Merge from emacs-24; up to 2012-12-06T01:39:03Z!monnier@iro.umontreal.ca
[bpt/emacs.git] / doc / lispref / numbers.texi
CommitLineData
b8d4c8d0
GM
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
ab422c4d
PE
3@c Copyright (C) 1990-1995, 1998-1999, 2001-2013 Free Software
4@c Foundation, Inc.
b8d4c8d0 5@c See the file elisp.texi for copying conditions.
ecc6530d 6@node Numbers
b8d4c8d0
GM
7@chapter Numbers
8@cindex integers
9@cindex numbers
10
11 GNU Emacs supports two numeric data types: @dfn{integers} and
12@dfn{floating point numbers}. Integers are whole numbers such as
13@minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
14numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
152.71828. They can also be expressed in exponential notation: 1.5e2
16equals 150; in this example, @samp{e2} stands for ten to the second
17power, and that is multiplied by 1.5. Floating point values are not
18exact; they have a fixed, limited amount of precision.
19
20@menu
21* Integer Basics:: Representation and range of integers.
d24880de 22* Float Basics:: Representation and range of floating point.
b8d4c8d0
GM
23* Predicates on Numbers:: Testing for numbers.
24* Comparison of Numbers:: Equality and inequality predicates.
d24880de 25* Numeric Conversions:: Converting float to integer and vice versa.
b8d4c8d0
GM
26* Arithmetic Operations:: How to add, subtract, multiply and divide.
27* Rounding Operations:: Explicitly rounding floating point numbers.
28* Bitwise Operations:: Logical and, or, not, shifting.
29* Math Functions:: Trig, exponential and logarithmic functions.
30* Random Numbers:: Obtaining random integers, predictable or not.
31@end menu
32
33@node Integer Basics
b8d4c8d0
GM
34@section Integer Basics
35
36 The range of values for an integer depends on the machine. The
1ddd6622 37minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
b8d4c8d0 38@ifnottex
1ddd6622 39-2**29
b8d4c8d0
GM
40@end ifnottex
41@tex
1ddd6622 42@math{-2^{29}}
b8d4c8d0
GM
43@end tex
44to
45@ifnottex
f99f1641 462**29 @minus{} 1),
b8d4c8d0
GM
47@end ifnottex
48@tex
1ddd6622 49@math{2^{29}-1}),
b8d4c8d0 50@end tex
48de8b12
CY
51but many machines provide a wider range. Many examples in this
52chapter assume the minimum integer width of 30 bits.
b8d4c8d0
GM
53@cindex overflow
54
55 The Lisp reader reads an integer as a sequence of digits with optional
fed14fd7
PE
56initial sign and optional final period. An integer that is out of the
57Emacs range is treated as a floating-point number.
b8d4c8d0
GM
58
59@example
60 1 ; @r{The integer 1.}
61 1. ; @r{The integer 1.}
62+1 ; @r{Also the integer 1.}
63-1 ; @r{The integer @minus{}1.}
fed14fd7 64 1073741825 ; @r{The floating point number 1073741825.0.}
b8d4c8d0
GM
65 0 ; @r{The integer 0.}
66-0 ; @r{The integer 0.}
67@end example
68
69@cindex integers in specific radix
70@cindex radix for reading an integer
71@cindex base for reading an integer
72@cindex hex numbers
73@cindex octal numbers
74@cindex reading numbers in hex, octal, and binary
75 The syntax for integers in bases other than 10 uses @samp{#}
76followed by a letter that specifies the radix: @samp{b} for binary,
77@samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
78specify radix @var{radix}. Case is not significant for the letter
79that specifies the radix. Thus, @samp{#b@var{integer}} reads
80@var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
81@var{integer} in radix @var{radix}. Allowed values of @var{radix} run
82from 2 to 36. For example:
83
84@example
85#b101100 @result{} 44
86#o54 @result{} 44
87#x2c @result{} 44
88#24r1k @result{} 44
89@end example
90
91 To understand how various functions work on integers, especially the
92bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
93view the numbers in their binary form.
94
1ddd6622 95 In 30-bit binary, the decimal integer 5 looks like this:
b8d4c8d0
GM
96
97@example
001903b5 980000...000101 (30 bits total)
b8d4c8d0
GM
99@end example
100
101@noindent
001903b5
PE
102(The @samp{...} stands for enough bits to fill out a 30-bit word; in
103this case, @samp{...} stands for twenty 0 bits. Later examples also
104use the @samp{...} notation to make binary integers easier to read.)
b8d4c8d0
GM
105
106 The integer @minus{}1 looks like this:
107
108@example
001903b5 1091111...111111 (30 bits total)
b8d4c8d0
GM
110@end example
111
112@noindent
113@cindex two's complement
1ddd6622 114@minus{}1 is represented as 30 ones. (This is called @dfn{two's
b8d4c8d0
GM
115complement} notation.)
116
117 The negative integer, @minus{}5, is creating by subtracting 4 from
118@minus{}1. In binary, the decimal integer 4 is 100. Consequently,
119@minus{}5 looks like this:
120
121@example
001903b5 1221111...111011 (30 bits total)
b8d4c8d0
GM
123@end example
124
1ddd6622
GM
125 In this implementation, the largest 30-bit binary integer value is
126536,870,911 in decimal. In binary, it looks like this:
b8d4c8d0
GM
127
128@example
001903b5 1290111...111111 (30 bits total)
b8d4c8d0
GM
130@end example
131
132 Since the arithmetic functions do not check whether integers go
1ddd6622
GM
133outside their range, when you add 1 to 536,870,911, the value is the
134negative integer @minus{}536,870,912:
b8d4c8d0
GM
135
136@example
1ddd6622
GM
137(+ 1 536870911)
138 @result{} -536870912
001903b5 139 @result{} 1000...000000 (30 bits total)
b8d4c8d0
GM
140@end example
141
142 Many of the functions described in this chapter accept markers for
143arguments in place of numbers. (@xref{Markers}.) Since the actual
144arguments to such functions may be either numbers or markers, we often
145give these arguments the name @var{number-or-marker}. When the argument
146value is a marker, its position value is used and its buffer is ignored.
147
eddf142c
EZ
148@cindex largest Lisp integer number
149@cindex maximum Lisp integer number
b8d4c8d0
GM
150@defvar most-positive-fixnum
151The value of this variable is the largest integer that Emacs Lisp
152can handle.
153@end defvar
154
eddf142c
EZ
155@cindex smallest Lisp integer number
156@cindex minimum Lisp integer number
b8d4c8d0
GM
157@defvar most-negative-fixnum
158The value of this variable is the smallest integer that Emacs Lisp can
159handle. It is negative.
160@end defvar
161
48de8b12
CY
162 In Emacs Lisp, text characters are represented by integers. Any
163integer between zero and the value of @code{max-char}, inclusive, is
164considered to be valid as a character. @xref{String Basics}.
57e2db6d 165
b8d4c8d0
GM
166@node Float Basics
167@section Floating Point Basics
168
fead402d 169@cindex @acronym{IEEE} floating point
b8d4c8d0
GM
170 Floating point numbers are useful for representing numbers that are
171not integral. The precise range of floating point numbers is
172machine-specific; it is the same as the range of the C data type
fead402d 173@code{double} on the machine you are using. Emacs uses the
48de8b12
CY
174@acronym{IEEE} floating point standard, which is supported by all
175modern computers.
b8d4c8d0 176
fead402d 177 The read syntax for floating point numbers requires either a decimal
b8d4c8d0
GM
178point (with at least one digit following), an exponent, or both. For
179example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
180@samp{.15e4} are five ways of writing a floating point number whose
fead402d
CY
181value is 1500. They are all equivalent. You can also use a minus
182sign to write negative floating point numbers, as in @samp{-1.0}.
183
184 Emacs Lisp treats @code{-0.0} as equal to ordinary zero (with
185respect to @code{equal} and @code{=}), even though the two are
186distinguishable in the @acronym{IEEE} floating point standard.
b8d4c8d0 187
b8d4c8d0
GM
188@cindex positive infinity
189@cindex negative infinity
190@cindex infinity
191@cindex NaN
fead402d
CY
192 The @acronym{IEEE} floating point standard supports positive
193infinity and negative infinity as floating point values. It also
194provides for a class of values called NaN or ``not-a-number'';
195numerical functions return such values in cases where there is no
1df7defd 196correct answer. For example, @code{(/ 0.0 0.0)} returns a NaN@. (NaN
fead402d
CY
197values can also carry a sign, but for practical purposes there's no
198significant difference between different NaN values in Emacs Lisp.)
c990426a
PE
199
200When a function is documented to return a NaN, it returns an
201implementation-defined value when Emacs is running on one of the
202now-rare platforms that do not use @acronym{IEEE} floating point. For
203example, @code{(log -1.0)} typically returns a NaN, but on
204non-@acronym{IEEE} platforms it returns an implementation-defined
205value.
206
fead402d 207Here are the read syntaxes for these special floating point values:
b8d4c8d0
GM
208
209@table @asis
210@item positive infinity
211@samp{1.0e+INF}
212@item negative infinity
213@samp{-1.0e+INF}
fed14fd7 214@item Not-a-number
b8d4c8d0
GM
215@samp{0.0e+NaN} or @samp{-0.0e+NaN}.
216@end table
217
fead402d
CY
218@defun isnan number
219This predicate tests whether its argument is NaN, and returns @code{t}
220if so, @code{nil} otherwise. The argument must be a number.
221@end defun
222
223 The following functions are specialized for handling floating point
224numbers:
225
226@defun frexp x
227This function returns a cons cell @code{(@var{sig} . @var{exp})},
228where @var{sig} and @var{exp} are respectively the significand and
229exponent of the floating point number @var{x}:
230
231@smallexample
232@var{x} = @var{sig} * 2^@var{exp}
233@end smallexample
234
235@var{sig} is a floating point number between 0.5 (inclusive) and 1.0
236(exclusive). If @var{x} is zero, the return value is @code{(0 . 0)}.
237@end defun
b8d4c8d0 238
fead402d
CY
239@defun ldexp sig &optional exp
240This function returns a floating point number corresponding to the
241significand @var{sig} and exponent @var{exp}.
242@end defun
b8d4c8d0 243
fead402d
CY
244@defun copysign x1 x2
245This function copies the sign of @var{x2} to the value of @var{x1},
246and returns the result. @var{x1} and @var{x2} must be floating point
247numbers.
248@end defun
b8d4c8d0
GM
249
250@defun logb number
251This function returns the binary exponent of @var{number}. More
c990426a 252precisely, the value is the logarithm of |@var{number}| base 2, rounded
b8d4c8d0
GM
253down to an integer.
254
255@example
256(logb 10)
257 @result{} 3
258(logb 10.0e20)
259 @result{} 69
260@end example
261@end defun
262
263@node Predicates on Numbers
264@section Type Predicates for Numbers
265@cindex predicates for numbers
266
267 The functions in this section test for numbers, or for a specific
268type of number. The functions @code{integerp} and @code{floatp} can
269take any type of Lisp object as argument (they would not be of much
270use otherwise), but the @code{zerop} predicate requires a number as
271its argument. See also @code{integer-or-marker-p} and
272@code{number-or-marker-p}, in @ref{Predicates on Markers}.
273
274@defun floatp object
275This predicate tests whether its argument is a floating point
276number and returns @code{t} if so, @code{nil} otherwise.
b8d4c8d0
GM
277@end defun
278
279@defun integerp object
280This predicate tests whether its argument is an integer, and returns
281@code{t} if so, @code{nil} otherwise.
282@end defun
283
284@defun numberp object
285This predicate tests whether its argument is a number (either integer or
286floating point), and returns @code{t} if so, @code{nil} otherwise.
287@end defun
288
0f29fa41 289@defun natnump object
b8d4c8d0 290@cindex natural numbers
bccc0e40 291This predicate (whose name comes from the phrase ``natural number'')
0f29fa41
CY
292tests to see whether its argument is a nonnegative integer, and
293returns @code{t} if so, @code{nil} otherwise. 0 is considered
294non-negative.
b8d4c8d0 295
0f29fa41
CY
296@findex wholenump number
297This is a synonym for @code{natnump}.
b8d4c8d0
GM
298@end defun
299
300@defun zerop number
301This predicate tests whether its argument is zero, and returns @code{t}
302if so, @code{nil} otherwise. The argument must be a number.
303
304@code{(zerop x)} is equivalent to @code{(= x 0)}.
305@end defun
306
307@node Comparison of Numbers
308@section Comparison of Numbers
309@cindex number comparison
310@cindex comparing numbers
311
312 To test numbers for numerical equality, you should normally use
313@code{=}, not @code{eq}. There can be many distinct floating point
314number objects with the same numeric value. If you use @code{eq} to
315compare them, then you test whether two values are the same
316@emph{object}. By contrast, @code{=} compares only the numeric values
317of the objects.
318
48de8b12 319 In Emacs Lisp, each integer value is a unique Lisp object.
b8d4c8d0 320Therefore, @code{eq} is equivalent to @code{=} where integers are
48de8b12
CY
321concerned. It is sometimes convenient to use @code{eq} for comparing
322an unknown value with an integer, because @code{eq} does not report an
323error if the unknown value is not a number---it accepts arguments of
324any type. By contrast, @code{=} signals an error if the arguments are
325not numbers or markers. However, it is better programming practice to
326use @code{=} if you can, even for comparing integers.
327
328 Sometimes it is useful to compare numbers with @code{equal}, which
b8d4c8d0
GM
329treats two numbers as equal if they have the same data type (both
330integers, or both floating point) and the same value. By contrast,
331@code{=} can treat an integer and a floating point number as equal.
332@xref{Equality Predicates}.
333
334 There is another wrinkle: because floating point arithmetic is not
335exact, it is often a bad idea to check for equality of two floating
336point values. Usually it is better to test for approximate equality.
337Here's a function to do this:
338
339@example
340(defvar fuzz-factor 1.0e-6)
341(defun approx-equal (x y)
342 (or (and (= x 0) (= y 0))
343 (< (/ (abs (- x y))
344 (max (abs x) (abs y)))
345 fuzz-factor)))
346@end example
347
348@cindex CL note---integers vrs @code{eq}
349@quotation
350@b{Common Lisp note:} Comparing numbers in Common Lisp always requires
351@code{=} because Common Lisp implements multi-word integers, and two
352distinct integer objects can have the same numeric value. Emacs Lisp
353can have just one integer object for any given value because it has a
354limited range of integer values.
355@end quotation
356
357@defun = number-or-marker1 number-or-marker2
358This function tests whether its arguments are numerically equal, and
359returns @code{t} if so, @code{nil} otherwise.
360@end defun
361
362@defun eql value1 value2
363This function acts like @code{eq} except when both arguments are
364numbers. It compares numbers by type and numeric value, so that
365@code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
366@code{(eql 1 1)} both return @code{t}.
367@end defun
368
369@defun /= number-or-marker1 number-or-marker2
370This function tests whether its arguments are numerically equal, and
371returns @code{t} if they are not, and @code{nil} if they are.
372@end defun
373
374@defun < number-or-marker1 number-or-marker2
375This function tests whether its first argument is strictly less than
376its second argument. It returns @code{t} if so, @code{nil} otherwise.
377@end defun
378
379@defun <= number-or-marker1 number-or-marker2
380This function tests whether its first argument is less than or equal
381to its second argument. It returns @code{t} if so, @code{nil}
382otherwise.
383@end defun
384
385@defun > number-or-marker1 number-or-marker2
386This function tests whether its first argument is strictly greater
387than its second argument. It returns @code{t} if so, @code{nil}
388otherwise.
389@end defun
390
391@defun >= number-or-marker1 number-or-marker2
392This function tests whether its first argument is greater than or
393equal to its second argument. It returns @code{t} if so, @code{nil}
394otherwise.
395@end defun
396
397@defun max number-or-marker &rest numbers-or-markers
398This function returns the largest of its arguments.
399If any of the arguments is floating-point, the value is returned
400as floating point, even if it was given as an integer.
401
402@example
403(max 20)
404 @result{} 20
405(max 1 2.5)
406 @result{} 2.5
407(max 1 3 2.5)
408 @result{} 3.0
409@end example
410@end defun
411
412@defun min number-or-marker &rest numbers-or-markers
413This function returns the smallest of its arguments.
414If any of the arguments is floating-point, the value is returned
415as floating point, even if it was given as an integer.
416
417@example
418(min -4 1)
419 @result{} -4
420@end example
421@end defun
422
423@defun abs number
424This function returns the absolute value of @var{number}.
425@end defun
426
427@node Numeric Conversions
428@section Numeric Conversions
429@cindex rounding in conversions
430@cindex number conversions
431@cindex converting numbers
432
433To convert an integer to floating point, use the function @code{float}.
434
435@defun float number
436This returns @var{number} converted to floating point.
437If @var{number} is already a floating point number, @code{float} returns
438it unchanged.
439@end defun
440
48de8b12
CY
441 There are four functions to convert floating point numbers to
442integers; they differ in how they round. All accept an argument
443@var{number} and an optional argument @var{divisor}. Both arguments
444may be integers or floating point numbers. @var{divisor} may also be
b8d4c8d0
GM
445@code{nil}. If @var{divisor} is @code{nil} or omitted, these
446functions convert @var{number} to an integer, or return it unchanged
447if it already is an integer. If @var{divisor} is non-@code{nil}, they
448divide @var{number} by @var{divisor} and convert the result to an
48de8b12
CY
449integer. integer. If @var{divisor} is zero (whether integer or
450floating-point), Emacs signals an @code{arith-error} error.
b8d4c8d0
GM
451
452@defun truncate number &optional divisor
453This returns @var{number}, converted to an integer by rounding towards
454zero.
455
456@example
457(truncate 1.2)
458 @result{} 1
459(truncate 1.7)
460 @result{} 1
461(truncate -1.2)
462 @result{} -1
463(truncate -1.7)
464 @result{} -1
465@end example
466@end defun
467
468@defun floor number &optional divisor
469This returns @var{number}, converted to an integer by rounding downward
470(towards negative infinity).
471
472If @var{divisor} is specified, this uses the kind of division
473operation that corresponds to @code{mod}, rounding downward.
474
475@example
476(floor 1.2)
477 @result{} 1
478(floor 1.7)
479 @result{} 1
480(floor -1.2)
481 @result{} -2
482(floor -1.7)
483 @result{} -2
484(floor 5.99 3)
485 @result{} 1
486@end example
487@end defun
488
489@defun ceiling number &optional divisor
490This returns @var{number}, converted to an integer by rounding upward
491(towards positive infinity).
492
493@example
494(ceiling 1.2)
495 @result{} 2
496(ceiling 1.7)
497 @result{} 2
498(ceiling -1.2)
499 @result{} -1
500(ceiling -1.7)
501 @result{} -1
502@end example
503@end defun
504
505@defun round number &optional divisor
506This returns @var{number}, converted to an integer by rounding towards the
507nearest integer. Rounding a value equidistant between two integers
508may choose the integer closer to zero, or it may prefer an even integer,
509depending on your machine.
510
511@example
512(round 1.2)
513 @result{} 1
514(round 1.7)
515 @result{} 2
516(round -1.2)
517 @result{} -1
518(round -1.7)
519 @result{} -2
520@end example
521@end defun
522
523@node Arithmetic Operations
524@section Arithmetic Operations
525@cindex arithmetic operations
526
48de8b12
CY
527 Emacs Lisp provides the traditional four arithmetic operations
528(addition, subtraction, multiplication, and division), as well as
529remainder and modulus functions, and functions to add or subtract 1.
530Except for @code{%}, each of these functions accepts both integer and
531floating point arguments, and returns a floating point number if any
532argument is a floating point number.
b8d4c8d0 533
c717b326 534 It is important to note that in Emacs Lisp, arithmetic functions
001903b5
PE
535do not check for overflow. Thus @code{(1+ 536870911)} may evaluate to
536@minus{}536870912, depending on your hardware.
b8d4c8d0
GM
537
538@defun 1+ number-or-marker
539This function returns @var{number-or-marker} plus 1.
540For example,
541
542@example
543(setq foo 4)
544 @result{} 4
545(1+ foo)
546 @result{} 5
547@end example
548
549This function is not analogous to the C operator @code{++}---it does not
550increment a variable. It just computes a sum. Thus, if we continue,
551
552@example
553foo
554 @result{} 4
555@end example
556
557If you want to increment the variable, you must use @code{setq},
558like this:
559
560@example
561(setq foo (1+ foo))
562 @result{} 5
563@end example
564@end defun
565
566@defun 1- number-or-marker
567This function returns @var{number-or-marker} minus 1.
568@end defun
569
570@defun + &rest numbers-or-markers
571This function adds its arguments together. When given no arguments,
572@code{+} returns 0.
573
574@example
575(+)
576 @result{} 0
577(+ 1)
578 @result{} 1
579(+ 1 2 3 4)
580 @result{} 10
581@end example
582@end defun
583
584@defun - &optional number-or-marker &rest more-numbers-or-markers
585The @code{-} function serves two purposes: negation and subtraction.
586When @code{-} has a single argument, the value is the negative of the
587argument. When there are multiple arguments, @code{-} subtracts each of
588the @var{more-numbers-or-markers} from @var{number-or-marker},
589cumulatively. If there are no arguments, the result is 0.
590
591@example
592(- 10 1 2 3 4)
593 @result{} 0
594(- 10)
595 @result{} -10
596(-)
597 @result{} 0
598@end example
599@end defun
600
601@defun * &rest numbers-or-markers
602This function multiplies its arguments together, and returns the
603product. When given no arguments, @code{*} returns 1.
604
605@example
606(*)
607 @result{} 1
608(* 1)
609 @result{} 1
610(* 1 2 3 4)
611 @result{} 24
612@end example
613@end defun
614
615@defun / dividend divisor &rest divisors
616This function divides @var{dividend} by @var{divisor} and returns the
617quotient. If there are additional arguments @var{divisors}, then it
618divides @var{dividend} by each divisor in turn. Each argument may be a
619number or a marker.
620
48de8b12
CY
621If all the arguments are integers, the result is an integer, obtained
622by rounding the quotient towards zero after each division.
623(Hypothetically, some machines may have different rounding behavior
624for negative arguments, because @code{/} is implemented using the C
625division operator, which permits machine-dependent rounding; but this
626does not happen in practice.)
b8d4c8d0
GM
627
628@example
629@group
630(/ 6 2)
631 @result{} 3
632@end group
48de8b12 633@group
b8d4c8d0
GM
634(/ 5 2)
635 @result{} 2
48de8b12
CY
636@end group
637@group
b8d4c8d0
GM
638(/ 5.0 2)
639 @result{} 2.5
48de8b12
CY
640@end group
641@group
b8d4c8d0
GM
642(/ 5 2.0)
643 @result{} 2.5
48de8b12
CY
644@end group
645@group
b8d4c8d0
GM
646(/ 5.0 2.0)
647 @result{} 2.5
48de8b12
CY
648@end group
649@group
b8d4c8d0
GM
650(/ 25 3 2)
651 @result{} 4
48de8b12 652@end group
b8d4c8d0
GM
653@group
654(/ -17 6)
48de8b12 655 @result{} -2
b8d4c8d0
GM
656@end group
657@end example
48de8b12
CY
658
659@cindex @code{arith-error} in division
660If you divide an integer by the integer 0, Emacs signals an
661@code{arith-error} error (@pxref{Errors}). If you divide a floating
662point number by 0, or divide by the floating point number 0.0, the
663result is either positive or negative infinity (@pxref{Float Basics}).
b8d4c8d0
GM
664@end defun
665
666@defun % dividend divisor
667@cindex remainder
668This function returns the integer remainder after division of @var{dividend}
669by @var{divisor}. The arguments must be integers or markers.
670
48de8b12
CY
671For any two integers @var{dividend} and @var{divisor},
672
673@example
674@group
675(+ (% @var{dividend} @var{divisor})
676 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
677@end group
678@end example
b8d4c8d0 679
48de8b12
CY
680@noindent
681always equals @var{dividend}. If @var{divisor} is zero, Emacs signals
682an @code{arith-error} error.
b8d4c8d0
GM
683
684@example
685(% 9 4)
686 @result{} 1
687(% -9 4)
688 @result{} -1
689(% 9 -4)
690 @result{} 1
691(% -9 -4)
692 @result{} -1
693@end example
b8d4c8d0
GM
694@end defun
695
696@defun mod dividend divisor
697@cindex modulus
698This function returns the value of @var{dividend} modulo @var{divisor};
699in other words, the remainder after division of @var{dividend}
700by @var{divisor}, but with the same sign as @var{divisor}.
701The arguments must be numbers or markers.
702
48de8b12
CY
703Unlike @code{%}, @code{mod} permits floating point arguments; it
704rounds the quotient downward (towards minus infinity) to an integer,
705and uses that quotient to compute the remainder.
b8d4c8d0 706
c990426a
PE
707If @var{divisor} is zero, @code{mod} signals an @code{arith-error}
708error if both arguments are integers, and returns a NaN otherwise.
b8d4c8d0
GM
709
710@example
711@group
712(mod 9 4)
713 @result{} 1
714@end group
715@group
716(mod -9 4)
717 @result{} 3
718@end group
719@group
720(mod 9 -4)
721 @result{} -3
722@end group
723@group
724(mod -9 -4)
725 @result{} -1
726@end group
727@group
728(mod 5.5 2.5)
729 @result{} .5
730@end group
731@end example
732
733For any two numbers @var{dividend} and @var{divisor},
734
735@example
736@group
737(+ (mod @var{dividend} @var{divisor})
738 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
739@end group
740@end example
741
742@noindent
743always equals @var{dividend}, subject to rounding error if either
744argument is floating point. For @code{floor}, see @ref{Numeric
745Conversions}.
746@end defun
747
748@node Rounding Operations
749@section Rounding Operations
750@cindex rounding without conversion
751
752The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
753@code{ftruncate} take a floating point argument and return a floating
754point result whose value is a nearby integer. @code{ffloor} returns the
755nearest integer below; @code{fceiling}, the nearest integer above;
756@code{ftruncate}, the nearest integer in the direction towards zero;
757@code{fround}, the nearest integer.
758
759@defun ffloor float
760This function rounds @var{float} to the next lower integral value, and
761returns that value as a floating point number.
762@end defun
763
764@defun fceiling float
765This function rounds @var{float} to the next higher integral value, and
766returns that value as a floating point number.
767@end defun
768
769@defun ftruncate float
770This function rounds @var{float} towards zero to an integral value, and
771returns that value as a floating point number.
772@end defun
773
774@defun fround float
775This function rounds @var{float} to the nearest integral value,
776and returns that value as a floating point number.
777@end defun
778
779@node Bitwise Operations
780@section Bitwise Operations on Integers
781@cindex bitwise arithmetic
782@cindex logical arithmetic
783
784 In a computer, an integer is represented as a binary number, a
785sequence of @dfn{bits} (digits which are either zero or one). A bitwise
786operation acts on the individual bits of such a sequence. For example,
787@dfn{shifting} moves the whole sequence left or right one or more places,
16152b76 788reproducing the same pattern ``moved over''.
b8d4c8d0
GM
789
790 The bitwise operations in Emacs Lisp apply only to integers.
791
792@defun lsh integer1 count
793@cindex logical shift
794@code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
795bits in @var{integer1} to the left @var{count} places, or to the right
796if @var{count} is negative, bringing zeros into the vacated bits. If
797@var{count} is negative, @code{lsh} shifts zeros into the leftmost
798(most-significant) bit, producing a positive result even if
799@var{integer1} is negative. Contrast this with @code{ash}, below.
800
801Here are two examples of @code{lsh}, shifting a pattern of bits one
802place to the left. We show only the low-order eight bits of the binary
803pattern; the rest are all zero.
804
805@example
806@group
807(lsh 5 1)
808 @result{} 10
809;; @r{Decimal 5 becomes decimal 10.}
81000000101 @result{} 00001010
811
812(lsh 7 1)
813 @result{} 14
814;; @r{Decimal 7 becomes decimal 14.}
81500000111 @result{} 00001110
816@end group
817@end example
818
819@noindent
820As the examples illustrate, shifting the pattern of bits one place to
821the left produces a number that is twice the value of the previous
822number.
823
824Shifting a pattern of bits two places to the left produces results
825like this (with 8-bit binary numbers):
826
827@example
828@group
829(lsh 3 2)
830 @result{} 12
831;; @r{Decimal 3 becomes decimal 12.}
83200000011 @result{} 00001100
833@end group
834@end example
835
836On the other hand, shifting one place to the right looks like this:
837
838@example
839@group
840(lsh 6 -1)
841 @result{} 3
842;; @r{Decimal 6 becomes decimal 3.}
84300000110 @result{} 00000011
844@end group
845
846@group
847(lsh 5 -1)
848 @result{} 2
849;; @r{Decimal 5 becomes decimal 2.}
85000000101 @result{} 00000010
851@end group
852@end example
853
854@noindent
855As the example illustrates, shifting one place to the right divides the
856value of a positive integer by two, rounding downward.
857
c717b326 858The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
b8d4c8d0
GM
859not check for overflow, so shifting left can discard significant bits
860and change the sign of the number. For example, left shifting
001903b5 861536,870,911 produces @minus{}2 in the 30-bit implementation:
b8d4c8d0
GM
862
863@example
1ddd6622 864(lsh 536870911 1) ; @r{left shift}
b8d4c8d0
GM
865 @result{} -2
866@end example
867
001903b5 868In binary, the argument looks like this:
b8d4c8d0
GM
869
870@example
871@group
1ddd6622 872;; @r{Decimal 536,870,911}
001903b5 8730111...111111 (30 bits total)
b8d4c8d0
GM
874@end group
875@end example
876
877@noindent
878which becomes the following when left shifted:
879
880@example
881@group
882;; @r{Decimal @minus{}2}
001903b5 8831111...111110 (30 bits total)
b8d4c8d0
GM
884@end group
885@end example
886@end defun
887
888@defun ash integer1 count
889@cindex arithmetic shift
890@code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
891to the left @var{count} places, or to the right if @var{count}
892is negative.
893
894@code{ash} gives the same results as @code{lsh} except when
895@var{integer1} and @var{count} are both negative. In that case,
896@code{ash} puts ones in the empty bit positions on the left, while
897@code{lsh} puts zeros in those bit positions.
898
899Thus, with @code{ash}, shifting the pattern of bits one place to the right
900looks like this:
901
902@example
903@group
904(ash -6 -1) @result{} -3
905;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
001903b5 9061111...111010 (30 bits total)
b8d4c8d0 907 @result{}
001903b5 9081111...111101 (30 bits total)
b8d4c8d0
GM
909@end group
910@end example
911
912In contrast, shifting the pattern of bits one place to the right with
913@code{lsh} looks like this:
914
915@example
916@group
1ddd6622
GM
917(lsh -6 -1) @result{} 536870909
918;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
001903b5 9191111...111010 (30 bits total)
b8d4c8d0 920 @result{}
001903b5 9210111...111101 (30 bits total)
b8d4c8d0
GM
922@end group
923@end example
924
925Here are other examples:
926
927@c !!! Check if lined up in smallbook format! XDVI shows problem
928@c with smallbook but not with regular book! --rjc 16mar92
929@smallexample
930@group
001903b5 931 ; @r{ 30-bit binary values}
b8d4c8d0 932
be14b9ab
PE
933(lsh 5 2) ; 5 = @r{0000...000101}
934 @result{} 20 ; = @r{0000...010100}
b8d4c8d0
GM
935@end group
936@group
937(ash 5 2)
938 @result{} 20
be14b9ab
PE
939(lsh -5 2) ; -5 = @r{1111...111011}
940 @result{} -20 ; = @r{1111...101100}
b8d4c8d0
GM
941(ash -5 2)
942 @result{} -20
943@end group
944@group
be14b9ab
PE
945(lsh 5 -2) ; 5 = @r{0000...000101}
946 @result{} 1 ; = @r{0000...000001}
b8d4c8d0
GM
947@end group
948@group
949(ash 5 -2)
950 @result{} 1
951@end group
952@group
be14b9ab 953(lsh -5 -2) ; -5 = @r{1111...111011}
001903b5 954 @result{} 268435454
be14b9ab 955 ; = @r{0011...111110}
b8d4c8d0
GM
956@end group
957@group
be14b9ab
PE
958(ash -5 -2) ; -5 = @r{1111...111011}
959 @result{} -2 ; = @r{1111...111110}
b8d4c8d0
GM
960@end group
961@end smallexample
962@end defun
963
964@defun logand &rest ints-or-markers
965This function returns the ``logical and'' of the arguments: the
966@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
967set in all the arguments. (``Set'' means that the value of the bit is 1
968rather than 0.)
969
970For example, using 4-bit binary numbers, the ``logical and'' of 13 and
97112 is 12: 1101 combined with 1100 produces 1100.
972In both the binary numbers, the leftmost two bits are set (i.e., they
973are 1's), so the leftmost two bits of the returned value are set.
974However, for the rightmost two bits, each is zero in at least one of
975the arguments, so the rightmost two bits of the returned value are 0's.
976
977@noindent
978Therefore,
979
980@example
981@group
982(logand 13 12)
983 @result{} 12
984@end group
985@end example
986
987If @code{logand} is not passed any argument, it returns a value of
988@minus{}1. This number is an identity element for @code{logand}
989because its binary representation consists entirely of ones. If
990@code{logand} is passed just one argument, it returns that argument.
991
992@smallexample
993@group
001903b5 994 ; @r{ 30-bit binary values}
b8d4c8d0 995
be14b9ab
PE
996(logand 14 13) ; 14 = @r{0000...001110}
997 ; 13 = @r{0000...001101}
998 @result{} 12 ; 12 = @r{0000...001100}
b8d4c8d0
GM
999@end group
1000
1001@group
be14b9ab
PE
1002(logand 14 13 4) ; 14 = @r{0000...001110}
1003 ; 13 = @r{0000...001101}
1004 ; 4 = @r{0000...000100}
1005 @result{} 4 ; 4 = @r{0000...000100}
b8d4c8d0
GM
1006@end group
1007
1008@group
1009(logand)
be14b9ab 1010 @result{} -1 ; -1 = @r{1111...111111}
b8d4c8d0
GM
1011@end group
1012@end smallexample
1013@end defun
1014
1015@defun logior &rest ints-or-markers
1016This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
1017is set in the result if, and only if, the @var{n}th bit is set in at least
1018one of the arguments. If there are no arguments, the result is zero,
1019which is an identity element for this operation. If @code{logior} is
1020passed just one argument, it returns that argument.
1021
1022@smallexample
1023@group
001903b5 1024 ; @r{ 30-bit binary values}
b8d4c8d0 1025
be14b9ab
PE
1026(logior 12 5) ; 12 = @r{0000...001100}
1027 ; 5 = @r{0000...000101}
1028 @result{} 13 ; 13 = @r{0000...001101}
b8d4c8d0
GM
1029@end group
1030
1031@group
be14b9ab
PE
1032(logior 12 5 7) ; 12 = @r{0000...001100}
1033 ; 5 = @r{0000...000101}
1034 ; 7 = @r{0000...000111}
1035 @result{} 15 ; 15 = @r{0000...001111}
b8d4c8d0
GM
1036@end group
1037@end smallexample
1038@end defun
1039
1040@defun logxor &rest ints-or-markers
1041This function returns the ``exclusive or'' of its arguments: the
1042@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1043set in an odd number of the arguments. If there are no arguments, the
1044result is 0, which is an identity element for this operation. If
1045@code{logxor} is passed just one argument, it returns that argument.
1046
1047@smallexample
1048@group
001903b5 1049 ; @r{ 30-bit binary values}
b8d4c8d0 1050
be14b9ab
PE
1051(logxor 12 5) ; 12 = @r{0000...001100}
1052 ; 5 = @r{0000...000101}
1053 @result{} 9 ; 9 = @r{0000...001001}
b8d4c8d0
GM
1054@end group
1055
1056@group
be14b9ab
PE
1057(logxor 12 5 7) ; 12 = @r{0000...001100}
1058 ; 5 = @r{0000...000101}
1059 ; 7 = @r{0000...000111}
1060 @result{} 14 ; 14 = @r{0000...001110}
b8d4c8d0
GM
1061@end group
1062@end smallexample
1063@end defun
1064
1065@defun lognot integer
1066This function returns the logical complement of its argument: the @var{n}th
1067bit is one in the result if, and only if, the @var{n}th bit is zero in
1068@var{integer}, and vice-versa.
1069
1070@example
1071(lognot 5)
1072 @result{} -6
001903b5 1073;; 5 = @r{0000...000101} (30 bits total)
b8d4c8d0 1074;; @r{becomes}
001903b5 1075;; -6 = @r{1111...111010} (30 bits total)
b8d4c8d0
GM
1076@end example
1077@end defun
1078
1079@node Math Functions
1080@section Standard Mathematical Functions
1081@cindex transcendental functions
1082@cindex mathematical functions
1083@cindex floating-point functions
1084
1085 These mathematical functions allow integers as well as floating point
1086numbers as arguments.
1087
1088@defun sin arg
1089@defunx cos arg
1090@defunx tan arg
48de8b12
CY
1091These are the basic trigonometric functions, with argument @var{arg}
1092measured in radians.
b8d4c8d0
GM
1093@end defun
1094
1095@defun asin arg
1096The value of @code{(asin @var{arg})} is a number between
1097@ifnottex
1098@minus{}pi/2
1099@end ifnottex
1100@tex
1101@math{-\pi/2}
1102@end tex
1103and
1104@ifnottex
1105pi/2
1106@end ifnottex
1107@tex
1108@math{\pi/2}
1109@end tex
c990426a
PE
1110(inclusive) whose sine is @var{arg}. If @var{arg} is out of range
1111(outside [@minus{}1, 1]), @code{asin} returns a NaN.
b8d4c8d0
GM
1112@end defun
1113
1114@defun acos arg
1115The value of @code{(acos @var{arg})} is a number between 0 and
1116@ifnottex
1117pi
1118@end ifnottex
1119@tex
1120@math{\pi}
1121@end tex
c990426a
PE
1122(inclusive) whose cosine is @var{arg}. If @var{arg} is out of range
1123(outside [@minus{}1, 1]), @code{acos} returns a NaN.
b8d4c8d0
GM
1124@end defun
1125
1126@defun atan y &optional x
1127The value of @code{(atan @var{y})} is a number between
1128@ifnottex
1129@minus{}pi/2
1130@end ifnottex
1131@tex
1132@math{-\pi/2}
1133@end tex
1134and
1135@ifnottex
1136pi/2
1137@end ifnottex
1138@tex
1139@math{\pi/2}
1140@end tex
1141(exclusive) whose tangent is @var{y}. If the optional second
1142argument @var{x} is given, the value of @code{(atan y x)} is the
1143angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1144@code{X} axis.
1145@end defun
1146
1147@defun exp arg
fead402d
CY
1148This is the exponential function; it returns @math{e} to the power
1149@var{arg}.
b8d4c8d0
GM
1150@end defun
1151
1152@defun log arg &optional base
fead402d
CY
1153This function returns the logarithm of @var{arg}, with base
1154@var{base}. If you don't specify @var{base}, the natural base
c990426a
PE
1155@math{e} is used. If @var{arg} or @var{base} is negative, @code{log}
1156returns a NaN.
b8d4c8d0
GM
1157@end defun
1158
b8d4c8d0 1159@defun log10 arg
c990426a
PE
1160This function returns the logarithm of @var{arg}, with base 10:
1161@code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}.
b8d4c8d0
GM
1162@end defun
1163
1164@defun expt x y
1165This function returns @var{x} raised to power @var{y}. If both
c717b326
PE
1166arguments are integers and @var{y} is positive, the result is an
1167integer; in this case, overflow causes truncation, so watch out.
c990426a
PE
1168If @var{x} is a finite negative number and @var{y} is a finite
1169non-integer, @code{expt} returns a NaN.
b8d4c8d0
GM
1170@end defun
1171
1172@defun sqrt arg
1173This returns the square root of @var{arg}. If @var{arg} is negative,
c990426a 1174@code{sqrt} returns a NaN.
b8d4c8d0
GM
1175@end defun
1176
fead402d
CY
1177In addition, Emacs defines the following common mathematical
1178constants:
1179
1180@defvar float-e
1181The mathematical constant @math{e} (2.71828@dots{}).
1182@end defvar
1183
1184@defvar float-pi
1185The mathematical constant @math{pi} (3.14159@dots{}).
1186@end defvar
1187
b8d4c8d0
GM
1188@node Random Numbers
1189@section Random Numbers
1190@cindex random numbers
1191
48de8b12
CY
1192 A deterministic computer program cannot generate true random
1193numbers. For most purposes, @dfn{pseudo-random numbers} suffice. A
1194series of pseudo-random numbers is generated in a deterministic
1195fashion. The numbers are not truly random, but they have certain
1196properties that mimic a random series. For example, all possible
1197values occur equally often in a pseudo-random series.
b8d4c8d0 1198
48de8b12
CY
1199 Pseudo-random numbers are generated from a ``seed''. Starting from
1200any given seed, the @code{random} function always generates the same
1201sequence of numbers. By default, Emacs initializes the random seed at
1202startup, in such a way that the sequence of values of @code{random}
1203(with overwhelming likelihood) differs in each Emacs run.
0e23ef9d 1204
48de8b12 1205 Sometimes you want the random number sequence to be repeatable. For
0e23ef9d
PE
1206example, when debugging a program whose behavior depends on the random
1207number sequence, it is helpful to get the same behavior in each
1208program run. To make the sequence repeat, execute @code{(random "")}.
1209This sets the seed to a constant value for your particular Emacs
1210executable (though it may differ for other Emacs builds). You can use
1211other strings to choose various seed values.
b8d4c8d0
GM
1212
1213@defun random &optional limit
1214This function returns a pseudo-random integer. Repeated calls return a
1215series of pseudo-random integers.
1216
1217If @var{limit} is a positive integer, the value is chosen to be
48de8b12 1218nonnegative and less than @var{limit}. Otherwise, the value might be
1df7defd 1219any integer representable in Lisp, i.e., an integer between
48de8b12
CY
1220@code{most-negative-fixnum} and @code{most-positive-fixnum}
1221(@pxref{Integer Basics}).
b8d4c8d0
GM
1222
1223If @var{limit} is @code{t}, it means to choose a new seed based on the
1224current time of day and on Emacs's process @acronym{ID} number.
b8d4c8d0 1225
0e23ef9d
PE
1226If @var{limit} is a string, it means to choose a new seed based on the
1227string's contents.
1228
b8d4c8d0 1229@end defun