Merge from emacs-23
[bpt/emacs.git] / doc / lispref / lists.texi
CommitLineData
b8d4c8d0
GM
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
3@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001,
5df4f04c 4@c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
b8d4c8d0 5@c See the file elisp.texi for copying conditions.
6336d8c3 6@setfilename ../../info/lists
b8d4c8d0
GM
7@node Lists, Sequences Arrays Vectors, Strings and Characters, Top
8@chapter Lists
9@cindex lists
10@cindex element (of list)
11
12 A @dfn{list} represents a sequence of zero or more elements (which may
13be any Lisp objects). The important difference between lists and
14vectors is that two or more lists can share part of their structure; in
15addition, you can insert or delete elements in a list without copying
16the whole list.
17
18@menu
19* Cons Cells:: How lists are made out of cons cells.
20* List-related Predicates:: Is this object a list? Comparing two lists.
21* List Elements:: Extracting the pieces of a list.
22* Building Lists:: Creating list structure.
23* List Variables:: Modifying lists stored in variables.
24* Modifying Lists:: Storing new pieces into an existing list.
25* Sets And Lists:: A list can represent a finite mathematical set.
26* Association Lists:: A list can represent a finite relation or mapping.
27* Rings:: Managing a fixed-size ring of objects.
28@end menu
29
30@node Cons Cells
31@section Lists and Cons Cells
32@cindex lists and cons cells
33
34 Lists in Lisp are not a primitive data type; they are built up from
35@dfn{cons cells}. A cons cell is a data object that represents an
36ordered pair. That is, it has two slots, and each slot @dfn{holds}, or
37@dfn{refers to}, some Lisp object. One slot is known as the @sc{car},
38and the other is known as the @sc{cdr}. (These names are traditional;
39see @ref{Cons Cell Type}.) @sc{cdr} is pronounced ``could-er.''
40
41 We say that ``the @sc{car} of this cons cell is'' whatever object
42its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
43
44 A list is a series of cons cells ``chained together,'' so that each
45cell refers to the next one. There is one cons cell for each element of
46the list. By convention, the @sc{car}s of the cons cells hold the
47elements of the list, and the @sc{cdr}s are used to chain the list: the
48@sc{cdr} slot of each cons cell refers to the following cons cell. The
49@sc{cdr} of the last cons cell is @code{nil}. This asymmetry between
50the @sc{car} and the @sc{cdr} is entirely a matter of convention; at the
51level of cons cells, the @sc{car} and @sc{cdr} slots have the same
52characteristics.
53
54@cindex true list
55 Since @code{nil} is the conventional value to put in the @sc{cdr} of
56the last cons cell in the list, we call that case a @dfn{true list}.
57
58 In Lisp, we consider the symbol @code{nil} a list as well as a
59symbol; it is the list with no elements. For convenience, the symbol
60@code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
61as its @sc{car}). Therefore, the @sc{cdr} of a true list is always a
62true list.
63
64@cindex dotted list
65@cindex circular list
66 If the @sc{cdr} of a list's last cons cell is some other value,
67neither @code{nil} nor another cons cell, we call the structure a
68@dfn{dotted list}, since its printed representation would use
69@samp{.}. There is one other possibility: some cons cell's @sc{cdr}
70could point to one of the previous cons cells in the list. We call
71that structure a @dfn{circular list}.
72
73 For some purposes, it does not matter whether a list is true,
74circular or dotted. If the program doesn't look far enough down the
75list to see the @sc{cdr} of the final cons cell, it won't care.
76However, some functions that operate on lists demand true lists and
77signal errors if given a dotted list. Most functions that try to find
78the end of a list enter infinite loops if given a circular list.
79
80@cindex list structure
81 Because most cons cells are used as part of lists, the phrase
82@dfn{list structure} has come to mean any structure made out of cons
83cells.
84
85 The @sc{cdr} of any nonempty true list @var{l} is a list containing all the
86elements of @var{l} except the first.
87
88 @xref{Cons Cell Type}, for the read and print syntax of cons cells and
89lists, and for ``box and arrow'' illustrations of lists.
90
91@node List-related Predicates
92@section Predicates on Lists
93
94 The following predicates test whether a Lisp object is an atom,
95whether it is a cons cell or is a list, or whether it is the
96distinguished object @code{nil}. (Many of these predicates can be
97defined in terms of the others, but they are used so often that it is
98worth having all of them.)
99
100@defun consp object
101This function returns @code{t} if @var{object} is a cons cell, @code{nil}
102otherwise. @code{nil} is not a cons cell, although it @emph{is} a list.
103@end defun
104
105@defun atom object
106This function returns @code{t} if @var{object} is an atom, @code{nil}
107otherwise. All objects except cons cells are atoms. The symbol
108@code{nil} is an atom and is also a list; it is the only Lisp object
109that is both.
110
111@example
112(atom @var{object}) @equiv{} (not (consp @var{object}))
113@end example
114@end defun
115
116@defun listp object
117This function returns @code{t} if @var{object} is a cons cell or
118@code{nil}. Otherwise, it returns @code{nil}.
119
120@example
121@group
122(listp '(1))
123 @result{} t
124@end group
125@group
126(listp '())
127 @result{} t
128@end group
129@end example
130@end defun
131
132@defun nlistp object
133This function is the opposite of @code{listp}: it returns @code{t} if
134@var{object} is not a list. Otherwise, it returns @code{nil}.
135
136@example
137(listp @var{object}) @equiv{} (not (nlistp @var{object}))
138@end example
139@end defun
140
141@defun null object
142This function returns @code{t} if @var{object} is @code{nil}, and
143returns @code{nil} otherwise. This function is identical to @code{not},
144but as a matter of clarity we use @code{null} when @var{object} is
145considered a list and @code{not} when it is considered a truth value
146(see @code{not} in @ref{Combining Conditions}).
147
148@example
149@group
150(null '(1))
151 @result{} nil
152@end group
153@group
154(null '())
155 @result{} t
156@end group
157@end example
158@end defun
159
160
161@node List Elements
162@section Accessing Elements of Lists
163@cindex list elements
164
165@defun car cons-cell
166This function returns the value referred to by the first slot of the
b6a5263f
CY
167cons cell @var{cons-cell}. In other words, it returns the @sc{car} of
168@var{cons-cell}.
b8d4c8d0 169
b6a5263f
CY
170As a special case, if @var{cons-cell} is @code{nil}, this function
171returns @code{nil}. Therefore, any list is a valid argument. An
172error is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
173
174@example
175@group
176(car '(a b c))
177 @result{} a
178@end group
179@group
180(car '())
181 @result{} nil
182@end group
183@end example
184@end defun
185
186@defun cdr cons-cell
b6a5263f
CY
187This function returns the value referred to by the second slot of the
188cons cell @var{cons-cell}. In other words, it returns the @sc{cdr} of
189@var{cons-cell}.
190
191As a special case, if @var{cons-cell} is @code{nil}, this function
192returns @code{nil}; therefore, any list is a valid argument. An error
193is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
194
195@example
196@group
197(cdr '(a b c))
198 @result{} (b c)
199@end group
200@group
201(cdr '())
202 @result{} nil
203@end group
204@end example
205@end defun
206
207@defun car-safe object
208This function lets you take the @sc{car} of a cons cell while avoiding
209errors for other data types. It returns the @sc{car} of @var{object} if
210@var{object} is a cons cell, @code{nil} otherwise. This is in contrast
211to @code{car}, which signals an error if @var{object} is not a list.
212
213@example
214@group
215(car-safe @var{object})
216@equiv{}
217(let ((x @var{object}))
218 (if (consp x)
219 (car x)
220 nil))
221@end group
222@end example
223@end defun
224
225@defun cdr-safe object
226This function lets you take the @sc{cdr} of a cons cell while
227avoiding errors for other data types. It returns the @sc{cdr} of
228@var{object} if @var{object} is a cons cell, @code{nil} otherwise.
229This is in contrast to @code{cdr}, which signals an error if
230@var{object} is not a list.
231
232@example
233@group
234(cdr-safe @var{object})
235@equiv{}
236(let ((x @var{object}))
237 (if (consp x)
238 (cdr x)
239 nil))
240@end group
241@end example
242@end defun
243
244@defmac pop listname
245This macro is a way of examining the @sc{car} of a list,
246and taking it off the list, all at once.
247
248It operates on the list which is stored in the symbol @var{listname}.
249It removes this element from the list by setting @var{listname}
250to the @sc{cdr} of its old value---but it also returns the @sc{car}
251of that list, which is the element being removed.
252
253@example
254x
255 @result{} (a b c)
256(pop x)
257 @result{} a
258x
259 @result{} (b c)
260@end example
261@end defmac
262
263@defun nth n list
264@anchor{Definition of nth}
265This function returns the @var{n}th element of @var{list}. Elements
266are numbered starting with zero, so the @sc{car} of @var{list} is
267element number zero. If the length of @var{list} is @var{n} or less,
268the value is @code{nil}.
269
270If @var{n} is negative, @code{nth} returns the first element of
271@var{list}.
272
273@example
274@group
275(nth 2 '(1 2 3 4))
276 @result{} 3
277@end group
278@group
279(nth 10 '(1 2 3 4))
280 @result{} nil
281@end group
282@group
283(nth -3 '(1 2 3 4))
284 @result{} 1
285
286(nth n x) @equiv{} (car (nthcdr n x))
287@end group
288@end example
289
290The function @code{elt} is similar, but applies to any kind of sequence.
291For historical reasons, it takes its arguments in the opposite order.
292@xref{Sequence Functions}.
293@end defun
294
295@defun nthcdr n list
296This function returns the @var{n}th @sc{cdr} of @var{list}. In other
297words, it skips past the first @var{n} links of @var{list} and returns
298what follows.
299
300If @var{n} is zero or negative, @code{nthcdr} returns all of
301@var{list}. If the length of @var{list} is @var{n} or less,
302@code{nthcdr} returns @code{nil}.
303
304@example
305@group
306(nthcdr 1 '(1 2 3 4))
307 @result{} (2 3 4)
308@end group
309@group
310(nthcdr 10 '(1 2 3 4))
311 @result{} nil
312@end group
313@group
314(nthcdr -3 '(1 2 3 4))
315 @result{} (1 2 3 4)
316@end group
317@end example
318@end defun
319
320@defun last list &optional n
321This function returns the last link of @var{list}. The @code{car} of
322this link is the list's last element. If @var{list} is null,
323@code{nil} is returned. If @var{n} is non-@code{nil}, the
324@var{n}th-to-last link is returned instead, or the whole of @var{list}
325if @var{n} is bigger than @var{list}'s length.
326@end defun
327
328@defun safe-length list
329@anchor{Definition of safe-length}
330This function returns the length of @var{list}, with no risk of either
331an error or an infinite loop. It generally returns the number of
332distinct cons cells in the list. However, for circular lists,
333the value is just an upper bound; it is often too large.
334
335If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
336returns 0.
337@end defun
338
339 The most common way to compute the length of a list, when you are not
340worried that it may be circular, is with @code{length}. @xref{Sequence
341Functions}.
342
343@defun caar cons-cell
344This is the same as @code{(car (car @var{cons-cell}))}.
345@end defun
346
347@defun cadr cons-cell
348This is the same as @code{(car (cdr @var{cons-cell}))}
349or @code{(nth 1 @var{cons-cell})}.
350@end defun
351
352@defun cdar cons-cell
353This is the same as @code{(cdr (car @var{cons-cell}))}.
354@end defun
355
356@defun cddr cons-cell
357This is the same as @code{(cdr (cdr @var{cons-cell}))}
358or @code{(nthcdr 2 @var{cons-cell})}.
359@end defun
360
361@defun butlast x &optional n
362This function returns the list @var{x} with the last element,
363or the last @var{n} elements, removed. If @var{n} is greater
364than zero it makes a copy of the list so as not to damage the
365original list. In general, @code{(append (butlast @var{x} @var{n})
366(last @var{x} @var{n}))} will return a list equal to @var{x}.
367@end defun
368
369@defun nbutlast x &optional n
370This is a version of @code{butlast} that works by destructively
371modifying the @code{cdr} of the appropriate element, rather than
372making a copy of the list.
373@end defun
374
375@node Building Lists
376@comment node-name, next, previous, up
377@section Building Cons Cells and Lists
378@cindex cons cells
379@cindex building lists
380
381 Many functions build lists, as lists reside at the very heart of Lisp.
382@code{cons} is the fundamental list-building function; however, it is
383interesting to note that @code{list} is used more times in the source
384code for Emacs than @code{cons}.
385
386@defun cons object1 object2
387This function is the most basic function for building new list
388structure. It creates a new cons cell, making @var{object1} the
389@sc{car}, and @var{object2} the @sc{cdr}. It then returns the new
390cons cell. The arguments @var{object1} and @var{object2} may be any
391Lisp objects, but most often @var{object2} is a list.
392
393@example
394@group
395(cons 1 '(2))
396 @result{} (1 2)
397@end group
398@group
399(cons 1 '())
400 @result{} (1)
401@end group
402@group
403(cons 1 2)
404 @result{} (1 . 2)
405@end group
406@end example
407
408@cindex consing
409@code{cons} is often used to add a single element to the front of a
410list. This is called @dfn{consing the element onto the list}.
411@footnote{There is no strictly equivalent way to add an element to
412the end of a list. You can use @code{(append @var{listname} (list
413@var{newelt}))}, which creates a whole new list by copying @var{listname}
414and adding @var{newelt} to its end. Or you can use @code{(nconc
415@var{listname} (list @var{newelt}))}, which modifies @var{listname}
416by following all the @sc{cdr}s and then replacing the terminating
417@code{nil}. Compare this to adding an element to the beginning of a
418list with @code{cons}, which neither copies nor modifies the list.}
419For example:
420
421@example
422(setq list (cons newelt list))
423@end example
424
425Note that there is no conflict between the variable named @code{list}
426used in this example and the function named @code{list} described below;
427any symbol can serve both purposes.
428@end defun
429
430@defun list &rest objects
431This function creates a list with @var{objects} as its elements. The
432resulting list is always @code{nil}-terminated. If no @var{objects}
433are given, the empty list is returned.
434
435@example
436@group
437(list 1 2 3 4 5)
438 @result{} (1 2 3 4 5)
439@end group
440@group
441(list 1 2 '(3 4 5) 'foo)
442 @result{} (1 2 (3 4 5) foo)
443@end group
444@group
445(list)
446 @result{} nil
447@end group
448@end example
449@end defun
450
451@defun make-list length object
452This function creates a list of @var{length} elements, in which each
453element is @var{object}. Compare @code{make-list} with
454@code{make-string} (@pxref{Creating Strings}).
455
456@example
457@group
458(make-list 3 'pigs)
459 @result{} (pigs pigs pigs)
460@end group
461@group
462(make-list 0 'pigs)
463 @result{} nil
464@end group
465@group
466(setq l (make-list 3 '(a b))
467 @result{} ((a b) (a b) (a b))
468(eq (car l) (cadr l))
469 @result{} t
470@end group
471@end example
472@end defun
473
474@defun append &rest sequences
475@cindex copying lists
476This function returns a list containing all the elements of
477@var{sequences}. The @var{sequences} may be lists, vectors,
478bool-vectors, or strings, but the last one should usually be a list.
479All arguments except the last one are copied, so none of the arguments
480is altered. (See @code{nconc} in @ref{Rearrangement}, for a way to join
481lists with no copying.)
482
483More generally, the final argument to @code{append} may be any Lisp
484object. The final argument is not copied or converted; it becomes the
485@sc{cdr} of the last cons cell in the new list. If the final argument
486is itself a list, then its elements become in effect elements of the
487result list. If the final element is not a list, the result is a
488dotted list since its final @sc{cdr} is not @code{nil} as required
489in a true list.
b8d4c8d0
GM
490@end defun
491
492 Here is an example of using @code{append}:
493
494@example
495@group
496(setq trees '(pine oak))
497 @result{} (pine oak)
498(setq more-trees (append '(maple birch) trees))
499 @result{} (maple birch pine oak)
500@end group
501
502@group
503trees
504 @result{} (pine oak)
505more-trees
506 @result{} (maple birch pine oak)
507@end group
508@group
509(eq trees (cdr (cdr more-trees)))
510 @result{} t
511@end group
512@end example
513
514 You can see how @code{append} works by looking at a box diagram. The
515variable @code{trees} is set to the list @code{(pine oak)} and then the
516variable @code{more-trees} is set to the list @code{(maple birch pine
517oak)}. However, the variable @code{trees} continues to refer to the
518original list:
519
520@smallexample
521@group
522more-trees trees
523| |
524| --- --- --- --- -> --- --- --- ---
525 --> | | |--> | | |--> | | |--> | | |--> nil
526 --- --- --- --- --- --- --- ---
527 | | | |
528 | | | |
529 --> maple -->birch --> pine --> oak
530@end group
531@end smallexample
532
533 An empty sequence contributes nothing to the value returned by
534@code{append}. As a consequence of this, a final @code{nil} argument
535forces a copy of the previous argument:
536
537@example
538@group
539trees
540 @result{} (pine oak)
541@end group
542@group
543(setq wood (append trees nil))
544 @result{} (pine oak)
545@end group
546@group
547wood
548 @result{} (pine oak)
549@end group
550@group
551(eq wood trees)
552 @result{} nil
553@end group
554@end example
555
556@noindent
557This once was the usual way to copy a list, before the function
558@code{copy-sequence} was invented. @xref{Sequences Arrays Vectors}.
559
560 Here we show the use of vectors and strings as arguments to @code{append}:
561
562@example
563@group
564(append [a b] "cd" nil)
565 @result{} (a b 99 100)
566@end group
567@end example
568
569 With the help of @code{apply} (@pxref{Calling Functions}), we can append
570all the lists in a list of lists:
571
572@example
573@group
574(apply 'append '((a b c) nil (x y z) nil))
575 @result{} (a b c x y z)
576@end group
577@end example
578
579 If no @var{sequences} are given, @code{nil} is returned:
580
581@example
582@group
583(append)
584 @result{} nil
585@end group
586@end example
587
588 Here are some examples where the final argument is not a list:
589
590@example
591(append '(x y) 'z)
592 @result{} (x y . z)
593(append '(x y) [z])
594 @result{} (x y . [z])
595@end example
596
597@noindent
598The second example shows that when the final argument is a sequence but
599not a list, the sequence's elements do not become elements of the
600resulting list. Instead, the sequence becomes the final @sc{cdr}, like
601any other non-list final argument.
602
603@defun reverse list
604This function creates a new list whose elements are the elements of
605@var{list}, but in reverse order. The original argument @var{list} is
606@emph{not} altered.
607
608@example
609@group
610(setq x '(1 2 3 4))
611 @result{} (1 2 3 4)
612@end group
613@group
614(reverse x)
615 @result{} (4 3 2 1)
616x
617 @result{} (1 2 3 4)
618@end group
619@end example
620@end defun
621
622@defun copy-tree tree &optional vecp
623This function returns a copy of the tree @code{tree}. If @var{tree} is a
624cons cell, this makes a new cons cell with the same @sc{car} and
625@sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
626same way.
627
628Normally, when @var{tree} is anything other than a cons cell,
629@code{copy-tree} simply returns @var{tree}. However, if @var{vecp} is
630non-@code{nil}, it copies vectors too (and operates recursively on
631their elements).
632@end defun
633
634@defun number-sequence from &optional to separation
635This returns a list of numbers starting with @var{from} and
636incrementing by @var{separation}, and ending at or just before
637@var{to}. @var{separation} can be positive or negative and defaults
638to 1. If @var{to} is @code{nil} or numerically equal to @var{from},
639the value is the one-element list @code{(@var{from})}. If @var{to} is
640less than @var{from} with a positive @var{separation}, or greater than
641@var{from} with a negative @var{separation}, the value is @code{nil}
642because those arguments specify an empty sequence.
643
644If @var{separation} is 0 and @var{to} is neither @code{nil} nor
645numerically equal to @var{from}, @code{number-sequence} signals an
646error, since those arguments specify an infinite sequence.
647
648All arguments can be integers or floating point numbers. However,
649floating point arguments can be tricky, because floating point
650arithmetic is inexact. For instance, depending on the machine, it may
651quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
652the one element list @code{(0.4)}, whereas
653@code{(number-sequence 0.4 0.8 0.2)} returns a list with three
654elements. The @var{n}th element of the list is computed by the exact
655formula @code{(+ @var{from} (* @var{n} @var{separation}))}. Thus, if
656one wants to make sure that @var{to} is included in the list, one can
657pass an expression of this exact type for @var{to}. Alternatively,
658one can replace @var{to} with a slightly larger value (or a slightly
659more negative value if @var{separation} is negative).
660
661Some examples:
662
663@example
664(number-sequence 4 9)
665 @result{} (4 5 6 7 8 9)
666(number-sequence 9 4 -1)
667 @result{} (9 8 7 6 5 4)
668(number-sequence 9 4 -2)
669 @result{} (9 7 5)
670(number-sequence 8)
671 @result{} (8)
672(number-sequence 8 5)
673 @result{} nil
674(number-sequence 5 8 -1)
675 @result{} nil
676(number-sequence 1.5 6 2)
677 @result{} (1.5 3.5 5.5)
678@end example
679@end defun
680
681@node List Variables
682@section Modifying List Variables
683
684 These functions, and one macro, provide convenient ways
685to modify a list which is stored in a variable.
686
687@defmac push newelt listname
688This macro provides an alternative way to write
689@code{(setq @var{listname} (cons @var{newelt} @var{listname}))}.
690
691@example
692(setq l '(a b))
693 @result{} (a b)
694(push 'c l)
695 @result{} (c a b)
696l
697 @result{} (c a b)
698@end example
699@end defmac
700
701 Two functions modify lists that are the values of variables.
702
703@defun add-to-list symbol element &optional append compare-fn
704This function sets the variable @var{symbol} by consing @var{element}
705onto the old value, if @var{element} is not already a member of that
706value. It returns the resulting list, whether updated or not. The
707value of @var{symbol} had better be a list already before the call.
708@code{add-to-list} uses @var{compare-fn} to compare @var{element}
709against existing list members; if @var{compare-fn} is @code{nil}, it
710uses @code{equal}.
711
712Normally, if @var{element} is added, it is added to the front of
713@var{symbol}, but if the optional argument @var{append} is
714non-@code{nil}, it is added at the end.
715
716The argument @var{symbol} is not implicitly quoted; @code{add-to-list}
717is an ordinary function, like @code{set} and unlike @code{setq}. Quote
718the argument yourself if that is what you want.
719@end defun
720
721Here's a scenario showing how to use @code{add-to-list}:
722
723@example
724(setq foo '(a b))
725 @result{} (a b)
726
727(add-to-list 'foo 'c) ;; @r{Add @code{c}.}
728 @result{} (c a b)
729
730(add-to-list 'foo 'b) ;; @r{No effect.}
731 @result{} (c a b)
732
733foo ;; @r{@code{foo} was changed.}
734 @result{} (c a b)
735@end example
736
737 An equivalent expression for @code{(add-to-list '@var{var}
738@var{value})} is this:
739
740@example
741(or (member @var{value} @var{var})
742 (setq @var{var} (cons @var{value} @var{var})))
743@end example
744
745@defun add-to-ordered-list symbol element &optional order
746This function sets the variable @var{symbol} by inserting
747@var{element} into the old value, which must be a list, at the
748position specified by @var{order}. If @var{element} is already a
749member of the list, its position in the list is adjusted according
750to @var{order}. Membership is tested using @code{eq}.
751This function returns the resulting list, whether updated or not.
752
753The @var{order} is typically a number (integer or float), and the
754elements of the list are sorted in non-decreasing numerical order.
755
756@var{order} may also be omitted or @code{nil}. Then the numeric order
757of @var{element} stays unchanged if it already has one; otherwise,
758@var{element} has no numeric order. Elements without a numeric list
759order are placed at the end of the list, in no particular order.
760
761Any other value for @var{order} removes the numeric order of @var{element}
762if it already has one; otherwise, it is equivalent to @code{nil}.
763
764The argument @var{symbol} is not implicitly quoted;
765@code{add-to-ordered-list} is an ordinary function, like @code{set}
766and unlike @code{setq}. Quote the argument yourself if that is what
767you want.
768
769The ordering information is stored in a hash table on @var{symbol}'s
770@code{list-order} property.
771@end defun
772
773Here's a scenario showing how to use @code{add-to-ordered-list}:
774
775@example
776(setq foo '())
777 @result{} nil
778
779(add-to-ordered-list 'foo 'a 1) ;; @r{Add @code{a}.}
780 @result{} (a)
781
782(add-to-ordered-list 'foo 'c 3) ;; @r{Add @code{c}.}
783 @result{} (a c)
784
785(add-to-ordered-list 'foo 'b 2) ;; @r{Add @code{b}.}
786 @result{} (a b c)
787
788(add-to-ordered-list 'foo 'b 4) ;; @r{Move @code{b}.}
789 @result{} (a c b)
790
791(add-to-ordered-list 'foo 'd) ;; @r{Append @code{d}.}
792 @result{} (a c b d)
793
794(add-to-ordered-list 'foo 'e) ;; @r{Add @code{e}}.
795 @result{} (a c b e d)
796
797foo ;; @r{@code{foo} was changed.}
798 @result{} (a c b e d)
799@end example
800
801@node Modifying Lists
802@section Modifying Existing List Structure
803@cindex destructive list operations
804
805 You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
806primitives @code{setcar} and @code{setcdr}. We call these ``destructive''
807operations because they change existing list structure.
808
809@cindex CL note---@code{rplaca} vs @code{setcar}
810@quotation
811@findex rplaca
812@findex rplacd
813@b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
814@code{rplacd} to alter list structure; they change structure the same
815way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
816return the cons cell while @code{setcar} and @code{setcdr} return the
817new @sc{car} or @sc{cdr}.
818@end quotation
819
820@menu
821* Setcar:: Replacing an element in a list.
822* Setcdr:: Replacing part of the list backbone.
823 This can be used to remove or add elements.
824* Rearrangement:: Reordering the elements in a list; combining lists.
825@end menu
826
827@node Setcar
828@subsection Altering List Elements with @code{setcar}
829
830 Changing the @sc{car} of a cons cell is done with @code{setcar}. When
831used on a list, @code{setcar} replaces one element of a list with a
832different element.
833
834@defun setcar cons object
835This function stores @var{object} as the new @sc{car} of @var{cons},
836replacing its previous @sc{car}. In other words, it changes the
837@sc{car} slot of @var{cons} to refer to @var{object}. It returns the
838value @var{object}. For example:
839
840@example
841@group
842(setq x '(1 2))
843 @result{} (1 2)
844@end group
845@group
846(setcar x 4)
847 @result{} 4
848@end group
849@group
850x
851 @result{} (4 2)
852@end group
853@end example
854@end defun
855
856 When a cons cell is part of the shared structure of several lists,
857storing a new @sc{car} into the cons changes one element of each of
858these lists. Here is an example:
859
860@example
861@group
862;; @r{Create two lists that are partly shared.}
863(setq x1 '(a b c))
864 @result{} (a b c)
865(setq x2 (cons 'z (cdr x1)))
866 @result{} (z b c)
867@end group
868
869@group
870;; @r{Replace the @sc{car} of a shared link.}
871(setcar (cdr x1) 'foo)
872 @result{} foo
873x1 ; @r{Both lists are changed.}
874 @result{} (a foo c)
875x2
876 @result{} (z foo c)
877@end group
878
879@group
880;; @r{Replace the @sc{car} of a link that is not shared.}
881(setcar x1 'baz)
882 @result{} baz
883x1 ; @r{Only one list is changed.}
884 @result{} (baz foo c)
885x2
886 @result{} (z foo c)
887@end group
888@end example
889
890 Here is a graphical depiction of the shared structure of the two lists
891in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
892changes them both:
893
894@example
895@group
896 --- --- --- --- --- ---
897x1---> | | |----> | | |--> | | |--> nil
898 --- --- --- --- --- ---
899 | --> | |
900 | | | |
901 --> a | --> b --> c
902 |
903 --- --- |
904x2--> | | |--
905 --- ---
906 |
907 |
908 --> z
909@end group
910@end example
911
912 Here is an alternative form of box diagram, showing the same relationship:
913
914@example
915@group
916x1:
917 -------------- -------------- --------------
918| car | cdr | | car | cdr | | car | cdr |
919| a | o------->| b | o------->| c | nil |
920| | | -->| | | | | |
921 -------------- | -------------- --------------
922 |
923x2: |
924 -------------- |
925| car | cdr | |
926| z | o----
927| | |
928 --------------
929@end group
930@end example
931
932@node Setcdr
933@subsection Altering the CDR of a List
934
935 The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
936
937@defun setcdr cons object
938This function stores @var{object} as the new @sc{cdr} of @var{cons},
939replacing its previous @sc{cdr}. In other words, it changes the
940@sc{cdr} slot of @var{cons} to refer to @var{object}. It returns the
941value @var{object}.
942@end defun
943
944 Here is an example of replacing the @sc{cdr} of a list with a
945different list. All but the first element of the list are removed in
946favor of a different sequence of elements. The first element is
947unchanged, because it resides in the @sc{car} of the list, and is not
948reached via the @sc{cdr}.
949
950@example
951@group
952(setq x '(1 2 3))
953 @result{} (1 2 3)
954@end group
955@group
956(setcdr x '(4))
957 @result{} (4)
958@end group
959@group
960x
961 @result{} (1 4)
962@end group
963@end example
964
965 You can delete elements from the middle of a list by altering the
966@sc{cdr}s of the cons cells in the list. For example, here we delete
967the second element, @code{b}, from the list @code{(a b c)}, by changing
968the @sc{cdr} of the first cons cell:
969
970@example
971@group
972(setq x1 '(a b c))
973 @result{} (a b c)
974(setcdr x1 (cdr (cdr x1)))
975 @result{} (c)
976x1
977 @result{} (a c)
978@end group
979@end example
980
981 Here is the result in box notation:
982
983@smallexample
984@group
985 --------------------
986 | |
987 -------------- | -------------- | --------------
988| car | cdr | | | car | cdr | -->| car | cdr |
989| a | o----- | b | o-------->| c | nil |
990| | | | | | | | |
991 -------------- -------------- --------------
992@end group
993@end smallexample
994
995@noindent
996The second cons cell, which previously held the element @code{b}, still
997exists and its @sc{car} is still @code{b}, but it no longer forms part
998of this list.
999
1000 It is equally easy to insert a new element by changing @sc{cdr}s:
1001
1002@example
1003@group
1004(setq x1 '(a b c))
1005 @result{} (a b c)
1006(setcdr x1 (cons 'd (cdr x1)))
1007 @result{} (d b c)
1008x1
1009 @result{} (a d b c)
1010@end group
1011@end example
1012
1013 Here is this result in box notation:
1014
1015@smallexample
1016@group
1017 -------------- ------------- -------------
1018| car | cdr | | car | cdr | | car | cdr |
1019| a | o | -->| b | o------->| c | nil |
1020| | | | | | | | | | |
1021 --------- | -- | ------------- -------------
1022 | |
1023 ----- --------
1024 | |
1025 | --------------- |
1026 | | car | cdr | |
1027 -->| d | o------
1028 | | |
1029 ---------------
1030@end group
1031@end smallexample
1032
1033@node Rearrangement
1034@subsection Functions that Rearrange Lists
1035@cindex rearrangement of lists
1036@cindex modification of lists
1037
1038 Here are some functions that rearrange lists ``destructively'' by
1039modifying the @sc{cdr}s of their component cons cells. We call these
1040functions ``destructive'' because they chew up the original lists passed
1041to them as arguments, relinking their cons cells to form a new list that
1042is the returned value.
1043
1044@ifnottex
1045 See @code{delq}, in @ref{Sets And Lists}, for another function
1046that modifies cons cells.
1047@end ifnottex
1048@iftex
1049 The function @code{delq} in the following section is another example
1050of destructive list manipulation.
1051@end iftex
1052
1053@defun nconc &rest lists
1054@cindex concatenating lists
1055@cindex joining lists
1056This function returns a list containing all the elements of @var{lists}.
1057Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
1058@emph{not} copied. Instead, the last @sc{cdr} of each of the
1059@var{lists} is changed to refer to the following list. The last of the
1060@var{lists} is not altered. For example:
1061
1062@example
1063@group
1064(setq x '(1 2 3))
1065 @result{} (1 2 3)
1066@end group
1067@group
1068(nconc x '(4 5))
1069 @result{} (1 2 3 4 5)
1070@end group
1071@group
1072x
1073 @result{} (1 2 3 4 5)
1074@end group
1075@end example
1076
1077 Since the last argument of @code{nconc} is not itself modified, it is
1078reasonable to use a constant list, such as @code{'(4 5)}, as in the
1079above example. For the same reason, the last argument need not be a
1080list:
1081
1082@example
1083@group
1084(setq x '(1 2 3))
1085 @result{} (1 2 3)
1086@end group
1087@group
1088(nconc x 'z)
1089 @result{} (1 2 3 . z)
1090@end group
1091@group
1092x
1093 @result{} (1 2 3 . z)
1094@end group
1095@end example
1096
1097However, the other arguments (all but the last) must be lists.
1098
1099A common pitfall is to use a quoted constant list as a non-last
1100argument to @code{nconc}. If you do this, your program will change
1101each time you run it! Here is what happens:
1102
1103@smallexample
1104@group
1105(defun add-foo (x) ; @r{We want this function to add}
1106 (nconc '(foo) x)) ; @r{@code{foo} to the front of its arg.}
1107@end group
1108
1109@group
1110(symbol-function 'add-foo)
1111 @result{} (lambda (x) (nconc (quote (foo)) x))
1112@end group
1113
1114@group
1115(setq xx (add-foo '(1 2))) ; @r{It seems to work.}
1116 @result{} (foo 1 2)
1117@end group
1118@group
1119(setq xy (add-foo '(3 4))) ; @r{What happened?}
1120 @result{} (foo 1 2 3 4)
1121@end group
1122@group
1123(eq xx xy)
1124 @result{} t
1125@end group
1126
1127@group
1128(symbol-function 'add-foo)
1129 @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1130@end group
1131@end smallexample
1132@end defun
1133
1134@defun nreverse list
1135@cindex reversing a list
1136 This function reverses the order of the elements of @var{list}.
1137Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1138the @sc{cdr}s in the cons cells forming the list. The cons cell that
1139used to be the last one in @var{list} becomes the first cons cell of the
1140value.
1141
1142 For example:
1143
1144@example
1145@group
1146(setq x '(a b c))
1147 @result{} (a b c)
1148@end group
1149@group
1150x
1151 @result{} (a b c)
1152(nreverse x)
1153 @result{} (c b a)
1154@end group
1155@group
1156;; @r{The cons cell that was first is now last.}
1157x
1158 @result{} (a)
1159@end group
1160@end example
1161
1162 To avoid confusion, we usually store the result of @code{nreverse}
1163back in the same variable which held the original list:
1164
1165@example
1166(setq x (nreverse x))
1167@end example
1168
1169 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1170presented graphically:
1171
1172@smallexample
1173@group
1174@r{Original list head:} @r{Reversed list:}
1175 ------------- ------------- ------------
1176| car | cdr | | car | cdr | | car | cdr |
1177| a | nil |<-- | b | o |<-- | c | o |
1178| | | | | | | | | | | | |
1179 ------------- | --------- | - | -------- | -
1180 | | | |
1181 ------------- ------------
1182@end group
1183@end smallexample
1184@end defun
1185
1186@defun sort list predicate
1187@cindex stable sort
1188@cindex sorting lists
1189This function sorts @var{list} stably, though destructively, and
1190returns the sorted list. It compares elements using @var{predicate}. A
1191stable sort is one in which elements with equal sort keys maintain their
1192relative order before and after the sort. Stability is important when
1193successive sorts are used to order elements according to different
1194criteria.
1195
1196The argument @var{predicate} must be a function that accepts two
1197arguments. It is called with two elements of @var{list}. To get an
1198increasing order sort, the @var{predicate} should return non-@code{nil} if the
1199first element is ``less than'' the second, or @code{nil} if not.
1200
1201The comparison function @var{predicate} must give reliable results for
1202any given pair of arguments, at least within a single call to
1203@code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
1204less than @var{b}, @var{b} must not be less than @var{a}. It must be
1205@dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1206is less than @var{c}, then @var{a} must be less than @var{c}. If you
1207use a comparison function which does not meet these requirements, the
1208result of @code{sort} is unpredictable.
1209
1210The destructive aspect of @code{sort} is that it rearranges the cons
1211cells forming @var{list} by changing @sc{cdr}s. A nondestructive sort
1212function would create new cons cells to store the elements in their
1213sorted order. If you wish to make a sorted copy without destroying the
1214original, copy it first with @code{copy-sequence} and then sort.
1215
1216Sorting does not change the @sc{car}s of the cons cells in @var{list};
1217the cons cell that originally contained the element @code{a} in
1218@var{list} still has @code{a} in its @sc{car} after sorting, but it now
1219appears in a different position in the list due to the change of
1220@sc{cdr}s. For example:
1221
1222@example
1223@group
1224(setq nums '(1 3 2 6 5 4 0))
1225 @result{} (1 3 2 6 5 4 0)
1226@end group
1227@group
1228(sort nums '<)
1229 @result{} (0 1 2 3 4 5 6)
1230@end group
1231@group
1232nums
1233 @result{} (1 2 3 4 5 6)
1234@end group
1235@end example
1236
1237@noindent
1238@strong{Warning}: Note that the list in @code{nums} no longer contains
12390; this is the same cons cell that it was before, but it is no longer
1240the first one in the list. Don't assume a variable that formerly held
1241the argument now holds the entire sorted list! Instead, save the result
1242of @code{sort} and use that. Most often we store the result back into
1243the variable that held the original list:
1244
1245@example
1246(setq nums (sort nums '<))
1247@end example
1248
1249@xref{Sorting}, for more functions that perform sorting.
1250See @code{documentation} in @ref{Accessing Documentation}, for a
1251useful example of @code{sort}.
1252@end defun
1253
1254@node Sets And Lists
1255@section Using Lists as Sets
1256@cindex lists as sets
1257@cindex sets
1258
1259 A list can represent an unordered mathematical set---simply consider a
1260value an element of a set if it appears in the list, and ignore the
1261order of the list. To form the union of two sets, use @code{append} (as
1262long as you don't mind having duplicate elements). You can remove
1263@code{equal} duplicates using @code{delete-dups}. Other useful
1264functions for sets include @code{memq} and @code{delq}, and their
1265@code{equal} versions, @code{member} and @code{delete}.
1266
1267@cindex CL note---lack @code{union}, @code{intersection}
1268@quotation
1269@b{Common Lisp note:} Common Lisp has functions @code{union} (which
1270avoids duplicate elements) and @code{intersection} for set operations,
1271but GNU Emacs Lisp does not have them. You can write them in Lisp if
1272you wish.
1273@end quotation
1274
1275@defun memq object list
1276@cindex membership in a list
1277This function tests to see whether @var{object} is a member of
1278@var{list}. If it is, @code{memq} returns a list starting with the
1279first occurrence of @var{object}. Otherwise, it returns @code{nil}.
1280The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1281compare @var{object} against the elements of the list. For example:
1282
1283@example
1284@group
1285(memq 'b '(a b c b a))
1286 @result{} (b c b a)
1287@end group
1288@group
1289(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1290 @result{} nil
1291@end group
1292@end example
1293@end defun
1294
1295@defun delq object list
1296@cindex deleting list elements
1297This function destructively removes all elements @code{eq} to
1298@var{object} from @var{list}. The letter @samp{q} in @code{delq} says
1299that it uses @code{eq} to compare @var{object} against the elements of
1300the list, like @code{memq} and @code{remq}.
1301@end defun
1302
1303When @code{delq} deletes elements from the front of the list, it does so
1304simply by advancing down the list and returning a sublist that starts
1305after those elements:
1306
1307@example
1308@group
1309(delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1310@end group
1311@end example
1312
1313When an element to be deleted appears in the middle of the list,
1314removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1315
1316@example
1317@group
1318(setq sample-list '(a b c (4)))
1319 @result{} (a b c (4))
1320@end group
1321@group
1322(delq 'a sample-list)
1323 @result{} (b c (4))
1324@end group
1325@group
1326sample-list
1327 @result{} (a b c (4))
1328@end group
1329@group
1330(delq 'c sample-list)
1331 @result{} (a b (4))
1332@end group
1333@group
1334sample-list
1335 @result{} (a b (4))
1336@end group
1337@end example
1338
1339Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1340splice out the third element, but @code{(delq 'a sample-list)} does not
1341splice anything---it just returns a shorter list. Don't assume that a
1342variable which formerly held the argument @var{list} now has fewer
1343elements, or that it still holds the original list! Instead, save the
1344result of @code{delq} and use that. Most often we store the result back
1345into the variable that held the original list:
1346
1347@example
1348(setq flowers (delq 'rose flowers))
1349@end example
1350
1351In the following example, the @code{(4)} that @code{delq} attempts to match
1352and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1353
1354@example
1355@group
1356(delq '(4) sample-list)
1357 @result{} (a c (4))
1358@end group
1359
1360If you want to delete elements that are @code{equal} to a given value,
1361use @code{delete} (see below).
1362@end example
1363
1364@defun remq object list
1365This function returns a copy of @var{list}, with all elements removed
1366which are @code{eq} to @var{object}. The letter @samp{q} in @code{remq}
1367says that it uses @code{eq} to compare @var{object} against the elements
1368of @code{list}.
1369
1370@example
1371@group
1372(setq sample-list '(a b c a b c))
1373 @result{} (a b c a b c)
1374@end group
1375@group
1376(remq 'a sample-list)
1377 @result{} (b c b c)
1378@end group
1379@group
1380sample-list
1381 @result{} (a b c a b c)
1382@end group
1383@end example
1384@end defun
1385
1386@defun memql object list
1387The function @code{memql} tests to see whether @var{object} is a member
1388of @var{list}, comparing members with @var{object} using @code{eql},
1389so floating point elements are compared by value.
1390If @var{object} is a member, @code{memql} returns a list starting with
1391its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1392
1393Compare this with @code{memq}:
1394
1395@example
1396@group
1397(memql 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are @code{eql}.}
1398 @result{} (1.2 1.3)
1399@end group
1400@group
1401(memq 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are not @code{eq}.}
1402 @result{} nil
1403@end group
1404@end example
1405@end defun
1406
1407The following three functions are like @code{memq}, @code{delq} and
1408@code{remq}, but use @code{equal} rather than @code{eq} to compare
1409elements. @xref{Equality Predicates}.
1410
1411@defun member object list
1412The function @code{member} tests to see whether @var{object} is a member
1413of @var{list}, comparing members with @var{object} using @code{equal}.
1414If @var{object} is a member, @code{member} returns a list starting with
1415its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1416
1417Compare this with @code{memq}:
1418
1419@example
1420@group
1421(member '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1422 @result{} ((2))
1423@end group
1424@group
1425(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1426 @result{} nil
1427@end group
1428@group
1429;; @r{Two strings with the same contents are @code{equal}.}
1430(member "foo" '("foo" "bar"))
1431 @result{} ("foo" "bar")
1432@end group
1433@end example
1434@end defun
1435
1436@defun delete object sequence
1437If @code{sequence} is a list, this function destructively removes all
1438elements @code{equal} to @var{object} from @var{sequence}. For lists,
1439@code{delete} is to @code{delq} as @code{member} is to @code{memq}: it
1440uses @code{equal} to compare elements with @var{object}, like
1441@code{member}; when it finds an element that matches, it cuts the
1442element out just as @code{delq} would.
1443
1444If @code{sequence} is a vector or string, @code{delete} returns a copy
1445of @code{sequence} with all elements @code{equal} to @code{object}
1446removed.
1447
1448For example:
1449
1450@example
1451@group
1452(setq l '((2) (1) (2)))
1453(delete '(2) l)
1454 @result{} ((1))
1455l
1456 @result{} ((2) (1))
1457;; @r{If you want to change @code{l} reliably,}
1458;; @r{write @code{(setq l (delete elt l))}.}
1459@end group
1460@group
1461(setq l '((2) (1) (2)))
1462(delete '(1) l)
1463 @result{} ((2) (2))
1464l
1465 @result{} ((2) (2))
1466;; @r{In this case, it makes no difference whether you set @code{l},}
1467;; @r{but you should do so for the sake of the other case.}
1468@end group
1469@group
1470(delete '(2) [(2) (1) (2)])
1471 @result{} [(1)]
1472@end group
1473@end example
1474@end defun
1475
1476@defun remove object sequence
1477This function is the non-destructive counterpart of @code{delete}. It
1478returns a copy of @code{sequence}, a list, vector, or string, with
1479elements @code{equal} to @code{object} removed. For example:
1480
1481@example
1482@group
1483(remove '(2) '((2) (1) (2)))
1484 @result{} ((1))
1485@end group
1486@group
1487(remove '(2) [(2) (1) (2)])
1488 @result{} [(1)]
1489@end group
1490@end example
1491@end defun
1492
1493@quotation
1494@b{Common Lisp note:} The functions @code{member}, @code{delete} and
1495@code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1496Lisp. The Common Lisp versions do not use @code{equal} to compare
1497elements.
1498@end quotation
1499
1500@defun member-ignore-case object list
1501This function is like @code{member}, except that @var{object} should
1502be a string and that it ignores differences in letter-case and text
1503representation: upper-case and lower-case letters are treated as
1504equal, and unibyte strings are converted to multibyte prior to
1505comparison.
1506@end defun
1507
1508@defun delete-dups list
1509This function destructively removes all @code{equal} duplicates from
1510@var{list}, stores the result in @var{list} and returns it. Of
1511several @code{equal} occurrences of an element in @var{list},
1512@code{delete-dups} keeps the first one.
1513@end defun
1514
1515 See also the function @code{add-to-list}, in @ref{List Variables},
1516for a way to add an element to a list stored in a variable and used as a
1517set.
1518
1519@node Association Lists
1520@section Association Lists
1521@cindex association list
1522@cindex alist
1523
1524 An @dfn{association list}, or @dfn{alist} for short, records a mapping
1525from keys to values. It is a list of cons cells called
1526@dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1527@sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1528is not related to the term ``key sequence''; it means a value used to
1529look up an item in a table. In this case, the table is the alist, and
1530the alist associations are the items.}
1531
1532 Here is an example of an alist. The key @code{pine} is associated with
1533the value @code{cones}; the key @code{oak} is associated with
1534@code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1535
1536@example
1537@group
1538((pine . cones)
1539 (oak . acorns)
1540 (maple . seeds))
1541@end group
1542@end example
1543
1544 Both the values and the keys in an alist may be any Lisp objects.
1545For example, in the following alist, the symbol @code{a} is
1546associated with the number @code{1}, and the string @code{"b"} is
1547associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1548the alist element:
1549
1550@example
1551((a . 1) ("b" 2 3))
1552@end example
1553
1554 Sometimes it is better to design an alist to store the associated
1555value in the @sc{car} of the @sc{cdr} of the element. Here is an
1556example of such an alist:
1557
1558@example
1559((rose red) (lily white) (buttercup yellow))
1560@end example
1561
1562@noindent
1563Here we regard @code{red} as the value associated with @code{rose}. One
1564advantage of this kind of alist is that you can store other related
1565information---even a list of other items---in the @sc{cdr} of the
1566@sc{cdr}. One disadvantage is that you cannot use @code{rassq} (see
1567below) to find the element containing a given value. When neither of
1568these considerations is important, the choice is a matter of taste, as
1569long as you are consistent about it for any given alist.
1570
1571 The same alist shown above could be regarded as having the
1572associated value in the @sc{cdr} of the element; the value associated
1573with @code{rose} would be the list @code{(red)}.
1574
1575 Association lists are often used to record information that you might
1576otherwise keep on a stack, since new associations may be added easily to
1577the front of the list. When searching an association list for an
1578association with a given key, the first one found is returned, if there
1579is more than one.
1580
1581 In Emacs Lisp, it is @emph{not} an error if an element of an
1582association list is not a cons cell. The alist search functions simply
1583ignore such elements. Many other versions of Lisp signal errors in such
1584cases.
1585
1586 Note that property lists are similar to association lists in several
1587respects. A property list behaves like an association list in which
1588each key can occur only once. @xref{Property Lists}, for a comparison
1589of property lists and association lists.
1590
1591@defun assoc key alist
1592This function returns the first association for @var{key} in
1593@var{alist}, comparing @var{key} against the alist elements using
1594@code{equal} (@pxref{Equality Predicates}). It returns @code{nil} if no
1595association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1596For example:
1597
1598@smallexample
1599(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1600 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1601(assoc 'oak trees)
1602 @result{} (oak . acorns)
1603(cdr (assoc 'oak trees))
1604 @result{} acorns
1605(assoc 'birch trees)
1606 @result{} nil
1607@end smallexample
1608
1609Here is another example, in which the keys and values are not symbols:
1610
1611@smallexample
1612(setq needles-per-cluster
1613 '((2 "Austrian Pine" "Red Pine")
1614 (3 "Pitch Pine")
1615 (5 "White Pine")))
1616
1617(cdr (assoc 3 needles-per-cluster))
1618 @result{} ("Pitch Pine")
1619(cdr (assoc 2 needles-per-cluster))
1620 @result{} ("Austrian Pine" "Red Pine")
1621@end smallexample
1622@end defun
1623
1624 The function @code{assoc-string} is much like @code{assoc} except
1625that it ignores certain differences between strings. @xref{Text
1626Comparison}.
1627
1628@defun rassoc value alist
1629This function returns the first association with value @var{value} in
1630@var{alist}. It returns @code{nil} if no association in @var{alist} has
1631a @sc{cdr} @code{equal} to @var{value}.
1632
1633@code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1634each @var{alist} association instead of the @sc{car}. You can think of
1635this as ``reverse @code{assoc},'' finding the key for a given value.
1636@end defun
1637
1638@defun assq key alist
1639This function is like @code{assoc} in that it returns the first
1640association for @var{key} in @var{alist}, but it makes the comparison
1641using @code{eq} instead of @code{equal}. @code{assq} returns @code{nil}
1642if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1643This function is used more often than @code{assoc}, since @code{eq} is
1644faster than @code{equal} and most alists use symbols as keys.
1645@xref{Equality Predicates}.
1646
1647@smallexample
1648(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1649 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1650(assq 'pine trees)
1651 @result{} (pine . cones)
1652@end smallexample
1653
1654On the other hand, @code{assq} is not usually useful in alists where the
1655keys may not be symbols:
1656
1657@smallexample
1658(setq leaves
1659 '(("simple leaves" . oak)
1660 ("compound leaves" . horsechestnut)))
1661
1662(assq "simple leaves" leaves)
1663 @result{} nil
1664(assoc "simple leaves" leaves)
1665 @result{} ("simple leaves" . oak)
1666@end smallexample
1667@end defun
1668
1669@defun rassq value alist
1670This function returns the first association with value @var{value} in
1671@var{alist}. It returns @code{nil} if no association in @var{alist} has
1672a @sc{cdr} @code{eq} to @var{value}.
1673
1674@code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1675each @var{alist} association instead of the @sc{car}. You can think of
1676this as ``reverse @code{assq},'' finding the key for a given value.
1677
1678For example:
1679
1680@smallexample
1681(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1682
1683(rassq 'acorns trees)
1684 @result{} (oak . acorns)
1685(rassq 'spores trees)
1686 @result{} nil
1687@end smallexample
1688
1689@code{rassq} cannot search for a value stored in the @sc{car}
1690of the @sc{cdr} of an element:
1691
1692@smallexample
1693(setq colors '((rose red) (lily white) (buttercup yellow)))
1694
1695(rassq 'white colors)
1696 @result{} nil
1697@end smallexample
1698
1699In this case, the @sc{cdr} of the association @code{(lily white)} is not
1700the symbol @code{white}, but rather the list @code{(white)}. This
1701becomes clearer if the association is written in dotted pair notation:
1702
1703@smallexample
1704(lily white) @equiv{} (lily . (white))
1705@end smallexample
1706@end defun
1707
1708@defun assoc-default key alist &optional test default
1709This function searches @var{alist} for a match for @var{key}. For each
1710element of @var{alist}, it compares the element (if it is an atom) or
1711the element's @sc{car} (if it is a cons) against @var{key}, by calling
1712@var{test} with two arguments: the element or its @sc{car}, and
1713@var{key}. The arguments are passed in that order so that you can get
1714useful results using @code{string-match} with an alist that contains
1715regular expressions (@pxref{Regexp Search}). If @var{test} is omitted
1716or @code{nil}, @code{equal} is used for comparison.
1717
1718If an alist element matches @var{key} by this criterion,
1719then @code{assoc-default} returns a value based on this element.
1720If the element is a cons, then the value is the element's @sc{cdr}.
1721Otherwise, the return value is @var{default}.
1722
1723If no alist element matches @var{key}, @code{assoc-default} returns
1724@code{nil}.
1725@end defun
1726
1727@defun copy-alist alist
1728@cindex copying alists
1729This function returns a two-level deep copy of @var{alist}: it creates a
1730new copy of each association, so that you can alter the associations of
1731the new alist without changing the old one.
1732
1733@smallexample
1734@group
1735(setq needles-per-cluster
1736 '((2 . ("Austrian Pine" "Red Pine"))
1737 (3 . ("Pitch Pine"))
1738@end group
1739 (5 . ("White Pine"))))
1740@result{}
1741((2 "Austrian Pine" "Red Pine")
1742 (3 "Pitch Pine")
1743 (5 "White Pine"))
1744
1745(setq copy (copy-alist needles-per-cluster))
1746@result{}
1747((2 "Austrian Pine" "Red Pine")
1748 (3 "Pitch Pine")
1749 (5 "White Pine"))
1750
1751(eq needles-per-cluster copy)
1752 @result{} nil
1753(equal needles-per-cluster copy)
1754 @result{} t
1755(eq (car needles-per-cluster) (car copy))
1756 @result{} nil
1757(cdr (car (cdr needles-per-cluster)))
1758 @result{} ("Pitch Pine")
1759@group
1760(eq (cdr (car (cdr needles-per-cluster)))
1761 (cdr (car (cdr copy))))
1762 @result{} t
1763@end group
1764@end smallexample
1765
1766 This example shows how @code{copy-alist} makes it possible to change
1767the associations of one copy without affecting the other:
1768
1769@smallexample
1770@group
1771(setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1772(cdr (assq 3 needles-per-cluster))
1773 @result{} ("Pitch Pine")
1774@end group
1775@end smallexample
1776@end defun
1777
1778@defun assq-delete-all key alist
1779This function deletes from @var{alist} all the elements whose @sc{car}
1780is @code{eq} to @var{key}, much as if you used @code{delq} to delete
1781each such element one by one. It returns the shortened alist, and
1782often modifies the original list structure of @var{alist}. For
1783correct results, use the return value of @code{assq-delete-all} rather
1784than looking at the saved value of @var{alist}.
1785
1786@example
1787(setq alist '((foo 1) (bar 2) (foo 3) (lose 4)))
1788 @result{} ((foo 1) (bar 2) (foo 3) (lose 4))
1789(assq-delete-all 'foo alist)
1790 @result{} ((bar 2) (lose 4))
1791alist
1792 @result{} ((foo 1) (bar 2) (lose 4))
1793@end example
1794@end defun
1795
1796@defun rassq-delete-all value alist
1797This function deletes from @var{alist} all the elements whose @sc{cdr}
1798is @code{eq} to @var{value}. It returns the shortened alist, and
1799often modifies the original list structure of @var{alist}.
1800@code{rassq-delete-all} is like @code{assq-delete-all} except that it
1801compares the @sc{cdr} of each @var{alist} association instead of the
1802@sc{car}.
1803@end defun
1804
1805@node Rings
1806@section Managing a Fixed-Size Ring of Objects
1807
1808@cindex ring data structure
1809 This section describes functions for operating on rings. A
1810@dfn{ring} is a fixed-size data structure that supports insertion,
1811deletion, rotation, and modulo-indexed reference and traversal.
1812
1813@defun make-ring size
1814This returns a new ring capable of holding @var{size} objects.
1815@var{size} should be an integer.
1816@end defun
1817
1818@defun ring-p object
1819This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1820@end defun
1821
1822@defun ring-size ring
1823This returns the maximum capacity of the @var{ring}.
1824@end defun
1825
1826@defun ring-length ring
1827This returns the number of objects that @var{ring} currently contains.
1828The value will never exceed that returned by @code{ring-size}.
1829@end defun
1830
1831@defun ring-elements ring
1832This returns a list of the objects in @var{ring}, in order, newest first.
1833@end defun
1834
1835@defun ring-copy ring
1836This returns a new ring which is a copy of @var{ring}.
1837The new ring contains the same (@code{eq}) objects as @var{ring}.
1838@end defun
1839
1840@defun ring-empty-p ring
1841This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1842@end defun
1843
1844 The newest element in the ring always has index 0. Higher indices
1845correspond to older elements. Indices are computed modulo the ring
1846length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1847to the next-oldest, and so forth.
1848
1849@defun ring-ref ring index
1850This returns the object in @var{ring} found at index @var{index}.
1851@var{index} may be negative or greater than the ring length. If
1852@var{ring} is empty, @code{ring-ref} signals an error.
1853@end defun
1854
1855@defun ring-insert ring object
1856This inserts @var{object} into @var{ring}, making it the newest
1857element, and returns @var{object}.
1858
1859If the ring is full, insertion removes the oldest element to
1860make room for the new element.
1861@end defun
1862
1863@defun ring-remove ring &optional index
1864Remove an object from @var{ring}, and return that object. The
1865argument @var{index} specifies which item to remove; if it is
1866@code{nil}, that means to remove the oldest item. If @var{ring} is
1867empty, @code{ring-remove} signals an error.
1868@end defun
1869
1870@defun ring-insert-at-beginning ring object
1871This inserts @var{object} into @var{ring}, treating it as the oldest
1872element. The return value is not significant.
1873
1874If the ring is full, this function removes the newest element to make
1875room for the inserted element.
1876@end defun
1877
1878@cindex fifo data structure
1879 If you are careful not to exceed the ring size, you can
1880use the ring as a first-in-first-out queue. For example:
1881
1882@lisp
1883(let ((fifo (make-ring 5)))
1884 (mapc (lambda (obj) (ring-insert fifo obj))
1885 '(0 one "two"))
1886 (list (ring-remove fifo) t
1887 (ring-remove fifo) t
1888 (ring-remove fifo)))
1889 @result{} (0 t one t "two")
1890@end lisp
1891
1892@ignore
1893 arch-tag: 31fb8a4e-4aa8-4a74-a206-aa00451394d4
1894@end ignore