Merge from emacs--rel--22
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
CommitLineData
d1b8746d
SM
1;;; cl-loaddefs.el --- automatically extracted autoloads
2;;
3;;; Code:
4
5\f
6;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9;;;;;; make-random-state random* signum rem* mod* round* truncate*
10;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12;;;;;; notevery notany every some mapcon mapcan mapl maplist map
b1b1e473 13;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "47c92504dda976a632c2c10bedd4b6a4")
d1b8746d
SM
14;;; Generated autoloads from cl-extra.el
15
16(autoload (quote coerce) "cl-extra" "\
17Coerce OBJECT to type TYPE.
18TYPE is a Common Lisp type specifier.
19
20\(fn OBJECT TYPE)" nil nil)
21
22(autoload (quote equalp) "cl-extra" "\
23Return t if two Lisp objects have similar structures and contents.
24This is like `equal', except that it accepts numerically equal
25numbers of different types (float vs. integer), and also compares
26strings case-insensitively.
27
28\(fn X Y)" nil nil)
29
30(autoload (quote cl-mapcar-many) "cl-extra" "\
31Not documented
32
33\(fn CL-FUNC CL-SEQS)" nil nil)
34
35(autoload (quote map) "cl-extra" "\
36Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37TYPE is the sequence type to return.
38
39\(fn TYPE FUNCTION SEQUENCE...)" nil nil)
40
41(autoload (quote maplist) "cl-extra" "\
42Map FUNCTION to each sublist of LIST or LISTs.
43Like `mapcar', except applies to lists and their cdr's rather than to
44the elements themselves.
45
46\(fn FUNCTION LIST...)" nil nil)
47
48(autoload (quote mapl) "cl-extra" "\
49Like `maplist', but does not accumulate values returned by the function.
50
51\(fn FUNCTION LIST...)" nil nil)
52
53(autoload (quote mapcan) "cl-extra" "\
54Like `mapcar', but nconc's together the values returned by the function.
55
56\(fn FUNCTION SEQUENCE...)" nil nil)
57
58(autoload (quote mapcon) "cl-extra" "\
59Like `maplist', but nconc's together the values returned by the function.
60
61\(fn FUNCTION LIST...)" nil nil)
62
63(autoload (quote some) "cl-extra" "\
64Return true if PREDICATE is true of any element of SEQ or SEQs.
65If so, return the true (non-nil) value returned by PREDICATE.
66
67\(fn PREDICATE SEQ...)" nil nil)
68
69(autoload (quote every) "cl-extra" "\
70Return true if PREDICATE is true of every element of SEQ or SEQs.
71
72\(fn PREDICATE SEQ...)" nil nil)
73
74(autoload (quote notany) "cl-extra" "\
75Return true if PREDICATE is false of every element of SEQ or SEQs.
76
77\(fn PREDICATE SEQ...)" nil nil)
78
79(autoload (quote notevery) "cl-extra" "\
80Return true if PREDICATE is false of some element of SEQ or SEQs.
81
82\(fn PREDICATE SEQ...)" nil nil)
83
84(defalias (quote cl-map-keymap) (quote map-keymap))
85
86(autoload (quote cl-map-keymap-recursively) "cl-extra" "\
87Not documented
88
89\(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90
91(autoload (quote cl-map-intervals) "cl-extra" "\
92Not documented
93
94\(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95
96(autoload (quote cl-map-overlays) "cl-extra" "\
97Not documented
98
99\(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100
101(autoload (quote cl-set-frame-visible-p) "cl-extra" "\
102Not documented
103
104\(fn FRAME VAL)" nil nil)
105
106(autoload (quote cl-progv-before) "cl-extra" "\
107Not documented
108
109\(fn SYMS VALUES)" nil nil)
110
111(autoload (quote gcd) "cl-extra" "\
112Return the greatest common divisor of the arguments.
113
114\(fn &rest ARGS)" nil nil)
115
116(autoload (quote lcm) "cl-extra" "\
117Return the least common multiple of the arguments.
118
119\(fn &rest ARGS)" nil nil)
120
121(autoload (quote isqrt) "cl-extra" "\
122Return the integer square root of the argument.
123
124\(fn X)" nil nil)
125
126(autoload (quote floor*) "cl-extra" "\
127Return a list of the floor of X and the fractional part of X.
128With two arguments, return floor and remainder of their quotient.
129
130\(fn X &optional Y)" nil nil)
131
132(autoload (quote ceiling*) "cl-extra" "\
133Return a list of the ceiling of X and the fractional part of X.
134With two arguments, return ceiling and remainder of their quotient.
135
136\(fn X &optional Y)" nil nil)
137
138(autoload (quote truncate*) "cl-extra" "\
139Return a list of the integer part of X and the fractional part of X.
140With two arguments, return truncation and remainder of their quotient.
141
142\(fn X &optional Y)" nil nil)
143
144(autoload (quote round*) "cl-extra" "\
145Return a list of X rounded to the nearest integer and the remainder.
146With two arguments, return rounding and remainder of their quotient.
147
148\(fn X &optional Y)" nil nil)
149
150(autoload (quote mod*) "cl-extra" "\
151The remainder of X divided by Y, with the same sign as Y.
152
153\(fn X Y)" nil nil)
154
155(autoload (quote rem*) "cl-extra" "\
156The remainder of X divided by Y, with the same sign as X.
157
158\(fn X Y)" nil nil)
159
160(autoload (quote signum) "cl-extra" "\
161Return 1 if X is positive, -1 if negative, 0 if zero.
162
163\(fn X)" nil nil)
164
165(autoload (quote random*) "cl-extra" "\
166Return a random nonnegative number less than LIM, an integer or float.
167Optional second arg STATE is a random-state object.
168
169\(fn LIM &optional STATE)" nil nil)
170
171(autoload (quote make-random-state) "cl-extra" "\
172Return a copy of random-state STATE, or of `*random-state*' if omitted.
173If STATE is t, return a new state object seeded from the time of day.
174
175\(fn &optional STATE)" nil nil)
176
177(autoload (quote random-state-p) "cl-extra" "\
178Return t if OBJECT is a random-state object.
179
180\(fn OBJECT)" nil nil)
181
182(autoload (quote cl-float-limits) "cl-extra" "\
183Not documented
184
185\(fn)" nil nil)
186
187(autoload (quote subseq) "cl-extra" "\
188Return the subsequence of SEQ from START to END.
189If END is omitted, it defaults to the length of the sequence.
190If START or END is negative, it counts from the end.
191
192\(fn SEQ START &optional END)" nil nil)
193
194(autoload (quote concatenate) "cl-extra" "\
195Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
196
197\(fn TYPE SEQUENCE...)" nil nil)
198
199(autoload (quote revappend) "cl-extra" "\
200Equivalent to (append (reverse X) Y).
201
202\(fn X Y)" nil nil)
203
204(autoload (quote nreconc) "cl-extra" "\
205Equivalent to (nconc (nreverse X) Y).
206
207\(fn X Y)" nil nil)
208
209(autoload (quote list-length) "cl-extra" "\
210Return the length of list X. Return nil if list is circular.
211
212\(fn X)" nil nil)
213
214(autoload (quote tailp) "cl-extra" "\
215Return true if SUBLIST is a tail of LIST.
216
217\(fn SUBLIST LIST)" nil nil)
218
219(autoload (quote get*) "cl-extra" "\
220Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
221
222\(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
223
224(autoload (quote getf) "cl-extra" "\
225Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226PROPLIST is a list of the sort returned by `symbol-plist'.
227
228\(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
229
230(autoload (quote cl-set-getf) "cl-extra" "\
231Not documented
232
233\(fn PLIST TAG VAL)" nil nil)
234
235(autoload (quote cl-do-remf) "cl-extra" "\
236Not documented
237
238\(fn PLIST TAG)" nil nil)
239
240(autoload (quote cl-remprop) "cl-extra" "\
241Remove from SYMBOL's plist the property PROPNAME and its value.
242
243\(fn SYMBOL PROPNAME)" nil nil)
244
245(defalias (quote remprop) (quote cl-remprop))
246
247(defalias (quote cl-gethash) (quote gethash))
248
249(defalias (quote cl-puthash) (quote puthash))
250
251(defalias (quote cl-remhash) (quote remhash))
252
253(defalias (quote cl-clrhash) (quote clrhash))
254
255(defalias (quote cl-maphash) (quote maphash))
256
257(defalias (quote cl-make-hash-table) (quote make-hash-table))
258
259(defalias (quote cl-hash-table-p) (quote hash-table-p))
260
261(defalias (quote cl-hash-table-count) (quote hash-table-count))
262
263(autoload (quote cl-macroexpand-all) "cl-extra" "\
264Expand all macro calls through a Lisp FORM.
265This also does some trivial optimizations to make the form prettier.
266
267\(fn FORM &optional ENV)" nil nil)
268
269(autoload (quote cl-prettyexpand) "cl-extra" "\
270Not documented
271
272\(fn FORM &optional FULL)" nil nil)
273
274;;;***
275\f
276;;;### (autoloads (compiler-macroexpand define-compiler-macro ignore-errors
277;;;;;; assert check-type typep cl-struct-setf-expander defstruct
278;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
279;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
280;;;;;; declare the locally multiple-value-setq multiple-value-bind
281;;;;;; lexical-let* lexical-let symbol-macrolet macrolet labels
282;;;;;; flet progv psetq do-all-symbols do-symbols dotimes dolist
283;;;;;; do* do loop return-from return block etypecase typecase ecase
284;;;;;; case load-time-value eval-when destructuring-bind function*
285;;;;;; defmacro* defun* gentemp gensym cl-compile-time-init) "cl-macs"
b1b1e473 286;;;;;; "cl-macs.el" "7ccc827d272482ca276937ca18a7895a")
d1b8746d
SM
287;;; Generated autoloads from cl-macs.el
288
289(autoload (quote cl-compile-time-init) "cl-macs" "\
290Not documented
291
292\(fn)" nil nil)
293
294(autoload (quote gensym) "cl-macs" "\
295Generate a new uninterned symbol.
296The name is made by appending a number to PREFIX, default \"G\".
297
298\(fn &optional PREFIX)" nil nil)
299
300(autoload (quote gentemp) "cl-macs" "\
301Generate a new interned symbol with a unique name.
302The name is made by appending a number to PREFIX, default \"G\".
303
304\(fn &optional PREFIX)" nil nil)
305
306(autoload (quote defun*) "cl-macs" "\
307Define NAME as a function.
308Like normal `defun', except ARGLIST allows full Common Lisp conventions,
309and BODY is implicitly surrounded by (block NAME ...).
310
311\(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
312
313(autoload (quote defmacro*) "cl-macs" "\
314Define NAME as a macro.
315Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
316and BODY is implicitly surrounded by (block NAME ...).
317
318\(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
319
320(autoload (quote function*) "cl-macs" "\
321Introduce a function.
322Like normal `function', except that if argument is a lambda form,
323its argument list allows full Common Lisp conventions.
324
325\(fn FUNC)" nil (quote macro))
326
327(autoload (quote destructuring-bind) "cl-macs" "\
328Not documented
329
330\(fn ARGS EXPR &rest BODY)" nil (quote macro))
331
332(autoload (quote eval-when) "cl-macs" "\
333Control when BODY is evaluated.
334If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
335If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
336If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
337
338\(fn (WHEN...) BODY...)" nil (quote macro))
339
340(autoload (quote load-time-value) "cl-macs" "\
341Like `progn', but evaluates the body at load time.
342The result of the body appears to the compiler as a quoted constant.
343
344\(fn FORM &optional READ-ONLY)" nil (quote macro))
345
346(autoload (quote case) "cl-macs" "\
347Eval EXPR and choose among clauses on that value.
348Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
349against each key in each KEYLIST; the corresponding BODY is evaluated.
350If no clause succeeds, case returns nil. A single atom may be used in
351place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
352allowed only in the final clause, and matches if no other keys match.
353Key values are compared by `eql'.
354
355\(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
356
357(autoload (quote ecase) "cl-macs" "\
358Like `case', but error if no case fits.
359`otherwise'-clauses are not allowed.
360
361\(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
362
363(autoload (quote typecase) "cl-macs" "\
364Evals EXPR, chooses among clauses on that value.
365Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
366satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
367typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
368final clause, and matches if no other keys match.
369
370\(fn EXPR (TYPE BODY...)...)" nil (quote macro))
371
372(autoload (quote etypecase) "cl-macs" "\
373Like `typecase', but error if no case fits.
374`otherwise'-clauses are not allowed.
375
376\(fn EXPR (TYPE BODY...)...)" nil (quote macro))
377
378(autoload (quote block) "cl-macs" "\
379Define a lexically-scoped block named NAME.
380NAME may be any symbol. Code inside the BODY forms can call `return-from'
381to jump prematurely out of the block. This differs from `catch' and `throw'
382in two respects: First, the NAME is an unevaluated symbol rather than a
383quoted symbol or other form; and second, NAME is lexically rather than
384dynamically scoped: Only references to it within BODY will work. These
385references may appear inside macro expansions, but not inside functions
386called from BODY.
387
388\(fn NAME &rest BODY)" nil (quote macro))
389
390(autoload (quote return) "cl-macs" "\
391Return from the block named nil.
392This is equivalent to `(return-from nil RESULT)'.
393
394\(fn &optional RESULT)" nil (quote macro))
395
396(autoload (quote return-from) "cl-macs" "\
397Return from the block named NAME.
398This jump out to the innermost enclosing `(block NAME ...)' form,
399returning RESULT from that form (or nil if RESULT is omitted).
400This is compatible with Common Lisp, but note that `defun' and
401`defmacro' do not create implicit blocks as they do in Common Lisp.
402
403\(fn NAME &optional RESULT)" nil (quote macro))
404
405(autoload (quote loop) "cl-macs" "\
406The Common Lisp `loop' macro.
407Valid clauses are:
408 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
409 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
410 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
411 always COND, never COND, thereis COND, collect EXPR into VAR,
412 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
413 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
414 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
415 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
416 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
417 finally return EXPR, named NAME.
418
419\(fn CLAUSE...)" nil (quote macro))
420
421(autoload (quote do) "cl-macs" "\
422The Common Lisp `do' loop.
423
424\(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
425
426(autoload (quote do*) "cl-macs" "\
427The Common Lisp `do*' loop.
428
429\(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
430
431(autoload (quote dolist) "cl-macs" "\
432Loop over a list.
433Evaluate BODY with VAR bound to each `car' from LIST, in turn.
434Then evaluate RESULT to get return value, default nil.
435
436\(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
437
438(autoload (quote dotimes) "cl-macs" "\
439Loop a certain number of times.
440Evaluate BODY with VAR bound to successive integers from 0, inclusive,
441to COUNT, exclusive. Then evaluate RESULT to get return value, default
442nil.
443
444\(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
445
446(autoload (quote do-symbols) "cl-macs" "\
447Loop over all symbols.
448Evaluate BODY with VAR bound to each interned symbol, or to each symbol
449from OBARRAY.
450
451\(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
452
453(autoload (quote do-all-symbols) "cl-macs" "\
454Not documented
455
456\(fn SPEC &rest BODY)" nil (quote macro))
457
458(autoload (quote psetq) "cl-macs" "\
459Set SYMs to the values VALs in parallel.
460This is like `setq', except that all VAL forms are evaluated (in order)
461before assigning any symbols SYM to the corresponding values.
462
463\(fn SYM VAL SYM VAL ...)" nil (quote macro))
464
465(autoload (quote progv) "cl-macs" "\
466Bind SYMBOLS to VALUES dynamically in BODY.
467The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
468Each symbol in the first list is bound to the corresponding value in the
469second list (or made unbound if VALUES is shorter than SYMBOLS); then the
470BODY forms are executed and their result is returned. This is much like
471a `let' form, except that the list of symbols can be computed at run-time.
472
473\(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
474
475(autoload (quote flet) "cl-macs" "\
476Make temporary function definitions.
477This is an analogue of `let' that operates on the function cell of FUNC
478rather than its value cell. The FORMs are evaluated with the specified
479function definitions in place, then the definitions are undone (the FUNCs
480go back to their previous definitions, or lack thereof).
481
482\(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
483
484(autoload (quote labels) "cl-macs" "\
485Make temporary function bindings.
486This is like `flet', except the bindings are lexical instead of dynamic.
487Unlike `flet', this macro is fully compliant with the Common Lisp standard.
488
489\(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
490
491(autoload (quote macrolet) "cl-macs" "\
492Make temporary macro definitions.
493This is like `flet', but for macros instead of functions.
494
495\(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
496
497(autoload (quote symbol-macrolet) "cl-macs" "\
498Make symbol macro definitions.
499Within the body FORMs, references to the variable NAME will be replaced
500by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
501
502\(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
503
504(autoload (quote lexical-let) "cl-macs" "\
505Like `let', but lexically scoped.
506The main visible difference is that lambdas inside BODY will create
507lexical closures as in Common Lisp.
508
509\(fn VARLIST BODY)" nil (quote macro))
510
511(autoload (quote lexical-let*) "cl-macs" "\
512Like `let*', but lexically scoped.
513The main visible difference is that lambdas inside BODY will create
514lexical closures as in Common Lisp.
515
516\(fn VARLIST BODY)" nil (quote macro))
517
518(autoload (quote multiple-value-bind) "cl-macs" "\
519Collect multiple return values.
520FORM must return a list; the BODY is then executed with the first N elements
521of this list bound (`let'-style) to each of the symbols SYM in turn. This
522is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
523simulate true multiple return values. For compatibility, (values A B C) is
524a synonym for (list A B C).
525
526\(fn (SYM...) FORM BODY)" nil (quote macro))
527
528(autoload (quote multiple-value-setq) "cl-macs" "\
529Collect multiple return values.
530FORM must return a list; the first N elements of this list are stored in
531each of the symbols SYM in turn. This is analogous to the Common Lisp
532`multiple-value-setq' macro, using lists to simulate true multiple return
533values. For compatibility, (values A B C) is a synonym for (list A B C).
534
535\(fn (SYM...) FORM)" nil (quote macro))
536
537(autoload (quote locally) "cl-macs" "\
538Not documented
539
540\(fn &rest BODY)" nil (quote macro))
541
542(autoload (quote the) "cl-macs" "\
543Not documented
544
545\(fn TYPE FORM)" nil (quote macro))
546
547(autoload (quote declare) "cl-macs" "\
548Not documented
549
550\(fn &rest SPECS)" nil (quote macro))
551
552(autoload (quote define-setf-method) "cl-macs" "\
553Define a `setf' method.
554This method shows how to handle `setf's to places of the form (NAME ARGS...).
555The argument forms ARGS are bound according to ARGLIST, as if NAME were
556going to be expanded as a macro, then the BODY forms are executed and must
557return a list of five elements: a temporary-variables list, a value-forms
558list, a store-variables list (of length one), a store-form, and an access-
559form. See `defsetf' for a simpler way to define most setf-methods.
560
561\(fn NAME ARGLIST BODY...)" nil (quote macro))
562
563(autoload (quote defsetf) "cl-macs" "\
a2fb8c1e 564Define a `setf' method.
d1b8746d
SM
565This macro is an easy-to-use substitute for `define-setf-method' that works
566well for simple place forms. In the simple `defsetf' form, `setf's of
567the form (setf (NAME ARGS...) VAL) are transformed to function or macro
568calls of the form (FUNC ARGS... VAL). Example:
569
570 (defsetf aref aset)
571
572Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
573Here, the above `setf' call is expanded by binding the argument forms ARGS
574according to ARGLIST, binding the value form VAL to STORE, then executing
575BODY, which must return a Lisp form that does the necessary `setf' operation.
576Actually, ARGLIST and STORE may be bound to temporary variables which are
577introduced automatically to preserve proper execution order of the arguments.
578Example:
579
580 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
581
582\(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
583
584(autoload (quote get-setf-method) "cl-macs" "\
585Return a list of five values describing the setf-method for PLACE.
586PLACE may be any Lisp form which can appear as the PLACE argument to
587a macro like `setf' or `incf'.
588
589\(fn PLACE &optional ENV)" nil nil)
590
591(autoload (quote setf) "cl-macs" "\
592Set each PLACE to the value of its VAL.
593This is a generalized version of `setq'; the PLACEs may be symbolic
594references such as (car x) or (aref x i), as well as plain symbols.
595For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
596The return value is the last VAL in the list.
597
598\(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
599
600(autoload (quote psetf) "cl-macs" "\
601Set PLACEs to the values VALs in parallel.
602This is like `setf', except that all VAL forms are evaluated (in order)
603before assigning any PLACEs to the corresponding values.
604
605\(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
606
607(autoload (quote cl-do-pop) "cl-macs" "\
608Not documented
609
610\(fn PLACE)" nil nil)
611
612(autoload (quote remf) "cl-macs" "\
613Remove TAG from property list PLACE.
614PLACE may be a symbol, or any generalized variable allowed by `setf'.
615The form returns true if TAG was found and removed, nil otherwise.
616
617\(fn PLACE TAG)" nil (quote macro))
618
619(autoload (quote shiftf) "cl-macs" "\
620Shift left among PLACEs.
621Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
622Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
623
624\(fn PLACE... VAL)" nil (quote macro))
625
626(autoload (quote rotatef) "cl-macs" "\
627Rotate left among PLACEs.
628Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
629Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
630
631\(fn PLACE...)" nil (quote macro))
632
633(autoload (quote letf) "cl-macs" "\
634Temporarily bind to PLACEs.
635This is the analogue of `let', but with generalized variables (in the
636sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
637VALUE, then the BODY forms are executed. On exit, either normally or
638because of a `throw' or error, the PLACEs are set back to their original
639values. Note that this macro is *not* available in Common Lisp.
640As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
641the PLACE is not modified before executing BODY.
642
643\(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
644
645(autoload (quote letf*) "cl-macs" "\
646Temporarily bind to PLACEs.
647This is the analogue of `let*', but with generalized variables (in the
648sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
649VALUE, then the BODY forms are executed. On exit, either normally or
650because of a `throw' or error, the PLACEs are set back to their original
651values. Note that this macro is *not* available in Common Lisp.
652As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
653the PLACE is not modified before executing BODY.
654
655\(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
656
657(autoload (quote callf) "cl-macs" "\
658Set PLACE to (FUNC PLACE ARGS...).
659FUNC should be an unquoted function name. PLACE may be a symbol,
660or any generalized variable allowed by `setf'.
661
662\(fn FUNC PLACE ARGS...)" nil (quote macro))
663
664(autoload (quote callf2) "cl-macs" "\
665Set PLACE to (FUNC ARG1 PLACE ARGS...).
666Like `callf', but PLACE is the second argument of FUNC, not the first.
667
668\(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
669
670(autoload (quote define-modify-macro) "cl-macs" "\
671Define a `setf'-like modify macro.
672If NAME is called, it combines its PLACE argument with the other arguments
673from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
674
675\(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
676
677(autoload (quote defstruct) "cl-macs" "\
678Define a struct type.
679This macro defines a new Lisp data type called NAME, which contains data
680stored in SLOTs. This defines a `make-NAME' constructor, a `copy-NAME'
681copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors.
682
683\(fn (NAME OPTIONS...) (SLOT SLOT-OPTS...)...)" nil (quote macro))
684
685(autoload (quote cl-struct-setf-expander) "cl-macs" "\
686Not documented
687
688\(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
689
690(autoload (quote typep) "cl-macs" "\
691Check that OBJECT is of type TYPE.
692TYPE is a Common Lisp-style type specifier.
693
694\(fn OBJECT TYPE)" nil nil)
695
696(autoload (quote check-type) "cl-macs" "\
697Verify that FORM is of type TYPE; signal an error if not.
698STRING is an optional description of the desired type.
699
700\(fn FORM TYPE &optional STRING)" nil (quote macro))
701
702(autoload (quote assert) "cl-macs" "\
703Verify that FORM returns non-nil; signal an error if not.
704Second arg SHOW-ARGS means to include arguments of FORM in message.
705Other args STRING and ARGS... are arguments to be passed to `error'.
706They are not evaluated unless the assertion fails. If STRING is
707omitted, a default message listing FORM itself is used.
708
709\(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
710
711(autoload (quote ignore-errors) "cl-macs" "\
712Execute BODY; if an error occurs, return nil.
713Otherwise, return result of last form in BODY.
714
715\(fn &rest BODY)" nil (quote macro))
716
717(autoload (quote define-compiler-macro) "cl-macs" "\
718Define a compiler-only macro.
719This is like `defmacro', but macro expansion occurs only if the call to
720FUNC is compiled (i.e., not interpreted). Compiler macros should be used
721for optimizing the way calls to FUNC are compiled; the form returned by
722BODY should do the same thing as a call to the normal function called
723FUNC, though possibly more efficiently. Note that, like regular macros,
724compiler macros are expanded repeatedly until no further expansions are
725possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
726original function call alone by declaring an initial `&whole foo' parameter
727and then returning foo.
728
729\(fn FUNC ARGS &rest BODY)" nil (quote macro))
730
731(autoload (quote compiler-macroexpand) "cl-macs" "\
732Not documented
733
734\(fn FORM)" nil nil)
735
736;;;***
737\f
738;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
739;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
740;;;;;; nset-difference set-difference nintersection intersection
741;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
742;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
743;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
744;;;;;; count position-if-not position-if position find-if-not find-if
745;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
746;;;;;; substitute-if substitute delete-duplicates remove-duplicates
747;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
b1b1e473 748;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "8805f76626399794931f5db36ddf855f")
d1b8746d
SM
749;;; Generated autoloads from cl-seq.el
750
751(autoload (quote reduce) "cl-seq" "\
752Reduce two-argument FUNCTION across SEQ.
753
754Keywords supported: :start :end :from-end :initial-value :key
755
756\(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
757
758(autoload (quote fill) "cl-seq" "\
759Fill the elements of SEQ with ITEM.
760
761Keywords supported: :start :end
762
763\(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
764
765(autoload (quote replace) "cl-seq" "\
766Replace the elements of SEQ1 with the elements of SEQ2.
767SEQ1 is destructively modified, then returned.
768
769Keywords supported: :start1 :end1 :start2 :end2
770
771\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
772
773(autoload (quote remove*) "cl-seq" "\
774Remove all occurrences of ITEM in SEQ.
775This is a non-destructive function; it makes a copy of SEQ if necessary
776to avoid corrupting the original SEQ.
777
778Keywords supported: :test :test-not :key :count :start :end :from-end
779
780\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
781
782(autoload (quote remove-if) "cl-seq" "\
783Remove all items satisfying PREDICATE in SEQ.
784This is a non-destructive function; it makes a copy of SEQ if necessary
785to avoid corrupting the original SEQ.
786
787Keywords supported: :key :count :start :end :from-end
788
789\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
790
791(autoload (quote remove-if-not) "cl-seq" "\
792Remove all items not satisfying PREDICATE in SEQ.
793This is a non-destructive function; it makes a copy of SEQ if necessary
794to avoid corrupting the original SEQ.
795
796Keywords supported: :key :count :start :end :from-end
797
798\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
799
800(autoload (quote delete*) "cl-seq" "\
801Remove all occurrences of ITEM in SEQ.
802This is a destructive function; it reuses the storage of SEQ whenever possible.
803
804Keywords supported: :test :test-not :key :count :start :end :from-end
805
806\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
807
808(autoload (quote delete-if) "cl-seq" "\
809Remove all items satisfying PREDICATE in SEQ.
810This is a destructive function; it reuses the storage of SEQ whenever possible.
811
812Keywords supported: :key :count :start :end :from-end
813
814\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
815
816(autoload (quote delete-if-not) "cl-seq" "\
817Remove all items not satisfying PREDICATE in SEQ.
818This is a destructive function; it reuses the storage of SEQ whenever possible.
819
820Keywords supported: :key :count :start :end :from-end
821
822\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
823
824(autoload (quote remove-duplicates) "cl-seq" "\
825Return a copy of SEQ with all duplicate elements removed.
826
827Keywords supported: :test :test-not :key :start :end :from-end
828
829\(fn SEQ [KEYWORD VALUE]...)" nil nil)
830
831(autoload (quote delete-duplicates) "cl-seq" "\
832Remove all duplicate elements from SEQ (destructively).
833
834Keywords supported: :test :test-not :key :start :end :from-end
835
836\(fn SEQ [KEYWORD VALUE]...)" nil nil)
837
838(autoload (quote substitute) "cl-seq" "\
839Substitute NEW for OLD in SEQ.
840This is a non-destructive function; it makes a copy of SEQ if necessary
841to avoid corrupting the original SEQ.
842
843Keywords supported: :test :test-not :key :count :start :end :from-end
844
845\(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
846
847(autoload (quote substitute-if) "cl-seq" "\
848Substitute NEW for all items satisfying PREDICATE in SEQ.
849This is a non-destructive function; it makes a copy of SEQ if necessary
850to avoid corrupting the original SEQ.
851
852Keywords supported: :key :count :start :end :from-end
853
854\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
855
856(autoload (quote substitute-if-not) "cl-seq" "\
857Substitute NEW for all items not satisfying PREDICATE in SEQ.
858This is a non-destructive function; it makes a copy of SEQ if necessary
859to avoid corrupting the original SEQ.
860
861Keywords supported: :key :count :start :end :from-end
862
863\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
864
865(autoload (quote nsubstitute) "cl-seq" "\
866Substitute NEW for OLD in SEQ.
867This is a destructive function; it reuses the storage of SEQ whenever possible.
868
869Keywords supported: :test :test-not :key :count :start :end :from-end
870
871\(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
872
873(autoload (quote nsubstitute-if) "cl-seq" "\
874Substitute NEW for all items satisfying PREDICATE in SEQ.
875This is a destructive function; it reuses the storage of SEQ whenever possible.
876
877Keywords supported: :key :count :start :end :from-end
878
879\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
880
881(autoload (quote nsubstitute-if-not) "cl-seq" "\
882Substitute NEW for all items not satisfying PREDICATE in SEQ.
883This is a destructive function; it reuses the storage of SEQ whenever possible.
884
885Keywords supported: :key :count :start :end :from-end
886
887\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
888
889(autoload (quote find) "cl-seq" "\
890Find the first occurrence of ITEM in SEQ.
891Return the matching ITEM, or nil if not found.
892
893Keywords supported: :test :test-not :key :start :end :from-end
894
895\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
896
897(autoload (quote find-if) "cl-seq" "\
898Find the first item satisfying PREDICATE in SEQ.
899Return the matching item, or nil if not found.
900
901Keywords supported: :key :start :end :from-end
902
903\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
904
905(autoload (quote find-if-not) "cl-seq" "\
906Find the first item not satisfying PREDICATE in SEQ.
907Return the matching item, or nil if not found.
908
909Keywords supported: :key :start :end :from-end
910
911\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
912
913(autoload (quote position) "cl-seq" "\
914Find the first occurrence of ITEM in SEQ.
915Return the index of the matching item, or nil if not found.
916
917Keywords supported: :test :test-not :key :start :end :from-end
918
919\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
920
921(autoload (quote position-if) "cl-seq" "\
922Find the first item satisfying PREDICATE in SEQ.
923Return the index of the matching item, or nil if not found.
924
925Keywords supported: :key :start :end :from-end
926
927\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
928
929(autoload (quote position-if-not) "cl-seq" "\
930Find the first item not satisfying PREDICATE in SEQ.
931Return the index of the matching item, or nil if not found.
932
933Keywords supported: :key :start :end :from-end
934
935\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
936
937(autoload (quote count) "cl-seq" "\
938Count the number of occurrences of ITEM in SEQ.
939
940Keywords supported: :test :test-not :key :start :end
941
942\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
943
944(autoload (quote count-if) "cl-seq" "\
945Count the number of items satisfying PREDICATE in SEQ.
946
947Keywords supported: :key :start :end
948
949\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
950
951(autoload (quote count-if-not) "cl-seq" "\
952Count the number of items not satisfying PREDICATE in SEQ.
953
954Keywords supported: :key :start :end
955
956\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
957
958(autoload (quote mismatch) "cl-seq" "\
959Compare SEQ1 with SEQ2, return index of first mismatching element.
960Return nil if the sequences match. If one sequence is a prefix of the
961other, the return value indicates the end of the shorter sequence.
962
963Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
964
965\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
966
967(autoload (quote search) "cl-seq" "\
968Search for SEQ1 as a subsequence of SEQ2.
969Return the index of the leftmost element of the first match found;
970return nil if there are no matches.
971
972Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
973
974\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
975
976(autoload (quote sort*) "cl-seq" "\
977Sort the argument SEQ according to PREDICATE.
978This is a destructive function; it reuses the storage of SEQ if possible.
979
980Keywords supported: :key
981
982\(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
983
984(autoload (quote stable-sort) "cl-seq" "\
985Sort the argument SEQ stably according to PREDICATE.
986This is a destructive function; it reuses the storage of SEQ if possible.
987
988Keywords supported: :key
989
990\(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
991
992(autoload (quote merge) "cl-seq" "\
993Destructively merge the two sequences to produce a new sequence.
994TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
995sequences, and PREDICATE is a `less-than' predicate on the elements.
996
997Keywords supported: :key
998
999\(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1000
1001(autoload (quote member*) "cl-seq" "\
1002Find the first occurrence of ITEM in LIST.
1003Return the sublist of LIST whose car is ITEM.
1004
1005Keywords supported: :test :test-not :key
1006
1007\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1008
1009(autoload (quote member-if) "cl-seq" "\
1010Find the first item satisfying PREDICATE in LIST.
1011Return the sublist of LIST whose car matches.
1012
1013Keywords supported: :key
1014
1015\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1016
1017(autoload (quote member-if-not) "cl-seq" "\
1018Find the first item not satisfying PREDICATE in LIST.
1019Return the sublist of LIST whose car matches.
1020
1021Keywords supported: :key
1022
1023\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1024
1025(autoload (quote cl-adjoin) "cl-seq" "\
1026Not documented
1027
1028\(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1029
1030(autoload (quote assoc*) "cl-seq" "\
1031Find the first item whose car matches ITEM in LIST.
1032
1033Keywords supported: :test :test-not :key
1034
1035\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1036
1037(autoload (quote assoc-if) "cl-seq" "\
1038Find the first item whose car satisfies PREDICATE in LIST.
1039
1040Keywords supported: :key
1041
1042\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1043
1044(autoload (quote assoc-if-not) "cl-seq" "\
1045Find the first item whose car does not satisfy PREDICATE in LIST.
1046
1047Keywords supported: :key
1048
1049\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1050
1051(autoload (quote rassoc*) "cl-seq" "\
1052Find the first item whose cdr matches ITEM in LIST.
1053
1054Keywords supported: :test :test-not :key
1055
1056\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1057
1058(autoload (quote rassoc-if) "cl-seq" "\
1059Find the first item whose cdr satisfies PREDICATE in LIST.
1060
1061Keywords supported: :key
1062
1063\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1064
1065(autoload (quote rassoc-if-not) "cl-seq" "\
1066Find the first item whose cdr does not satisfy PREDICATE in LIST.
1067
1068Keywords supported: :key
1069
1070\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1071
1072(autoload (quote union) "cl-seq" "\
1073Combine LIST1 and LIST2 using a set-union operation.
1074The result list contains all items that appear in either LIST1 or LIST2.
1075This is a non-destructive function; it makes a copy of the data if necessary
1076to avoid corrupting the original LIST1 and LIST2.
1077
1078Keywords supported: :test :test-not :key
1079
1080\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1081
1082(autoload (quote nunion) "cl-seq" "\
1083Combine LIST1 and LIST2 using a set-union operation.
1084The result list contains all items that appear in either LIST1 or LIST2.
1085This is a destructive function; it reuses the storage of LIST1 and LIST2
1086whenever possible.
1087
1088Keywords supported: :test :test-not :key
1089
1090\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1091
1092(autoload (quote intersection) "cl-seq" "\
1093Combine LIST1 and LIST2 using a set-intersection operation.
1094The result list contains all items that appear in both LIST1 and LIST2.
1095This is a non-destructive function; it makes a copy of the data if necessary
1096to avoid corrupting the original LIST1 and LIST2.
1097
1098Keywords supported: :test :test-not :key
1099
1100\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1101
1102(autoload (quote nintersection) "cl-seq" "\
1103Combine LIST1 and LIST2 using a set-intersection operation.
1104The result list contains all items that appear in both LIST1 and LIST2.
1105This is a destructive function; it reuses the storage of LIST1 and LIST2
1106whenever possible.
1107
1108Keywords supported: :test :test-not :key
1109
1110\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1111
1112(autoload (quote set-difference) "cl-seq" "\
1113Combine LIST1 and LIST2 using a set-difference operation.
1114The result list contains all items that appear in LIST1 but not LIST2.
1115This is a non-destructive function; it makes a copy of the data if necessary
1116to avoid corrupting the original LIST1 and LIST2.
1117
1118Keywords supported: :test :test-not :key
1119
1120\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1121
1122(autoload (quote nset-difference) "cl-seq" "\
1123Combine LIST1 and LIST2 using a set-difference operation.
1124The result list contains all items that appear in LIST1 but not LIST2.
1125This is a destructive function; it reuses the storage of LIST1 and LIST2
1126whenever possible.
1127
1128Keywords supported: :test :test-not :key
1129
1130\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1131
1132(autoload (quote set-exclusive-or) "cl-seq" "\
1133Combine LIST1 and LIST2 using a set-exclusive-or operation.
1134The result list contains all items that appear in exactly one of LIST1, LIST2.
1135This is a non-destructive function; it makes a copy of the data if necessary
1136to avoid corrupting the original LIST1 and LIST2.
1137
1138Keywords supported: :test :test-not :key
1139
1140\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1141
1142(autoload (quote nset-exclusive-or) "cl-seq" "\
1143Combine LIST1 and LIST2 using a set-exclusive-or operation.
1144The result list contains all items that appear in exactly one of LIST1, LIST2.
1145This is a destructive function; it reuses the storage of LIST1 and LIST2
1146whenever possible.
1147
1148Keywords supported: :test :test-not :key
1149
1150\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1151
1152(autoload (quote subsetp) "cl-seq" "\
1153Return true if LIST1 is a subset of LIST2.
1154I.e., if every element of LIST1 also appears in LIST2.
1155
1156Keywords supported: :test :test-not :key
1157
1158\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1159
1160(autoload (quote subst-if) "cl-seq" "\
1161Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1162Return a copy of TREE with all matching elements replaced by NEW.
1163
1164Keywords supported: :key
1165
1166\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1167
1168(autoload (quote subst-if-not) "cl-seq" "\
1169Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1170Return a copy of TREE with all non-matching elements replaced by NEW.
1171
1172Keywords supported: :key
1173
1174\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1175
1176(autoload (quote nsubst) "cl-seq" "\
1177Substitute NEW for OLD everywhere in TREE (destructively).
1178Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1179to `setcar').
1180
1181Keywords supported: :test :test-not :key
1182
1183\(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1184
1185(autoload (quote nsubst-if) "cl-seq" "\
1186Substitute NEW for elements matching PREDICATE in TREE (destructively).
1187Any element of TREE which matches is changed to NEW (via a call to `setcar').
1188
1189Keywords supported: :key
1190
1191\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1192
1193(autoload (quote nsubst-if-not) "cl-seq" "\
1194Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1195Any element of TREE which matches is changed to NEW (via a call to `setcar').
1196
1197Keywords supported: :key
1198
1199\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1200
1201(autoload (quote sublis) "cl-seq" "\
1202Perform substitutions indicated by ALIST in TREE (non-destructively).
1203Return a copy of TREE with all matching elements replaced.
1204
1205Keywords supported: :test :test-not :key
1206
1207\(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1208
1209(autoload (quote nsublis) "cl-seq" "\
1210Perform substitutions indicated by ALIST in TREE (destructively).
1211Any matching element of TREE is changed via a call to `setcar'.
1212
1213Keywords supported: :test :test-not :key
1214
1215\(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1216
1217(autoload (quote tree-equal) "cl-seq" "\
1218Return t if trees TREE1 and TREE2 have `eql' leaves.
1219Atoms are compared by `eql'; cons cells are compared recursively.
1220
1221Keywords supported: :test :test-not :key
1222
1223\(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1224
1225;;;***
1226\f
1227;; Local Variables:
1228;; version-control: never
1229;; no-byte-compile: t
1230;; no-update-autoloads: t
1231;; End:
1232
1233;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e
1234;;; cl-loaddefs.el ends here