Convert consecutive FSF copyright years to ranges.
[bpt/emacs.git] / src / unexmacosx.c
CommitLineData
e0f712ba 1/* Dump Emacs in Mach-O format for use on Mac OS X.
73b0cd50 2 Copyright (C) 2001-2011 Free Software Foundation, Inc.
e0f712ba
AC
3
4This file is part of GNU Emacs.
5
9ec0b715 6GNU Emacs is free software: you can redistribute it and/or modify
e0f712ba 7it under the terms of the GNU General Public License as published by
9ec0b715
GM
8the Free Software Foundation, either version 3 of the License, or
9(at your option) any later version.
e0f712ba
AC
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
9ec0b715 17along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
e0f712ba
AC
18
19/* Contributed by Andrew Choi (akochoi@mac.com). */
20
21/* Documentation note.
22
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on Mac OS X displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
35
36/* The Mac OS X implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
50 it. */
51
52/* Peculiarity of the Mach-O files generated by ld in Mac OS X
53 (possible causes of future bugs if changed).
54
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
62 remains unchanged.
63
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
c57038f8
YM
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
72 segments.
e0f712ba
AC
73
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
86*/
87
e885315d
JD
88/* config.h #define:s malloc/realloc/free and then includes stdlib.h.
89 We want the undefined versions, but if config.h includes stdlib.h
90 with the #define:s in place, the prototypes will be wrong and we get
91 warnings. To prevent that, include stdlib.h before config.h. */
92
e0f712ba 93#include <stdlib.h>
8beb828a
JD
94#include <config.h>
95#undef malloc
96#undef realloc
97#undef free
e885315d
JD
98#include <stdio.h>
99#include <fcntl.h>
100#include <stdarg.h>
101#include <sys/types.h>
e0f712ba
AC
102#include <unistd.h>
103#include <mach/mach.h>
104#include <mach-o/loader.h>
043131c4
AC
105#include <mach-o/reloc.h>
106#if defined (__ppc__)
107#include <mach-o/ppc/reloc.h>
108#endif
7f900522 109#ifdef HAVE_MALLOC_MALLOC_H
f7f3a65f
ST
110#include <malloc/malloc.h>
111#else
e0f712ba 112#include <objc/malloc.h>
f7f3a65f
ST
113#endif
114
40ef0695
YM
115#include <assert.h>
116
73da71f9
YM
117#ifdef _LP64
118#define mach_header mach_header_64
119#define segment_command segment_command_64
120#undef VM_REGION_BASIC_INFO_COUNT
121#define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
122#undef VM_REGION_BASIC_INFO
123#define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
124#undef LC_SEGMENT
125#define LC_SEGMENT LC_SEGMENT_64
126#define vm_region vm_region_64
127#define section section_64
128#undef MH_MAGIC
129#define MH_MAGIC MH_MAGIC_64
130#endif
e0f712ba
AC
131
132#define VERBOSE 1
133
134/* Size of buffer used to copy data from the input file to the output
135 file in function unexec_copy. */
136#define UNEXEC_COPY_BUFSZ 1024
137
138/* Regions with memory addresses above this value are assumed to be
139 mapped to dynamically loaded libraries and will not be dumped. */
140#define VM_DATA_TOP (20 * 1024 * 1024)
141
e0f712ba
AC
142/* Type of an element on the list of regions to be dumped. */
143struct region_t {
144 vm_address_t address;
145 vm_size_t size;
146 vm_prot_t protection;
147 vm_prot_t max_protection;
148
149 struct region_t *next;
150};
151
152/* Head and tail of the list of regions to be dumped. */
c57038f8
YM
153static struct region_t *region_list_head = 0;
154static struct region_t *region_list_tail = 0;
e0f712ba
AC
155
156/* Pointer to array of load commands. */
c57038f8 157static struct load_command **lca;
e0f712ba
AC
158
159/* Number of load commands. */
c57038f8 160static int nlc;
e0f712ba
AC
161
162/* The highest VM address of segments loaded by the input file.
163 Regions with addresses beyond this are assumed to be allocated
164 dynamically and thus require dumping. */
c57038f8 165static vm_address_t infile_lc_highest_addr = 0;
e0f712ba
AC
166
167/* The lowest file offset used by the all sections in the __TEXT
168 segments. This leaves room at the beginning of the file to store
169 the Mach-O header. Check this value against header size to ensure
170 the added load commands for the new __DATA segments did not
171 overwrite any of the sections in the __TEXT segment. */
c57038f8 172static unsigned long text_seg_lowest_offset = 0x10000000;
e0f712ba
AC
173
174/* Mach header. */
c57038f8 175static struct mach_header mh;
e0f712ba
AC
176
177/* Offset at which the next load command should be written. */
c57038f8 178static unsigned long curr_header_offset = sizeof (struct mach_header);
e0f712ba 179
73da71f9
YM
180/* Offset at which the next segment should be written. */
181static unsigned long curr_file_offset = 0;
182
183static unsigned long pagesize;
184#define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
e0f712ba 185
c57038f8 186static int infd, outfd;
e0f712ba 187
c57038f8 188static int in_dumped_exec = 0;
e0f712ba 189
c57038f8 190static malloc_zone_t *emacs_zone;
e0f712ba 191
043131c4 192/* file offset of input file's data segment */
c57038f8 193static off_t data_segment_old_fileoff = 0;
043131c4 194
c57038f8 195static struct segment_command *data_segment_scp;
043131c4 196
dd5ecd6b
DN
197static void unexec_error (const char *format, ...) NO_RETURN;
198
433456d7 199/* Read N bytes from infd into memory starting at address DEST.
e0f712ba
AC
200 Return true if successful, false otherwise. */
201static int
202unexec_read (void *dest, size_t n)
203{
204 return n == read (infd, dest, n);
205}
206
433456d7
YM
207/* Write COUNT bytes from memory starting at address SRC to outfd
208 starting at offset DEST. Return true if successful, false
209 otherwise. */
e0f712ba
AC
210static int
211unexec_write (off_t dest, const void *src, size_t count)
212{
213 if (lseek (outfd, dest, SEEK_SET) != dest)
214 return 0;
215
216 return write (outfd, src, count) == count;
217}
218
433456d7
YM
219/* Write COUNT bytes of zeros to outfd starting at offset DEST.
220 Return true if successful, false otherwise. */
221static int
222unexec_write_zero (off_t dest, size_t count)
223{
224 char buf[UNEXEC_COPY_BUFSZ];
225 ssize_t bytes;
226
72af86bd 227 memset (buf, 0, UNEXEC_COPY_BUFSZ);
433456d7
YM
228 if (lseek (outfd, dest, SEEK_SET) != dest)
229 return 0;
230
231 while (count > 0)
232 {
233 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
234 if (write (outfd, buf, bytes) != bytes)
235 return 0;
236 count -= bytes;
237 }
238
239 return 1;
240}
241
242/* Copy COUNT bytes from starting offset SRC in infd to starting
243 offset DEST in outfd. Return true if successful, false
244 otherwise. */
e0f712ba
AC
245static int
246unexec_copy (off_t dest, off_t src, ssize_t count)
247{
248 ssize_t bytes_read;
911c78b4 249 ssize_t bytes_to_read;
e0f712ba
AC
250
251 char buf[UNEXEC_COPY_BUFSZ];
252
253 if (lseek (infd, src, SEEK_SET) != src)
254 return 0;
255
256 if (lseek (outfd, dest, SEEK_SET) != dest)
257 return 0;
258
259 while (count > 0)
260 {
911c78b4
ST
261 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
262 bytes_read = read (infd, buf, bytes_to_read);
e0f712ba
AC
263 if (bytes_read <= 0)
264 return 0;
265 if (write (outfd, buf, bytes_read) != bytes_read)
266 return 0;
267 count -= bytes_read;
268 }
269
270 return 1;
271}
272
273/* Debugging and informational messages routines. */
274
275static void
7aee76f4 276unexec_error (const char *format, ...)
e0f712ba
AC
277{
278 va_list ap;
279
280 va_start (ap, format);
281 fprintf (stderr, "unexec: ");
282 vfprintf (stderr, format, ap);
283 fprintf (stderr, "\n");
284 va_end (ap);
285 exit (1);
286}
287
288static void
289print_prot (vm_prot_t prot)
290{
291 if (prot == VM_PROT_NONE)
292 printf ("none");
293 else
294 {
295 putchar (prot & VM_PROT_READ ? 'r' : ' ');
296 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
297 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
298 putchar (' ');
299 }
300}
301
302static void
303print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
304 vm_prot_t max_prot)
305{
73da71f9 306 printf ("%#10lx %#8lx ", (long) address, (long) size);
e0f712ba
AC
307 print_prot (prot);
308 putchar (' ');
309 print_prot (max_prot);
310 putchar ('\n');
311}
312
313static void
3d608a86 314print_region_list (void)
e0f712ba
AC
315{
316 struct region_t *r;
317
318 printf (" address size prot maxp\n");
319
320 for (r = region_list_head; r; r = r->next)
321 print_region (r->address, r->size, r->protection, r->max_protection);
322}
323
c57038f8 324static void
3d608a86 325print_regions (void)
e0f712ba
AC
326{
327 task_t target_task = mach_task_self ();
328 vm_address_t address = (vm_address_t) 0;
329 vm_size_t size;
330 struct vm_region_basic_info info;
331 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
332 mach_port_t object_name;
333
334 printf (" address size prot maxp\n");
335
336 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
337 (vm_region_info_t) &info, &info_count, &object_name)
338 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
339 {
340 print_region (address, size, info.protection, info.max_protection);
341
342 if (object_name != MACH_PORT_NULL)
343 mach_port_deallocate (target_task, object_name);
177c0ea7 344
e0f712ba
AC
345 address += size;
346 }
347}
348
349/* Build the list of regions that need to be dumped. Regions with
350 addresses above VM_DATA_TOP are omitted. Adjacent regions with
351 identical protection are merged. Note that non-writable regions
352 cannot be omitted because they some regions created at run time are
353 read-only. */
354static void
3d608a86 355build_region_list (void)
e0f712ba
AC
356{
357 task_t target_task = mach_task_self ();
358 vm_address_t address = (vm_address_t) 0;
359 vm_size_t size;
360 struct vm_region_basic_info info;
361 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
362 mach_port_t object_name;
363 struct region_t *r;
364
365#if VERBOSE
366 printf ("--- List of All Regions ---\n");
367 printf (" address size prot maxp\n");
368#endif
369
370 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
371 (vm_region_info_t) &info, &info_count, &object_name)
372 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
373 {
374 /* Done when we reach addresses of shared libraries, which are
375 loaded in high memory. */
376 if (address >= VM_DATA_TOP)
377 break;
378
379#if VERBOSE
380 print_region (address, size, info.protection, info.max_protection);
381#endif
382
383 /* If a region immediately follows the previous one (the one
384 most recently added to the list) and has identical
385 protection, merge it with the latter. Otherwise create a
386 new list element for it. */
387 if (region_list_tail
388 && info.protection == region_list_tail->protection
389 && info.max_protection == region_list_tail->max_protection
390 && region_list_tail->address + region_list_tail->size == address)
391 {
392 region_list_tail->size += size;
393 }
394 else
395 {
396 r = (struct region_t *) malloc (sizeof (struct region_t));
177c0ea7 397
e0f712ba
AC
398 if (!r)
399 unexec_error ("cannot allocate region structure");
177c0ea7 400
e0f712ba
AC
401 r->address = address;
402 r->size = size;
403 r->protection = info.protection;
404 r->max_protection = info.max_protection;
177c0ea7 405
e0f712ba
AC
406 r->next = 0;
407 if (region_list_head == 0)
408 {
409 region_list_head = r;
410 region_list_tail = r;
411 }
412 else
413 {
414 region_list_tail->next = r;
415 region_list_tail = r;
416 }
177c0ea7 417
e0f712ba
AC
418 /* Deallocate (unused) object name returned by
419 vm_region. */
420 if (object_name != MACH_PORT_NULL)
421 mach_port_deallocate (target_task, object_name);
422 }
177c0ea7 423
e0f712ba
AC
424 address += size;
425 }
426
427 printf ("--- List of Regions to be Dumped ---\n");
428 print_region_list ();
429}
430
431
73da71f9 432#define MAX_UNEXEC_REGIONS 400
e0f712ba 433
c57038f8
YM
434static int num_unexec_regions;
435typedef struct {
436 vm_range_t range;
437 vm_size_t filesize;
438} unexec_region_info;
439static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
e0f712ba
AC
440
441static void
442unexec_regions_recorder (task_t task, void *rr, unsigned type,
443 vm_range_t *ranges, unsigned num)
444{
c57038f8
YM
445 vm_address_t p;
446 vm_size_t filesize;
447
e0f712ba
AC
448 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
449 {
ae7c60a9 450 /* Subtract the size of trailing null bytes from filesize. It
c57038f8 451 can be smaller than vmsize in segment commands. In such a
ae7c60a9
YM
452 case, trailing bytes are initialized with zeros. */
453 for (p = ranges->address + ranges->size; p > ranges->address; p--)
454 if (*(((char *) p)-1))
455 break;
456 filesize = p - ranges->address;
c57038f8
YM
457
458 unexec_regions[num_unexec_regions].filesize = filesize;
459 unexec_regions[num_unexec_regions++].range = *ranges;
460 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
461 (long) filesize, (long) (ranges->size));
e0f712ba
AC
462 ranges++; num--;
463 }
e0f712ba
AC
464}
465
466static kern_return_t
467unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
468{
469 *ptr = (void *) address;
470 return KERN_SUCCESS;
471}
472
c57038f8 473static void
3d608a86 474find_emacs_zone_regions (void)
e0f712ba
AC
475{
476 num_unexec_regions = 0;
477
478 emacs_zone->introspect->enumerator (mach_task_self(), 0,
479 MALLOC_PTR_REGION_RANGE_TYPE
480 | MALLOC_ADMIN_REGION_RANGE_TYPE,
481 (vm_address_t) emacs_zone,
482 unexec_reader,
483 unexec_regions_recorder);
73da71f9
YM
484
485 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
486 unexec_error ("find_emacs_zone_regions: too many regions");
e0f712ba
AC
487}
488
1dd7ccf2
AC
489static int
490unexec_regions_sort_compare (const void *a, const void *b)
491{
c57038f8
YM
492 vm_address_t aa = ((unexec_region_info *) a)->range.address;
493 vm_address_t bb = ((unexec_region_info *) b)->range.address;
1dd7ccf2
AC
494
495 if (aa < bb)
496 return -1;
497 else if (aa > bb)
498 return 1;
499 else
500 return 0;
501}
502
503static void
3d608a86 504unexec_regions_merge (void)
1dd7ccf2
AC
505{
506 int i, n;
c57038f8 507 unexec_region_info r;
ae7c60a9 508 vm_size_t padsize;
1dd7ccf2
AC
509
510 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
511 &unexec_regions_sort_compare);
512 n = 0;
513 r = unexec_regions[0];
ae7c60a9
YM
514 padsize = r.range.address & (pagesize - 1);
515 if (padsize)
516 {
517 r.range.address -= padsize;
518 r.range.size += padsize;
519 r.filesize += padsize;
520 }
1dd7ccf2
AC
521 for (i = 1; i < num_unexec_regions; i++)
522 {
c57038f8
YM
523 if (r.range.address + r.range.size == unexec_regions[i].range.address
524 && r.range.size - r.filesize < 2 * pagesize)
1dd7ccf2 525 {
c57038f8
YM
526 r.filesize = r.range.size + unexec_regions[i].filesize;
527 r.range.size += unexec_regions[i].range.size;
1dd7ccf2
AC
528 }
529 else
530 {
531 unexec_regions[n++] = r;
532 r = unexec_regions[i];
ae7c60a9
YM
533 padsize = r.range.address & (pagesize - 1);
534 if (padsize)
535 {
536 if ((unexec_regions[n-1].range.address
537 + unexec_regions[n-1].range.size) == r.range.address)
538 unexec_regions[n-1].range.size -= padsize;
539
540 r.range.address -= padsize;
541 r.range.size += padsize;
542 r.filesize += padsize;
543 }
1dd7ccf2
AC
544 }
545 }
546 unexec_regions[n++] = r;
547 num_unexec_regions = n;
548}
549
e0f712ba
AC
550
551/* More informational messages routines. */
552
553static void
554print_load_command_name (int lc)
555{
556 switch (lc)
557 {
558 case LC_SEGMENT:
73da71f9 559#ifndef _LP64
e0f712ba 560 printf ("LC_SEGMENT ");
73da71f9
YM
561#else
562 printf ("LC_SEGMENT_64 ");
563#endif
e0f712ba
AC
564 break;
565 case LC_LOAD_DYLINKER:
566 printf ("LC_LOAD_DYLINKER ");
567 break;
568 case LC_LOAD_DYLIB:
569 printf ("LC_LOAD_DYLIB ");
570 break;
571 case LC_SYMTAB:
572 printf ("LC_SYMTAB ");
573 break;
574 case LC_DYSYMTAB:
575 printf ("LC_DYSYMTAB ");
576 break;
577 case LC_UNIXTHREAD:
578 printf ("LC_UNIXTHREAD ");
579 break;
580 case LC_PREBOUND_DYLIB:
581 printf ("LC_PREBOUND_DYLIB");
582 break;
583 case LC_TWOLEVEL_HINTS:
584 printf ("LC_TWOLEVEL_HINTS");
585 break;
ae7c60a9
YM
586#ifdef LC_UUID
587 case LC_UUID:
588 printf ("LC_UUID ");
589 break;
6bcd6333
YM
590#endif
591#ifdef LC_DYLD_INFO
592 case LC_DYLD_INFO:
593 printf ("LC_DYLD_INFO ");
594 break;
595 case LC_DYLD_INFO_ONLY:
596 printf ("LC_DYLD_INFO_ONLY");
597 break;
ae7c60a9 598#endif
e0f712ba
AC
599 default:
600 printf ("unknown ");
601 }
602}
603
604static void
605print_load_command (struct load_command *lc)
606{
607 print_load_command_name (lc->cmd);
608 printf ("%8d", lc->cmdsize);
609
610 if (lc->cmd == LC_SEGMENT)
611 {
612 struct segment_command *scp;
613 struct section *sectp;
614 int j;
615
616 scp = (struct segment_command *) lc;
73da71f9
YM
617 printf (" %-16.16s %#10lx %#8lx\n",
618 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
e0f712ba
AC
619
620 sectp = (struct section *) (scp + 1);
621 for (j = 0; j < scp->nsects; j++)
622 {
73da71f9
YM
623 printf (" %-16.16s %#10lx %#8lx\n",
624 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
e0f712ba
AC
625 sectp++;
626 }
627 }
628 else
629 printf ("\n");
630}
631
632/* Read header and load commands from input file. Store the latter in
633 the global array lca. Store the total number of load commands in
634 global variable nlc. */
635static void
3d608a86 636read_load_commands (void)
e0f712ba 637{
7f900522 638 int i;
e0f712ba
AC
639
640 if (!unexec_read (&mh, sizeof (struct mach_header)))
641 unexec_error ("cannot read mach-o header");
642
643 if (mh.magic != MH_MAGIC)
644 unexec_error ("input file not in Mach-O format");
645
646 if (mh.filetype != MH_EXECUTE)
647 unexec_error ("input Mach-O file is not an executable object file");
648
649#if VERBOSE
650 printf ("--- Header Information ---\n");
651 printf ("Magic = 0x%08x\n", mh.magic);
652 printf ("CPUType = %d\n", mh.cputype);
653 printf ("CPUSubType = %d\n", mh.cpusubtype);
654 printf ("FileType = 0x%x\n", mh.filetype);
655 printf ("NCmds = %d\n", mh.ncmds);
656 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
657 printf ("Flags = 0x%08x\n", mh.flags);
658#endif
659
660 nlc = mh.ncmds;
661 lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
177c0ea7 662
e0f712ba
AC
663 for (i = 0; i < nlc; i++)
664 {
665 struct load_command lc;
666 /* Load commands are variable-size: so read the command type and
667 size first and then read the rest. */
668 if (!unexec_read (&lc, sizeof (struct load_command)))
669 unexec_error ("cannot read load command");
670 lca[i] = (struct load_command *) malloc (lc.cmdsize);
671 memcpy (lca[i], &lc, sizeof (struct load_command));
672 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
673 unexec_error ("cannot read content of load command");
674 if (lc.cmd == LC_SEGMENT)
675 {
676 struct segment_command *scp = (struct segment_command *) lca[i];
177c0ea7 677
e0f712ba
AC
678 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
679 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
680
681 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
682 {
683 struct section *sectp = (struct section *) (scp + 1);
684 int j;
685
686 for (j = 0; j < scp->nsects; j++)
687 if (sectp->offset < text_seg_lowest_offset)
688 text_seg_lowest_offset = sectp->offset;
689 }
690 }
691 }
692
3d608a86
J
693 printf ("Highest address of load commands in input file: %#8lx\n",
694 (unsigned long)infile_lc_highest_addr);
e0f712ba 695
c57038f8 696 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
e0f712ba
AC
697 text_seg_lowest_offset);
698
699 printf ("--- List of Load Commands in Input File ---\n");
700 printf ("# cmd cmdsize name address size\n");
701
702 for (i = 0; i < nlc; i++)
703 {
704 printf ("%1d ", i);
705 print_load_command (lca[i]);
706 }
707}
708
709/* Copy a LC_SEGMENT load command other than the __DATA segment from
710 the input file to the output file, adjusting the file offset of the
711 segment and the file offsets of sections contained in it. */
712static void
713copy_segment (struct load_command *lc)
714{
715 struct segment_command *scp = (struct segment_command *) lc;
716 unsigned long old_fileoff = scp->fileoff;
717 struct section *sectp;
718 int j;
719
73da71f9 720 scp->fileoff = curr_file_offset;
e0f712ba
AC
721
722 sectp = (struct section *) (scp + 1);
723 for (j = 0; j < scp->nsects; j++)
724 {
73da71f9 725 sectp->offset += curr_file_offset - old_fileoff;
e0f712ba
AC
726 sectp++;
727 }
728
c57038f8
YM
729 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
730 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
731 (long) (scp->vmsize), (long) (scp->vmaddr));
e0f712ba
AC
732
733 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
734 unexec_error ("cannot copy segment from input to output file");
73da71f9
YM
735 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
736
e0f712ba
AC
737 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
738 unexec_error ("cannot write load command to header");
739
740 curr_header_offset += lc->cmdsize;
741}
742
743/* Copy a LC_SEGMENT load command for the __DATA segment in the input
744 file to the output file. We assume that only one such segment load
745 command exists in the input file and it contains the sections
746 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
747 __dyld. The first three of these should be dumped from memory and
748 the rest should be copied from the input file. Note that the
749 sections __bss and __common contain no data in the input file
750 because their flag fields have the value S_ZEROFILL. Dumping these
751 from memory makes it necessary to adjust file offset fields in
752 subsequently dumped load commands. Then, create new __DATA segment
753 load commands for regions on the region list other than the one
754 corresponding to the __DATA segment in the input file. */
755static void
756copy_data_segment (struct load_command *lc)
757{
758 struct segment_command *scp = (struct segment_command *) lc;
759 struct section *sectp;
760 int j;
c57038f8
YM
761 unsigned long header_offset, old_file_offset;
762
763 /* The new filesize of the segment is set to its vmsize because data
764 blocks for segments must start at region boundaries. Note that
765 this may leave unused locations at the end of the segment data
766 block because the total of the sizes of all sections in the
767 segment is generally smaller than vmsize. */
768 scp->filesize = scp->vmsize;
e0f712ba 769
c57038f8
YM
770 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
771 scp->segname, curr_file_offset, (long)(scp->filesize),
772 (long)(scp->vmsize), (long) (scp->vmaddr));
e0f712ba
AC
773
774 /* Offsets in the output file for writing the next section structure
775 and segment data block, respectively. */
776 header_offset = curr_header_offset + sizeof (struct segment_command);
777
778 sectp = (struct section *) (scp + 1);
779 for (j = 0; j < scp->nsects; j++)
780 {
781 old_file_offset = sectp->offset;
73da71f9 782 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
e0f712ba
AC
783 /* The __data section is dumped from memory. The __bss and
784 __common sections are also dumped from memory but their flag
785 fields require changing (from S_ZEROFILL to S_REGULAR). The
786 other three kinds of sections are just copied from the input
787 file. */
788 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
789 {
790 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
791 unexec_error ("cannot write section %s", SECT_DATA);
792 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
793 unexec_error ("cannot write section %s's header", SECT_DATA);
794 }
433456d7 795 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
e0f712ba
AC
796 {
797 sectp->flags = S_REGULAR;
798 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
433456d7 799 unexec_error ("cannot write section %s", sectp->sectname);
e0f712ba 800 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
433456d7
YM
801 unexec_error ("cannot write section %s's header", sectp->sectname);
802 }
803 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
804 {
805 extern char *my_endbss_static;
806 unsigned long my_size;
807
808 sectp->flags = S_REGULAR;
809
810 /* Clear uninitialized local variables in statically linked
811 libraries. In particular, function pointers stored by
812 libSystemStub.a, which is introduced in Mac OS X 10.4 for
813 binary compatibility with respect to long double, are
814 cleared so that they will be reinitialized when the
815 dumped binary is executed on other versions of OS. */
816 my_size = (unsigned long)my_endbss_static - sectp->addr;
817 if (!(sectp->addr <= (unsigned long)my_endbss_static
818 && my_size <= sectp->size))
819 unexec_error ("my_endbss_static is not in section %s",
820 sectp->sectname);
821 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
822 unexec_error ("cannot write section %s", sectp->sectname);
823 if (!unexec_write_zero (sectp->offset + my_size,
824 sectp->size - my_size))
825 unexec_error ("cannot write section %s", sectp->sectname);
826 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
827 unexec_error ("cannot write section %s's header", sectp->sectname);
e0f712ba
AC
828 }
829 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
830 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
427c5b1b 831 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
e0f712ba 832 || strncmp (sectp->sectname, "__dyld", 16) == 0
7290a344 833 || strncmp (sectp->sectname, "__const", 16) == 0
b2411edf
YM
834 || strncmp (sectp->sectname, "__cfstring", 16) == 0
835 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
6bcd6333 836 || strncmp (sectp->sectname, "__program_vars", 16) == 0
b2411edf 837 || strncmp (sectp->sectname, "__objc_", 7) == 0)
e0f712ba
AC
838 {
839 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
840 unexec_error ("cannot copy section %s", sectp->sectname);
841 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
842 unexec_error ("cannot write section %s's header", sectp->sectname);
843 }
844 else
845 unexec_error ("unrecognized section name in __DATA segment");
177c0ea7 846
73da71f9
YM
847 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
848 sectp->sectname, (long) (sectp->offset),
849 (long) (sectp->offset + sectp->size), (long) (sectp->size));
e0f712ba
AC
850
851 header_offset += sizeof (struct section);
852 sectp++;
853 }
854
c57038f8
YM
855 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
856
e0f712ba
AC
857 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
858 unexec_error ("cannot write header of __DATA segment");
859 curr_header_offset += lc->cmdsize;
860
861 /* Create new __DATA segment load commands for regions on the region
862 list that do not corresponding to any segment load commands in
863 the input file.
73da71f9 864 */
e0f712ba
AC
865 for (j = 0; j < num_unexec_regions; j++)
866 {
867 struct segment_command sc;
177c0ea7 868
e0f712ba
AC
869 sc.cmd = LC_SEGMENT;
870 sc.cmdsize = sizeof (struct segment_command);
871 strncpy (sc.segname, SEG_DATA, 16);
c57038f8
YM
872 sc.vmaddr = unexec_regions[j].range.address;
873 sc.vmsize = unexec_regions[j].range.size;
73da71f9 874 sc.fileoff = curr_file_offset;
c57038f8 875 sc.filesize = unexec_regions[j].filesize;
e0f712ba
AC
876 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
877 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
878 sc.nsects = 0;
879 sc.flags = 0;
177c0ea7 880
c57038f8
YM
881 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
882 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
883 (long) (sc.vmsize), (long) (sc.vmaddr));
e0f712ba 884
c57038f8 885 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
e0f712ba 886 unexec_error ("cannot write new __DATA segment");
73da71f9 887 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
177c0ea7 888
e0f712ba
AC
889 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
890 unexec_error ("cannot write new __DATA segment's header");
891 curr_header_offset += sc.cmdsize;
892 mh.ncmds++;
893 }
894}
895
896/* Copy a LC_SYMTAB load command from the input file to the output
897 file, adjusting the file offset fields. */
898static void
73da71f9 899copy_symtab (struct load_command *lc, long delta)
e0f712ba
AC
900{
901 struct symtab_command *stp = (struct symtab_command *) lc;
902
903 stp->symoff += delta;
904 stp->stroff += delta;
905
906 printf ("Writing LC_SYMTAB command\n");
907
908 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
909 unexec_error ("cannot write symtab command to header");
910
911 curr_header_offset += lc->cmdsize;
912}
913
043131c4
AC
914/* Fix up relocation entries. */
915static void
7aee2da7 916unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
043131c4
AC
917{
918 int i, unreloc_count;
919 struct relocation_info reloc_info;
920 struct scattered_relocation_info *sc_reloc_info
921 = (struct scattered_relocation_info *) &reloc_info;
7aee2da7 922 vm_address_t location;
043131c4
AC
923
924 for (unreloc_count = 0, i = 0; i < nrel; i++)
925 {
926 if (lseek (infd, reloff, L_SET) != reloff)
927 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
928 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
929 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
930 reloff += sizeof (reloc_info);
931
932 if (sc_reloc_info->r_scattered == 0)
933 switch (reloc_info.r_type)
934 {
935 case GENERIC_RELOC_VANILLA:
7aee2da7 936 location = base + reloc_info.r_address;
b2411edf
YM
937 if (location >= data_segment_scp->vmaddr
938 && location < (data_segment_scp->vmaddr
939 + data_segment_scp->vmsize))
043131c4
AC
940 {
941 off_t src_off = data_segment_old_fileoff
b2411edf 942 + (location - data_segment_scp->vmaddr);
043131c4 943 off_t dst_off = data_segment_scp->fileoff
b2411edf 944 + (location - data_segment_scp->vmaddr);
043131c4
AC
945
946 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
947 unexec_error ("unrelocate: %s:%d cannot copy original value",
948 name, i);
949 unreloc_count++;
950 }
951 break;
952 default:
953 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
954 name, i, reloc_info.r_type);
955 }
956 else
957 switch (sc_reloc_info->r_type)
958 {
959#if defined (__ppc__)
960 case PPC_RELOC_PB_LA_PTR:
961 /* nothing to do for prebound lazy pointer */
962 break;
963#endif
964 default:
965 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
966 name, i, sc_reloc_info->r_type);
967 }
968 }
969
970 if (nrel > 0)
971 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
972 unreloc_count, nrel, name);
973}
974
7aee2da7
YM
975#if __ppc64__
976/* Rebase r_address in the relocation table. */
977static void
978rebase_reloc_address (off_t reloff, int nrel, long linkedit_delta, long diff)
979{
980 int i;
981 struct relocation_info reloc_info;
982 struct scattered_relocation_info *sc_reloc_info
983 = (struct scattered_relocation_info *) &reloc_info;
984
985 for (i = 0; i < nrel; i++, reloff += sizeof (reloc_info))
986 {
987 if (lseek (infd, reloff - linkedit_delta, L_SET)
988 != reloff - linkedit_delta)
989 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
990 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
991 unexec_error ("rebase_reloc_table: cannot read reloc_info");
992
993 if (sc_reloc_info->r_scattered == 0
994 && reloc_info.r_type == GENERIC_RELOC_VANILLA)
995 {
996 reloc_info.r_address -= diff;
997 if (!unexec_write (reloff, &reloc_info, sizeof (reloc_info)))
998 unexec_error ("rebase_reloc_table: cannot write reloc_info");
999 }
1000 }
1001}
1002#endif
1003
e0f712ba
AC
1004/* Copy a LC_DYSYMTAB load command from the input file to the output
1005 file, adjusting the file offset fields. */
1006static void
73da71f9 1007copy_dysymtab (struct load_command *lc, long delta)
e0f712ba
AC
1008{
1009 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
7aee2da7 1010 vm_address_t base;
e0f712ba 1011
7aee2da7
YM
1012#ifdef _LP64
1013#if __ppc64__
1014 {
1015 int i;
1016
1017 base = 0;
1018 for (i = 0; i < nlc; i++)
1019 if (lca[i]->cmd == LC_SEGMENT)
1020 {
1021 struct segment_command *scp = (struct segment_command *) lca[i];
1022
1023 if (scp->vmaddr + scp->vmsize > 0x100000000
1024 && (scp->initprot & VM_PROT_WRITE) != 0)
1025 {
1026 base = data_segment_scp->vmaddr;
1027 break;
1028 }
1029 }
1030 }
1031#else
1032 /* First writable segment address. */
1033 base = data_segment_scp->vmaddr;
1034#endif
1035#else
1036 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1037 base = 0;
1038#endif
1039
1040 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1041 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
e0f712ba
AC
1042
1043 if (dstp->nextrel > 0) {
1044 dstp->extreloff += delta;
1045 }
1046
1047 if (dstp->nlocrel > 0) {
1048 dstp->locreloff += delta;
1049 }
1050
1051 if (dstp->nindirectsyms > 0)
1052 dstp->indirectsymoff += delta;
1053
1054 printf ("Writing LC_DYSYMTAB command\n");
1055
1056 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1057 unexec_error ("cannot write symtab command to header");
1058
1059 curr_header_offset += lc->cmdsize;
7aee2da7
YM
1060
1061#if __ppc64__
1062 /* Check if the relocation base needs to be changed. */
1063 if (base == 0)
1064 {
1065 vm_address_t newbase = 0;
1066 int i;
1067
1068 for (i = 0; i < num_unexec_regions; i++)
1069 if (unexec_regions[i].range.address + unexec_regions[i].range.size
1070 > 0x100000000)
1071 {
1072 newbase = data_segment_scp->vmaddr;
1073 break;
1074 }
1075
1076 if (newbase)
1077 {
1078 rebase_reloc_address (dstp->locreloff, dstp->nlocrel, delta, newbase);
1079 rebase_reloc_address (dstp->extreloff, dstp->nextrel, delta, newbase);
1080 }
1081 }
1082#endif
e0f712ba
AC
1083}
1084
40e6ff95
ST
1085/* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1086 file, adjusting the file offset fields. */
1087static void
73da71f9 1088copy_twolevelhints (struct load_command *lc, long delta)
40e6ff95
ST
1089{
1090 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1091
1092 if (tlhp->nhints > 0) {
1093 tlhp->offset += delta;
1094 }
1095
1096 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1097
1098 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1099 unexec_error ("cannot write two level hint command to header");
1100
1101 curr_header_offset += lc->cmdsize;
1102}
1103
6bcd6333
YM
1104#ifdef LC_DYLD_INFO
1105/* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1106 file, adjusting the file offset fields. */
1107static void
1108copy_dyld_info (struct load_command *lc, long delta)
1109{
1110 struct dyld_info_command *dip = (struct dyld_info_command *) lc;
1111
1112 if (dip->rebase_off > 0)
1113 dip->rebase_off += delta;
1114 if (dip->bind_off > 0)
1115 dip->bind_off += delta;
1116 if (dip->weak_bind_off > 0)
1117 dip->weak_bind_off += delta;
1118 if (dip->lazy_bind_off > 0)
1119 dip->lazy_bind_off += delta;
1120 if (dip->export_off > 0)
1121 dip->export_off += delta;
1122
1123 printf ("Writing ");
1124 print_load_command_name (lc->cmd);
1125 printf (" command\n");
1126
1127 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1128 unexec_error ("cannot write dyld info command to header");
1129
1130 curr_header_offset += lc->cmdsize;
1131}
1132#endif
1133
e0f712ba
AC
1134/* Copy other kinds of load commands from the input file to the output
1135 file, ones that do not require adjustments of file offsets. */
1136static void
1137copy_other (struct load_command *lc)
1138{
1139 printf ("Writing ");
1140 print_load_command_name (lc->cmd);
1141 printf (" command\n");
1142
1143 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1144 unexec_error ("cannot write symtab command to header");
1145
1146 curr_header_offset += lc->cmdsize;
1147}
1148
1149/* Loop through all load commands and dump them. Then write the Mach
1150 header. */
1151static void
3d608a86 1152dump_it (void)
e0f712ba
AC
1153{
1154 int i;
73da71f9 1155 long linkedit_delta = 0;
e0f712ba
AC
1156
1157 printf ("--- Load Commands written to Output File ---\n");
1158
1159 for (i = 0; i < nlc; i++)
1160 switch (lca[i]->cmd)
1161 {
1162 case LC_SEGMENT:
1163 {
1164 struct segment_command *scp = (struct segment_command *) lca[i];
1165 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1166 {
043131c4
AC
1167 /* save data segment file offset and segment_command for
1168 unrelocate */
73da71f9
YM
1169 if (data_segment_old_fileoff)
1170 unexec_error ("cannot handle multiple DATA segments"
1171 " in input file");
043131c4
AC
1172 data_segment_old_fileoff = scp->fileoff;
1173 data_segment_scp = scp;
1174
e0f712ba
AC
1175 copy_data_segment (lca[i]);
1176 }
1177 else
1178 {
73da71f9
YM
1179 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1180 {
1181 if (linkedit_delta)
1182 unexec_error ("cannot handle multiple LINKEDIT segments"
1183 " in input file");
1184 linkedit_delta = curr_file_offset - scp->fileoff;
1185 }
1186
e0f712ba
AC
1187 copy_segment (lca[i]);
1188 }
1189 }
1190 break;
1191 case LC_SYMTAB:
73da71f9 1192 copy_symtab (lca[i], linkedit_delta);
e0f712ba
AC
1193 break;
1194 case LC_DYSYMTAB:
73da71f9 1195 copy_dysymtab (lca[i], linkedit_delta);
e0f712ba 1196 break;
40e6ff95 1197 case LC_TWOLEVEL_HINTS:
73da71f9 1198 copy_twolevelhints (lca[i], linkedit_delta);
40e6ff95 1199 break;
6bcd6333
YM
1200#ifdef LC_DYLD_INFO
1201 case LC_DYLD_INFO:
1202 case LC_DYLD_INFO_ONLY:
1203 copy_dyld_info (lca[i], linkedit_delta);
1204 break;
1205#endif
e0f712ba
AC
1206 default:
1207 copy_other (lca[i]);
1208 break;
1209 }
1210
1211 if (curr_header_offset > text_seg_lowest_offset)
1212 unexec_error ("not enough room for load commands for new __DATA segments");
1213
c57038f8 1214 printf ("%ld unused bytes follow Mach-O header\n",
e0f712ba
AC
1215 text_seg_lowest_offset - curr_header_offset);
1216
1217 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1218 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1219 unexec_error ("cannot write final header contents");
1220}
1221
1222/* Take a snapshot of Emacs and make a Mach-O format executable file
1223 from it. The file names of the output and input files are outfile
1224 and infile, respectively. The three other parameters are
1225 ignored. */
dd5ecd6b
DN
1226int
1227unexec (const char *outfile, const char *infile)
e0f712ba 1228{
6dc5c8a7
YM
1229 if (in_dumped_exec)
1230 unexec_error ("Unexec from a dumped executable is not supported.");
1231
73da71f9 1232 pagesize = getpagesize ();
e0f712ba
AC
1233 infd = open (infile, O_RDONLY, 0);
1234 if (infd < 0)
1235 {
1236 unexec_error ("cannot open input file `%s'", infile);
1237 }
177c0ea7 1238
e0f712ba
AC
1239 outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
1240 if (outfd < 0)
1241 {
1242 close (infd);
1243 unexec_error ("cannot open output file `%s'", outfile);
1244 }
1245
1246 build_region_list ();
1247 read_load_commands ();
1248
1249 find_emacs_zone_regions ();
1dd7ccf2 1250 unexec_regions_merge ();
e0f712ba
AC
1251
1252 in_dumped_exec = 1;
1253
1254 dump_it ();
1255
1256 close (outfd);
dd5ecd6b 1257 return 0;
e0f712ba
AC
1258}
1259
1260
1261void
3d608a86 1262unexec_init_emacs_zone (void)
e0f712ba
AC
1263{
1264 emacs_zone = malloc_create_zone (0, 0);
1265 malloc_set_zone_name (emacs_zone, "EmacsZone");
1266}
1267
40ef0695
YM
1268#ifndef MACOSX_MALLOC_MULT16
1269#define MACOSX_MALLOC_MULT16 1
1270#endif
1271
1272typedef struct unexec_malloc_header {
1273 union {
1274 char c[8];
1275 size_t size;
1276 } u;
1277} unexec_malloc_header_t;
1278
1279#if MACOSX_MALLOC_MULT16
1280
1281#define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1282
1283#else
1284
e0f712ba
AC
1285int
1286ptr_in_unexec_regions (void *ptr)
1287{
1288 int i;
1289
1290 for (i = 0; i < num_unexec_regions; i++)
c57038f8
YM
1291 if ((vm_address_t) ptr - unexec_regions[i].range.address
1292 < unexec_regions[i].range.size)
e0f712ba
AC
1293 return 1;
1294
1295 return 0;
1296}
1297
40ef0695
YM
1298#endif
1299
e0f712ba
AC
1300void *
1301unexec_malloc (size_t size)
1302{
1303 if (in_dumped_exec)
40ef0695
YM
1304 {
1305 void *p;
1306
1307 p = malloc (size);
1308#if MACOSX_MALLOC_MULT16
1309 assert (((vm_address_t) p % 16) == 0);
1310#endif
1311 return p;
1312 }
e0f712ba 1313 else
40ef0695
YM
1314 {
1315 unexec_malloc_header_t *ptr;
1316
1317 ptr = (unexec_malloc_header_t *)
1318 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1319 ptr->u.size = size;
1320 ptr++;
1321#if MACOSX_MALLOC_MULT16
1322 assert (((vm_address_t) ptr % 16) == 8);
1323#endif
1324 return (void *) ptr;
1325 }
e0f712ba
AC
1326}
1327
1328void *
1329unexec_realloc (void *old_ptr, size_t new_size)
1330{
1331 if (in_dumped_exec)
40ef0695
YM
1332 {
1333 void *p;
1334
1335 if (ptr_in_unexec_regions (old_ptr))
1336 {
40ef0695
YM
1337 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1338 size_t size = new_size > old_size ? old_size : new_size;
1339
0da46b6e 1340 p = (size_t *) malloc (new_size);
40ef0695
YM
1341 if (size)
1342 memcpy (p, old_ptr, size);
1343 }
1344 else
1345 {
1346 p = realloc (old_ptr, new_size);
1347 }
1348#if MACOSX_MALLOC_MULT16
1349 assert (((vm_address_t) p % 16) == 0);
1350#endif
1351 return p;
1352 }
e0f712ba 1353 else
40ef0695
YM
1354 {
1355 unexec_malloc_header_t *ptr;
1356
1357 ptr = (unexec_malloc_header_t *)
1358 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1359 new_size + sizeof (unexec_malloc_header_t));
1360 ptr->u.size = new_size;
1361 ptr++;
1362#if MACOSX_MALLOC_MULT16
1363 assert (((vm_address_t) ptr % 16) == 8);
1364#endif
1365 return (void *) ptr;
1366 }
e0f712ba
AC
1367}
1368
1369void
1370unexec_free (void *ptr)
1371{
9c5e177e
JM
1372 if (ptr == NULL)
1373 return;
e0f712ba
AC
1374 if (in_dumped_exec)
1375 {
1376 if (!ptr_in_unexec_regions (ptr))
1377 free (ptr);
1378 }
1379 else
40ef0695 1380 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
e0f712ba 1381}
ab5796a9 1382