Move DONT_REOPEN_PTY from src/s to configure
[bpt/emacs.git] / src / ccl.c
CommitLineData
4ed46869 1/* CCL (Code Conversion Language) interpreter.
acaf905b 2 Copyright (C) 2001-2012 Free Software Foundation, Inc.
7976eda0 3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
5df4f04c 4 2005, 2006, 2007, 2008, 2009, 2010, 2011
ce03bf76
KH
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
8f924df7 7 Copyright (C) 2003
c10842ea
KH
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
4ed46869 10
369314dc
KH
11This file is part of GNU Emacs.
12
9ec0b715 13GNU Emacs is free software: you can redistribute it and/or modify
369314dc 14it under the terms of the GNU General Public License as published by
9ec0b715
GM
15the Free Software Foundation, either version 3 of the License, or
16(at your option) any later version.
4ed46869 17
369314dc
KH
18GNU Emacs is distributed in the hope that it will be useful,
19but WITHOUT ANY WARRANTY; without even the implied warranty of
20MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21GNU General Public License for more details.
4ed46869 22
369314dc 23You should have received a copy of the GNU General Public License
9ec0b715 24along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
4ed46869 25
4ed46869 26#include <config.h>
dfcf069d 27
68c45bf0 28#include <stdio.h>
d7306fe6 29#include <setjmp.h>
61838453 30#include <limits.h>
68c45bf0 31
4ed46869 32#include "lisp.h"
c10842ea 33#include "character.h"
4ed46869
KH
34#include "charset.h"
35#include "ccl.h"
36#include "coding.h"
37
c10842ea
KH
38Lisp_Object Qccl, Qcclp;
39
737b5223 40/* This symbol is a property which associates with ccl program vector.
6ae21908 41 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
955cbe7b 42static Lisp_Object Qccl_program;
e34b1164 43
8146262a
KH
44/* These symbols are properties which associate with code conversion
45 map and their ID respectively. */
955cbe7b
PE
46static Lisp_Object Qcode_conversion_map;
47static Lisp_Object Qcode_conversion_map_id;
e34b1164 48
6ae21908 49/* Symbols of ccl program have this property, a value of the property
e1dbe924 50 is an index for Vccl_program_table. */
955cbe7b 51static Lisp_Object Qccl_program_idx;
6ae21908 52
5232fa7b 53/* Table of registered CCL programs. Each element is a vector of
2a69c66e
KH
54 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
55 name of the program, CCL_PROG (vector) is the compiled code of the
56 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
57 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
58 or nil) is the flat to tell if the CCL program is updated after it
59 was once used. */
127198fd 60static Lisp_Object Vccl_program_table;
4ed46869 61
d80dc57e
DL
62/* Return a hash table of id number ID. */
63#define GET_HASH_TABLE(id) \
28be1ada 64 (XHASH_TABLE (XCDR (AREF (Vtranslation_hash_table_vector, (id)))))
d80dc57e 65
4ed46869
KH
66/* CCL (Code Conversion Language) is a simple language which has
67 operations on one input buffer, one output buffer, and 7 registers.
68 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
69 `ccl-compile' compiles a CCL program and produces a CCL code which
70 is a vector of integers. The structure of this vector is as
71 follows: The 1st element: buffer-magnification, a factor for the
72 size of output buffer compared with the size of input buffer. The
73 2nd element: address of CCL code to be executed when encountered
74 with end of input stream. The 3rd and the remaining elements: CCL
75 codes. */
76
77/* Header of CCL compiled code */
78#define CCL_HEADER_BUF_MAG 0
79#define CCL_HEADER_EOF 1
80#define CCL_HEADER_MAIN 2
81
e003a292
PE
82/* CCL code is a sequence of 28-bit integers. Each contains a CCL
83 command and/or arguments in the following format:
4ed46869
KH
84
85 |----------------- integer (28-bit) ------------------|
86 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
87 |--constant argument--|-register-|-register-|-command-|
88 ccccccccccccccccc RRR rrr XXXXX
89 or
90 |------- relative address -------|-register-|-command-|
91 cccccccccccccccccccc rrr XXXXX
92 or
93 |------------- constant or other args ----------------|
94 cccccccccccccccccccccccccccc
95
b9627cfb
PE
96 where `cc...c' is a 17-bit, 20-bit, or 28-bit integer indicating a
97 constant value or a relative/absolute jump address, `RRR'
4ed46869
KH
98 and `rrr' are CCL register number, `XXXXX' is one of the following
99 CCL commands. */
100
30569699 101#define CCL_CODE_MAX ((1 << (28 - 1)) - 1)
e003a292 102#define CCL_CODE_MIN (-1 - CCL_CODE_MAX)
30569699 103
4ed46869
KH
104/* CCL commands
105
106 Each comment fields shows one or more lines for command syntax and
107 the following lines for semantics of the command. In semantics, IC
108 stands for Instruction Counter. */
109
110#define CCL_SetRegister 0x00 /* Set register a register value:
111 1:00000000000000000RRRrrrXXXXX
112 ------------------------------
113 reg[rrr] = reg[RRR];
114 */
115
116#define CCL_SetShortConst 0x01 /* Set register a short constant value:
117 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
118 ------------------------------
119 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
120 */
121
122#define CCL_SetConst 0x02 /* Set register a constant value:
123 1:00000000000000000000rrrXXXXX
124 2:CONSTANT
125 ------------------------------
126 reg[rrr] = CONSTANT;
127 IC++;
128 */
129
130#define CCL_SetArray 0x03 /* Set register an element of array:
131 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
132 2:ELEMENT[0]
133 3:ELEMENT[1]
134 ...
135 ------------------------------
136 if (0 <= reg[RRR] < CC..C)
137 reg[rrr] = ELEMENT[reg[RRR]];
138 IC += CC..C;
139 */
140
141#define CCL_Jump 0x04 /* Jump:
142 1:A--D--D--R--E--S--S-000XXXXX
143 ------------------------------
144 IC += ADDRESS;
145 */
146
147/* Note: If CC..C is greater than 0, the second code is omitted. */
148
149#define CCL_JumpCond 0x05 /* Jump conditional:
150 1:A--D--D--R--E--S--S-rrrXXXXX
151 ------------------------------
152 if (!reg[rrr])
153 IC += ADDRESS;
154 */
155
156
157#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
158 1:A--D--D--R--E--S--S-rrrXXXXX
159 ------------------------------
160 write (reg[rrr]);
161 IC += ADDRESS;
162 */
163
164#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
165 1:A--D--D--R--E--S--S-rrrXXXXX
166 2:A--D--D--R--E--S--S-rrrYYYYY
167 -----------------------------
168 write (reg[rrr]);
169 IC++;
170 read (reg[rrr]);
171 IC += ADDRESS;
172 */
173/* Note: If read is suspended, the resumed execution starts from the
174 second code (YYYYY == CCL_ReadJump). */
175
176#define CCL_WriteConstJump 0x08 /* Write constant and jump:
177 1:A--D--D--R--E--S--S-000XXXXX
178 2:CONST
179 ------------------------------
180 write (CONST);
181 IC += ADDRESS;
182 */
183
184#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
185 1:A--D--D--R--E--S--S-rrrXXXXX
186 2:CONST
187 3:A--D--D--R--E--S--S-rrrYYYYY
188 -----------------------------
189 write (CONST);
190 IC += 2;
191 read (reg[rrr]);
192 IC += ADDRESS;
193 */
194/* Note: If read is suspended, the resumed execution starts from the
195 second code (YYYYY == CCL_ReadJump). */
196
197#define CCL_WriteStringJump 0x0A /* Write string and jump:
198 1:A--D--D--R--E--S--S-000XXXXX
199 2:LENGTH
c6589bbd 200 3:000MSTRIN[0]STRIN[1]STRIN[2]
4ed46869
KH
201 ...
202 ------------------------------
c6589bbd
KH
203 if (M)
204 write_multibyte_string (STRING, LENGTH);
205 else
206 write_string (STRING, LENGTH);
4ed46869
KH
207 IC += ADDRESS;
208 */
209
210#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
211 1:A--D--D--R--E--S--S-rrrXXXXX
212 2:LENGTH
99d99081
PE
213 3:ELEMENT[0]
214 4:ELEMENT[1]
4ed46869
KH
215 ...
216 N:A--D--D--R--E--S--S-rrrYYYYY
217 ------------------------------
218 if (0 <= reg[rrr] < LENGTH)
219 write (ELEMENT[reg[rrr]]);
220 IC += LENGTH + 2; (... pointing at N+1)
221 read (reg[rrr]);
222 IC += ADDRESS;
223 */
224/* Note: If read is suspended, the resumed execution starts from the
887bfbd7 225 Nth code (YYYYY == CCL_ReadJump). */
4ed46869
KH
226
227#define CCL_ReadJump 0x0C /* Read and jump:
228 1:A--D--D--R--E--S--S-rrrYYYYY
229 -----------------------------
230 read (reg[rrr]);
231 IC += ADDRESS;
232 */
233
234#define CCL_Branch 0x0D /* Jump by branch table:
235 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
236 2:A--D--D--R--E-S-S[0]000XXXXX
237 3:A--D--D--R--E-S-S[1]000XXXXX
238 ...
239 ------------------------------
240 if (0 <= reg[rrr] < CC..C)
241 IC += ADDRESS[reg[rrr]];
242 else
243 IC += ADDRESS[CC..C];
244 */
245
246#define CCL_ReadRegister 0x0E /* Read bytes into registers:
247 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
248 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
249 ...
250 ------------------------------
251 while (CCC--)
252 read (reg[rrr]);
253 */
254
255#define CCL_WriteExprConst 0x0F /* write result of expression:
256 1:00000OPERATION000RRR000XXXXX
257 2:CONSTANT
258 ------------------------------
259 write (reg[RRR] OPERATION CONSTANT);
260 IC++;
261 */
262
263/* Note: If the Nth read is suspended, the resumed execution starts
264 from the Nth code. */
265
266#define CCL_ReadBranch 0x10 /* Read one byte into a register,
267 and jump by branch table:
268 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
269 2:A--D--D--R--E-S-S[0]000XXXXX
270 3:A--D--D--R--E-S-S[1]000XXXXX
271 ...
272 ------------------------------
273 read (read[rrr]);
274 if (0 <= reg[rrr] < CC..C)
275 IC += ADDRESS[reg[rrr]];
276 else
277 IC += ADDRESS[CC..C];
278 */
279
280#define CCL_WriteRegister 0x11 /* Write registers:
281 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
282 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
283 ...
284 ------------------------------
285 while (CCC--)
286 write (reg[rrr]);
287 ...
288 */
289
290/* Note: If the Nth write is suspended, the resumed execution
291 starts from the Nth code. */
292
293#define CCL_WriteExprRegister 0x12 /* Write result of expression
294 1:00000OPERATIONRrrRRR000XXXXX
295 ------------------------------
296 write (reg[RRR] OPERATION reg[Rrr]);
297 */
298
e34b1164 299#define CCL_Call 0x13 /* Call the CCL program whose ID is
5232fa7b
KH
300 CC..C or cc..c.
301 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
302 [2:00000000cccccccccccccccccccc]
4ed46869 303 ------------------------------
5232fa7b
KH
304 if (FFF)
305 call (cc..c)
306 IC++;
307 else
308 call (CC..C)
4ed46869
KH
309 */
310
311#define CCL_WriteConstString 0x14 /* Write a constant or a string:
312 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
c6589bbd 313 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
4ed46869
KH
314 [...]
315 -----------------------------
316 if (!rrr)
317 write (CC..C)
318 else
c6589bbd
KH
319 if (M)
320 write_multibyte_string (STRING, CC..C);
321 else
322 write_string (STRING, CC..C);
4ed46869
KH
323 IC += (CC..C + 2) / 3;
324 */
325
326#define CCL_WriteArray 0x15 /* Write an element of array:
327 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
328 2:ELEMENT[0]
329 3:ELEMENT[1]
330 ...
331 ------------------------------
332 if (0 <= reg[rrr] < CC..C)
333 write (ELEMENT[reg[rrr]]);
334 IC += CC..C;
335 */
336
337#define CCL_End 0x16 /* Terminate:
338 1:00000000000000000000000XXXXX
339 ------------------------------
340 terminate ();
341 */
342
343/* The following two codes execute an assignment arithmetic/logical
344 operation. The form of the operation is like REG OP= OPERAND. */
345
346#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
347 1:00000OPERATION000000rrrXXXXX
348 2:CONSTANT
349 ------------------------------
350 reg[rrr] OPERATION= CONSTANT;
351 */
352
353#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
354 1:00000OPERATION000RRRrrrXXXXX
355 ------------------------------
356 reg[rrr] OPERATION= reg[RRR];
357 */
358
359/* The following codes execute an arithmetic/logical operation. The
360 form of the operation is like REG_X = REG_Y OP OPERAND2. */
361
362#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
363 1:00000OPERATION000RRRrrrXXXXX
364 2:CONSTANT
365 ------------------------------
366 reg[rrr] = reg[RRR] OPERATION CONSTANT;
367 IC++;
368 */
369
370#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
371 1:00000OPERATIONRrrRRRrrrXXXXX
372 ------------------------------
373 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
374 */
375
376#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
377 an operation on constant:
378 1:A--D--D--R--E--S--S-rrrXXXXX
379 2:OPERATION
380 3:CONSTANT
381 -----------------------------
382 reg[7] = reg[rrr] OPERATION CONSTANT;
383 if (!(reg[7]))
384 IC += ADDRESS;
385 else
386 IC += 2
387 */
388
389#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
390 an operation on register:
391 1:A--D--D--R--E--S--S-rrrXXXXX
392 2:OPERATION
393 3:RRR
394 -----------------------------
395 reg[7] = reg[rrr] OPERATION reg[RRR];
396 if (!reg[7])
397 IC += ADDRESS;
398 else
399 IC += 2;
400 */
401
402#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
403 to an operation on constant:
404 1:A--D--D--R--E--S--S-rrrXXXXX
405 2:OPERATION
406 3:CONSTANT
407 -----------------------------
408 read (reg[rrr]);
409 reg[7] = reg[rrr] OPERATION CONSTANT;
410 if (!reg[7])
411 IC += ADDRESS;
412 else
413 IC += 2;
414 */
415
416#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
417 to an operation on register:
418 1:A--D--D--R--E--S--S-rrrXXXXX
419 2:OPERATION
420 3:RRR
421 -----------------------------
422 read (reg[rrr]);
423 reg[7] = reg[rrr] OPERATION reg[RRR];
424 if (!reg[7])
425 IC += ADDRESS;
426 else
427 IC += 2;
428 */
429
450ed226 430#define CCL_Extension 0x1F /* Extended CCL code
4ed46869 431 1:ExtendedCOMMNDRrrRRRrrrXXXXX
fe3c5669 432 2:ARGUMENT
4ed46869
KH
433 3:...
434 ------------------------------
435 extended_command (rrr,RRR,Rrr,ARGS)
436 */
437
177c0ea7 438/*
6ae21908 439 Here after, Extended CCL Instructions.
e34b1164 440 Bit length of extended command is 14.
6ae21908 441 Therefore, the instruction code range is 0..16384(0x3fff).
e34b1164
KH
442 */
443
51e4f4a8 444/* Read a multibyte character.
6ae21908
KH
445 A code point is stored into reg[rrr]. A charset ID is stored into
446 reg[RRR]. */
447
448#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
449 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
450
451/* Write a multibyte character.
452 Write a character whose code point is reg[rrr] and the charset ID
453 is reg[RRR]. */
454
455#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
456 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
457
8146262a 458/* Translate a character whose code point is reg[rrr] and the charset
f967223b 459 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
6ae21908 460
8146262a 461 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
462 (charset ID). */
463
8146262a 464#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
6ae21908
KH
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
466
8146262a 467/* Translate a character whose code point is reg[rrr] and the charset
f967223b 468 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
6ae21908 469
8146262a 470 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
471 (charset ID). */
472
8146262a
KH
473#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
474 1:ExtendedCOMMNDRrrRRRrrrXXXXX
475 2:ARGUMENT(Translation Table ID)
476 */
6ae21908 477
8146262a
KH
478/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
479 reg[RRR]) MAP until some value is found.
6ae21908 480
8146262a 481 Each MAP is a Lisp vector whose element is number, nil, t, or
6ae21908 482 lambda.
8146262a 483 If the element is nil, ignore the map and proceed to the next map.
6ae21908
KH
484 If the element is t or lambda, finish without changing reg[rrr].
485 If the element is a number, set reg[rrr] to the number and finish.
486
4c36be58 487 Detail of the map structure is described in the comment for
8146262a 488 CCL_MapMultiple below. */
6ae21908 489
8146262a 490#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
6ae21908 491 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a
KH
492 2:NUMBER of MAPs
493 3:MAP-ID1
494 4:MAP-ID2
6ae21908 495 ...
177c0ea7 496 */
6ae21908 497
8146262a
KH
498/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
499 reg[RRR]) map.
6ae21908 500
9b27b20d 501 MAPs are supplied in the succeeding CCL codes as follows:
6ae21908 502
8146262a
KH
503 When CCL program gives this nested structure of map to this command:
504 ((MAP-ID11
505 MAP-ID12
506 (MAP-ID121 MAP-ID122 MAP-ID123)
507 MAP-ID13)
508 (MAP-ID21
509 (MAP-ID211 (MAP-ID2111) MAP-ID212)
510 MAP-ID22)),
6ae21908 511 the compiled CCL codes has this sequence:
8146262a 512 CCL_MapMultiple (CCL code of this command)
9b27b20d
KH
513 16 (total number of MAPs and SEPARATORs)
514 -7 (1st SEPARATOR)
8146262a
KH
515 MAP-ID11
516 MAP-ID12
9b27b20d 517 -3 (2nd SEPARATOR)
8146262a
KH
518 MAP-ID121
519 MAP-ID122
520 MAP-ID123
521 MAP-ID13
9b27b20d 522 -7 (3rd SEPARATOR)
8146262a 523 MAP-ID21
9b27b20d 524 -4 (4th SEPARATOR)
8146262a 525 MAP-ID211
9b27b20d 526 -1 (5th SEPARATOR)
8146262a
KH
527 MAP_ID2111
528 MAP-ID212
529 MAP-ID22
6ae21908 530
9b27b20d 531 A value of each SEPARATOR follows this rule:
8146262a
KH
532 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
533 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
6ae21908 534
8146262a 535 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
6ae21908 536
8146262a
KH
537 When some map fails to map (i.e. it doesn't have a value for
538 reg[rrr]), the mapping is treated as identity.
6ae21908 539
8146262a 540 The mapping is iterated for all maps in each map set (set of maps
9b27b20d
KH
541 separated by SEPARATOR) except in the case that lambda is
542 encountered. More precisely, the mapping proceeds as below:
543
544 At first, VAL0 is set to reg[rrr], and it is translated by the
545 first map to VAL1. Then, VAL1 is translated by the next map to
546 VAL2. This mapping is iterated until the last map is used. The
54fa5bc1
KH
547 result of the mapping is the last value of VAL?. When the mapping
548 process reached to the end of the map set, it moves to the next
549 map set. If the next does not exit, the mapping process terminates,
550 and regard the last value as a result.
9b27b20d
KH
551
552 But, when VALm is mapped to VALn and VALn is not a number, the
553 mapping proceed as below:
554
c80e3b4a 555 If VALn is nil, the last map is ignored and the mapping of VALm
9b27b20d
KH
556 proceed to the next map.
557
558 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
559 proceed to the next map.
560
54fa5bc1
KH
561 If VALn is lambda, move to the next map set like reaching to the
562 end of the current map set.
563
e4920bc9 564 If VALn is a symbol, call the CCL program referred by it.
54fa5bc1
KH
565 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
566 Such special values are regarded as nil, t, and lambda respectively.
6ae21908 567
8146262a 568 Each map is a Lisp vector of the following format (a) or (b):
6ae21908
KH
569 (a)......[STARTPOINT VAL1 VAL2 ...]
570 (b)......[t VAL STARTPOINT ENDPOINT],
571 where
8146262a 572 STARTPOINT is an offset to be used for indexing a map,
9b27b20d 573 ENDPOINT is a maximum index number of a map,
177c0ea7 574 VAL and VALn is a number, nil, t, or lambda.
6ae21908 575
8146262a
KH
576 Valid index range of a map of type (a) is:
577 STARTPOINT <= index < STARTPOINT + map_size - 1
578 Valid index range of a map of type (b) is:
9b27b20d 579 STARTPOINT <= index < ENDPOINT */
6ae21908 580
8146262a 581#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
6ae21908
KH
582 1:ExtendedCOMMNDXXXRRRrrrXXXXX
583 2:N-2
584 3:SEPARATOR_1 (< 0)
8146262a
KH
585 4:MAP-ID_1
586 5:MAP-ID_2
6ae21908
KH
587 ...
588 M:SEPARATOR_x (< 0)
8146262a 589 M+1:MAP-ID_y
6ae21908
KH
590 ...
591 N:SEPARATOR_z (< 0)
592 */
593
54fa5bc1 594#define MAX_MAP_SET_LEVEL 30
6ae21908
KH
595
596typedef struct
597{
598 int rest_length;
599 int orig_val;
600} tr_stack;
601
8146262a
KH
602static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
603static tr_stack *mapping_stack_pointer;
6ae21908 604
54fa5bc1
KH
605/* If this variable is non-zero, it indicates the stack_idx
606 of immediately called by CCL_MapMultiple. */
be57900b 607static int stack_idx_of_map_multiple;
54fa5bc1
KH
608
609#define PUSH_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
610do \
611 { \
54fa5bc1
KH
612 mapping_stack_pointer->rest_length = (restlen); \
613 mapping_stack_pointer->orig_val = (orig); \
614 mapping_stack_pointer++; \
a89f435d
PJ
615 } \
616while (0)
54fa5bc1
KH
617
618#define POP_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
619do \
620 { \
54fa5bc1
KH
621 mapping_stack_pointer--; \
622 (restlen) = mapping_stack_pointer->rest_length; \
623 (orig) = mapping_stack_pointer->orig_val; \
a89f435d
PJ
624 } \
625while (0)
6ae21908 626
54fa5bc1 627#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
a89f435d 628do \
0ee1088b 629 { \
54fa5bc1
KH
630 struct ccl_program called_ccl; \
631 if (stack_idx >= 256 \
632 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
633 { \
634 if (stack_idx > 0) \
635 { \
636 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
637 ic = ccl_prog_stack_struct[0].ic; \
9eaa8e65 638 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
54fa5bc1
KH
639 } \
640 CCL_INVALID_CMD; \
641 } \
642 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
643 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
9eaa8e65 644 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
54fa5bc1
KH
645 stack_idx++; \
646 ccl_prog = called_ccl.prog; \
647 ic = CCL_HEADER_MAIN; \
9eaa8e65 648 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
54fa5bc1 649 goto ccl_repeat; \
0ee1088b 650 } \
a89f435d 651while (0)
6ae21908 652
8146262a 653#define CCL_MapSingle 0x12 /* Map by single code conversion map
6ae21908 654 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a 655 2:MAP-ID
6ae21908 656 ------------------------------
8146262a
KH
657 Map reg[rrr] by MAP-ID.
658 If some valid mapping is found,
6ae21908
KH
659 set reg[rrr] to the result,
660 else
661 set reg[RRR] to -1.
662 */
4ed46869 663
d80dc57e
DL
664#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
665 integer key. Afterwards R7 set
e0f24100 666 to 1 if lookup succeeded.
d80dc57e
DL
667 1:ExtendedCOMMNDRrrRRRXXXXXXXX
668 2:ARGUMENT(Hash table ID) */
669
670#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
671 character key. Afterwards R7 set
e0f24100 672 to 1 if lookup succeeded.
d80dc57e
DL
673 1:ExtendedCOMMNDRrrRRRrrrXXXXX
674 2:ARGUMENT(Hash table ID) */
675
4ed46869
KH
676/* CCL arithmetic/logical operators. */
677#define CCL_PLUS 0x00 /* X = Y + Z */
678#define CCL_MINUS 0x01 /* X = Y - Z */
679#define CCL_MUL 0x02 /* X = Y * Z */
680#define CCL_DIV 0x03 /* X = Y / Z */
681#define CCL_MOD 0x04 /* X = Y % Z */
682#define CCL_AND 0x05 /* X = Y & Z */
683#define CCL_OR 0x06 /* X = Y | Z */
684#define CCL_XOR 0x07 /* X = Y ^ Z */
685#define CCL_LSH 0x08 /* X = Y << Z */
686#define CCL_RSH 0x09 /* X = Y >> Z */
687#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
688#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
689#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
690#define CCL_LS 0x10 /* X = (X < Y) */
691#define CCL_GT 0x11 /* X = (X > Y) */
692#define CCL_EQ 0x12 /* X = (X == Y) */
693#define CCL_LE 0x13 /* X = (X <= Y) */
694#define CCL_GE 0x14 /* X = (X >= Y) */
695#define CCL_NE 0x15 /* X = (X != Y) */
696
51520e8a 697#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
4ed46869 698 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
51520e8a
KH
699#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
700 r[7] = LOWER_BYTE (SJIS (Y, Z) */
4ed46869 701
4ed46869 702/* Terminate CCL program successfully. */
0ee1088b 703#define CCL_SUCCESS \
a89f435d 704do \
0ee1088b 705 { \
4ed46869 706 ccl->status = CCL_STAT_SUCCESS; \
0ee1088b
KH
707 goto ccl_finish; \
708 } \
5e617bc2 709while (0)
4ed46869
KH
710
711/* Suspend CCL program because of reading from empty input buffer or
712 writing to full output buffer. When this program is resumed, the
713 same I/O command is executed. */
e34b1164 714#define CCL_SUSPEND(stat) \
a89f435d 715do \
0ee1088b 716 { \
e34b1164
KH
717 ic--; \
718 ccl->status = stat; \
719 goto ccl_finish; \
0ee1088b 720 } \
a89f435d 721while (0)
4ed46869
KH
722
723/* Terminate CCL program because of invalid command. Should not occur
724 in the normal case. */
9eaa8e65
KH
725#ifndef CCL_DEBUG
726
4ed46869 727#define CCL_INVALID_CMD \
a89f435d 728do \
0ee1088b 729 { \
4ed46869
KH
730 ccl->status = CCL_STAT_INVALID_CMD; \
731 goto ccl_error_handler; \
0ee1088b 732 } \
5e617bc2 733while (0)
4ed46869 734
9eaa8e65
KH
735#else
736
4ed46869 737#define CCL_INVALID_CMD \
a89f435d 738do \
0ee1088b 739 { \
9eaa8e65 740 ccl_debug_hook (this_ic); \
4ed46869
KH
741 ccl->status = CCL_STAT_INVALID_CMD; \
742 goto ccl_error_handler; \
0ee1088b 743 } \
5e617bc2 744while (0)
4ed46869 745
9eaa8e65
KH
746#endif
747
b1c46f02
PE
748/* Use "&" rather than "&&" to suppress a bogus GCC warning; see
749 <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43772>. */
750#define ASCENDING_ORDER(lo, med, hi) (((lo) <= (med)) & ((med) <= (hi)))
751
30569699
PE
752#define GET_CCL_RANGE(var, ccl_prog, ic, lo, hi) \
753 do \
754 { \
755 EMACS_INT prog_word = XINT ((ccl_prog)[ic]); \
b1c46f02 756 if (! ASCENDING_ORDER (lo, prog_word, hi)) \
30569699
PE
757 CCL_INVALID_CMD; \
758 (var) = prog_word; \
759 } \
760 while (0)
761
762#define GET_CCL_CODE(code, ccl_prog, ic) \
e003a292 763 GET_CCL_RANGE (code, ccl_prog, ic, CCL_CODE_MIN, CCL_CODE_MAX)
30569699 764
b1c46f02 765#define IN_INT_RANGE(val) ASCENDING_ORDER (INT_MIN, val, INT_MAX)
30569699 766
4ed46869 767/* Encode one character CH to multibyte form and write to the current
887bfbd7 768 output buffer. If CH is less than 256, CH is written as is. */
c10842ea
KH
769#define CCL_WRITE_CHAR(ch) \
770 do { \
771 if (! dst) \
772 CCL_INVALID_CMD; \
773 else if (dst < dst_end) \
774 *dst++ = (ch); \
775 else \
776 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
a8302ba3
KH
777 } while (0)
778
4ed46869
KH
779/* Write a string at ccl_prog[IC] of length LEN to the current output
780 buffer. */
c6589bbd
KH
781#define CCL_WRITE_STRING(len) \
782 do { \
fb90da1b 783 int ccli; \
c6589bbd
KH
784 if (!dst) \
785 CCL_INVALID_CMD; \
786 else if (dst + len <= dst_end) \
787 { \
788 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
fb90da1b
PE
789 for (ccli = 0; ccli < len; ccli++) \
790 *dst++ = XFASTINT (ccl_prog[ic + ccli]) & 0xFFFFFF; \
c6589bbd 791 else \
fb90da1b
PE
792 for (ccli = 0; ccli < len; ccli++) \
793 *dst++ = ((XFASTINT (ccl_prog[ic + (ccli / 3)])) \
794 >> ((2 - (ccli % 3)) * 8)) & 0xFF; \
c6589bbd
KH
795 } \
796 else \
797 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
798 } while (0)
799
c10842ea
KH
800/* Read one byte from the current input buffer into Rth register. */
801#define CCL_READ_CHAR(r) \
802 do { \
803 if (! src) \
804 CCL_INVALID_CMD; \
805 else if (src < src_end) \
806 r = *src++; \
807 else if (ccl->last_block) \
808 { \
327719ee 809 r = -1; \
c10842ea
KH
810 ic = ccl->eof_ic; \
811 goto ccl_repeat; \
812 } \
813 else \
814 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
815 } while (0)
816
bda731af
KH
817/* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
818 as is for backward compatibility. Assume that we can use the
819 variable `charset'. */
820
821#define CCL_DECODE_CHAR(id, code) \
822 ((id) == 0 ? (code) \
823 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
824
bda731af 825/* Encode character C by some of charsets in CHARSET_LIST. Set ID to
40ba43b4 826 the id of the used charset, ENCODED to the result of encoding.
bda731af
KH
827 Assume that we can use the variable `charset'. */
828
8f924df7 829#define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
4ffd4870 830 do { \
fb90da1b 831 unsigned ncode; \
4ffd4870 832 \
fb90da1b 833 charset = char_charset ((c), (charset_list), &ncode); \
8f924df7 834 if (! charset && ! NILP (charset_list)) \
fb90da1b 835 charset = char_charset ((c), Qnil, &ncode); \
8f924df7
KH
836 if (charset) \
837 { \
838 (id) = CHARSET_ID (charset); \
fb90da1b 839 (encoded) = ncode; \
4ffd4870 840 } \
8f924df7 841 } while (0)
4ffd4870 842
c10842ea
KH
843/* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
844 resulting text goes to a place pointed by DESTINATION, the length
845 of which should not exceed DST_SIZE. As a side effect, how many
846 characters are consumed and produced are recorded in CCL->consumed
847 and CCL->produced, and the contents of CCL registers are updated.
848 If SOURCE or DESTINATION is NULL, only operations on registers are
849 permitted. */
4ed46869
KH
850
851#ifdef CCL_DEBUG
852#define CCL_DEBUG_BACKTRACE_LEN 256
f9bd23fd 853int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
4ed46869 854int ccl_backtrace_idx;
9eaa8e65
KH
855
856int
857ccl_debug_hook (int ic)
858{
859 return ic;
860}
861
4ed46869
KH
862#endif
863
864struct ccl_prog_stack
865 {
a9f1cc19 866 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
4ed46869 867 int ic; /* Instruction Counter. */
9eaa8e65 868 int eof_ic; /* Instruction Counter to jump on EOF. */
4ed46869
KH
869 };
870
177c0ea7 871/* For the moment, we only support depth 256 of stack. */
c13362d8
KH
872static struct ccl_prog_stack ccl_prog_stack_struct[256];
873
c10842ea 874void
971de7fb 875ccl_driver (struct ccl_program *ccl, int *source, int *destination, int src_size, int dst_size, Lisp_Object charset_list)
4ed46869
KH
876{
877 register int *reg = ccl->reg;
878 register int ic = ccl->ic;
8a1ae4dd 879 register int code = 0, field1, field2;
e995085f 880 register Lisp_Object *ccl_prog = ccl->prog;
c10842ea
KH
881 int *src = source, *src_end = src + src_size;
882 int *dst = destination, *dst_end = dst + dst_size;
4ed46869 883 int jump_address;
8a1ae4dd 884 int i = 0, j, op;
c13362d8 885 int stack_idx = ccl->stack_idx;
519bf146 886 /* Instruction counter of the current CCL code. */
8a1ae4dd 887 int this_ic = 0;
c10842ea 888 struct charset *charset;
9eaa8e65
KH
889 int eof_ic = ccl->eof_ic;
890 int eof_hit = 0;
4ed46869 891
c10842ea 892 if (ccl->buf_magnification == 0) /* We can't read/produce any bytes. */
12abd7d1
KH
893 dst = NULL;
894
54fa5bc1
KH
895 /* Set mapping stack pointer. */
896 mapping_stack_pointer = mapping_stack;
897
4ed46869
KH
898#ifdef CCL_DEBUG
899 ccl_backtrace_idx = 0;
900#endif
901
902 for (;;)
903 {
4ccd0d4a 904 ccl_repeat:
4ed46869
KH
905#ifdef CCL_DEBUG
906 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
907 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
908 ccl_backtrace_idx = 0;
909 ccl_backtrace_table[ccl_backtrace_idx] = 0;
910#endif
911
912 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
913 {
914 /* We can't just signal Qquit, instead break the loop as if
915 the whole data is processed. Don't reset Vquit_flag, it
916 must be handled later at a safer place. */
c10842ea
KH
917 if (src)
918 src = source + src_size;
4ed46869
KH
919 ccl->status = CCL_STAT_QUIT;
920 break;
921 }
922
519bf146 923 this_ic = ic;
30569699 924 GET_CCL_CODE (code, ccl_prog, ic++);
4ed46869
KH
925 field1 = code >> 8;
926 field2 = (code & 0xFF) >> 5;
927
928#define rrr field2
929#define RRR (field1 & 7)
930#define Rrr ((field1 >> 3) & 7)
931#define ADDR field1
e34b1164 932#define EXCMD (field1 >> 6)
4ed46869
KH
933
934 switch (code & 0x1F)
935 {
936 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
937 reg[rrr] = reg[RRR];
938 break;
939
940 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
941 reg[rrr] = field1;
942 break;
943
944 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
d311d28c 945 reg[rrr] = XINT (ccl_prog[ic++]);
4ed46869
KH
946 break;
947
948 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
949 i = reg[RRR];
950 j = field1 >> 3;
519e1d69 951 if (0 <= i && i < j)
d311d28c 952 reg[rrr] = XINT (ccl_prog[ic + i]);
4ed46869
KH
953 ic += j;
954 break;
955
956 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
957 ic += ADDR;
958 break;
959
960 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
961 if (!reg[rrr])
962 ic += ADDR;
963 break;
964
965 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
966 i = reg[rrr];
967 CCL_WRITE_CHAR (i);
968 ic += ADDR;
969 break;
970
971 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
972 i = reg[rrr];
973 CCL_WRITE_CHAR (i);
974 ic++;
975 CCL_READ_CHAR (reg[rrr]);
976 ic += ADDR - 1;
977 break;
978
979 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
d311d28c 980 i = XINT (ccl_prog[ic]);
4ed46869
KH
981 CCL_WRITE_CHAR (i);
982 ic += ADDR;
983 break;
984
985 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
d311d28c 986 i = XINT (ccl_prog[ic]);
4ed46869
KH
987 CCL_WRITE_CHAR (i);
988 ic++;
989 CCL_READ_CHAR (reg[rrr]);
990 ic += ADDR - 1;
991 break;
992
993 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
d311d28c 994 j = XINT (ccl_prog[ic++]);
4ed46869
KH
995 CCL_WRITE_STRING (j);
996 ic += ADDR - 1;
997 break;
998
999 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1000 i = reg[rrr];
d311d28c 1001 j = XINT (ccl_prog[ic]);
519e1d69 1002 if (0 <= i && i < j)
4ed46869 1003 {
d311d28c 1004 i = XINT (ccl_prog[ic + 1 + i]);
4ed46869
KH
1005 CCL_WRITE_CHAR (i);
1006 }
887bfbd7 1007 ic += j + 2;
4ed46869
KH
1008 CCL_READ_CHAR (reg[rrr]);
1009 ic += ADDR - (j + 2);
1010 break;
1011
1012 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1013 CCL_READ_CHAR (reg[rrr]);
1014 ic += ADDR;
1015 break;
1016
1017 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1018 CCL_READ_CHAR (reg[rrr]);
1019 /* fall through ... */
1020 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
30569699 1021 {
d311d28c
PE
1022 int ioff = 0 <= reg[rrr] && reg[rrr] < field1 ? reg[rrr] : field1;
1023 int incr = XINT (ccl_prog[ic + ioff]);
30569699
PE
1024 ic += incr;
1025 }
4ed46869
KH
1026 break;
1027
1028 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1029 while (1)
1030 {
1031 CCL_READ_CHAR (reg[rrr]);
1032 if (!field1) break;
30569699 1033 GET_CCL_CODE (code, ccl_prog, ic++);
4ed46869
KH
1034 field1 = code >> 8;
1035 field2 = (code & 0xFF) >> 5;
1036 }
1037 break;
1038
1039 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1040 rrr = 7;
1041 i = reg[RRR];
d311d28c 1042 j = XINT (ccl_prog[ic]);
4ed46869 1043 op = field1 >> 6;
25660570 1044 jump_address = ic + 1;
4ed46869
KH
1045 goto ccl_set_expr;
1046
1047 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1048 while (1)
1049 {
1050 i = reg[rrr];
1051 CCL_WRITE_CHAR (i);
1052 if (!field1) break;
30569699 1053 GET_CCL_CODE (code, ccl_prog, ic++);
4ed46869
KH
1054 field1 = code >> 8;
1055 field2 = (code & 0xFF) >> 5;
1056 }
1057 break;
1058
1059 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1060 rrr = 7;
1061 i = reg[RRR];
1062 j = reg[Rrr];
1063 op = field1 >> 6;
25660570 1064 jump_address = ic;
4ed46869
KH
1065 goto ccl_set_expr;
1066
5232fa7b 1067 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
4ed46869
KH
1068 {
1069 Lisp_Object slot;
5232fa7b
KH
1070 int prog_id;
1071
1072 /* If FFF is nonzero, the CCL program ID is in the
1073 following code. */
1074 if (rrr)
d311d28c 1075 prog_id = XINT (ccl_prog[ic++]);
5232fa7b
KH
1076 else
1077 prog_id = field1;
4ed46869
KH
1078
1079 if (stack_idx >= 256
5232fa7b 1080 || prog_id < 0
64ef2921
SM
1081 || prog_id >= ASIZE (Vccl_program_table)
1082 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1083 || !VECTORP (AREF (slot, 1)))
4ed46869
KH
1084 {
1085 if (stack_idx > 0)
1086 {
1087 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1088 ic = ccl_prog_stack_struct[0].ic;
9eaa8e65 1089 eof_ic = ccl_prog_stack_struct[0].eof_ic;
4ed46869
KH
1090 }
1091 CCL_INVALID_CMD;
1092 }
177c0ea7 1093
4ed46869
KH
1094 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1095 ccl_prog_stack_struct[stack_idx].ic = ic;
9eaa8e65 1096 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
4ed46869 1097 stack_idx++;
64ef2921 1098 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
4ed46869 1099 ic = CCL_HEADER_MAIN;
9eaa8e65 1100 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]);
4ed46869
KH
1101 }
1102 break;
1103
1104 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1105 if (!rrr)
1106 CCL_WRITE_CHAR (field1);
1107 else
1108 {
1109 CCL_WRITE_STRING (field1);
1110 ic += (field1 + 2) / 3;
1111 }
1112 break;
1113
1114 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1115 i = reg[rrr];
519e1d69 1116 if (0 <= i && i < field1)
4ed46869 1117 {
d311d28c 1118 j = XINT (ccl_prog[ic + i]);
4ed46869
KH
1119 CCL_WRITE_CHAR (j);
1120 }
1121 ic += field1;
1122 break;
1123
1124 case CCL_End: /* 0000000000000000000000XXXXX */
d3a478e2 1125 if (stack_idx > 0)
4ed46869 1126 {
d3a478e2 1127 stack_idx--;
4ed46869
KH
1128 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1129 ic = ccl_prog_stack_struct[stack_idx].ic;
9eaa8e65
KH
1130 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
1131 if (eof_hit)
1132 ic = eof_ic;
4ed46869
KH
1133 break;
1134 }
ad3d1b1d
KH
1135 if (src)
1136 src = src_end;
1137 /* ccl->ic should points to this command code again to
1138 suppress further processing. */
1139 ic--;
4ed46869
KH
1140 CCL_SUCCESS;
1141
1142 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
d311d28c 1143 i = XINT (ccl_prog[ic++]);
4ed46869
KH
1144 op = field1 >> 6;
1145 goto ccl_expr_self;
1146
1147 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1148 i = reg[RRR];
1149 op = field1 >> 6;
1150
1151 ccl_expr_self:
1152 switch (op)
1153 {
1154 case CCL_PLUS: reg[rrr] += i; break;
1155 case CCL_MINUS: reg[rrr] -= i; break;
1156 case CCL_MUL: reg[rrr] *= i; break;
1157 case CCL_DIV: reg[rrr] /= i; break;
1158 case CCL_MOD: reg[rrr] %= i; break;
1159 case CCL_AND: reg[rrr] &= i; break;
1160 case CCL_OR: reg[rrr] |= i; break;
1161 case CCL_XOR: reg[rrr] ^= i; break;
1162 case CCL_LSH: reg[rrr] <<= i; break;
1163 case CCL_RSH: reg[rrr] >>= i; break;
1164 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1165 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1166 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1167 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1168 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1169 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1170 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1171 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1172 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1173 default: CCL_INVALID_CMD;
1174 }
1175 break;
1176
1177 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1178 i = reg[RRR];
d311d28c 1179 j = XINT (ccl_prog[ic++]);
4ed46869 1180 op = field1 >> 6;
30569699 1181 jump_address = ic;
4ed46869
KH
1182 goto ccl_set_expr;
1183
1184 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1185 i = reg[RRR];
1186 j = reg[Rrr];
1187 op = field1 >> 6;
1188 jump_address = ic;
1189 goto ccl_set_expr;
1190
1191 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1192 CCL_READ_CHAR (reg[rrr]);
1193 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1194 i = reg[rrr];
30569699 1195 jump_address = ic + ADDR;
d311d28c
PE
1196 op = XINT (ccl_prog[ic++]);
1197 j = XINT (ccl_prog[ic++]);
4ed46869
KH
1198 rrr = 7;
1199 goto ccl_set_expr;
1200
1201 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1202 CCL_READ_CHAR (reg[rrr]);
1203 case CCL_JumpCondExprReg:
1204 i = reg[rrr];
30569699 1205 jump_address = ic + ADDR;
d311d28c 1206 op = XINT (ccl_prog[ic++]);
30569699
PE
1207 GET_CCL_RANGE (j, ccl_prog, ic++, 0, 7);
1208 j = reg[j];
4ed46869
KH
1209 rrr = 7;
1210
1211 ccl_set_expr:
1212 switch (op)
1213 {
1214 case CCL_PLUS: reg[rrr] = i + j; break;
1215 case CCL_MINUS: reg[rrr] = i - j; break;
1216 case CCL_MUL: reg[rrr] = i * j; break;
1217 case CCL_DIV: reg[rrr] = i / j; break;
1218 case CCL_MOD: reg[rrr] = i % j; break;
1219 case CCL_AND: reg[rrr] = i & j; break;
1220 case CCL_OR: reg[rrr] = i | j; break;
3b8c0c70 1221 case CCL_XOR: reg[rrr] = i ^ j; break;
4ed46869
KH
1222 case CCL_LSH: reg[rrr] = i << j; break;
1223 case CCL_RSH: reg[rrr] = i >> j; break;
1224 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1225 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1226 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1227 case CCL_LS: reg[rrr] = i < j; break;
1228 case CCL_GT: reg[rrr] = i > j; break;
1229 case CCL_EQ: reg[rrr] = i == j; break;
1230 case CCL_LE: reg[rrr] = i <= j; break;
1231 case CCL_GE: reg[rrr] = i >= j; break;
1232 case CCL_NE: reg[rrr] = i != j; break;
c10842ea
KH
1233 case CCL_DECODE_SJIS:
1234 {
1235 i = (i << 8) | j;
1236 SJIS_TO_JIS (i);
1237 reg[rrr] = i >> 8;
1238 reg[7] = i & 0xFF;
1239 break;
1240 }
1241 case CCL_ENCODE_SJIS:
1242 {
1243 i = (i << 8) | j;
1244 JIS_TO_SJIS (i);
1245 reg[rrr] = i >> 8;
1246 reg[7] = i & 0xFF;
1247 break;
1248 }
4ed46869
KH
1249 default: CCL_INVALID_CMD;
1250 }
1251 code &= 0x1F;
1252 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1253 {
1254 i = reg[rrr];
1255 CCL_WRITE_CHAR (i);
25660570 1256 ic = jump_address;
4ed46869
KH
1257 }
1258 else if (!reg[rrr])
1259 ic = jump_address;
1260 break;
1261
450ed226 1262 case CCL_Extension:
e34b1164
KH
1263 switch (EXCMD)
1264 {
6ae21908 1265 case CCL_ReadMultibyteChar2:
e34b1164
KH
1266 if (!src)
1267 CCL_INVALID_CMD;
c10842ea 1268 CCL_READ_CHAR (i);
bda731af 1269 CCL_ENCODE_CHAR (i, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1270 break;
1271
6ae21908 1272 case CCL_WriteMultibyteChar2:
c10842ea
KH
1273 if (! dst)
1274 CCL_INVALID_CMD;
bda731af 1275 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1276 CCL_WRITE_CHAR (i);
e34b1164
KH
1277 break;
1278
8146262a 1279 case CCL_TranslateCharacter:
bda731af 1280 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1281 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), i);
bda731af 1282 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1283 break;
1284
8146262a 1285 case CCL_TranslateCharacterConstTbl:
30569699 1286 {
d311d28c 1287 ptrdiff_t eop;
30569699
PE
1288 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
1289 (VECTORP (Vtranslation_table_vector)
1290 ? ASIZE (Vtranslation_table_vector)
1291 : -1));
1292 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1293 op = translate_char (GET_TRANSLATION_TABLE (eop), i);
1294 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
1295 }
e34b1164
KH
1296 break;
1297
d80dc57e 1298 case CCL_LookupIntConstTbl:
177c0ea7 1299 {
d3411f89 1300 ptrdiff_t eop;
30569699
PE
1301 struct Lisp_Hash_Table *h;
1302 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
1303 (VECTORP (Vtranslation_hash_table_vector)
1304 ? ASIZE (Vtranslation_hash_table_vector)
1305 : -1));
1306 h = GET_HASH_TABLE (eop);
d80dc57e 1307
0de4bb68
PE
1308 eop = hash_lookup (h, make_number (reg[RRR]), NULL);
1309 if (eop >= 0)
d80dc57e 1310 {
f9bd23fd 1311 Lisp_Object opl;
0de4bb68
PE
1312 opl = HASH_VALUE (h, eop);
1313 if (! (IN_INT_RANGE (eop) && CHARACTERP (opl)))
d80dc57e 1314 CCL_INVALID_CMD;
bda731af 1315 reg[RRR] = charset_unicode;
0de4bb68 1316 reg[rrr] = eop;
d80dc57e
DL
1317 reg[7] = 1; /* r7 true for success */
1318 }
1319 else
1320 reg[7] = 0;
1321 }
1322 break;
1323
1324 case CCL_LookupCharConstTbl:
177c0ea7 1325 {
d3411f89 1326 ptrdiff_t eop;
30569699
PE
1327 struct Lisp_Hash_Table *h;
1328 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
1329 (VECTORP (Vtranslation_hash_table_vector)
1330 ? ASIZE (Vtranslation_hash_table_vector)
1331 : -1));
1332 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1333 h = GET_HASH_TABLE (eop);
d80dc57e 1334
0de4bb68
PE
1335 eop = hash_lookup (h, make_number (i), NULL);
1336 if (eop >= 0)
d80dc57e 1337 {
f9bd23fd 1338 Lisp_Object opl;
0de4bb68 1339 opl = HASH_VALUE (h, eop);
30569699 1340 if (! (INTEGERP (opl) && IN_INT_RANGE (XINT (opl))))
d80dc57e 1341 CCL_INVALID_CMD;
f9bd23fd 1342 reg[RRR] = XINT (opl);
d80dc57e
DL
1343 reg[7] = 1; /* r7 true for success */
1344 }
1345 else
1346 reg[7] = 0;
1347 }
1348 break;
1349
e34b1164
KH
1350 case CCL_IterateMultipleMap:
1351 {
8146262a 1352 Lisp_Object map, content, attrib, value;
d311d28c
PE
1353 EMACS_INT point;
1354 ptrdiff_t size;
30569699 1355 int fin_ic;
e34b1164 1356
d311d28c 1357 j = XINT (ccl_prog[ic++]); /* number of maps. */
e34b1164
KH
1358 fin_ic = ic + j;
1359 op = reg[rrr];
1360 if ((j > reg[RRR]) && (j >= 0))
1361 {
1362 ic += reg[RRR];
1363 i = reg[RRR];
1364 }
1365 else
1366 {
1367 reg[RRR] = -1;
1368 ic = fin_ic;
1369 break;
1370 }
1371
1372 for (;i < j;i++)
1373 {
c801946a 1374 if (!VECTORP (Vcode_conversion_map_vector)) continue;
64ef2921 1375 size = ASIZE (Vcode_conversion_map_vector);
d387866a 1376 point = XINT (ccl_prog[ic++]);
30569699 1377 if (! (0 <= point && point < size)) continue;
64ef2921 1378 map = AREF (Vcode_conversion_map_vector, point);
8146262a 1379
78edd3b7 1380 /* Check map validity. */
8146262a 1381 if (!CONSP (map)) continue;
03699b14 1382 map = XCDR (map);
8146262a 1383 if (!VECTORP (map)) continue;
64ef2921 1384 size = ASIZE (map);
e34b1164 1385 if (size <= 1) continue;
6ae21908 1386
64ef2921 1387 content = AREF (map, 0);
6ae21908 1388
8146262a 1389 /* check map type,
6ae21908 1390 [STARTPOINT VAL1 VAL2 ...] or
78edd3b7 1391 [t ELEMENT STARTPOINT ENDPOINT] */
30569699 1392 if (INTEGERP (content))
6ae21908 1393 {
30569699
PE
1394 point = XINT (content);
1395 if (!(point <= op && op - point + 1 < size)) continue;
1396 content = AREF (map, op - point + 1);
6ae21908
KH
1397 }
1398 else if (EQ (content, Qt))
1399 {
1400 if (size != 4) continue;
30569699
PE
1401 if (INTEGERP (AREF (map, 2))
1402 && XINT (AREF (map, 2)) <= op
1403 && INTEGERP (AREF (map, 3))
1404 && op < XINT (AREF (map, 3)))
64ef2921 1405 content = AREF (map, 1);
6ae21908
KH
1406 else
1407 continue;
1408 }
177c0ea7 1409 else
6ae21908 1410 continue;
e34b1164
KH
1411
1412 if (NILP (content))
1413 continue;
30569699 1414 else if (INTEGERP (content) && IN_INT_RANGE (XINT (content)))
e34b1164
KH
1415 {
1416 reg[RRR] = i;
5e617bc2 1417 reg[rrr] = XINT (content);
e34b1164
KH
1418 break;
1419 }
1420 else if (EQ (content, Qt) || EQ (content, Qlambda))
1421 {
1422 reg[RRR] = i;
1423 break;
1424 }
1425 else if (CONSP (content))
1426 {
03699b14
KR
1427 attrib = XCAR (content);
1428 value = XCDR (content);
30569699
PE
1429 if (! (INTEGERP (attrib) && INTEGERP (value)
1430 && IN_INT_RANGE (XINT (value))))
e34b1164
KH
1431 continue;
1432 reg[RRR] = i;
30569699 1433 reg[rrr] = XINT (value);
e34b1164
KH
1434 break;
1435 }
54fa5bc1
KH
1436 else if (SYMBOLP (content))
1437 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1438 else
1439 CCL_INVALID_CMD;
e34b1164
KH
1440 }
1441 if (i == j)
1442 reg[RRR] = -1;
1443 ic = fin_ic;
1444 }
1445 break;
177c0ea7 1446
8146262a 1447 case CCL_MapMultiple:
e34b1164 1448 {
8146262a 1449 Lisp_Object map, content, attrib, value;
c801946a
PE
1450 EMACS_INT point;
1451 ptrdiff_t size, map_vector_size;
8146262a 1452 int map_set_rest_length, fin_ic;
54fa5bc1
KH
1453 int current_ic = this_ic;
1454
1455 /* inhibit recursive call on MapMultiple. */
1456 if (stack_idx_of_map_multiple > 0)
1457 {
1458 if (stack_idx_of_map_multiple <= stack_idx)
1459 {
1460 stack_idx_of_map_multiple = 0;
1461 mapping_stack_pointer = mapping_stack;
1462 CCL_INVALID_CMD;
1463 }
1464 }
1465 else
1466 mapping_stack_pointer = mapping_stack;
1467 stack_idx_of_map_multiple = 0;
8146262a 1468
30569699 1469 /* Get number of maps and separators. */
d311d28c 1470 map_set_rest_length = XINT (ccl_prog[ic++]);
30569699 1471
8146262a 1472 fin_ic = ic + map_set_rest_length;
54fa5bc1
KH
1473 op = reg[rrr];
1474
8146262a 1475 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
e34b1164
KH
1476 {
1477 ic += reg[RRR];
1478 i = reg[RRR];
8146262a 1479 map_set_rest_length -= i;
e34b1164
KH
1480 }
1481 else
1482 {
1483 ic = fin_ic;
1484 reg[RRR] = -1;
54fa5bc1 1485 mapping_stack_pointer = mapping_stack;
e34b1164
KH
1486 break;
1487 }
6ae21908 1488
54fa5bc1
KH
1489 if (mapping_stack_pointer <= (mapping_stack + 1))
1490 {
1491 /* Set up initial state. */
1492 mapping_stack_pointer = mapping_stack;
1493 PUSH_MAPPING_STACK (0, op);
1494 reg[RRR] = -1;
1495 }
1496 else
1497 {
1498 /* Recover after calling other ccl program. */
1499 int orig_op;
e34b1164 1500
54fa5bc1
KH
1501 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1502 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1503 switch (op)
e34b1164 1504 {
54fa5bc1
KH
1505 case -1:
1506 /* Regard it as Qnil. */
1507 op = orig_op;
1508 i++;
1509 ic++;
1510 map_set_rest_length--;
1511 break;
1512 case -2:
1513 /* Regard it as Qt. */
e34b1164 1514 op = reg[rrr];
54fa5bc1
KH
1515 i++;
1516 ic++;
1517 map_set_rest_length--;
1518 break;
1519 case -3:
1520 /* Regard it as Qlambda. */
1521 op = orig_op;
1522 i += map_set_rest_length;
1523 ic += map_set_rest_length;
1524 map_set_rest_length = 0;
1525 break;
1526 default:
1527 /* Regard it as normal mapping. */
8146262a 1528 i += map_set_rest_length;
54fa5bc1 1529 ic += map_set_rest_length;
8146262a 1530 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
6ae21908
KH
1531 break;
1532 }
e34b1164 1533 }
c801946a
PE
1534 if (!VECTORP (Vcode_conversion_map_vector))
1535 CCL_INVALID_CMD;
64ef2921 1536 map_vector_size = ASIZE (Vcode_conversion_map_vector);
177c0ea7 1537
54fa5bc1
KH
1538 do {
1539 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1540 {
d311d28c 1541 point = XINT (ccl_prog[ic]);
54fa5bc1
KH
1542 if (point < 0)
1543 {
1544 /* +1 is for including separator. */
1545 point = -point + 1;
1546 if (mapping_stack_pointer
1547 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1548 CCL_INVALID_CMD;
1549 PUSH_MAPPING_STACK (map_set_rest_length - point,
1550 reg[rrr]);
1551 map_set_rest_length = point;
1552 reg[rrr] = op;
1553 continue;
1554 }
1555
1556 if (point >= map_vector_size) continue;
64ef2921 1557 map = AREF (Vcode_conversion_map_vector, point);
54fa5bc1 1558
78edd3b7 1559 /* Check map validity. */
54fa5bc1
KH
1560 if (!CONSP (map)) continue;
1561 map = XCDR (map);
1562 if (!VECTORP (map)) continue;
64ef2921 1563 size = ASIZE (map);
54fa5bc1
KH
1564 if (size <= 1) continue;
1565
64ef2921 1566 content = AREF (map, 0);
54fa5bc1
KH
1567
1568 /* check map type,
1569 [STARTPOINT VAL1 VAL2 ...] or
1570 [t ELEMENT STARTPOINT ENDPOINT] */
30569699 1571 if (INTEGERP (content))
54fa5bc1 1572 {
30569699
PE
1573 point = XINT (content);
1574 if (!(point <= op && op - point + 1 < size)) continue;
1575 content = AREF (map, op - point + 1);
54fa5bc1
KH
1576 }
1577 else if (EQ (content, Qt))
1578 {
1579 if (size != 4) continue;
30569699
PE
1580 if (INTEGERP (AREF (map, 2))
1581 && XINT (AREF (map, 2)) <= op
1582 && INTEGERP (AREF (map, 3))
1583 && op < XINT (AREF (map, 3)))
64ef2921 1584 content = AREF (map, 1);
54fa5bc1
KH
1585 else
1586 continue;
1587 }
177c0ea7 1588 else
54fa5bc1
KH
1589 continue;
1590
1591 if (NILP (content))
1592 continue;
1593
1594 reg[RRR] = i;
30569699 1595 if (INTEGERP (content) && IN_INT_RANGE (XINT (content)))
54fa5bc1
KH
1596 {
1597 op = XINT (content);
1598 i += map_set_rest_length - 1;
1599 ic += map_set_rest_length - 1;
1600 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1601 map_set_rest_length++;
1602 }
1603 else if (CONSP (content))
1604 {
1605 attrib = XCAR (content);
1606 value = XCDR (content);
30569699
PE
1607 if (! (INTEGERP (attrib) && INTEGERP (value)
1608 && IN_INT_RANGE (XINT (value))))
54fa5bc1 1609 continue;
30569699 1610 op = XINT (value);
54fa5bc1
KH
1611 i += map_set_rest_length - 1;
1612 ic += map_set_rest_length - 1;
1613 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1614 map_set_rest_length++;
1615 }
1616 else if (EQ (content, Qt))
1617 {
1618 op = reg[rrr];
1619 }
1620 else if (EQ (content, Qlambda))
1621 {
1622 i += map_set_rest_length;
1623 ic += map_set_rest_length;
1624 break;
1625 }
1626 else if (SYMBOLP (content))
1627 {
1628 if (mapping_stack_pointer
1629 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1630 CCL_INVALID_CMD;
1631 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1632 PUSH_MAPPING_STACK (map_set_rest_length, op);
1633 stack_idx_of_map_multiple = stack_idx + 1;
1634 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1635 }
1636 else
1637 CCL_INVALID_CMD;
1638 }
1639 if (mapping_stack_pointer <= (mapping_stack + 1))
1640 break;
1641 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1642 i += map_set_rest_length;
1643 ic += map_set_rest_length;
1644 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1645 } while (1);
1646
e34b1164
KH
1647 ic = fin_ic;
1648 }
1649 reg[rrr] = op;
1650 break;
1651
8146262a 1652 case CCL_MapSingle:
e34b1164 1653 {
8146262a 1654 Lisp_Object map, attrib, value, content;
30569699 1655 int point;
8146262a 1656 j = XINT (ccl_prog[ic++]); /* map_id */
e34b1164 1657 op = reg[rrr];
c801946a
PE
1658 if (! (VECTORP (Vcode_conversion_map_vector)
1659 && j < ASIZE (Vcode_conversion_map_vector)))
e34b1164
KH
1660 {
1661 reg[RRR] = -1;
1662 break;
1663 }
64ef2921 1664 map = AREF (Vcode_conversion_map_vector, j);
8146262a 1665 if (!CONSP (map))
e34b1164
KH
1666 {
1667 reg[RRR] = -1;
1668 break;
1669 }
03699b14 1670 map = XCDR (map);
30569699 1671 if (! (VECTORP (map)
c801946a 1672 && 0 < ASIZE (map)
30569699
PE
1673 && INTEGERP (AREF (map, 0))
1674 && XINT (AREF (map, 0)) <= op
1675 && op - XINT (AREF (map, 0)) + 1 < ASIZE (map)))
e34b1164
KH
1676 {
1677 reg[RRR] = -1;
1678 break;
1679 }
d311d28c 1680 point = op - XINT (AREF (map, 0)) + 1;
e34b1164 1681 reg[RRR] = 0;
30569699
PE
1682 content = AREF (map, point);
1683 if (NILP (content))
e34b1164 1684 reg[RRR] = -1;
d311d28c 1685 else if (TYPE_RANGED_INTEGERP (int, content))
30569699
PE
1686 reg[rrr] = XINT (content);
1687 else if (EQ (content, Qt));
1688 else if (CONSP (content))
e34b1164 1689 {
30569699
PE
1690 attrib = XCAR (content);
1691 value = XCDR (content);
d311d28c
PE
1692 if (!INTEGERP (attrib)
1693 || !TYPE_RANGED_INTEGERP (int, value))
30569699 1694 continue;
5e617bc2 1695 reg[rrr] = XINT (value);
30569699 1696 break;
e34b1164 1697 }
30569699
PE
1698 else if (SYMBOLP (content))
1699 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
1700 else
1701 reg[RRR] = -1;
e34b1164
KH
1702 }
1703 break;
177c0ea7 1704
e34b1164
KH
1705 default:
1706 CCL_INVALID_CMD;
1707 }
1708 break;
1709
4ed46869
KH
1710 default:
1711 CCL_INVALID_CMD;
1712 }
1713 }
1714
1715 ccl_error_handler:
0fb94c7f
EZ
1716 /* The suppress_error member is set when e.g. a CCL-based coding
1717 system is used for terminal output. */
1718 if (!ccl->suppress_error && destination)
4ed46869
KH
1719 {
1720 /* We can insert an error message only if DESTINATION is
1721 specified and we still have a room to store the message
1722 there. */
1723 char msg[256];
1724 int msglen;
1725
12abd7d1
KH
1726 if (!dst)
1727 dst = destination;
1728
4ed46869
KH
1729 switch (ccl->status)
1730 {
1731 case CCL_STAT_INVALID_CMD:
99027bdd
PE
1732 msglen = sprintf (msg,
1733 "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1734 code & 0x1F, code, this_ic);
4ed46869
KH
1735#ifdef CCL_DEBUG
1736 {
1737 int i = ccl_backtrace_idx - 1;
1738 int j;
1739
12abd7d1 1740 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869 1741 {
72af86bd 1742 memcpy (dst, msg, msglen);
4ed46869
KH
1743 dst += msglen;
1744 }
1745
1746 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1747 {
1748 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1749 if (ccl_backtrace_table[i] == 0)
1750 break;
99027bdd 1751 msglen = sprintf (msg, " %d", ccl_backtrace_table[i]);
12abd7d1 1752 if (dst + msglen > (dst_bytes ? dst_end : src))
4ed46869 1753 break;
72af86bd 1754 memcpy (dst, msg, msglen);
4ed46869
KH
1755 dst += msglen;
1756 }
12abd7d1 1757 goto ccl_finish;
4ed46869 1758 }
4ed46869 1759#endif
12abd7d1 1760 break;
4ed46869
KH
1761
1762 case CCL_STAT_QUIT:
99027bdd 1763 msglen = ccl->quit_silently ? 0 : sprintf (msg, "\nCCL: Quitted.");
4ed46869
KH
1764 break;
1765
1766 default:
99027bdd 1767 msglen = sprintf (msg, "\nCCL: Unknown error type (%d)", ccl->status);
4ed46869
KH
1768 }
1769
f2cad773 1770 if (msglen <= dst_end - dst)
4ed46869 1771 {
c10842ea
KH
1772 for (i = 0; i < msglen; i++)
1773 *dst++ = msg[i];
4ed46869 1774 }
177c0ea7 1775
31165028
KH
1776 if (ccl->status == CCL_STAT_INVALID_CMD)
1777 {
8a1ae4dd
GM
1778#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1779 results in an invalid multibyte sequence. */
1780
31165028
KH
1781 /* Copy the remaining source data. */
1782 int i = src_end - src;
1783 if (dst_bytes && (dst_end - dst) < i)
1784 i = dst_end - dst;
72af86bd 1785 memcpy (dst, src, i);
31165028
KH
1786 src += i;
1787 dst += i;
8a1ae4dd
GM
1788#else
1789 /* Signal that we've consumed everything. */
1790 src = src_end;
1791#endif
31165028 1792 }
4ed46869
KH
1793 }
1794
1795 ccl_finish:
1796 ccl->ic = ic;
c13362d8
KH
1797 ccl->stack_idx = stack_idx;
1798 ccl->prog = ccl_prog;
c10842ea 1799 ccl->consumed = src - source;
4e3bb4f3
KH
1800 if (dst != NULL)
1801 ccl->produced = dst - destination;
1802 else
1803 ccl->produced = 0;
4ed46869
KH
1804}
1805
5232fa7b
KH
1806/* Resolve symbols in the specified CCL code (Lisp vector). This
1807 function converts symbols of code conversion maps and character
4c36be58 1808 translation tables embedded in the CCL code into their ID numbers.
5232fa7b 1809
d311d28c
PE
1810 The return value is a new vector in which all symbols are resolved,
1811 Qt if resolving of some symbol failed,
5232fa7b
KH
1812 or nil if CCL contains invalid data. */
1813
1814static Lisp_Object
971de7fb 1815resolve_symbol_ccl_program (Lisp_Object ccl)
5232fa7b
KH
1816{
1817 int i, veclen, unresolved = 0;
1818 Lisp_Object result, contents, val;
1819
d311d28c
PE
1820 if (! (CCL_HEADER_MAIN < ASIZE (ccl) && ASIZE (ccl) <= INT_MAX))
1821 return Qnil;
1822 result = Fcopy_sequence (ccl);
64ef2921 1823 veclen = ASIZE (result);
5232fa7b
KH
1824
1825 for (i = 0; i < veclen; i++)
1826 {
64ef2921 1827 contents = AREF (result, i);
d311d28c 1828 if (TYPE_RANGED_INTEGERP (int, contents))
5232fa7b
KH
1829 continue;
1830 else if (CONSP (contents)
03699b14
KR
1831 && SYMBOLP (XCAR (contents))
1832 && SYMBOLP (XCDR (contents)))
5232fa7b
KH
1833 {
1834 /* This is the new style for embedding symbols. The form is
1835 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1836 an index number. */
03699b14 1837 val = Fget (XCAR (contents), XCDR (contents));
d311d28c 1838 if (RANGED_INTEGERP (0, val, INT_MAX))
3ae565b3 1839 ASET (result, i, val);
5232fa7b
KH
1840 else
1841 unresolved = 1;
1842 continue;
1843 }
1844 else if (SYMBOLP (contents))
1845 {
1846 /* This is the old style for embedding symbols. This style
1847 may lead to a bug if, for instance, a translation table
1848 and a code conversion map have the same name. */
5232fa7b 1849 val = Fget (contents, Qtranslation_table_id);
d311d28c 1850 if (RANGED_INTEGERP (0, val, INT_MAX))
3ae565b3 1851 ASET (result, i, val);
5232fa7b
KH
1852 else
1853 {
1854 val = Fget (contents, Qcode_conversion_map_id);
d311d28c 1855 if (RANGED_INTEGERP (0, val, INT_MAX))
3ae565b3 1856 ASET (result, i, val);
5232fa7b
KH
1857 else
1858 {
1859 val = Fget (contents, Qccl_program_idx);
d311d28c 1860 if (RANGED_INTEGERP (0, val, INT_MAX))
3ae565b3 1861 ASET (result, i, val);
5232fa7b
KH
1862 else
1863 unresolved = 1;
1864 }
1865 }
1866 continue;
1867 }
1868 return Qnil;
1869 }
1870
d311d28c
PE
1871 if (! (0 <= XINT (AREF (result, CCL_HEADER_BUF_MAG))
1872 && ASCENDING_ORDER (0, XINT (AREF (result, CCL_HEADER_EOF)),
1873 ASIZE (ccl))))
1874 return Qnil;
1875
5232fa7b
KH
1876 return (unresolved ? Qt : result);
1877}
1878
1879/* Return the compiled code (vector) of CCL program CCL_PROG.
1880 CCL_PROG is a name (symbol) of the program or already compiled
1881 code. If necessary, resolve symbols in the compiled code to index
1882 numbers. If we failed to get the compiled code or to resolve
1883 symbols, return Qnil. */
1884
1885static Lisp_Object
d311d28c 1886ccl_get_compiled_code (Lisp_Object ccl_prog, ptrdiff_t *idx)
5232fa7b
KH
1887{
1888 Lisp_Object val, slot;
1889
1890 if (VECTORP (ccl_prog))
1891 {
1892 val = resolve_symbol_ccl_program (ccl_prog);
2a69c66e 1893 *idx = -1;
5232fa7b
KH
1894 return (VECTORP (val) ? val : Qnil);
1895 }
1896 if (!SYMBOLP (ccl_prog))
1897 return Qnil;
1898
1899 val = Fget (ccl_prog, Qccl_program_idx);
1900 if (! NATNUMP (val)
64ef2921 1901 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1902 return Qnil;
64ef2921 1903 slot = AREF (Vccl_program_table, XINT (val));
5232fa7b 1904 if (! VECTORP (slot)
2a69c66e 1905 || ASIZE (slot) != 4
64ef2921 1906 || ! VECTORP (AREF (slot, 1)))
5232fa7b 1907 return Qnil;
2a69c66e 1908 *idx = XINT (val);
64ef2921 1909 if (NILP (AREF (slot, 2)))
5232fa7b 1910 {
64ef2921 1911 val = resolve_symbol_ccl_program (AREF (slot, 1));
5232fa7b
KH
1912 if (! VECTORP (val))
1913 return Qnil;
3ae565b3
SM
1914 ASET (slot, 1, val);
1915 ASET (slot, 2, Qt);
5232fa7b 1916 }
64ef2921 1917 return AREF (slot, 1);
5232fa7b
KH
1918}
1919
4ed46869 1920/* Setup fields of the structure pointed by CCL appropriately for the
5232fa7b
KH
1921 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1922 of the CCL program or the already compiled code (vector).
1923 Return 0 if we succeed this setup, else return -1.
1924
1925 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1926int
971de7fb 1927setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog)
4ed46869
KH
1928{
1929 int i;
1930
5232fa7b 1931 if (! NILP (ccl_prog))
ad3d1b1d 1932 {
5232fa7b 1933 struct Lisp_Vector *vp;
ad3d1b1d 1934
2a69c66e 1935 ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
5232fa7b
KH
1936 if (! VECTORP (ccl_prog))
1937 return -1;
1938 vp = XVECTOR (ccl_prog);
eab3844f 1939 ccl->size = vp->header.size;
ad3d1b1d
KH
1940 ccl->prog = vp->contents;
1941 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
1942 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
2a69c66e
KH
1943 if (ccl->idx >= 0)
1944 {
1945 Lisp_Object slot;
1946
1947 slot = AREF (Vccl_program_table, ccl->idx);
1948 ASET (slot, 3, Qnil);
1949 }
ad3d1b1d 1950 }
4ed46869 1951 ccl->ic = CCL_HEADER_MAIN;
4ed46869
KH
1952 for (i = 0; i < 8; i++)
1953 ccl->reg[i] = 0;
1954 ccl->last_block = 0;
e34b1164 1955 ccl->private_state = 0;
4ed46869 1956 ccl->status = 0;
c13362d8 1957 ccl->stack_idx = 0;
ae08ba36 1958 ccl->suppress_error = 0;
fd40a25f 1959 ccl->eight_bit_control = 0;
74215b55 1960 ccl->quit_silently = 0;
5232fa7b 1961 return 0;
4ed46869
KH
1962}
1963
2a69c66e 1964
a7ca3326 1965DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
fdb82f93 1966 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
78edd3b7 1967See the documentation of `define-ccl-program' for the detail of CCL program. */)
6f704c76 1968 (Lisp_Object object)
6ae21908 1969{
5232fa7b 1970 Lisp_Object val;
6ae21908 1971
5232fa7b 1972 if (VECTORP (object))
6ae21908 1973 {
5232fa7b
KH
1974 val = resolve_symbol_ccl_program (object);
1975 return (VECTORP (val) ? Qt : Qnil);
6ae21908 1976 }
5232fa7b
KH
1977 if (!SYMBOLP (object))
1978 return Qnil;
6ae21908 1979
5232fa7b
KH
1980 val = Fget (object, Qccl_program_idx);
1981 return ((! NATNUMP (val)
64ef2921 1982 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1983 ? Qnil : Qt);
6ae21908
KH
1984}
1985
4ed46869 1986DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
fdb82f93
PJ
1987 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
1988
1989CCL-PROGRAM is a CCL program name (symbol)
1990or compiled code generated by `ccl-compile' (for backward compatibility.
1991In the latter case, the execution overhead is bigger than in the former).
1992No I/O commands should appear in CCL-PROGRAM.
1993
1994REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
1995for the Nth register.
1996
1997As side effect, each element of REGISTERS holds the value of
1998the corresponding register after the execution.
1999
2000See the documentation of `define-ccl-program' for a definition of CCL
2001programs. */)
6f704c76 2002 (Lisp_Object ccl_prog, Lisp_Object reg)
4ed46869
KH
2003{
2004 struct ccl_program ccl;
2005 int i;
2006
5232fa7b
KH
2007 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2008 error ("Invalid CCL program");
6ae21908 2009
b7826503 2010 CHECK_VECTOR (reg);
64ef2921 2011 if (ASIZE (reg) != 8)
d7e1fe1f 2012 error ("Length of vector REGISTERS is not 8");
4ed46869 2013
4ed46869 2014 for (i = 0; i < 8; i++)
d311d28c 2015 ccl.reg[i] = (TYPE_RANGED_INTEGERP (int, AREF (reg, i))
64ef2921 2016 ? XINT (AREF (reg, i))
4ed46869
KH
2017 : 0);
2018
bda731af 2019 ccl_driver (&ccl, NULL, NULL, 0, 0, Qnil);
4ed46869
KH
2020 QUIT;
2021 if (ccl.status != CCL_STAT_SUCCESS)
2022 error ("Error in CCL program at %dth code", ccl.ic);
2023
2024 for (i = 0; i < 8; i++)
3ae565b3 2025 ASET (reg, i, make_number (ccl.reg[i]));
4ed46869
KH
2026 return Qnil;
2027}
2028
2029DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
39a68837 2030 3, 5, 0,
fdb82f93
PJ
2031 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2032
2a0bd758 2033CCL-PROGRAM is a symbol registered by `register-ccl-program',
fdb82f93
PJ
2034or a compiled code generated by `ccl-compile' (for backward compatibility,
2035in this case, the execution is slower).
2036
2037Read buffer is set to STRING, and write buffer is allocated automatically.
2038
2039STATUS is a vector of [R0 R1 ... R7 IC], where
2040 R0..R7 are initial values of corresponding registers,
2041 IC is the instruction counter specifying from where to start the program.
2042If R0..R7 are nil, they are initialized to 0.
2043If IC is nil, it is initialized to head of the CCL program.
2044
2045If optional 4th arg CONTINUE is non-nil, keep IC on read operation
51e4f4a8 2046when read buffer is exhausted, else, IC is always set to the end of
fdb82f93
PJ
2047CCL-PROGRAM on exit.
2048
2049It returns the contents of write buffer as a string,
2050 and as side effect, STATUS is updated.
2051If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2052is a unibyte string. By default it is a multibyte string.
2053
2a0bd758
JB
2054See the documentation of `define-ccl-program' for the detail of CCL program.
2055usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
6f704c76 2056 (Lisp_Object ccl_prog, Lisp_Object status, Lisp_Object str, Lisp_Object contin, Lisp_Object unibyte_p)
4ed46869
KH
2057{
2058 Lisp_Object val;
2059 struct ccl_program ccl;
c10842ea 2060 int i;
69e8622f 2061 ptrdiff_t outbufsize;
c10842ea 2062 unsigned char *outbuf, *outp;
69e8622f 2063 ptrdiff_t str_chars, str_bytes;
c10842ea
KH
2064#define CCL_EXECUTE_BUF_SIZE 1024
2065 int source[CCL_EXECUTE_BUF_SIZE], destination[CCL_EXECUTE_BUF_SIZE];
69e8622f 2066 ptrdiff_t consumed_chars, consumed_bytes, produced_chars;
0065d054 2067 int buf_magnification;
6ae21908 2068
5232fa7b
KH
2069 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2070 error ("Invalid CCL program");
4ed46869 2071
b7826503 2072 CHECK_VECTOR (status);
64ef2921 2073 if (ASIZE (status) != 9)
5232fa7b 2074 error ("Length of vector STATUS is not 9");
b7826503 2075 CHECK_STRING (str);
4ed46869 2076
8f924df7
KH
2077 str_chars = SCHARS (str);
2078 str_bytes = SBYTES (str);
5232fa7b 2079
4ed46869
KH
2080 for (i = 0; i < 8; i++)
2081 {
64ef2921 2082 if (NILP (AREF (status, i)))
3ae565b3 2083 ASET (status, i, make_number (0));
d311d28c 2084 if (TYPE_RANGED_INTEGERP (int, AREF (status, i)))
64ef2921 2085 ccl.reg[i] = XINT (AREF (status, i));
4ed46869 2086 }
64ef2921 2087 if (INTEGERP (AREF (status, i)))
4ed46869 2088 {
64ef2921 2089 i = XFASTINT (AREF (status, 8));
4ed46869
KH
2090 if (ccl.ic < i && i < ccl.size)
2091 ccl.ic = i;
2092 }
4ed46869 2093
0065d054
PE
2094 buf_magnification = ccl.buf_magnification ? ccl.buf_magnification : 1;
2095
2096 if ((min (PTRDIFF_MAX, SIZE_MAX) - 256) / buf_magnification < str_bytes)
69e8622f 2097 memory_full (SIZE_MAX);
c10842ea
KH
2098 outbufsize = (ccl.buf_magnification
2099 ? str_bytes * ccl.buf_magnification + 256
2100 : str_bytes + 256);
23f86fce 2101 outp = outbuf = xmalloc (outbufsize);
c10842ea
KH
2102
2103 consumed_chars = consumed_bytes = 0;
2104 produced_chars = 0;
99e293b5 2105 while (1)
a3d8fcf2 2106 {
8f924df7
KH
2107 const unsigned char *p = SDATA (str) + consumed_bytes;
2108 const unsigned char *endp = SDATA (str) + str_bytes;
fb90da1b 2109 int j = 0;
c10842ea
KH
2110 int *src, src_size;
2111
2112 if (endp - p == str_chars - consumed_chars)
fb90da1b
PE
2113 while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
2114 source[j++] = *p++;
c10842ea 2115 else
fb90da1b
PE
2116 while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
2117 source[j++] = STRING_CHAR_ADVANCE (p);
2118 consumed_chars += j;
8f924df7 2119 consumed_bytes = p - SDATA (str);
c10842ea
KH
2120
2121 if (consumed_bytes == str_bytes)
2122 ccl.last_block = NILP (contin);
2123 src = source;
fb90da1b 2124 src_size = j;
c10842ea
KH
2125 while (1)
2126 {
f2cad773
PE
2127 int max_expansion = NILP (unibyte_p) ? MAX_MULTIBYTE_LENGTH : 1;
2128 ptrdiff_t offset, shortfall;
bda731af
KH
2129 ccl_driver (&ccl, src, destination, src_size, CCL_EXECUTE_BUF_SIZE,
2130 Qnil);
c10842ea 2131 produced_chars += ccl.produced;
f2cad773
PE
2132 offset = outp - outbuf;
2133 shortfall = ccl.produced * max_expansion - (outbufsize - offset);
2134 if (0 < shortfall)
2135 {
2136 outbuf = xpalloc (outbuf, &outbufsize, shortfall, -1, 1);
2137 outp = outbuf + offset;
2138 }
c10842ea
KH
2139 if (NILP (unibyte_p))
2140 {
fb90da1b
PE
2141 for (j = 0; j < ccl.produced; j++)
2142 CHAR_STRING_ADVANCE (destination[j], outp);
c10842ea
KH
2143 }
2144 else
2145 {
fb90da1b
PE
2146 for (j = 0; j < ccl.produced; j++)
2147 *outp++ = destination[j];
c10842ea
KH
2148 }
2149 src += ccl.consumed;
2150 src_size -= ccl.consumed;
99e293b5
KH
2151 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
2152 break;
c10842ea 2153 }
a3d8fcf2 2154
edeef421
KH
2155 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
2156 || str_chars == consumed_chars)
c10842ea 2157 break;
a3d8fcf2 2158 }
a3d8fcf2 2159
edeef421 2160 if (ccl.status == CCL_STAT_INVALID_CMD)
4ed46869 2161 error ("Error in CCL program at %dth code", ccl.ic);
edeef421
KH
2162 if (ccl.status == CCL_STAT_QUIT)
2163 error ("CCL program interrupted at %dth code", ccl.ic);
4ed46869 2164
c10842ea 2165 for (i = 0; i < 8; i++)
c6589bbd
KH
2166 ASET (status, i, make_number (ccl.reg[i]));
2167 ASET (status, 8, make_number (ccl.ic));
c10842ea
KH
2168
2169 if (NILP (unibyte_p))
2170 val = make_multibyte_string ((char *) outbuf, produced_chars,
2171 outp - outbuf);
2172 else
2173 val = make_unibyte_string ((char *) outbuf, produced_chars);
2174 xfree (outbuf);
4ed46869
KH
2175
2176 return val;
2177}
2178
2179DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2180 2, 2, 0,
2a0bd758
JB
2181 doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2182CCL-PROG should be a compiled CCL program (vector), or nil.
fdb82f93
PJ
2183If it is nil, just reserve NAME as a CCL program name.
2184Return index number of the registered CCL program. */)
6f704c76 2185 (Lisp_Object name, Lisp_Object ccl_prog)
4ed46869 2186{
d311d28c
PE
2187 ptrdiff_t len = ASIZE (Vccl_program_table);
2188 ptrdiff_t idx;
5232fa7b 2189 Lisp_Object resolved;
4ed46869 2190
b7826503 2191 CHECK_SYMBOL (name);
5232fa7b 2192 resolved = Qnil;
4ed46869 2193 if (!NILP (ccl_prog))
6ae21908 2194 {
b7826503 2195 CHECK_VECTOR (ccl_prog);
5232fa7b 2196 resolved = resolve_symbol_ccl_program (ccl_prog);
4d247a1f
KH
2197 if (NILP (resolved))
2198 error ("Error in CCL program");
2199 if (VECTORP (resolved))
5232fa7b
KH
2200 {
2201 ccl_prog = resolved;
2202 resolved = Qt;
2203 }
4d247a1f
KH
2204 else
2205 resolved = Qnil;
6ae21908 2206 }
5232fa7b
KH
2207
2208 for (idx = 0; idx < len; idx++)
4ed46869 2209 {
5232fa7b 2210 Lisp_Object slot;
4ed46869 2211
64ef2921 2212 slot = AREF (Vccl_program_table, idx);
5232fa7b 2213 if (!VECTORP (slot))
78edd3b7 2214 /* This is the first unused slot. Register NAME here. */
4ed46869
KH
2215 break;
2216
64ef2921 2217 if (EQ (name, AREF (slot, 0)))
4ed46869 2218 {
5232fa7b 2219 /* Update this slot. */
2a69c66e
KH
2220 ASET (slot, 1, ccl_prog);
2221 ASET (slot, 2, resolved);
2222 ASET (slot, 3, Qt);
5232fa7b 2223 return make_number (idx);
4ed46869
KH
2224 }
2225 }
2226
5232fa7b 2227 if (idx == len)
1d153206 2228 /* Extend the table. */
d311d28c 2229 Vccl_program_table = larger_vector (Vccl_program_table, 1, -1);
4ed46869 2230
5232fa7b
KH
2231 {
2232 Lisp_Object elt;
2233
2a69c66e
KH
2234 elt = Fmake_vector (make_number (4), Qnil);
2235 ASET (elt, 0, name);
2236 ASET (elt, 1, ccl_prog);
2237 ASET (elt, 2, resolved);
2238 ASET (elt, 3, Qt);
2239 ASET (Vccl_program_table, idx, elt);
5232fa7b
KH
2240 }
2241
2242 Fput (name, Qccl_program_idx, make_number (idx));
2243 return make_number (idx);
4ed46869
KH
2244}
2245
8146262a
KH
2246/* Register code conversion map.
2247 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
d617f6df
DL
2248 The first element is the start code point.
2249 The other elements are mapped numbers.
8146262a
KH
2250 Symbol t means to map to an original number before mapping.
2251 Symbol nil means that the corresponding element is empty.
d617f6df 2252 Symbol lambda means to terminate mapping here.
e34b1164
KH
2253*/
2254
8146262a
KH
2255DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2256 Sregister_code_conversion_map,
e34b1164 2257 2, 2, 0,
fdb82f93
PJ
2258 doc: /* Register SYMBOL as code conversion map MAP.
2259Return index number of the registered map. */)
6f704c76 2260 (Lisp_Object symbol, Lisp_Object map)
e34b1164 2261{
c801946a 2262 ptrdiff_t len;
d311d28c 2263 ptrdiff_t i;
fb90da1b 2264 Lisp_Object idx;
e34b1164 2265
b7826503
PJ
2266 CHECK_SYMBOL (symbol);
2267 CHECK_VECTOR (map);
c801946a
PE
2268 if (! VECTORP (Vcode_conversion_map_vector))
2269 error ("Invalid code-conversion-map-vector");
2270
2271 len = ASIZE (Vcode_conversion_map_vector);
177c0ea7 2272
e34b1164
KH
2273 for (i = 0; i < len; i++)
2274 {
64ef2921 2275 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
e34b1164
KH
2276
2277 if (!CONSP (slot))
2278 break;
2279
03699b14 2280 if (EQ (symbol, XCAR (slot)))
e34b1164 2281 {
fb90da1b 2282 idx = make_number (i);
f3fbd155 2283 XSETCDR (slot, map);
8146262a 2284 Fput (symbol, Qcode_conversion_map, map);
fb90da1b
PE
2285 Fput (symbol, Qcode_conversion_map_id, idx);
2286 return idx;
e34b1164
KH
2287 }
2288 }
2289
2290 if (i == len)
2a1aad57 2291 Vcode_conversion_map_vector = larger_vector (Vcode_conversion_map_vector,
d311d28c 2292 1, -1);
e34b1164 2293
fb90da1b 2294 idx = make_number (i);
8146262a 2295 Fput (symbol, Qcode_conversion_map, map);
fb90da1b 2296 Fput (symbol, Qcode_conversion_map_id, idx);
3ae565b3 2297 ASET (Vcode_conversion_map_vector, i, Fcons (symbol, map));
fb90da1b 2298 return idx;
e34b1164
KH
2299}
2300
2301
dfcf069d 2302void
971de7fb 2303syms_of_ccl (void)
4ed46869
KH
2304{
2305 staticpro (&Vccl_program_table);
6703ac4f 2306 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
4ed46869 2307
cd3520a4
JB
2308 DEFSYM (Qccl, "ccl");
2309 DEFSYM (Qcclp, "cclp");
2310 DEFSYM (Qccl_program, "ccl-program");
2311 DEFSYM (Qccl_program_idx, "ccl-program-idx");
2312 DEFSYM (Qcode_conversion_map, "code-conversion-map");
2313 DEFSYM (Qcode_conversion_map_id, "code-conversion-map-id");
6ae21908 2314
29208e82 2315 DEFVAR_LISP ("code-conversion-map-vector", Vcode_conversion_map_vector,
fdb82f93 2316 doc: /* Vector of code conversion maps. */);
8146262a 2317 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
e34b1164 2318
29208e82 2319 DEFVAR_LISP ("font-ccl-encoder-alist", Vfont_ccl_encoder_alist,
fdb82f93
PJ
2320 doc: /* Alist of fontname patterns vs corresponding CCL program.
2321Each element looks like (REGEXP . CCL-CODE),
2322 where CCL-CODE is a compiled CCL program.
2323When a font whose name matches REGEXP is used for displaying a character,
2324 CCL-CODE is executed to calculate the code point in the font
2325 from the charset number and position code(s) of the character which are set
2326 in CCL registers R0, R1, and R2 before the execution.
2327The code point in the font is set in CCL registers R1 and R2
2328 when the execution terminated.
2329 If the font is single-byte font, the register R2 is not used. */);
4ed46869
KH
2330 Vfont_ccl_encoder_alist = Qnil;
2331
29208e82 2332 DEFVAR_LISP ("translation-hash-table-vector", Vtranslation_hash_table_vector,
d80dc57e
DL
2333 doc: /* Vector containing all translation hash tables ever defined.
2334Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2335to `define-translation-hash-table'. The vector is indexed by the table id
2336used by CCL. */);
2337 Vtranslation_hash_table_vector = Qnil;
2338
5232fa7b 2339 defsubr (&Sccl_program_p);
4ed46869
KH
2340 defsubr (&Sccl_execute);
2341 defsubr (&Sccl_execute_on_string);
2342 defsubr (&Sregister_ccl_program);
8146262a 2343 defsubr (&Sregister_code_conversion_map);
4ed46869 2344}