5fbae1150e75987add1e953aec6fbf9810194734
[jackhill/qmk/firmware.git] / keyboards / viterbi / matrix.c
1 /*
2 Copyright 2017 Danny Nguyen <danny@hexwire.com>
3
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 /*
19 * scan matrix
20 */
21 #include <stdint.h>
22 #include <stdbool.h>
23 #include <avr/io.h>
24 #include "wait.h"
25 #include "print.h"
26 #include "debug.h"
27 #include "util.h"
28 #include "matrix.h"
29 #include "split_util.h"
30 #include "pro_micro.h"
31 #include "config.h"
32 #include "timer.h"
33
34 #ifdef USE_I2C
35 # include "i2c.h"
36 #else // USE_SERIAL
37 # include "serial.h"
38 #endif
39
40 #ifndef DEBOUNCING_DELAY
41 # define DEBOUNCING_DELAY 5
42 #endif
43
44 #if (DEBOUNCING_DELAY > 0)
45 static uint16_t debouncing_time;
46 static bool debouncing = false;
47 #endif
48
49 #if (MATRIX_COLS <= 8)
50 # define print_matrix_header() print("\nr/c 01234567\n")
51 # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
52 # define matrix_bitpop(i) bitpop(matrix[i])
53 # define ROW_SHIFTER ((uint8_t)1)
54 #else
55 # error "Currently only supports 8 COLS"
56 #endif
57 static matrix_row_t matrix_debouncing[MATRIX_ROWS];
58
59 #define ERROR_DISCONNECT_COUNT 5
60
61 #define ROWS_PER_HAND (MATRIX_ROWS/2)
62
63 static uint8_t error_count = 0;
64
65 static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
66 static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
67
68 /* matrix state(1:on, 0:off) */
69 static matrix_row_t matrix[MATRIX_ROWS];
70 static matrix_row_t matrix_debouncing[MATRIX_ROWS];
71
72 #if (DIODE_DIRECTION == COL2ROW)
73 static void init_cols(void);
74 static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
75 static void unselect_rows(void);
76 static void select_row(uint8_t row);
77 static void unselect_row(uint8_t row);
78 #elif (DIODE_DIRECTION == ROW2COL)
79 static void init_rows(void);
80 static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
81 static void unselect_cols(void);
82 static void unselect_col(uint8_t col);
83 static void select_col(uint8_t col);
84 #endif
85
86 __attribute__ ((weak))
87 void matrix_init_kb(void) {
88 matrix_init_user();
89 }
90
91 __attribute__ ((weak))
92 void matrix_scan_kb(void) {
93 matrix_scan_user();
94 }
95
96 __attribute__ ((weak))
97 void matrix_init_user(void) {
98 }
99
100 __attribute__ ((weak))
101 void matrix_scan_user(void) {
102 }
103
104 inline
105 uint8_t matrix_rows(void)
106 {
107 return MATRIX_ROWS;
108 }
109
110 inline
111 uint8_t matrix_cols(void)
112 {
113 return MATRIX_COLS;
114 }
115
116 void matrix_init(void)
117 {
118 debug_enable = true;
119 debug_matrix = true;
120 debug_mouse = true;
121 // initialize row and col
122 unselect_rows();
123 init_cols();
124
125 TX_RX_LED_INIT;
126
127 // initialize matrix state: all keys off
128 for (uint8_t i=0; i < MATRIX_ROWS; i++) {
129 matrix[i] = 0;
130 matrix_debouncing[i] = 0;
131 }
132
133 matrix_init_quantum();
134
135 }
136
137 uint8_t _matrix_scan(void)
138 {
139 int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
140 #if (DIODE_DIRECTION == COL2ROW)
141 // Set row, read cols
142 for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
143 # if (DEBOUNCING_DELAY > 0)
144 bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
145
146 if (matrix_changed) {
147 debouncing = true;
148 debouncing_time = timer_read();
149 PORTD ^= (1 << 2);
150 }
151
152 # else
153 read_cols_on_row(matrix+offset, current_row);
154 # endif
155
156 }
157
158 #elif (DIODE_DIRECTION == ROW2COL)
159 // Set col, read rows
160 for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
161 # if (DEBOUNCING_DELAY > 0)
162 bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
163 if (matrix_changed) {
164 debouncing = true;
165 debouncing_time = timer_read();
166 }
167 # else
168 read_rows_on_col(matrix+offset, current_col);
169 # endif
170
171 }
172 #endif
173
174 # if (DEBOUNCING_DELAY > 0)
175 if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
176 for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
177 matrix[i+offset] = matrix_debouncing[i+offset];
178 }
179 debouncing = false;
180 }
181 # endif
182
183 return 1;
184 }
185
186 #ifdef USE_I2C
187
188 // Get rows from other half over i2c
189 int i2c_transaction(void) {
190 int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
191
192 int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
193 if (err) goto i2c_error;
194
195 // start of matrix stored at 0x00
196 err = i2c_master_write(0x00);
197 if (err) goto i2c_error;
198
199 // Start read
200 err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
201 if (err) goto i2c_error;
202
203 if (!err) {
204 int i;
205 for (i = 0; i < ROWS_PER_HAND-1; ++i) {
206 matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
207 }
208 matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
209 i2c_master_stop();
210 } else {
211 i2c_error: // the cable is disconnceted, or something else went wrong
212 i2c_reset_state();
213 return err;
214 }
215
216 return 0;
217 }
218
219 #else // USE_SERIAL
220
221 int serial_transaction(void) {
222 int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
223
224 if (serial_update_buffers()) {
225 return 1;
226 }
227
228 for (int i = 0; i < ROWS_PER_HAND; ++i) {
229 matrix[slaveOffset+i] = serial_slave_buffer[i];
230 }
231 return 0;
232 }
233 #endif
234
235 uint8_t matrix_scan(void)
236 {
237 uint8_t ret = _matrix_scan();
238
239 #ifdef USE_I2C
240 if( i2c_transaction() ) {
241 #else // USE_SERIAL
242 if( serial_transaction() ) {
243 #endif
244 // turn on the indicator led when halves are disconnected
245 TXLED1;
246
247 error_count++;
248
249 if (error_count > ERROR_DISCONNECT_COUNT) {
250 // reset other half if disconnected
251 int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
252 for (int i = 0; i < ROWS_PER_HAND; ++i) {
253 matrix[slaveOffset+i] = 0;
254 }
255 }
256 } else {
257 // turn off the indicator led on no error
258 TXLED0;
259 error_count = 0;
260 }
261 matrix_scan_quantum();
262 return ret;
263 }
264
265 void matrix_slave_scan(void) {
266 _matrix_scan();
267
268 int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
269
270 #ifdef USE_I2C
271 for (int i = 0; i < ROWS_PER_HAND; ++i) {
272 i2c_slave_buffer[i] = matrix[offset+i];
273 }
274 #else // USE_SERIAL
275 for (int i = 0; i < ROWS_PER_HAND; ++i) {
276 serial_slave_buffer[i] = matrix[offset+i];
277 }
278 #endif
279 }
280
281 bool matrix_is_modified(void)
282 {
283 if (debouncing) return false;
284 return true;
285 }
286
287 inline
288 bool matrix_is_on(uint8_t row, uint8_t col)
289 {
290 return (matrix[row] & ((matrix_row_t)1<<col));
291 }
292
293 inline
294 matrix_row_t matrix_get_row(uint8_t row)
295 {
296 return matrix[row];
297 }
298
299 void matrix_print(void)
300 {
301 print("\nr/c 0123456789ABCDEF\n");
302 for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
303 phex(row); print(": ");
304 pbin_reverse16(matrix_get_row(row));
305 print("\n");
306 }
307 }
308
309 uint8_t matrix_key_count(void)
310 {
311 uint8_t count = 0;
312 for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
313 count += bitpop16(matrix[i]);
314 }
315 return count;
316 }
317
318 #if (DIODE_DIRECTION == COL2ROW)
319
320 static void init_cols(void)
321 {
322 for(uint8_t x = 0; x < MATRIX_COLS; x++) {
323 uint8_t pin = col_pins[x];
324 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
325 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
326 }
327 }
328
329 static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
330 {
331 // Store last value of row prior to reading
332 matrix_row_t last_row_value = current_matrix[current_row];
333
334 // Clear data in matrix row
335 current_matrix[current_row] = 0;
336
337 // Select row and wait for row selecton to stabilize
338 select_row(current_row);
339 wait_us(30);
340
341 // For each col...
342 for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
343
344 // Select the col pin to read (active low)
345 uint8_t pin = col_pins[col_index];
346 uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
347
348 // Populate the matrix row with the state of the col pin
349 current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
350 }
351
352 // Unselect row
353 unselect_row(current_row);
354
355 return (last_row_value != current_matrix[current_row]);
356 }
357
358 static void select_row(uint8_t row)
359 {
360 uint8_t pin = row_pins[row];
361 _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
362 _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
363 }
364
365 static void unselect_row(uint8_t row)
366 {
367 uint8_t pin = row_pins[row];
368 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
369 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
370 }
371
372 static void unselect_rows(void)
373 {
374 for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
375 uint8_t pin = row_pins[x];
376 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
377 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
378 }
379 }
380
381 #elif (DIODE_DIRECTION == ROW2COL)
382
383 static void init_rows(void)
384 {
385 for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
386 uint8_t pin = row_pins[x];
387 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
388 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
389 }
390 }
391
392 static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
393 {
394 bool matrix_changed = false;
395
396 // Select col and wait for col selecton to stabilize
397 select_col(current_col);
398 wait_us(30);
399
400 // For each row...
401 for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
402 {
403
404 // Store last value of row prior to reading
405 matrix_row_t last_row_value = current_matrix[row_index];
406
407 // Check row pin state
408 if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
409 {
410 // Pin LO, set col bit
411 current_matrix[row_index] |= (ROW_SHIFTER << current_col);
412 }
413 else
414 {
415 // Pin HI, clear col bit
416 current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
417 }
418
419 // Determine if the matrix changed state
420 if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
421 {
422 matrix_changed = true;
423 }
424 }
425
426 // Unselect col
427 unselect_col(current_col);
428
429 return matrix_changed;
430 }
431
432 static void select_col(uint8_t col)
433 {
434 uint8_t pin = col_pins[col];
435 _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
436 _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
437 }
438
439 static void unselect_col(uint8_t col)
440 {
441 uint8_t pin = col_pins[col];
442 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
443 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
444 }
445
446 static void unselect_cols(void)
447 {
448 for(uint8_t x = 0; x < MATRIX_COLS; x++) {
449 uint8_t pin = col_pins[x];
450 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
451 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
452 }
453 }
454
455 #endif