* etags.c (readline): expect sscanf returns >= 1.
[bpt/emacs.git] / lispref / sequences.texi
CommitLineData
4672ee8f
RS
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
651f374c 3@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2002, 2003,
ceb4c4d3 4@c 2004, 2005, 2006 Free Software Foundation, Inc.
4672ee8f
RS
5@c See the file elisp.texi for copying conditions.
6@setfilename ../info/sequences
8241495d 7@node Sequences Arrays Vectors, Hash Tables, Lists, Top
4672ee8f
RS
8@chapter Sequences, Arrays, and Vectors
9@cindex sequence
10
969fe9b5
RS
11 Recall that the @dfn{sequence} type is the union of two other Lisp
12types: lists and arrays. In other words, any list is a sequence, and
13any array is a sequence. The common property that all sequences have is
14that each is an ordered collection of elements.
4672ee8f 15
79d11238 16 An @dfn{array} is a single primitive object that has a slot for each
969fe9b5
RS
17of its elements. All the elements are accessible in constant time, but
18the length of an existing array cannot be changed. Strings, vectors,
19char-tables and bool-vectors are the four types of arrays.
79d11238
RS
20
21 A list is a sequence of elements, but it is not a single primitive
22object; it is made of cons cells, one cell per element. Finding the
23@var{n}th element requires looking through @var{n} cons cells, so
24elements farther from the beginning of the list take longer to access.
25But it is possible to add elements to the list, or remove elements.
4672ee8f
RS
26
27 The following diagram shows the relationship between these types:
28
29@example
30@group
969fe9b5
RS
31 _____________________________________________
32 | |
33 | Sequence |
34 | ______ ________________________________ |
35 | | | | | |
36 | | List | | Array | |
37 | | | | ________ ________ | |
38 | |______| | | | | | | |
39 | | | Vector | | String | | |
40 | | |________| |________| | |
41 | | ____________ _____________ | |
42 | | | | | | | |
43 | | | Char-table | | Bool-vector | | |
44 | | |____________| |_____________| | |
45 | |________________________________| |
46 |_____________________________________________|
4672ee8f
RS
47@end group
48@end example
49
50 The elements of vectors and lists may be any Lisp objects. The
51elements of strings are all characters.
52
53@menu
54* Sequence Functions:: Functions that accept any kind of sequence.
55* Arrays:: Characteristics of arrays in Emacs Lisp.
56* Array Functions:: Functions specifically for arrays.
79d11238
RS
57* Vectors:: Special characteristics of Emacs Lisp vectors.
58* Vector Functions:: Functions specifically for vectors.
f9f59935
RS
59* Char-Tables:: How to work with char-tables.
60* Bool-Vectors:: How to work with bool-vectors.
4672ee8f
RS
61@end menu
62
63@node Sequence Functions
64@section Sequences
65
969fe9b5
RS
66 In Emacs Lisp, a @dfn{sequence} is either a list or an array. The
67common property of all sequences is that they are ordered collections of
68elements. This section describes functions that accept any kind of
69sequence.
4672ee8f
RS
70
71@defun sequencep object
3a424014
LT
72Returns @code{t} if @var{object} is a list, vector, string,
73bool-vector, or char-table, @code{nil} otherwise.
4672ee8f
RS
74@end defun
75
969fe9b5
RS
76@defun length sequence
77@cindex string length
78@cindex list length
79@cindex vector length
80@cindex sequence length
d7f29ece 81@cindex char-table length
969fe9b5 82This function returns the number of elements in @var{sequence}. If
3a424014
LT
83@var{sequence} is a dotted list, a @code{wrong-type-argument} error is
84signaled. Circular lists may cause an infinite loop. For a
85char-table, the value returned is always one more than the maximum
86Emacs character code.
969fe9b5 87
3a424014 88@xref{Definition of safe-length}, for the related function @code{safe-length}.
969fe9b5
RS
89
90@example
91@group
92(length '(1 2 3))
93 @result{} 3
94@end group
95@group
96(length ())
97 @result{} 0
98@end group
99@group
100(length "foobar")
101 @result{} 6
102@end group
103@group
104(length [1 2 3])
105 @result{} 3
106@end group
107@group
108(length (make-bool-vector 5 nil))
109 @result{} 5
110@end group
111@end example
112@end defun
113
d7f29ece
DL
114@defun string-bytes string
115@cindex string, number of bytes
116This function returns the number of bytes in @var{string}.
117If @var{string} is a multibyte string, this is greater than
118@code{(length @var{string})}.
119@end defun
120
969fe9b5
RS
121@defun elt sequence index
122@cindex elements of sequences
123This function returns the element of @var{sequence} indexed by
3a424014
LT
124@var{index}. Legitimate values of @var{index} are integers ranging
125from 0 up to one less than the length of @var{sequence}. If
126@var{sequence} is a list, out-of-range values behave as for
127@code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values
128trigger an @code{args-out-of-range} error.
969fe9b5
RS
129
130@example
131@group
132(elt [1 2 3 4] 2)
133 @result{} 3
134@end group
135@group
136(elt '(1 2 3 4) 2)
137 @result{} 3
138@end group
139@group
140;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
141(string (elt "1234" 2))
142 @result{} "3"
143@end group
144@group
145(elt [1 2 3 4] 4)
a9f0a989 146 @error{} Args out of range: [1 2 3 4], 4
969fe9b5
RS
147@end group
148@group
149(elt [1 2 3 4] -1)
a9f0a989 150 @error{} Args out of range: [1 2 3 4], -1
969fe9b5
RS
151@end group
152@end example
153
154This function generalizes @code{aref} (@pxref{Array Functions}) and
3a424014 155@code{nth} (@pxref{Definition of nth}).
969fe9b5
RS
156@end defun
157
4672ee8f
RS
158@defun copy-sequence sequence
159@cindex copying sequences
160Returns a copy of @var{sequence}. The copy is the same type of object
161as the original sequence, and it has the same elements in the same order.
162
163Storing a new element into the copy does not affect the original
164@var{sequence}, and vice versa. However, the elements of the new
165sequence are not copies; they are identical (@code{eq}) to the elements
166of the original. Therefore, changes made within these elements, as
167found via the copied sequence, are also visible in the original
168sequence.
169
170If the sequence is a string with text properties, the property list in
171the copy is itself a copy, not shared with the original's property
172list. However, the actual values of the properties are shared.
173@xref{Text Properties}.
174
3a424014
LT
175This function does not work for dotted lists. Trying to copy a
176circular list may cause an infinite loop.
177
4672ee8f 178See also @code{append} in @ref{Building Lists}, @code{concat} in
9f81cdce
JL
179@ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
180for other ways to copy sequences.
4672ee8f
RS
181
182@example
183@group
184(setq bar '(1 2))
185 @result{} (1 2)
186@end group
187@group
188(setq x (vector 'foo bar))
189 @result{} [foo (1 2)]
190@end group
191@group
192(setq y (copy-sequence x))
193 @result{} [foo (1 2)]
194@end group
195
196@group
197(eq x y)
198 @result{} nil
199@end group
200@group
201(equal x y)
202 @result{} t
203@end group
204@group
205(eq (elt x 1) (elt y 1))
206 @result{} t
207@end group
208
209@group
210;; @r{Replacing an element of one sequence.}
211(aset x 0 'quux)
212x @result{} [quux (1 2)]
213y @result{} [foo (1 2)]
214@end group
215
216@group
217;; @r{Modifying the inside of a shared element.}
218(setcar (aref x 1) 69)
219x @result{} [quux (69 2)]
220y @result{} [foo (69 2)]
221@end group
222@end example
223@end defun
224
4672ee8f
RS
225@node Arrays
226@section Arrays
227@cindex array
228
79d11238 229 An @dfn{array} object has slots that hold a number of other Lisp
4672ee8f
RS
230objects, called the elements of the array. Any element of an array may
231be accessed in constant time. In contrast, an element of a list
232requires access time that is proportional to the position of the element
233in the list.
234
a9f0a989
RS
235 Emacs defines four types of array, all one-dimensional: @dfn{strings},
236@dfn{vectors}, @dfn{bool-vectors} and @dfn{char-tables}. A vector is a
237general array; its elements can be any Lisp objects. A string is a
177c0ea7 238specialized array; its elements must be characters. Each type of array
2bdedac1 239has its own read syntax.
a9f0a989 240@xref{String Type}, and @ref{Vector Type}.
4672ee8f 241
969fe9b5 242 All four kinds of array share these characteristics:
4672ee8f
RS
243
244@itemize @bullet
245@item
246The first element of an array has index zero, the second element has
247index 1, and so on. This is called @dfn{zero-origin} indexing. For
248example, an array of four elements has indices 0, 1, 2, @w{and 3}.
249
969fe9b5
RS
250@item
251The length of the array is fixed once you create it; you cannot
252change the length of an existing array.
253
254@item
bdd78d05 255For purposes of evaluation, the array is a constant---in other words,
a87ffdbc 256it evaluates to itself.
969fe9b5 257
4672ee8f
RS
258@item
259The elements of an array may be referenced or changed with the functions
260@code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
261@end itemize
262
969fe9b5
RS
263 When you create an array, other than a char-table, you must specify
264its length. You cannot specify the length of a char-table, because that
265is determined by the range of character codes.
266
267 In principle, if you want an array of text characters, you could use
268either a string or a vector. In practice, we always choose strings for
269such applications, for four reasons:
4672ee8f
RS
270
271@itemize @bullet
272@item
273They occupy one-fourth the space of a vector of the same elements.
274
275@item
276Strings are printed in a way that shows the contents more clearly
f9f59935 277as text.
4672ee8f
RS
278
279@item
280Strings can hold text properties. @xref{Text Properties}.
281
282@item
283Many of the specialized editing and I/O facilities of Emacs accept only
284strings. For example, you cannot insert a vector of characters into a
285buffer the way you can insert a string. @xref{Strings and Characters}.
286@end itemize
287
bfe721d1
KH
288 By contrast, for an array of keyboard input characters (such as a key
289sequence), a vector may be necessary, because many keyboard input
290characters are outside the range that will fit in a string. @xref{Key
291Sequence Input}.
292
4672ee8f
RS
293@node Array Functions
294@section Functions that Operate on Arrays
295
f9f59935
RS
296 In this section, we describe the functions that accept all types of
297arrays.
4672ee8f
RS
298
299@defun arrayp object
f9f59935
RS
300This function returns @code{t} if @var{object} is an array (i.e., a
301vector, a string, a bool-vector or a char-table).
4672ee8f
RS
302
303@example
304@group
305(arrayp [a])
969fe9b5 306 @result{} t
4672ee8f 307(arrayp "asdf")
969fe9b5
RS
308 @result{} t
309(arrayp (syntax-table)) ;; @r{A char-table.}
310 @result{} t
4672ee8f
RS
311@end group
312@end example
313@end defun
314
315@defun aref array index
316@cindex array elements
317This function returns the @var{index}th element of @var{array}. The
318first element is at index zero.
319
320@example
321@group
322(setq primes [2 3 5 7 11 13])
323 @result{} [2 3 5 7 11 13]
324(aref primes 4)
325 @result{} 11
4672ee8f 326@end group
4672ee8f
RS
327@group
328(aref "abcdefg" 1)
ad800164 329 @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
4672ee8f
RS
330@end group
331@end example
332
333See also the function @code{elt}, in @ref{Sequence Functions}.
334@end defun
335
336@defun aset array index object
337This function sets the @var{index}th element of @var{array} to be
338@var{object}. It returns @var{object}.
339
340@example
341@group
342(setq w [foo bar baz])
343 @result{} [foo bar baz]
344(aset w 0 'fu)
345 @result{} fu
346w
347 @result{} [fu bar baz]
348@end group
349
350@group
351(setq x "asdfasfd")
352 @result{} "asdfasfd"
353(aset x 3 ?Z)
354 @result{} 90
355x
356 @result{} "asdZasfd"
357@end group
358@end example
359
360If @var{array} is a string and @var{object} is not a character, a
e8efaf39
DL
361@code{wrong-type-argument} error results. The function converts a
362unibyte string to multibyte if necessary to insert a character.
4672ee8f
RS
363@end defun
364
365@defun fillarray array object
79d11238
RS
366This function fills the array @var{array} with @var{object}, so that
367each element of @var{array} is @var{object}. It returns @var{array}.
4672ee8f
RS
368
369@example
370@group
371(setq a [a b c d e f g])
372 @result{} [a b c d e f g]
373(fillarray a 0)
374 @result{} [0 0 0 0 0 0 0]
375a
376 @result{} [0 0 0 0 0 0 0]
377@end group
378@group
379(setq s "When in the course")
380 @result{} "When in the course"
381(fillarray s ?-)
382 @result{} "------------------"
383@end group
384@end example
385
386If @var{array} is a string and @var{object} is not a character, a
387@code{wrong-type-argument} error results.
388@end defun
389
390The general sequence functions @code{copy-sequence} and @code{length}
391are often useful for objects known to be arrays. @xref{Sequence Functions}.
392
393@node Vectors
394@section Vectors
395@cindex vector
396
397 Arrays in Lisp, like arrays in most languages, are blocks of memory
398whose elements can be accessed in constant time. A @dfn{vector} is a
969fe9b5
RS
399general-purpose array of specified length; its elements can be any Lisp
400objects. (By contrast, a string can hold only characters as elements.)
401Vectors in Emacs are used for obarrays (vectors of symbols), and as part
402of keymaps (vectors of commands). They are also used internally as part
403of the representation of a byte-compiled function; if you print such a
f9f59935 404function, you will see a vector in it.
4672ee8f
RS
405
406 In Emacs Lisp, the indices of the elements of a vector start from zero
407and count up from there.
408
79d11238
RS
409 Vectors are printed with square brackets surrounding the elements.
410Thus, a vector whose elements are the symbols @code{a}, @code{b} and
411@code{a} is printed as @code{[a b a]}. You can write vectors in the
412same way in Lisp input.
4672ee8f
RS
413
414 A vector, like a string or a number, is considered a constant for
415evaluation: the result of evaluating it is the same vector. This does
416not evaluate or even examine the elements of the vector.
417@xref{Self-Evaluating Forms}.
418
f9f59935 419 Here are examples illustrating these principles:
4672ee8f
RS
420
421@example
422@group
423(setq avector [1 two '(three) "four" [five]])
424 @result{} [1 two (quote (three)) "four" [five]]
425(eval avector)
426 @result{} [1 two (quote (three)) "four" [five]]
427(eq avector (eval avector))
428 @result{} t
429@end group
430@end example
431
79d11238 432@node Vector Functions
969fe9b5 433@section Functions for Vectors
79d11238 434
4672ee8f
RS
435 Here are some functions that relate to vectors:
436
437@defun vectorp object
438This function returns @code{t} if @var{object} is a vector.
439
440@example
441@group
442(vectorp [a])
443 @result{} t
444(vectorp "asdf")
445 @result{} nil
446@end group
447@end example
448@end defun
449
450@defun vector &rest objects
451This function creates and returns a vector whose elements are the
452arguments, @var{objects}.
453
454@example
455@group
456(vector 'foo 23 [bar baz] "rats")
457 @result{} [foo 23 [bar baz] "rats"]
458(vector)
459 @result{} []
460@end group
461@end example
462@end defun
463
464@defun make-vector length object
465This function returns a new vector consisting of @var{length} elements,
466each initialized to @var{object}.
467
468@example
469@group
470(setq sleepy (make-vector 9 'Z))
471 @result{} [Z Z Z Z Z Z Z Z Z]
472@end group
473@end example
474@end defun
475
476@defun vconcat &rest sequences
477@cindex copying vectors
478This function returns a new vector containing all the elements of the
3a424014
LT
479@var{sequences}. The arguments @var{sequences} may be true lists,
480vectors, strings or bool-vectors. If no @var{sequences} are given, an
481empty vector is returned.
4672ee8f
RS
482
483The value is a newly constructed vector that is not @code{eq} to any
484existing vector.
485
486@example
487@group
488(setq a (vconcat '(A B C) '(D E F)))
489 @result{} [A B C D E F]
490(eq a (vconcat a))
491 @result{} nil
492@end group
493@group
494(vconcat)
495 @result{} []
496(vconcat [A B C] "aa" '(foo (6 7)))
497 @result{} [A B C 97 97 foo (6 7)]
498@end group
499@end example
500
969fe9b5
RS
501The @code{vconcat} function also allows byte-code function objects as
502arguments. This is a special feature to make it easy to access the entire
503contents of a byte-code function object. @xref{Byte-Code Objects}.
504
2d9c2502
RS
505In Emacs versions before 21, the @code{vconcat} function allowed
506integers as arguments, converting them to strings of digits, but that
507feature has been eliminated. The proper way to convert an integer to
508a decimal number in this way is with @code{format} (@pxref{Formatting
509Strings}) or @code{number-to-string} (@pxref{String Conversion}).
4672ee8f
RS
510
511For other concatenation functions, see @code{mapconcat} in @ref{Mapping
512Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
513in @ref{Building Lists}.
514@end defun
515
5e6f234c
RS
516 The @code{append} function also provides a way to convert a vector into a
517list with the same elements:
4672ee8f
RS
518
519@example
520@group
521(setq avector [1 two (quote (three)) "four" [five]])
522 @result{} [1 two (quote (three)) "four" [five]]
523(append avector nil)
524 @result{} (1 two (quote (three)) "four" [five])
525@end group
526@end example
f9f59935
RS
527
528@node Char-Tables
529@section Char-Tables
530@cindex char-tables
a9f0a989 531@cindex extra slots of char-table
f9f59935
RS
532
533 A char-table is much like a vector, except that it is indexed by
534character codes. Any valid character code, without modifiers, can be
969fe9b5 535used as an index in a char-table. You can access a char-table's
a9f0a989
RS
536elements with @code{aref} and @code{aset}, as with any array. In
537addition, a char-table can have @dfn{extra slots} to hold additional
538data not associated with particular character codes. Char-tables are
539constants when evaluated.
f9f59935 540
f9f59935 541@cindex subtype of char-table
a9f0a989
RS
542 Each char-table has a @dfn{subtype} which is a symbol. The subtype
543has two purposes: to distinguish char-tables meant for different uses,
544and to control the number of extra slots. For example, display tables
545are char-tables with @code{display-table} as the subtype, and syntax
546tables are char-tables with @code{syntax-table} as the subtype. A valid
547subtype must have a @code{char-table-extra-slots} property which is an
548integer between 0 and 10. This integer specifies the number of
549@dfn{extra slots} in the char-table.
f9f59935
RS
550
551@cindex parent of char-table
4f790472 552 A char-table can have a @dfn{parent}, which is another char-table. If
f9f59935
RS
553it does, then whenever the char-table specifies @code{nil} for a
554particular character @var{c}, it inherits the value specified in the
555parent. In other words, @code{(aref @var{char-table} @var{c})} returns
556the value from the parent of @var{char-table} if @var{char-table} itself
557specifies @code{nil}.
558
559@cindex default value of char-table
560 A char-table can also have a @dfn{default value}. If so, then
561@code{(aref @var{char-table} @var{c})} returns the default value
562whenever the char-table does not specify any other non-@code{nil} value.
563
f9f59935
RS
564@defun make-char-table subtype &optional init
565Return a newly created char-table, with subtype @var{subtype}. Each
566element is initialized to @var{init}, which defaults to @code{nil}. You
567cannot alter the subtype of a char-table after the char-table is
568created.
969fe9b5
RS
569
570There is no argument to specify the length of the char-table, because
571all char-tables have room for any valid character code as an index.
f9f59935
RS
572@end defun
573
f9f59935 574@defun char-table-p object
969fe9b5 575This function returns @code{t} if @var{object} is a char-table,
f9f59935
RS
576otherwise @code{nil}.
577@end defun
578
f9f59935
RS
579@defun char-table-subtype char-table
580This function returns the subtype symbol of @var{char-table}.
581@end defun
582
a87ffdbc
RS
583@defun set-char-table-default char-table char new-default
584This function sets the default value of generic character @var{char}
585in @var{char-table} to @var{new-default}.
f9f59935 586
a87ffdbc
RS
587There is no special function to access default values in a char-table.
588To do that, use @code{char-table-range} (see below).
f9f59935
RS
589@end defun
590
f9f59935
RS
591@defun char-table-parent char-table
592This function returns the parent of @var{char-table}. The parent is
593always either @code{nil} or another char-table.
594@end defun
595
f9f59935
RS
596@defun set-char-table-parent char-table new-parent
597This function sets the parent of @var{char-table} to @var{new-parent}.
598@end defun
599
f9f59935
RS
600@defun char-table-extra-slot char-table n
601This function returns the contents of extra slot @var{n} of
602@var{char-table}. The number of extra slots in a char-table is
603determined by its subtype.
604@end defun
605
f9f59935
RS
606@defun set-char-table-extra-slot char-table n value
607This function stores @var{value} in extra slot @var{n} of
608@var{char-table}.
609@end defun
610
611 A char-table can specify an element value for a single character code;
612it can also specify a value for an entire character set.
613
f9f59935
RS
614@defun char-table-range char-table range
615This returns the value specified in @var{char-table} for a range of
a9f0a989 616characters @var{range}. Here are the possibilities for @var{range}:
f9f59935
RS
617
618@table @asis
619@item @code{nil}
620Refers to the default value.
621
622@item @var{char}
a9f0a989
RS
623Refers to the element for character @var{char}
624(supposing @var{char} is a valid character code).
f9f59935
RS
625
626@item @var{charset}
627Refers to the value specified for the whole character set
628@var{charset} (@pxref{Character Sets}).
a9f0a989
RS
629
630@item @var{generic-char}
a87ffdbc
RS
631A generic character stands for a character set, or a row of a
632character set; specifying the generic character as argument is
633equivalent to specifying the character set name. @xref{Splitting
634Characters}, for a description of generic characters.
f9f59935
RS
635@end table
636@end defun
637
f9f59935 638@defun set-char-table-range char-table range value
1911e6e5 639This function sets the value in @var{char-table} for a range of
a9f0a989 640characters @var{range}. Here are the possibilities for @var{range}:
f9f59935
RS
641
642@table @asis
643@item @code{nil}
644Refers to the default value.
645
646@item @code{t}
647Refers to the whole range of character codes.
648
649@item @var{char}
a9f0a989
RS
650Refers to the element for character @var{char}
651(supposing @var{char} is a valid character code).
f9f59935
RS
652
653@item @var{charset}
654Refers to the value specified for the whole character set
655@var{charset} (@pxref{Character Sets}).
a9f0a989
RS
656
657@item @var{generic-char}
658A generic character stands for a character set; specifying the generic
659character as argument is equivalent to specifying the character set
660name. @xref{Splitting Characters}, for a description of generic characters.
f9f59935
RS
661@end table
662@end defun
663
f9f59935
RS
664@defun map-char-table function char-table
665This function calls @var{function} for each element of @var{char-table}.
666@var{function} is called with two arguments, a key and a value. The key
a9f0a989
RS
667is a possible @var{range} argument for @code{char-table-range}---either
668a valid character or a generic character---and the value is
669@code{(char-table-range @var{char-table} @var{key})}.
f9f59935 670
969fe9b5 671Overall, the key-value pairs passed to @var{function} describe all the
f9f59935 672values stored in @var{char-table}.
a9f0a989
RS
673
674The return value is always @code{nil}; to make this function useful,
675@var{function} should have side effects. For example,
676here is how to examine each element of the syntax table:
677
678@example
1911e6e5
RS
679(let (accumulator)
680 (map-char-table
681 #'(lambda (key value)
682 (setq accumulator
683 (cons (list key value) accumulator)))
684 (syntax-table))
685 accumulator)
a9f0a989
RS
686@result{}
687((475008 nil) (474880 nil) (474752 nil) (474624 nil)
688 ... (5 (3)) (4 (3)) (3 (3)) (2 (3)) (1 (3)) (0 (3)))
689@end example
f9f59935
RS
690@end defun
691
692@node Bool-Vectors
693@section Bool-vectors
694@cindex Bool-vectors
695
696 A bool-vector is much like a vector, except that it stores only the
697values @code{t} and @code{nil}. If you try to store any non-@code{nil}
969fe9b5
RS
698value into an element of the bool-vector, the effect is to store
699@code{t} there. As with all arrays, bool-vector indices start from 0,
700and the length cannot be changed once the bool-vector is created.
701Bool-vectors are constants when evaluated.
f9f59935
RS
702
703 There are two special functions for working with bool-vectors; aside
704from that, you manipulate them with same functions used for other kinds
705of arrays.
706
f9f59935 707@defun make-bool-vector length initial
db4413be 708Return a new bool-vector of @var{length} elements,
f9f59935
RS
709each one initialized to @var{initial}.
710@end defun
711
712@defun bool-vector-p object
713This returns @code{t} if @var{object} is a bool-vector,
714and @code{nil} otherwise.
715@end defun
716
5785f550
RS
717 Here is an example of creating, examining, and updating a
718bool-vector. Note that the printed form represents up to 8 boolean
719values as a single character.
720
721@example
722(setq bv (make-bool-vector 5 t))
723 @result{} #&5"^_"
724(aref bv 1)
725 @result{} t
726(aset bv 3 nil)
727 @result{} nil
728bv
729 @result{} #&5"^W"
730@end example
731
732@noindent
733These results make sense because the binary codes for control-_ and
734control-W are 11111 and 10111, respectively.
735
ab5796a9
MB
736@ignore
737 arch-tag: fcf1084a-cd29-4adc-9f16-68586935b386
738@end ignore