*** empty log message ***
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
CommitLineData
3eac9910
JB
1;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
70e1dad8 3;;; Copyright (c) 1991 Free Software Foundation, Inc.
3eac9910
JB
4
5;; Author: Jamie Zawinski <jwz@lucid.com>
6;; Hallvard Furuseth <hbf@ulrik.uio.no>
7;; Keywords: internal
1c393159
JB
8
9;; This file is part of GNU Emacs.
10
11;; GNU Emacs is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
3eac9910 13;; the Free Software Foundation; either version 2, or (at your option)
1c393159
JB
14;; any later version.
15
16;; GNU Emacs is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
22;; along with GNU Emacs; see the file COPYING. If not, write to
23;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24
3eac9910
JB
25;;; Commentary:
26
1c393159
JB
27;;; ========================================================================
28;;; "No matter how hard you try, you can't make a racehorse out of a pig.
29;;; you can, however, make a faster pig."
30;;;
31;;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
32;;; makes it be a VW Bug with fuel injection and a turbocharger... You're
33;;; still not going to make it go faster than 70 mph, but it might be easier
34;;; to get it there.
35;;;
36
37;;; TO DO:
38;;;
39;;; (apply '(lambda (x &rest y) ...) 1 (foo))
40;;;
41;;; collapse common subexpressions
42;;;
43;;; maintain a list of functions known not to access any global variables
44;;; (actually, give them a 'dynamically-safe property) and then
45;;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46;;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47;;; by recursing on this, we might be able to eliminate the entire let.
48;;; However certain variables should never have their bindings optimized
49;;; away, because they affect everything.
50;;; (put 'debug-on-error 'binding-is-magic t)
51;;; (put 'debug-on-abort 'binding-is-magic t)
52;;; (put 'inhibit-quit 'binding-is-magic t)
53;;; (put 'quit-flag 'binding-is-magic t)
54;;; others?
55;;;
56;;; Simple defsubsts often produce forms like
57;;; (let ((v1 (f1)) (v2 (f2)) ...)
58;;; (FN v1 v2 ...))
59;;; It would be nice if we could optimize this to
60;;; (FN (f1) (f2) ...)
61;;; but we can't unless FN is dynamically-safe (it might be dynamically
62;;; referring to the bindings that the lambda arglist established.)
63;;; One of the uncountable lossages introduced by dynamic scope...
64;;;
65;;; Maybe there should be a control-structure that says "turn on
66;;; fast-and-loose type-assumptive optimizations here." Then when
67;;; we see a form like (car foo) we can from then on assume that
68;;; the variable foo is of type cons, and optimize based on that.
69;;; But, this won't win much because of (you guessed it) dynamic
70;;; scope. Anything down the stack could change the value.
71;;;
72;;; It would be nice if redundant sequences could be factored out as well,
73;;; when they are known to have no side-effects:
74;;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
75;;; but beware of traps like
76;;; (cons (list x y) (list x y))
77;;;
3eac9910
JB
78;;; Tail-recursion elimination is not really possible in Emacs Lisp.
79;;; Tail-recursion elimination is almost always impossible when all variables
80;;; have dynamic scope, but given that the "return" byteop requires the
81;;; binding stack to be empty (rather than emptying it itself), there can be
82;;; no truly tail-recursive Emacs Lisp functions that take any arguments or
83;;; make any bindings.
1c393159 84;;;
3eac9910 85;;; Here is an example of an Emacs Lisp function which could safely be
1c393159
JB
86;;; byte-compiled tail-recursively:
87;;;
88;;; (defun tail-map (fn list)
89;;; (cond (list
90;;; (funcall fn (car list))
91;;; (tail-map fn (cdr list)))))
92;;;
93;;; However, if there was even a single let-binding around the COND,
94;;; it could not be byte-compiled, because there would be an "unbind"
95;;; byte-op between the final "call" and "return." Adding a
96;;; Bunbind_all byteop would fix this.
97;;;
98;;; (defun foo (x y z) ... (foo a b c))
99;;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
100;;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
101;;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
102;;;
103;;; this also can be considered tail recursion:
104;;;
105;;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
106;;; could generalize this by doing the optimization
107;;; (goto X) ... X: (return) --> (return)
108;;;
109;;; But this doesn't solve all of the problems: although by doing tail-
110;;; recursion elimination in this way, the call-stack does not grow, the
111;;; binding-stack would grow with each recursive step, and would eventually
112;;; overflow. I don't believe there is any way around this without lexical
113;;; scope.
114;;;
3eac9910 115;;; Wouldn't it be nice if Emacs Lisp had lexical scope.
1c393159
JB
116;;;
117;;; Idea: the form (lexical-scope) in a file means that the file may be
118;;; compiled lexically. This proclamation is file-local. Then, within
119;;; that file, "let" would establish lexical bindings, and "let-dynamic"
120;;; would do things the old way. (Or we could use CL "declare" forms.)
121;;; We'd have to notice defvars and defconsts, since those variables should
122;;; always be dynamic, and attempting to do a lexical binding of them
123;;; should simply do a dynamic binding instead.
124;;; But! We need to know about variables that were not necessarily defvarred
125;;; in the file being compiled (doing a boundp check isn't good enough.)
126;;; Fdefvar() would have to be modified to add something to the plist.
127;;;
128;;; A major disadvantage of this scheme is that the interpreter and compiler
129;;; would have different semantics for files compiled with (dynamic-scope).
130;;; Since this would be a file-local optimization, there would be no way to
131;;; modify the interpreter to obey this (unless the loader was hacked
132;;; in some grody way, but that's a really bad idea.)
133;;;
134;;; Really the Right Thing is to make lexical scope the default across
135;;; the board, in the interpreter and compiler, and just FIX all of
136;;; the code that relies on dynamic scope of non-defvarred variables.
137
3eac9910 138;;; Code:
1c393159 139
1c393159
JB
140(defun byte-compile-log-lap-1 (format &rest args)
141 (if (aref byte-code-vector 0)
142 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
143 (byte-compile-log-1
144 (apply 'format format
145 (let (c a)
146 (mapcar '(lambda (arg)
147 (if (not (consp arg))
148 (if (and (symbolp arg)
149 (string-match "^byte-" (symbol-name arg)))
150 (intern (substring (symbol-name arg) 5))
151 arg)
152 (if (integerp (setq c (car arg)))
153 (error "non-symbolic byte-op %s" c))
154 (if (eq c 'TAG)
155 (setq c arg)
156 (setq a (cond ((memq c byte-goto-ops)
157 (car (cdr (cdr arg))))
158 ((memq c byte-constref-ops)
159 (car (cdr arg)))
160 (t (cdr arg))))
161 (setq c (symbol-name c))
162 (if (string-match "^byte-." c)
163 (setq c (intern (substring c 5)))))
164 (if (eq c 'constant) (setq c 'const))
165 (if (and (eq (cdr arg) 0)
166 (not (memq c '(unbind call const))))
167 c
168 (format "(%s %s)" c a))))
169 args)))))
170
171(defmacro byte-compile-log-lap (format-string &rest args)
172 (list 'and
173 '(memq byte-optimize-log '(t byte))
174 (cons 'byte-compile-log-lap-1
175 (cons format-string args))))
176
177\f
178;;; byte-compile optimizers to support inlining
179
180(put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
181
182(defun byte-optimize-inline-handler (form)
183 "byte-optimize-handler for the `inline' special-form."
184 (cons 'progn
185 (mapcar
186 '(lambda (sexp)
187 (let ((fn (car-safe sexp)))
188 (if (and (symbolp fn)
189 (or (cdr (assq fn byte-compile-function-environment))
190 (and (fboundp fn)
191 (not (or (cdr (assq fn byte-compile-macro-environment))
192 (and (consp (setq fn (symbol-function fn)))
193 (eq (car fn) 'macro))
194 (subrp fn))))))
195 (byte-compile-inline-expand sexp)
196 sexp)))
197 (cdr form))))
198
199
70e1dad8
RS
200;; Splice the given lap code into the current instruction stream.
201;; If it has any labels in it, you're responsible for making sure there
202;; are no collisions, and that byte-compile-tag-number is reasonable
203;; after this is spliced in. The provided list is destroyed.
1c393159 204(defun byte-inline-lapcode (lap)
1c393159
JB
205 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
206
207
208(defun byte-compile-inline-expand (form)
209 (let* ((name (car form))
210 (fn (or (cdr (assq name byte-compile-function-environment))
211 (and (fboundp name) (symbol-function name)))))
212 (if (null fn)
213 (progn
214 (byte-compile-warn "attempt to inline %s before it was defined" name)
215 form)
216 ;; else
217 (if (and (consp fn) (eq (car fn) 'autoload))
218 (load (nth 1 fn)))
219 (if (and (consp fn) (eq (car fn) 'autoload))
220 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
221 (if (symbolp fn)
222 (byte-compile-inline-expand (cons fn (cdr form)))
223 (if (compiled-function-p fn)
224 (cons (list 'lambda (aref fn 0)
225 (list 'byte-code (aref fn 1) (aref fn 2) (aref fn 3)))
226 (cdr form))
227 (if (not (eq (car fn) 'lambda)) (error "%s is not a lambda" name))
228 (cons fn (cdr form)))))))
229
230;;; ((lambda ...) ...)
231;;;
232(defun byte-compile-unfold-lambda (form &optional name)
233 (or name (setq name "anonymous lambda"))
234 (let ((lambda (car form))
235 (values (cdr form)))
236 (if (compiled-function-p lambda)
237 (setq lambda (list 'lambda (nth 0 form)
238 (list 'byte-code
239 (nth 1 form) (nth 2 form) (nth 3 form)))))
240 (let ((arglist (nth 1 lambda))
241 (body (cdr (cdr lambda)))
242 optionalp restp
243 bindings)
244 (if (and (stringp (car body)) (cdr body))
245 (setq body (cdr body)))
246 (if (and (consp (car body)) (eq 'interactive (car (car body))))
247 (setq body (cdr body)))
248 (while arglist
249 (cond ((eq (car arglist) '&optional)
250 ;; ok, I'll let this slide because funcall_lambda() does...
251 ;; (if optionalp (error "multiple &optional keywords in %s" name))
252 (if restp (error "&optional found after &rest in %s" name))
253 (if (null (cdr arglist))
254 (error "nothing after &optional in %s" name))
255 (setq optionalp t))
256 ((eq (car arglist) '&rest)
257 ;; ...but it is by no stretch of the imagination a reasonable
258 ;; thing that funcall_lambda() allows (&rest x y) and
259 ;; (&rest x &optional y) in arglists.
260 (if (null (cdr arglist))
261 (error "nothing after &rest in %s" name))
262 (if (cdr (cdr arglist))
263 (error "multiple vars after &rest in %s" name))
264 (setq restp t))
265 (restp
266 (setq bindings (cons (list (car arglist)
267 (and values (cons 'list values)))
268 bindings)
269 values nil))
270 ((and (not optionalp) (null values))
271 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
272 (setq arglist nil values 'too-few))
273 (t
274 (setq bindings (cons (list (car arglist) (car values))
275 bindings)
276 values (cdr values))))
277 (setq arglist (cdr arglist)))
278 (if values
279 (progn
280 (or (eq values 'too-few)
281 (byte-compile-warn
282 "attempt to open-code %s with too many arguments" name))
283 form)
284 (let ((newform
285 (if bindings
286 (cons 'let (cons (nreverse bindings) body))
287 (cons 'progn body))))
288 (byte-compile-log " %s\t==>\t%s" form newform)
289 newform)))))
290
291\f
292;;; implementing source-level optimizers
293
294(defun byte-optimize-form-code-walker (form for-effect)
295 ;;
296 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
297 ;; we need to have special knowledge of the syntax of the special forms
298 ;; like let and defun (that's why they're special forms :-). (Actually,
299 ;; the important aspect is that they are subrs that don't evaluate all of
300 ;; their args.)
301 ;;
302 (let ((fn (car-safe form))
303 tmp)
304 (cond ((not (consp form))
305 (if (not (and for-effect
306 (or byte-compile-delete-errors
307 (not (symbolp form))
308 (eq form t))))
309 form))
310 ((eq fn 'quote)
311 (if (cdr (cdr form))
312 (byte-compile-warn "malformed quote form: %s"
313 (prin1-to-string form)))
314 ;; map (quote nil) to nil to simplify optimizer logic.
315 ;; map quoted constants to nil if for-effect (just because).
316 (and (nth 1 form)
317 (not for-effect)
318 form))
319 ((or (compiled-function-p fn)
320 (eq 'lambda (car-safe fn)))
321 (byte-compile-unfold-lambda form))
322 ((memq fn '(let let*))
323 ;; recursively enter the optimizer for the bindings and body
324 ;; of a let or let*. This for depth-firstness: forms that
325 ;; are more deeply nested are optimized first.
326 (cons fn
327 (cons
328 (mapcar '(lambda (binding)
329 (if (symbolp binding)
330 binding
331 (if (cdr (cdr binding))
332 (byte-compile-warn "malformed let binding: %s"
333 (prin1-to-string binding)))
334 (list (car binding)
335 (byte-optimize-form (nth 1 binding) nil))))
336 (nth 1 form))
337 (byte-optimize-body (cdr (cdr form)) for-effect))))
338 ((eq fn 'cond)
339 (cons fn
340 (mapcar '(lambda (clause)
341 (if (consp clause)
342 (cons
343 (byte-optimize-form (car clause) nil)
344 (byte-optimize-body (cdr clause) for-effect))
345 (byte-compile-warn "malformed cond form: %s"
346 (prin1-to-string clause))
347 clause))
348 (cdr form))))
349 ((eq fn 'progn)
350 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
351 (if (cdr (cdr form))
352 (progn
353 (setq tmp (byte-optimize-body (cdr form) for-effect))
354 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
355 (byte-optimize-form (nth 1 form) for-effect)))
356 ((eq fn 'prog1)
357 (if (cdr (cdr form))
358 (cons 'prog1
359 (cons (byte-optimize-form (nth 1 form) for-effect)
360 (byte-optimize-body (cdr (cdr form)) t)))
361 (byte-optimize-form (nth 1 form) for-effect)))
362 ((eq fn 'prog2)
363 (cons 'prog2
364 (cons (byte-optimize-form (nth 1 form) t)
365 (cons (byte-optimize-form (nth 2 form) for-effect)
366 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
367
368 ((memq fn '(save-excursion save-restriction))
369 ;; those subrs which have an implicit progn; it's not quite good
370 ;; enough to treat these like normal function calls.
371 ;; This can turn (save-excursion ...) into (save-excursion) which
372 ;; will be optimized away in the lap-optimize pass.
373 (cons fn (byte-optimize-body (cdr form) for-effect)))
374
375 ((eq fn 'with-output-to-temp-buffer)
376 ;; this is just like the above, except for the first argument.
377 (cons fn
378 (cons
379 (byte-optimize-form (nth 1 form) nil)
380 (byte-optimize-body (cdr (cdr form)) for-effect))))
381
382 ((eq fn 'if)
383 (cons fn
384 (cons (byte-optimize-form (nth 1 form) nil)
385 (cons
386 (byte-optimize-form (nth 2 form) for-effect)
387 (byte-optimize-body (nthcdr 3 form) for-effect)))))
388
389 ((memq fn '(and or)) ; remember, and/or are control structures.
390 ;; take forms off the back until we can't any more.
391 ;; In the future it could concievably be a problem that the
392 ;; subexpressions of these forms are optimized in the reverse
393 ;; order, but it's ok for now.
394 (if for-effect
395 (let ((backwards (reverse (cdr form))))
396 (while (and backwards
397 (null (setcar backwards
398 (byte-optimize-form (car backwards)
399 for-effect))))
400 (setq backwards (cdr backwards)))
401 (if (and (cdr form) (null backwards))
402 (byte-compile-log
403 " all subforms of %s called for effect; deleted" form))
404 (and backwards
405 (cons fn (nreverse backwards))))
406 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
407
408 ((eq fn 'interactive)
409 (byte-compile-warn "misplaced interactive spec: %s"
410 (prin1-to-string form))
411 nil)
412
413 ((memq fn '(defun defmacro function
414 condition-case save-window-excursion))
415 ;; These forms are compiled as constants or by breaking out
416 ;; all the subexpressions and compiling them separately.
417 form)
418
419 ((eq fn 'unwind-protect)
420 ;; the "protected" part of an unwind-protect is compiled (and thus
421 ;; optimized) as a top-level form, so don't do it here. But the
422 ;; non-protected part has the same for-effect status as the
423 ;; unwind-protect itself. (The protected part is always for effect,
424 ;; but that isn't handled properly yet.)
425 (cons fn
426 (cons (byte-optimize-form (nth 1 form) for-effect)
427 (cdr (cdr form)))))
428
429 ((eq fn 'catch)
430 ;; the body of a catch is compiled (and thus optimized) as a
431 ;; top-level form, so don't do it here. The tag is never
432 ;; for-effect. The body should have the same for-effect status
433 ;; as the catch form itself, but that isn't handled properly yet.
434 (cons fn
435 (cons (byte-optimize-form (nth 1 form) nil)
436 (cdr (cdr form)))))
437
438 ;; If optimization is on, this is the only place that macros are
439 ;; expanded. If optimization is off, then macroexpansion happens
440 ;; in byte-compile-form. Otherwise, the macros are already expanded
441 ;; by the time that is reached.
442 ((not (eq form
443 (setq form (macroexpand form
444 byte-compile-macro-environment))))
445 (byte-optimize-form form for-effect))
446
447 ((not (symbolp fn))
448 (or (eq 'mocklisp (car-safe fn)) ; ha!
449 (byte-compile-warn "%s is a malformed function"
450 (prin1-to-string fn)))
451 form)
452
453 ((and for-effect (setq tmp (get fn 'side-effect-free))
454 (or byte-compile-delete-errors
455 (eq tmp 'error-free)
456 (progn
457 (byte-compile-warn "%s called for effect"
458 (prin1-to-string form))
459 nil)))
460 (byte-compile-log " %s called for effect; deleted" fn)
461 ;; appending a nil here might not be necessary, but it can't hurt.
462 (byte-optimize-form
463 (cons 'progn (append (cdr form) '(nil))) t))
464
465 (t
466 ;; Otherwise, no args can be considered to be for-effect,
467 ;; even if the called function is for-effect, because we
468 ;; don't know anything about that function.
469 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
470
471
472(defun byte-optimize-form (form &optional for-effect)
473 "The source-level pass of the optimizer."
474 ;;
475 ;; First, optimize all sub-forms of this one.
476 (setq form (byte-optimize-form-code-walker form for-effect))
477 ;;
478 ;; after optimizing all subforms, optimize this form until it doesn't
479 ;; optimize any further. This means that some forms will be passed through
480 ;; the optimizer many times, but that's necessary to make the for-effect
481 ;; processing do as much as possible.
482 ;;
483 (let (opt new)
484 (if (and (consp form)
485 (symbolp (car form))
486 (or (and for-effect
487 ;; we don't have any of these yet, but we might.
488 (setq opt (get (car form) 'byte-for-effect-optimizer)))
489 (setq opt (get (car form) 'byte-optimizer)))
490 (not (eq form (setq new (funcall opt form)))))
491 (progn
492;; (if (equal form new) (error "bogus optimizer -- %s" opt))
493 (byte-compile-log " %s\t==>\t%s" form new)
494 (setq new (byte-optimize-form new for-effect))
495 new)
496 form)))
497
498
499(defun byte-optimize-body (forms all-for-effect)
500 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
501 ;; forms, all but the last of which are optimized with the assumption that
502 ;; they are being called for effect. the last is for-effect as well if
503 ;; all-for-effect is true. returns a new list of forms.
504 (let ((rest forms)
505 (result nil)
506 fe new)
507 (while rest
508 (setq fe (or all-for-effect (cdr rest)))
509 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
510 (if (or new (not fe))
511 (setq result (cons new result)))
512 (setq rest (cdr rest)))
513 (nreverse result)))
514
515\f
516;;; some source-level optimizers
517;;;
518;;; when writing optimizers, be VERY careful that the optimizer returns
519;;; something not EQ to its argument if and ONLY if it has made a change.
520;;; This implies that you cannot simply destructively modify the list;
521;;; you must return something not EQ to it if you make an optimization.
522;;;
523;;; It is now safe to optimize code such that it introduces new bindings.
524
525;; I'd like this to be a defsubst, but let's not be self-referental...
526(defmacro byte-compile-trueconstp (form)
527 ;; Returns non-nil if FORM is a non-nil constant.
528 (` (cond ((consp (, form)) (eq (car (, form)) 'quote))
529 ((not (symbolp (, form))))
530 ((eq (, form) t)))))
531
70e1dad8
RS
532;; If the function is being called with constant numeric args,
533;; evaluate as much as possible at compile-time. This optimizer
534;; assumes that the function is associative, like + or *.
1c393159 535(defun byte-optimize-associative-math (form)
1c393159
JB
536 (let ((args nil)
537 (constants nil)
538 (rest (cdr form)))
539 (while rest
540 (if (numberp (car rest))
541 (setq constants (cons (car rest) constants))
542 (setq args (cons (car rest) args)))
543 (setq rest (cdr rest)))
544 (if (cdr constants)
545 (if args
546 (list (car form)
547 (apply (car form) constants)
548 (if (cdr args)
549 (cons (car form) (nreverse args))
550 (car args)))
551 (apply (car form) constants))
552 form)))
553
70e1dad8
RS
554;; If the function is being called with constant numeric args,
555;; evaluate as much as possible at compile-time. This optimizer
556;; assumes that the function is nonassociative, like - or /.
1c393159 557(defun byte-optimize-nonassociative-math (form)
1c393159
JB
558 (if (or (not (numberp (car (cdr form))))
559 (not (numberp (car (cdr (cdr form))))))
560 form
561 (let ((constant (car (cdr form)))
562 (rest (cdr (cdr form))))
563 (while (numberp (car rest))
564 (setq constant (funcall (car form) constant (car rest))
565 rest (cdr rest)))
566 (if rest
567 (cons (car form) (cons constant rest))
568 constant))))
569
570;;(defun byte-optimize-associative-two-args-math (form)
571;; (setq form (byte-optimize-associative-math form))
572;; (if (consp form)
573;; (byte-optimize-two-args-left form)
574;; form))
575
576;;(defun byte-optimize-nonassociative-two-args-math (form)
577;; (setq form (byte-optimize-nonassociative-math form))
578;; (if (consp form)
579;; (byte-optimize-two-args-right form)
580;; form))
581
582(defun byte-optimize-delay-constants-math (form start fun)
583 ;; Merge all FORM's constants from number START, call FUN on them
584 ;; and put the result at the end.
585 (let ((rest (nthcdr (1- start) form)))
586 (while (cdr (setq rest (cdr rest)))
587 (if (numberp (car rest))
588 (let (constants)
589 (setq form (copy-sequence form)
590 rest (nthcdr (1- start) form))
591 (while (setq rest (cdr rest))
592 (cond ((numberp (car rest))
593 (setq constants (cons (car rest) constants))
594 (setcar rest nil))))
595 (setq form (nconc (delq nil form)
596 (list (apply fun (nreverse constants))))))))
597 form))
598
599(defun byte-optimize-plus (form)
600 (setq form (byte-optimize-delay-constants-math form 1 '+))
601 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
602 ;;(setq form (byte-optimize-associative-two-args-math form))
603 (cond ((null (cdr form))
604 (condition-case ()
605 (eval form)
606 (error form)))
607 ((null (cdr (cdr form))) (nth 1 form))
608 (t form)))
609
610(defun byte-optimize-minus (form)
611 ;; Put constants at the end, except the last constant.
612 (setq form (byte-optimize-delay-constants-math form 2 '+))
613 ;; Now only first and last element can be a number.
614 (let ((last (car (reverse (nthcdr 3 form)))))
615 (cond ((eq 0 last)
616 ;; (- x y ... 0) --> (- x y ...)
617 (setq form (copy-sequence form))
618 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
619 ;; If form is (- CONST foo... CONST), merge first and last.
620 ((and (numberp (nth 1 form))
621 (numberp last))
622 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
623 (delq last (copy-sequence (nthcdr 3 form))))))))
624 (if (eq (nth 2 form) 0)
625 (nth 1 form) ; (- x 0) --> x
626 (byte-optimize-predicate
627 (if (and (null (cdr (cdr (cdr form))))
628 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
629 (cons (car form) (cdr (cdr form)))
630 form))))
631
632(defun byte-optimize-multiply (form)
633 (setq form (byte-optimize-delay-constants-math form 1 '*))
634 ;; If there is a constant in FORM, it is now the last element.
635 (cond ((null (cdr form)) 1)
636 ((null (cdr (cdr form))) (nth 1 form))
637 ((let ((last (car (reverse form))))
638 (cond ((eq 0 last) (list 'progn (cdr form)))
639 ((eq 1 last) (delq 1 (copy-sequence form)))
640 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
641 ((and (eq 2 last)
642 (memq t (mapcar 'symbolp (cdr form))))
643 (prog1 (setq form (delq 2 (copy-sequence form)))
644 (while (not (symbolp (car (setq form (cdr form))))))
645 (setcar form (list '+ (car form) (car form)))))
646 (form))))))
647
648(defsubst byte-compile-butlast (form)
649 (nreverse (cdr (reverse form))))
650
651(defun byte-optimize-divide (form)
652 (setq form (byte-optimize-delay-constants-math form 2 '*))
653 (let ((last (car (reverse (cdr (cdr form))))))
654 (if (numberp last)
655 (cond ((= last 1)
656 (setq form (byte-compile-butlast form)))
657 ((numberp (nth 1 form))
658 (setq form (cons (car form)
659 (cons (/ (nth 1 form) last)
660 (byte-compile-butlast (cdr (cdr form)))))
661 last nil))))
662 (cond ((null (cdr (cdr form)))
663 (nth 1 form))
664 ((eq (nth 1 form) 0)
665 (append '(progn) (cdr (cdr form)) '(0)))
666 ((eq last -1)
667 (list '- (if (nthcdr 3 form)
668 (byte-compile-butlast form)
669 (nth 1 form))))
670 (form))))
671
672(defun byte-optimize-logmumble (form)
673 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
674 (byte-optimize-predicate
675 (cond ((memq 0 form)
676 (setq form (if (eq (car form) 'logand)
677 (cons 'progn (cdr form))
678 (delq 0 (copy-sequence form)))))
679 ((and (eq (car-safe form) 'logior)
680 (memq -1 form))
681 (delq -1 (copy-sequence form)))
682 (form))))
683
684
685(defun byte-optimize-binary-predicate (form)
686 (if (byte-compile-constp (nth 1 form))
687 (if (byte-compile-constp (nth 2 form))
688 (condition-case ()
689 (list 'quote (eval form))
690 (error form))
691 ;; This can enable some lapcode optimizations.
692 (list (car form) (nth 2 form) (nth 1 form)))
693 form))
694
695(defun byte-optimize-predicate (form)
696 (let ((ok t)
697 (rest (cdr form)))
698 (while (and rest ok)
699 (setq ok (byte-compile-constp (car rest))
700 rest (cdr rest)))
701 (if ok
702 (condition-case ()
703 (list 'quote (eval form))
704 (error form))
705 form)))
706
707(defun byte-optimize-identity (form)
708 (if (and (cdr form) (null (cdr (cdr form))))
709 (nth 1 form)
710 (byte-compile-warn "identity called with %d arg%s, but requires 1"
711 (length (cdr form))
712 (if (= 1 (length (cdr form))) "" "s"))
713 form))
714
715(put 'identity 'byte-optimizer 'byte-optimize-identity)
716
717(put '+ 'byte-optimizer 'byte-optimize-plus)
718(put '* 'byte-optimizer 'byte-optimize-multiply)
719(put '- 'byte-optimizer 'byte-optimize-minus)
720(put '/ 'byte-optimizer 'byte-optimize-divide)
721(put 'max 'byte-optimizer 'byte-optimize-associative-math)
722(put 'min 'byte-optimizer 'byte-optimize-associative-math)
723
724(put '= 'byte-optimizer 'byte-optimize-binary-predicate)
725(put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
726(put 'eql 'byte-optimizer 'byte-optimize-binary-predicate)
727(put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
728(put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
729(put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
730
731(put '< 'byte-optimizer 'byte-optimize-predicate)
732(put '> 'byte-optimizer 'byte-optimize-predicate)
733(put '<= 'byte-optimizer 'byte-optimize-predicate)
734(put '>= 'byte-optimizer 'byte-optimize-predicate)
735(put '1+ 'byte-optimizer 'byte-optimize-predicate)
736(put '1- 'byte-optimizer 'byte-optimize-predicate)
737(put 'not 'byte-optimizer 'byte-optimize-predicate)
738(put 'null 'byte-optimizer 'byte-optimize-predicate)
739(put 'memq 'byte-optimizer 'byte-optimize-predicate)
740(put 'consp 'byte-optimizer 'byte-optimize-predicate)
741(put 'listp 'byte-optimizer 'byte-optimize-predicate)
742(put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
743(put 'stringp 'byte-optimizer 'byte-optimize-predicate)
744(put 'string< 'byte-optimizer 'byte-optimize-predicate)
745(put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
746
747(put 'logand 'byte-optimizer 'byte-optimize-logmumble)
748(put 'logior 'byte-optimizer 'byte-optimize-logmumble)
749(put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
750(put 'lognot 'byte-optimizer 'byte-optimize-predicate)
751
752(put 'car 'byte-optimizer 'byte-optimize-predicate)
753(put 'cdr 'byte-optimizer 'byte-optimize-predicate)
754(put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
755(put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
756
757
758;; I'm not convinced that this is necessary. Doesn't the optimizer loop
759;; take care of this? - Jamie
760;; I think this may some times be necessary to reduce ie (quote 5) to 5,
761;; so arithmetic optimizers recognize the numerinc constant. - Hallvard
762(put 'quote 'byte-optimizer 'byte-optimize-quote)
763(defun byte-optimize-quote (form)
764 (if (or (consp (nth 1 form))
765 (and (symbolp (nth 1 form))
766 (not (memq (nth 1 form) '(nil t)))))
767 form
768 (nth 1 form)))
769
770(defun byte-optimize-zerop (form)
771 (cond ((numberp (nth 1 form))
772 (eval form))
773 (byte-compile-delete-errors
774 (list '= (nth 1 form) 0))
775 (form)))
776
777(put 'zerop 'byte-optimizer 'byte-optimize-zerop)
778
779(defun byte-optimize-and (form)
780 ;; Simplify if less than 2 args.
781 ;; if there is a literal nil in the args to `and', throw it and following
782 ;; forms away, and surround the `and' with (progn ... nil).
783 (cond ((null (cdr form)))
784 ((memq nil form)
785 (list 'progn
786 (byte-optimize-and
787 (prog1 (setq form (copy-sequence form))
788 (while (nth 1 form)
789 (setq form (cdr form)))
790 (setcdr form nil)))
791 nil))
792 ((null (cdr (cdr form)))
793 (nth 1 form))
794 ((byte-optimize-predicate form))))
795
796(defun byte-optimize-or (form)
797 ;; Throw away nil's, and simplify if less than 2 args.
798 ;; If there is a literal non-nil constant in the args to `or', throw away all
799 ;; following forms.
800 (if (memq nil form)
801 (setq form (delq nil (copy-sequence form))))
802 (let ((rest form))
803 (while (cdr (setq rest (cdr rest)))
804 (if (byte-compile-trueconstp (car rest))
805 (setq form (copy-sequence form)
806 rest (setcdr (memq (car rest) form) nil))))
807 (if (cdr (cdr form))
808 (byte-optimize-predicate form)
809 (nth 1 form))))
810
811(defun byte-optimize-cond (form)
812 ;; if any clauses have a literal nil as their test, throw them away.
813 ;; if any clause has a literal non-nil constant as its test, throw
814 ;; away all following clauses.
815 (let (rest)
816 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
817 (while (setq rest (assq nil (cdr form)))
818 (setq form (delq rest (copy-sequence form))))
819 (if (memq nil (cdr form))
820 (setq form (delq nil (copy-sequence form))))
821 (setq rest form)
822 (while (setq rest (cdr rest))
823 (cond ((byte-compile-trueconstp (car-safe (car rest)))
824 (cond ((eq rest (cdr form))
825 (setq form
826 (if (cdr (car rest))
827 (if (cdr (cdr (car rest)))
828 (cons 'progn (cdr (car rest)))
829 (nth 1 (car rest)))
830 (car (car rest)))))
831 ((cdr rest)
832 (setq form (copy-sequence form))
833 (setcdr (memq (car rest) form) nil)))
834 (setq rest nil)))))
835 ;;
836 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
837 (if (eq 'cond (car-safe form))
838 (let ((clauses (cdr form)))
839 (if (and (consp (car clauses))
840 (null (cdr (car clauses))))
841 (list 'or (car (car clauses))
842 (byte-optimize-cond
843 (cons (car form) (cdr (cdr form)))))
844 form))
845 form))
846
847(defun byte-optimize-if (form)
848 ;; (if <true-constant> <then> <else...>) ==> <then>
849 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
850 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
851 ;; (if <test> <then> nil) ==> (if <test> <then>)
852 (let ((clause (nth 1 form)))
853 (cond ((byte-compile-trueconstp clause)
854 (nth 2 form))
855 ((null clause)
856 (if (nthcdr 4 form)
857 (cons 'progn (nthcdr 3 form))
858 (nth 3 form)))
859 ((nth 2 form)
860 (if (equal '(nil) (nthcdr 3 form))
861 (list 'if clause (nth 2 form))
862 form))
863 ((or (nth 3 form) (nthcdr 4 form))
864 (list 'if (list 'not clause)
865 (if (nthcdr 4 form)
866 (cons 'progn (nthcdr 3 form))
867 (nth 3 form))))
868 (t
869 (list 'progn clause nil)))))
870
871(defun byte-optimize-while (form)
872 (if (nth 1 form)
873 form))
874
875(put 'and 'byte-optimizer 'byte-optimize-and)
876(put 'or 'byte-optimizer 'byte-optimize-or)
877(put 'cond 'byte-optimizer 'byte-optimize-cond)
878(put 'if 'byte-optimizer 'byte-optimize-if)
879(put 'while 'byte-optimizer 'byte-optimize-while)
880
881;; byte-compile-negation-optimizer lives in bytecomp.el
882(put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
883(put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
884(put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
885
886
887(defun byte-optimize-funcall (form)
888 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
889 ;; (funcall 'foo ...) ==> (foo ...)
890 (let ((fn (nth 1 form)))
891 (if (memq (car-safe fn) '(quote function))
892 (cons (nth 1 fn) (cdr (cdr form)))
893 form)))
894
895(defun byte-optimize-apply (form)
896 ;; If the last arg is a literal constant, turn this into a funcall.
897 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
898 (let ((fn (nth 1 form))
899 (last (nth (1- (length form)) form))) ; I think this really is fastest
900 (or (if (or (null last)
901 (eq (car-safe last) 'quote))
902 (if (listp (nth 1 last))
903 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
904 (nconc (list 'funcall fn) butlast (nth 1 last)))
905 (byte-compile-warn
906 "last arg to apply can't be a literal atom: %s"
907 (prin1-to-string last))
908 nil))
909 form)))
910
911(put 'funcall 'byte-optimizer 'byte-optimize-funcall)
912(put 'apply 'byte-optimizer 'byte-optimize-apply)
913
914
915(put 'let 'byte-optimizer 'byte-optimize-letX)
916(put 'let* 'byte-optimizer 'byte-optimize-letX)
917(defun byte-optimize-letX (form)
918 (cond ((null (nth 1 form))
919 ;; No bindings
920 (cons 'progn (cdr (cdr form))))
921 ((or (nth 2 form) (nthcdr 3 form))
922 form)
923 ;; The body is nil
924 ((eq (car form) 'let)
925 (append '(progn) (mapcar 'car (mapcar 'cdr (nth 1 form))) '(nil)))
926 (t
927 (let ((binds (reverse (nth 1 form))))
928 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
929
930
931(put 'nth 'byte-optimizer 'byte-optimize-nth)
932(defun byte-optimize-nth (form)
933 (if (memq (nth 1 form) '(0 1))
934 (list 'car (if (zerop (nth 1 form))
935 (nth 2 form)
936 (list 'cdr (nth 2 form))))
937 (byte-optimize-predicate form)))
938
939(put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
940(defun byte-optimize-nthcdr (form)
941 (let ((count (nth 1 form)))
942 (if (not (memq count '(0 1 2)))
943 (byte-optimize-predicate form)
944 (setq form (nth 2 form))
945 (while (natnump (setq count (1- count)))
946 (setq form (list 'cdr form)))
947 form)))
948\f
949;;; enumerating those functions which need not be called if the returned
950;;; value is not used. That is, something like
951;;; (progn (list (something-with-side-effects) (yow))
952;;; (foo))
953;;; may safely be turned into
954;;; (progn (progn (something-with-side-effects) (yow))
955;;; (foo))
956;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
957
958;;; I wonder if I missed any :-\)
959(let ((side-effect-free-fns
960 '(% * + / /= 1+ < <= = > >= append aref ash assoc assq boundp
961 buffer-file-name buffer-local-variables buffer-modified-p
962 buffer-substring capitalize car cdr concat coordinates-in-window-p
963 copy-marker count-lines documentation downcase elt fboundp featurep
964 file-directory-p file-exists-p file-locked-p file-name-absolute-p
965 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
966 format get get-buffer get-buffer-window getenv get-file-buffer length
967 logand logior lognot logxor lsh marker-buffer max member memq min mod
968 next-window nth nthcdr previous-window rassq regexp-quote reverse
969 string< string= string-lessp string-equal substring user-variable-p
970 window-buffer window-edges window-height window-hscroll window-width
971 zerop))
972 ;; could also add plusp, minusp, signum. If anyone ever defines
973 ;; these, they will certainly be side-effect free.
974 (side-effect-and-error-free-fns
975 '(arrayp atom bobp bolp buffer-end buffer-list buffer-size
976 buffer-string bufferp char-or-string-p commandp cons consp
977 current-buffer dot dot-marker eobp eolp eq eql equal
978 get-largest-window identity integerp integer-or-marker-p
979 interactive-p keymapp list listp make-marker mark mark-marker
980 markerp minibuffer-window natnump nlistp not null numberp
981 one-window-p point point-marker processp selected-window sequencep
982 stringp subrp symbolp syntax-table-p vector vectorp windowp)))
983 (while side-effect-free-fns
984 (put (car side-effect-free-fns) 'side-effect-free t)
985 (setq side-effect-free-fns (cdr side-effect-free-fns)))
986 (while side-effect-and-error-free-fns
987 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
988 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
989 nil)
990
991
992(defun byte-compile-splice-in-already-compiled-code (form)
993 ;; form is (byte-code "..." [...] n)
994 (if (not (memq byte-optimize '(t lap)))
995 (byte-compile-normal-call form)
996 (byte-inline-lapcode
997 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
998 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
999 byte-compile-maxdepth))
1000 (setq byte-compile-depth (1+ byte-compile-depth))))
1001
1002(put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1003
1004\f
1005(defconst byte-constref-ops
1006 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1007
1008;;; This function extracts the bitfields from variable-length opcodes.
1009;;; Originally defined in disass.el (which no longer uses it.)
1010
1011(defun disassemble-offset ()
1012 "Don't call this!"
1013 ;; fetch and return the offset for the current opcode.
1014 ;; return NIL if this opcode has no offset
1015 ;; OP, PTR and BYTES are used and set dynamically
1016 (defvar op)
1017 (defvar ptr)
1018 (defvar bytes)
1019 (cond ((< op byte-nth)
1020 (let ((tem (logand op 7)))
1021 (setq op (logand op 248))
1022 (cond ((eq tem 6)
1023 (setq ptr (1+ ptr)) ;offset in next byte
1024 (aref bytes ptr))
1025 ((eq tem 7)
1026 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1027 (+ (aref bytes ptr)
1028 (progn (setq ptr (1+ ptr))
1029 (lsh (aref bytes ptr) 8))))
1030 (t tem)))) ;offset was in opcode
1031 ((>= op byte-constant)
1032 (prog1 (- op byte-constant) ;offset in opcode
1033 (setq op byte-constant)))
1034 ((and (>= op byte-constant2)
1035 (<= op byte-goto-if-not-nil-else-pop))
1036 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1037 (+ (aref bytes ptr)
1038 (progn (setq ptr (1+ ptr))
1039 (lsh (aref bytes ptr) 8))))
3eac9910 1040 ((and (>= op byte-listN)
1c393159
JB
1041 (<= op byte-insertN))
1042 (setq ptr (1+ ptr)) ;offset in next byte
1043 (aref bytes ptr))))
1044
1045
1046;;; This de-compiler is used for inline expansion of compiled functions,
1047;;; and by the disassembler.
1048;;;
1049(defun byte-decompile-bytecode (bytes constvec)
1050 "Turns BYTECODE into lapcode, refering to CONSTVEC."
1051 (let ((byte-compile-constants nil)
1052 (byte-compile-variables nil)
1053 (byte-compile-tag-number 0))
1054 (byte-decompile-bytecode-1 bytes constvec)))
1055
70e1dad8
RS
1056;; As byte-decompile-bytecode, but updates
1057;; byte-compile-{constants, variables, tag-number}.
1058;; If the optional 3rd arg is true, then `return' opcodes are replaced
1059;; with `goto's destined for the end of the code.
1c393159 1060(defun byte-decompile-bytecode-1 (bytes constvec &optional make-splicable)
1c393159
JB
1061 (let ((length (length bytes))
1062 (ptr 0) optr tag tags op offset
1063 lap tmp
1064 endtag
1065 (retcount 0))
1066 (while (not (= ptr length))
1067 (setq op (aref bytes ptr)
1068 optr ptr
1069 offset (disassemble-offset)) ; this does dynamic-scope magic
1070 (setq op (aref byte-code-vector op))
3eac9910 1071 (cond ((memq op byte-goto-ops)
1c393159
JB
1072 ;; it's a pc
1073 (setq offset
1074 (cdr (or (assq offset tags)
1075 (car (setq tags
1076 (cons (cons offset
1077 (byte-compile-make-tag))
1078 tags)))))))
1079 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1080 ((memq op byte-constref-ops)))
1081 (setq tmp (aref constvec offset)
1082 offset (if (eq op 'byte-constant)
1083 (byte-compile-get-constant tmp)
1084 (or (assq tmp byte-compile-variables)
1085 (car (setq byte-compile-variables
1086 (cons (list tmp)
1087 byte-compile-variables)))))))
1088 ((and make-splicable
1089 (eq op 'byte-return))
1090 (if (= ptr (1- length))
1091 (setq op nil)
1092 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1093 op 'byte-goto))))
1094 ;; lap = ( [ (pc . (op . arg)) ]* )
1095 (setq lap (cons (cons optr (cons op (or offset 0)))
1096 lap))
1097 (setq ptr (1+ ptr)))
1098 ;; take off the dummy nil op that we replaced a trailing "return" with.
1099 (let ((rest lap))
1100 (while rest
1101 (cond ((setq tmp (assq (car (car rest)) tags))
1102 ;; this addr is jumped to
1103 (setcdr rest (cons (cons nil (cdr tmp))
1104 (cdr rest)))
1105 (setq tags (delq tmp tags))
1106 (setq rest (cdr rest))))
1107 (setq rest (cdr rest))))
1108 (if tags (error "optimizer error: missed tags %s" tags))
1109 (if (null (car (cdr (car lap))))
1110 (setq lap (cdr lap)))
1111 (if endtag
1112 (setq lap (cons (cons nil endtag) lap)))
1113 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1114 (mapcar 'cdr (nreverse lap))))
1115
1116\f
1117;;; peephole optimizer
1118
1119(defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1120
1121(defconst byte-conditional-ops
1122 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1123 byte-goto-if-not-nil-else-pop))
1124
1125(defconst byte-after-unbind-ops
1126 '(byte-constant byte-dup
1127 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1128 byte-eq byte-equal byte-not
1129 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1130 byte-interactive-p
1131 ;; How about other side-effect-free-ops? Is it safe to move an
1132 ;; error invocation (such as from nth) out of an unwind-protect?
1133 "Byte-codes that can be moved past an unbind."))
1134
1135(defconst byte-compile-side-effect-and-error-free-ops
1136 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1137 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1138 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1139 byte-point-min byte-following-char byte-preceding-char
1140 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1141 byte-current-buffer byte-interactive-p))
1142
1143(defconst byte-compile-side-effect-free-ops
1144 (nconc
1145 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1146 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1147 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1148 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1149 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1150 byte-member byte-assq byte-quo byte-rem)
1151 byte-compile-side-effect-and-error-free-ops))
1152
1153;;; This piece of shit is because of the way DEFVAR_BOOL() variables work.
1154;;; Consider the code
1155;;;
1156;;; (defun foo (flag)
1157;;; (let ((old-pop-ups pop-up-windows)
1158;;; (pop-up-windows flag))
1159;;; (cond ((not (eq pop-up-windows old-pop-ups))
1160;;; (setq old-pop-ups pop-up-windows)
1161;;; ...))))
1162;;;
1163;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1164;;; something else. But if we optimize
1165;;;
1166;;; varref flag
1167;;; varbind pop-up-windows
1168;;; varref pop-up-windows
1169;;; not
1170;;; to
1171;;; varref flag
1172;;; dup
1173;;; varbind pop-up-windows
1174;;; not
1175;;;
1176;;; we break the program, because it will appear that pop-up-windows and
1177;;; old-pop-ups are not EQ when really they are. So we have to know what
1178;;; the BOOL variables are, and not perform this optimization on them.
1179;;;
1180(defconst byte-boolean-vars
3eac9910
JB
1181 '(abbrev-all-caps abbrevs-changed byte-metering-on
1182 check-protected-fields completion-auto-help completion-ignore-case
1183 cursor-in-echo-area debug-on-next-call debug-on-quit
1184 defining-kbd-macro delete-exited-processes
1185 enable-recursive-minibuffers indent-tabs-mode
1186 insert-default-directory inverse-video load-in-progress
1187 menu-prompting mode-line-inverse-video no-redraw-on-reenter
1188 noninteractive parse-sexp-ignore-comments pop-up-frames
1189 pop-up-windows print-escape-newlines print-escape-newlines
1190 truncate-partial-width-windows visible-bell vms-stmlf-recfm
1191 words-include-escapes x-save-under)
1c393159
JB
1192 "DEFVAR_BOOL variables. Giving these any non-nil value sets them to t.
1193If this does not enumerate all DEFVAR_BOOL variables, the byte-optimizer
1194may generate incorrect code.")
1195
1196(defun byte-optimize-lapcode (lap &optional for-effect)
1197 "Simple peephole optimizer. LAP is both modified and returned."
1198 (let (lap0 off0
1199 lap1 off1
1200 lap2 off2
1201 (keep-going 'first-time)
1202 (add-depth 0)
1203 rest tmp tmp2 tmp3
1204 (side-effect-free (if byte-compile-delete-errors
1205 byte-compile-side-effect-free-ops
1206 byte-compile-side-effect-and-error-free-ops)))
1207 (while keep-going
1208 (or (eq keep-going 'first-time)
1209 (byte-compile-log-lap " ---- next pass"))
1210 (setq rest lap
1211 keep-going nil)
1212 (while rest
1213 (setq lap0 (car rest)
1214 lap1 (nth 1 rest)
1215 lap2 (nth 2 rest))
1216
1217 ;; You may notice that sequences like "dup varset discard" are
1218 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1219 ;; You may be tempted to change this; resist that temptation.
1220 (cond ;;
1221 ;; <side-effect-free> pop --> <deleted>
1222 ;; ...including:
1223 ;; const-X pop --> <deleted>
1224 ;; varref-X pop --> <deleted>
1225 ;; dup pop --> <deleted>
1226 ;;
1227 ((and (eq 'byte-discard (car lap1))
1228 (memq (car lap0) side-effect-free))
1229 (setq keep-going t)
1230 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1231 (setq rest (cdr rest))
1232 (cond ((= tmp 1)
1233 (byte-compile-log-lap
1234 " %s discard\t-->\t<deleted>" lap0)
1235 (setq lap (delq lap0 (delq lap1 lap))))
1236 ((= tmp 0)
1237 (byte-compile-log-lap
1238 " %s discard\t-->\t<deleted> discard" lap0)
1239 (setq lap (delq lap0 lap)))
1240 ((= tmp -1)
1241 (byte-compile-log-lap
1242 " %s discard\t-->\tdiscard discard" lap0)
1243 (setcar lap0 'byte-discard)
1244 (setcdr lap0 0))
1245 ((error "Optimizer error: too much on the stack"))))
1246 ;;
1247 ;; goto*-X X: --> X:
1248 ;;
1249 ((and (memq (car lap0) byte-goto-ops)
1250 (eq (cdr lap0) lap1))
1251 (cond ((eq (car lap0) 'byte-goto)
1252 (setq lap (delq lap0 lap))
1253 (setq tmp "<deleted>"))
1254 ((memq (car lap0) byte-goto-always-pop-ops)
1255 (setcar lap0 (setq tmp 'byte-discard))
1256 (setcdr lap0 0))
1257 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1258 (and (memq byte-optimize-log '(t byte))
1259 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1260 (nth 1 lap1) (nth 1 lap1)
1261 tmp (nth 1 lap1)))
1262 (setq keep-going t))
1263 ;;
1264 ;; varset-X varref-X --> dup varset-X
1265 ;; varbind-X varref-X --> dup varbind-X
1266 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1267 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1268 ;; The latter two can enable other optimizations.
1269 ;;
1270 ((and (eq 'byte-varref (car lap2))
1271 (eq (cdr lap1) (cdr lap2))
1272 (memq (car lap1) '(byte-varset byte-varbind)))
1273 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1274 (not (eq (car lap0) 'byte-constant)))
1275 nil
1276 (setq keep-going t)
1277 (if (memq (car lap0) '(byte-constant byte-dup))
1278 (progn
1279 (setq tmp (if (or (not tmp)
1280 (memq (car (cdr lap0)) '(nil t)))
1281 (cdr lap0)
1282 (byte-compile-get-constant t)))
1283 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1284 lap0 lap1 lap2 lap0 lap1
1285 (cons (car lap0) tmp))
1286 (setcar lap2 (car lap0))
1287 (setcdr lap2 tmp))
1288 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1289 (setcar lap2 (car lap1))
1290 (setcar lap1 'byte-dup)
1291 (setcdr lap1 0)
1292 ;; The stack depth gets locally increased, so we will
1293 ;; increase maxdepth in case depth = maxdepth here.
1294 ;; This can cause the third argument to byte-code to
1295 ;; be larger than necessary.
1296 (setq add-depth 1))))
1297 ;;
1298 ;; dup varset-X discard --> varset-X
1299 ;; dup varbind-X discard --> varbind-X
1300 ;; (the varbind variant can emerge from other optimizations)
1301 ;;
1302 ((and (eq 'byte-dup (car lap0))
1303 (eq 'byte-discard (car lap2))
1304 (memq (car lap1) '(byte-varset byte-varbind)))
1305 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1306 (setq keep-going t
1307 rest (cdr rest))
1308 (setq lap (delq lap0 (delq lap2 lap))))
1309 ;;
1310 ;; not goto-X-if-nil --> goto-X-if-non-nil
1311 ;; not goto-X-if-non-nil --> goto-X-if-nil
1312 ;;
1313 ;; it is wrong to do the same thing for the -else-pop variants.
1314 ;;
1315 ((and (eq 'byte-not (car lap0))
1316 (or (eq 'byte-goto-if-nil (car lap1))
1317 (eq 'byte-goto-if-not-nil (car lap1))))
1318 (byte-compile-log-lap " not %s\t-->\t%s"
1319 lap1
1320 (cons
1321 (if (eq (car lap1) 'byte-goto-if-nil)
1322 'byte-goto-if-not-nil
1323 'byte-goto-if-nil)
1324 (cdr lap1)))
1325 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1326 'byte-goto-if-not-nil
1327 'byte-goto-if-nil))
1328 (setq lap (delq lap0 lap))
1329 (setq keep-going t))
1330 ;;
1331 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1332 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1333 ;;
1334 ;; it is wrong to do the same thing for the -else-pop variants.
1335 ;;
1336 ((and (or (eq 'byte-goto-if-nil (car lap0))
1337 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1338 (eq 'byte-goto (car lap1)) ; gotoY
1339 (eq (cdr lap0) lap2)) ; TAG X
1340 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1341 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1342 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1343 lap0 lap1 lap2
1344 (cons inverse (cdr lap1)) lap2)
1345 (setq lap (delq lap0 lap))
1346 (setcar lap1 inverse)
1347 (setq keep-going t)))
1348 ;;
1349 ;; const goto-if-* --> whatever
1350 ;;
1351 ((and (eq 'byte-constant (car lap0))
1352 (memq (car lap1) byte-conditional-ops))
1353 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1354 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1355 (car (cdr lap0))
1356 (not (car (cdr lap0))))
1357 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1358 lap0 lap1)
1359 (setq rest (cdr rest)
1360 lap (delq lap0 (delq lap1 lap))))
1361 (t
1362 (if (memq (car lap1) byte-goto-always-pop-ops)
1363 (progn
1364 (byte-compile-log-lap " %s %s\t-->\t%s"
1365 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1366 (setq lap (delq lap0 lap)))
1367 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1368 (cons 'byte-goto (cdr lap1))))
1369 (setcar lap1 'byte-goto)))
1370 (setq keep-going t))
1371 ;;
1372 ;; varref-X varref-X --> varref-X dup
1373 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1374 ;; We don't optimize the const-X variations on this here,
1375 ;; because that would inhibit some goto optimizations; we
1376 ;; optimize the const-X case after all other optimizations.
1377 ;;
1378 ((and (eq 'byte-varref (car lap0))
1379 (progn
1380 (setq tmp (cdr rest))
1381 (while (eq (car (car tmp)) 'byte-dup)
1382 (setq tmp (cdr tmp)))
1383 t)
1384 (eq (cdr lap0) (cdr (car tmp)))
1385 (eq 'byte-varref (car (car tmp))))
1386 (if (memq byte-optimize-log '(t byte))
1387 (let ((str ""))
1388 (setq tmp2 (cdr rest))
1389 (while (not (eq tmp tmp2))
1390 (setq tmp2 (cdr tmp2)
1391 str (concat str " dup")))
1392 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1393 lap0 str lap0 lap0 str)))
1394 (setq keep-going t)
1395 (setcar (car tmp) 'byte-dup)
1396 (setcdr (car tmp) 0)
1397 (setq rest tmp))
1398 ;;
1399 ;; TAG1: TAG2: --> TAG1: <deleted>
1400 ;; (and other references to TAG2 are replaced with TAG1)
1401 ;;
1402 ((and (eq (car lap0) 'TAG)
1403 (eq (car lap1) 'TAG))
1404 (and (memq byte-optimize-log '(t byte))
1405 (byte-compile-log " adjascent tags %d and %d merged"
1406 (nth 1 lap1) (nth 1 lap0)))
1407 (setq tmp3 lap)
1408 (while (setq tmp2 (rassq lap0 tmp3))
1409 (setcdr tmp2 lap1)
1410 (setq tmp3 (cdr (memq tmp2 tmp3))))
1411 (setq lap (delq lap0 lap)
1412 keep-going t))
1413 ;;
1414 ;; unused-TAG: --> <deleted>
1415 ;;
1416 ((and (eq 'TAG (car lap0))
1417 (not (rassq lap0 lap)))
1418 (and (memq byte-optimize-log '(t byte))
1419 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1420 (setq lap (delq lap0 lap)
1421 keep-going t))
1422 ;;
1423 ;; goto ... --> goto <delete until TAG or end>
1424 ;; return ... --> return <delete until TAG or end>
1425 ;;
1426 ((and (memq (car lap0) '(byte-goto byte-return))
1427 (not (memq (car lap1) '(TAG nil))))
1428 (setq tmp rest)
1429 (let ((i 0)
1430 (opt-p (memq byte-optimize-log '(t lap)))
1431 str deleted)
1432 (while (and (setq tmp (cdr tmp))
1433 (not (eq 'TAG (car (car tmp)))))
1434 (if opt-p (setq deleted (cons (car tmp) deleted)
1435 str (concat str " %s")
1436 i (1+ i))))
1437 (if opt-p
1438 (let ((tagstr
1439 (if (eq 'TAG (car (car tmp)))
1440 (format "%d:" (cdr (car tmp)))
1441 (or (car tmp) ""))))
1442 (if (< i 6)
1443 (apply 'byte-compile-log-lap-1
1444 (concat " %s" str
1445 " %s\t-->\t%s <deleted> %s")
1446 lap0
1447 (nconc (nreverse deleted)
1448 (list tagstr lap0 tagstr)))
1449 (byte-compile-log-lap
1450 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1451 lap0 i (if (= i 1) "" "s")
1452 tagstr lap0 tagstr))))
1453 (rplacd rest tmp))
1454 (setq keep-going t))
1455 ;;
1456 ;; <safe-op> unbind --> unbind <safe-op>
1457 ;; (this may enable other optimizations.)
1458 ;;
1459 ((and (eq 'byte-unbind (car lap1))
1460 (memq (car lap0) byte-after-unbind-ops))
1461 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1462 (setcar rest lap1)
1463 (setcar (cdr rest) lap0)
1464 (setq keep-going t))
1465 ;;
1466 ;; varbind-X unbind-N --> discard unbind-(N-1)
1467 ;; save-excursion unbind-N --> unbind-(N-1)
1468 ;; save-restriction unbind-N --> unbind-(N-1)
1469 ;;
1470 ((and (eq 'byte-unbind (car lap1))
1471 (memq (car lap0) '(byte-varbind byte-save-excursion
1472 byte-save-restriction))
1473 (< 0 (cdr lap1)))
1474 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1475 (delq lap1 rest))
1476 (if (eq (car lap0) 'byte-varbind)
1477 (setcar rest (cons 'byte-discard 0))
1478 (setq lap (delq lap0 lap)))
1479 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1480 lap0 (cons (car lap1) (1+ (cdr lap1)))
1481 (if (eq (car lap0) 'byte-varbind)
1482 (car rest)
1483 (car (cdr rest)))
1484 (if (and (/= 0 (cdr lap1))
1485 (eq (car lap0) 'byte-varbind))
1486 (car (cdr rest))
1487 ""))
1488 (setq keep-going t))
1489 ;;
1490 ;; goto*-X ... X: goto-Y --> goto*-Y
1491 ;; goto-X ... X: return --> return
1492 ;;
1493 ((and (memq (car lap0) byte-goto-ops)
1494 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1495 '(byte-goto byte-return)))
1496 (cond ((and (not (eq tmp lap0))
1497 (or (eq (car lap0) 'byte-goto)
1498 (eq (car tmp) 'byte-goto)))
1499 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1500 (car lap0) tmp tmp)
1501 (if (eq (car tmp) 'byte-return)
1502 (setcar lap0 'byte-return))
1503 (setcdr lap0 (cdr tmp))
1504 (setq keep-going t))))
1505 ;;
1506 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1507 ;; goto-*-else-pop X ... X: discard --> whatever
1508 ;;
1509 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1510 byte-goto-if-not-nil-else-pop))
1511 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1512 (eval-when-compile
1513 (cons 'byte-discard byte-conditional-ops)))
1514 (not (eq lap0 (car tmp))))
1515 (setq tmp2 (car tmp))
1516 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1517 byte-goto-if-nil)
1518 (byte-goto-if-not-nil-else-pop
1519 byte-goto-if-not-nil))))
1520 (if (memq (car tmp2) tmp3)
1521 (progn (setcar lap0 (car tmp2))
1522 (setcdr lap0 (cdr tmp2))
1523 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1524 (car lap0) tmp2 lap0))
1525 ;; Get rid of the -else-pop's and jump one step further.
1526 (or (eq 'TAG (car (nth 1 tmp)))
1527 (setcdr tmp (cons (byte-compile-make-tag)
1528 (cdr tmp))))
1529 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1530 (car lap0) tmp2 (nth 1 tmp3))
1531 (setcar lap0 (nth 1 tmp3))
1532 (setcdr lap0 (nth 1 tmp)))
1533 (setq keep-going t))
1534 ;;
1535 ;; const goto-X ... X: goto-if-* --> whatever
1536 ;; const goto-X ... X: discard --> whatever
1537 ;;
1538 ((and (eq (car lap0) 'byte-constant)
1539 (eq (car lap1) 'byte-goto)
1540 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1541 (eval-when-compile
1542 (cons 'byte-discard byte-conditional-ops)))
1543 (not (eq lap1 (car tmp))))
1544 (setq tmp2 (car tmp))
1545 (cond ((memq (car tmp2)
1546 (if (null (car (cdr lap0)))
1547 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1548 '(byte-goto-if-not-nil
1549 byte-goto-if-not-nil-else-pop)))
1550 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1551 lap0 tmp2 lap0 tmp2)
1552 (setcar lap1 (car tmp2))
1553 (setcdr lap1 (cdr tmp2))
1554 ;; Let next step fix the (const,goto-if*) sequence.
1555 (setq rest (cons nil rest)))
1556 (t
1557 ;; Jump one step further
1558 (byte-compile-log-lap
1559 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1560 lap0 tmp2)
1561 (or (eq 'TAG (car (nth 1 tmp)))
1562 (setcdr tmp (cons (byte-compile-make-tag)
1563 (cdr tmp))))
1564 (setcdr lap1 (car (cdr tmp)))
1565 (setq lap (delq lap0 lap))))
1566 (setq keep-going t))
1567 ;;
1568 ;; X: varref-Y ... varset-Y goto-X -->
1569 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1570 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1571 ;; (This is so usual for while loops that it is worth handling).
1572 ;;
1573 ((and (eq (car lap1) 'byte-varset)
1574 (eq (car lap2) 'byte-goto)
1575 (not (memq (cdr lap2) rest)) ;Backwards jump
1576 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1577 'byte-varref)
1578 (eq (cdr (car tmp)) (cdr lap1))
1579 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1580 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1581 (let ((newtag (byte-compile-make-tag)))
1582 (byte-compile-log-lap
1583 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1584 (nth 1 (cdr lap2)) (car tmp)
1585 lap1 lap2
1586 (nth 1 (cdr lap2)) (car tmp)
1587 (nth 1 newtag) 'byte-dup lap1
1588 (cons 'byte-goto newtag)
1589 )
1590 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1591 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1592 (setq add-depth 1)
1593 (setq keep-going t))
1594 ;;
1595 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1596 ;; (This can pull the loop test to the end of the loop)
1597 ;;
1598 ((and (eq (car lap0) 'byte-goto)
1599 (eq (car lap1) 'TAG)
1600 (eq lap1
1601 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1602 (memq (car (car tmp))
1603 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1604 byte-goto-if-nil-else-pop)))
1605;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1606;; lap0 lap1 (cdr lap0) (car tmp))
1607 (let ((newtag (byte-compile-make-tag)))
1608 (byte-compile-log-lap
1609 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1610 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1611 (cons (cdr (assq (car (car tmp))
1612 '((byte-goto-if-nil . byte-goto-if-not-nil)
1613 (byte-goto-if-not-nil . byte-goto-if-nil)
1614 (byte-goto-if-nil-else-pop .
1615 byte-goto-if-not-nil-else-pop)
1616 (byte-goto-if-not-nil-else-pop .
1617 byte-goto-if-nil-else-pop))))
1618 newtag)
1619
1620 (nth 1 newtag)
1621 )
1622 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1623 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1624 ;; We can handle this case but not the -if-not-nil case,
1625 ;; because we won't know which non-nil constant to push.
1626 (setcdr rest (cons (cons 'byte-constant
1627 (byte-compile-get-constant nil))
1628 (cdr rest))))
1629 (setcar lap0 (nth 1 (memq (car (car tmp))
1630 '(byte-goto-if-nil-else-pop
1631 byte-goto-if-not-nil
1632 byte-goto-if-nil
1633 byte-goto-if-not-nil
1634 byte-goto byte-goto))))
1635 )
1636 (setq keep-going t))
1637 )
1638 (setq rest (cdr rest)))
1639 )
1640 ;; Cleanup stage:
1641 ;; Rebuild byte-compile-constants / byte-compile-variables.
1642 ;; Simple optimizations that would inhibit other optimizations if they
1643 ;; were done in the optimizing loop, and optimizations which there is no
1644 ;; need to do more than once.
1645 (setq byte-compile-constants nil
1646 byte-compile-variables nil)
1647 (setq rest lap)
1648 (while rest
1649 (setq lap0 (car rest)
1650 lap1 (nth 1 rest))
1651 (if (memq (car lap0) byte-constref-ops)
1652 (if (eq (cdr lap0) 'byte-constant)
1653 (or (memq (cdr lap0) byte-compile-variables)
1654 (setq byte-compile-variables (cons (cdr lap0)
1655 byte-compile-variables)))
1656 (or (memq (cdr lap0) byte-compile-constants)
1657 (setq byte-compile-constants (cons (cdr lap0)
1658 byte-compile-constants)))))
1659 (cond (;;
1660 ;; const-C varset-X const-C --> const-C dup varset-X
1661 ;; const-C varbind-X const-C --> const-C dup varbind-X
1662 ;;
1663 (and (eq (car lap0) 'byte-constant)
1664 (eq (car (nth 2 rest)) 'byte-constant)
1665 (eq (cdr lap0) (car (nth 2 rest)))
1666 (memq (car lap1) '(byte-varbind byte-varset)))
1667 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1668 lap0 lap1 lap0 lap0 lap1)
1669 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1670 (setcar (cdr rest) (cons 'byte-dup 0))
1671 (setq add-depth 1))
1672 ;;
1673 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1674 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1675 ;;
1676 ((memq (car lap0) '(byte-constant byte-varref))
1677 (setq tmp rest
1678 tmp2 nil)
1679 (while (progn
1680 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1681 (and (eq (cdr lap0) (cdr (car tmp)))
1682 (eq (car lap0) (car (car tmp)))))
1683 (setcar tmp (cons 'byte-dup 0))
1684 (setq tmp2 t))
1685 (if tmp2
1686 (byte-compile-log-lap
1687 " %s [dup/%s]... %s\t-->\t%s dup..." lap0 lap0 lap0)))
1688 ;;
1689 ;; unbind-N unbind-M --> unbind-(N+M)
1690 ;;
1691 ((and (eq 'byte-unbind (car lap0))
1692 (eq 'byte-unbind (car lap1)))
1693 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1694 (cons 'byte-unbind
1695 (+ (cdr lap0) (cdr lap1))))
1696 (setq keep-going t)
1697 (setq lap (delq lap0 lap))
1698 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1699 )
1700 (setq rest (cdr rest)))
1701 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1702 lap)
1703
1704(provide 'byte-optimize)
1705
1706\f
1707;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1708;; itself, compile some of its most used recursive functions (at load time).
1709;;
1710(eval-when-compile
1711 (or (compiled-function-p (symbol-function 'byte-optimize-form))
1712 (assq 'byte-code (symbol-function 'byte-optimize-form))
1713 (let ((byte-optimize nil)
1714 (byte-compile-warnings nil))
1715 (mapcar '(lambda (x)
1716 (or noninteractive (message "compiling %s..." x))
1717 (byte-compile x)
1718 (or noninteractive (message "compiling %s...done" x)))
1719 '(byte-optimize-form
1720 byte-optimize-body
1721 byte-optimize-predicate
1722 byte-optimize-binary-predicate
1723 ;; Inserted some more than necessary, to speed it up.
1724 byte-optimize-form-code-walker
1725 byte-optimize-lapcode))))
1726 nil)
3eac9910
JB
1727
1728;;; byte-opt.el ends here