Import Upstream version 1.8.5
[hcoop/debian/openafs.git] / src / rx / LINUX / rx_knet.c
1 /*
2 * Copyright 2000, International Business Machines Corporation and others.
3 * All Rights Reserved.
4 *
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
8 */
9
10 /*
11 * rx_knet.c - RX kernel send, receive and timer routines.
12 *
13 * Linux implementation.
14 */
15 #include <afsconfig.h>
16 #include "afs/param.h"
17
18
19 #include <linux/version.h>
20 #include "rx/rx_kcommon.h"
21 #include "rx.h"
22 #include "rx_atomic.h"
23 #include "rx_globals.h"
24 #include "rx_stats.h"
25 #include "rx_peer.h"
26 #include "rx_packet.h"
27 #include "rx_internal.h"
28 #if defined(HAVE_LINUX_UACCESS_H)
29 #include <linux/uaccess.h>
30 #else
31 #include <asm/uaccess.h>
32 #endif
33 #ifdef AFS_RXERRQ_ENV
34 #include <linux/errqueue.h>
35 #include <linux/icmp.h>
36 #endif
37
38 #include "osi_compat.h"
39
40 /* rxk_NewSocket
41 * open and bind RX socket
42 */
43 osi_socket *
44 rxk_NewSocketHost(afs_uint32 ahost, short aport)
45 {
46 struct socket *sockp;
47 struct sockaddr_in myaddr;
48 int code;
49 #ifdef AFS_ADAPT_PMTU
50 int pmtu = IP_PMTUDISC_WANT;
51 #else
52 int pmtu = IP_PMTUDISC_DONT;
53 #endif
54
55 #ifdef HAVE_LINUX_SOCK_CREATE_KERN_NS
56 code = sock_create_kern(&init_net, AF_INET, SOCK_DGRAM, IPPROTO_UDP, &sockp);
57 #elif defined(HAVE_LINUX_SOCK_CREATE_KERN)
58 code = sock_create_kern(AF_INET, SOCK_DGRAM, IPPROTO_UDP, &sockp);
59 #elif defined(LINUX_KERNEL_SOCK_CREATE_V)
60 code = sock_create(AF_INET, SOCK_DGRAM, IPPROTO_UDP, &sockp, 0);
61 #else
62 code = sock_create(AF_INET, SOCK_DGRAM, IPPROTO_UDP, &sockp);
63 #endif
64 if (code < 0)
65 return NULL;
66
67 /* Bind socket */
68 myaddr.sin_family = AF_INET;
69 myaddr.sin_addr.s_addr = ahost;
70 myaddr.sin_port = aport;
71 code =
72 sockp->ops->bind(sockp, (struct sockaddr *)&myaddr, sizeof(myaddr));
73
74 if (code < 0) {
75 printk("sock_release(rx_socket) FIXME\n");
76 return NULL;
77 }
78
79 kernel_setsockopt(sockp, SOL_IP, IP_MTU_DISCOVER, (char *)&pmtu,
80 sizeof(pmtu));
81 #ifdef AFS_RXERRQ_ENV
82 {
83 int recverr = 1;
84 kernel_setsockopt(sockp, SOL_IP, IP_RECVERR, (char *)&recverr,
85 sizeof(recverr));
86 }
87 #endif
88 return (osi_socket *)sockp;
89 }
90
91 osi_socket *
92 rxk_NewSocket(short aport)
93 {
94 return rxk_NewSocketHost(htonl(INADDR_ANY), aport);
95 }
96
97 /* free socket allocated by osi_NetSocket */
98 int
99 rxk_FreeSocket(struct socket *asocket)
100 {
101 AFS_STATCNT(osi_FreeSocket);
102 return 0;
103 }
104
105 #ifdef AFS_RXERRQ_ENV
106 static int
107 osi_HandleSocketError(osi_socket so, char *cmsgbuf, size_t cmsgbuf_len)
108 {
109 struct msghdr msg;
110 struct cmsghdr *cmsg;
111 struct sock_extended_err *err;
112 struct sockaddr_in addr;
113 int code;
114 struct socket *sop = (struct socket *)so;
115
116 msg.msg_name = &addr;
117 msg.msg_namelen = sizeof(addr);
118 msg.msg_control = cmsgbuf;
119 msg.msg_controllen = cmsgbuf_len;
120 msg.msg_flags = 0;
121
122 code = kernel_recvmsg(sop, &msg, NULL, 0, 0,
123 MSG_ERRQUEUE|MSG_DONTWAIT|MSG_TRUNC);
124
125 if (code < 0 || !(msg.msg_flags & MSG_ERRQUEUE))
126 return 0;
127
128 /* kernel_recvmsg changes msg_control to point at the _end_ of the buffer,
129 * and msg_controllen is set to the number of bytes remaining */
130 msg.msg_controllen = ((char*)msg.msg_control - (char*)cmsgbuf);
131 msg.msg_control = cmsgbuf;
132
133 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg && CMSG_OK(&msg, cmsg);
134 cmsg = CMSG_NXTHDR(&msg, cmsg)) {
135
136 if (cmsg->cmsg_level != SOL_IP || cmsg->cmsg_type != IP_RECVERR) {
137 continue;
138 }
139
140 err = CMSG_DATA(cmsg);
141 rxi_ProcessNetError(err, addr.sin_addr.s_addr, addr.sin_port);
142 }
143
144 return 1;
145 }
146 #endif
147
148 static void
149 do_handlesocketerror(osi_socket so)
150 {
151 #ifdef AFS_RXERRQ_ENV
152 char *cmsgbuf;
153 size_t cmsgbuf_len;
154
155 cmsgbuf_len = 256;
156 cmsgbuf = rxi_Alloc(cmsgbuf_len);
157 if (!cmsgbuf) {
158 return;
159 }
160
161 while (osi_HandleSocketError(so, cmsgbuf, cmsgbuf_len))
162 ;
163
164 rxi_Free(cmsgbuf, cmsgbuf_len);
165 #endif
166 }
167
168 /* osi_NetSend
169 *
170 * Return codes:
171 * 0 = success
172 * non-zero = failure
173 */
174 int
175 osi_NetSend(osi_socket sop, struct sockaddr_in *to, struct iovec *iovec,
176 int iovcnt, afs_int32 size, int istack)
177 {
178 struct msghdr msg;
179 int code;
180
181
182 msg.msg_name = to;
183 msg.msg_namelen = sizeof(*to);
184 msg.msg_control = NULL;
185 msg.msg_controllen = 0;
186 msg.msg_flags = 0;
187
188 code = kernel_sendmsg(sop, &msg, (struct kvec *) iovec, iovcnt, size);
189
190 if (code < 0) {
191 do_handlesocketerror(sop);
192 }
193
194 return (code < 0) ? code : 0;
195 }
196
197
198 /* osi_NetReceive
199 * OS dependent part of kernel RX listener thread.
200 *
201 * Arguments:
202 * so socket to receive on, typically rx_socket
203 * from pointer to a sockaddr_in.
204 * iov array of iovecs to fill in.
205 * iovcnt how many iovecs there are.
206 * lengthp IN/OUT in: total space available in iovecs. out: size of read.
207 *
208 * Return
209 * 0 if successful
210 * error code (such as EINTER) if not
211 *
212 * Environment
213 * Note that the maximum number of iovecs is 2 + RX_MAXWVECS. This is
214 * so we have a little space to look for packets larger than
215 * rx_maxReceiveSize.
216 */
217 int rxk_lastSocketError;
218 int rxk_nSocketErrors;
219 int
220 osi_NetReceive(osi_socket so, struct sockaddr_in *from, struct iovec *iov,
221 int iovcnt, int *lengthp)
222 {
223 struct msghdr msg;
224 int code;
225 struct iovec tmpvec[RX_MAXWVECS + 2];
226 struct socket *sop = (struct socket *)so;
227
228 if (iovcnt > RX_MAXWVECS + 2) {
229 osi_Panic("Too many (%d) iovecs passed to osi_NetReceive\n", iovcnt);
230 }
231
232 memcpy(tmpvec, iov, iovcnt * sizeof(struct iovec));
233 msg.msg_name = from;
234 #if defined(STRUCT_MSGHDR_HAS_MSG_ITER)
235 msg.msg_iter.iov = tmpvec;
236 msg.msg_iter.nr_segs = iovcnt;
237 #else
238 msg.msg_iov = tmpvec;
239 msg.msg_iovlen = iovcnt;
240 #endif
241 msg.msg_control = NULL;
242 msg.msg_controllen = 0;
243 msg.msg_flags = 0;
244
245 code = kernel_recvmsg(sop, &msg, (struct kvec *)tmpvec, iovcnt,
246 *lengthp, 0);
247 if (code < 0) {
248 afs_try_to_freeze();
249
250 /* Clear the error before using the socket again.
251 * Oh joy, Linux has hidden header files as well. It appears we can
252 * simply call again and have it clear itself via sock_error().
253 */
254 flush_signals(current); /* We don't want no stinkin' signals. */
255 rxk_lastSocketError = code;
256 rxk_nSocketErrors++;
257
258 do_handlesocketerror(so);
259 } else {
260 *lengthp = code;
261 code = 0;
262 }
263
264 return code;
265 }
266
267 void
268 osi_StopListener(void)
269 {
270 extern struct task_struct *rxk_ListenerTask;
271
272 while (rxk_ListenerTask) {
273 if (rxk_ListenerTask) {
274 flush_signals(rxk_ListenerTask);
275 send_sig(SIGKILL, rxk_ListenerTask, 1);
276 }
277 if (!rxk_ListenerTask)
278 break;
279 afs_osi_Sleep(&rxk_ListenerTask);
280 }
281 sock_release(rx_socket);
282 rx_socket = NULL;
283 }
284