(read_minibuf): GCPRO things.
[bpt/emacs.git] / src / search.c
CommitLineData
ca1d1d23 1/* String search routines for GNU Emacs.
3a22ee35 2 Copyright (C) 1985, 1986, 1987, 1993, 1994 Free Software Foundation, Inc.
ca1d1d23
JB
3
4This file is part of GNU Emacs.
5
6GNU Emacs is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
18160b98 21#include <config.h>
ca1d1d23
JB
22#include "lisp.h"
23#include "syntax.h"
24#include "buffer.h"
9169c321 25#include "region-cache.h"
ca1d1d23 26#include "commands.h"
9ac0d9e0 27#include "blockinput.h"
4746118a 28
ca1d1d23
JB
29#include <sys/types.h>
30#include "regex.h"
31
487282dc 32#define REGEXP_CACHE_SIZE 5
ca1d1d23 33
487282dc
KH
34/* If the regexp is non-nil, then the buffer contains the compiled form
35 of that regexp, suitable for searching. */
36struct regexp_cache {
37 struct regexp_cache *next;
38 Lisp_Object regexp;
39 struct re_pattern_buffer buf;
40 char fastmap[0400];
b819a390
RS
41 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
42 char posix;
487282dc 43};
ca1d1d23 44
487282dc
KH
45/* The instances of that struct. */
46struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
ca1d1d23 47
487282dc
KH
48/* The head of the linked list; points to the most recently used buffer. */
49struct regexp_cache *searchbuf_head;
ca1d1d23 50
ca1d1d23 51
4746118a
JB
52/* Every call to re_match, etc., must pass &search_regs as the regs
53 argument unless you can show it is unnecessary (i.e., if re_match
54 is certainly going to be called again before region-around-match
55 can be called).
56
57 Since the registers are now dynamically allocated, we need to make
58 sure not to refer to the Nth register before checking that it has
1113d9db
JB
59 been allocated by checking search_regs.num_regs.
60
61 The regex code keeps track of whether it has allocated the search
487282dc
KH
62 buffer using bits in the re_pattern_buffer. This means that whenever
63 you compile a new pattern, it completely forgets whether it has
1113d9db
JB
64 allocated any registers, and will allocate new registers the next
65 time you call a searching or matching function. Therefore, we need
66 to call re_set_registers after compiling a new pattern or after
67 setting the match registers, so that the regex functions will be
68 able to free or re-allocate it properly. */
ca1d1d23
JB
69static struct re_registers search_regs;
70
daa37602
JB
71/* The buffer in which the last search was performed, or
72 Qt if the last search was done in a string;
73 Qnil if no searching has been done yet. */
74static Lisp_Object last_thing_searched;
ca1d1d23
JB
75
76/* error condition signalled when regexp compile_pattern fails */
77
78Lisp_Object Qinvalid_regexp;
79
ca325161 80static void set_search_regs ();
044f81f1 81static void save_search_regs ();
ca325161 82
b819a390
RS
83static int search_buffer ();
84
ca1d1d23
JB
85static void
86matcher_overflow ()
87{
88 error ("Stack overflow in regexp matcher");
89}
90
91#ifdef __STDC__
92#define CONST const
93#else
94#define CONST
95#endif
96
b819a390
RS
97/* Compile a regexp and signal a Lisp error if anything goes wrong.
98 PATTERN is the pattern to compile.
99 CP is the place to put the result.
100 TRANSLATE is a translation table for ignoring case, or NULL for none.
101 REGP is the structure that says where to store the "register"
102 values that will result from matching this pattern.
103 If it is 0, we should compile the pattern not to record any
104 subexpression bounds.
105 POSIX is nonzero if we want full backtracking (POSIX style)
106 for this pattern. 0 means backtrack only enough to get a valid match. */
ca1d1d23 107
487282dc 108static void
b819a390 109compile_pattern_1 (cp, pattern, translate, regp, posix)
487282dc 110 struct regexp_cache *cp;
ca1d1d23 111 Lisp_Object pattern;
ca1d1d23 112 char *translate;
487282dc 113 struct re_registers *regp;
b819a390 114 int posix;
ca1d1d23
JB
115{
116 CONST char *val;
b819a390 117 reg_syntax_t old;
ca1d1d23 118
487282dc
KH
119 cp->regexp = Qnil;
120 cp->buf.translate = translate;
b819a390 121 cp->posix = posix;
9ac0d9e0 122 BLOCK_INPUT;
b819a390
RS
123 old = re_set_syntax (RE_SYNTAX_EMACS
124 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
b90d9e80 125 val = (CONST char *) re_compile_pattern ((char *) XSTRING (pattern)->data,
487282dc 126 XSTRING (pattern)->size, &cp->buf);
b819a390 127 re_set_syntax (old);
9ac0d9e0 128 UNBLOCK_INPUT;
ca1d1d23 129 if (val)
487282dc 130 Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
1113d9db 131
487282dc 132 cp->regexp = Fcopy_sequence (pattern);
487282dc
KH
133}
134
135/* Compile a regexp if necessary, but first check to see if there's one in
b819a390
RS
136 the cache.
137 PATTERN is the pattern to compile.
138 TRANSLATE is a translation table for ignoring case, or NULL for none.
139 REGP is the structure that says where to store the "register"
140 values that will result from matching this pattern.
141 If it is 0, we should compile the pattern not to record any
142 subexpression bounds.
143 POSIX is nonzero if we want full backtracking (POSIX style)
144 for this pattern. 0 means backtrack only enough to get a valid match. */
487282dc
KH
145
146struct re_pattern_buffer *
b819a390 147compile_pattern (pattern, regp, translate, posix)
487282dc
KH
148 Lisp_Object pattern;
149 struct re_registers *regp;
150 char *translate;
b819a390 151 int posix;
487282dc
KH
152{
153 struct regexp_cache *cp, **cpp;
154
155 for (cpp = &searchbuf_head; ; cpp = &cp->next)
156 {
157 cp = *cpp;
158 if (!NILP (Fstring_equal (cp->regexp, pattern))
b819a390
RS
159 && cp->buf.translate == translate
160 && cp->posix == posix)
487282dc
KH
161 break;
162
163 /* If we're at the end of the cache, compile into the last cell. */
164 if (cp->next == 0)
165 {
b819a390 166 compile_pattern_1 (cp, pattern, translate, regp, posix);
487282dc
KH
167 break;
168 }
169 }
170
171 /* When we get here, cp (aka *cpp) contains the compiled pattern,
172 either because we found it in the cache or because we just compiled it.
173 Move it to the front of the queue to mark it as most recently used. */
174 *cpp = cp->next;
175 cp->next = searchbuf_head;
176 searchbuf_head = cp;
1113d9db 177
6639708c
RS
178 /* Advise the searching functions about the space we have allocated
179 for register data. */
180 if (regp)
181 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
182
487282dc 183 return &cp->buf;
ca1d1d23
JB
184}
185
186/* Error condition used for failing searches */
187Lisp_Object Qsearch_failed;
188
189Lisp_Object
190signal_failure (arg)
191 Lisp_Object arg;
192{
193 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
194 return Qnil;
195}
196\f
b819a390
RS
197static Lisp_Object
198looking_at_1 (string, posix)
ca1d1d23 199 Lisp_Object string;
b819a390 200 int posix;
ca1d1d23
JB
201{
202 Lisp_Object val;
203 unsigned char *p1, *p2;
204 int s1, s2;
205 register int i;
487282dc 206 struct re_pattern_buffer *bufp;
ca1d1d23 207
7074fde6
FP
208 if (running_asynch_code)
209 save_search_regs ();
210
ca1d1d23 211 CHECK_STRING (string, 0);
487282dc
KH
212 bufp = compile_pattern (string, &search_regs,
213 (!NILP (current_buffer->case_fold_search)
b819a390
RS
214 ? DOWNCASE_TABLE : 0),
215 posix);
ca1d1d23
JB
216
217 immediate_quit = 1;
218 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
219
220 /* Get pointers and sizes of the two strings
221 that make up the visible portion of the buffer. */
222
223 p1 = BEGV_ADDR;
224 s1 = GPT - BEGV;
225 p2 = GAP_END_ADDR;
226 s2 = ZV - GPT;
227 if (s1 < 0)
228 {
229 p2 = p1;
230 s2 = ZV - BEGV;
231 s1 = 0;
232 }
233 if (s2 < 0)
234 {
235 s1 = ZV - BEGV;
236 s2 = 0;
237 }
238
487282dc 239 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
ca1d1d23
JB
240 point - BEGV, &search_regs,
241 ZV - BEGV);
242 if (i == -2)
243 matcher_overflow ();
244
245 val = (0 <= i ? Qt : Qnil);
4746118a 246 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
247 if (search_regs.start[i] >= 0)
248 {
249 search_regs.start[i] += BEGV;
250 search_regs.end[i] += BEGV;
251 }
a3668d92 252 XSETBUFFER (last_thing_searched, current_buffer);
ca1d1d23
JB
253 immediate_quit = 0;
254 return val;
255}
256
b819a390
RS
257DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
258 "Return t if text after point matches regular expression PAT.\n\
259This function modifies the match data that `match-beginning',\n\
260`match-end' and `match-data' access; save and restore the match\n\
261data if you want to preserve them.")
262 (string)
263 Lisp_Object string;
264{
265 return looking_at_1 (string, 0);
266}
267
268DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
269 "Return t if text after point matches regular expression PAT.\n\
270Find the longest match, in accord with Posix regular expression rules.\n\
271This function modifies the match data that `match-beginning',\n\
272`match-end' and `match-data' access; save and restore the match\n\
273data if you want to preserve them.")
274 (string)
275 Lisp_Object string;
276{
277 return looking_at_1 (string, 1);
278}
279\f
280static Lisp_Object
281string_match_1 (regexp, string, start, posix)
ca1d1d23 282 Lisp_Object regexp, string, start;
b819a390 283 int posix;
ca1d1d23
JB
284{
285 int val;
286 int s;
487282dc 287 struct re_pattern_buffer *bufp;
ca1d1d23 288
7074fde6
FP
289 if (running_asynch_code)
290 save_search_regs ();
291
ca1d1d23
JB
292 CHECK_STRING (regexp, 0);
293 CHECK_STRING (string, 1);
294
295 if (NILP (start))
296 s = 0;
297 else
298 {
299 int len = XSTRING (string)->size;
300
301 CHECK_NUMBER (start, 2);
302 s = XINT (start);
303 if (s < 0 && -s <= len)
26faf9f4 304 s = len + s;
ca1d1d23
JB
305 else if (0 > s || s > len)
306 args_out_of_range (string, start);
307 }
308
487282dc
KH
309 bufp = compile_pattern (regexp, &search_regs,
310 (!NILP (current_buffer->case_fold_search)
b819a390
RS
311 ? DOWNCASE_TABLE : 0),
312 0);
ca1d1d23 313 immediate_quit = 1;
487282dc 314 val = re_search (bufp, (char *) XSTRING (string)->data,
ca1d1d23
JB
315 XSTRING (string)->size, s, XSTRING (string)->size - s,
316 &search_regs);
317 immediate_quit = 0;
daa37602 318 last_thing_searched = Qt;
ca1d1d23
JB
319 if (val == -2)
320 matcher_overflow ();
321 if (val < 0) return Qnil;
322 return make_number (val);
323}
e59a8453 324
b819a390
RS
325DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
326 "Return index of start of first match for REGEXP in STRING, or nil.\n\
327If third arg START is non-nil, start search at that index in STRING.\n\
328For index of first char beyond the match, do (match-end 0).\n\
329`match-end' and `match-beginning' also give indices of substrings\n\
330matched by parenthesis constructs in the pattern.")
331 (regexp, string, start)
332 Lisp_Object regexp, string, start;
333{
334 return string_match_1 (regexp, string, start, 0);
335}
336
337DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
338 "Return index of start of first match for REGEXP in STRING, or nil.\n\
339Find the longest match, in accord with Posix regular expression rules.\n\
340If third arg START is non-nil, start search at that index in STRING.\n\
341For index of first char beyond the match, do (match-end 0).\n\
342`match-end' and `match-beginning' also give indices of substrings\n\
343matched by parenthesis constructs in the pattern.")
344 (regexp, string, start)
345 Lisp_Object regexp, string, start;
346{
347 return string_match_1 (regexp, string, start, 1);
348}
349
e59a8453
RS
350/* Match REGEXP against STRING, searching all of STRING,
351 and return the index of the match, or negative on failure.
352 This does not clobber the match data. */
353
354int
355fast_string_match (regexp, string)
356 Lisp_Object regexp, string;
357{
358 int val;
487282dc 359 struct re_pattern_buffer *bufp;
e59a8453 360
b819a390 361 bufp = compile_pattern (regexp, 0, 0, 0);
e59a8453 362 immediate_quit = 1;
487282dc 363 val = re_search (bufp, (char *) XSTRING (string)->data,
e59a8453
RS
364 XSTRING (string)->size, 0, XSTRING (string)->size,
365 0);
366 immediate_quit = 0;
367 return val;
368}
ca1d1d23 369\f
9169c321
JB
370/* max and min. */
371
372static int
373max (a, b)
374 int a, b;
375{
376 return ((a > b) ? a : b);
377}
378
379static int
380min (a, b)
381 int a, b;
382{
383 return ((a < b) ? a : b);
384}
385
386\f
387/* The newline cache: remembering which sections of text have no newlines. */
388
389/* If the user has requested newline caching, make sure it's on.
390 Otherwise, make sure it's off.
391 This is our cheezy way of associating an action with the change of
392 state of a buffer-local variable. */
393static void
394newline_cache_on_off (buf)
395 struct buffer *buf;
396{
397 if (NILP (buf->cache_long_line_scans))
398 {
399 /* It should be off. */
400 if (buf->newline_cache)
401 {
402 free_region_cache (buf->newline_cache);
403 buf->newline_cache = 0;
404 }
405 }
406 else
407 {
408 /* It should be on. */
409 if (buf->newline_cache == 0)
410 buf->newline_cache = new_region_cache ();
411 }
412}
413
414\f
415/* Search for COUNT instances of the character TARGET between START and END.
416
417 If COUNT is positive, search forwards; END must be >= START.
418 If COUNT is negative, search backwards for the -COUNTth instance;
419 END must be <= START.
420 If COUNT is zero, do anything you please; run rogue, for all I care.
421
422 If END is zero, use BEGV or ZV instead, as appropriate for the
423 direction indicated by COUNT.
ffd56f97
JB
424
425 If we find COUNT instances, set *SHORTAGE to zero, and return the
5bfe95c9
RS
426 position after the COUNTth match. Note that for reverse motion
427 this is not the same as the usual convention for Emacs motion commands.
ffd56f97 428
9169c321
JB
429 If we don't find COUNT instances before reaching END, set *SHORTAGE
430 to the number of TARGETs left unfound, and return END.
ffd56f97 431
087a5f81
RS
432 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
433 except when inside redisplay. */
434
9169c321
JB
435scan_buffer (target, start, end, count, shortage, allow_quit)
436 register int target;
437 int start, end;
438 int count;
439 int *shortage;
087a5f81 440 int allow_quit;
ca1d1d23 441{
9169c321
JB
442 struct region_cache *newline_cache;
443 int direction;
ffd56f97 444
9169c321
JB
445 if (count > 0)
446 {
447 direction = 1;
448 if (! end) end = ZV;
449 }
450 else
451 {
452 direction = -1;
453 if (! end) end = BEGV;
454 }
ffd56f97 455
9169c321
JB
456 newline_cache_on_off (current_buffer);
457 newline_cache = current_buffer->newline_cache;
ca1d1d23
JB
458
459 if (shortage != 0)
460 *shortage = 0;
461
087a5f81 462 immediate_quit = allow_quit;
ca1d1d23 463
ffd56f97 464 if (count > 0)
9169c321 465 while (start != end)
ca1d1d23 466 {
9169c321
JB
467 /* Our innermost scanning loop is very simple; it doesn't know
468 about gaps, buffer ends, or the newline cache. ceiling is
469 the position of the last character before the next such
470 obstacle --- the last character the dumb search loop should
471 examine. */
472 register int ceiling = end - 1;
473
474 /* If we're looking for a newline, consult the newline cache
475 to see where we can avoid some scanning. */
476 if (target == '\n' && newline_cache)
477 {
478 int next_change;
479 immediate_quit = 0;
480 while (region_cache_forward
481 (current_buffer, newline_cache, start, &next_change))
482 start = next_change;
cbe0db0d 483 immediate_quit = allow_quit;
9169c321
JB
484
485 /* start should never be after end. */
486 if (start >= end)
487 start = end - 1;
488
489 /* Now the text after start is an unknown region, and
490 next_change is the position of the next known region. */
491 ceiling = min (next_change - 1, ceiling);
492 }
493
494 /* The dumb loop can only scan text stored in contiguous
495 bytes. BUFFER_CEILING_OF returns the last character
496 position that is contiguous, so the ceiling is the
497 position after that. */
498 ceiling = min (BUFFER_CEILING_OF (start), ceiling);
499
500 {
501 /* The termination address of the dumb loop. */
502 register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling) + 1;
503 register unsigned char *cursor = &FETCH_CHAR (start);
504 unsigned char *base = cursor;
505
506 while (cursor < ceiling_addr)
507 {
508 unsigned char *scan_start = cursor;
509
510 /* The dumb loop. */
511 while (*cursor != target && ++cursor < ceiling_addr)
512 ;
513
514 /* If we're looking for newlines, cache the fact that
515 the region from start to cursor is free of them. */
516 if (target == '\n' && newline_cache)
517 know_region_cache (current_buffer, newline_cache,
518 start + scan_start - base,
519 start + cursor - base);
520
521 /* Did we find the target character? */
522 if (cursor < ceiling_addr)
523 {
524 if (--count == 0)
525 {
526 immediate_quit = 0;
527 return (start + cursor - base + 1);
528 }
529 cursor++;
530 }
531 }
532
533 start += cursor - base;
534 }
ca1d1d23
JB
535 }
536 else
9169c321
JB
537 while (start > end)
538 {
539 /* The last character to check before the next obstacle. */
540 register int ceiling = end;
541
542 /* Consult the newline cache, if appropriate. */
543 if (target == '\n' && newline_cache)
544 {
545 int next_change;
546 immediate_quit = 0;
547 while (region_cache_backward
548 (current_buffer, newline_cache, start, &next_change))
549 start = next_change;
cbe0db0d 550 immediate_quit = allow_quit;
9169c321
JB
551
552 /* Start should never be at or before end. */
553 if (start <= end)
554 start = end + 1;
555
556 /* Now the text before start is an unknown region, and
557 next_change is the position of the next known region. */
558 ceiling = max (next_change, ceiling);
559 }
560
561 /* Stop scanning before the gap. */
562 ceiling = max (BUFFER_FLOOR_OF (start - 1), ceiling);
563
564 {
565 /* The termination address of the dumb loop. */
566 register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling);
567 register unsigned char *cursor = &FETCH_CHAR (start - 1);
568 unsigned char *base = cursor;
569
570 while (cursor >= ceiling_addr)
571 {
572 unsigned char *scan_start = cursor;
573
574 while (*cursor != target && --cursor >= ceiling_addr)
575 ;
576
577 /* If we're looking for newlines, cache the fact that
578 the region from after the cursor to start is free of them. */
579 if (target == '\n' && newline_cache)
580 know_region_cache (current_buffer, newline_cache,
581 start + cursor - base,
582 start + scan_start - base);
583
584 /* Did we find the target character? */
585 if (cursor >= ceiling_addr)
586 {
587 if (++count >= 0)
588 {
589 immediate_quit = 0;
590 return (start + cursor - base);
591 }
592 cursor--;
593 }
594 }
595
596 start += cursor - base;
597 }
598 }
599
ca1d1d23
JB
600 immediate_quit = 0;
601 if (shortage != 0)
ffd56f97 602 *shortage = count * direction;
9169c321 603 return start;
ca1d1d23
JB
604}
605
63fa018d
RS
606int
607find_next_newline_no_quit (from, cnt)
608 register int from, cnt;
609{
9169c321 610 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
63fa018d
RS
611}
612
ca1d1d23
JB
613int
614find_next_newline (from, cnt)
615 register int from, cnt;
616{
9169c321
JB
617 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 1);
618}
619
620
621/* Like find_next_newline, but returns position before the newline,
622 not after, and only search up to TO. This isn't just
623 find_next_newline (...)-1, because you might hit TO. */
624int
625find_before_next_newline (from, to, cnt)
cbe0db0d 626 int from, to, cnt;
9169c321
JB
627{
628 int shortage;
629 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
630
631 if (shortage == 0)
632 pos--;
633
634 return pos;
ca1d1d23
JB
635}
636\f
c1dc99a1
JB
637Lisp_Object skip_chars ();
638
ca1d1d23 639DEFUN ("skip-chars-forward", Fskip_chars_forward, Sskip_chars_forward, 1, 2, 0,
3acb9a69
RS
640 "Move point forward, stopping before a char not in STRING, or at pos LIM.\n\
641STRING is like the inside of a `[...]' in a regular expression\n\
ca1d1d23
JB
642except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
643Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
c1dc99a1
JB
644With arg \"^a-zA-Z\", skips nonletters stopping before first letter.\n\
645Returns the distance traveled, either zero or positive.")
ca1d1d23
JB
646 (string, lim)
647 Lisp_Object string, lim;
648{
17431c60 649 return skip_chars (1, 0, string, lim);
ca1d1d23
JB
650}
651
652DEFUN ("skip-chars-backward", Fskip_chars_backward, Sskip_chars_backward, 1, 2, 0,
3acb9a69 653 "Move point backward, stopping after a char not in STRING, or at pos LIM.\n\
c1dc99a1
JB
654See `skip-chars-forward' for details.\n\
655Returns the distance traveled, either zero or negative.")
ca1d1d23
JB
656 (string, lim)
657 Lisp_Object string, lim;
658{
17431c60
RS
659 return skip_chars (0, 0, string, lim);
660}
661
662DEFUN ("skip-syntax-forward", Fskip_syntax_forward, Sskip_syntax_forward, 1, 2, 0,
663 "Move point forward across chars in specified syntax classes.\n\
664SYNTAX is a string of syntax code characters.\n\
665Stop before a char whose syntax is not in SYNTAX, or at position LIM.\n\
666If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
667This function returns the distance traveled, either zero or positive.")
668 (syntax, lim)
669 Lisp_Object syntax, lim;
670{
671 return skip_chars (1, 1, syntax, lim);
672}
673
674DEFUN ("skip-syntax-backward", Fskip_syntax_backward, Sskip_syntax_backward, 1, 2, 0,
675 "Move point backward across chars in specified syntax classes.\n\
676SYNTAX is a string of syntax code characters.\n\
677Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.\n\
678If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
679This function returns the distance traveled, either zero or negative.")
680 (syntax, lim)
681 Lisp_Object syntax, lim;
682{
683 return skip_chars (0, 1, syntax, lim);
ca1d1d23
JB
684}
685
c1dc99a1 686Lisp_Object
17431c60
RS
687skip_chars (forwardp, syntaxp, string, lim)
688 int forwardp, syntaxp;
ca1d1d23
JB
689 Lisp_Object string, lim;
690{
691 register unsigned char *p, *pend;
692 register unsigned char c;
693 unsigned char fastmap[0400];
694 int negate = 0;
695 register int i;
696
697 CHECK_STRING (string, 0);
698
699 if (NILP (lim))
a3668d92 700 XSETINT (lim, forwardp ? ZV : BEGV);
ca1d1d23
JB
701 else
702 CHECK_NUMBER_COERCE_MARKER (lim, 1);
703
ca1d1d23 704 /* In any case, don't allow scan outside bounds of buffer. */
c5241910
RS
705 /* jla turned this off, for no known reason.
706 bfox turned the ZV part on, and rms turned the
707 BEGV part back on. */
708 if (XINT (lim) > ZV)
c235cce7 709 XSETFASTINT (lim, ZV);
c5241910 710 if (XINT (lim) < BEGV)
c235cce7 711 XSETFASTINT (lim, BEGV);
ca1d1d23
JB
712
713 p = XSTRING (string)->data;
714 pend = p + XSTRING (string)->size;
715 bzero (fastmap, sizeof fastmap);
716
717 if (p != pend && *p == '^')
718 {
719 negate = 1; p++;
720 }
721
17431c60
RS
722 /* Find the characters specified and set their elements of fastmap.
723 If syntaxp, each character counts as itself.
724 Otherwise, handle backslashes and ranges specially */
ca1d1d23
JB
725
726 while (p != pend)
727 {
728 c = *p++;
17431c60
RS
729 if (syntaxp)
730 fastmap[c] = 1;
731 else
ca1d1d23 732 {
17431c60 733 if (c == '\\')
ca1d1d23 734 {
17431c60
RS
735 if (p == pend) break;
736 c = *p++;
737 }
738 if (p != pend && *p == '-')
739 {
740 p++;
741 if (p == pend) break;
742 while (c <= *p)
743 {
744 fastmap[c] = 1;
745 c++;
746 }
747 p++;
ca1d1d23 748 }
17431c60
RS
749 else
750 fastmap[c] = 1;
ca1d1d23 751 }
ca1d1d23
JB
752 }
753
9239c6c1
RS
754 if (syntaxp && fastmap['-'] != 0)
755 fastmap[' '] = 1;
756
ca1d1d23
JB
757 /* If ^ was the first character, complement the fastmap. */
758
759 if (negate)
760 for (i = 0; i < sizeof fastmap; i++)
761 fastmap[i] ^= 1;
762
c1dc99a1
JB
763 {
764 int start_point = point;
765
766 immediate_quit = 1;
17431c60 767 if (syntaxp)
c1dc99a1 768 {
17431c60
RS
769
770 if (forwardp)
771 {
772 while (point < XINT (lim)
773 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point))]])
774 SET_PT (point + 1);
775 }
776 else
777 {
778 while (point > XINT (lim)
779 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point - 1))]])
780 SET_PT (point - 1);
781 }
c1dc99a1
JB
782 }
783 else
784 {
17431c60
RS
785 if (forwardp)
786 {
787 while (point < XINT (lim) && fastmap[FETCH_CHAR (point)])
788 SET_PT (point + 1);
789 }
790 else
791 {
792 while (point > XINT (lim) && fastmap[FETCH_CHAR (point - 1)])
793 SET_PT (point - 1);
794 }
c1dc99a1
JB
795 }
796 immediate_quit = 0;
797
798 return make_number (point - start_point);
799 }
ca1d1d23
JB
800}
801\f
802/* Subroutines of Lisp buffer search functions. */
803
804static Lisp_Object
b819a390 805search_command (string, bound, noerror, count, direction, RE, posix)
ca1d1d23
JB
806 Lisp_Object string, bound, noerror, count;
807 int direction;
808 int RE;
b819a390 809 int posix;
ca1d1d23
JB
810{
811 register int np;
812 int lim;
813 int n = direction;
814
815 if (!NILP (count))
816 {
817 CHECK_NUMBER (count, 3);
818 n *= XINT (count);
819 }
820
821 CHECK_STRING (string, 0);
822 if (NILP (bound))
823 lim = n > 0 ? ZV : BEGV;
824 else
825 {
826 CHECK_NUMBER_COERCE_MARKER (bound, 1);
827 lim = XINT (bound);
828 if (n > 0 ? lim < point : lim > point)
829 error ("Invalid search bound (wrong side of point)");
830 if (lim > ZV)
831 lim = ZV;
832 if (lim < BEGV)
833 lim = BEGV;
834 }
835
836 np = search_buffer (string, point, lim, n, RE,
837 (!NILP (current_buffer->case_fold_search)
838 ? XSTRING (current_buffer->case_canon_table)->data : 0),
839 (!NILP (current_buffer->case_fold_search)
b819a390
RS
840 ? XSTRING (current_buffer->case_eqv_table)->data : 0),
841 posix);
ca1d1d23
JB
842 if (np <= 0)
843 {
844 if (NILP (noerror))
845 return signal_failure (string);
846 if (!EQ (noerror, Qt))
847 {
848 if (lim < BEGV || lim > ZV)
849 abort ();
a5f217b8
RS
850 SET_PT (lim);
851 return Qnil;
852#if 0 /* This would be clean, but maybe programs depend on
853 a value of nil here. */
481399bf 854 np = lim;
a5f217b8 855#endif
ca1d1d23 856 }
481399bf
RS
857 else
858 return Qnil;
ca1d1d23
JB
859 }
860
861 if (np < BEGV || np > ZV)
862 abort ();
863
864 SET_PT (np);
865
866 return make_number (np);
867}
868\f
b6d6a51c
KH
869static int
870trivial_regexp_p (regexp)
871 Lisp_Object regexp;
872{
873 int len = XSTRING (regexp)->size;
874 unsigned char *s = XSTRING (regexp)->data;
875 unsigned char c;
876 while (--len >= 0)
877 {
878 switch (*s++)
879 {
880 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
881 return 0;
882 case '\\':
883 if (--len < 0)
884 return 0;
885 switch (*s++)
886 {
887 case '|': case '(': case ')': case '`': case '\'': case 'b':
888 case 'B': case '<': case '>': case 'w': case 'W': case 's':
889 case 'S': case '1': case '2': case '3': case '4': case '5':
890 case '6': case '7': case '8': case '9':
891 return 0;
892 }
893 }
894 }
895 return 1;
896}
897
ca325161 898/* Search for the n'th occurrence of STRING in the current buffer,
ca1d1d23 899 starting at position POS and stopping at position LIM,
b819a390 900 treating STRING as a literal string if RE is false or as
ca1d1d23
JB
901 a regular expression if RE is true.
902
903 If N is positive, searching is forward and LIM must be greater than POS.
904 If N is negative, searching is backward and LIM must be less than POS.
905
906 Returns -x if only N-x occurrences found (x > 0),
907 or else the position at the beginning of the Nth occurrence
b819a390
RS
908 (if searching backward) or the end (if searching forward).
909
910 POSIX is nonzero if we want full backtracking (POSIX style)
911 for this pattern. 0 means backtrack only enough to get a valid match. */
ca1d1d23 912
b819a390
RS
913static int
914search_buffer (string, pos, lim, n, RE, trt, inverse_trt, posix)
ca1d1d23
JB
915 Lisp_Object string;
916 int pos;
917 int lim;
918 int n;
919 int RE;
920 register unsigned char *trt;
921 register unsigned char *inverse_trt;
b819a390 922 int posix;
ca1d1d23
JB
923{
924 int len = XSTRING (string)->size;
925 unsigned char *base_pat = XSTRING (string)->data;
926 register int *BM_tab;
927 int *BM_tab_base;
928 register int direction = ((n > 0) ? 1 : -1);
929 register int dirlen;
930 int infinity, limit, k, stride_for_teases;
931 register unsigned char *pat, *cursor, *p_limit;
932 register int i, j;
933 unsigned char *p1, *p2;
934 int s1, s2;
935
7074fde6
FP
936 if (running_asynch_code)
937 save_search_regs ();
938
ca1d1d23 939 /* Null string is found at starting position. */
3f57a499 940 if (len == 0)
ca325161
RS
941 {
942 set_search_regs (pos, 0);
943 return pos;
944 }
3f57a499
RS
945
946 /* Searching 0 times means don't move. */
947 if (n == 0)
ca1d1d23
JB
948 return pos;
949
b6d6a51c 950 if (RE && !trivial_regexp_p (string))
ca1d1d23 951 {
487282dc
KH
952 struct re_pattern_buffer *bufp;
953
b819a390 954 bufp = compile_pattern (string, &search_regs, (char *) trt, posix);
ca1d1d23 955
ca1d1d23
JB
956 immediate_quit = 1; /* Quit immediately if user types ^G,
957 because letting this function finish
958 can take too long. */
959 QUIT; /* Do a pending quit right away,
960 to avoid paradoxical behavior */
961 /* Get pointers and sizes of the two strings
962 that make up the visible portion of the buffer. */
963
964 p1 = BEGV_ADDR;
965 s1 = GPT - BEGV;
966 p2 = GAP_END_ADDR;
967 s2 = ZV - GPT;
968 if (s1 < 0)
969 {
970 p2 = p1;
971 s2 = ZV - BEGV;
972 s1 = 0;
973 }
974 if (s2 < 0)
975 {
976 s1 = ZV - BEGV;
977 s2 = 0;
978 }
979 while (n < 0)
980 {
42db823b 981 int val;
487282dc 982 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
42db823b
RS
983 pos - BEGV, lim - pos, &search_regs,
984 /* Don't allow match past current point */
985 pos - BEGV);
ca1d1d23 986 if (val == -2)
b6d6a51c
KH
987 {
988 matcher_overflow ();
989 }
ca1d1d23
JB
990 if (val >= 0)
991 {
992 j = BEGV;
4746118a 993 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
994 if (search_regs.start[i] >= 0)
995 {
996 search_regs.start[i] += j;
997 search_regs.end[i] += j;
998 }
a3668d92 999 XSETBUFFER (last_thing_searched, current_buffer);
ca1d1d23
JB
1000 /* Set pos to the new position. */
1001 pos = search_regs.start[0];
1002 }
1003 else
1004 {
1005 immediate_quit = 0;
1006 return (n);
1007 }
1008 n++;
1009 }
1010 while (n > 0)
1011 {
42db823b 1012 int val;
487282dc 1013 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
42db823b
RS
1014 pos - BEGV, lim - pos, &search_regs,
1015 lim - BEGV);
ca1d1d23 1016 if (val == -2)
b6d6a51c
KH
1017 {
1018 matcher_overflow ();
1019 }
ca1d1d23
JB
1020 if (val >= 0)
1021 {
1022 j = BEGV;
4746118a 1023 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
1024 if (search_regs.start[i] >= 0)
1025 {
1026 search_regs.start[i] += j;
1027 search_regs.end[i] += j;
1028 }
a3668d92 1029 XSETBUFFER (last_thing_searched, current_buffer);
ca1d1d23
JB
1030 pos = search_regs.end[0];
1031 }
1032 else
1033 {
1034 immediate_quit = 0;
1035 return (0 - n);
1036 }
1037 n--;
1038 }
1039 immediate_quit = 0;
1040 return (pos);
1041 }
1042 else /* non-RE case */
1043 {
1044#ifdef C_ALLOCA
1045 int BM_tab_space[0400];
1046 BM_tab = &BM_tab_space[0];
1047#else
1048 BM_tab = (int *) alloca (0400 * sizeof (int));
1049#endif
b6d6a51c
KH
1050 {
1051 unsigned char *patbuf = (unsigned char *) alloca (len);
1052 pat = patbuf;
1053 while (--len >= 0)
1054 {
1055 /* If we got here and the RE flag is set, it's because we're
1056 dealing with a regexp known to be trivial, so the backslash
1057 just quotes the next character. */
1058 if (RE && *base_pat == '\\')
1059 {
1060 len--;
1061 base_pat++;
1062 }
1063 *pat++ = (trt ? trt[*base_pat++] : *base_pat++);
1064 }
1065 len = pat - patbuf;
1066 pat = base_pat = patbuf;
1067 }
ca1d1d23
JB
1068 /* The general approach is that we are going to maintain that we know */
1069 /* the first (closest to the present position, in whatever direction */
1070 /* we're searching) character that could possibly be the last */
1071 /* (furthest from present position) character of a valid match. We */
1072 /* advance the state of our knowledge by looking at that character */
1073 /* and seeing whether it indeed matches the last character of the */
1074 /* pattern. If it does, we take a closer look. If it does not, we */
1075 /* move our pointer (to putative last characters) as far as is */
1076 /* logically possible. This amount of movement, which I call a */
1077 /* stride, will be the length of the pattern if the actual character */
1078 /* appears nowhere in the pattern, otherwise it will be the distance */
1079 /* from the last occurrence of that character to the end of the */
1080 /* pattern. */
1081 /* As a coding trick, an enormous stride is coded into the table for */
1082 /* characters that match the last character. This allows use of only */
1083 /* a single test, a test for having gone past the end of the */
1084 /* permissible match region, to test for both possible matches (when */
1085 /* the stride goes past the end immediately) and failure to */
1086 /* match (where you get nudged past the end one stride at a time). */
1087
1088 /* Here we make a "mickey mouse" BM table. The stride of the search */
1089 /* is determined only by the last character of the putative match. */
1090 /* If that character does not match, we will stride the proper */
1091 /* distance to propose a match that superimposes it on the last */
1092 /* instance of a character that matches it (per trt), or misses */
1093 /* it entirely if there is none. */
1094
1095 dirlen = len * direction;
1096 infinity = dirlen - (lim + pos + len + len) * direction;
1097 if (direction < 0)
1098 pat = (base_pat += len - 1);
1099 BM_tab_base = BM_tab;
1100 BM_tab += 0400;
1101 j = dirlen; /* to get it in a register */
1102 /* A character that does not appear in the pattern induces a */
1103 /* stride equal to the pattern length. */
1104 while (BM_tab_base != BM_tab)
1105 {
1106 *--BM_tab = j;
1107 *--BM_tab = j;
1108 *--BM_tab = j;
1109 *--BM_tab = j;
1110 }
1111 i = 0;
1112 while (i != infinity)
1113 {
1114 j = pat[i]; i += direction;
1115 if (i == dirlen) i = infinity;
1116 if ((int) trt)
1117 {
1118 k = (j = trt[j]);
1119 if (i == infinity)
1120 stride_for_teases = BM_tab[j];
1121 BM_tab[j] = dirlen - i;
1122 /* A translation table is accompanied by its inverse -- see */
1123 /* comment following downcase_table for details */
1124 while ((j = inverse_trt[j]) != k)
1125 BM_tab[j] = dirlen - i;
1126 }
1127 else
1128 {
1129 if (i == infinity)
1130 stride_for_teases = BM_tab[j];
1131 BM_tab[j] = dirlen - i;
1132 }
1133 /* stride_for_teases tells how much to stride if we get a */
1134 /* match on the far character but are subsequently */
1135 /* disappointed, by recording what the stride would have been */
1136 /* for that character if the last character had been */
1137 /* different. */
1138 }
1139 infinity = dirlen - infinity;
1140 pos += dirlen - ((direction > 0) ? direction : 0);
1141 /* loop invariant - pos points at where last char (first char if reverse)
1142 of pattern would align in a possible match. */
1143 while (n != 0)
1144 {
b2c71fb4
KH
1145 /* It's been reported that some (broken) compiler thinks that
1146 Boolean expressions in an arithmetic context are unsigned.
1147 Using an explicit ?1:0 prevents this. */
1148 if ((lim - pos - ((direction > 0) ? 1 : 0)) * direction < 0)
ca1d1d23
JB
1149 return (n * (0 - direction));
1150 /* First we do the part we can by pointers (maybe nothing) */
1151 QUIT;
1152 pat = base_pat;
1153 limit = pos - dirlen + direction;
1154 limit = ((direction > 0)
1155 ? BUFFER_CEILING_OF (limit)
1156 : BUFFER_FLOOR_OF (limit));
1157 /* LIMIT is now the last (not beyond-last!) value
1158 POS can take on without hitting edge of buffer or the gap. */
1159 limit = ((direction > 0)
1160 ? min (lim - 1, min (limit, pos + 20000))
1161 : max (lim, max (limit, pos - 20000)));
1162 if ((limit - pos) * direction > 20)
1163 {
1164 p_limit = &FETCH_CHAR (limit);
1165 p2 = (cursor = &FETCH_CHAR (pos));
1166 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1167 while (1) /* use one cursor setting as long as i can */
1168 {
1169 if (direction > 0) /* worth duplicating */
1170 {
1171 /* Use signed comparison if appropriate
1172 to make cursor+infinity sure to be > p_limit.
1173 Assuming that the buffer lies in a range of addresses
1174 that are all "positive" (as ints) or all "negative",
1175 either kind of comparison will work as long
1176 as we don't step by infinity. So pick the kind
1177 that works when we do step by infinity. */
1178 if ((int) (p_limit + infinity) > (int) p_limit)
1179 while ((int) cursor <= (int) p_limit)
1180 cursor += BM_tab[*cursor];
1181 else
1182 while ((unsigned int) cursor <= (unsigned int) p_limit)
1183 cursor += BM_tab[*cursor];
1184 }
1185 else
1186 {
1187 if ((int) (p_limit + infinity) < (int) p_limit)
1188 while ((int) cursor >= (int) p_limit)
1189 cursor += BM_tab[*cursor];
1190 else
1191 while ((unsigned int) cursor >= (unsigned int) p_limit)
1192 cursor += BM_tab[*cursor];
1193 }
1194/* If you are here, cursor is beyond the end of the searched region. */
1195 /* This can happen if you match on the far character of the pattern, */
1196 /* because the "stride" of that character is infinity, a number able */
1197 /* to throw you well beyond the end of the search. It can also */
1198 /* happen if you fail to match within the permitted region and would */
1199 /* otherwise try a character beyond that region */
1200 if ((cursor - p_limit) * direction <= len)
1201 break; /* a small overrun is genuine */
1202 cursor -= infinity; /* large overrun = hit */
1203 i = dirlen - direction;
1204 if ((int) trt)
1205 {
1206 while ((i -= direction) + direction != 0)
1207 if (pat[i] != trt[*(cursor -= direction)])
1208 break;
1209 }
1210 else
1211 {
1212 while ((i -= direction) + direction != 0)
1213 if (pat[i] != *(cursor -= direction))
1214 break;
1215 }
1216 cursor += dirlen - i - direction; /* fix cursor */
1217 if (i + direction == 0)
1218 {
1219 cursor -= direction;
1113d9db 1220
ca325161
RS
1221 set_search_regs (pos + cursor - p2 + ((direction > 0)
1222 ? 1 - len : 0),
1223 len);
1224
ca1d1d23
JB
1225 if ((n -= direction) != 0)
1226 cursor += dirlen; /* to resume search */
1227 else
1228 return ((direction > 0)
1229 ? search_regs.end[0] : search_regs.start[0]);
1230 }
1231 else
1232 cursor += stride_for_teases; /* <sigh> we lose - */
1233 }
1234 pos += cursor - p2;
1235 }
1236 else
1237 /* Now we'll pick up a clump that has to be done the hard */
1238 /* way because it covers a discontinuity */
1239 {
1240 limit = ((direction > 0)
1241 ? BUFFER_CEILING_OF (pos - dirlen + 1)
1242 : BUFFER_FLOOR_OF (pos - dirlen - 1));
1243 limit = ((direction > 0)
1244 ? min (limit + len, lim - 1)
1245 : max (limit - len, lim));
1246 /* LIMIT is now the last value POS can have
1247 and still be valid for a possible match. */
1248 while (1)
1249 {
1250 /* This loop can be coded for space rather than */
1251 /* speed because it will usually run only once. */
1252 /* (the reach is at most len + 21, and typically */
1253 /* does not exceed len) */
1254 while ((limit - pos) * direction >= 0)
1255 pos += BM_tab[FETCH_CHAR(pos)];
1256 /* now run the same tests to distinguish going off the */
eb8c3be9 1257 /* end, a match or a phony match. */
ca1d1d23
JB
1258 if ((pos - limit) * direction <= len)
1259 break; /* ran off the end */
1260 /* Found what might be a match.
1261 Set POS back to last (first if reverse) char pos. */
1262 pos -= infinity;
1263 i = dirlen - direction;
1264 while ((i -= direction) + direction != 0)
1265 {
1266 pos -= direction;
1267 if (pat[i] != (((int) trt)
1268 ? trt[FETCH_CHAR(pos)]
1269 : FETCH_CHAR (pos)))
1270 break;
1271 }
1272 /* Above loop has moved POS part or all the way
1273 back to the first char pos (last char pos if reverse).
1274 Set it once again at the last (first if reverse) char. */
1275 pos += dirlen - i- direction;
1276 if (i + direction == 0)
1277 {
1278 pos -= direction;
1113d9db 1279
ca325161
RS
1280 set_search_regs (pos + ((direction > 0) ? 1 - len : 0),
1281 len);
1282
ca1d1d23
JB
1283 if ((n -= direction) != 0)
1284 pos += dirlen; /* to resume search */
1285 else
1286 return ((direction > 0)
1287 ? search_regs.end[0] : search_regs.start[0]);
1288 }
1289 else
1290 pos += stride_for_teases;
1291 }
1292 }
1293 /* We have done one clump. Can we continue? */
1294 if ((lim - pos) * direction < 0)
1295 return ((0 - n) * direction);
1296 }
1297 return pos;
1298 }
1299}
ca325161
RS
1300
1301/* Record beginning BEG and end BEG + LEN
1302 for a match just found in the current buffer. */
1303
1304static void
1305set_search_regs (beg, len)
1306 int beg, len;
1307{
1308 /* Make sure we have registers in which to store
1309 the match position. */
1310 if (search_regs.num_regs == 0)
1311 {
1312 regoff_t *starts, *ends;
1313
1314 starts = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1315 ends = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
487282dc 1316 search_regs.num_regs = 2;
ca325161
RS
1317 }
1318
1319 search_regs.start[0] = beg;
1320 search_regs.end[0] = beg + len;
a3668d92 1321 XSETBUFFER (last_thing_searched, current_buffer);
ca325161 1322}
ca1d1d23
JB
1323\f
1324/* Given a string of words separated by word delimiters,
1325 compute a regexp that matches those exact words
1326 separated by arbitrary punctuation. */
1327
1328static Lisp_Object
1329wordify (string)
1330 Lisp_Object string;
1331{
1332 register unsigned char *p, *o;
1333 register int i, len, punct_count = 0, word_count = 0;
1334 Lisp_Object val;
1335
1336 CHECK_STRING (string, 0);
1337 p = XSTRING (string)->data;
1338 len = XSTRING (string)->size;
1339
1340 for (i = 0; i < len; i++)
1341 if (SYNTAX (p[i]) != Sword)
1342 {
1343 punct_count++;
1344 if (i > 0 && SYNTAX (p[i-1]) == Sword) word_count++;
1345 }
1346 if (SYNTAX (p[len-1]) == Sword) word_count++;
1347 if (!word_count) return build_string ("");
1348
1349 val = make_string (p, len - punct_count + 5 * (word_count - 1) + 4);
1350
1351 o = XSTRING (val)->data;
1352 *o++ = '\\';
1353 *o++ = 'b';
1354
1355 for (i = 0; i < len; i++)
1356 if (SYNTAX (p[i]) == Sword)
1357 *o++ = p[i];
1358 else if (i > 0 && SYNTAX (p[i-1]) == Sword && --word_count)
1359 {
1360 *o++ = '\\';
1361 *o++ = 'W';
1362 *o++ = '\\';
1363 *o++ = 'W';
1364 *o++ = '*';
1365 }
1366
1367 *o++ = '\\';
1368 *o++ = 'b';
1369
1370 return val;
1371}
1372\f
1373DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
1374 "sSearch backward: ",
1375 "Search backward from point for STRING.\n\
1376Set point to the beginning of the occurrence found, and return point.\n\
1377An optional second argument bounds the search; it is a buffer position.\n\
1378The match found must not extend before that position.\n\
1379Optional third argument, if t, means if fail just return nil (no error).\n\
1380 If not nil and not t, position at limit of search and return nil.\n\
1381Optional fourth argument is repeat count--search for successive occurrences.\n\
1382See also the functions `match-beginning', `match-end' and `replace-match'.")
1383 (string, bound, noerror, count)
1384 Lisp_Object string, bound, noerror, count;
1385{
b819a390 1386 return search_command (string, bound, noerror, count, -1, 0, 0);
ca1d1d23
JB
1387}
1388
1389DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "sSearch: ",
1390 "Search forward from point for STRING.\n\
1391Set point to the end of the occurrence found, and return point.\n\
1392An optional second argument bounds the search; it is a buffer position.\n\
1393The match found must not extend after that position. nil is equivalent\n\
1394 to (point-max).\n\
1395Optional third argument, if t, means if fail just return nil (no error).\n\
1396 If not nil and not t, move to limit of search and return nil.\n\
1397Optional fourth argument is repeat count--search for successive occurrences.\n\
1398See also the functions `match-beginning', `match-end' and `replace-match'.")
1399 (string, bound, noerror, count)
1400 Lisp_Object string, bound, noerror, count;
1401{
b819a390 1402 return search_command (string, bound, noerror, count, 1, 0, 0);
ca1d1d23
JB
1403}
1404
1405DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
1406 "sWord search backward: ",
1407 "Search backward from point for STRING, ignoring differences in punctuation.\n\
1408Set point to the beginning of the occurrence found, and return point.\n\
1409An optional second argument bounds the search; it is a buffer position.\n\
1410The match found must not extend before that position.\n\
1411Optional third argument, if t, means if fail just return nil (no error).\n\
1412 If not nil and not t, move to limit of search and return nil.\n\
1413Optional fourth argument is repeat count--search for successive occurrences.")
1414 (string, bound, noerror, count)
1415 Lisp_Object string, bound, noerror, count;
1416{
b819a390 1417 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
ca1d1d23
JB
1418}
1419
1420DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
1421 "sWord search: ",
1422 "Search forward from point for STRING, ignoring differences in punctuation.\n\
1423Set point to the end of the occurrence found, and return point.\n\
1424An optional second argument bounds the search; it is a buffer position.\n\
1425The match found must not extend after that position.\n\
1426Optional third argument, if t, means if fail just return nil (no error).\n\
1427 If not nil and not t, move to limit of search and return nil.\n\
1428Optional fourth argument is repeat count--search for successive occurrences.")
1429 (string, bound, noerror, count)
1430 Lisp_Object string, bound, noerror, count;
1431{
b819a390 1432 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
ca1d1d23
JB
1433}
1434
1435DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
1436 "sRE search backward: ",
1437 "Search backward from point for match for regular expression REGEXP.\n\
1438Set point to the beginning of the match, and return point.\n\
1439The match found is the one starting last in the buffer\n\
19c0a730 1440and yet ending before the origin of the search.\n\
ca1d1d23
JB
1441An optional second argument bounds the search; it is a buffer position.\n\
1442The match found must start at or after that position.\n\
1443Optional third argument, if t, means if fail just return nil (no error).\n\
1444 If not nil and not t, move to limit of search and return nil.\n\
1445Optional fourth argument is repeat count--search for successive occurrences.\n\
1446See also the functions `match-beginning', `match-end' and `replace-match'.")
19c0a730
KH
1447 (regexp, bound, noerror, count)
1448 Lisp_Object regexp, bound, noerror, count;
ca1d1d23 1449{
b819a390 1450 return search_command (regexp, bound, noerror, count, -1, 1, 0);
ca1d1d23
JB
1451}
1452
1453DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
1454 "sRE search: ",
1455 "Search forward from point for regular expression REGEXP.\n\
1456Set point to the end of the occurrence found, and return point.\n\
1457An optional second argument bounds the search; it is a buffer position.\n\
1458The match found must not extend after that position.\n\
1459Optional third argument, if t, means if fail just return nil (no error).\n\
1460 If not nil and not t, move to limit of search and return nil.\n\
1461Optional fourth argument is repeat count--search for successive occurrences.\n\
1462See also the functions `match-beginning', `match-end' and `replace-match'.")
19c0a730
KH
1463 (regexp, bound, noerror, count)
1464 Lisp_Object regexp, bound, noerror, count;
ca1d1d23 1465{
b819a390
RS
1466 return search_command (regexp, bound, noerror, count, 1, 1, 0);
1467}
1468
1469DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
1470 "sPosix search backward: ",
1471 "Search backward from point for match for regular expression REGEXP.\n\
1472Find the longest match in accord with Posix regular expression rules.\n\
1473Set point to the beginning of the match, and return point.\n\
1474The match found is the one starting last in the buffer\n\
1475and yet ending before the origin of the search.\n\
1476An optional second argument bounds the search; it is a buffer position.\n\
1477The match found must start at or after that position.\n\
1478Optional third argument, if t, means if fail just return nil (no error).\n\
1479 If not nil and not t, move to limit of search and return nil.\n\
1480Optional fourth argument is repeat count--search for successive occurrences.\n\
1481See also the functions `match-beginning', `match-end' and `replace-match'.")
1482 (regexp, bound, noerror, count)
1483 Lisp_Object regexp, bound, noerror, count;
1484{
1485 return search_command (regexp, bound, noerror, count, -1, 1, 1);
1486}
1487
1488DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
1489 "sPosix search: ",
1490 "Search forward from point for regular expression REGEXP.\n\
1491Find the longest match in accord with Posix regular expression rules.\n\
1492Set point to the end of the occurrence found, and return point.\n\
1493An optional second argument bounds the search; it is a buffer position.\n\
1494The match found must not extend after that position.\n\
1495Optional third argument, if t, means if fail just return nil (no error).\n\
1496 If not nil and not t, move to limit of search and return nil.\n\
1497Optional fourth argument is repeat count--search for successive occurrences.\n\
1498See also the functions `match-beginning', `match-end' and `replace-match'.")
1499 (regexp, bound, noerror, count)
1500 Lisp_Object regexp, bound, noerror, count;
1501{
1502 return search_command (regexp, bound, noerror, count, 1, 1, 1);
ca1d1d23
JB
1503}
1504\f
080c45fd 1505DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 4, 0,
ca1d1d23
JB
1506 "Replace text matched by last search with NEWTEXT.\n\
1507If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
5b9cf4b2
RS
1508Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
1509based on the replaced text.\n\
1510If the replaced text has only capital letters\n\
1511and has at least one multiletter word, convert NEWTEXT to all caps.\n\
1512If the replaced text has at least one word starting with a capital letter,\n\
1513then capitalize each word in NEWTEXT.\n\n\
ca1d1d23
JB
1514If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
1515Otherwise treat `\\' as special:\n\
1516 `\\&' in NEWTEXT means substitute original matched text.\n\
1517 `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
1518 If Nth parens didn't match, substitute nothing.\n\
1519 `\\\\' means insert one `\\'.\n\
1113d9db 1520FIXEDCASE and LITERAL are optional arguments.\n\
080c45fd
RS
1521Leaves point at end of replacement text.\n\
1522\n\
1523The optional fourth argument STRING can be a string to modify.\n\
1524In that case, this function creates and returns a new string\n\
1525which is made by replacing the part of STRING that was matched.")
1526 (newtext, fixedcase, literal, string)
1527 Lisp_Object newtext, fixedcase, literal, string;
ca1d1d23
JB
1528{
1529 enum { nochange, all_caps, cap_initial } case_action;
1530 register int pos, last;
1531 int some_multiletter_word;
97832bd0 1532 int some_lowercase;
73dc8771 1533 int some_uppercase;
208767c3 1534 int some_nonuppercase_initial;
ca1d1d23
JB
1535 register int c, prevc;
1536 int inslen;
1537
16fdc568 1538 CHECK_STRING (newtext, 0);
ca1d1d23 1539
080c45fd
RS
1540 if (! NILP (string))
1541 CHECK_STRING (string, 4);
1542
ca1d1d23
JB
1543 case_action = nochange; /* We tried an initialization */
1544 /* but some C compilers blew it */
4746118a
JB
1545
1546 if (search_regs.num_regs <= 0)
1547 error ("replace-match called before any match found");
1548
080c45fd
RS
1549 if (NILP (string))
1550 {
1551 if (search_regs.start[0] < BEGV
1552 || search_regs.start[0] > search_regs.end[0]
1553 || search_regs.end[0] > ZV)
1554 args_out_of_range (make_number (search_regs.start[0]),
1555 make_number (search_regs.end[0]));
1556 }
1557 else
1558 {
1559 if (search_regs.start[0] < 0
1560 || search_regs.start[0] > search_regs.end[0]
1561 || search_regs.end[0] > XSTRING (string)->size)
1562 args_out_of_range (make_number (search_regs.start[0]),
1563 make_number (search_regs.end[0]));
1564 }
ca1d1d23
JB
1565
1566 if (NILP (fixedcase))
1567 {
1568 /* Decide how to casify by examining the matched text. */
1569
1570 last = search_regs.end[0];
1571 prevc = '\n';
1572 case_action = all_caps;
1573
1574 /* some_multiletter_word is set nonzero if any original word
1575 is more than one letter long. */
1576 some_multiletter_word = 0;
97832bd0 1577 some_lowercase = 0;
208767c3 1578 some_nonuppercase_initial = 0;
73dc8771 1579 some_uppercase = 0;
ca1d1d23
JB
1580
1581 for (pos = search_regs.start[0]; pos < last; pos++)
1582 {
080c45fd
RS
1583 if (NILP (string))
1584 c = FETCH_CHAR (pos);
1585 else
1586 c = XSTRING (string)->data[pos];
1587
ca1d1d23
JB
1588 if (LOWERCASEP (c))
1589 {
1590 /* Cannot be all caps if any original char is lower case */
1591
97832bd0 1592 some_lowercase = 1;
ca1d1d23 1593 if (SYNTAX (prevc) != Sword)
208767c3 1594 some_nonuppercase_initial = 1;
ca1d1d23
JB
1595 else
1596 some_multiletter_word = 1;
1597 }
1598 else if (!NOCASEP (c))
1599 {
73dc8771 1600 some_uppercase = 1;
97832bd0 1601 if (SYNTAX (prevc) != Sword)
c4d460ce 1602 ;
97832bd0 1603 else
ca1d1d23
JB
1604 some_multiletter_word = 1;
1605 }
208767c3
RS
1606 else
1607 {
1608 /* If the initial is a caseless word constituent,
1609 treat that like a lowercase initial. */
1610 if (SYNTAX (prevc) != Sword)
1611 some_nonuppercase_initial = 1;
1612 }
ca1d1d23
JB
1613
1614 prevc = c;
1615 }
1616
97832bd0
RS
1617 /* Convert to all caps if the old text is all caps
1618 and has at least one multiletter word. */
1619 if (! some_lowercase && some_multiletter_word)
1620 case_action = all_caps;
c4d460ce 1621 /* Capitalize each word, if the old text has all capitalized words. */
208767c3 1622 else if (!some_nonuppercase_initial && some_multiletter_word)
ca1d1d23 1623 case_action = cap_initial;
208767c3 1624 else if (!some_nonuppercase_initial && some_uppercase)
73dc8771
KH
1625 /* Should x -> yz, operating on X, give Yz or YZ?
1626 We'll assume the latter. */
1627 case_action = all_caps;
97832bd0
RS
1628 else
1629 case_action = nochange;
ca1d1d23
JB
1630 }
1631
080c45fd
RS
1632 /* Do replacement in a string. */
1633 if (!NILP (string))
1634 {
1635 Lisp_Object before, after;
1636
1637 before = Fsubstring (string, make_number (0),
1638 make_number (search_regs.start[0]));
1639 after = Fsubstring (string, make_number (search_regs.end[0]), Qnil);
1640
1641 /* Do case substitution into NEWTEXT if desired. */
1642 if (NILP (literal))
1643 {
1644 int lastpos = -1;
1645 /* We build up the substituted string in ACCUM. */
1646 Lisp_Object accum;
1647 Lisp_Object middle;
1648
1649 accum = Qnil;
1650
1651 for (pos = 0; pos < XSTRING (newtext)->size; pos++)
1652 {
1653 int substart = -1;
1654 int subend;
1655
1656 c = XSTRING (newtext)->data[pos];
1657 if (c == '\\')
1658 {
1659 c = XSTRING (newtext)->data[++pos];
1660 if (c == '&')
1661 {
1662 substart = search_regs.start[0];
1663 subend = search_regs.end[0];
1664 }
1665 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
1666 {
1667 if (search_regs.start[c - '0'] >= 1)
1668 {
1669 substart = search_regs.start[c - '0'];
1670 subend = search_regs.end[c - '0'];
1671 }
1672 }
1673 }
1674 if (substart >= 0)
1675 {
1676 if (pos - 1 != lastpos + 1)
1677 middle = Fsubstring (newtext, lastpos + 1, pos - 1);
1678 else
1679 middle = Qnil;
1680 accum = concat3 (accum, middle,
1681 Fsubstring (string, make_number (substart),
1682 make_number (subend)));
1683 lastpos = pos;
1684 }
1685 }
1686
1687 if (pos != lastpos + 1)
1688 middle = Fsubstring (newtext, lastpos + 1, pos);
1689 else
1690 middle = Qnil;
1691
1692 newtext = concat2 (accum, middle);
1693 }
1694
1695 if (case_action == all_caps)
1696 newtext = Fupcase (newtext);
1697 else if (case_action == cap_initial)
1698 newtext = upcase_initials (newtext);
1699
1700 return concat3 (before, newtext, after);
1701 }
1702
9a76659d
JB
1703 /* We insert the replacement text before the old text, and then
1704 delete the original text. This means that markers at the
1705 beginning or end of the original will float to the corresponding
1706 position in the replacement. */
1707 SET_PT (search_regs.start[0]);
ca1d1d23 1708 if (!NILP (literal))
16fdc568 1709 Finsert_and_inherit (1, &newtext);
ca1d1d23
JB
1710 else
1711 {
1712 struct gcpro gcpro1;
16fdc568 1713 GCPRO1 (newtext);
ca1d1d23 1714
16fdc568 1715 for (pos = 0; pos < XSTRING (newtext)->size; pos++)
ca1d1d23 1716 {
9a76659d
JB
1717 int offset = point - search_regs.start[0];
1718
16fdc568 1719 c = XSTRING (newtext)->data[pos];
ca1d1d23
JB
1720 if (c == '\\')
1721 {
16fdc568 1722 c = XSTRING (newtext)->data[++pos];
ca1d1d23 1723 if (c == '&')
9a76659d
JB
1724 Finsert_buffer_substring
1725 (Fcurrent_buffer (),
1726 make_number (search_regs.start[0] + offset),
1727 make_number (search_regs.end[0] + offset));
78445046 1728 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
ca1d1d23
JB
1729 {
1730 if (search_regs.start[c - '0'] >= 1)
9a76659d
JB
1731 Finsert_buffer_substring
1732 (Fcurrent_buffer (),
1733 make_number (search_regs.start[c - '0'] + offset),
1734 make_number (search_regs.end[c - '0'] + offset));
ca1d1d23
JB
1735 }
1736 else
1737 insert_char (c);
1738 }
1739 else
1740 insert_char (c);
1741 }
1742 UNGCPRO;
1743 }
1744
9a76659d
JB
1745 inslen = point - (search_regs.start[0]);
1746 del_range (search_regs.start[0] + inslen, search_regs.end[0] + inslen);
ca1d1d23
JB
1747
1748 if (case_action == all_caps)
1749 Fupcase_region (make_number (point - inslen), make_number (point));
1750 else if (case_action == cap_initial)
1751 upcase_initials_region (make_number (point - inslen), make_number (point));
1752 return Qnil;
1753}
1754\f
1755static Lisp_Object
1756match_limit (num, beginningp)
1757 Lisp_Object num;
1758 int beginningp;
1759{
1760 register int n;
1761
1762 CHECK_NUMBER (num, 0);
1763 n = XINT (num);
4746118a
JB
1764 if (n < 0 || n >= search_regs.num_regs)
1765 args_out_of_range (num, make_number (search_regs.num_regs));
1766 if (search_regs.num_regs <= 0
1767 || search_regs.start[n] < 0)
ca1d1d23
JB
1768 return Qnil;
1769 return (make_number ((beginningp) ? search_regs.start[n]
1770 : search_regs.end[n]));
1771}
1772
1773DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
1774 "Return position of start of text matched by last search.\n\
16fdc568
BF
1775NUM specifies which parenthesized expression in the last regexp.\n\
1776 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.\n\
ca1d1d23
JB
1777Zero means the entire text matched by the whole regexp or whole string.")
1778 (num)
1779 Lisp_Object num;
1780{
1781 return match_limit (num, 1);
1782}
1783
1784DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
1785 "Return position of end of text matched by last search.\n\
1786ARG, a number, specifies which parenthesized expression in the last regexp.\n\
1787 Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
1788Zero means the entire text matched by the whole regexp or whole string.")
1789 (num)
1790 Lisp_Object num;
1791{
1792 return match_limit (num, 0);
1793}
1794
1795DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 0, 0,
1796 "Return a list containing all info on what the last search matched.\n\
1797Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
1798All the elements are markers or nil (nil if the Nth pair didn't match)\n\
1799if the last match was on a buffer; integers or nil if a string was matched.\n\
1800Use `store-match-data' to reinstate the data in this list.")
1801 ()
1802{
4746118a 1803 Lisp_Object *data;
ca1d1d23
JB
1804 int i, len;
1805
daa37602
JB
1806 if (NILP (last_thing_searched))
1807 error ("match-data called before any match found");
1808
4746118a
JB
1809 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
1810 * sizeof (Lisp_Object));
1811
ca1d1d23 1812 len = -1;
4746118a 1813 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
1814 {
1815 int start = search_regs.start[i];
1816 if (start >= 0)
1817 {
daa37602 1818 if (EQ (last_thing_searched, Qt))
ca1d1d23 1819 {
c235cce7
KH
1820 XSETFASTINT (data[2 * i], start);
1821 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
ca1d1d23 1822 }
0ed62dc7 1823 else if (BUFFERP (last_thing_searched))
ca1d1d23
JB
1824 {
1825 data[2 * i] = Fmake_marker ();
daa37602
JB
1826 Fset_marker (data[2 * i],
1827 make_number (start),
1828 last_thing_searched);
ca1d1d23
JB
1829 data[2 * i + 1] = Fmake_marker ();
1830 Fset_marker (data[2 * i + 1],
daa37602
JB
1831 make_number (search_regs.end[i]),
1832 last_thing_searched);
ca1d1d23 1833 }
daa37602
JB
1834 else
1835 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
1836 abort ();
1837
ca1d1d23
JB
1838 len = i;
1839 }
1840 else
1841 data[2 * i] = data [2 * i + 1] = Qnil;
1842 }
1843 return Flist (2 * len + 2, data);
1844}
1845
1846
1847DEFUN ("store-match-data", Fstore_match_data, Sstore_match_data, 1, 1, 0,
1848 "Set internal data on last search match from elements of LIST.\n\
1849LIST should have been created by calling `match-data' previously.")
1850 (list)
1851 register Lisp_Object list;
1852{
1853 register int i;
1854 register Lisp_Object marker;
1855
7074fde6
FP
1856 if (running_asynch_code)
1857 save_search_regs ();
1858
ca1d1d23 1859 if (!CONSP (list) && !NILP (list))
b37902c8 1860 list = wrong_type_argument (Qconsp, list);
ca1d1d23 1861
daa37602
JB
1862 /* Unless we find a marker with a buffer in LIST, assume that this
1863 match data came from a string. */
1864 last_thing_searched = Qt;
1865
4746118a
JB
1866 /* Allocate registers if they don't already exist. */
1867 {
d084e942 1868 int length = XFASTINT (Flength (list)) / 2;
4746118a
JB
1869
1870 if (length > search_regs.num_regs)
1871 {
1113d9db
JB
1872 if (search_regs.num_regs == 0)
1873 {
1874 search_regs.start
1875 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1876 search_regs.end
1877 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1878 }
4746118a 1879 else
1113d9db
JB
1880 {
1881 search_regs.start
1882 = (regoff_t *) xrealloc (search_regs.start,
1883 length * sizeof (regoff_t));
1884 search_regs.end
1885 = (regoff_t *) xrealloc (search_regs.end,
1886 length * sizeof (regoff_t));
1887 }
4746118a 1888
487282dc 1889 search_regs.num_regs = length;
4746118a
JB
1890 }
1891 }
1892
1893 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
1894 {
1895 marker = Fcar (list);
1896 if (NILP (marker))
1897 {
1898 search_regs.start[i] = -1;
1899 list = Fcdr (list);
1900 }
1901 else
1902 {
0ed62dc7 1903 if (MARKERP (marker))
daa37602
JB
1904 {
1905 if (XMARKER (marker)->buffer == 0)
c235cce7 1906 XSETFASTINT (marker, 0);
daa37602 1907 else
a3668d92 1908 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
daa37602 1909 }
ca1d1d23
JB
1910
1911 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1912 search_regs.start[i] = XINT (marker);
1913 list = Fcdr (list);
1914
1915 marker = Fcar (list);
0ed62dc7 1916 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
c235cce7 1917 XSETFASTINT (marker, 0);
ca1d1d23
JB
1918
1919 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1920 search_regs.end[i] = XINT (marker);
1921 }
1922 list = Fcdr (list);
1923 }
1924
1925 return Qnil;
1926}
1927
7074fde6
FP
1928/* If non-zero the match data have been saved in saved_search_regs
1929 during the execution of a sentinel or filter. */
75ebf74b 1930static int search_regs_saved;
7074fde6
FP
1931static struct re_registers saved_search_regs;
1932
1933/* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
1934 if asynchronous code (filter or sentinel) is running. */
1935static void
1936save_search_regs ()
1937{
1938 if (!search_regs_saved)
1939 {
1940 saved_search_regs.num_regs = search_regs.num_regs;
1941 saved_search_regs.start = search_regs.start;
1942 saved_search_regs.end = search_regs.end;
1943 search_regs.num_regs = 0;
1944
1945 search_regs_saved = 1;
1946 }
1947}
1948
1949/* Called upon exit from filters and sentinels. */
1950void
1951restore_match_data ()
1952{
1953 if (search_regs_saved)
1954 {
1955 if (search_regs.num_regs > 0)
1956 {
1957 xfree (search_regs.start);
1958 xfree (search_regs.end);
1959 }
1960 search_regs.num_regs = saved_search_regs.num_regs;
1961 search_regs.start = saved_search_regs.start;
1962 search_regs.end = saved_search_regs.end;
1963
1964 search_regs_saved = 0;
1965 }
1966}
1967
ca1d1d23
JB
1968/* Quote a string to inactivate reg-expr chars */
1969
1970DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
1971 "Return a regexp string which matches exactly STRING and nothing else.")
1972 (str)
1973 Lisp_Object str;
1974{
1975 register unsigned char *in, *out, *end;
1976 register unsigned char *temp;
1977
1978 CHECK_STRING (str, 0);
1979
1980 temp = (unsigned char *) alloca (XSTRING (str)->size * 2);
1981
1982 /* Now copy the data into the new string, inserting escapes. */
1983
1984 in = XSTRING (str)->data;
1985 end = in + XSTRING (str)->size;
1986 out = temp;
1987
1988 for (; in != end; in++)
1989 {
1990 if (*in == '[' || *in == ']'
1991 || *in == '*' || *in == '.' || *in == '\\'
1992 || *in == '?' || *in == '+'
1993 || *in == '^' || *in == '$')
1994 *out++ = '\\';
1995 *out++ = *in;
1996 }
1997
1998 return make_string (temp, out - temp);
1999}
2000\f
2001syms_of_search ()
2002{
2003 register int i;
2004
487282dc
KH
2005 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
2006 {
2007 searchbufs[i].buf.allocated = 100;
2008 searchbufs[i].buf.buffer = (unsigned char *) malloc (100);
2009 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
2010 searchbufs[i].regexp = Qnil;
2011 staticpro (&searchbufs[i].regexp);
2012 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
2013 }
2014 searchbuf_head = &searchbufs[0];
ca1d1d23
JB
2015
2016 Qsearch_failed = intern ("search-failed");
2017 staticpro (&Qsearch_failed);
2018 Qinvalid_regexp = intern ("invalid-regexp");
2019 staticpro (&Qinvalid_regexp);
2020
2021 Fput (Qsearch_failed, Qerror_conditions,
2022 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
2023 Fput (Qsearch_failed, Qerror_message,
2024 build_string ("Search failed"));
2025
2026 Fput (Qinvalid_regexp, Qerror_conditions,
2027 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
2028 Fput (Qinvalid_regexp, Qerror_message,
2029 build_string ("Invalid regexp"));
2030
daa37602
JB
2031 last_thing_searched = Qnil;
2032 staticpro (&last_thing_searched);
2033
ca1d1d23 2034 defsubr (&Slooking_at);
b819a390
RS
2035 defsubr (&Sposix_looking_at);
2036 defsubr (&Sstring_match);
2037 defsubr (&Sposix_string_match);
ca1d1d23
JB
2038 defsubr (&Sskip_chars_forward);
2039 defsubr (&Sskip_chars_backward);
17431c60
RS
2040 defsubr (&Sskip_syntax_forward);
2041 defsubr (&Sskip_syntax_backward);
ca1d1d23
JB
2042 defsubr (&Ssearch_forward);
2043 defsubr (&Ssearch_backward);
2044 defsubr (&Sword_search_forward);
2045 defsubr (&Sword_search_backward);
2046 defsubr (&Sre_search_forward);
2047 defsubr (&Sre_search_backward);
b819a390
RS
2048 defsubr (&Sposix_search_forward);
2049 defsubr (&Sposix_search_backward);
ca1d1d23
JB
2050 defsubr (&Sreplace_match);
2051 defsubr (&Smatch_beginning);
2052 defsubr (&Smatch_end);
2053 defsubr (&Smatch_data);
2054 defsubr (&Sstore_match_data);
2055 defsubr (&Sregexp_quote);
2056}