(print): Print internal types too, for debugging.
[bpt/emacs.git] / src / .gdbinit
CommitLineData
a6ffc6a2
JB
1# Set up something to print out s-expressions.
2define pr
36fa5981 3set debug_print ($)
a6ffc6a2
JB
4echo \n
5end
a6ffc6a2
JB
6document pr
7Print the emacs s-expression which is $.
8Works only when an inferior emacs is executing.
9end
10
ec558adc
JB
11# Set this to the same thing as the DATA_SEG_BITS macro in your
12# machine-description files.
13set $data_seg_bits = 0
14
45c18993
JB
15define mips
16set $data_seg_bits = 0x10000000
17end
18document mips
19Set up the xfoo macros to deal with the MIPS processor.
20Specifically, this sets $data_seg_bits to the right thing.
21end
22
a6ffc6a2 23define xtype
3fe8bda5
RS
24output (enum Lisp_Type) (($ >> 28) & 0x7)
25echo \n
26output ((($ >> 28) & 0x7) == Lisp_Misc ? (enum Lisp_Misc_Type) (((struct Lisp_Free *) (($ & 0x0fffffff) | $data_seg_bits))->type) : (($ >> 28) & 0x7) == Lisp_Vectorlike ? ($size = ((struct Lisp_Vector *) (($ & 0x0fffffff) | $data_seg_bits))->size, (enum pvec_type) (($size & PVEC_FLAG) ? $size & PVEC_TYPE_MASK : 0)) : 0)
ef15f270 27echo \n
a6ffc6a2 28end
e065a56e 29document xtype
ba1e23bf 30Print the type of $, assuming it is an Emacs Lisp value.
3fe8bda5
RS
31If the first type printed is Lisp_Vector or Lisp_Misc,
32the second line gives the more precise type.
33Otherwise the second line doesn't mean anything.
34end
35
36define xvectype
37set $size = ((struct Lisp_Vector *) (($ & 0x0fffffff) | $data_seg_bits))->size
38output (enum pvec_type) (($size & PVEC_FLAG) ? $size & PVEC_TYPE_MASK : 0)
39echo \n
40end
41document xvectype
42Print the vector subtype of $, assuming it is a vector or pseudovector.
43end
44
45define xmisctype
46output (enum Lisp_Misc_Type) (((struct Lisp_Free *) (($ & 0x0fffffff) | $data_seg_bits))->type)
47echo \n
48end
49document xmisctype
50Print the specific type of $, assuming it is some misc type.
e065a56e 51end
a6ffc6a2
JB
52
53define xint
dcda44dd 54print (($ & 0x0fffffff) << 4) >> 4
a6ffc6a2 55end
e065a56e 56document xint
ba1e23bf 57Print $, assuming it is an Emacs Lisp integer. This gets the sign right.
e065a56e 58end
a6ffc6a2
JB
59
60define xptr
3fe8bda5 61print (void *) (($ & 0x0fffffff) | $data_seg_bits)
a6ffc6a2 62end
e065a56e 63document xptr
ba1e23bf 64Print the pointer portion of $, assuming it is an Emacs Lisp value.
e065a56e 65end
a6ffc6a2
JB
66
67define xwindow
3fe8bda5 68print (struct window *) (($ & 0x0fffffff) | $data_seg_bits)
ef15f270 69printf "%dx%d+%d+%d\n", $->width, $->height, $->left, $->top
a6ffc6a2 70end
e065a56e 71document xwindow
ba1e23bf 72Print $ as a window pointer, assuming it is an Emacs Lisp window value.
ef15f270 73Print the window's position as "WIDTHxHEIGHT+LEFT+TOP".
e065a56e 74end
a6ffc6a2
JB
75
76define xmarker
3fe8bda5 77print (struct Lisp_Marker *) (($ & 0x0fffffff) | $data_seg_bits)
a6ffc6a2 78end
e065a56e 79document xmarker
ba1e23bf 80Print $ as a marker pointer, assuming it is an Emacs Lisp marker value.
e065a56e 81end
a6ffc6a2
JB
82
83define xbuffer
3fe8bda5
RS
84print (struct buffer *) (($ & 0x0fffffff) | $data_seg_bits)
85output &((struct Lisp_String *) ((($->name) & 0x0fffffff) | $data_seg_bits))->data
ef15f270 86echo \n
a6ffc6a2 87end
e065a56e 88document xbuffer
ba1e23bf 89Set $ as a buffer pointer, assuming it is an Emacs Lisp buffer value.
daa37602 90Print the name of the buffer.
e065a56e 91end
a6ffc6a2
JB
92
93define xsymbol
3fe8bda5 94print (struct Lisp_Symbol *) ((((int) $) & 0x0fffffff) | $data_seg_bits)
ef15f270
JB
95output &$->name->data
96echo \n
a6ffc6a2 97end
e065a56e
JB
98document xsymbol
99Print the name and address of the symbol $.
ba1e23bf 100This command assumes that $ is an Emacs Lisp symbol value.
e065a56e 101end
a6ffc6a2
JB
102
103define xstring
3fe8bda5 104print (struct Lisp_String *) (($ & 0x0fffffff) | $data_seg_bits)
4ea0847a 105output ($->size > 1000) ? 0 : ($->data[0])@($->size)
ef15f270 106echo \n
a6ffc6a2 107end
a6ffc6a2 108document xstring
e065a56e 109Print the contents and address of the string $.
ba1e23bf 110This command assumes that $ is an Emacs Lisp string value.
a6ffc6a2
JB
111end
112
113define xvector
3fe8bda5 114print (struct Lisp_Vector *) (($ & 0x0fffffff) | $data_seg_bits)
4ea0847a 115output ($->size > 50) ? 0 : ($->contents[0])@($->size)
ef15f270 116echo \n
a6ffc6a2 117end
a6ffc6a2 118document xvector
e065a56e 119Print the contents and address of the vector $.
ba1e23bf 120This command assumes that $ is an Emacs Lisp vector value.
a6ffc6a2
JB
121end
122
ec558adc 123define xframe
3fe8bda5 124print (struct frame *) (($ & 0x0fffffff) | $data_seg_bits)
a6ffc6a2 125end
ec558adc 126document xframe
ba1e23bf 127Print $ as a frame pointer, assuming it is an Emacs Lisp frame value.
e065a56e 128end
a6ffc6a2
JB
129
130define xcons
3fe8bda5 131print (struct Lisp_Cons *) (($ & 0x0fffffff) | $data_seg_bits)
cac29370 132output *$
ef15f270 133echo \n
a6ffc6a2 134end
e065a56e 135document xcons
ba1e23bf 136Print the contents of $, assuming it is an Emacs Lisp cons.
e065a56e 137end
a6ffc6a2
JB
138
139define xcar
6a044d86 140print ((($ >> 28) & 0xf) == Lisp_Cons ? ((struct Lisp_Cons *) (($ & 0x0fffffff) | $data_seg_bits))->car : 0)
a6ffc6a2 141end
e065a56e 142document xcar
ba1e23bf 143Print the car of $, assuming it is an Emacs Lisp pair.
e065a56e 144end
a6ffc6a2
JB
145
146define xcdr
6a044d86 147print ((($ >> 28) & 0xf) == Lisp_Cons ? ((struct Lisp_Cons *) (($ & 0x0fffffff) | $data_seg_bits))->cdr : 0)
a6ffc6a2 148end
e065a56e 149document xcdr
ba1e23bf 150Print the cdr of $, assuming it is an Emacs Lisp pair.
e065a56e 151end
a6ffc6a2 152
ec558adc 153define xsubr
3fe8bda5 154print (struct Lisp_Subr *) (($ & 0x0fffffff) | $data_seg_bits)
ec558adc
JB
155output *$
156echo \n
157end
158document xsubr
159Print the address of the subr which the Lisp_Object $ points to.
160end
161
8dd926ca 162define xprocess
3fe8bda5 163print (struct Lisp_Process *) (($ & 0x0fffffff) | $data_seg_bits)
8dd926ca
JB
164output *$
165echo \n
166end
167document xprocess
168Print the address of the struct Lisp_process which the Lisp_Object $ points to.
169end
170
df86e57e 171define xfloat
3fe8bda5 172print ((struct Lisp_Float *) (($ & 0x0fffffff) | $data_seg_bits))->data
df86e57e
JB
173end
174document xfloat
175Print $ assuming it is a lisp floating-point number.
176end
177
b2367490 178define xscrollbar
3fe8bda5 179print (struct scrollbar *) (($ & 0x0fffffff) | $data_seg_bits)
b2367490
JB
180output *$
181echo \n
182end
dec5f4e3 183document xscrollbar
b2367490
JB
184Print $ as a scrollbar pointer.
185end
186
e065a56e 187set print pretty on
df86e57e 188set print sevenbit-strings
a6ffc6a2 189
e5d77022 190show environment DISPLAY
6f5d1a4f 191show environment TERM
6f5d1a4f 192set args -geometry 80x40+0+0
e5d77022 193
a6ffc6a2 194# Don't let abort actually run, as it will make
7f692070 195# stdio stop working and therefore the `pr' command above as well.
a6ffc6a2
JB
196break abort
197
198# If we are running in synchronous mode, we want a chance to look around
199# before Emacs exits. Perhaps we should put the break somewhere else
200# instead...
998ee976
RS
201break x_error_quitter
202
a6ffc6a2 203