Replace bcopy, bzero, bcmp by memcpy, memmove, memset, memcmp
[bpt/emacs.git] / src / ralloc.c
CommitLineData
177c0ea7 1/* Block-relocating memory allocator.
429ab54e 2 Copyright (C) 1993, 1995, 2000, 2001, 2002, 2003, 2004,
114f9c96 3 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
dcfdbac7
JB
4
5This file is part of GNU Emacs.
6
9ec0b715 7GNU Emacs is free software: you can redistribute it and/or modify
dcfdbac7 8it under the terms of the GNU General Public License as published by
9ec0b715
GM
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
dcfdbac7
JB
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9ec0b715 18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
dcfdbac7
JB
19
20/* NOTES:
21
eb8c3be9 22 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
dcfdbac7 23 rather than all of them. This means allowing for a possible
abe9ff32 24 hole between the first bloc and the end of malloc storage. */
dcfdbac7 25
2c46d29f 26#ifdef emacs
aef4d570 27
18160b98 28#include <config.h>
d7306fe6 29#include <setjmp.h>
956ace37 30#include "lisp.h" /* Needed for VALBITS. */
a4766fd5 31#include "blockinput.h"
0a58f946 32
642a1733
DL
33#ifdef HAVE_UNISTD_H
34#include <unistd.h>
35#endif
a8c0e5ea 36
0a58f946
GM
37typedef POINTER_TYPE *POINTER;
38typedef size_t SIZE;
f275fd9a 39
b0119c68 40#ifdef DOUG_LEA_MALLOC
177c0ea7 41#define M_TOP_PAD -2
971de7fb 42extern int mallopt (int, int);
0a58f946 43#else /* not DOUG_LEA_MALLOC */
a2c23c92 44#ifndef SYSTEM_MALLOC
b1685c5f 45extern size_t __malloc_extra_blocks;
a2c23c92 46#endif /* SYSTEM_MALLOC */
0a58f946 47#endif /* not DOUG_LEA_MALLOC */
49081834 48
d5179acc 49#else /* not emacs */
aef4d570 50
2c46d29f 51#include <stddef.h>
aef4d570 52
2c46d29f
RS
53typedef size_t SIZE;
54typedef void *POINTER;
aef4d570 55
aef4d570
RM
56#include <unistd.h>
57#include <malloc.h>
aef4d570 58
d5179acc 59#endif /* not emacs */
2c46d29f 60
0a58f946 61
d5179acc 62#include "getpagesize.h"
dcfdbac7
JB
63
64#define NIL ((POINTER) 0)
65
2c46d29f
RS
66/* A flag to indicate whether we have initialized ralloc yet. For
67 Emacs's sake, please do not make this local to malloc_init; on some
68 machines, the dumping procedure makes all static variables
69 read-only. On these machines, the word static is #defined to be
70 the empty string, meaning that r_alloc_initialized becomes an
0a58f946
GM
71 automatic variable, and loses its value each time Emacs is started
72 up. */
73
2c46d29f
RS
74static int r_alloc_initialized = 0;
75
971de7fb 76static void r_alloc_init (void);
0a58f946 77
dcfdbac7 78\f
956ace37
JB
79/* Declarations for working with the malloc, ralloc, and system breaks. */
80
abe9ff32 81/* Function to set the real break value. */
321ed47b 82POINTER (*real_morecore) ();
dcfdbac7 83
abe9ff32 84/* The break value, as seen by malloc. */
dcfdbac7
JB
85static POINTER virtual_break_value;
86
abe9ff32
RS
87/* The address of the end of the last data in use by ralloc,
88 including relocatable blocs as well as malloc data. */
dcfdbac7
JB
89static POINTER break_value;
90
7516b7d5
RS
91/* This is the size of a page. We round memory requests to this boundary. */
92static int page_size;
93
177c0ea7 94/* Whenever we get memory from the system, get this many extra bytes. This
ad3bb3d2 95 must be a multiple of page_size. */
7516b7d5
RS
96static int extra_bytes;
97
dcfdbac7 98/* Macros for rounding. Note that rounding to any value is possible
abe9ff32 99 by changing the definition of PAGE. */
dcfdbac7 100#define PAGE (getpagesize ())
f7a009a5
RM
101#define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
102#define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
103 & ~(page_size - 1))
7516b7d5 104#define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
e429caa2
KH
105
106#define MEM_ALIGN sizeof(double)
107#define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
108 & ~(MEM_ALIGN - 1))
0a58f946 109
aeac019e
GM
110/* The hook `malloc' uses for the function which gets more space
111 from the system. */
112
113#ifndef SYSTEM_MALLOC
114extern POINTER (*__morecore) ();
115#endif
116
117
e429caa2 118\f
0a58f946
GM
119/***********************************************************************
120 Implementation using sbrk
121 ***********************************************************************/
122
abe9ff32
RS
123/* Data structures of heaps and blocs. */
124
125/* The relocatable objects, or blocs, and the malloc data
126 both reside within one or more heaps.
127 Each heap contains malloc data, running from `start' to `bloc_start',
128 and relocatable objects, running from `bloc_start' to `free'.
129
130 Relocatable objects may relocate within the same heap
131 or may move into another heap; the heaps themselves may grow
132 but they never move.
133
134 We try to make just one heap and make it larger as necessary.
8e6208c5 135 But sometimes we can't do that, because we can't get contiguous
abe9ff32 136 space to add onto the heap. When that happens, we start a new heap. */
177c0ea7 137
e429caa2
KH
138typedef struct heap
139{
140 struct heap *next;
141 struct heap *prev;
abe9ff32 142 /* Start of memory range of this heap. */
e429caa2 143 POINTER start;
abe9ff32 144 /* End of memory range of this heap. */
e429caa2 145 POINTER end;
abe9ff32
RS
146 /* Start of relocatable data in this heap. */
147 POINTER bloc_start;
148 /* Start of unused space in this heap. */
149 POINTER free;
47f13333
RS
150 /* First bloc in this heap. */
151 struct bp *first_bloc;
152 /* Last bloc in this heap. */
153 struct bp *last_bloc;
e429caa2
KH
154} *heap_ptr;
155
156#define NIL_HEAP ((heap_ptr) 0)
157#define HEAP_PTR_SIZE (sizeof (struct heap))
158
abe9ff32
RS
159/* This is the first heap object.
160 If we need additional heap objects, each one resides at the beginning of
161 the space it covers. */
162static struct heap heap_base;
163
164/* Head and tail of the list of heaps. */
e429caa2
KH
165static heap_ptr first_heap, last_heap;
166
167/* These structures are allocated in the malloc arena.
168 The linked list is kept in order of increasing '.data' members.
169 The data blocks abut each other; if b->next is non-nil, then
177c0ea7 170 b->data + b->size == b->next->data.
49f82b3d
RS
171
172 An element with variable==NIL denotes a freed block, which has not yet
f96f2c5b
JB
173 been collected. They may only appear while r_alloc_freeze_level > 0,
174 and will be freed when the arena is thawed. Currently, these blocs are
175 not reusable, while the arena is frozen. Very inefficient. */
49f82b3d 176
e429caa2
KH
177typedef struct bp
178{
179 struct bp *next;
180 struct bp *prev;
181 POINTER *variable;
182 POINTER data;
183 SIZE size;
8e6208c5 184 POINTER new_data; /* temporarily used for relocation */
49f82b3d 185 struct heap *heap; /* Heap this bloc is in. */
e429caa2
KH
186} *bloc_ptr;
187
188#define NIL_BLOC ((bloc_ptr) 0)
189#define BLOC_PTR_SIZE (sizeof (struct bp))
190
abe9ff32 191/* Head and tail of the list of relocatable blocs. */
e429caa2
KH
192static bloc_ptr first_bloc, last_bloc;
193
49f82b3d
RS
194static int use_relocatable_buffers;
195
196/* If >0, no relocation whatsoever takes place. */
197static int r_alloc_freeze_level;
198
dcfdbac7 199\f
956ace37
JB
200/* Functions to get and return memory from the system. */
201
abe9ff32
RS
202/* Find the heap that ADDRESS falls within. */
203
204static heap_ptr
971de7fb 205find_heap (POINTER address)
abe9ff32
RS
206{
207 heap_ptr heap;
208
209 for (heap = last_heap; heap; heap = heap->prev)
210 {
211 if (heap->start <= address && address <= heap->end)
212 return heap;
213 }
214
215 return NIL_HEAP;
216}
217
218/* Find SIZE bytes of space in a heap.
219 Try to get them at ADDRESS (which must fall within some heap's range)
220 if we can get that many within one heap.
221
e429caa2 222 If enough space is not presently available in our reserve, this means
8e6208c5
KH
223 getting more page-aligned space from the system. If the returned space
224 is not contiguous to the last heap, allocate a new heap, and append it
abe9ff32
RS
225
226 obtain does not try to keep track of whether space is in use
227 or not in use. It just returns the address of SIZE bytes that
228 fall within a single heap. If you call obtain twice in a row
229 with the same arguments, you typically get the same value.
230 to the heap list. It's the caller's responsibility to keep
231 track of what space is in use.
dcfdbac7 232
e429caa2
KH
233 Return the address of the space if all went well, or zero if we couldn't
234 allocate the memory. */
abe9ff32 235
e429caa2 236static POINTER
971de7fb 237obtain (POINTER address, SIZE size)
dcfdbac7 238{
e429caa2
KH
239 heap_ptr heap;
240 SIZE already_available;
dcfdbac7 241
abe9ff32 242 /* Find the heap that ADDRESS falls within. */
e429caa2 243 for (heap = last_heap; heap; heap = heap->prev)
dcfdbac7 244 {
e429caa2
KH
245 if (heap->start <= address && address <= heap->end)
246 break;
247 }
dcfdbac7 248
e429caa2 249 if (! heap)
abe9ff32 250 abort ();
dcfdbac7 251
abe9ff32
RS
252 /* If we can't fit SIZE bytes in that heap,
253 try successive later heaps. */
91a211b5 254 while (heap && (char *) address + size > (char *) heap->end)
e429caa2
KH
255 {
256 heap = heap->next;
257 if (heap == NIL_HEAP)
258 break;
259 address = heap->bloc_start;
dcfdbac7
JB
260 }
261
abe9ff32
RS
262 /* If we can't fit them within any existing heap,
263 get more space. */
e429caa2
KH
264 if (heap == NIL_HEAP)
265 {
266 POINTER new = (*real_morecore)(0);
267 SIZE get;
98b7fe02 268
e429caa2 269 already_available = (char *)last_heap->end - (char *)address;
dcfdbac7 270
e429caa2
KH
271 if (new != last_heap->end)
272 {
abe9ff32
RS
273 /* Someone else called sbrk. Make a new heap. */
274
275 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
276 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));
e429caa2 277
91a211b5 278 if ((*real_morecore) ((char *) bloc_start - (char *) new) != new)
e429caa2
KH
279 return 0;
280
281 new_heap->start = new;
282 new_heap->end = bloc_start;
283 new_heap->bloc_start = bloc_start;
abe9ff32 284 new_heap->free = bloc_start;
e429caa2
KH
285 new_heap->next = NIL_HEAP;
286 new_heap->prev = last_heap;
47f13333
RS
287 new_heap->first_bloc = NIL_BLOC;
288 new_heap->last_bloc = NIL_BLOC;
e429caa2
KH
289 last_heap->next = new_heap;
290 last_heap = new_heap;
291
292 address = bloc_start;
293 already_available = 0;
294 }
dcfdbac7 295
abe9ff32
RS
296 /* Add space to the last heap (which we may have just created).
297 Get some extra, so we can come here less often. */
298
e429caa2 299 get = size + extra_bytes - already_available;
abe9ff32 300 get = (char *) ROUNDUP ((char *)last_heap->end + get)
e429caa2 301 - (char *) last_heap->end;
dcfdbac7 302
e429caa2
KH
303 if ((*real_morecore) (get) != last_heap->end)
304 return 0;
305
91a211b5 306 last_heap->end = (char *) last_heap->end + get;
e429caa2
KH
307 }
308
309 return address;
310}
dcfdbac7 311
abe9ff32
RS
312/* Return unused heap space to the system
313 if there is a lot of unused space now.
314 This can make the last heap smaller;
315 it can also eliminate the last heap entirely. */
316
dcfdbac7 317static void
971de7fb 318relinquish (void)
dcfdbac7 319{
e429caa2 320 register heap_ptr h;
8d31e373 321 long excess = 0;
e429caa2 322
abe9ff32
RS
323 /* Add the amount of space beyond break_value
324 in all heaps which have extend beyond break_value at all. */
325
e429caa2
KH
326 for (h = last_heap; h && break_value < h->end; h = h->prev)
327 {
328 excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
329 ? h->bloc_start : break_value);
330 }
331
332 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
dcfdbac7 333 {
7516b7d5
RS
334 /* Keep extra_bytes worth of empty space.
335 And don't free anything unless we can free at least extra_bytes. */
e429caa2 336 excess -= extra_bytes;
dcfdbac7 337
e429caa2
KH
338 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
339 {
47f13333
RS
340 /* This heap should have no blocs in it. */
341 if (last_heap->first_bloc != NIL_BLOC
342 || last_heap->last_bloc != NIL_BLOC)
343 abort ();
344
abe9ff32 345 /* Return the last heap, with its header, to the system. */
e429caa2
KH
346 excess = (char *)last_heap->end - (char *)last_heap->start;
347 last_heap = last_heap->prev;
348 last_heap->next = NIL_HEAP;
349 }
350 else
351 {
352 excess = (char *) last_heap->end
abe9ff32 353 - (char *) ROUNDUP ((char *)last_heap->end - excess);
91a211b5 354 last_heap->end = (char *) last_heap->end - excess;
e429caa2 355 }
dcfdbac7 356
e429caa2 357 if ((*real_morecore) (- excess) == 0)
21532667
KH
358 {
359 /* If the system didn't want that much memory back, adjust
360 the end of the last heap to reflect that. This can occur
361 if break_value is still within the original data segment. */
91a211b5 362 last_heap->end = (char *) last_heap->end + excess;
21532667
KH
363 /* Make sure that the result of the adjustment is accurate.
364 It should be, for the else clause above; the other case,
365 which returns the entire last heap to the system, seems
366 unlikely to trigger this mode of failure. */
367 if (last_heap->end != (*real_morecore) (0))
368 abort ();
369 }
e429caa2 370 }
dcfdbac7 371}
719b242f
RS
372
373/* Return the total size in use by relocating allocator,
374 above where malloc gets space. */
375
376long
971de7fb 377r_alloc_size_in_use (void)
719b242f 378{
91a211b5 379 return (char *) break_value - (char *) virtual_break_value;
719b242f 380}
dcfdbac7 381\f
956ace37
JB
382/* The meat - allocating, freeing, and relocating blocs. */
383
956ace37 384/* Find the bloc referenced by the address in PTR. Returns a pointer
abe9ff32 385 to that block. */
dcfdbac7
JB
386
387static bloc_ptr
971de7fb 388find_bloc (POINTER *ptr)
dcfdbac7
JB
389{
390 register bloc_ptr p = first_bloc;
391
392 while (p != NIL_BLOC)
393 {
747d9d14
JR
394 /* Consistency check. Don't return inconsistent blocs.
395 Don't abort here, as callers might be expecting this, but
396 callers that always expect a bloc to be returned should abort
397 if one isn't to avoid a memory corruption bug that is
398 difficult to track down. */
dcfdbac7
JB
399 if (p->variable == ptr && p->data == *ptr)
400 return p;
401
402 p = p->next;
403 }
404
405 return p;
406}
407
408/* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
98b7fe02
JB
409 Returns a pointer to the new bloc, or zero if we couldn't allocate
410 memory for the new block. */
dcfdbac7
JB
411
412static bloc_ptr
971de7fb 413get_bloc (SIZE size)
dcfdbac7 414{
98b7fe02 415 register bloc_ptr new_bloc;
abe9ff32 416 register heap_ptr heap;
98b7fe02
JB
417
418 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
e429caa2 419 || ! (new_bloc->data = obtain (break_value, size)))
98b7fe02 420 {
c2cd06e6 421 free (new_bloc);
98b7fe02
JB
422
423 return 0;
424 }
dcfdbac7 425
91a211b5 426 break_value = (char *) new_bloc->data + size;
e429caa2 427
dcfdbac7
JB
428 new_bloc->size = size;
429 new_bloc->next = NIL_BLOC;
8c7f1e35 430 new_bloc->variable = (POINTER *) NIL;
e429caa2 431 new_bloc->new_data = 0;
dcfdbac7 432
abe9ff32
RS
433 /* Record in the heap that this space is in use. */
434 heap = find_heap (new_bloc->data);
435 heap->free = break_value;
436
47f13333
RS
437 /* Maintain the correspondence between heaps and blocs. */
438 new_bloc->heap = heap;
439 heap->last_bloc = new_bloc;
440 if (heap->first_bloc == NIL_BLOC)
441 heap->first_bloc = new_bloc;
442
abe9ff32 443 /* Put this bloc on the doubly-linked list of blocs. */
dcfdbac7
JB
444 if (first_bloc)
445 {
446 new_bloc->prev = last_bloc;
447 last_bloc->next = new_bloc;
448 last_bloc = new_bloc;
449 }
450 else
451 {
452 first_bloc = last_bloc = new_bloc;
453 new_bloc->prev = NIL_BLOC;
454 }
455
456 return new_bloc;
457}
47f13333 458\f
abe9ff32
RS
459/* Calculate new locations of blocs in the list beginning with BLOC,
460 relocating it to start at ADDRESS, in heap HEAP. If enough space is
461 not presently available in our reserve, call obtain for
177c0ea7
JB
462 more space.
463
abe9ff32
RS
464 Store the new location of each bloc in its new_data field.
465 Do not touch the contents of blocs or break_value. */
dcfdbac7 466
e429caa2 467static int
971de7fb 468relocate_blocs (bloc_ptr bloc, heap_ptr heap, POINTER address)
e429caa2
KH
469{
470 register bloc_ptr b = bloc;
ad3bb3d2 471
49f82b3d 472 /* No need to ever call this if arena is frozen, bug somewhere! */
177c0ea7 473 if (r_alloc_freeze_level)
49f82b3d
RS
474 abort();
475
e429caa2
KH
476 while (b)
477 {
abe9ff32
RS
478 /* If bloc B won't fit within HEAP,
479 move to the next heap and try again. */
91a211b5 480 while (heap && (char *) address + b->size > (char *) heap->end)
e429caa2
KH
481 {
482 heap = heap->next;
483 if (heap == NIL_HEAP)
484 break;
485 address = heap->bloc_start;
486 }
dcfdbac7 487
abe9ff32
RS
488 /* If BLOC won't fit in any heap,
489 get enough new space to hold BLOC and all following blocs. */
e429caa2
KH
490 if (heap == NIL_HEAP)
491 {
492 register bloc_ptr tb = b;
493 register SIZE s = 0;
494
abe9ff32 495 /* Add up the size of all the following blocs. */
e429caa2
KH
496 while (tb != NIL_BLOC)
497 {
177c0ea7 498 if (tb->variable)
49f82b3d
RS
499 s += tb->size;
500
e429caa2
KH
501 tb = tb->next;
502 }
503
abe9ff32
RS
504 /* Get that space. */
505 address = obtain (address, s);
506 if (address == 0)
e429caa2
KH
507 return 0;
508
509 heap = last_heap;
510 }
511
abe9ff32
RS
512 /* Record the new address of this bloc
513 and update where the next bloc can start. */
e429caa2 514 b->new_data = address;
177c0ea7 515 if (b->variable)
91a211b5 516 address = (char *) address + b->size;
e429caa2
KH
517 b = b->next;
518 }
519
520 return 1;
521}
522
47f13333
RS
523/* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list.
524 This is necessary if we put the memory of space of BLOC
525 before that of BEFORE. */
526
527static void
971de7fb 528reorder_bloc (bloc_ptr bloc, bloc_ptr before)
47f13333
RS
529{
530 bloc_ptr prev, next;
531
532 /* Splice BLOC out from where it is. */
533 prev = bloc->prev;
534 next = bloc->next;
535
536 if (prev)
537 prev->next = next;
538 if (next)
539 next->prev = prev;
540
541 /* Splice it in before BEFORE. */
542 prev = before->prev;
abe9ff32 543
47f13333
RS
544 if (prev)
545 prev->next = bloc;
546 bloc->prev = prev;
547
548 before->prev = bloc;
549 bloc->next = before;
550}
551\f
552/* Update the records of which heaps contain which blocs, starting
553 with heap HEAP and bloc BLOC. */
554
555static void
971de7fb 556update_heap_bloc_correspondence (bloc_ptr bloc, heap_ptr heap)
abe9ff32
RS
557{
558 register bloc_ptr b;
559
47f13333
RS
560 /* Initialize HEAP's status to reflect blocs before BLOC. */
561 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
562 {
563 /* The previous bloc is in HEAP. */
564 heap->last_bloc = bloc->prev;
91a211b5 565 heap->free = (char *) bloc->prev->data + bloc->prev->size;
47f13333
RS
566 }
567 else
568 {
569 /* HEAP contains no blocs before BLOC. */
570 heap->first_bloc = NIL_BLOC;
571 heap->last_bloc = NIL_BLOC;
572 heap->free = heap->bloc_start;
573 }
574
abe9ff32
RS
575 /* Advance through blocs one by one. */
576 for (b = bloc; b != NIL_BLOC; b = b->next)
577 {
47f13333
RS
578 /* Advance through heaps, marking them empty,
579 till we get to the one that B is in. */
abe9ff32
RS
580 while (heap)
581 {
582 if (heap->bloc_start <= b->data && b->data <= heap->end)
583 break;
584 heap = heap->next;
47f13333
RS
585 /* We know HEAP is not null now,
586 because there has to be space for bloc B. */
587 heap->first_bloc = NIL_BLOC;
588 heap->last_bloc = NIL_BLOC;
abe9ff32
RS
589 heap->free = heap->bloc_start;
590 }
47f13333
RS
591
592 /* Update HEAP's status for bloc B. */
91a211b5 593 heap->free = (char *) b->data + b->size;
47f13333
RS
594 heap->last_bloc = b;
595 if (heap->first_bloc == NIL_BLOC)
596 heap->first_bloc = b;
597
598 /* Record that B is in HEAP. */
599 b->heap = heap;
abe9ff32
RS
600 }
601
602 /* If there are any remaining heaps and no blocs left,
47f13333 603 mark those heaps as empty. */
abe9ff32
RS
604 heap = heap->next;
605 while (heap)
606 {
47f13333
RS
607 heap->first_bloc = NIL_BLOC;
608 heap->last_bloc = NIL_BLOC;
abe9ff32
RS
609 heap->free = heap->bloc_start;
610 heap = heap->next;
611 }
612}
47f13333 613\f
abe9ff32
RS
614/* Resize BLOC to SIZE bytes. This relocates the blocs
615 that come after BLOC in memory. */
616
e429caa2 617static int
971de7fb 618resize_bloc (bloc_ptr bloc, SIZE size)
dcfdbac7 619{
e429caa2
KH
620 register bloc_ptr b;
621 heap_ptr heap;
622 POINTER address;
623 SIZE old_size;
624
49f82b3d 625 /* No need to ever call this if arena is frozen, bug somewhere! */
177c0ea7 626 if (r_alloc_freeze_level)
49f82b3d
RS
627 abort();
628
e429caa2
KH
629 if (bloc == NIL_BLOC || size == bloc->size)
630 return 1;
631
632 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
633 {
634 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
635 break;
636 }
637
638 if (heap == NIL_HEAP)
abe9ff32 639 abort ();
e429caa2
KH
640
641 old_size = bloc->size;
642 bloc->size = size;
643
abe9ff32 644 /* Note that bloc could be moved into the previous heap. */
91a211b5
GM
645 address = (bloc->prev ? (char *) bloc->prev->data + bloc->prev->size
646 : (char *) first_heap->bloc_start);
e429caa2
KH
647 while (heap)
648 {
649 if (heap->bloc_start <= address && address <= heap->end)
650 break;
651 heap = heap->prev;
652 }
653
654 if (! relocate_blocs (bloc, heap, address))
655 {
656 bloc->size = old_size;
657 return 0;
658 }
659
660 if (size > old_size)
661 {
662 for (b = last_bloc; b != bloc; b = b->prev)
663 {
49f82b3d
RS
664 if (!b->variable)
665 {
666 b->size = 0;
667 b->data = b->new_data;
177c0ea7
JB
668 }
669 else
49f82b3d 670 {
72af86bd 671 memmove (b->new_data, b->data, b->size);
49f82b3d
RS
672 *b->variable = b->data = b->new_data;
673 }
674 }
675 if (!bloc->variable)
676 {
677 bloc->size = 0;
678 bloc->data = bloc->new_data;
679 }
680 else
681 {
72af86bd
AS
682 memmove (bloc->new_data, bloc->data, old_size);
683 memset (bloc->new_data + old_size, 0, size - old_size);
49f82b3d 684 *bloc->variable = bloc->data = bloc->new_data;
e429caa2 685 }
e429caa2
KH
686 }
687 else
dcfdbac7 688 {
ad3bb3d2
JB
689 for (b = bloc; b != NIL_BLOC; b = b->next)
690 {
49f82b3d
RS
691 if (!b->variable)
692 {
693 b->size = 0;
694 b->data = b->new_data;
177c0ea7
JB
695 }
696 else
49f82b3d 697 {
72af86bd 698 memmove (b->new_data, b->data, b->size);
49f82b3d
RS
699 *b->variable = b->data = b->new_data;
700 }
ad3bb3d2 701 }
ad3bb3d2 702 }
dcfdbac7 703
47f13333 704 update_heap_bloc_correspondence (bloc, heap);
abe9ff32 705
91a211b5
GM
706 break_value = (last_bloc ? (char *) last_bloc->data + last_bloc->size
707 : (char *) first_heap->bloc_start);
e429caa2
KH
708 return 1;
709}
47f13333 710\f
abe9ff32
RS
711/* Free BLOC from the chain of blocs, relocating any blocs above it.
712 This may return space to the system. */
dcfdbac7
JB
713
714static void
971de7fb 715free_bloc (bloc_ptr bloc)
dcfdbac7 716{
47f13333
RS
717 heap_ptr heap = bloc->heap;
718
49f82b3d
RS
719 if (r_alloc_freeze_level)
720 {
721 bloc->variable = (POINTER *) NIL;
722 return;
723 }
177c0ea7 724
e429caa2
KH
725 resize_bloc (bloc, 0);
726
dcfdbac7
JB
727 if (bloc == first_bloc && bloc == last_bloc)
728 {
729 first_bloc = last_bloc = NIL_BLOC;
730 }
731 else if (bloc == last_bloc)
732 {
733 last_bloc = bloc->prev;
734 last_bloc->next = NIL_BLOC;
735 }
736 else if (bloc == first_bloc)
737 {
738 first_bloc = bloc->next;
739 first_bloc->prev = NIL_BLOC;
dcfdbac7
JB
740 }
741 else
742 {
743 bloc->next->prev = bloc->prev;
744 bloc->prev->next = bloc->next;
dcfdbac7
JB
745 }
746
47f13333
RS
747 /* Update the records of which blocs are in HEAP. */
748 if (heap->first_bloc == bloc)
749 {
d5179acc 750 if (bloc->next != 0 && bloc->next->heap == heap)
47f13333
RS
751 heap->first_bloc = bloc->next;
752 else
753 heap->first_bloc = heap->last_bloc = NIL_BLOC;
754 }
755 if (heap->last_bloc == bloc)
756 {
d5179acc 757 if (bloc->prev != 0 && bloc->prev->heap == heap)
47f13333
RS
758 heap->last_bloc = bloc->prev;
759 else
760 heap->first_bloc = heap->last_bloc = NIL_BLOC;
761 }
762
e429caa2 763 relinquish ();
dcfdbac7
JB
764 free (bloc);
765}
766\f
956ace37
JB
767/* Interface routines. */
768
98b7fe02 769/* Obtain SIZE bytes of storage from the free pool, or the system, as
2c46d29f 770 necessary. If relocatable blocs are in use, this means relocating
98b7fe02
JB
771 them. This function gets plugged into the GNU malloc's __morecore
772 hook.
773
7516b7d5
RS
774 We provide hysteresis, never relocating by less than extra_bytes.
775
98b7fe02
JB
776 If we're out of memory, we should return zero, to imitate the other
777 __morecore hook values - in particular, __default_morecore in the
778 GNU malloc package. */
dcfdbac7 779
177c0ea7 780POINTER
971de7fb 781r_alloc_sbrk (long int size)
dcfdbac7 782{
e429caa2
KH
783 register bloc_ptr b;
784 POINTER address;
dcfdbac7 785
44d3dec0
RS
786 if (! r_alloc_initialized)
787 r_alloc_init ();
788
dcfdbac7 789 if (! use_relocatable_buffers)
bbc60227 790 return (*real_morecore) (size);
dcfdbac7 791
e429caa2
KH
792 if (size == 0)
793 return virtual_break_value;
7516b7d5 794
e429caa2 795 if (size > 0)
dcfdbac7 796 {
abe9ff32
RS
797 /* Allocate a page-aligned space. GNU malloc would reclaim an
798 extra space if we passed an unaligned one. But we could
8e6208c5 799 not always find a space which is contiguous to the previous. */
e429caa2
KH
800 POINTER new_bloc_start;
801 heap_ptr h = first_heap;
abe9ff32 802 SIZE get = ROUNDUP (size);
7516b7d5 803
abe9ff32 804 address = (POINTER) ROUNDUP (virtual_break_value);
e429caa2 805
abe9ff32
RS
806 /* Search the list upward for a heap which is large enough. */
807 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
e429caa2
KH
808 {
809 h = h->next;
810 if (h == NIL_HEAP)
811 break;
abe9ff32 812 address = (POINTER) ROUNDUP (h->start);
e429caa2
KH
813 }
814
abe9ff32 815 /* If not found, obtain more space. */
e429caa2
KH
816 if (h == NIL_HEAP)
817 {
818 get += extra_bytes + page_size;
819
49f82b3d 820 if (! obtain (address, get))
e429caa2 821 return 0;
98b7fe02 822
e429caa2 823 if (first_heap == last_heap)
abe9ff32 824 address = (POINTER) ROUNDUP (virtual_break_value);
e429caa2 825 else
abe9ff32 826 address = (POINTER) ROUNDUP (last_heap->start);
e429caa2
KH
827 h = last_heap;
828 }
829
abe9ff32 830 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);
e429caa2
KH
831
832 if (first_heap->bloc_start < new_bloc_start)
833 {
49f82b3d 834 /* This is no clean solution - no idea how to do it better. */
177c0ea7 835 if (r_alloc_freeze_level)
49f82b3d
RS
836 return NIL;
837
838 /* There is a bug here: if the above obtain call succeeded, but the
839 relocate_blocs call below does not succeed, we need to free
840 the memory that we got with obtain. */
841
abe9ff32 842 /* Move all blocs upward. */
49f82b3d 843 if (! relocate_blocs (first_bloc, h, new_bloc_start))
e429caa2
KH
844 return 0;
845
846 /* Note that (POINTER)(h+1) <= new_bloc_start since
847 get >= page_size, so the following does not destroy the heap
abe9ff32 848 header. */
e429caa2
KH
849 for (b = last_bloc; b != NIL_BLOC; b = b->prev)
850 {
72af86bd 851 memmove (b->new_data, b->data, b->size);
e429caa2
KH
852 *b->variable = b->data = b->new_data;
853 }
854
855 h->bloc_start = new_bloc_start;
abe9ff32 856
47f13333 857 update_heap_bloc_correspondence (first_bloc, h);
e429caa2 858 }
e429caa2
KH
859 if (h != first_heap)
860 {
861 /* Give up managing heaps below the one the new
abe9ff32 862 virtual_break_value points to. */
e429caa2
KH
863 first_heap->prev = NIL_HEAP;
864 first_heap->next = h->next;
865 first_heap->start = h->start;
866 first_heap->end = h->end;
abe9ff32 867 first_heap->free = h->free;
47f13333
RS
868 first_heap->first_bloc = h->first_bloc;
869 first_heap->last_bloc = h->last_bloc;
e429caa2
KH
870 first_heap->bloc_start = h->bloc_start;
871
872 if (first_heap->next)
873 first_heap->next->prev = first_heap;
874 else
875 last_heap = first_heap;
876 }
877
72af86bd 878 memset (address, 0, size);
dcfdbac7 879 }
e429caa2 880 else /* size < 0 */
dcfdbac7 881 {
e429caa2
KH
882 SIZE excess = (char *)first_heap->bloc_start
883 - ((char *)virtual_break_value + size);
884
885 address = virtual_break_value;
886
887 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
888 {
889 excess -= extra_bytes;
890 first_heap->bloc_start
47f13333 891 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);
e429caa2 892
abe9ff32 893 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
7516b7d5 894
e429caa2
KH
895 for (b = first_bloc; b != NIL_BLOC; b = b->next)
896 {
72af86bd 897 memmove (b->new_data, b->data, b->size);
e429caa2
KH
898 *b->variable = b->data = b->new_data;
899 }
900 }
901
902 if ((char *)virtual_break_value + size < (char *)first_heap->start)
903 {
904 /* We found an additional space below the first heap */
905 first_heap->start = (POINTER) ((char *)virtual_break_value + size);
906 }
dcfdbac7
JB
907 }
908
e429caa2 909 virtual_break_value = (POINTER) ((char *)address + size);
47f13333 910 break_value = (last_bloc
91a211b5
GM
911 ? (char *) last_bloc->data + last_bloc->size
912 : (char *) first_heap->bloc_start);
e429caa2 913 if (size < 0)
abe9ff32 914 relinquish ();
7516b7d5 915
e429caa2 916 return address;
dcfdbac7
JB
917}
918
0a58f946 919
dcfdbac7
JB
920/* Allocate a relocatable bloc of storage of size SIZE. A pointer to
921 the data is returned in *PTR. PTR is thus the address of some variable
98b7fe02
JB
922 which will use the data area.
923
49f82b3d 924 The allocation of 0 bytes is valid.
f96f2c5b
JB
925 In case r_alloc_freeze_level is set, a best fit of unused blocs could be
926 done before allocating a new area. Not yet done.
49f82b3d 927
98b7fe02
JB
928 If we can't allocate the necessary memory, set *PTR to zero, and
929 return zero. */
dcfdbac7
JB
930
931POINTER
971de7fb 932r_alloc (POINTER *ptr, SIZE size)
dcfdbac7
JB
933{
934 register bloc_ptr new_bloc;
935
2c46d29f
RS
936 if (! r_alloc_initialized)
937 r_alloc_init ();
938
abe9ff32 939 new_bloc = get_bloc (MEM_ROUNDUP (size));
98b7fe02
JB
940 if (new_bloc)
941 {
942 new_bloc->variable = ptr;
943 *ptr = new_bloc->data;
944 }
945 else
946 *ptr = 0;
dcfdbac7
JB
947
948 return *ptr;
949}
950
2c46d29f
RS
951/* Free a bloc of relocatable storage whose data is pointed to by PTR.
952 Store 0 in *PTR to show there's no block allocated. */
dcfdbac7
JB
953
954void
971de7fb 955r_alloc_free (register POINTER *ptr)
dcfdbac7
JB
956{
957 register bloc_ptr dead_bloc;
958
44d3dec0
RS
959 if (! r_alloc_initialized)
960 r_alloc_init ();
961
dcfdbac7
JB
962 dead_bloc = find_bloc (ptr);
963 if (dead_bloc == NIL_BLOC)
747d9d14 964 abort (); /* Double free? PTR not originally used to allocate? */
dcfdbac7
JB
965
966 free_bloc (dead_bloc);
2c46d29f 967 *ptr = 0;
719b242f 968
d5179acc 969#ifdef emacs
719b242f 970 refill_memory_reserve ();
d5179acc 971#endif
dcfdbac7
JB
972}
973
16a5c729 974/* Given a pointer at address PTR to relocatable data, resize it to SIZE.
98b7fe02
JB
975 Do this by shifting all blocks above this one up in memory, unless
976 SIZE is less than or equal to the current bloc size, in which case
977 do nothing.
dcfdbac7 978
f96f2c5b 979 In case r_alloc_freeze_level is set, a new bloc is allocated, and the
8e6208c5 980 memory copied to it. Not very efficient. We could traverse the
49f82b3d
RS
981 bloc_list for a best fit of free blocs first.
982
98b7fe02
JB
983 Change *PTR to reflect the new bloc, and return this value.
984
985 If more memory cannot be allocated, then leave *PTR unchanged, and
986 return zero. */
dcfdbac7
JB
987
988POINTER
971de7fb 989r_re_alloc (POINTER *ptr, SIZE size)
dcfdbac7 990{
16a5c729 991 register bloc_ptr bloc;
dcfdbac7 992
44d3dec0
RS
993 if (! r_alloc_initialized)
994 r_alloc_init ();
995
49f82b3d
RS
996 if (!*ptr)
997 return r_alloc (ptr, size);
177c0ea7 998 if (!size)
49f82b3d
RS
999 {
1000 r_alloc_free (ptr);
1001 return r_alloc (ptr, 0);
1002 }
1003
16a5c729
JB
1004 bloc = find_bloc (ptr);
1005 if (bloc == NIL_BLOC)
747d9d14 1006 abort (); /* Already freed? PTR not originally used to allocate? */
dcfdbac7 1007
177c0ea7 1008 if (size < bloc->size)
49f82b3d
RS
1009 {
1010 /* Wouldn't it be useful to actually resize the bloc here? */
1011 /* I think so too, but not if it's too expensive... */
177c0ea7
JB
1012 if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
1013 && r_alloc_freeze_level == 0)
49f82b3d
RS
1014 {
1015 resize_bloc (bloc, MEM_ROUNDUP (size));
1016 /* Never mind if this fails, just do nothing... */
1017 /* It *should* be infallible! */
1018 }
1019 }
1020 else if (size > bloc->size)
1021 {
1022 if (r_alloc_freeze_level)
1023 {
1024 bloc_ptr new_bloc;
1025 new_bloc = get_bloc (MEM_ROUNDUP (size));
1026 if (new_bloc)
1027 {
1028 new_bloc->variable = ptr;
1029 *ptr = new_bloc->data;
1030 bloc->variable = (POINTER *) NIL;
1031 }
1032 else
1033 return NIL;
1034 }
177c0ea7 1035 else
49f82b3d
RS
1036 {
1037 if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
1038 return NIL;
1039 }
1040 }
dcfdbac7
JB
1041 return *ptr;
1042}
81bd58e8
KH
1043
1044/* Disable relocations, after making room for at least SIZE bytes
1045 of non-relocatable heap if possible. The relocatable blocs are
1046 guaranteed to hold still until thawed, even if this means that
1047 malloc must return a null pointer. */
abe9ff32 1048
81bd58e8 1049void
971de7fb 1050r_alloc_freeze (long int size)
81bd58e8 1051{
44d3dec0
RS
1052 if (! r_alloc_initialized)
1053 r_alloc_init ();
1054
81bd58e8
KH
1055 /* If already frozen, we can't make any more room, so don't try. */
1056 if (r_alloc_freeze_level > 0)
1057 size = 0;
1058 /* If we can't get the amount requested, half is better than nothing. */
1059 while (size > 0 && r_alloc_sbrk (size) == 0)
1060 size /= 2;
1061 ++r_alloc_freeze_level;
1062 if (size > 0)
1063 r_alloc_sbrk (-size);
1064}
1065
1066void
971de7fb 1067r_alloc_thaw (void)
81bd58e8 1068{
49f82b3d 1069
177c0ea7 1070 if (! r_alloc_initialized)
49f82b3d
RS
1071 r_alloc_init ();
1072
81bd58e8
KH
1073 if (--r_alloc_freeze_level < 0)
1074 abort ();
49f82b3d 1075
177c0ea7 1076 /* This frees all unused blocs. It is not too inefficient, as the resize
72af86bd 1077 and memcpy is done only once. Afterwards, all unreferenced blocs are
49f82b3d 1078 already shrunk to zero size. */
177c0ea7 1079 if (!r_alloc_freeze_level)
49f82b3d
RS
1080 {
1081 bloc_ptr *b = &first_bloc;
177c0ea7
JB
1082 while (*b)
1083 if (!(*b)->variable)
1084 free_bloc (*b);
1085 else
49f82b3d
RS
1086 b = &(*b)->next;
1087 }
81bd58e8 1088}
49f82b3d 1089
dec41418
RS
1090
1091#if defined (emacs) && defined (DOUG_LEA_MALLOC)
1092
1093/* Reinitialize the morecore hook variables after restarting a dumped
1094 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */
1095void
971de7fb 1096r_alloc_reinit (void)
dec41418
RS
1097{
1098 /* Only do this if the hook has been reset, so that we don't get an
1099 infinite loop, in case Emacs was linked statically. */
1100 if (__morecore != r_alloc_sbrk)
1101 {
1102 real_morecore = __morecore;
1103 __morecore = r_alloc_sbrk;
1104 }
1105}
0a58f946
GM
1106
1107#endif /* emacs && DOUG_LEA_MALLOC */
dec41418 1108
e429caa2 1109#ifdef DEBUG
0a58f946 1110
e429caa2
KH
1111#include <assert.h>
1112
44d3dec0 1113void
e429caa2
KH
1114r_alloc_check ()
1115{
6d16dd06
RS
1116 int found = 0;
1117 heap_ptr h, ph = 0;
1118 bloc_ptr b, pb = 0;
1119
1120 if (!r_alloc_initialized)
1121 return;
1122
1123 assert (first_heap);
1124 assert (last_heap->end <= (POINTER) sbrk (0));
1125 assert ((POINTER) first_heap < first_heap->start);
1126 assert (first_heap->start <= virtual_break_value);
1127 assert (virtual_break_value <= first_heap->end);
1128
1129 for (h = first_heap; h; h = h->next)
1130 {
1131 assert (h->prev == ph);
1132 assert ((POINTER) ROUNDUP (h->end) == h->end);
40f3f04b
RS
1133#if 0 /* ??? The code in ralloc.c does not really try to ensure
1134 the heap start has any sort of alignment.
1135 Perhaps it should. */
6d16dd06 1136 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
40f3f04b 1137#endif
6d16dd06
RS
1138 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
1139 assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
1140
1141 if (ph)
1142 {
1143 assert (ph->end < h->start);
1144 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
1145 }
1146
1147 if (h->bloc_start <= break_value && break_value <= h->end)
1148 found = 1;
1149
1150 ph = h;
1151 }
1152
1153 assert (found);
1154 assert (last_heap == ph);
1155
1156 for (b = first_bloc; b; b = b->next)
1157 {
1158 assert (b->prev == pb);
1159 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
1160 assert ((SIZE) MEM_ROUNDUP (b->size) == b->size);
1161
1162 ph = 0;
1163 for (h = first_heap; h; h = h->next)
1164 {
1165 if (h->bloc_start <= b->data && b->data + b->size <= h->end)
1166 break;
1167 ph = h;
1168 }
1169
1170 assert (h);
1171
1172 if (pb && pb->data + pb->size != b->data)
1173 {
1174 assert (ph && b->data == h->bloc_start);
1175 while (ph)
1176 {
1177 if (ph->bloc_start <= pb->data
1178 && pb->data + pb->size <= ph->end)
1179 {
1180 assert (pb->data + pb->size + b->size > ph->end);
1181 break;
1182 }
1183 else
1184 {
1185 assert (ph->bloc_start + b->size > ph->end);
1186 }
1187 ph = ph->prev;
1188 }
1189 }
1190 pb = b;
1191 }
1192
1193 assert (last_bloc == pb);
1194
1195 if (last_bloc)
1196 assert (last_bloc->data + last_bloc->size == break_value);
1197 else
1198 assert (first_heap->bloc_start == break_value);
e429caa2 1199}
0a58f946 1200
e429caa2 1201#endif /* DEBUG */
0a58f946 1202
baae5c2d
JR
1203/* Update the internal record of which variable points to some data to NEW.
1204 Used by buffer-swap-text in Emacs to restore consistency after it
1205 swaps the buffer text between two buffer objects. The OLD pointer
1206 is checked to ensure that memory corruption does not occur due to
1207 misuse. */
1208void
971de7fb 1209r_alloc_reset_variable (POINTER *old, POINTER *new)
baae5c2d
JR
1210{
1211 bloc_ptr bloc = first_bloc;
1212
1213 /* Find the bloc that corresponds to the data pointed to by pointer.
1214 find_bloc cannot be used, as it has internal consistency checks
1215 which fail when the variable needs reseting. */
1216 while (bloc != NIL_BLOC)
1217 {
1218 if (bloc->data == *new)
1219 break;
1220
1221 bloc = bloc->next;
1222 }
1223
1224 if (bloc == NIL_BLOC || bloc->variable != old)
747d9d14 1225 abort (); /* Already freed? OLD not originally used to allocate? */
baae5c2d
JR
1226
1227 /* Update variable to point to the new location. */
1228 bloc->variable = new;
1229}
0a58f946
GM
1230
1231\f
1232/***********************************************************************
1233 Initialization
1234 ***********************************************************************/
1235
0a58f946
GM
1236/* Initialize various things for memory allocation. */
1237
1238static void
971de7fb 1239r_alloc_init (void)
0a58f946
GM
1240{
1241 if (r_alloc_initialized)
1242 return;
0a58f946 1243 r_alloc_initialized = 1;
177c0ea7 1244
a2c23c92
DL
1245 page_size = PAGE;
1246#ifndef SYSTEM_MALLOC
0a58f946
GM
1247 real_morecore = __morecore;
1248 __morecore = r_alloc_sbrk;
1249
1250 first_heap = last_heap = &heap_base;
1251 first_heap->next = first_heap->prev = NIL_HEAP;
1252 first_heap->start = first_heap->bloc_start
1253 = virtual_break_value = break_value = (*real_morecore) (0);
1254 if (break_value == NIL)
1255 abort ();
1256
0a58f946 1257 extra_bytes = ROUNDUP (50000);
a2c23c92 1258#endif
0a58f946
GM
1259
1260#ifdef DOUG_LEA_MALLOC
1673df2e
JD
1261 BLOCK_INPUT;
1262 mallopt (M_TOP_PAD, 64 * 4096);
1263 UNBLOCK_INPUT;
0a58f946 1264#else
a2c23c92 1265#ifndef SYSTEM_MALLOC
0a58f946
GM
1266 /* Give GNU malloc's morecore some hysteresis
1267 so that we move all the relocatable blocks much less often. */
1268 __malloc_extra_blocks = 64;
1269#endif
a2c23c92 1270#endif
0a58f946 1271
5ad25b24 1272#ifndef SYSTEM_MALLOC
0a58f946
GM
1273 first_heap->end = (POINTER) ROUNDUP (first_heap->start);
1274
1275 /* The extra call to real_morecore guarantees that the end of the
1276 address space is a multiple of page_size, even if page_size is
1277 not really the page size of the system running the binary in
1278 which page_size is stored. This allows a binary to be built on a
1279 system with one page size and run on a system with a smaller page
1280 size. */
91a211b5 1281 (*real_morecore) ((char *) first_heap->end - (char *) first_heap->start);
0a58f946
GM
1282
1283 /* Clear the rest of the last page; this memory is in our address space
1284 even though it is after the sbrk value. */
1285 /* Doubly true, with the additional call that explicitly adds the
1286 rest of that page to the address space. */
72af86bd
AS
1287 memset (first_heap->start, 0,
1288 (char *) first_heap->end - (char *) first_heap->start);
0a58f946 1289 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
a2c23c92 1290#endif
177c0ea7 1291
0a58f946
GM
1292 use_relocatable_buffers = 1;
1293}
ab5796a9
MB
1294
1295/* arch-tag: 6a524a15-faff-44c8-95d4-a5da6f55110f
1296 (do not change this comment) */