 3 0x80a9874 0x60874 0x80 .dynamic
994a65f3 393 4 0 0x4 0x8
e40c4104
RS
394
395[16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
994a65f3 396 0 0 0x4 0
e40c4104
RS
397
398[17] 8 3 0x80c6800 0x7d800 0 .bss
994a65f3 399 0 0 0x4 0
e40c4104
RS
400
401[18] 2 0 0 0x7d800 0x9b90 .symtab
994a65f3 402 19 371 0x4 0x10
e40c4104
RS
403
404[19] 3 0 0 0x87390 0x8526 .strtab
994a65f3 405 0 0 0x1 0
e40c4104
RS
406
407[20] 3 0 0 0x8f8b6 0x93 .shstrtab
994a65f3 408 0 0 0x1 0
e40c4104
RS
409
410[21] 1 0 0 0x8f949 0x68b7 .comment
994a65f3 411 0 0 0x1 0
e40c4104
RS
412
413 */
414\f
d427b66a
JB
415#include <sys/types.h>
416#include <stdio.h>
417#include <sys/stat.h>
418#include <memory.h>
419#include <string.h>
420#include <errno.h>
421#include <unistd.h>
422#include <fcntl.h>
423#include <elf.h>
424#include <sys/mman.h>
425
9da3f2d4
KH
426#ifdef __alpha__
427# include <sym.h> /* get COFF debugging symbol table declaration */
428#endif
429
430#ifdef __GNU_LIBRARY__
431# include <link.h> /* get definition of ElfW */
432#endif
433
434#ifndef ElfW
435# ifdef __STDC__
436# define ElfW(type) Elf32_##type
437# else
438# define ElfW(type) Elf32_/**/type
439# endif
440#endif
441
d427b66a 442#ifndef emacs
d7cb42c3 443#define fatal(a, b, c) fprintf (stderr, a, b, c), exit (1)
d427b66a 444#else
82142eb0 445#include <config.h>
d7cb42c3 446extern void fatal (char *, ...);
d427b66a
JB
447#endif
448
d8858cfe
RS
449#ifndef ELF_BSS_SECTION_NAME
450#define ELF_BSS_SECTION_NAME ".bss"
451#endif
452
d427b66a
JB
453/* Get the address of a particular section or program header entry,
454 * accounting for the size of the entries.
455 */
ea083293
RS
456/*
457 On PPC Reference Platform running Solaris 2.5.1
458 the plt section is also of type NOBI like the bss section.
459 (not really stored) and therefore sections after the bss
460 section start at the plt offset. The plt section is always
461 the one just before the bss section.
462 Thus, we modify the test from
463 if (NEW_SECTION_H (nn).sh_offset >= new_data2_offset)
464 to
465 if (NEW_SECTION_H (nn).sh_offset >=
466 OLD_SECTION_H (old_bss_index-1).sh_offset)
467 This is just a hack. We should put the new data section
468 before the .plt section.
469 And we should not have this routine at all but use
470 the libelf library to read the old file and create the new
471 file.
472 The changed code is minimal and depends on prep set in m/prep.h
473 Erik Deumens
474 Quantum Theory Project
475 University of Florida
476 deumens@qtp.ufl.edu
477 Apr 23, 1996
478 */
d427b66a
JB
479
480#define OLD_SECTION_H(n) \
9da3f2d4 481 (*(ElfW(Shdr) *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
d427b66a 482#define NEW_SECTION_H(n) \
9da3f2d4 483 (*(ElfW(Shdr) *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
d427b66a 484#define OLD_PROGRAM_H(n) \
9da3f2d4 485 (*(ElfW(Phdr) *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
d427b66a 486#define NEW_PROGRAM_H(n) \
9da3f2d4 487 (*(ElfW(Phdr) *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
d427b66a 488
e40c4104
RS
489#define PATCH_INDEX(n) \
490 do { \
d7cb42c3 491 if ((int) (n) >= old_bss_index) \
e40c4104 492 (n)++; } while (0)
d427b66a
JB
493typedef unsigned char byte;
494
e40c4104
RS
495/* Round X up to a multiple of Y. */
496
497int
498round_up (x, y)
499 int x, y;
500{
501 int rem = x % y;
502 if (rem == 0)
503 return x;
504 return x - rem + y;
505}
506
d427b66a
JB
507/* ****************************************************************
508 * unexec
509 *
510 * driving logic.
511 *
512 * In ELF, this works by replacing the old .bss section with a new
513 * .data section, and inserting an empty .bss immediately afterwards.
514 *
515 */
516void
517unexec (new_name, old_name, data_start, bss_start, entry_address)
518 char *new_name, *old_name;
519 unsigned data_start, bss_start, entry_address;
520{
d427b66a
JB
521 int new_file, old_file, new_file_size;
522
523 /* Pointers to the base of the image of the two files. */
524 caddr_t old_base, new_base;
525
526 /* Pointers to the file, program and section headers for the old and new
527 * files.
528 */
9da3f2d4
KH
529 ElfW(Ehdr) *old_file_h, *new_file_h;
530 ElfW(Phdr) *old_program_h, *new_program_h;
531 ElfW(Shdr) *old_section_h, *new_section_h;
d427b66a
JB
532
533 /* Point to the section name table in the old file */
534 char *old_section_names;
535
9da3f2d4
KH
536 ElfW(Addr) old_bss_addr, new_bss_addr;
537 ElfW(Addr) old_bss_size, new_data2_size;
538 ElfW(Off) new_data2_offset;
539 ElfW(Addr) new_data2_addr;
d427b66a 540
9da3f2d4 541 int n, nn, old_bss_index, old_data_index;
d427b66a
JB
542 struct stat stat_buf;
543
544 /* Open the old file & map it into the address space. */
545
546 old_file = open (old_name, O_RDONLY);
547
548 if (old_file < 0)
549 fatal ("Can't open %s for reading: errno %d\n", old_name, errno);
550
551 if (fstat (old_file, &stat_buf) == -1)
d7cb42c3 552 fatal ("Can't fstat (%s): errno %d\n", old_name, errno);
d427b66a
JB
553
554 old_base = mmap (0, stat_buf.st_size, PROT_READ, MAP_SHARED, old_file, 0);
555
556 if (old_base == (caddr_t) -1)
d7cb42c3 557 fatal ("Can't mmap (%s): errno %d\n", old_name, errno);
d427b66a
JB
558
559#ifdef DEBUG
9da3f2d4
KH
560 fprintf (stderr, "mmap (%s, %lx) -> %lx\n", old_name, stat_buf.st_size,
561 (unsigned long) old_base);
d427b66a
JB
562#endif
563
564 /* Get pointers to headers & section names */
565
9da3f2d4
KH
566 old_file_h = (ElfW(Ehdr) *) old_base;
567 old_program_h = (ElfW(Phdr) *) ((byte *) old_base + old_file_h->e_phoff);
568 old_section_h = (ElfW(Shdr) *) ((byte *) old_base + old_file_h->e_shoff);
d427b66a 569 old_section_names = (char *) old_base
d7cb42c3 570 + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset;
d427b66a
JB
571
572 /* Find the old .bss section. Figure out parameters of the new
573 * data2 and bss sections.
574 */
575
d7cb42c3
RS
576 for (old_bss_index = 1; old_bss_index < (int) old_file_h->e_shnum;
577 old_bss_index++)
d427b66a
JB
578 {
579#ifdef DEBUG
580 fprintf (stderr, "Looking for .bss - found %s\n",
d7cb42c3 581 old_section_names + OLD_SECTION_H (old_bss_index).sh_name);
d427b66a 582#endif
d7cb42c3 583 if (!strcmp (old_section_names + OLD_SECTION_H (old_bss_index).sh_name,
d8858cfe 584 ELF_BSS_SECTION_NAME))
d427b66a
JB
585 break;
586 }
587 if (old_bss_index == old_file_h->e_shnum)
588 fatal ("Can't find .bss in %s.\n", old_name, 0);
589
d7cb42c3
RS
590 old_bss_addr = OLD_SECTION_H (old_bss_index).sh_addr;
591 old_bss_size = OLD_SECTION_H (old_bss_index).sh_size;
d427b66a 592#if defined(emacs) || !defined(DEBUG)
9da3f2d4 593 new_bss_addr = (ElfW(Addr)) sbrk (0);
d427b66a
JB
594#else
595 new_bss_addr = old_bss_addr + old_bss_size + 0x1234;
596#endif
597 new_data2_addr = old_bss_addr;
598 new_data2_size = new_bss_addr - old_bss_addr;
d7cb42c3 599 new_data2_offset = OLD_SECTION_H (old_bss_index).sh_offset;
d427b66a
JB
600
601#ifdef DEBUG
602 fprintf (stderr, "old_bss_index %d\n", old_bss_index);
9da3f2d4
KH
603 fprintf (stderr, "old_bss_addr %lx\n", old_bss_addr);
604 fprintf (stderr, "old_bss_size %lx\n", old_bss_size);
605 fprintf (stderr, "new_bss_addr %lx\n", new_bss_addr);
606 fprintf (stderr, "new_data2_addr %lx\n", new_data2_addr);
607 fprintf (stderr, "new_data2_size %lx\n", new_data2_size);
608 fprintf (stderr, "new_data2_offset %lx\n", new_data2_offset);
d427b66a
JB
609#endif
610
9da3f2d4
KH
611 if ((unsigned long) new_bss_addr
612 < (unsigned long) old_bss_addr + old_bss_size)
d427b66a
JB
613 fatal (".bss shrank when undumping???\n", 0, 0);
614
d7cb42c3 615 /* Set the output file to the right size and mmap it. Set
d427b66a
JB
616 * pointers to various interesting objects. stat_buf still has
617 * old_file data.
618 */
619
620 new_file = open (new_name, O_RDWR | O_CREAT, 0666);
621 if (new_file < 0)
d7cb42c3 622 fatal ("Can't creat (%s): errno %d\n", new_name, errno);
d427b66a
JB
623
624 new_file_size = stat_buf.st_size + old_file_h->e_shentsize + new_data2_size;
625
626 if (ftruncate (new_file, new_file_size))
d7cb42c3 627 fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno);
d427b66a 628
04f903c0
KH
629#ifdef UNEXEC_USE_MAP_PRIVATE
630 new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
631 new_file, 0);
632#else
d427b66a
JB
633 new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_SHARED,
634 new_file, 0);
04f903c0 635#endif
d427b66a
JB
636
637 if (new_base == (caddr_t) -1)
d7cb42c3 638 fatal ("Can't mmap (%s): errno %d\n", new_name, errno);
d427b66a 639
9da3f2d4
KH
640 new_file_h = (ElfW(Ehdr) *) new_base;
641 new_program_h = (ElfW(Phdr) *) ((byte *) new_base + old_file_h->e_phoff);
642 new_section_h = (ElfW(Shdr) *)
d427b66a
JB
643 ((byte *) new_base + old_file_h->e_shoff + new_data2_size);
644
645 /* Make our new file, program and section headers as copies of the
646 * originals.
647 */
648
649 memcpy (new_file_h, old_file_h, old_file_h->e_ehsize);
650 memcpy (new_program_h, old_program_h,
651 old_file_h->e_phnum * old_file_h->e_phentsize);
e40c4104
RS
652
653 /* Modify the e_shstrndx if necessary. */
654 PATCH_INDEX (new_file_h->e_shstrndx);
d427b66a
JB
655
656 /* Fix up file header. We'll add one section. Section header is
657 * further away now.
658 */
659
660 new_file_h->e_shoff += new_data2_size;
661 new_file_h->e_shnum += 1;
662
663#ifdef DEBUG
9da3f2d4 664 fprintf (stderr, "Old section offset %lx\n", old_file_h->e_shoff);
d427b66a 665 fprintf (stderr, "Old section count %d\n", old_file_h->e_shnum);
9da3f2d4 666 fprintf (stderr, "New section offset %lx\n", new_file_h->e_shoff);
d427b66a
JB
667 fprintf (stderr, "New section count %d\n", new_file_h->e_shnum);
668#endif
669
670 /* Fix up a new program header. Extend the writable data segment so
671 * that the bss area is covered too. Find that segment by looking
672 * for a segment that ends just before the .bss area. Make sure
673 * that no segments are above the new .data2. Put a loop at the end
674 * to adjust the offset and address of any segment that is above
675 * data2, just in case we decide to allow this later.
676 */
677
678 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
679 {
e40c4104 680 /* Compute maximum of all requirements for alignment of section. */
9da3f2d4 681 unsigned int alignment = (NEW_PROGRAM_H (n)).p_align;
e40c4104
RS
682 if ((OLD_SECTION_H (old_bss_index)).sh_addralign > alignment)
683 alignment = OLD_SECTION_H (old_bss_index).sh_addralign;
684
d7cb42c3 685 if (NEW_PROGRAM_H (n).p_vaddr + NEW_PROGRAM_H (n).p_filesz > old_bss_addr)
d427b66a
JB
686 fatal ("Program segment above .bss in %s\n", old_name, 0);
687
d7cb42c3 688 if (NEW_PROGRAM_H (n).p_type == PT_LOAD
e40c4104
RS
689 && (round_up ((NEW_PROGRAM_H (n)).p_vaddr
690 + (NEW_PROGRAM_H (n)).p_filesz,
691 alignment)
692 == round_up (old_bss_addr, alignment)))
d427b66a
JB
693 break;
694 }
695 if (n < 0)
696 fatal ("Couldn't find segment next to .bss in %s\n", old_name, 0);
697
d7cb42c3
RS
698 NEW_PROGRAM_H (n).p_filesz += new_data2_size;
699 NEW_PROGRAM_H (n).p_memsz = NEW_PROGRAM_H (n).p_filesz;
d427b66a
JB
700
701#if 0 /* Maybe allow section after data2 - does this ever happen? */
702 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
703 {
d7cb42c3
RS
704 if (NEW_PROGRAM_H (n).p_vaddr
705 && NEW_PROGRAM_H (n).p_vaddr >= new_data2_addr)
706 NEW_PROGRAM_H (n).p_vaddr += new_data2_size - old_bss_size;
d427b66a 707
d7cb42c3
RS
708 if (NEW_PROGRAM_H (n).p_offset >= new_data2_offset)
709 NEW_PROGRAM_H (n).p_offset += new_data2_size;
d427b66a
JB
710 }
711#endif
712
713 /* Fix up section headers based on new .data2 section. Any section
714 * whose offset or virtual address is after the new .data2 section
715 * gets its value adjusted. .bss size becomes zero and new address
716 * is set. data2 section header gets added by copying the existing
717 * .data header and modifying the offset, address and size.
718 */
d7cb42c3 719 for (old_data_index = 1; old_data_index < (int) old_file_h->e_shnum;
d427b66a 720 old_data_index++)
d7cb42c3 721 if (!strcmp (old_section_names + OLD_SECTION_H (old_data_index).sh_name,
d427b66a
JB
722 ".data"))
723 break;
724 if (old_data_index == old_file_h->e_shnum)
725 fatal ("Can't find .data in %s.\n", old_name, 0);
726
994a65f3 727 /* Walk through all section headers, insert the new data2 section right
e40c4104 728 before the new bss section. */
d7cb42c3 729 for (n = 1, nn = 1; n < (int) old_file_h->e_shnum; n++, nn++)
d427b66a
JB
730 {
731 caddr_t src;
e40c4104
RS
732 /* If it is bss section, insert the new data2 section before it. */
733 if (n == old_bss_index)
734 {
735 /* Steal the data section header for this data2 section. */
d7cb42c3 736 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (old_data_index),
e40c4104 737 new_file_h->e_shentsize);
994a65f3 738
d7cb42c3
RS
739 NEW_SECTION_H (nn).sh_addr = new_data2_addr;
740 NEW_SECTION_H (nn).sh_offset = new_data2_offset;
741 NEW_SECTION_H (nn).sh_size = new_data2_size;
e40c4104
RS
742 /* Use the bss section's alignment. This will assure that the
743 new data2 section always be placed in the same spot as the old
744 bss section by any other application. */
d7cb42c3 745 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign;
e40c4104
RS
746
747 /* Now copy over what we have in the memory now. */
994a65f3
RM
748 memcpy (NEW_SECTION_H (nn).sh_offset + new_base,
749 (caddr_t) OLD_SECTION_H (n).sh_addr,
e40c4104
RS
750 new_data2_size);
751 nn++;
752 }
994a65f3
RM
753
754 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
e40c4104 755 old_file_h->e_shentsize);
994a65f3 756
e40c4104
RS
757 /* The new bss section's size is zero, and its file offset and virtual
758 address should be off by NEW_DATA2_SIZE. */
759 if (n == old_bss_index)
760 {
761 /* NN should be `old_bss_index + 1' at this point. */
d7cb42c3
RS
762 NEW_SECTION_H (nn).sh_offset += new_data2_size;
763 NEW_SECTION_H (nn).sh_addr += new_data2_size;
e40c4104 764 /* Let the new bss section address alignment be the same as the
994a65f3 765 section address alignment followed the old bss section, so
e40c4104 766 this section will be placed in exactly the same place. */
d7cb42c3
RS
767 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (nn).sh_addralign;
768 NEW_SECTION_H (nn).sh_size = 0;
e40c4104 769 }
85b2e0ee
RS
770 else
771 {
772 /* Any section that was original placed AFTER the bss
773 section should now be off by NEW_DATA2_SIZE. */
ea083293
RS
774#ifdef SOLARIS_POWERPC
775 /* On PPC Reference Platform running Solaris 2.5.1
776 the plt section is also of type NOBI like the bss section.
777 (not really stored) and therefore sections after the bss
778 section start at the plt offset. The plt section is always
779 the one just before the bss section.
780 It would be better to put the new data section before
781 the .plt section, or use libelf instead.
782 Erik Deumens, deumens@qtp.ufl.edu. */
783 if (NEW_SECTION_H (nn).sh_offset
784 >= OLD_SECTION_H (old_bss_index-1).sh_offset)
785 NEW_SECTION_H (nn).sh_offset += new_data2_size;
786#else
faee8ef0
RS
787 if (round_up (NEW_SECTION_H (nn).sh_offset,
788 OLD_SECTION_H (old_bss_index).sh_addralign)
789 >= new_data2_offset)
85b2e0ee 790 NEW_SECTION_H (nn).sh_offset += new_data2_size;
ea083293 791#endif
85b2e0ee
RS
792 /* Any section that was originally placed after the section
793 header table should now be off by the size of one section
794 header table entry. */
795 if (NEW_SECTION_H (nn).sh_offset > new_file_h->e_shoff)
796 NEW_SECTION_H (nn).sh_offset += new_file_h->e_shentsize;
797 }
798
e40c4104 799 /* If any section hdr refers to the section after the new .data
994a65f3 800 section, make it refer to next one because we have inserted
8917361f 801 a new section in between. */
994a65f3 802
d7cb42c3 803 PATCH_INDEX (NEW_SECTION_H (nn).sh_link);
8917361f
RS
804 /* For symbol tables, info is a symbol table index,
805 so don't change it. */
806 if (NEW_SECTION_H (nn).sh_type != SHT_SYMTAB
807 && NEW_SECTION_H (nn).sh_type != SHT_DYNSYM)
808 PATCH_INDEX (NEW_SECTION_H (nn).sh_info);
809
810 /* Now, start to copy the content of sections. */
d7cb42c3
RS
811 if (NEW_SECTION_H (nn).sh_type == SHT_NULL
812 || NEW_SECTION_H (nn).sh_type == SHT_NOBITS)
d427b66a 813 continue;
994a65f3 814
e40c4104 815 /* Write out the sections. .data and .data1 (and data2, called
8917361f
RS
816 ".data" in the strings table) get copied from the current process
817 instead of the old file. */
d7cb42c3
RS
818 if (!strcmp (old_section_names + NEW_SECTION_H (n).sh_name, ".data")
819 || !strcmp ((old_section_names + NEW_SECTION_H (n).sh_name),
d427b66a 820 ".data1"))
d7cb42c3 821 src = (caddr_t) OLD_SECTION_H (n).sh_addr;
d427b66a 822 else
d7cb42c3 823 src = old_base + OLD_SECTION_H (n).sh_offset;
994a65f3 824
d7cb42c3
RS
825 memcpy (NEW_SECTION_H (nn).sh_offset + new_base, src,
826 NEW_SECTION_H (nn).sh_size);
e40c4104 827
9da3f2d4
KH
828#ifdef __alpha__
829 /* Update Alpha COFF symbol table: */
830 if (strcmp (old_section_names + OLD_SECTION_H (n).sh_name, ".mdebug")
831 == 0)
832 {
833 pHDRR symhdr = (pHDRR) (NEW_SECTION_H (nn).sh_offset + new_base);
834
835 symhdr->cbLineOffset += new_data2_size;
836 symhdr->cbDnOffset += new_data2_size;
837 symhdr->cbPdOffset += new_data2_size;
838 symhdr->cbSymOffset += new_data2_size;
839 symhdr->cbOptOffset += new_data2_size;
840 symhdr->cbAuxOffset += new_data2_size;
841 symhdr->cbSsOffset += new_data2_size;
842 symhdr->cbSsExtOffset += new_data2_size;
843 symhdr->cbFdOffset += new_data2_size;
844 symhdr->cbRfdOffset += new_data2_size;
845 symhdr->cbExtOffset += new_data2_size;
846 }
847#endif /* __alpha__ */
848
8917361f 849 /* If it is the symbol table, its st_shndx field needs to be patched. */
d7cb42c3
RS
850 if (NEW_SECTION_H (nn).sh_type == SHT_SYMTAB
851 || NEW_SECTION_H (nn).sh_type == SHT_DYNSYM)
e40c4104 852 {
9da3f2d4 853 ElfW(Shdr) *spt = &NEW_SECTION_H (nn);
e40c4104 854 unsigned int num = spt->sh_size / spt->sh_entsize;
9da3f2d4 855 ElfW(Sym) * sym = (ElfW(Sym) *) (NEW_SECTION_H (nn).sh_offset +
e40c4104
RS
856 new_base);
857 for (; num--; sym++)
858 {
859 if ((sym->st_shndx == SHN_UNDEF)
860 || (sym->st_shndx == SHN_ABS)
861 || (sym->st_shndx == SHN_COMMON))
862 continue;
994a65f3 863
d7cb42c3 864 PATCH_INDEX (sym->st_shndx);
e40c4104
RS
865 }
866 }
d427b66a
JB
867 }
868
8917361f 869 /* Update the symbol values of _edata and _end. */
8bf761ce
RS
870 for (n = new_file_h->e_shnum - 1; n; n--)
871 {
872 byte *symnames;
9da3f2d4 873 ElfW(Sym) *symp, *symendp;
8bf761ce
RS
874
875 if (NEW_SECTION_H (n).sh_type != SHT_DYNSYM
876 && NEW_SECTION_H (n).sh_type != SHT_SYMTAB)
877 continue;
878
8c1e9afe
KH
879 symnames = ((byte *) new_base
880 + NEW_SECTION_H (NEW_SECTION_H (n).sh_link).sh_offset);
9da3f2d4
KH
881 symp = (ElfW(Sym) *) (NEW_SECTION_H (n).sh_offset + new_base);
882 symendp = (ElfW(Sym) *) ((byte *)symp + NEW_SECTION_H (n).sh_size);
8bf761ce
RS
883
884 for (; symp < symendp; symp ++)
885 if (strcmp ((char *) (symnames + symp->st_name), "_end") == 0
886 || strcmp ((char *) (symnames + symp->st_name), "_edata") == 0)
887 memcpy (&symp->st_value, &new_bss_addr, sizeof (new_bss_addr));
888 }
889
48240339
KH
890 /* This loop seeks out relocation sections for the data section, so
891 that it can undo relocations performed by the runtime linker. */
892 for (n = new_file_h->e_shnum - 1; n; n--)
893 {
9da3f2d4 894 ElfW(Shdr) section = NEW_SECTION_H (n);
48240339
KH
895 switch (section.sh_type) {
896 default:
897 break;
898 case SHT_REL:
899 case SHT_RELA:
994a65f3
RM
900 /* This code handles two different size structs, but there should
901 be no harm in that provided that r_offset is always the first
902 member. */
48240339
KH
903 nn = section.sh_info;
904 if (!strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".data")
905 || !strcmp ((old_section_names + NEW_SECTION_H (nn).sh_name),
906 ".data1"))
907 {
9da3f2d4 908 ElfW(Addr) offset = NEW_SECTION_H (nn).sh_addr -
48240339
KH
909 NEW_SECTION_H (nn).sh_offset;
910 caddr_t reloc = old_base + section.sh_offset, end;
911 for (end = reloc + section.sh_size; reloc < end;
912 reloc += section.sh_entsize)
913 {
9da3f2d4
KH
914 ElfW(Addr) addr;
915#ifdef __alpha__
916 /* The Alpha ELF binutils currently have a bug that
917 sometimes results in relocs that contain all
918 zeroes. Work around this for now... */
919 if (((ElfW(Rel) *) reloc)->r_offset == 0)
920 continue;
921#endif
922 addr = ((ElfW(Rel) *) reloc)->r_offset - offset;
923 memcpy (new_base + addr, old_base + addr, sizeof(ElfW(Addr)));
48240339
KH
924 }
925 }
926 break;
927 }
928 }
48240339 929
04f903c0
KH
930#ifdef UNEXEC_USE_MAP_PRIVATE
931 if (lseek (new_file, 0, SEEK_SET) == -1)
932 fatal ("Can't rewind (%s): errno %d\n", new_name, errno);
933
934 if (write (new_file, new_base, new_file_size) != new_file_size)
935 fatal ("Can't write (%s): errno %d\n", new_name, errno);
936#endif
937
8917361f 938 /* Close the files and make the new file executable. */
d427b66a
JB
939
940 if (close (old_file))
d7cb42c3 941 fatal ("Can't close (%s): errno %d\n", old_name, errno);
d427b66a
JB
942
943 if (close (new_file))
d7cb42c3 944 fatal ("Can't close (%s): errno %d\n", new_name, errno);
d427b66a
JB
945
946 if (stat (new_name, &stat_buf) == -1)
d7cb42c3 947 fatal ("Can't stat (%s): errno %d\n", new_name, errno);
d427b66a
JB
948
949 n = umask (777);
950 umask (n);
951 stat_buf.st_mode |= 0111 & ~n;
952 if (chmod (new_name, stat_buf.st_mode) == -1)
d7cb42c3 953 fatal ("Can't chmod (%s): errno %d\n", new_name, errno);
d427b66a 954}