(Coding Conventions): Node renamed from Style Tips.
[bpt/emacs.git] / src / ralloc.c
CommitLineData
dcfdbac7 1/* Block-relocating memory allocator.
187996a8 2 Copyright (C) 1993, 1995 Free Software Foundation, Inc.
dcfdbac7
JB
3
4This file is part of GNU Emacs.
5
6GNU Emacs is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
187996a8 8the Free Software Foundation; either version 2, or (at your option)
dcfdbac7
JB
9any later version.
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
18the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
dcfdbac7
JB
20
21/* NOTES:
22
eb8c3be9 23 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
dcfdbac7 24 rather than all of them. This means allowing for a possible
abe9ff32 25 hole between the first bloc and the end of malloc storage. */
dcfdbac7 26
2c46d29f 27#ifdef emacs
aef4d570 28
18160b98 29#include <config.h>
956ace37 30#include "lisp.h" /* Needed for VALBITS. */
2c46d29f 31
aef4d570
RM
32#undef NULL
33
f275fd9a
RS
34/* The important properties of this type are that 1) it's a pointer, and
35 2) arithmetic on it should work as if the size of the object pointed
36 to has a size of 1. */
a8c0e5ea 37#if 0 /* Arithmetic on void* is a GCC extension. */
f275fd9a
RS
38#ifdef __STDC__
39typedef void *POINTER;
40#else
1df181b6
RM
41
42#ifdef HAVE_CONFIG_H
43#include "config.h"
44#endif
45
f275fd9a 46typedef char *POINTER;
1df181b6 47
f275fd9a 48#endif
a8c0e5ea
RS
49#endif /* 0 */
50
51/* Unconditionally use char * for this. */
52typedef char *POINTER;
f275fd9a
RS
53
54typedef unsigned long SIZE;
55
2c46d29f
RS
56/* Declared in dispnew.c, this version doesn't screw up if regions
57 overlap. */
58extern void safe_bcopy ();
2c46d29f 59
49081834
RS
60extern int __malloc_extra_blocks;
61
d5179acc 62#else /* not emacs */
aef4d570 63
2c46d29f 64#include <stddef.h>
aef4d570 65
2c46d29f
RS
66typedef size_t SIZE;
67typedef void *POINTER;
aef4d570 68
aef4d570
RM
69#include <unistd.h>
70#include <malloc.h>
71#include <string.h>
72
2c46d29f 73#define safe_bcopy(x, y, z) memmove (y, x, z)
d5179acc
RS
74#define bzero(x, len) memset (x, 0, len)
75
76#endif /* not emacs */
2c46d29f 77
d5179acc 78#include "getpagesize.h"
dcfdbac7
JB
79
80#define NIL ((POINTER) 0)
81
2c46d29f
RS
82/* A flag to indicate whether we have initialized ralloc yet. For
83 Emacs's sake, please do not make this local to malloc_init; on some
84 machines, the dumping procedure makes all static variables
85 read-only. On these machines, the word static is #defined to be
86 the empty string, meaning that r_alloc_initialized becomes an
87 automatic variable, and loses its value each time Emacs is started up. */
88static int r_alloc_initialized = 0;
89
90static void r_alloc_init ();
dcfdbac7 91\f
956ace37
JB
92/* Declarations for working with the malloc, ralloc, and system breaks. */
93
abe9ff32 94/* Function to set the real break value. */
bbc60227 95static POINTER (*real_morecore) ();
dcfdbac7 96
abe9ff32 97/* The break value, as seen by malloc. */
dcfdbac7
JB
98static POINTER virtual_break_value;
99
abe9ff32
RS
100/* The address of the end of the last data in use by ralloc,
101 including relocatable blocs as well as malloc data. */
dcfdbac7
JB
102static POINTER break_value;
103
7516b7d5
RS
104/* This is the size of a page. We round memory requests to this boundary. */
105static int page_size;
106
ad3bb3d2
JB
107/* Whenever we get memory from the system, get this many extra bytes. This
108 must be a multiple of page_size. */
7516b7d5
RS
109static int extra_bytes;
110
dcfdbac7 111/* Macros for rounding. Note that rounding to any value is possible
abe9ff32 112 by changing the definition of PAGE. */
dcfdbac7 113#define PAGE (getpagesize ())
f7a009a5
RM
114#define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
115#define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
116 & ~(page_size - 1))
7516b7d5 117#define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
e429caa2
KH
118
119#define MEM_ALIGN sizeof(double)
120#define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
121 & ~(MEM_ALIGN - 1))
122\f
abe9ff32
RS
123/* Data structures of heaps and blocs. */
124
125/* The relocatable objects, or blocs, and the malloc data
126 both reside within one or more heaps.
127 Each heap contains malloc data, running from `start' to `bloc_start',
128 and relocatable objects, running from `bloc_start' to `free'.
129
130 Relocatable objects may relocate within the same heap
131 or may move into another heap; the heaps themselves may grow
132 but they never move.
133
134 We try to make just one heap and make it larger as necessary.
8e6208c5 135 But sometimes we can't do that, because we can't get contiguous
abe9ff32
RS
136 space to add onto the heap. When that happens, we start a new heap. */
137
e429caa2
KH
138typedef struct heap
139{
140 struct heap *next;
141 struct heap *prev;
abe9ff32 142 /* Start of memory range of this heap. */
e429caa2 143 POINTER start;
abe9ff32 144 /* End of memory range of this heap. */
e429caa2 145 POINTER end;
abe9ff32
RS
146 /* Start of relocatable data in this heap. */
147 POINTER bloc_start;
148 /* Start of unused space in this heap. */
149 POINTER free;
47f13333
RS
150 /* First bloc in this heap. */
151 struct bp *first_bloc;
152 /* Last bloc in this heap. */
153 struct bp *last_bloc;
e429caa2
KH
154} *heap_ptr;
155
156#define NIL_HEAP ((heap_ptr) 0)
157#define HEAP_PTR_SIZE (sizeof (struct heap))
158
abe9ff32
RS
159/* This is the first heap object.
160 If we need additional heap objects, each one resides at the beginning of
161 the space it covers. */
162static struct heap heap_base;
163
164/* Head and tail of the list of heaps. */
e429caa2
KH
165static heap_ptr first_heap, last_heap;
166
167/* These structures are allocated in the malloc arena.
168 The linked list is kept in order of increasing '.data' members.
169 The data blocks abut each other; if b->next is non-nil, then
49f82b3d
RS
170 b->data + b->size == b->next->data.
171
172 An element with variable==NIL denotes a freed block, which has not yet
173 been collected. They may only appear while r_alloc_freeze > 0, and will be
174 freed when the arena is thawed. Currently, these blocs are not reusable,
8e6208c5 175 while the arena is frozen. Very inefficient. */
49f82b3d 176
e429caa2
KH
177typedef struct bp
178{
179 struct bp *next;
180 struct bp *prev;
181 POINTER *variable;
182 POINTER data;
183 SIZE size;
8e6208c5 184 POINTER new_data; /* temporarily used for relocation */
49f82b3d 185 struct heap *heap; /* Heap this bloc is in. */
e429caa2
KH
186} *bloc_ptr;
187
188#define NIL_BLOC ((bloc_ptr) 0)
189#define BLOC_PTR_SIZE (sizeof (struct bp))
190
abe9ff32 191/* Head and tail of the list of relocatable blocs. */
e429caa2
KH
192static bloc_ptr first_bloc, last_bloc;
193
49f82b3d
RS
194static int use_relocatable_buffers;
195
196/* If >0, no relocation whatsoever takes place. */
197static int r_alloc_freeze_level;
198
dcfdbac7 199\f
956ace37
JB
200/* Functions to get and return memory from the system. */
201
abe9ff32
RS
202/* Find the heap that ADDRESS falls within. */
203
204static heap_ptr
205find_heap (address)
206 POINTER address;
207{
208 heap_ptr heap;
209
210 for (heap = last_heap; heap; heap = heap->prev)
211 {
212 if (heap->start <= address && address <= heap->end)
213 return heap;
214 }
215
216 return NIL_HEAP;
217}
218
219/* Find SIZE bytes of space in a heap.
220 Try to get them at ADDRESS (which must fall within some heap's range)
221 if we can get that many within one heap.
222
e429caa2 223 If enough space is not presently available in our reserve, this means
8e6208c5
KH
224 getting more page-aligned space from the system. If the returned space
225 is not contiguous to the last heap, allocate a new heap, and append it
abe9ff32
RS
226
227 obtain does not try to keep track of whether space is in use
228 or not in use. It just returns the address of SIZE bytes that
229 fall within a single heap. If you call obtain twice in a row
230 with the same arguments, you typically get the same value.
231 to the heap list. It's the caller's responsibility to keep
232 track of what space is in use.
dcfdbac7 233
e429caa2
KH
234 Return the address of the space if all went well, or zero if we couldn't
235 allocate the memory. */
abe9ff32 236
e429caa2
KH
237static POINTER
238obtain (address, size)
239 POINTER address;
240 SIZE size;
dcfdbac7 241{
e429caa2
KH
242 heap_ptr heap;
243 SIZE already_available;
dcfdbac7 244
abe9ff32 245 /* Find the heap that ADDRESS falls within. */
e429caa2 246 for (heap = last_heap; heap; heap = heap->prev)
dcfdbac7 247 {
e429caa2
KH
248 if (heap->start <= address && address <= heap->end)
249 break;
250 }
dcfdbac7 251
e429caa2 252 if (! heap)
abe9ff32 253 abort ();
dcfdbac7 254
abe9ff32
RS
255 /* If we can't fit SIZE bytes in that heap,
256 try successive later heaps. */
e429caa2
KH
257 while (heap && address + size > heap->end)
258 {
259 heap = heap->next;
260 if (heap == NIL_HEAP)
261 break;
262 address = heap->bloc_start;
dcfdbac7
JB
263 }
264
abe9ff32
RS
265 /* If we can't fit them within any existing heap,
266 get more space. */
e429caa2
KH
267 if (heap == NIL_HEAP)
268 {
269 POINTER new = (*real_morecore)(0);
270 SIZE get;
98b7fe02 271
e429caa2 272 already_available = (char *)last_heap->end - (char *)address;
dcfdbac7 273
e429caa2
KH
274 if (new != last_heap->end)
275 {
abe9ff32
RS
276 /* Someone else called sbrk. Make a new heap. */
277
278 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
279 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));
e429caa2
KH
280
281 if ((*real_morecore) (bloc_start - new) != new)
282 return 0;
283
284 new_heap->start = new;
285 new_heap->end = bloc_start;
286 new_heap->bloc_start = bloc_start;
abe9ff32 287 new_heap->free = bloc_start;
e429caa2
KH
288 new_heap->next = NIL_HEAP;
289 new_heap->prev = last_heap;
47f13333
RS
290 new_heap->first_bloc = NIL_BLOC;
291 new_heap->last_bloc = NIL_BLOC;
e429caa2
KH
292 last_heap->next = new_heap;
293 last_heap = new_heap;
294
295 address = bloc_start;
296 already_available = 0;
297 }
dcfdbac7 298
abe9ff32
RS
299 /* Add space to the last heap (which we may have just created).
300 Get some extra, so we can come here less often. */
301
e429caa2 302 get = size + extra_bytes - already_available;
abe9ff32 303 get = (char *) ROUNDUP ((char *)last_heap->end + get)
e429caa2 304 - (char *) last_heap->end;
dcfdbac7 305
e429caa2
KH
306 if ((*real_morecore) (get) != last_heap->end)
307 return 0;
308
309 last_heap->end += get;
310 }
311
312 return address;
313}
dcfdbac7 314
abe9ff32
RS
315/* Return unused heap space to the system
316 if there is a lot of unused space now.
317 This can make the last heap smaller;
318 it can also eliminate the last heap entirely. */
319
dcfdbac7 320static void
e429caa2 321relinquish ()
dcfdbac7 322{
e429caa2
KH
323 register heap_ptr h;
324 int excess = 0;
325
abe9ff32
RS
326 /* Add the amount of space beyond break_value
327 in all heaps which have extend beyond break_value at all. */
328
e429caa2
KH
329 for (h = last_heap; h && break_value < h->end; h = h->prev)
330 {
331 excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
332 ? h->bloc_start : break_value);
333 }
334
335 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
dcfdbac7 336 {
7516b7d5
RS
337 /* Keep extra_bytes worth of empty space.
338 And don't free anything unless we can free at least extra_bytes. */
e429caa2 339 excess -= extra_bytes;
dcfdbac7 340
e429caa2
KH
341 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
342 {
47f13333
RS
343 /* This heap should have no blocs in it. */
344 if (last_heap->first_bloc != NIL_BLOC
345 || last_heap->last_bloc != NIL_BLOC)
346 abort ();
347
abe9ff32 348 /* Return the last heap, with its header, to the system. */
e429caa2
KH
349 excess = (char *)last_heap->end - (char *)last_heap->start;
350 last_heap = last_heap->prev;
351 last_heap->next = NIL_HEAP;
352 }
353 else
354 {
355 excess = (char *) last_heap->end
abe9ff32 356 - (char *) ROUNDUP ((char *)last_heap->end - excess);
e429caa2
KH
357 last_heap->end -= excess;
358 }
dcfdbac7 359
e429caa2
KH
360 if ((*real_morecore) (- excess) == 0)
361 abort ();
362 }
dcfdbac7 363}
719b242f
RS
364
365/* Return the total size in use by relocating allocator,
366 above where malloc gets space. */
367
368long
369r_alloc_size_in_use ()
370{
371 return break_value - virtual_break_value;
372}
dcfdbac7 373\f
956ace37
JB
374/* The meat - allocating, freeing, and relocating blocs. */
375
956ace37 376/* Find the bloc referenced by the address in PTR. Returns a pointer
abe9ff32 377 to that block. */
dcfdbac7
JB
378
379static bloc_ptr
380find_bloc (ptr)
381 POINTER *ptr;
382{
383 register bloc_ptr p = first_bloc;
384
385 while (p != NIL_BLOC)
386 {
387 if (p->variable == ptr && p->data == *ptr)
388 return p;
389
390 p = p->next;
391 }
392
393 return p;
394}
395
396/* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
98b7fe02
JB
397 Returns a pointer to the new bloc, or zero if we couldn't allocate
398 memory for the new block. */
dcfdbac7
JB
399
400static bloc_ptr
401get_bloc (size)
402 SIZE size;
403{
98b7fe02 404 register bloc_ptr new_bloc;
abe9ff32 405 register heap_ptr heap;
98b7fe02
JB
406
407 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
e429caa2 408 || ! (new_bloc->data = obtain (break_value, size)))
98b7fe02
JB
409 {
410 if (new_bloc)
411 free (new_bloc);
412
413 return 0;
414 }
dcfdbac7 415
e429caa2
KH
416 break_value = new_bloc->data + size;
417
dcfdbac7
JB
418 new_bloc->size = size;
419 new_bloc->next = NIL_BLOC;
8c7f1e35 420 new_bloc->variable = (POINTER *) NIL;
e429caa2 421 new_bloc->new_data = 0;
dcfdbac7 422
abe9ff32
RS
423 /* Record in the heap that this space is in use. */
424 heap = find_heap (new_bloc->data);
425 heap->free = break_value;
426
47f13333
RS
427 /* Maintain the correspondence between heaps and blocs. */
428 new_bloc->heap = heap;
429 heap->last_bloc = new_bloc;
430 if (heap->first_bloc == NIL_BLOC)
431 heap->first_bloc = new_bloc;
432
abe9ff32 433 /* Put this bloc on the doubly-linked list of blocs. */
dcfdbac7
JB
434 if (first_bloc)
435 {
436 new_bloc->prev = last_bloc;
437 last_bloc->next = new_bloc;
438 last_bloc = new_bloc;
439 }
440 else
441 {
442 first_bloc = last_bloc = new_bloc;
443 new_bloc->prev = NIL_BLOC;
444 }
445
446 return new_bloc;
447}
47f13333 448\f
abe9ff32
RS
449/* Calculate new locations of blocs in the list beginning with BLOC,
450 relocating it to start at ADDRESS, in heap HEAP. If enough space is
451 not presently available in our reserve, call obtain for
e429caa2
KH
452 more space.
453
abe9ff32
RS
454 Store the new location of each bloc in its new_data field.
455 Do not touch the contents of blocs or break_value. */
dcfdbac7 456
e429caa2
KH
457static int
458relocate_blocs (bloc, heap, address)
459 bloc_ptr bloc;
460 heap_ptr heap;
461 POINTER address;
462{
463 register bloc_ptr b = bloc;
ad3bb3d2 464
49f82b3d
RS
465 /* No need to ever call this if arena is frozen, bug somewhere! */
466 if (r_alloc_freeze_level)
467 abort();
468
e429caa2
KH
469 while (b)
470 {
abe9ff32
RS
471 /* If bloc B won't fit within HEAP,
472 move to the next heap and try again. */
e429caa2
KH
473 while (heap && address + b->size > heap->end)
474 {
475 heap = heap->next;
476 if (heap == NIL_HEAP)
477 break;
478 address = heap->bloc_start;
479 }
dcfdbac7 480
abe9ff32
RS
481 /* If BLOC won't fit in any heap,
482 get enough new space to hold BLOC and all following blocs. */
e429caa2
KH
483 if (heap == NIL_HEAP)
484 {
485 register bloc_ptr tb = b;
486 register SIZE s = 0;
487
abe9ff32 488 /* Add up the size of all the following blocs. */
e429caa2
KH
489 while (tb != NIL_BLOC)
490 {
49f82b3d
RS
491 if (tb->variable)
492 s += tb->size;
493
e429caa2
KH
494 tb = tb->next;
495 }
496
abe9ff32
RS
497 /* Get that space. */
498 address = obtain (address, s);
499 if (address == 0)
e429caa2
KH
500 return 0;
501
502 heap = last_heap;
503 }
504
abe9ff32
RS
505 /* Record the new address of this bloc
506 and update where the next bloc can start. */
e429caa2 507 b->new_data = address;
49f82b3d
RS
508 if (b->variable)
509 address += b->size;
e429caa2
KH
510 b = b->next;
511 }
512
513 return 1;
514}
515
47f13333
RS
516/* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list.
517 This is necessary if we put the memory of space of BLOC
518 before that of BEFORE. */
519
520static void
521reorder_bloc (bloc, before)
522 bloc_ptr bloc, before;
523{
524 bloc_ptr prev, next;
525
526 /* Splice BLOC out from where it is. */
527 prev = bloc->prev;
528 next = bloc->next;
529
530 if (prev)
531 prev->next = next;
532 if (next)
533 next->prev = prev;
534
535 /* Splice it in before BEFORE. */
536 prev = before->prev;
abe9ff32 537
47f13333
RS
538 if (prev)
539 prev->next = bloc;
540 bloc->prev = prev;
541
542 before->prev = bloc;
543 bloc->next = before;
544}
545\f
546/* Update the records of which heaps contain which blocs, starting
547 with heap HEAP and bloc BLOC. */
548
549static void
550update_heap_bloc_correspondence (bloc, heap)
abe9ff32
RS
551 bloc_ptr bloc;
552 heap_ptr heap;
553{
554 register bloc_ptr b;
555
47f13333
RS
556 /* Initialize HEAP's status to reflect blocs before BLOC. */
557 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
558 {
559 /* The previous bloc is in HEAP. */
560 heap->last_bloc = bloc->prev;
561 heap->free = bloc->prev->data + bloc->prev->size;
562 }
563 else
564 {
565 /* HEAP contains no blocs before BLOC. */
566 heap->first_bloc = NIL_BLOC;
567 heap->last_bloc = NIL_BLOC;
568 heap->free = heap->bloc_start;
569 }
570
abe9ff32
RS
571 /* Advance through blocs one by one. */
572 for (b = bloc; b != NIL_BLOC; b = b->next)
573 {
47f13333
RS
574 /* Advance through heaps, marking them empty,
575 till we get to the one that B is in. */
abe9ff32
RS
576 while (heap)
577 {
578 if (heap->bloc_start <= b->data && b->data <= heap->end)
579 break;
580 heap = heap->next;
47f13333
RS
581 /* We know HEAP is not null now,
582 because there has to be space for bloc B. */
583 heap->first_bloc = NIL_BLOC;
584 heap->last_bloc = NIL_BLOC;
abe9ff32
RS
585 heap->free = heap->bloc_start;
586 }
47f13333
RS
587
588 /* Update HEAP's status for bloc B. */
abe9ff32 589 heap->free = b->data + b->size;
47f13333
RS
590 heap->last_bloc = b;
591 if (heap->first_bloc == NIL_BLOC)
592 heap->first_bloc = b;
593
594 /* Record that B is in HEAP. */
595 b->heap = heap;
abe9ff32
RS
596 }
597
598 /* If there are any remaining heaps and no blocs left,
47f13333 599 mark those heaps as empty. */
abe9ff32
RS
600 heap = heap->next;
601 while (heap)
602 {
47f13333
RS
603 heap->first_bloc = NIL_BLOC;
604 heap->last_bloc = NIL_BLOC;
abe9ff32
RS
605 heap->free = heap->bloc_start;
606 heap = heap->next;
607 }
608}
47f13333 609\f
abe9ff32
RS
610/* Resize BLOC to SIZE bytes. This relocates the blocs
611 that come after BLOC in memory. */
612
e429caa2
KH
613static int
614resize_bloc (bloc, size)
615 bloc_ptr bloc;
616 SIZE size;
dcfdbac7 617{
e429caa2
KH
618 register bloc_ptr b;
619 heap_ptr heap;
620 POINTER address;
621 SIZE old_size;
622
49f82b3d
RS
623 /* No need to ever call this if arena is frozen, bug somewhere! */
624 if (r_alloc_freeze_level)
625 abort();
626
e429caa2
KH
627 if (bloc == NIL_BLOC || size == bloc->size)
628 return 1;
629
630 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
631 {
632 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
633 break;
634 }
635
636 if (heap == NIL_HEAP)
abe9ff32 637 abort ();
e429caa2
KH
638
639 old_size = bloc->size;
640 bloc->size = size;
641
abe9ff32
RS
642 /* Note that bloc could be moved into the previous heap. */
643 address = (bloc->prev ? bloc->prev->data + bloc->prev->size
644 : first_heap->bloc_start);
e429caa2
KH
645 while (heap)
646 {
647 if (heap->bloc_start <= address && address <= heap->end)
648 break;
649 heap = heap->prev;
650 }
651
652 if (! relocate_blocs (bloc, heap, address))
653 {
654 bloc->size = old_size;
655 return 0;
656 }
657
658 if (size > old_size)
659 {
660 for (b = last_bloc; b != bloc; b = b->prev)
661 {
49f82b3d
RS
662 if (!b->variable)
663 {
664 b->size = 0;
665 b->data = b->new_data;
666 }
667 else
668 {
669 safe_bcopy (b->data, b->new_data, b->size);
670 *b->variable = b->data = b->new_data;
671 }
672 }
673 if (!bloc->variable)
674 {
675 bloc->size = 0;
676 bloc->data = bloc->new_data;
677 }
678 else
679 {
680 safe_bcopy (bloc->data, bloc->new_data, old_size);
681 bzero (bloc->new_data + old_size, size - old_size);
682 *bloc->variable = bloc->data = bloc->new_data;
e429caa2 683 }
e429caa2
KH
684 }
685 else
dcfdbac7 686 {
ad3bb3d2
JB
687 for (b = bloc; b != NIL_BLOC; b = b->next)
688 {
49f82b3d
RS
689 if (!b->variable)
690 {
691 b->size = 0;
692 b->data = b->new_data;
693 }
694 else
695 {
696 safe_bcopy (b->data, b->new_data, b->size);
697 *b->variable = b->data = b->new_data;
698 }
ad3bb3d2 699 }
ad3bb3d2 700 }
dcfdbac7 701
47f13333 702 update_heap_bloc_correspondence (bloc, heap);
abe9ff32
RS
703
704 break_value = (last_bloc ? last_bloc->data + last_bloc->size
705 : first_heap->bloc_start);
e429caa2
KH
706 return 1;
707}
47f13333 708\f
abe9ff32
RS
709/* Free BLOC from the chain of blocs, relocating any blocs above it.
710 This may return space to the system. */
dcfdbac7
JB
711
712static void
713free_bloc (bloc)
714 bloc_ptr bloc;
715{
47f13333
RS
716 heap_ptr heap = bloc->heap;
717
49f82b3d
RS
718 if (r_alloc_freeze_level)
719 {
720 bloc->variable = (POINTER *) NIL;
721 return;
722 }
723
e429caa2
KH
724 resize_bloc (bloc, 0);
725
dcfdbac7
JB
726 if (bloc == first_bloc && bloc == last_bloc)
727 {
728 first_bloc = last_bloc = NIL_BLOC;
729 }
730 else if (bloc == last_bloc)
731 {
732 last_bloc = bloc->prev;
733 last_bloc->next = NIL_BLOC;
734 }
735 else if (bloc == first_bloc)
736 {
737 first_bloc = bloc->next;
738 first_bloc->prev = NIL_BLOC;
dcfdbac7
JB
739 }
740 else
741 {
742 bloc->next->prev = bloc->prev;
743 bloc->prev->next = bloc->next;
dcfdbac7
JB
744 }
745
47f13333
RS
746 /* Update the records of which blocs are in HEAP. */
747 if (heap->first_bloc == bloc)
748 {
d5179acc 749 if (bloc->next != 0 && bloc->next->heap == heap)
47f13333
RS
750 heap->first_bloc = bloc->next;
751 else
752 heap->first_bloc = heap->last_bloc = NIL_BLOC;
753 }
754 if (heap->last_bloc == bloc)
755 {
d5179acc 756 if (bloc->prev != 0 && bloc->prev->heap == heap)
47f13333
RS
757 heap->last_bloc = bloc->prev;
758 else
759 heap->first_bloc = heap->last_bloc = NIL_BLOC;
760 }
761
e429caa2 762 relinquish ();
dcfdbac7
JB
763 free (bloc);
764}
765\f
956ace37
JB
766/* Interface routines. */
767
98b7fe02 768/* Obtain SIZE bytes of storage from the free pool, or the system, as
2c46d29f 769 necessary. If relocatable blocs are in use, this means relocating
98b7fe02
JB
770 them. This function gets plugged into the GNU malloc's __morecore
771 hook.
772
7516b7d5
RS
773 We provide hysteresis, never relocating by less than extra_bytes.
774
98b7fe02
JB
775 If we're out of memory, we should return zero, to imitate the other
776 __morecore hook values - in particular, __default_morecore in the
777 GNU malloc package. */
dcfdbac7
JB
778
779POINTER
780r_alloc_sbrk (size)
781 long size;
782{
e429caa2
KH
783 register bloc_ptr b;
784 POINTER address;
dcfdbac7 785
44d3dec0
RS
786 if (! r_alloc_initialized)
787 r_alloc_init ();
788
dcfdbac7 789 if (! use_relocatable_buffers)
bbc60227 790 return (*real_morecore) (size);
dcfdbac7 791
e429caa2
KH
792 if (size == 0)
793 return virtual_break_value;
7516b7d5 794
e429caa2 795 if (size > 0)
dcfdbac7 796 {
abe9ff32
RS
797 /* Allocate a page-aligned space. GNU malloc would reclaim an
798 extra space if we passed an unaligned one. But we could
8e6208c5 799 not always find a space which is contiguous to the previous. */
e429caa2
KH
800 POINTER new_bloc_start;
801 heap_ptr h = first_heap;
abe9ff32 802 SIZE get = ROUNDUP (size);
7516b7d5 803
abe9ff32 804 address = (POINTER) ROUNDUP (virtual_break_value);
e429caa2 805
abe9ff32
RS
806 /* Search the list upward for a heap which is large enough. */
807 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
e429caa2
KH
808 {
809 h = h->next;
810 if (h == NIL_HEAP)
811 break;
abe9ff32 812 address = (POINTER) ROUNDUP (h->start);
e429caa2
KH
813 }
814
abe9ff32 815 /* If not found, obtain more space. */
e429caa2
KH
816 if (h == NIL_HEAP)
817 {
818 get += extra_bytes + page_size;
819
49f82b3d 820 if (! obtain (address, get))
e429caa2 821 return 0;
98b7fe02 822
e429caa2 823 if (first_heap == last_heap)
abe9ff32 824 address = (POINTER) ROUNDUP (virtual_break_value);
e429caa2 825 else
abe9ff32 826 address = (POINTER) ROUNDUP (last_heap->start);
e429caa2
KH
827 h = last_heap;
828 }
829
abe9ff32 830 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);
e429caa2
KH
831
832 if (first_heap->bloc_start < new_bloc_start)
833 {
49f82b3d
RS
834 /* This is no clean solution - no idea how to do it better. */
835 if (r_alloc_freeze_level)
836 return NIL;
837
838 /* There is a bug here: if the above obtain call succeeded, but the
839 relocate_blocs call below does not succeed, we need to free
840 the memory that we got with obtain. */
841
abe9ff32 842 /* Move all blocs upward. */
49f82b3d 843 if (! relocate_blocs (first_bloc, h, new_bloc_start))
e429caa2
KH
844 return 0;
845
846 /* Note that (POINTER)(h+1) <= new_bloc_start since
847 get >= page_size, so the following does not destroy the heap
abe9ff32 848 header. */
e429caa2
KH
849 for (b = last_bloc; b != NIL_BLOC; b = b->prev)
850 {
851 safe_bcopy (b->data, b->new_data, b->size);
852 *b->variable = b->data = b->new_data;
853 }
854
855 h->bloc_start = new_bloc_start;
abe9ff32 856
47f13333 857 update_heap_bloc_correspondence (first_bloc, h);
e429caa2 858 }
e429caa2
KH
859 if (h != first_heap)
860 {
861 /* Give up managing heaps below the one the new
abe9ff32 862 virtual_break_value points to. */
e429caa2
KH
863 first_heap->prev = NIL_HEAP;
864 first_heap->next = h->next;
865 first_heap->start = h->start;
866 first_heap->end = h->end;
abe9ff32 867 first_heap->free = h->free;
47f13333
RS
868 first_heap->first_bloc = h->first_bloc;
869 first_heap->last_bloc = h->last_bloc;
e429caa2
KH
870 first_heap->bloc_start = h->bloc_start;
871
872 if (first_heap->next)
873 first_heap->next->prev = first_heap;
874 else
875 last_heap = first_heap;
876 }
877
878 bzero (address, size);
dcfdbac7 879 }
e429caa2 880 else /* size < 0 */
dcfdbac7 881 {
e429caa2
KH
882 SIZE excess = (char *)first_heap->bloc_start
883 - ((char *)virtual_break_value + size);
884
885 address = virtual_break_value;
886
887 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
888 {
889 excess -= extra_bytes;
890 first_heap->bloc_start
47f13333 891 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);
e429caa2 892
abe9ff32 893 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
7516b7d5 894
e429caa2
KH
895 for (b = first_bloc; b != NIL_BLOC; b = b->next)
896 {
897 safe_bcopy (b->data, b->new_data, b->size);
898 *b->variable = b->data = b->new_data;
899 }
900 }
901
902 if ((char *)virtual_break_value + size < (char *)first_heap->start)
903 {
904 /* We found an additional space below the first heap */
905 first_heap->start = (POINTER) ((char *)virtual_break_value + size);
906 }
dcfdbac7
JB
907 }
908
e429caa2 909 virtual_break_value = (POINTER) ((char *)address + size);
47f13333
RS
910 break_value = (last_bloc
911 ? last_bloc->data + last_bloc->size
912 : first_heap->bloc_start);
e429caa2 913 if (size < 0)
abe9ff32 914 relinquish ();
7516b7d5 915
e429caa2 916 return address;
dcfdbac7
JB
917}
918
919/* Allocate a relocatable bloc of storage of size SIZE. A pointer to
920 the data is returned in *PTR. PTR is thus the address of some variable
98b7fe02
JB
921 which will use the data area.
922
49f82b3d
RS
923 The allocation of 0 bytes is valid.
924 In case r_alloc_freeze is set, a best fit of unused blocs could be done
925 before allocating a new area. Not yet done.
926
98b7fe02
JB
927 If we can't allocate the necessary memory, set *PTR to zero, and
928 return zero. */
dcfdbac7
JB
929
930POINTER
931r_alloc (ptr, size)
932 POINTER *ptr;
933 SIZE size;
934{
935 register bloc_ptr new_bloc;
936
2c46d29f
RS
937 if (! r_alloc_initialized)
938 r_alloc_init ();
939
abe9ff32 940 new_bloc = get_bloc (MEM_ROUNDUP (size));
98b7fe02
JB
941 if (new_bloc)
942 {
943 new_bloc->variable = ptr;
944 *ptr = new_bloc->data;
945 }
946 else
947 *ptr = 0;
dcfdbac7
JB
948
949 return *ptr;
950}
951
2c46d29f
RS
952/* Free a bloc of relocatable storage whose data is pointed to by PTR.
953 Store 0 in *PTR to show there's no block allocated. */
dcfdbac7
JB
954
955void
956r_alloc_free (ptr)
957 register POINTER *ptr;
958{
959 register bloc_ptr dead_bloc;
960
44d3dec0
RS
961 if (! r_alloc_initialized)
962 r_alloc_init ();
963
dcfdbac7
JB
964 dead_bloc = find_bloc (ptr);
965 if (dead_bloc == NIL_BLOC)
966 abort ();
967
968 free_bloc (dead_bloc);
2c46d29f 969 *ptr = 0;
719b242f 970
d5179acc 971#ifdef emacs
719b242f 972 refill_memory_reserve ();
d5179acc 973#endif
dcfdbac7
JB
974}
975
16a5c729 976/* Given a pointer at address PTR to relocatable data, resize it to SIZE.
98b7fe02
JB
977 Do this by shifting all blocks above this one up in memory, unless
978 SIZE is less than or equal to the current bloc size, in which case
979 do nothing.
dcfdbac7 980
49f82b3d 981 In case r_alloc_freeze is set, a new bloc is allocated, and the
8e6208c5 982 memory copied to it. Not very efficient. We could traverse the
49f82b3d
RS
983 bloc_list for a best fit of free blocs first.
984
98b7fe02
JB
985 Change *PTR to reflect the new bloc, and return this value.
986
987 If more memory cannot be allocated, then leave *PTR unchanged, and
988 return zero. */
dcfdbac7
JB
989
990POINTER
991r_re_alloc (ptr, size)
992 POINTER *ptr;
993 SIZE size;
994{
16a5c729 995 register bloc_ptr bloc;
dcfdbac7 996
44d3dec0
RS
997 if (! r_alloc_initialized)
998 r_alloc_init ();
999
49f82b3d
RS
1000 if (!*ptr)
1001 return r_alloc (ptr, size);
1002 if (!size)
1003 {
1004 r_alloc_free (ptr);
1005 return r_alloc (ptr, 0);
1006 }
1007
16a5c729
JB
1008 bloc = find_bloc (ptr);
1009 if (bloc == NIL_BLOC)
dcfdbac7
JB
1010 abort ();
1011
49f82b3d
RS
1012 if (size < bloc->size)
1013 {
1014 /* Wouldn't it be useful to actually resize the bloc here? */
1015 /* I think so too, but not if it's too expensive... */
1016 if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
1017 && r_alloc_freeze_level == 0)
1018 {
1019 resize_bloc (bloc, MEM_ROUNDUP (size));
1020 /* Never mind if this fails, just do nothing... */
1021 /* It *should* be infallible! */
1022 }
1023 }
1024 else if (size > bloc->size)
1025 {
1026 if (r_alloc_freeze_level)
1027 {
1028 bloc_ptr new_bloc;
1029 new_bloc = get_bloc (MEM_ROUNDUP (size));
1030 if (new_bloc)
1031 {
1032 new_bloc->variable = ptr;
1033 *ptr = new_bloc->data;
1034 bloc->variable = (POINTER *) NIL;
1035 }
1036 else
1037 return NIL;
1038 }
1039 else
1040 {
1041 if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
1042 return NIL;
1043 }
1044 }
dcfdbac7
JB
1045 return *ptr;
1046}
81bd58e8
KH
1047
1048/* Disable relocations, after making room for at least SIZE bytes
1049 of non-relocatable heap if possible. The relocatable blocs are
1050 guaranteed to hold still until thawed, even if this means that
1051 malloc must return a null pointer. */
abe9ff32 1052
81bd58e8
KH
1053void
1054r_alloc_freeze (size)
1055 long size;
1056{
44d3dec0
RS
1057 if (! r_alloc_initialized)
1058 r_alloc_init ();
1059
81bd58e8
KH
1060 /* If already frozen, we can't make any more room, so don't try. */
1061 if (r_alloc_freeze_level > 0)
1062 size = 0;
1063 /* If we can't get the amount requested, half is better than nothing. */
1064 while (size > 0 && r_alloc_sbrk (size) == 0)
1065 size /= 2;
1066 ++r_alloc_freeze_level;
1067 if (size > 0)
1068 r_alloc_sbrk (-size);
1069}
1070
1071void
1072r_alloc_thaw ()
1073{
49f82b3d
RS
1074
1075 if (! r_alloc_initialized)
1076 r_alloc_init ();
1077
81bd58e8
KH
1078 if (--r_alloc_freeze_level < 0)
1079 abort ();
49f82b3d 1080
8e6208c5 1081 /* This frees all unused blocs. It is not too inefficient, as the resize
49f82b3d
RS
1082 and bcopy is done only once. Afterwards, all unreferenced blocs are
1083 already shrunk to zero size. */
1084 if (!r_alloc_freeze_level)
1085 {
1086 bloc_ptr *b = &first_bloc;
1087 while (*b)
1088 if (!(*b)->variable)
1089 free_bloc (*b);
1090 else
1091 b = &(*b)->next;
1092 }
81bd58e8 1093}
49f82b3d 1094
dcfdbac7
JB
1095\f
1096/* The hook `malloc' uses for the function which gets more space
1097 from the system. */
1098extern POINTER (*__morecore) ();
1099
abe9ff32 1100/* Initialize various things for memory allocation. */
dcfdbac7 1101
2c46d29f
RS
1102static void
1103r_alloc_init ()
dcfdbac7 1104{
2c46d29f 1105 if (r_alloc_initialized)
dcfdbac7
JB
1106 return;
1107
2c46d29f 1108 r_alloc_initialized = 1;
bbc60227 1109 real_morecore = __morecore;
dcfdbac7 1110 __morecore = r_alloc_sbrk;
8c7f1e35 1111
e429caa2
KH
1112 first_heap = last_heap = &heap_base;
1113 first_heap->next = first_heap->prev = NIL_HEAP;
1114 first_heap->start = first_heap->bloc_start
1115 = virtual_break_value = break_value = (*real_morecore) (0);
aef4d570 1116 if (break_value == NIL)
2c46d29f 1117 abort ();
8c7f1e35 1118
7516b7d5
RS
1119 page_size = PAGE;
1120 extra_bytes = ROUNDUP (50000);
1121
49081834
RS
1122 /* Give GNU malloc's morecore some hysteresis
1123 so that we move all the relocatable blocks much less often. */
1124 __malloc_extra_blocks = 64;
1125
e429caa2 1126 first_heap->end = (POINTER) ROUNDUP (first_heap->start);
0e93a7cf
RS
1127
1128 /* The extra call to real_morecore guarantees that the end of the
1129 address space is a multiple of page_size, even if page_size is
1130 not really the page size of the system running the binary in
1131 which page_size is stored. This allows a binary to be built on a
1132 system with one page size and run on a system with a smaller page
abe9ff32 1133 size. */
e429caa2 1134 (*real_morecore) (first_heap->end - first_heap->start);
0e93a7cf 1135
2c46d29f
RS
1136 /* Clear the rest of the last page; this memory is in our address space
1137 even though it is after the sbrk value. */
0e93a7cf
RS
1138 /* Doubly true, with the additional call that explicitly adds the
1139 rest of that page to the address space. */
e429caa2
KH
1140 bzero (first_heap->start, first_heap->end - first_heap->start);
1141 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
dcfdbac7 1142 use_relocatable_buffers = 1;
2c46d29f 1143}
e429caa2
KH
1144#ifdef DEBUG
1145#include <assert.h>
1146
44d3dec0 1147void
e429caa2
KH
1148r_alloc_check ()
1149{
6d16dd06
RS
1150 int found = 0;
1151 heap_ptr h, ph = 0;
1152 bloc_ptr b, pb = 0;
1153
1154 if (!r_alloc_initialized)
1155 return;
1156
1157 assert (first_heap);
1158 assert (last_heap->end <= (POINTER) sbrk (0));
1159 assert ((POINTER) first_heap < first_heap->start);
1160 assert (first_heap->start <= virtual_break_value);
1161 assert (virtual_break_value <= first_heap->end);
1162
1163 for (h = first_heap; h; h = h->next)
1164 {
1165 assert (h->prev == ph);
1166 assert ((POINTER) ROUNDUP (h->end) == h->end);
40f3f04b
RS
1167#if 0 /* ??? The code in ralloc.c does not really try to ensure
1168 the heap start has any sort of alignment.
1169 Perhaps it should. */
6d16dd06 1170 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
40f3f04b 1171#endif
6d16dd06
RS
1172 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
1173 assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
1174
1175 if (ph)
1176 {
1177 assert (ph->end < h->start);
1178 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
1179 }
1180
1181 if (h->bloc_start <= break_value && break_value <= h->end)
1182 found = 1;
1183
1184 ph = h;
1185 }
1186
1187 assert (found);
1188 assert (last_heap == ph);
1189
1190 for (b = first_bloc; b; b = b->next)
1191 {
1192 assert (b->prev == pb);
1193 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
1194 assert ((SIZE) MEM_ROUNDUP (b->size) == b->size);
1195
1196 ph = 0;
1197 for (h = first_heap; h; h = h->next)
1198 {
1199 if (h->bloc_start <= b->data && b->data + b->size <= h->end)
1200 break;
1201 ph = h;
1202 }
1203
1204 assert (h);
1205
1206 if (pb && pb->data + pb->size != b->data)
1207 {
1208 assert (ph && b->data == h->bloc_start);
1209 while (ph)
1210 {
1211 if (ph->bloc_start <= pb->data
1212 && pb->data + pb->size <= ph->end)
1213 {
1214 assert (pb->data + pb->size + b->size > ph->end);
1215 break;
1216 }
1217 else
1218 {
1219 assert (ph->bloc_start + b->size > ph->end);
1220 }
1221 ph = ph->prev;
1222 }
1223 }
1224 pb = b;
1225 }
1226
1227 assert (last_bloc == pb);
1228
1229 if (last_bloc)
1230 assert (last_bloc->data + last_bloc->size == break_value);
1231 else
1232 assert (first_heap->bloc_start == break_value);
e429caa2
KH
1233}
1234#endif /* DEBUG */