80d4ce46a85324b2674c6973468255146860d7a3
[jackhill/qmk/firmware.git] / keyboards / ergo42 / matrix.c
1 /*
2 Copyright 2012 Jun Wako <wakojun@gmail.com>
3
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 /*
19 * scan matrix
20 */
21 #include <stdint.h>
22 #include <stdbool.h>
23 #include <avr/io.h>
24 #include "wait.h"
25 #include "print.h"
26 #include "debug.h"
27 #include "util.h"
28 #include "matrix.h"
29 #include "split_util.h"
30 #include "pro_micro.h"
31 #include "config.h"
32 #include "timer.h"
33
34 #ifdef USE_I2C
35 # include "i2c.h"
36 #else // USE_SERIAL
37 # include "serial.h"
38 #endif
39
40 #ifndef DEBOUNCING_DELAY
41 # define DEBOUNCING_DELAY 5
42 #endif
43
44 #if (DEBOUNCING_DELAY > 0)
45 static uint16_t debouncing_time;
46 static bool debouncing = false;
47 #endif
48
49 #if (MATRIX_COLS <= 8)
50 # define print_matrix_header() print("\nr/c 01234567\n")
51 # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
52 # define matrix_bitpop(i) bitpop(matrix[i])
53 # define ROW_SHIFTER ((uint8_t)1)
54 #else
55 # error "Currently only supports 8 COLS"
56 #endif
57 static matrix_row_t matrix_debouncing[MATRIX_ROWS];
58
59 #define ERROR_DISCONNECT_COUNT 5
60
61 #define ROWS_PER_HAND (MATRIX_ROWS/2)
62
63 static uint8_t error_count = 0;
64
65 static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
66 static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
67
68 /* matrix state(1:on, 0:off) */
69 static matrix_row_t matrix[MATRIX_ROWS];
70 static matrix_row_t matrix_debouncing[MATRIX_ROWS];
71
72 #if (DIODE_DIRECTION == COL2ROW)
73 static void init_cols(void);
74 static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
75 static void unselect_rows(void);
76 static void select_row(uint8_t row);
77 static void unselect_row(uint8_t row);
78 #elif (DIODE_DIRECTION == ROW2COL)
79 static void init_rows(void);
80 static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
81 static void unselect_cols(void);
82 static void unselect_col(uint8_t col);
83 static void select_col(uint8_t col);
84 #endif
85
86 __attribute__ ((weak))
87 void matrix_init_kb(void) {
88 matrix_init_user();
89 }
90
91 __attribute__ ((weak))
92 void matrix_scan_kb(void) {
93 matrix_scan_user();
94 }
95
96 __attribute__ ((weak))
97 void matrix_init_user(void) {
98 }
99
100 __attribute__ ((weak))
101 void matrix_scan_user(void) {
102 }
103
104 inline
105 uint8_t matrix_rows(void)
106 {
107 return MATRIX_ROWS;
108 }
109
110 inline
111 uint8_t matrix_cols(void)
112 {
113 return MATRIX_COLS;
114 }
115
116 void matrix_init(void)
117 {
118 debug_enable = true;
119 debug_matrix = true;
120 debug_mouse = true;
121 // initialize row and col
122 #if (DIODE_DIRECTION == COL2ROW)
123 unselect_rows();
124 init_cols();
125 #elif (DIODE_DIRECTION == ROW2COL)
126 unselect_cols();
127 init_rows();
128 #endif
129
130 TX_RX_LED_INIT;
131
132 // initialize matrix state: all keys off
133 for (uint8_t i=0; i < MATRIX_ROWS; i++) {
134 matrix[i] = 0;
135 matrix_debouncing[i] = 0;
136 }
137
138 matrix_init_quantum();
139
140 }
141
142 uint8_t _matrix_scan(void)
143 {
144 int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
145 #if (DIODE_DIRECTION == COL2ROW)
146 // Set row, read cols
147 for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
148 # if (DEBOUNCING_DELAY > 0)
149 bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
150
151 if (matrix_changed) {
152 debouncing = true;
153 debouncing_time = timer_read();
154 PORTD ^= (1 << 2);
155 }
156
157 # else
158 read_cols_on_row(matrix+offset, current_row);
159 # endif
160
161 }
162
163 #elif (DIODE_DIRECTION == ROW2COL)
164 // Set col, read rows
165 for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
166 # if (DEBOUNCING_DELAY > 0)
167 bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
168 if (matrix_changed) {
169 debouncing = true;
170 debouncing_time = timer_read();
171 }
172 # else
173 read_rows_on_col(matrix+offset, current_col);
174 # endif
175
176 }
177 #endif
178
179 # if (DEBOUNCING_DELAY > 0)
180 if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
181 for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
182 matrix[i+offset] = matrix_debouncing[i+offset];
183 }
184 debouncing = false;
185 }
186 # endif
187
188 return 1;
189 }
190
191 #ifdef USE_I2C
192
193 // Get rows from other half over i2c
194 int i2c_transaction(void) {
195 int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
196
197 int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
198 if (err) goto i2c_error;
199
200 // start of matrix stored at 0x00
201 err = i2c_master_write(0x00);
202 if (err) goto i2c_error;
203
204 // Start read
205 err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
206 if (err) goto i2c_error;
207
208 if (!err) {
209 int i;
210 for (i = 0; i < ROWS_PER_HAND-1; ++i) {
211 matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
212 }
213 matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
214 i2c_master_stop();
215 } else {
216 i2c_error: // the cable is disconnceted, or something else went wrong
217 i2c_reset_state();
218 return err;
219 }
220
221 return 0;
222 }
223
224 #else // USE_SERIAL
225
226 int serial_transaction(void) {
227 int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
228
229 if (serial_update_buffers()) {
230 return 1;
231 }
232
233 for (int i = 0; i < ROWS_PER_HAND; ++i) {
234 matrix[slaveOffset+i] = serial_slave_buffer[i];
235 }
236 return 0;
237 }
238 #endif
239
240 uint8_t matrix_scan(void)
241 {
242 uint8_t ret = _matrix_scan();
243
244 #ifdef USE_I2C
245 if( i2c_transaction() ) {
246 #else // USE_SERIAL
247 if( serial_transaction() ) {
248 #endif
249 // turn on the indicator led when halves are disconnected
250 TXLED1;
251
252 error_count++;
253
254 if (error_count > ERROR_DISCONNECT_COUNT) {
255 // reset other half if disconnected
256 int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
257 for (int i = 0; i < ROWS_PER_HAND; ++i) {
258 matrix[slaveOffset+i] = 0;
259 }
260 }
261 } else {
262 // turn off the indicator led on no error
263 TXLED0;
264 error_count = 0;
265 }
266 matrix_scan_quantum();
267 return ret;
268 }
269
270 void matrix_slave_scan(void) {
271 _matrix_scan();
272
273 int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
274
275 #ifdef USE_I2C
276 for (int i = 0; i < ROWS_PER_HAND; ++i) {
277 i2c_slave_buffer[i] = matrix[offset+i];
278 }
279 #else // USE_SERIAL
280 for (int i = 0; i < ROWS_PER_HAND; ++i) {
281 serial_slave_buffer[i] = matrix[offset+i];
282 }
283 #endif
284 }
285
286 bool matrix_is_modified(void)
287 {
288 if (debouncing) return false;
289 return true;
290 }
291
292 inline
293 bool matrix_is_on(uint8_t row, uint8_t col)
294 {
295 return (matrix[row] & ((matrix_row_t)1<<col));
296 }
297
298 inline
299 matrix_row_t matrix_get_row(uint8_t row)
300 {
301 return matrix[row];
302 }
303
304 void matrix_print(void)
305 {
306 print("\nr/c 0123456789ABCDEF\n");
307 for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
308 phex(row); print(": ");
309 pbin_reverse16(matrix_get_row(row));
310 print("\n");
311 }
312 }
313
314 uint8_t matrix_key_count(void)
315 {
316 uint8_t count = 0;
317 for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
318 count += bitpop16(matrix[i]);
319 }
320 return count;
321 }
322
323 #if (DIODE_DIRECTION == COL2ROW)
324
325 static void init_cols(void)
326 {
327 for(uint8_t x = 0; x < MATRIX_COLS; x++) {
328 uint8_t pin = col_pins[x];
329 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
330 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
331 }
332 }
333
334 static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
335 {
336 // Store last value of row prior to reading
337 matrix_row_t last_row_value = current_matrix[current_row];
338
339 // Clear data in matrix row
340 current_matrix[current_row] = 0;
341
342 // Select row and wait for row selecton to stabilize
343 select_row(current_row);
344 wait_us(30);
345
346 // For each col...
347 for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
348
349 // Select the col pin to read (active low)
350 uint8_t pin = col_pins[col_index];
351 uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
352
353 // Populate the matrix row with the state of the col pin
354 current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
355 }
356
357 // Unselect row
358 unselect_row(current_row);
359
360 return (last_row_value != current_matrix[current_row]);
361 }
362
363 static void select_row(uint8_t row)
364 {
365 uint8_t pin = row_pins[row];
366 _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
367 _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
368 }
369
370 static void unselect_row(uint8_t row)
371 {
372 uint8_t pin = row_pins[row];
373 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
374 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
375 }
376
377 static void unselect_rows(void)
378 {
379 for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
380 uint8_t pin = row_pins[x];
381 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
382 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
383 }
384 }
385
386 #elif (DIODE_DIRECTION == ROW2COL)
387
388 static void init_rows(void)
389 {
390 for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
391 uint8_t pin = row_pins[x];
392 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
393 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
394 }
395 }
396
397 static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
398 {
399 bool matrix_changed = false;
400
401 // Select col and wait for col selecton to stabilize
402 select_col(current_col);
403 wait_us(30);
404
405 // For each row...
406 for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
407 {
408
409 // Store last value of row prior to reading
410 matrix_row_t last_row_value = current_matrix[row_index];
411
412 // Check row pin state
413 if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
414 {
415 // Pin LO, set col bit
416 current_matrix[row_index] |= (ROW_SHIFTER << current_col);
417 }
418 else
419 {
420 // Pin HI, clear col bit
421 current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
422 }
423
424 // Determine if the matrix changed state
425 if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
426 {
427 matrix_changed = true;
428 }
429 }
430
431 // Unselect col
432 unselect_col(current_col);
433
434 return matrix_changed;
435 }
436
437 static void select_col(uint8_t col)
438 {
439 uint8_t pin = col_pins[col];
440 _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
441 _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
442 }
443
444 static void unselect_col(uint8_t col)
445 {
446 uint8_t pin = col_pins[col];
447 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
448 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
449 }
450
451 static void unselect_cols(void)
452 {
453 for(uint8_t x = 0; x < MATRIX_COLS; x++) {
454 uint8_t pin = col_pins[x];
455 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
456 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
457 }
458 }
459
460 #endif