Use Texinfo recommended convention for quotes+punctuation.
[bpt/emacs.git] / doc / lispref / lists.texi
CommitLineData
b8d4c8d0
GM
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
acaf905b 3@c Copyright (C) 1990-1995, 1998-1999, 2001-2012 Free Software Foundation, Inc.
b8d4c8d0 4@c See the file elisp.texi for copying conditions.
6336d8c3 5@setfilename ../../info/lists
b8d4c8d0
GM
6@node Lists, Sequences Arrays Vectors, Strings and Characters, Top
7@chapter Lists
8@cindex lists
9@cindex element (of list)
10
11 A @dfn{list} represents a sequence of zero or more elements (which may
12be any Lisp objects). The important difference between lists and
13vectors is that two or more lists can share part of their structure; in
14addition, you can insert or delete elements in a list without copying
15the whole list.
16
17@menu
18* Cons Cells:: How lists are made out of cons cells.
19* List-related Predicates:: Is this object a list? Comparing two lists.
20* List Elements:: Extracting the pieces of a list.
21* Building Lists:: Creating list structure.
22* List Variables:: Modifying lists stored in variables.
23* Modifying Lists:: Storing new pieces into an existing list.
24* Sets And Lists:: A list can represent a finite mathematical set.
25* Association Lists:: A list can represent a finite relation or mapping.
b8d4c8d0
GM
26@end menu
27
28@node Cons Cells
29@section Lists and Cons Cells
30@cindex lists and cons cells
31
32 Lists in Lisp are not a primitive data type; they are built up from
31cbea1d
CY
33@dfn{cons cells} (@pxref{Cons Cell Type}). A cons cell is a data
34object that represents an ordered pair. That is, it has two slots,
35and each slot @dfn{holds}, or @dfn{refers to}, some Lisp object. One
36slot is known as the @sc{car}, and the other is known as the @sc{cdr}.
37(These names are traditional; see @ref{Cons Cell Type}.) @sc{cdr} is
16152b76 38pronounced ``could-er''.
b8d4c8d0
GM
39
40 We say that ``the @sc{car} of this cons cell is'' whatever object
41its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
42
16152b76 43 A list is a series of cons cells ``chained together'', so that each
31cbea1d
CY
44cell refers to the next one. There is one cons cell for each element
45of the list. By convention, the @sc{car}s of the cons cells hold the
46elements of the list, and the @sc{cdr}s are used to chain the list
47(this asymmetry between @sc{car} and @sc{cdr} is entirely a matter of
48convention; at the level of cons cells, the @sc{car} and @sc{cdr}
49slots have similar properties). Hence, the @sc{cdr} slot of each cons
50cell in a list refers to the following cons cell.
b8d4c8d0
GM
51
52@cindex true list
31cbea1d
CY
53 Also by convention, the @sc{cdr} of the last cons cell in a list is
54@code{nil}. We call such a @code{nil}-terminated structure a
55@dfn{true list}. In Emacs Lisp, the symbol @code{nil} is both a
56symbol and a list with no elements. For convenience, the symbol
b8d4c8d0 57@code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
31cbea1d
CY
58as its @sc{car}).
59
60 Hence, the @sc{cdr} of a true list is always a true list. The
61@sc{cdr} of a nonempty true list is a true list containing all the
62elements except the first.
b8d4c8d0
GM
63
64@cindex dotted list
65@cindex circular list
31cbea1d
CY
66 If the @sc{cdr} of a list's last cons cell is some value other than
67@code{nil}, we call the structure a @dfn{dotted list}, since its
68printed representation would use dotted pair notation (@pxref{Dotted
69Pair Notation}). There is one other possibility: some cons cell's
70@sc{cdr} could point to one of the previous cons cells in the list.
71We call that structure a @dfn{circular list}.
b8d4c8d0
GM
72
73 For some purposes, it does not matter whether a list is true,
31cbea1d 74circular or dotted. If a program doesn't look far enough down the
b8d4c8d0
GM
75list to see the @sc{cdr} of the final cons cell, it won't care.
76However, some functions that operate on lists demand true lists and
77signal errors if given a dotted list. Most functions that try to find
78the end of a list enter infinite loops if given a circular list.
79
80@cindex list structure
31cbea1d
CY
81 Because most cons cells are used as part of lists, we refer to any
82structure made out of cons cells as a @dfn{list structure}.
b8d4c8d0
GM
83
84@node List-related Predicates
85@section Predicates on Lists
86
87 The following predicates test whether a Lisp object is an atom,
88whether it is a cons cell or is a list, or whether it is the
89distinguished object @code{nil}. (Many of these predicates can be
90defined in terms of the others, but they are used so often that it is
91worth having all of them.)
92
93@defun consp object
94This function returns @code{t} if @var{object} is a cons cell, @code{nil}
95otherwise. @code{nil} is not a cons cell, although it @emph{is} a list.
96@end defun
97
98@defun atom object
99This function returns @code{t} if @var{object} is an atom, @code{nil}
100otherwise. All objects except cons cells are atoms. The symbol
101@code{nil} is an atom and is also a list; it is the only Lisp object
102that is both.
103
104@example
105(atom @var{object}) @equiv{} (not (consp @var{object}))
106@end example
107@end defun
108
109@defun listp object
110This function returns @code{t} if @var{object} is a cons cell or
111@code{nil}. Otherwise, it returns @code{nil}.
112
113@example
114@group
115(listp '(1))
116 @result{} t
117@end group
118@group
119(listp '())
120 @result{} t
121@end group
122@end example
123@end defun
124
125@defun nlistp object
126This function is the opposite of @code{listp}: it returns @code{t} if
127@var{object} is not a list. Otherwise, it returns @code{nil}.
128
129@example
130(listp @var{object}) @equiv{} (not (nlistp @var{object}))
131@end example
132@end defun
133
134@defun null object
135This function returns @code{t} if @var{object} is @code{nil}, and
136returns @code{nil} otherwise. This function is identical to @code{not},
137but as a matter of clarity we use @code{null} when @var{object} is
138considered a list and @code{not} when it is considered a truth value
139(see @code{not} in @ref{Combining Conditions}).
140
141@example
142@group
143(null '(1))
144 @result{} nil
145@end group
146@group
147(null '())
148 @result{} t
149@end group
150@end example
151@end defun
152
153
154@node List Elements
155@section Accessing Elements of Lists
156@cindex list elements
157
158@defun car cons-cell
159This function returns the value referred to by the first slot of the
b6a5263f
CY
160cons cell @var{cons-cell}. In other words, it returns the @sc{car} of
161@var{cons-cell}.
b8d4c8d0 162
b6a5263f
CY
163As a special case, if @var{cons-cell} is @code{nil}, this function
164returns @code{nil}. Therefore, any list is a valid argument. An
165error is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
166
167@example
168@group
169(car '(a b c))
170 @result{} a
171@end group
172@group
173(car '())
174 @result{} nil
175@end group
176@end example
177@end defun
178
179@defun cdr cons-cell
b6a5263f
CY
180This function returns the value referred to by the second slot of the
181cons cell @var{cons-cell}. In other words, it returns the @sc{cdr} of
182@var{cons-cell}.
183
184As a special case, if @var{cons-cell} is @code{nil}, this function
185returns @code{nil}; therefore, any list is a valid argument. An error
186is signaled if the argument is not a cons cell or @code{nil}.
b8d4c8d0
GM
187
188@example
189@group
190(cdr '(a b c))
191 @result{} (b c)
192@end group
193@group
194(cdr '())
195 @result{} nil
196@end group
197@end example
198@end defun
199
200@defun car-safe object
201This function lets you take the @sc{car} of a cons cell while avoiding
202errors for other data types. It returns the @sc{car} of @var{object} if
203@var{object} is a cons cell, @code{nil} otherwise. This is in contrast
204to @code{car}, which signals an error if @var{object} is not a list.
205
206@example
207@group
208(car-safe @var{object})
209@equiv{}
210(let ((x @var{object}))
211 (if (consp x)
212 (car x)
213 nil))
214@end group
215@end example
216@end defun
217
218@defun cdr-safe object
219This function lets you take the @sc{cdr} of a cons cell while
220avoiding errors for other data types. It returns the @sc{cdr} of
221@var{object} if @var{object} is a cons cell, @code{nil} otherwise.
222This is in contrast to @code{cdr}, which signals an error if
223@var{object} is not a list.
224
225@example
226@group
227(cdr-safe @var{object})
228@equiv{}
229(let ((x @var{object}))
230 (if (consp x)
231 (cdr x)
232 nil))
233@end group
234@end example
235@end defun
236
237@defmac pop listname
238This macro is a way of examining the @sc{car} of a list,
239and taking it off the list, all at once.
240
241It operates on the list which is stored in the symbol @var{listname}.
242It removes this element from the list by setting @var{listname}
243to the @sc{cdr} of its old value---but it also returns the @sc{car}
244of that list, which is the element being removed.
245
246@example
247x
248 @result{} (a b c)
249(pop x)
250 @result{} a
251x
252 @result{} (b c)
253@end example
31cbea1d
CY
254
255@noindent
256For the @code{pop} macro, which removes an element from a list,
257@xref{List Variables}.
b8d4c8d0
GM
258@end defmac
259
260@defun nth n list
261@anchor{Definition of nth}
262This function returns the @var{n}th element of @var{list}. Elements
263are numbered starting with zero, so the @sc{car} of @var{list} is
264element number zero. If the length of @var{list} is @var{n} or less,
265the value is @code{nil}.
266
267If @var{n} is negative, @code{nth} returns the first element of
268@var{list}.
269
270@example
271@group
272(nth 2 '(1 2 3 4))
273 @result{} 3
274@end group
275@group
276(nth 10 '(1 2 3 4))
277 @result{} nil
278@end group
279@group
280(nth -3 '(1 2 3 4))
281 @result{} 1
282
283(nth n x) @equiv{} (car (nthcdr n x))
284@end group
285@end example
286
287The function @code{elt} is similar, but applies to any kind of sequence.
288For historical reasons, it takes its arguments in the opposite order.
289@xref{Sequence Functions}.
290@end defun
291
292@defun nthcdr n list
293This function returns the @var{n}th @sc{cdr} of @var{list}. In other
294words, it skips past the first @var{n} links of @var{list} and returns
295what follows.
296
297If @var{n} is zero or negative, @code{nthcdr} returns all of
298@var{list}. If the length of @var{list} is @var{n} or less,
299@code{nthcdr} returns @code{nil}.
300
301@example
302@group
303(nthcdr 1 '(1 2 3 4))
304 @result{} (2 3 4)
305@end group
306@group
307(nthcdr 10 '(1 2 3 4))
308 @result{} nil
309@end group
310@group
311(nthcdr -3 '(1 2 3 4))
312 @result{} (1 2 3 4)
313@end group
314@end example
315@end defun
316
317@defun last list &optional n
318This function returns the last link of @var{list}. The @code{car} of
319this link is the list's last element. If @var{list} is null,
320@code{nil} is returned. If @var{n} is non-@code{nil}, the
321@var{n}th-to-last link is returned instead, or the whole of @var{list}
322if @var{n} is bigger than @var{list}'s length.
323@end defun
324
325@defun safe-length list
326@anchor{Definition of safe-length}
327This function returns the length of @var{list}, with no risk of either
328an error or an infinite loop. It generally returns the number of
329distinct cons cells in the list. However, for circular lists,
330the value is just an upper bound; it is often too large.
331
332If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
333returns 0.
334@end defun
335
336 The most common way to compute the length of a list, when you are not
337worried that it may be circular, is with @code{length}. @xref{Sequence
338Functions}.
339
340@defun caar cons-cell
341This is the same as @code{(car (car @var{cons-cell}))}.
342@end defun
343
344@defun cadr cons-cell
345This is the same as @code{(car (cdr @var{cons-cell}))}
346or @code{(nth 1 @var{cons-cell})}.
347@end defun
348
349@defun cdar cons-cell
350This is the same as @code{(cdr (car @var{cons-cell}))}.
351@end defun
352
353@defun cddr cons-cell
354This is the same as @code{(cdr (cdr @var{cons-cell}))}
355or @code{(nthcdr 2 @var{cons-cell})}.
356@end defun
357
358@defun butlast x &optional n
359This function returns the list @var{x} with the last element,
360or the last @var{n} elements, removed. If @var{n} is greater
361than zero it makes a copy of the list so as not to damage the
362original list. In general, @code{(append (butlast @var{x} @var{n})
363(last @var{x} @var{n}))} will return a list equal to @var{x}.
364@end defun
365
366@defun nbutlast x &optional n
367This is a version of @code{butlast} that works by destructively
368modifying the @code{cdr} of the appropriate element, rather than
369making a copy of the list.
370@end defun
371
372@node Building Lists
373@comment node-name, next, previous, up
374@section Building Cons Cells and Lists
375@cindex cons cells
376@cindex building lists
377
378 Many functions build lists, as lists reside at the very heart of Lisp.
379@code{cons} is the fundamental list-building function; however, it is
380interesting to note that @code{list} is used more times in the source
381code for Emacs than @code{cons}.
382
383@defun cons object1 object2
384This function is the most basic function for building new list
385structure. It creates a new cons cell, making @var{object1} the
386@sc{car}, and @var{object2} the @sc{cdr}. It then returns the new
387cons cell. The arguments @var{object1} and @var{object2} may be any
388Lisp objects, but most often @var{object2} is a list.
389
390@example
391@group
392(cons 1 '(2))
393 @result{} (1 2)
394@end group
395@group
396(cons 1 '())
397 @result{} (1)
398@end group
399@group
400(cons 1 2)
401 @result{} (1 . 2)
402@end group
403@end example
404
405@cindex consing
406@code{cons} is often used to add a single element to the front of a
407list. This is called @dfn{consing the element onto the list}.
408@footnote{There is no strictly equivalent way to add an element to
409the end of a list. You can use @code{(append @var{listname} (list
410@var{newelt}))}, which creates a whole new list by copying @var{listname}
411and adding @var{newelt} to its end. Or you can use @code{(nconc
412@var{listname} (list @var{newelt}))}, which modifies @var{listname}
413by following all the @sc{cdr}s and then replacing the terminating
414@code{nil}. Compare this to adding an element to the beginning of a
415list with @code{cons}, which neither copies nor modifies the list.}
416For example:
417
418@example
419(setq list (cons newelt list))
420@end example
421
422Note that there is no conflict between the variable named @code{list}
423used in this example and the function named @code{list} described below;
424any symbol can serve both purposes.
425@end defun
426
427@defun list &rest objects
428This function creates a list with @var{objects} as its elements. The
429resulting list is always @code{nil}-terminated. If no @var{objects}
430are given, the empty list is returned.
431
432@example
433@group
434(list 1 2 3 4 5)
435 @result{} (1 2 3 4 5)
436@end group
437@group
438(list 1 2 '(3 4 5) 'foo)
439 @result{} (1 2 (3 4 5) foo)
440@end group
441@group
442(list)
443 @result{} nil
444@end group
445@end example
446@end defun
447
448@defun make-list length object
449This function creates a list of @var{length} elements, in which each
450element is @var{object}. Compare @code{make-list} with
451@code{make-string} (@pxref{Creating Strings}).
452
453@example
454@group
455(make-list 3 'pigs)
456 @result{} (pigs pigs pigs)
457@end group
458@group
459(make-list 0 'pigs)
460 @result{} nil
461@end group
462@group
1f403cb9 463(setq l (make-list 3 '(a b)))
b8d4c8d0
GM
464 @result{} ((a b) (a b) (a b))
465(eq (car l) (cadr l))
466 @result{} t
467@end group
468@end example
469@end defun
470
471@defun append &rest sequences
472@cindex copying lists
473This function returns a list containing all the elements of
474@var{sequences}. The @var{sequences} may be lists, vectors,
475bool-vectors, or strings, but the last one should usually be a list.
476All arguments except the last one are copied, so none of the arguments
477is altered. (See @code{nconc} in @ref{Rearrangement}, for a way to join
478lists with no copying.)
479
480More generally, the final argument to @code{append} may be any Lisp
481object. The final argument is not copied or converted; it becomes the
482@sc{cdr} of the last cons cell in the new list. If the final argument
483is itself a list, then its elements become in effect elements of the
484result list. If the final element is not a list, the result is a
485dotted list since its final @sc{cdr} is not @code{nil} as required
486in a true list.
b8d4c8d0
GM
487@end defun
488
489 Here is an example of using @code{append}:
490
491@example
492@group
493(setq trees '(pine oak))
494 @result{} (pine oak)
495(setq more-trees (append '(maple birch) trees))
496 @result{} (maple birch pine oak)
497@end group
498
499@group
500trees
501 @result{} (pine oak)
502more-trees
503 @result{} (maple birch pine oak)
504@end group
505@group
506(eq trees (cdr (cdr more-trees)))
507 @result{} t
508@end group
509@end example
510
511 You can see how @code{append} works by looking at a box diagram. The
512variable @code{trees} is set to the list @code{(pine oak)} and then the
513variable @code{more-trees} is set to the list @code{(maple birch pine
514oak)}. However, the variable @code{trees} continues to refer to the
515original list:
516
517@smallexample
518@group
519more-trees trees
520| |
521| --- --- --- --- -> --- --- --- ---
522 --> | | |--> | | |--> | | |--> | | |--> nil
523 --- --- --- --- --- --- --- ---
524 | | | |
525 | | | |
526 --> maple -->birch --> pine --> oak
527@end group
528@end smallexample
529
530 An empty sequence contributes nothing to the value returned by
531@code{append}. As a consequence of this, a final @code{nil} argument
532forces a copy of the previous argument:
533
534@example
535@group
536trees
537 @result{} (pine oak)
538@end group
539@group
540(setq wood (append trees nil))
541 @result{} (pine oak)
542@end group
543@group
544wood
545 @result{} (pine oak)
546@end group
547@group
548(eq wood trees)
549 @result{} nil
550@end group
551@end example
552
553@noindent
554This once was the usual way to copy a list, before the function
555@code{copy-sequence} was invented. @xref{Sequences Arrays Vectors}.
556
557 Here we show the use of vectors and strings as arguments to @code{append}:
558
559@example
560@group
561(append [a b] "cd" nil)
562 @result{} (a b 99 100)
563@end group
564@end example
565
566 With the help of @code{apply} (@pxref{Calling Functions}), we can append
567all the lists in a list of lists:
568
569@example
570@group
571(apply 'append '((a b c) nil (x y z) nil))
572 @result{} (a b c x y z)
573@end group
574@end example
575
576 If no @var{sequences} are given, @code{nil} is returned:
577
578@example
579@group
580(append)
581 @result{} nil
582@end group
583@end example
584
585 Here are some examples where the final argument is not a list:
586
587@example
588(append '(x y) 'z)
589 @result{} (x y . z)
590(append '(x y) [z])
591 @result{} (x y . [z])
592@end example
593
594@noindent
595The second example shows that when the final argument is a sequence but
596not a list, the sequence's elements do not become elements of the
597resulting list. Instead, the sequence becomes the final @sc{cdr}, like
598any other non-list final argument.
599
600@defun reverse list
601This function creates a new list whose elements are the elements of
602@var{list}, but in reverse order. The original argument @var{list} is
603@emph{not} altered.
604
605@example
606@group
607(setq x '(1 2 3 4))
608 @result{} (1 2 3 4)
609@end group
610@group
611(reverse x)
612 @result{} (4 3 2 1)
613x
614 @result{} (1 2 3 4)
615@end group
616@end example
617@end defun
618
619@defun copy-tree tree &optional vecp
620This function returns a copy of the tree @code{tree}. If @var{tree} is a
621cons cell, this makes a new cons cell with the same @sc{car} and
622@sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
623same way.
624
625Normally, when @var{tree} is anything other than a cons cell,
626@code{copy-tree} simply returns @var{tree}. However, if @var{vecp} is
627non-@code{nil}, it copies vectors too (and operates recursively on
628their elements).
629@end defun
630
631@defun number-sequence from &optional to separation
632This returns a list of numbers starting with @var{from} and
633incrementing by @var{separation}, and ending at or just before
634@var{to}. @var{separation} can be positive or negative and defaults
635to 1. If @var{to} is @code{nil} or numerically equal to @var{from},
636the value is the one-element list @code{(@var{from})}. If @var{to} is
637less than @var{from} with a positive @var{separation}, or greater than
638@var{from} with a negative @var{separation}, the value is @code{nil}
639because those arguments specify an empty sequence.
640
641If @var{separation} is 0 and @var{to} is neither @code{nil} nor
642numerically equal to @var{from}, @code{number-sequence} signals an
643error, since those arguments specify an infinite sequence.
644
645All arguments can be integers or floating point numbers. However,
646floating point arguments can be tricky, because floating point
647arithmetic is inexact. For instance, depending on the machine, it may
648quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
649the one element list @code{(0.4)}, whereas
650@code{(number-sequence 0.4 0.8 0.2)} returns a list with three
651elements. The @var{n}th element of the list is computed by the exact
652formula @code{(+ @var{from} (* @var{n} @var{separation}))}. Thus, if
653one wants to make sure that @var{to} is included in the list, one can
654pass an expression of this exact type for @var{to}. Alternatively,
655one can replace @var{to} with a slightly larger value (or a slightly
656more negative value if @var{separation} is negative).
657
658Some examples:
659
660@example
661(number-sequence 4 9)
662 @result{} (4 5 6 7 8 9)
663(number-sequence 9 4 -1)
664 @result{} (9 8 7 6 5 4)
665(number-sequence 9 4 -2)
666 @result{} (9 7 5)
667(number-sequence 8)
668 @result{} (8)
669(number-sequence 8 5)
670 @result{} nil
671(number-sequence 5 8 -1)
672 @result{} nil
673(number-sequence 1.5 6 2)
674 @result{} (1.5 3.5 5.5)
675@end example
676@end defun
677
678@node List Variables
679@section Modifying List Variables
680
681 These functions, and one macro, provide convenient ways
682to modify a list which is stored in a variable.
683
684@defmac push newelt listname
685This macro provides an alternative way to write
686@code{(setq @var{listname} (cons @var{newelt} @var{listname}))}.
687
688@example
689(setq l '(a b))
690 @result{} (a b)
691(push 'c l)
692 @result{} (c a b)
693l
694 @result{} (c a b)
695@end example
31cbea1d
CY
696
697@noindent
698For the @code{pop} macro, which removes the first element from a list,
699@xref{List Elements}.
b8d4c8d0
GM
700@end defmac
701
702 Two functions modify lists that are the values of variables.
703
704@defun add-to-list symbol element &optional append compare-fn
705This function sets the variable @var{symbol} by consing @var{element}
706onto the old value, if @var{element} is not already a member of that
707value. It returns the resulting list, whether updated or not. The
708value of @var{symbol} had better be a list already before the call.
709@code{add-to-list} uses @var{compare-fn} to compare @var{element}
710against existing list members; if @var{compare-fn} is @code{nil}, it
711uses @code{equal}.
712
713Normally, if @var{element} is added, it is added to the front of
714@var{symbol}, but if the optional argument @var{append} is
715non-@code{nil}, it is added at the end.
716
717The argument @var{symbol} is not implicitly quoted; @code{add-to-list}
718is an ordinary function, like @code{set} and unlike @code{setq}. Quote
719the argument yourself if that is what you want.
720@end defun
721
722Here's a scenario showing how to use @code{add-to-list}:
723
724@example
725(setq foo '(a b))
726 @result{} (a b)
727
728(add-to-list 'foo 'c) ;; @r{Add @code{c}.}
729 @result{} (c a b)
730
731(add-to-list 'foo 'b) ;; @r{No effect.}
732 @result{} (c a b)
733
734foo ;; @r{@code{foo} was changed.}
735 @result{} (c a b)
736@end example
737
738 An equivalent expression for @code{(add-to-list '@var{var}
739@var{value})} is this:
740
741@example
742(or (member @var{value} @var{var})
743 (setq @var{var} (cons @var{value} @var{var})))
744@end example
745
746@defun add-to-ordered-list symbol element &optional order
747This function sets the variable @var{symbol} by inserting
748@var{element} into the old value, which must be a list, at the
749position specified by @var{order}. If @var{element} is already a
750member of the list, its position in the list is adjusted according
751to @var{order}. Membership is tested using @code{eq}.
752This function returns the resulting list, whether updated or not.
753
754The @var{order} is typically a number (integer or float), and the
755elements of the list are sorted in non-decreasing numerical order.
756
757@var{order} may also be omitted or @code{nil}. Then the numeric order
758of @var{element} stays unchanged if it already has one; otherwise,
759@var{element} has no numeric order. Elements without a numeric list
760order are placed at the end of the list, in no particular order.
761
762Any other value for @var{order} removes the numeric order of @var{element}
763if it already has one; otherwise, it is equivalent to @code{nil}.
764
765The argument @var{symbol} is not implicitly quoted;
766@code{add-to-ordered-list} is an ordinary function, like @code{set}
767and unlike @code{setq}. Quote the argument yourself if that is what
768you want.
769
770The ordering information is stored in a hash table on @var{symbol}'s
771@code{list-order} property.
772@end defun
773
774Here's a scenario showing how to use @code{add-to-ordered-list}:
775
776@example
777(setq foo '())
778 @result{} nil
779
780(add-to-ordered-list 'foo 'a 1) ;; @r{Add @code{a}.}
781 @result{} (a)
782
783(add-to-ordered-list 'foo 'c 3) ;; @r{Add @code{c}.}
784 @result{} (a c)
785
786(add-to-ordered-list 'foo 'b 2) ;; @r{Add @code{b}.}
787 @result{} (a b c)
788
789(add-to-ordered-list 'foo 'b 4) ;; @r{Move @code{b}.}
790 @result{} (a c b)
791
792(add-to-ordered-list 'foo 'd) ;; @r{Append @code{d}.}
793 @result{} (a c b d)
794
795(add-to-ordered-list 'foo 'e) ;; @r{Add @code{e}}.
796 @result{} (a c b e d)
797
798foo ;; @r{@code{foo} was changed.}
799 @result{} (a c b e d)
800@end example
801
802@node Modifying Lists
803@section Modifying Existing List Structure
804@cindex destructive list operations
805
806 You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
807primitives @code{setcar} and @code{setcdr}. We call these ``destructive''
808operations because they change existing list structure.
809
810@cindex CL note---@code{rplaca} vs @code{setcar}
811@quotation
812@findex rplaca
813@findex rplacd
814@b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
815@code{rplacd} to alter list structure; they change structure the same
816way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
817return the cons cell while @code{setcar} and @code{setcdr} return the
818new @sc{car} or @sc{cdr}.
819@end quotation
820
821@menu
822* Setcar:: Replacing an element in a list.
823* Setcdr:: Replacing part of the list backbone.
824 This can be used to remove or add elements.
825* Rearrangement:: Reordering the elements in a list; combining lists.
826@end menu
827
828@node Setcar
829@subsection Altering List Elements with @code{setcar}
830
831 Changing the @sc{car} of a cons cell is done with @code{setcar}. When
832used on a list, @code{setcar} replaces one element of a list with a
833different element.
834
835@defun setcar cons object
836This function stores @var{object} as the new @sc{car} of @var{cons},
837replacing its previous @sc{car}. In other words, it changes the
838@sc{car} slot of @var{cons} to refer to @var{object}. It returns the
839value @var{object}. For example:
840
841@example
842@group
843(setq x '(1 2))
844 @result{} (1 2)
845@end group
846@group
847(setcar x 4)
848 @result{} 4
849@end group
850@group
851x
852 @result{} (4 2)
853@end group
854@end example
855@end defun
856
857 When a cons cell is part of the shared structure of several lists,
858storing a new @sc{car} into the cons changes one element of each of
859these lists. Here is an example:
860
861@example
862@group
863;; @r{Create two lists that are partly shared.}
864(setq x1 '(a b c))
865 @result{} (a b c)
866(setq x2 (cons 'z (cdr x1)))
867 @result{} (z b c)
868@end group
869
870@group
871;; @r{Replace the @sc{car} of a shared link.}
872(setcar (cdr x1) 'foo)
873 @result{} foo
874x1 ; @r{Both lists are changed.}
875 @result{} (a foo c)
876x2
877 @result{} (z foo c)
878@end group
879
880@group
881;; @r{Replace the @sc{car} of a link that is not shared.}
882(setcar x1 'baz)
883 @result{} baz
884x1 ; @r{Only one list is changed.}
885 @result{} (baz foo c)
886x2
887 @result{} (z foo c)
888@end group
889@end example
890
891 Here is a graphical depiction of the shared structure of the two lists
892in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
893changes them both:
894
895@example
896@group
897 --- --- --- --- --- ---
898x1---> | | |----> | | |--> | | |--> nil
899 --- --- --- --- --- ---
900 | --> | |
901 | | | |
902 --> a | --> b --> c
903 |
904 --- --- |
905x2--> | | |--
906 --- ---
907 |
908 |
909 --> z
910@end group
911@end example
912
913 Here is an alternative form of box diagram, showing the same relationship:
914
915@example
916@group
917x1:
918 -------------- -------------- --------------
919| car | cdr | | car | cdr | | car | cdr |
920| a | o------->| b | o------->| c | nil |
921| | | -->| | | | | |
922 -------------- | -------------- --------------
923 |
924x2: |
925 -------------- |
926| car | cdr | |
927| z | o----
928| | |
929 --------------
930@end group
931@end example
932
933@node Setcdr
934@subsection Altering the CDR of a List
935
936 The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
937
938@defun setcdr cons object
939This function stores @var{object} as the new @sc{cdr} of @var{cons},
940replacing its previous @sc{cdr}. In other words, it changes the
941@sc{cdr} slot of @var{cons} to refer to @var{object}. It returns the
942value @var{object}.
943@end defun
944
945 Here is an example of replacing the @sc{cdr} of a list with a
946different list. All but the first element of the list are removed in
947favor of a different sequence of elements. The first element is
948unchanged, because it resides in the @sc{car} of the list, and is not
949reached via the @sc{cdr}.
950
951@example
952@group
953(setq x '(1 2 3))
954 @result{} (1 2 3)
955@end group
956@group
957(setcdr x '(4))
958 @result{} (4)
959@end group
960@group
961x
962 @result{} (1 4)
963@end group
964@end example
965
966 You can delete elements from the middle of a list by altering the
967@sc{cdr}s of the cons cells in the list. For example, here we delete
968the second element, @code{b}, from the list @code{(a b c)}, by changing
969the @sc{cdr} of the first cons cell:
970
971@example
972@group
973(setq x1 '(a b c))
974 @result{} (a b c)
975(setcdr x1 (cdr (cdr x1)))
976 @result{} (c)
977x1
978 @result{} (a c)
979@end group
980@end example
981
982 Here is the result in box notation:
983
984@smallexample
985@group
986 --------------------
987 | |
988 -------------- | -------------- | --------------
989| car | cdr | | | car | cdr | -->| car | cdr |
990| a | o----- | b | o-------->| c | nil |
991| | | | | | | | |
992 -------------- -------------- --------------
993@end group
994@end smallexample
995
996@noindent
997The second cons cell, which previously held the element @code{b}, still
998exists and its @sc{car} is still @code{b}, but it no longer forms part
999of this list.
1000
1001 It is equally easy to insert a new element by changing @sc{cdr}s:
1002
1003@example
1004@group
1005(setq x1 '(a b c))
1006 @result{} (a b c)
1007(setcdr x1 (cons 'd (cdr x1)))
1008 @result{} (d b c)
1009x1
1010 @result{} (a d b c)
1011@end group
1012@end example
1013
1014 Here is this result in box notation:
1015
1016@smallexample
1017@group
1018 -------------- ------------- -------------
1019| car | cdr | | car | cdr | | car | cdr |
1020| a | o | -->| b | o------->| c | nil |
1021| | | | | | | | | | |
1022 --------- | -- | ------------- -------------
1023 | |
1024 ----- --------
1025 | |
1026 | --------------- |
1027 | | car | cdr | |
1028 -->| d | o------
1029 | | |
1030 ---------------
1031@end group
1032@end smallexample
1033
1034@node Rearrangement
1035@subsection Functions that Rearrange Lists
1036@cindex rearrangement of lists
1037@cindex modification of lists
1038
1039 Here are some functions that rearrange lists ``destructively'' by
1040modifying the @sc{cdr}s of their component cons cells. We call these
1041functions ``destructive'' because they chew up the original lists passed
1042to them as arguments, relinking their cons cells to form a new list that
1043is the returned value.
1044
1045@ifnottex
1046 See @code{delq}, in @ref{Sets And Lists}, for another function
1047that modifies cons cells.
1048@end ifnottex
1049@iftex
1050 The function @code{delq} in the following section is another example
1051of destructive list manipulation.
1052@end iftex
1053
1054@defun nconc &rest lists
1055@cindex concatenating lists
1056@cindex joining lists
1057This function returns a list containing all the elements of @var{lists}.
1058Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
1059@emph{not} copied. Instead, the last @sc{cdr} of each of the
1060@var{lists} is changed to refer to the following list. The last of the
1061@var{lists} is not altered. For example:
1062
1063@example
1064@group
1065(setq x '(1 2 3))
1066 @result{} (1 2 3)
1067@end group
1068@group
1069(nconc x '(4 5))
1070 @result{} (1 2 3 4 5)
1071@end group
1072@group
1073x
1074 @result{} (1 2 3 4 5)
1075@end group
1076@end example
1077
1078 Since the last argument of @code{nconc} is not itself modified, it is
1079reasonable to use a constant list, such as @code{'(4 5)}, as in the
1080above example. For the same reason, the last argument need not be a
1081list:
1082
1083@example
1084@group
1085(setq x '(1 2 3))
1086 @result{} (1 2 3)
1087@end group
1088@group
1089(nconc x 'z)
1090 @result{} (1 2 3 . z)
1091@end group
1092@group
1093x
1094 @result{} (1 2 3 . z)
1095@end group
1096@end example
1097
1098However, the other arguments (all but the last) must be lists.
1099
1100A common pitfall is to use a quoted constant list as a non-last
1101argument to @code{nconc}. If you do this, your program will change
1102each time you run it! Here is what happens:
1103
1104@smallexample
1105@group
1106(defun add-foo (x) ; @r{We want this function to add}
1107 (nconc '(foo) x)) ; @r{@code{foo} to the front of its arg.}
1108@end group
1109
1110@group
1111(symbol-function 'add-foo)
1112 @result{} (lambda (x) (nconc (quote (foo)) x))
1113@end group
1114
1115@group
1116(setq xx (add-foo '(1 2))) ; @r{It seems to work.}
1117 @result{} (foo 1 2)
1118@end group
1119@group
1120(setq xy (add-foo '(3 4))) ; @r{What happened?}
1121 @result{} (foo 1 2 3 4)
1122@end group
1123@group
1124(eq xx xy)
1125 @result{} t
1126@end group
1127
1128@group
1129(symbol-function 'add-foo)
1130 @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1131@end group
1132@end smallexample
1133@end defun
1134
1135@defun nreverse list
1136@cindex reversing a list
1137 This function reverses the order of the elements of @var{list}.
1138Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1139the @sc{cdr}s in the cons cells forming the list. The cons cell that
1140used to be the last one in @var{list} becomes the first cons cell of the
1141value.
1142
1143 For example:
1144
1145@example
1146@group
1147(setq x '(a b c))
1148 @result{} (a b c)
1149@end group
1150@group
1151x
1152 @result{} (a b c)
1153(nreverse x)
1154 @result{} (c b a)
1155@end group
1156@group
1157;; @r{The cons cell that was first is now last.}
1158x
1159 @result{} (a)
1160@end group
1161@end example
1162
1163 To avoid confusion, we usually store the result of @code{nreverse}
1164back in the same variable which held the original list:
1165
1166@example
1167(setq x (nreverse x))
1168@end example
1169
1170 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1171presented graphically:
1172
1173@smallexample
1174@group
1175@r{Original list head:} @r{Reversed list:}
1176 ------------- ------------- ------------
1177| car | cdr | | car | cdr | | car | cdr |
1178| a | nil |<-- | b | o |<-- | c | o |
1179| | | | | | | | | | | | |
1180 ------------- | --------- | - | -------- | -
1181 | | | |
1182 ------------- ------------
1183@end group
1184@end smallexample
1185@end defun
1186
1187@defun sort list predicate
1188@cindex stable sort
1189@cindex sorting lists
1190This function sorts @var{list} stably, though destructively, and
1191returns the sorted list. It compares elements using @var{predicate}. A
1192stable sort is one in which elements with equal sort keys maintain their
1193relative order before and after the sort. Stability is important when
1194successive sorts are used to order elements according to different
1195criteria.
1196
1197The argument @var{predicate} must be a function that accepts two
1198arguments. It is called with two elements of @var{list}. To get an
1199increasing order sort, the @var{predicate} should return non-@code{nil} if the
1200first element is ``less than'' the second, or @code{nil} if not.
1201
1202The comparison function @var{predicate} must give reliable results for
1203any given pair of arguments, at least within a single call to
1204@code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
1205less than @var{b}, @var{b} must not be less than @var{a}. It must be
1206@dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1207is less than @var{c}, then @var{a} must be less than @var{c}. If you
1208use a comparison function which does not meet these requirements, the
1209result of @code{sort} is unpredictable.
1210
1211The destructive aspect of @code{sort} is that it rearranges the cons
1212cells forming @var{list} by changing @sc{cdr}s. A nondestructive sort
1213function would create new cons cells to store the elements in their
1214sorted order. If you wish to make a sorted copy without destroying the
1215original, copy it first with @code{copy-sequence} and then sort.
1216
1217Sorting does not change the @sc{car}s of the cons cells in @var{list};
1218the cons cell that originally contained the element @code{a} in
1219@var{list} still has @code{a} in its @sc{car} after sorting, but it now
1220appears in a different position in the list due to the change of
1221@sc{cdr}s. For example:
1222
1223@example
1224@group
1225(setq nums '(1 3 2 6 5 4 0))
1226 @result{} (1 3 2 6 5 4 0)
1227@end group
1228@group
1229(sort nums '<)
1230 @result{} (0 1 2 3 4 5 6)
1231@end group
1232@group
1233nums
1234 @result{} (1 2 3 4 5 6)
1235@end group
1236@end example
1237
1238@noindent
1239@strong{Warning}: Note that the list in @code{nums} no longer contains
12400; this is the same cons cell that it was before, but it is no longer
1241the first one in the list. Don't assume a variable that formerly held
1242the argument now holds the entire sorted list! Instead, save the result
1243of @code{sort} and use that. Most often we store the result back into
1244the variable that held the original list:
1245
1246@example
1247(setq nums (sort nums '<))
1248@end example
1249
1250@xref{Sorting}, for more functions that perform sorting.
1251See @code{documentation} in @ref{Accessing Documentation}, for a
1252useful example of @code{sort}.
1253@end defun
1254
1255@node Sets And Lists
1256@section Using Lists as Sets
1257@cindex lists as sets
1258@cindex sets
1259
1260 A list can represent an unordered mathematical set---simply consider a
1261value an element of a set if it appears in the list, and ignore the
1262order of the list. To form the union of two sets, use @code{append} (as
1263long as you don't mind having duplicate elements). You can remove
1264@code{equal} duplicates using @code{delete-dups}. Other useful
1265functions for sets include @code{memq} and @code{delq}, and their
1266@code{equal} versions, @code{member} and @code{delete}.
1267
1268@cindex CL note---lack @code{union}, @code{intersection}
1269@quotation
1270@b{Common Lisp note:} Common Lisp has functions @code{union} (which
bc8410af 1271avoids duplicate elements) and @code{intersection} for set operations.
b28c06e8 1272Although standard GNU Emacs Lisp does not have them, the @file{cl}
bc8410af 1273library provides versions. @inforef{Top, Overview, cl}.
b8d4c8d0
GM
1274@end quotation
1275
1276@defun memq object list
1277@cindex membership in a list
1278This function tests to see whether @var{object} is a member of
1279@var{list}. If it is, @code{memq} returns a list starting with the
1280first occurrence of @var{object}. Otherwise, it returns @code{nil}.
1281The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1282compare @var{object} against the elements of the list. For example:
1283
1284@example
1285@group
1286(memq 'b '(a b c b a))
1287 @result{} (b c b a)
1288@end group
1289@group
1290(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1291 @result{} nil
1292@end group
1293@end example
1294@end defun
1295
1296@defun delq object list
1297@cindex deleting list elements
1298This function destructively removes all elements @code{eq} to
1299@var{object} from @var{list}. The letter @samp{q} in @code{delq} says
1300that it uses @code{eq} to compare @var{object} against the elements of
1301the list, like @code{memq} and @code{remq}.
1302@end defun
1303
1304When @code{delq} deletes elements from the front of the list, it does so
1305simply by advancing down the list and returning a sublist that starts
1306after those elements:
1307
1308@example
1309@group
1310(delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1311@end group
1312@end example
1313
1314When an element to be deleted appears in the middle of the list,
1315removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1316
1317@example
1318@group
1319(setq sample-list '(a b c (4)))
1320 @result{} (a b c (4))
1321@end group
1322@group
1323(delq 'a sample-list)
1324 @result{} (b c (4))
1325@end group
1326@group
1327sample-list
1328 @result{} (a b c (4))
1329@end group
1330@group
1331(delq 'c sample-list)
1332 @result{} (a b (4))
1333@end group
1334@group
1335sample-list
1336 @result{} (a b (4))
1337@end group
1338@end example
1339
1340Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1341splice out the third element, but @code{(delq 'a sample-list)} does not
1342splice anything---it just returns a shorter list. Don't assume that a
1343variable which formerly held the argument @var{list} now has fewer
1344elements, or that it still holds the original list! Instead, save the
1345result of @code{delq} and use that. Most often we store the result back
1346into the variable that held the original list:
1347
1348@example
1349(setq flowers (delq 'rose flowers))
1350@end example
1351
1352In the following example, the @code{(4)} that @code{delq} attempts to match
1353and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1354
1355@example
1356@group
1357(delq '(4) sample-list)
1358 @result{} (a c (4))
1359@end group
049bcbcb 1360@end example
b8d4c8d0
GM
1361
1362If you want to delete elements that are @code{equal} to a given value,
1363use @code{delete} (see below).
b8d4c8d0
GM
1364
1365@defun remq object list
1366This function returns a copy of @var{list}, with all elements removed
1367which are @code{eq} to @var{object}. The letter @samp{q} in @code{remq}
1368says that it uses @code{eq} to compare @var{object} against the elements
1369of @code{list}.
1370
1371@example
1372@group
1373(setq sample-list '(a b c a b c))
1374 @result{} (a b c a b c)
1375@end group
1376@group
1377(remq 'a sample-list)
1378 @result{} (b c b c)
1379@end group
1380@group
1381sample-list
1382 @result{} (a b c a b c)
1383@end group
1384@end example
1385@end defun
1386
1387@defun memql object list
1388The function @code{memql} tests to see whether @var{object} is a member
1389of @var{list}, comparing members with @var{object} using @code{eql},
1390so floating point elements are compared by value.
1391If @var{object} is a member, @code{memql} returns a list starting with
1392its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1393
1394Compare this with @code{memq}:
1395
1396@example
1397@group
1398(memql 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are @code{eql}.}
1399 @result{} (1.2 1.3)
1400@end group
1401@group
1402(memq 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are not @code{eq}.}
1403 @result{} nil
1404@end group
1405@end example
1406@end defun
1407
1408The following three functions are like @code{memq}, @code{delq} and
1409@code{remq}, but use @code{equal} rather than @code{eq} to compare
1410elements. @xref{Equality Predicates}.
1411
1412@defun member object list
1413The function @code{member} tests to see whether @var{object} is a member
1414of @var{list}, comparing members with @var{object} using @code{equal}.
1415If @var{object} is a member, @code{member} returns a list starting with
1416its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1417
1418Compare this with @code{memq}:
1419
1420@example
1421@group
1422(member '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1423 @result{} ((2))
1424@end group
1425@group
1426(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1427 @result{} nil
1428@end group
1429@group
1430;; @r{Two strings with the same contents are @code{equal}.}
1431(member "foo" '("foo" "bar"))
1432 @result{} ("foo" "bar")
1433@end group
1434@end example
1435@end defun
1436
1437@defun delete object sequence
1438If @code{sequence} is a list, this function destructively removes all
1439elements @code{equal} to @var{object} from @var{sequence}. For lists,
1440@code{delete} is to @code{delq} as @code{member} is to @code{memq}: it
1441uses @code{equal} to compare elements with @var{object}, like
1442@code{member}; when it finds an element that matches, it cuts the
1443element out just as @code{delq} would.
1444
1445If @code{sequence} is a vector or string, @code{delete} returns a copy
1446of @code{sequence} with all elements @code{equal} to @code{object}
1447removed.
1448
1449For example:
1450
1451@example
1452@group
1453(setq l '((2) (1) (2)))
1454(delete '(2) l)
1455 @result{} ((1))
1456l
1457 @result{} ((2) (1))
1458;; @r{If you want to change @code{l} reliably,}
bf1af6c7 1459;; @r{write @code{(setq l (delete '(2) l))}.}
b8d4c8d0
GM
1460@end group
1461@group
1462(setq l '((2) (1) (2)))
1463(delete '(1) l)
1464 @result{} ((2) (2))
1465l
1466 @result{} ((2) (2))
1467;; @r{In this case, it makes no difference whether you set @code{l},}
1468;; @r{but you should do so for the sake of the other case.}
1469@end group
1470@group
1471(delete '(2) [(2) (1) (2)])
1472 @result{} [(1)]
1473@end group
1474@end example
1475@end defun
1476
1477@defun remove object sequence
1478This function is the non-destructive counterpart of @code{delete}. It
1479returns a copy of @code{sequence}, a list, vector, or string, with
1480elements @code{equal} to @code{object} removed. For example:
1481
1482@example
1483@group
1484(remove '(2) '((2) (1) (2)))
1485 @result{} ((1))
1486@end group
1487@group
1488(remove '(2) [(2) (1) (2)])
1489 @result{} [(1)]
1490@end group
1491@end example
1492@end defun
1493
1494@quotation
1495@b{Common Lisp note:} The functions @code{member}, @code{delete} and
1496@code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1497Lisp. The Common Lisp versions do not use @code{equal} to compare
1498elements.
1499@end quotation
1500
1501@defun member-ignore-case object list
1502This function is like @code{member}, except that @var{object} should
1503be a string and that it ignores differences in letter-case and text
1504representation: upper-case and lower-case letters are treated as
1505equal, and unibyte strings are converted to multibyte prior to
1506comparison.
1507@end defun
1508
1509@defun delete-dups list
1510This function destructively removes all @code{equal} duplicates from
1511@var{list}, stores the result in @var{list} and returns it. Of
1512several @code{equal} occurrences of an element in @var{list},
1513@code{delete-dups} keeps the first one.
1514@end defun
1515
1516 See also the function @code{add-to-list}, in @ref{List Variables},
1517for a way to add an element to a list stored in a variable and used as a
1518set.
1519
1520@node Association Lists
1521@section Association Lists
1522@cindex association list
1523@cindex alist
1524
1525 An @dfn{association list}, or @dfn{alist} for short, records a mapping
1526from keys to values. It is a list of cons cells called
1527@dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1528@sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1529is not related to the term ``key sequence''; it means a value used to
1530look up an item in a table. In this case, the table is the alist, and
1531the alist associations are the items.}
1532
1533 Here is an example of an alist. The key @code{pine} is associated with
1534the value @code{cones}; the key @code{oak} is associated with
1535@code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1536
1537@example
1538@group
1539((pine . cones)
1540 (oak . acorns)
1541 (maple . seeds))
1542@end group
1543@end example
1544
1545 Both the values and the keys in an alist may be any Lisp objects.
1546For example, in the following alist, the symbol @code{a} is
1547associated with the number @code{1}, and the string @code{"b"} is
1548associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1549the alist element:
1550
1551@example
1552((a . 1) ("b" 2 3))
1553@end example
1554
1555 Sometimes it is better to design an alist to store the associated
1556value in the @sc{car} of the @sc{cdr} of the element. Here is an
1557example of such an alist:
1558
1559@example
1560((rose red) (lily white) (buttercup yellow))
1561@end example
1562
1563@noindent
1564Here we regard @code{red} as the value associated with @code{rose}. One
1565advantage of this kind of alist is that you can store other related
1566information---even a list of other items---in the @sc{cdr} of the
1567@sc{cdr}. One disadvantage is that you cannot use @code{rassq} (see
1568below) to find the element containing a given value. When neither of
1569these considerations is important, the choice is a matter of taste, as
1570long as you are consistent about it for any given alist.
1571
1572 The same alist shown above could be regarded as having the
1573associated value in the @sc{cdr} of the element; the value associated
1574with @code{rose} would be the list @code{(red)}.
1575
1576 Association lists are often used to record information that you might
1577otherwise keep on a stack, since new associations may be added easily to
1578the front of the list. When searching an association list for an
1579association with a given key, the first one found is returned, if there
1580is more than one.
1581
1582 In Emacs Lisp, it is @emph{not} an error if an element of an
1583association list is not a cons cell. The alist search functions simply
1584ignore such elements. Many other versions of Lisp signal errors in such
1585cases.
1586
1587 Note that property lists are similar to association lists in several
1588respects. A property list behaves like an association list in which
1589each key can occur only once. @xref{Property Lists}, for a comparison
1590of property lists and association lists.
1591
1592@defun assoc key alist
1593This function returns the first association for @var{key} in
1594@var{alist}, comparing @var{key} against the alist elements using
1595@code{equal} (@pxref{Equality Predicates}). It returns @code{nil} if no
1596association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1597For example:
1598
1599@smallexample
1600(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1601 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1602(assoc 'oak trees)
1603 @result{} (oak . acorns)
1604(cdr (assoc 'oak trees))
1605 @result{} acorns
1606(assoc 'birch trees)
1607 @result{} nil
1608@end smallexample
1609
1610Here is another example, in which the keys and values are not symbols:
1611
1612@smallexample
1613(setq needles-per-cluster
1614 '((2 "Austrian Pine" "Red Pine")
1615 (3 "Pitch Pine")
1616 (5 "White Pine")))
1617
1618(cdr (assoc 3 needles-per-cluster))
1619 @result{} ("Pitch Pine")
1620(cdr (assoc 2 needles-per-cluster))
1621 @result{} ("Austrian Pine" "Red Pine")
1622@end smallexample
1623@end defun
1624
1625 The function @code{assoc-string} is much like @code{assoc} except
1626that it ignores certain differences between strings. @xref{Text
1627Comparison}.
1628
1629@defun rassoc value alist
1630This function returns the first association with value @var{value} in
1631@var{alist}. It returns @code{nil} if no association in @var{alist} has
1632a @sc{cdr} @code{equal} to @var{value}.
1633
1634@code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1635each @var{alist} association instead of the @sc{car}. You can think of
16152b76 1636this as ``reverse @code{assoc}'', finding the key for a given value.
b8d4c8d0
GM
1637@end defun
1638
1639@defun assq key alist
1640This function is like @code{assoc} in that it returns the first
1641association for @var{key} in @var{alist}, but it makes the comparison
1642using @code{eq} instead of @code{equal}. @code{assq} returns @code{nil}
1643if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1644This function is used more often than @code{assoc}, since @code{eq} is
1645faster than @code{equal} and most alists use symbols as keys.
1646@xref{Equality Predicates}.
1647
1648@smallexample
1649(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1650 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1651(assq 'pine trees)
1652 @result{} (pine . cones)
1653@end smallexample
1654
1655On the other hand, @code{assq} is not usually useful in alists where the
1656keys may not be symbols:
1657
1658@smallexample
1659(setq leaves
1660 '(("simple leaves" . oak)
1661 ("compound leaves" . horsechestnut)))
1662
1663(assq "simple leaves" leaves)
1664 @result{} nil
1665(assoc "simple leaves" leaves)
1666 @result{} ("simple leaves" . oak)
1667@end smallexample
1668@end defun
1669
1670@defun rassq value alist
1671This function returns the first association with value @var{value} in
1672@var{alist}. It returns @code{nil} if no association in @var{alist} has
1673a @sc{cdr} @code{eq} to @var{value}.
1674
1675@code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1676each @var{alist} association instead of the @sc{car}. You can think of
16152b76 1677this as ``reverse @code{assq}'', finding the key for a given value.
b8d4c8d0
GM
1678
1679For example:
1680
1681@smallexample
1682(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1683
1684(rassq 'acorns trees)
1685 @result{} (oak . acorns)
1686(rassq 'spores trees)
1687 @result{} nil
1688@end smallexample
1689
1690@code{rassq} cannot search for a value stored in the @sc{car}
1691of the @sc{cdr} of an element:
1692
1693@smallexample
1694(setq colors '((rose red) (lily white) (buttercup yellow)))
1695
1696(rassq 'white colors)
1697 @result{} nil
1698@end smallexample
1699
1700In this case, the @sc{cdr} of the association @code{(lily white)} is not
1701the symbol @code{white}, but rather the list @code{(white)}. This
1702becomes clearer if the association is written in dotted pair notation:
1703
1704@smallexample
1705(lily white) @equiv{} (lily . (white))
1706@end smallexample
1707@end defun
1708
1709@defun assoc-default key alist &optional test default
1710This function searches @var{alist} for a match for @var{key}. For each
1711element of @var{alist}, it compares the element (if it is an atom) or
1712the element's @sc{car} (if it is a cons) against @var{key}, by calling
1713@var{test} with two arguments: the element or its @sc{car}, and
1714@var{key}. The arguments are passed in that order so that you can get
1715useful results using @code{string-match} with an alist that contains
1716regular expressions (@pxref{Regexp Search}). If @var{test} is omitted
1717or @code{nil}, @code{equal} is used for comparison.
1718
1719If an alist element matches @var{key} by this criterion,
1720then @code{assoc-default} returns a value based on this element.
1721If the element is a cons, then the value is the element's @sc{cdr}.
1722Otherwise, the return value is @var{default}.
1723
1724If no alist element matches @var{key}, @code{assoc-default} returns
1725@code{nil}.
1726@end defun
1727
1728@defun copy-alist alist
1729@cindex copying alists
1730This function returns a two-level deep copy of @var{alist}: it creates a
1731new copy of each association, so that you can alter the associations of
1732the new alist without changing the old one.
1733
1734@smallexample
1735@group
1736(setq needles-per-cluster
1737 '((2 . ("Austrian Pine" "Red Pine"))
1738 (3 . ("Pitch Pine"))
1739@end group
1740 (5 . ("White Pine"))))
1741@result{}
1742((2 "Austrian Pine" "Red Pine")
1743 (3 "Pitch Pine")
1744 (5 "White Pine"))
1745
1746(setq copy (copy-alist needles-per-cluster))
1747@result{}
1748((2 "Austrian Pine" "Red Pine")
1749 (3 "Pitch Pine")
1750 (5 "White Pine"))
1751
1752(eq needles-per-cluster copy)
1753 @result{} nil
1754(equal needles-per-cluster copy)
1755 @result{} t
1756(eq (car needles-per-cluster) (car copy))
1757 @result{} nil
1758(cdr (car (cdr needles-per-cluster)))
1759 @result{} ("Pitch Pine")
1760@group
1761(eq (cdr (car (cdr needles-per-cluster)))
1762 (cdr (car (cdr copy))))
1763 @result{} t
1764@end group
1765@end smallexample
1766
1767 This example shows how @code{copy-alist} makes it possible to change
1768the associations of one copy without affecting the other:
1769
1770@smallexample
1771@group
1772(setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1773(cdr (assq 3 needles-per-cluster))
1774 @result{} ("Pitch Pine")
1775@end group
1776@end smallexample
1777@end defun
1778
1779@defun assq-delete-all key alist
1780This function deletes from @var{alist} all the elements whose @sc{car}
1781is @code{eq} to @var{key}, much as if you used @code{delq} to delete
1782each such element one by one. It returns the shortened alist, and
1783often modifies the original list structure of @var{alist}. For
1784correct results, use the return value of @code{assq-delete-all} rather
1785than looking at the saved value of @var{alist}.
1786
1787@example
1788(setq alist '((foo 1) (bar 2) (foo 3) (lose 4)))
1789 @result{} ((foo 1) (bar 2) (foo 3) (lose 4))
1790(assq-delete-all 'foo alist)
1791 @result{} ((bar 2) (lose 4))
1792alist
1793 @result{} ((foo 1) (bar 2) (lose 4))
1794@end example
1795@end defun
1796
1797@defun rassq-delete-all value alist
1798This function deletes from @var{alist} all the elements whose @sc{cdr}
1799is @code{eq} to @var{value}. It returns the shortened alist, and
1800often modifies the original list structure of @var{alist}.
1801@code{rassq-delete-all} is like @code{assq-delete-all} except that it
1802compares the @sc{cdr} of each @var{alist} association instead of the
1803@sc{car}.
1804@end defun