gnu: Add kafs-client
[jackhill/guix/guix.git] / gnu / packages / patches / ratpoints-sturm_and_rp_private.patch
CommitLineData
0c842e3a
NG
1diff --git a/rp-private.h b/rp-private.h
2index b4c7dad..0c7193e 100644
3--- a/rp-private.h
4+++ b/rp-private.h
5@@ -36,7 +36,7 @@
6 #define LONG_SHIFT ((LONG_LENGTH == 16) ? 4 : \
7 (LONG_LENGTH == 32) ? 5 : \
8 (LONG_LENGTH == 64) ? 6 : 0)
9-#define LONG_MASK (~(-1L<<LONG_SHIFT))
10+#define LONG_MASK (~(-(1L<<LONG_SHIFT)))
11
12 /* Check if SSE instructions can be used.
13 We assume that one SSE word of 128 bit is two long's,
14diff --git a/sturm.c b/sturm.c
15index c78d7c6..5fd2cf5 100644
16--- a/sturm.c
17+++ b/sturm.c
18@@ -27,7 +27,6 @@
19 ***********************************************************************/
20
21 #include "ratpoints.h"
22-
23 /**************************************************************************
24 * Arguments of _ratpoints_compute_sturm() : (from the args argument) *
25 * *
26@@ -53,7 +52,7 @@
27 /* A helper function: evaluate the polynomial in cofs[] of given degree
28 at num/2^denexp and return the sign. */
29
30-static long eval_sign(ratpoints_args *args, mpz_t *cofs, long degree,
31+static long eval_sign(const ratpoints_args *args, const mpz_t *cofs, long degree,
32 long num, long denexp)
33 {
34 long n, e, s;
35@@ -70,11 +69,80 @@ static long eval_sign(ratpoints_args *args, mpz_t *cofs, long degree,
36 return(s);
37 }
38
39+static const long max = (long)(((unsigned long)(-1))>>1);
40+static const long min = (long)(-(((unsigned long)(-1))>>1));
41+ /* recursive helper function */
42+static void iterate(long nl, long nr, long del, long der, long cleft, long cright,
43+ long sl, long sr, long depth,
44+ ratpoints_interval **iptr, const ratpoints_interval *ivlo,
45+ const ratpoints_args *args, const long k, const long sturm_degs[],
46+ const mpz_t sturm[][args->degree + 1])
47+ { /* nl/2^del, nr/2^der : interval left/right endpoints,
48+ cleft, cright: sign change counts at endpoints,
49+ sl, sr: signs at endpoints,
50+ depth: iteration depth */
51+ long iter = args->sturm;
52+ if(cleft == cright && sl < 0) { return; }
53+ /* here we know the polynomial is negative on the interval */
54+ if((cleft == cright && sl > 0) || depth >= iter)
55+ /* we have to add/extend an interval if we either know that
56+ the polynomial is positive on the interval (first condition)
57+ or the maximal iteration depth has been reached (second condition) */
58+ { double l = ((double)nl)/((double)(1<<del));
59+ double u = ((double)nr)/((double)(1<<der));
60+ if(*iptr == ivlo)
61+ { (*iptr)->low = l; (*iptr)->up = u; (*iptr)++; }
62+ else
63+ { if(((*iptr)-1)->up == l) /* extend interval */
64+ { ((*iptr)-1)->up = u; }
65+ else /* new interval */
66+ { (*iptr)->low = l; (*iptr)->up = u; (*iptr)++; }
67+ }
68+ return;
69+ }
70+ /* now we must split the interval and evaluate the sturm sequence
71+ at the midpoint */
72+ { long nm, dem, s0, s1, s2, s, cmid = 0, n;
73+ if(nl == min)
74+ { if(nr == max) { nm = 0; dem = 0; }
75+ else { nm = (nr == 0) ? -1 : 2*nr; dem = 0; }
76+ }
77+ else
78+ { if(nr == max) { nm = (nl == 0) ? 1 : 2*nl; dem = 0; }
79+ else /* "normal" case */
80+ { if(del == der) /* then both are zero */
81+ { if(((nl+nr) & 1) == 0) { nm = (nl+nr)>>1; dem = 0; }
82+ else { nm = nl+nr; dem = 1; }
83+ }
84+ else /* here one de* is greater */
85+ { if(del > der) { nm = nl + (nr<<(del-der)); dem = del+1; }
86+ else { nm = (nl<<(der-del)) + nr; dem = der+1; }
87+ }
88+ }
89+ }
90+ s0 = eval_sign(args, sturm[0], sturm_degs[0], nm, dem);
91+ s1 = eval_sign(args, sturm[1], sturm_degs[1], nm, dem);
92+ if(s0*s1 == -1) { cmid++; }
93+ s = (s1 == 0) ? s0 : s1;
94+ for(n = 2; n <= k; n++)
95+ { s2 = eval_sign(args, sturm[n], sturm_degs[n], nm, dem);
96+ if(s2 == -s) { cmid++; s = s2; }
97+ else if(s2 != 0) { s = s2; }
98+ }
99+ /* now recurse */
100+ iterate(nl, nm, del, dem, cleft, (s0==0) ? (cmid+1) : cmid,
101+ sl, (s0==0) ? -s1 : s0, depth+1,
102+ iptr, ivlo, args, k, sturm_degs, sturm);
103+ iterate(nm, nr, dem, der, cmid, cright,
104+ (s0==0) ? s1 : s0, sr, depth+1,
105+ iptr, ivlo, args, k, sturm_degs, sturm);
106+ }
107+ } /* end iterate() */
108+
109 long _ratpoints_compute_sturm(ratpoints_args *args)
110 {
111 mpz_t *cofs = args->cof;
112 long degree = args->degree;
113- long iter = args->sturm;
114 ratpoints_interval *ivlist = args->domain;
115 long num_iv = args->num_inter;
116 long n, m, k, new_num;
117@@ -165,75 +233,12 @@ long _ratpoints_compute_sturm(ratpoints_args *args)
118 /* recall: typedef struct {double low; double up;} ratpoints_interval; */
119 { ratpoints_interval ivlocal[1 + (degree>>1)];
120 ratpoints_interval *iptr = &ivlocal[0];
121- long max = (long)(((unsigned long)(-1))>>1);
122- long min = -max;
123 long num_intervals;
124 long slcf = mpz_cmp_si(cofs[degree], 0);
125
126- /* recursive helper function */
127- void iterate(long nl, long nr, long del, long der, long cleft, long cright,
128- long sl, long sr, long depth)
129- { /* nl/2^del, nr/2^der : interval left/right endpoints,
130- cleft, cright: sign change counts at endpoints,
131- sl, sr: signs at endpoints,
132- depth: iteration depth */
133- if(cleft == cright && sl < 0) { return; }
134- /* here we know the polynomial is negative on the interval */
135- if((cleft == cright && sl > 0) || depth >= iter)
136- /* we have to add/extend an interval if we either know that
137- the polynomial is positive on the interval (first condition)
138- or the maximal iteration depth has been reached (second condition) */
139- { double l = ((double)nl)/((double)(1<<del));
140- double u = ((double)nr)/((double)(1<<der));
141- if(iptr == &ivlocal[0])
142- { iptr->low = l; iptr->up = u; iptr++; }
143- else
144- { if((iptr-1)->up == l) /* extend interval */
145- { (iptr-1)->up = u; }
146- else /* new interval */
147- { iptr->low = l; iptr->up = u; iptr++; }
148- }
149- return;
150- }
151- /* now we must split the interval and evaluate the sturm sequence
152- at the midpoint */
153- { long nm, dem, s0, s1, s2, s, cmid = 0, n;
154- if(nl == min)
155- { if(nr == max) { nm = 0; dem = 0; }
156- else { nm = (nr == 0) ? -1 : 2*nr; dem = 0; }
157- }
158- else
159- { if(nr == max) { nm = (nl == 0) ? 1 : 2*nl; dem = 0; }
160- else /* "normal" case */
161- { if(del == der) /* then both are zero */
162- { if(((nl+nr) & 1) == 0) { nm = (nl+nr)>>1; dem = 0; }
163- else { nm = nl+nr; dem = 1; }
164- }
165- else /* here one de* is greater */
166- { if(del > der) { nm = nl + (nr<<(del-der)); dem = del+1; }
167- else { nm = (nl<<(der-del)) + nr; dem = der+1; }
168- }
169- }
170- }
171- s0 = eval_sign(args, sturm[0], sturm_degs[0], nm, dem);
172- s1 = eval_sign(args, sturm[1], sturm_degs[1], nm, dem);
173- if(s0*s1 == -1) { cmid++; }
174- s = (s1 == 0) ? s0 : s1;
175- for(n = 2; n <= k; n++)
176- { s2 = eval_sign(args, sturm[n], sturm_degs[n], nm, dem);
177- if(s2 == -s) { cmid++; s = s2; }
178- else if(s2 != 0) { s = s2; }
179- }
180- /* now recurse */
181- iterate(nl, nm, del, dem, cleft, (s0==0) ? (cmid+1) : cmid,
182- sl, (s0==0) ? -s1 : s0, depth+1);
183- iterate(nm, nr, dem, der, cmid, cright,
184- (s0==0) ? s1 : s0, sr, depth+1);
185- }
186- } /* end iterate() */
187-
188 iterate(min, max, 0, 0, count2, count1,
189- (degree & 1) ? -slcf : slcf, slcf, 0);
190+ (degree & 1) ? -slcf : slcf, slcf, 0,
191+ &iptr, &ivlocal[0], args, k, sturm_degs, sturm);
192 num_intervals = iptr - &ivlocal[0];
193 /* intersect with given intervals */
194 { ratpoints_interval local_copy[num_iv];