Import Upstream version 1.8.5
[hcoop/debian/openafs.git] / src / external / heimdal / hcrypto / evp.c
1 /*
2 * Copyright (c) 2006 - 2008 Kungliga Tekniska Högskolan
3 * (Royal Institute of Technology, Stockholm, Sweden).
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the Institute nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include <config.h>
36 #endif
37
38 #define HC_DEPRECATED
39 #define HC_DEPRECATED_CRYPTO
40
41 #include <sys/types.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <assert.h>
46
47 #include <evp.h>
48 #include <evp-hcrypto.h>
49 #include <evp-cc.h>
50
51 #include <krb5-types.h>
52 #include <roken.h>
53
54 #ifndef HCRYPTO_DEF_PROVIDER
55 #define HCRYPTO_DEF_PROVIDER hcrypto
56 #endif
57
58 #define HC_CONCAT4(x,y,z,aa) x ## y ## z ## aa
59
60
61 #define EVP_DEF_OP(_prov,_op) HC_CONCAT4(EVP_,_prov,_,_op)()
62
63 /**
64 * @page page_evp EVP - generic crypto interface
65 *
66 * See the library functions here: @ref hcrypto_evp
67 *
68 * @section evp_cipher EVP Cipher
69 *
70 * The use of EVP_CipherInit_ex() and EVP_Cipher() is pretty easy to
71 * understand forward, then EVP_CipherUpdate() and
72 * EVP_CipherFinal_ex() really needs an example to explain @ref
73 * example_evp_cipher.c .
74 *
75 * @example example_evp_cipher.c
76 *
77 * This is an example how to use EVP_CipherInit_ex(),
78 * EVP_CipherUpdate() and EVP_CipherFinal_ex().
79 */
80
81 struct hc_EVP_MD_CTX {
82 const EVP_MD *md;
83 ENGINE *engine;
84 void *ptr;
85 };
86
87
88 /**
89 * Return the output size of the message digest function.
90 *
91 * @param md the evp message
92 *
93 * @return size output size of the message digest function.
94 *
95 * @ingroup hcrypto_evp
96 */
97
98 size_t
99 EVP_MD_size(const EVP_MD *md)
100 {
101 return md->hash_size;
102 }
103
104 /**
105 * Return the blocksize of the message digest function.
106 *
107 * @param md the evp message
108 *
109 * @return size size of the message digest block size
110 *
111 * @ingroup hcrypto_evp
112 */
113
114 size_t
115 EVP_MD_block_size(const EVP_MD *md)
116 {
117 return md->block_size;
118 }
119
120 /**
121 * Allocate a messsage digest context object. Free with
122 * EVP_MD_CTX_destroy().
123 *
124 * @return a newly allocated message digest context object.
125 *
126 * @ingroup hcrypto_evp
127 */
128
129 EVP_MD_CTX *
130 EVP_MD_CTX_create(void)
131 {
132 return calloc(1, sizeof(EVP_MD_CTX));
133 }
134
135 /**
136 * Initiate a messsage digest context object. Deallocate with
137 * EVP_MD_CTX_cleanup(). Please use EVP_MD_CTX_create() instead.
138 *
139 * @param ctx variable to initiate.
140 *
141 * @ingroup hcrypto_evp
142 */
143
144 void
145 EVP_MD_CTX_init(EVP_MD_CTX *ctx) HC_DEPRECATED
146 {
147 memset(ctx, 0, sizeof(*ctx));
148 }
149
150 /**
151 * Free a messsage digest context object.
152 *
153 * @param ctx context to free.
154 *
155 * @ingroup hcrypto_evp
156 */
157
158 void
159 EVP_MD_CTX_destroy(EVP_MD_CTX *ctx)
160 {
161 EVP_MD_CTX_cleanup(ctx);
162 free(ctx);
163 }
164
165 /**
166 * Free the resources used by the EVP_MD context.
167 *
168 * @param ctx the context to free the resources from.
169 *
170 * @return 1 on success.
171 *
172 * @ingroup hcrypto_evp
173 */
174
175 int
176 EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx) HC_DEPRECATED
177 {
178 if (ctx->md && ctx->md->cleanup)
179 (ctx->md->cleanup)(ctx);
180 else if (ctx->md)
181 memset(ctx->ptr, 0, ctx->md->ctx_size);
182 ctx->md = NULL;
183 ctx->engine = NULL;
184 free(ctx->ptr);
185 memset(ctx, 0, sizeof(*ctx));
186 return 1;
187 }
188
189 /**
190 * Get the EVP_MD use for a specified context.
191 *
192 * @param ctx the EVP_MD context to get the EVP_MD for.
193 *
194 * @return the EVP_MD used for the context.
195 *
196 * @ingroup hcrypto_evp
197 */
198
199 const EVP_MD *
200 EVP_MD_CTX_md(EVP_MD_CTX *ctx)
201 {
202 return ctx->md;
203 }
204
205 /**
206 * Return the output size of the message digest function.
207 *
208 * @param ctx the evp message digest context
209 *
210 * @return size output size of the message digest function.
211 *
212 * @ingroup hcrypto_evp
213 */
214
215 size_t
216 EVP_MD_CTX_size(EVP_MD_CTX *ctx)
217 {
218 return EVP_MD_size(ctx->md);
219 }
220
221 /**
222 * Return the blocksize of the message digest function.
223 *
224 * @param ctx the evp message digest context
225 *
226 * @return size size of the message digest block size
227 *
228 * @ingroup hcrypto_evp
229 */
230
231 size_t
232 EVP_MD_CTX_block_size(EVP_MD_CTX *ctx)
233 {
234 return EVP_MD_block_size(ctx->md);
235 }
236
237 /**
238 * Init a EVP_MD_CTX for use a specific message digest and engine.
239 *
240 * @param ctx the message digest context to init.
241 * @param md the message digest to use.
242 * @param engine the engine to use, NULL to use the default engine.
243 *
244 * @return 1 on success.
245 *
246 * @ingroup hcrypto_evp
247 */
248
249 int
250 EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *md, ENGINE *engine)
251 {
252 if (ctx->md != md || ctx->engine != engine) {
253 EVP_MD_CTX_cleanup(ctx);
254 ctx->md = md;
255 ctx->engine = engine;
256
257 ctx->ptr = calloc(1, md->ctx_size);
258 if (ctx->ptr == NULL)
259 return 0;
260 }
261 (ctx->md->init)(ctx->ptr);
262 return 1;
263 }
264
265 /**
266 * Update the digest with some data.
267 *
268 * @param ctx the context to update
269 * @param data the data to update the context with
270 * @param size length of data
271 *
272 * @return 1 on success.
273 *
274 * @ingroup hcrypto_evp
275 */
276
277 int
278 EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *data, size_t size)
279 {
280 (ctx->md->update)(ctx->ptr, data, size);
281 return 1;
282 }
283
284 /**
285 * Complete the message digest.
286 *
287 * @param ctx the context to complete.
288 * @param hash the output of the message digest function. At least
289 * EVP_MD_size().
290 * @param size the output size of hash.
291 *
292 * @return 1 on success.
293 *
294 * @ingroup hcrypto_evp
295 */
296
297 int
298 EVP_DigestFinal_ex(EVP_MD_CTX *ctx, void *hash, unsigned int *size)
299 {
300 (ctx->md->final)(hash, ctx->ptr);
301 if (size)
302 *size = ctx->md->hash_size;
303 return 1;
304 }
305
306 /**
307 * Do the whole EVP_MD_CTX_create(), EVP_DigestInit_ex(),
308 * EVP_DigestUpdate(), EVP_DigestFinal_ex(), EVP_MD_CTX_destroy()
309 * dance in one call.
310 *
311 * @param data the data to update the context with
312 * @param dsize length of data
313 * @param hash output data of at least EVP_MD_size() length.
314 * @param hsize output length of hash.
315 * @param md message digest to use
316 * @param engine engine to use, NULL for default engine.
317 *
318 * @return 1 on success.
319 *
320 * @ingroup hcrypto_evp
321 */
322
323 int
324 EVP_Digest(const void *data, size_t dsize, void *hash, unsigned int *hsize,
325 const EVP_MD *md, ENGINE *engine)
326 {
327 EVP_MD_CTX *ctx;
328 int ret;
329
330 ctx = EVP_MD_CTX_create();
331 if (ctx == NULL)
332 return 0;
333 ret = EVP_DigestInit_ex(ctx, md, engine);
334 if (ret != 1) {
335 EVP_MD_CTX_destroy(ctx);
336 return ret;
337 }
338 ret = EVP_DigestUpdate(ctx, data, dsize);
339 if (ret != 1) {
340 EVP_MD_CTX_destroy(ctx);
341 return ret;
342 }
343 ret = EVP_DigestFinal_ex(ctx, hash, hsize);
344 EVP_MD_CTX_destroy(ctx);
345 return ret;
346 }
347
348 /**
349 * The message digest SHA256
350 *
351 * @return the message digest type.
352 *
353 * @ingroup hcrypto_evp
354 */
355
356 const EVP_MD *
357 EVP_sha256(void)
358 {
359 hcrypto_validate();
360 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha256);
361 }
362
363 /**
364 * The message digest SHA384
365 *
366 * @return the message digest type.
367 *
368 * @ingroup hcrypto_evp
369 */
370
371 const EVP_MD *
372 EVP_sha384(void)
373 {
374 hcrypto_validate();
375 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha384);
376 }
377
378 /**
379 * The message digest SHA512
380 *
381 * @return the message digest type.
382 *
383 * @ingroup hcrypto_evp
384 */
385
386 const EVP_MD *
387 EVP_sha512(void)
388 {
389 hcrypto_validate();
390 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha512);
391 }
392
393 /**
394 * The message digest SHA1
395 *
396 * @return the message digest type.
397 *
398 * @ingroup hcrypto_evp
399 */
400
401 const EVP_MD *
402 EVP_sha1(void)
403 {
404 hcrypto_validate();
405 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha1);
406 }
407
408 /**
409 * The message digest SHA1
410 *
411 * @return the message digest type.
412 *
413 * @ingroup hcrypto_evp
414 */
415
416 const EVP_MD *
417 EVP_sha(void) HC_DEPRECATED
418
419 {
420 hcrypto_validate();
421 return EVP_sha1();
422 }
423
424 /**
425 * The message digest MD5
426 *
427 * @return the message digest type.
428 *
429 * @ingroup hcrypto_evp
430 */
431
432 const EVP_MD *
433 EVP_md5(void) HC_DEPRECATED_CRYPTO
434 {
435 hcrypto_validate();
436 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, md5);
437 }
438
439 /**
440 * The message digest MD4
441 *
442 * @return the message digest type.
443 *
444 * @ingroup hcrypto_evp
445 */
446
447 const EVP_MD *
448 EVP_md4(void) HC_DEPRECATED_CRYPTO
449 {
450 hcrypto_validate();
451 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, md4);
452 }
453
454 /**
455 * The message digest MD2
456 *
457 * @return the message digest type.
458 *
459 * @ingroup hcrypto_evp
460 */
461
462 const EVP_MD *
463 EVP_md2(void) HC_DEPRECATED_CRYPTO
464 {
465 hcrypto_validate();
466 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, md2);
467 }
468
469 /*
470 *
471 */
472
473 static void
474 null_Init (void *m)
475 {
476 }
477 static void
478 null_Update (void *m, const void * data, size_t size)
479 {
480 }
481 static void
482 null_Final(void *res, void *m)
483 {
484 }
485
486 /**
487 * The null message digest
488 *
489 * @return the message digest type.
490 *
491 * @ingroup hcrypto_evp
492 */
493
494 const EVP_MD *
495 EVP_md_null(void)
496 {
497 static const struct hc_evp_md null = {
498 0,
499 0,
500 0,
501 (hc_evp_md_init)null_Init,
502 (hc_evp_md_update)null_Update,
503 (hc_evp_md_final)null_Final,
504 NULL
505 };
506 return &null;
507 }
508
509 /**
510 * Return the block size of the cipher.
511 *
512 * @param c cipher to get the block size from.
513 *
514 * @return the block size of the cipher.
515 *
516 * @ingroup hcrypto_evp
517 */
518
519 size_t
520 EVP_CIPHER_block_size(const EVP_CIPHER *c)
521 {
522 return c->block_size;
523 }
524
525 /**
526 * Return the key size of the cipher.
527 *
528 * @param c cipher to get the key size from.
529 *
530 * @return the key size of the cipher.
531 *
532 * @ingroup hcrypto_evp
533 */
534
535 size_t
536 EVP_CIPHER_key_length(const EVP_CIPHER *c)
537 {
538 return c->key_len;
539 }
540
541 /**
542 * Return the IV size of the cipher.
543 *
544 * @param c cipher to get the IV size from.
545 *
546 * @return the IV size of the cipher.
547 *
548 * @ingroup hcrypto_evp
549 */
550
551 size_t
552 EVP_CIPHER_iv_length(const EVP_CIPHER *c)
553 {
554 return c->iv_len;
555 }
556
557 /**
558 * Initiate a EVP_CIPHER_CTX context. Clean up with
559 * EVP_CIPHER_CTX_cleanup().
560 *
561 * @param c the cipher initiate.
562 *
563 * @ingroup hcrypto_evp
564 */
565
566 void
567 EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *c)
568 {
569 memset(c, 0, sizeof(*c));
570 }
571
572 /**
573 * Clean up the EVP_CIPHER_CTX context.
574 *
575 * @param c the cipher to clean up.
576 *
577 * @return 1 on success.
578 *
579 * @ingroup hcrypto_evp
580 */
581
582 int
583 EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c)
584 {
585 if (c->cipher && c->cipher->cleanup)
586 c->cipher->cleanup(c);
587 if (c->cipher_data) {
588 memset(c->cipher_data, 0, c->cipher->ctx_size);
589 free(c->cipher_data);
590 c->cipher_data = NULL;
591 }
592 return 1;
593 }
594
595 /**
596 * If the cipher type supports it, change the key length
597 *
598 * @param c the cipher context to change the key length for
599 * @param length new key length
600 *
601 * @return 1 on success.
602 *
603 * @ingroup hcrypto_evp
604 */
605
606 int
607 EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int length)
608 {
609 if ((c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH) && length > 0) {
610 c->key_len = length;
611 return 1;
612 }
613 return 0;
614 }
615
616 #if 0
617 int
618 EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *c, int pad)
619 {
620 return 0;
621 }
622 #endif
623
624 /**
625 * Return the EVP_CIPHER for a EVP_CIPHER_CTX context.
626 *
627 * @param ctx the context to get the cipher type from.
628 *
629 * @return the EVP_CIPHER pointer.
630 *
631 * @ingroup hcrypto_evp
632 */
633
634 const EVP_CIPHER *
635 EVP_CIPHER_CTX_cipher(EVP_CIPHER_CTX *ctx)
636 {
637 return ctx->cipher;
638 }
639
640 /**
641 * Return the block size of the cipher context.
642 *
643 * @param ctx cipher context to get the block size from.
644 *
645 * @return the block size of the cipher context.
646 *
647 * @ingroup hcrypto_evp
648 */
649
650 size_t
651 EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx)
652 {
653 return EVP_CIPHER_block_size(ctx->cipher);
654 }
655
656 /**
657 * Return the key size of the cipher context.
658 *
659 * @param ctx cipher context to get the key size from.
660 *
661 * @return the key size of the cipher context.
662 *
663 * @ingroup hcrypto_evp
664 */
665
666 size_t
667 EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx)
668 {
669 return EVP_CIPHER_key_length(ctx->cipher);
670 }
671
672 /**
673 * Return the IV size of the cipher context.
674 *
675 * @param ctx cipher context to get the IV size from.
676 *
677 * @return the IV size of the cipher context.
678 *
679 * @ingroup hcrypto_evp
680 */
681
682 size_t
683 EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx)
684 {
685 return EVP_CIPHER_iv_length(ctx->cipher);
686 }
687
688 /**
689 * Get the flags for an EVP_CIPHER_CTX context.
690 *
691 * @param ctx the EVP_CIPHER_CTX to get the flags from
692 *
693 * @return the flags for an EVP_CIPHER_CTX.
694 *
695 * @ingroup hcrypto_evp
696 */
697
698 unsigned long
699 EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx)
700 {
701 return ctx->cipher->flags;
702 }
703
704 /**
705 * Get the mode for an EVP_CIPHER_CTX context.
706 *
707 * @param ctx the EVP_CIPHER_CTX to get the mode from
708 *
709 * @return the mode for an EVP_CIPHER_CTX.
710 *
711 * @ingroup hcrypto_evp
712 */
713
714 int
715 EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx)
716 {
717 return EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_MODE;
718 }
719
720 /**
721 * Get the app data for an EVP_CIPHER_CTX context.
722 *
723 * @param ctx the EVP_CIPHER_CTX to get the app data from
724 *
725 * @return the app data for an EVP_CIPHER_CTX.
726 *
727 * @ingroup hcrypto_evp
728 */
729
730 void *
731 EVP_CIPHER_CTX_get_app_data(EVP_CIPHER_CTX *ctx)
732 {
733 return ctx->app_data;
734 }
735
736 /**
737 * Set the app data for an EVP_CIPHER_CTX context.
738 *
739 * @param ctx the EVP_CIPHER_CTX to set the app data for
740 * @param data the app data to set for an EVP_CIPHER_CTX.
741 *
742 * @ingroup hcrypto_evp
743 */
744
745 void
746 EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data)
747 {
748 ctx->app_data = data;
749 }
750
751 /**
752 * Initiate the EVP_CIPHER_CTX context to encrypt or decrypt data.
753 * Clean up with EVP_CIPHER_CTX_cleanup().
754 *
755 * @param ctx context to initiate
756 * @param c cipher to use.
757 * @param engine crypto engine to use, NULL to select default.
758 * @param key the crypto key to use, NULL will use the previous value.
759 * @param iv the IV to use, NULL will use the previous value.
760 * @param encp non zero will encrypt, -1 use the previous value.
761 *
762 * @return 1 on success.
763 *
764 * @ingroup hcrypto_evp
765 */
766
767 int
768 EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *c, ENGINE *engine,
769 const void *key, const void *iv, int encp)
770 {
771 ctx->buf_len = 0;
772
773 if (encp == -1)
774 encp = ctx->encrypt;
775 else
776 ctx->encrypt = (encp ? 1 : 0);
777
778 if (c && (c != ctx->cipher)) {
779 EVP_CIPHER_CTX_cleanup(ctx);
780 ctx->cipher = c;
781 ctx->key_len = c->key_len;
782
783 ctx->cipher_data = calloc(1, c->ctx_size);
784 if (ctx->cipher_data == NULL && c->ctx_size != 0)
785 return 0;
786
787 /* assume block size is a multiple of 2 */
788 ctx->block_mask = EVP_CIPHER_block_size(c) - 1;
789
790 } else if (ctx->cipher == NULL) {
791 /* reuse of cipher, but not any cipher ever set! */
792 return 0;
793 }
794
795 switch (EVP_CIPHER_CTX_mode(ctx)) {
796 case EVP_CIPH_CBC_MODE:
797
798 assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
799
800 if (iv)
801 memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
802 memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
803 break;
804
805 case EVP_CIPH_STREAM_CIPHER:
806 break;
807 case EVP_CIPH_CFB8_MODE:
808 if (iv)
809 memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
810 break;
811
812 default:
813 return 0;
814 }
815
816 if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT))
817 ctx->cipher->init(ctx, key, iv, encp);
818
819 return 1;
820 }
821
822 /**
823 * Encipher/decipher partial data
824 *
825 * @param ctx the cipher context.
826 * @param out output data from the operation.
827 * @param outlen output length
828 * @param in input data to the operation.
829 * @param inlen length of data.
830 *
831 * The output buffer length should at least be EVP_CIPHER_block_size()
832 * byte longer then the input length.
833 *
834 * See @ref evp_cipher for an example how to use this function.
835 *
836 * @return 1 on success.
837 *
838 * @ingroup hcrypto_evp
839 */
840
841 int
842 EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, void *out, int *outlen,
843 void *in, size_t inlen)
844 {
845 int ret, left, blocksize;
846
847 *outlen = 0;
848
849 /**
850 * If there in no spare bytes in the left from last Update and the
851 * input length is on the block boundery, the EVP_CipherUpdate()
852 * function can take a shortcut (and preformance gain) and
853 * directly encrypt the data, otherwise we hav to fix it up and
854 * store extra it the EVP_CIPHER_CTX.
855 */
856 if (ctx->buf_len == 0 && (inlen & ctx->block_mask) == 0) {
857 ret = (*ctx->cipher->do_cipher)(ctx, out, in, inlen);
858 if (ret == 1)
859 *outlen = inlen;
860 else
861 *outlen = 0;
862 return ret;
863 }
864
865
866 blocksize = EVP_CIPHER_CTX_block_size(ctx);
867 left = blocksize - ctx->buf_len;
868 assert(left > 0);
869
870 if (ctx->buf_len) {
871
872 /* if total buffer is smaller then input, store locally */
873 if (inlen < left) {
874 memcpy(ctx->buf + ctx->buf_len, in, inlen);
875 ctx->buf_len += inlen;
876 return 1;
877 }
878
879 /* fill in local buffer and encrypt */
880 memcpy(ctx->buf + ctx->buf_len, in, left);
881 ret = (*ctx->cipher->do_cipher)(ctx, out, ctx->buf, blocksize);
882 memset(ctx->buf, 0, blocksize);
883 if (ret != 1)
884 return ret;
885
886 *outlen += blocksize;
887 inlen -= left;
888 in = ((unsigned char *)in) + left;
889 out = ((unsigned char *)out) + blocksize;
890 ctx->buf_len = 0;
891 }
892
893 if (inlen) {
894 ctx->buf_len = (inlen & ctx->block_mask);
895 inlen &= ~ctx->block_mask;
896
897 ret = (*ctx->cipher->do_cipher)(ctx, out, in, inlen);
898 if (ret != 1)
899 return ret;
900
901 *outlen += inlen;
902
903 in = ((unsigned char *)in) + inlen;
904 memcpy(ctx->buf, in, ctx->buf_len);
905 }
906
907 return 1;
908 }
909
910 /**
911 * Encipher/decipher final data
912 *
913 * @param ctx the cipher context.
914 * @param out output data from the operation.
915 * @param outlen output length
916 *
917 * The input length needs to be at least EVP_CIPHER_block_size() bytes
918 * long.
919 *
920 * See @ref evp_cipher for an example how to use this function.
921 *
922 * @return 1 on success.
923 *
924 * @ingroup hcrypto_evp
925 */
926
927 int
928 EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, void *out, int *outlen)
929 {
930 *outlen = 0;
931
932 if (ctx->buf_len) {
933 int ret, left, blocksize;
934
935 blocksize = EVP_CIPHER_CTX_block_size(ctx);
936
937 left = blocksize - ctx->buf_len;
938 assert(left > 0);
939
940 /* zero fill local buffer */
941 memset(ctx->buf + ctx->buf_len, 0, left);
942 ret = (*ctx->cipher->do_cipher)(ctx, out, ctx->buf, blocksize);
943 memset(ctx->buf, 0, blocksize);
944 if (ret != 1)
945 return ret;
946
947 *outlen += blocksize;
948 }
949
950 return 1;
951 }
952
953 /**
954 * Encipher/decipher data
955 *
956 * @param ctx the cipher context.
957 * @param out out data from the operation.
958 * @param in in data to the operation.
959 * @param size length of data.
960 *
961 * @return 1 on success.
962 */
963
964 int
965 EVP_Cipher(EVP_CIPHER_CTX *ctx, void *out, const void *in,size_t size)
966 {
967 return ctx->cipher->do_cipher(ctx, out, in, size);
968 }
969
970 /*
971 *
972 */
973
974 static int
975 enc_null_init(EVP_CIPHER_CTX *ctx,
976 const unsigned char * key,
977 const unsigned char * iv,
978 int encp)
979 {
980 return 1;
981 }
982
983 static int
984 enc_null_do_cipher(EVP_CIPHER_CTX *ctx,
985 unsigned char *out,
986 const unsigned char *in,
987 unsigned int size)
988 {
989 memmove(out, in, size);
990 return 1;
991 }
992
993 static int
994 enc_null_cleanup(EVP_CIPHER_CTX *ctx)
995 {
996 return 1;
997 }
998
999 /**
1000 * The NULL cipher type, does no encryption/decryption.
1001 *
1002 * @return the null EVP_CIPHER pointer.
1003 *
1004 * @ingroup hcrypto_evp
1005 */
1006
1007 const EVP_CIPHER *
1008 EVP_enc_null(void)
1009 {
1010 static const EVP_CIPHER enc_null = {
1011 0,
1012 0,
1013 0,
1014 0,
1015 EVP_CIPH_CBC_MODE,
1016 enc_null_init,
1017 enc_null_do_cipher,
1018 enc_null_cleanup,
1019 0,
1020 NULL,
1021 NULL,
1022 NULL,
1023 NULL
1024 };
1025 return &enc_null;
1026 }
1027
1028 /**
1029 * The RC2 cipher type
1030 *
1031 * @return the RC2 EVP_CIPHER pointer.
1032 *
1033 * @ingroup hcrypto_evp
1034 */
1035
1036 const EVP_CIPHER *
1037 EVP_rc2_cbc(void)
1038 {
1039 hcrypto_validate();
1040 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc2_cbc);
1041 }
1042
1043 /**
1044 * The RC2 cipher type
1045 *
1046 * @return the RC2 EVP_CIPHER pointer.
1047 *
1048 * @ingroup hcrypto_evp
1049 */
1050
1051 const EVP_CIPHER *
1052 EVP_rc2_40_cbc(void)
1053 {
1054 hcrypto_validate();
1055 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc2_40_cbc);
1056 }
1057
1058 /**
1059 * The RC2 cipher type
1060 *
1061 * @return the RC2 EVP_CIPHER pointer.
1062 *
1063 * @ingroup hcrypto_evp
1064 */
1065
1066 const EVP_CIPHER *
1067 EVP_rc2_64_cbc(void)
1068 {
1069 hcrypto_validate();
1070 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc2_64_cbc);
1071 }
1072
1073 /**
1074 * The RC4 cipher type
1075 *
1076 * @return the RC4 EVP_CIPHER pointer.
1077 *
1078 * @ingroup hcrypto_evp
1079 */
1080
1081 const EVP_CIPHER *
1082 EVP_rc4(void)
1083 {
1084 hcrypto_validate();
1085 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc4);
1086 }
1087
1088 /**
1089 * The RC4-40 cipher type
1090 *
1091 * @return the RC4-40 EVP_CIPHER pointer.
1092 *
1093 * @ingroup hcrypto_evp
1094 */
1095
1096 const EVP_CIPHER *
1097 EVP_rc4_40(void)
1098 {
1099 hcrypto_validate();
1100 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc4_40);
1101 }
1102
1103 /**
1104 * The DES cipher type
1105 *
1106 * @return the DES-CBC EVP_CIPHER pointer.
1107 *
1108 * @ingroup hcrypto_evp
1109 */
1110
1111 const EVP_CIPHER *
1112 EVP_des_cbc(void)
1113 {
1114 hcrypto_validate();
1115 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, des_cbc);
1116 }
1117
1118 /**
1119 * The tripple DES cipher type
1120 *
1121 * @return the DES-EDE3-CBC EVP_CIPHER pointer.
1122 *
1123 * @ingroup hcrypto_evp
1124 */
1125
1126 const EVP_CIPHER *
1127 EVP_des_ede3_cbc(void)
1128 {
1129 hcrypto_validate();
1130 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, des_ede3_cbc);
1131 }
1132
1133 /**
1134 * The AES-128 cipher type
1135 *
1136 * @return the AES-128 EVP_CIPHER pointer.
1137 *
1138 * @ingroup hcrypto_evp
1139 */
1140
1141 const EVP_CIPHER *
1142 EVP_aes_128_cbc(void)
1143 {
1144 hcrypto_validate();
1145 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_128_cbc);
1146 }
1147
1148 /**
1149 * The AES-192 cipher type
1150 *
1151 * @return the AES-192 EVP_CIPHER pointer.
1152 *
1153 * @ingroup hcrypto_evp
1154 */
1155
1156 const EVP_CIPHER *
1157 EVP_aes_192_cbc(void)
1158 {
1159 hcrypto_validate();
1160 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_192_cbc);
1161 }
1162
1163 /**
1164 * The AES-256 cipher type
1165 *
1166 * @return the AES-256 EVP_CIPHER pointer.
1167 *
1168 * @ingroup hcrypto_evp
1169 */
1170
1171 const EVP_CIPHER *
1172 EVP_aes_256_cbc(void)
1173 {
1174 hcrypto_validate();
1175 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_256_cbc);
1176 }
1177
1178 /**
1179 * The AES-128 cipher type
1180 *
1181 * @return the AES-128 EVP_CIPHER pointer.
1182 *
1183 * @ingroup hcrypto_evp
1184 */
1185
1186 const EVP_CIPHER *
1187 EVP_aes_128_cfb8(void)
1188 {
1189 hcrypto_validate();
1190 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_128_cfb8);
1191 }
1192
1193 /**
1194 * The AES-192 cipher type
1195 *
1196 * @return the AES-192 EVP_CIPHER pointer.
1197 *
1198 * @ingroup hcrypto_evp
1199 */
1200
1201 const EVP_CIPHER *
1202 EVP_aes_192_cfb8(void)
1203 {
1204 hcrypto_validate();
1205 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_192_cfb8);
1206 }
1207
1208 /**
1209 * The AES-256 cipher type
1210 *
1211 * @return the AES-256 EVP_CIPHER pointer.
1212 *
1213 * @ingroup hcrypto_evp
1214 */
1215
1216 const EVP_CIPHER *
1217 EVP_aes_256_cfb8(void)
1218 {
1219 hcrypto_validate();
1220 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_256_cfb8);
1221 }
1222
1223 /**
1224 * The Camellia-128 cipher type
1225 *
1226 * @return the Camellia-128 EVP_CIPHER pointer.
1227 *
1228 * @ingroup hcrypto_evp
1229 */
1230
1231 const EVP_CIPHER *
1232 EVP_camellia_128_cbc(void)
1233 {
1234 hcrypto_validate();
1235 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, camellia_128_cbc);
1236 }
1237
1238 /**
1239 * The Camellia-198 cipher type
1240 *
1241 * @return the Camellia-198 EVP_CIPHER pointer.
1242 *
1243 * @ingroup hcrypto_evp
1244 */
1245
1246 const EVP_CIPHER *
1247 EVP_camellia_192_cbc(void)
1248 {
1249 hcrypto_validate();
1250 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, camellia_192_cbc);
1251 }
1252
1253 /**
1254 * The Camellia-256 cipher type
1255 *
1256 * @return the Camellia-256 EVP_CIPHER pointer.
1257 *
1258 * @ingroup hcrypto_evp
1259 */
1260
1261 const EVP_CIPHER *
1262 EVP_camellia_256_cbc(void)
1263 {
1264 hcrypto_validate();
1265 return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, camellia_256_cbc);
1266 }
1267
1268 /*
1269 *
1270 */
1271
1272 static const struct cipher_name {
1273 const char *name;
1274 const EVP_CIPHER *(*func)(void);
1275 } cipher_name[] = {
1276 { "des-ede3-cbc", EVP_des_ede3_cbc },
1277 { "aes-128-cbc", EVP_aes_128_cbc },
1278 { "aes-192-cbc", EVP_aes_192_cbc },
1279 { "aes-256-cbc", EVP_aes_256_cbc },
1280 { "aes-128-cfb8", EVP_aes_128_cfb8 },
1281 { "aes-192-cfb8", EVP_aes_192_cfb8 },
1282 { "aes-256-cfb8", EVP_aes_256_cfb8 },
1283 { "camellia-128-cbc", EVP_camellia_128_cbc },
1284 { "camellia-192-cbc", EVP_camellia_192_cbc },
1285 { "camellia-256-cbc", EVP_camellia_256_cbc }
1286 };
1287
1288 /**
1289 * Get the cipher type using their name.
1290 *
1291 * @param name the name of the cipher.
1292 *
1293 * @return the selected EVP_CIPHER pointer or NULL if not found.
1294 *
1295 * @ingroup hcrypto_evp
1296 */
1297
1298 const EVP_CIPHER *
1299 EVP_get_cipherbyname(const char *name)
1300 {
1301 int i;
1302 for (i = 0; i < sizeof(cipher_name)/sizeof(cipher_name[0]); i++) {
1303 if (strcasecmp(cipher_name[i].name, name) == 0)
1304 return (*cipher_name[i].func)();
1305 }
1306 return NULL;
1307 }
1308
1309
1310 /*
1311 *
1312 */
1313
1314 #ifndef min
1315 #define min(a,b) (((a)>(b))?(b):(a))
1316 #endif
1317
1318 /**
1319 * Provides a legancy string to key function, used in PEM files.
1320 *
1321 * New protocols should use new string to key functions like NIST
1322 * SP56-800A or PKCS#5 v2.0 (see PKCS5_PBKDF2_HMAC_SHA1()).
1323 *
1324 * @param type type of cipher to use
1325 * @param md message digest to use
1326 * @param salt salt salt string, should be an binary 8 byte buffer.
1327 * @param data the password/input key string.
1328 * @param datalen length of data parameter.
1329 * @param count iteration counter.
1330 * @param keydata output keydata, needs to of the size EVP_CIPHER_key_length().
1331 * @param ivdata output ivdata, needs to of the size EVP_CIPHER_block_size().
1332 *
1333 * @return the size of derived key.
1334 *
1335 * @ingroup hcrypto_evp
1336 */
1337
1338 int
1339 EVP_BytesToKey(const EVP_CIPHER *type,
1340 const EVP_MD *md,
1341 const void *salt,
1342 const void *data, size_t datalen,
1343 unsigned int count,
1344 void *keydata,
1345 void *ivdata)
1346 {
1347 unsigned int ivlen, keylen;
1348 int first = 0;
1349 unsigned int mds = 0, i;
1350 unsigned char *key = keydata;
1351 unsigned char *iv = ivdata;
1352 unsigned char *buf;
1353 EVP_MD_CTX c;
1354
1355 keylen = EVP_CIPHER_key_length(type);
1356 ivlen = EVP_CIPHER_iv_length(type);
1357
1358 if (data == NULL)
1359 return keylen;
1360
1361 buf = malloc(EVP_MD_size(md));
1362 if (buf == NULL)
1363 return -1;
1364
1365 EVP_MD_CTX_init(&c);
1366
1367 first = 1;
1368 while (1) {
1369 EVP_DigestInit_ex(&c, md, NULL);
1370 if (!first)
1371 EVP_DigestUpdate(&c, buf, mds);
1372 first = 0;
1373 EVP_DigestUpdate(&c,data,datalen);
1374
1375 #define PKCS5_SALT_LEN 8
1376
1377 if (salt)
1378 EVP_DigestUpdate(&c, salt, PKCS5_SALT_LEN);
1379
1380 EVP_DigestFinal_ex(&c, buf, &mds);
1381 assert(mds == EVP_MD_size(md));
1382
1383 for (i = 1; i < count; i++) {
1384 EVP_DigestInit_ex(&c, md, NULL);
1385 EVP_DigestUpdate(&c, buf, mds);
1386 EVP_DigestFinal_ex(&c, buf, &mds);
1387 assert(mds == EVP_MD_size(md));
1388 }
1389
1390 i = 0;
1391 if (keylen) {
1392 size_t sz = min(keylen, mds);
1393 if (key) {
1394 memcpy(key, buf, sz);
1395 key += sz;
1396 }
1397 keylen -= sz;
1398 i += sz;
1399 }
1400 if (ivlen && mds > i) {
1401 size_t sz = min(ivlen, (mds - i));
1402 if (iv) {
1403 memcpy(iv, &buf[i], sz);
1404 iv += sz;
1405 }
1406 ivlen -= sz;
1407 }
1408 if (keylen == 0 && ivlen == 0)
1409 break;
1410 }
1411
1412 EVP_MD_CTX_cleanup(&c);
1413 free(buf);
1414
1415 return EVP_CIPHER_key_length(type);
1416 }
1417
1418 /**
1419 * Generate a random key for the specificed EVP_CIPHER.
1420 *
1421 * @param ctx EVP_CIPHER_CTX type to build the key for.
1422 * @param key return key, must be at least EVP_CIPHER_key_length() byte long.
1423 *
1424 * @return 1 for success, 0 for failure.
1425 *
1426 * @ingroup hcrypto_core
1427 */
1428
1429 int
1430 EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, void *key)
1431 {
1432 if (ctx->cipher->flags & EVP_CIPH_RAND_KEY)
1433 return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key);
1434 if (RAND_bytes(key, ctx->key_len) != 1)
1435 return 0;
1436 return 1;
1437 }
1438
1439 /**
1440 * Perform a operation on a ctx
1441 *
1442 * @param ctx context to perform operation on.
1443 * @param type type of operation.
1444 * @param arg argument to operation.
1445 * @param data addition data to operation.
1446
1447 * @return 1 for success, 0 for failure.
1448 *
1449 * @ingroup hcrypto_core
1450 */
1451
1452 int
1453 EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *data)
1454 {
1455 if (ctx->cipher == NULL || ctx->cipher->ctrl == NULL)
1456 return 0;
1457 return (*ctx->cipher->ctrl)(ctx, type, arg, data);
1458 }
1459
1460 /**
1461 * Add all algorithms to the crypto core.
1462 *
1463 * @ingroup hcrypto_core
1464 */
1465
1466 void
1467 OpenSSL_add_all_algorithms(void)
1468 {
1469 return;
1470 }
1471
1472 /**
1473 * Add all algorithms to the crypto core using configuration file.
1474 *
1475 * @ingroup hcrypto_core
1476 */
1477
1478 void
1479 OpenSSL_add_all_algorithms_conf(void)
1480 {
1481 return;
1482 }
1483
1484 /**
1485 * Add all algorithms to the crypto core, but don't use the
1486 * configuration file.
1487 *
1488 * @ingroup hcrypto_core
1489 */
1490
1491 void
1492 OpenSSL_add_all_algorithms_noconf(void)
1493 {
1494 return;
1495 }