(* ML-Yacc Parser Generator (c) 1989 Andrew W. Appel, David R. Tarditi *) (* parser.sml: This is a parser driver for LR tables with an error-recovery routine added to it. The routine used is described in detail in this article: 'A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery', by M. Burke and G. Fisher, ACM Transactions on Programming Langauges and Systems, Vol. 9, No. 2, April 1987, pp. 164-197. This program is an implementation is the partial, deferred method discussed in the article. The algorithm and data structures used in the program are described below. This program assumes that all semantic actions are delayed. A semantic action should produce a function from unit -> value instead of producing the normal value. The parser returns the semantic value on the top of the stack when accept is encountered. The user can deconstruct this value and apply the unit -> value function in it to get the answer. It also assumes that the lexer is a lazy stream. Data Structures: ---------------- * The parser: The state stack has the type (state * (semantic value * line # * line #)) list The parser keeps a queue of (state stack * lexer pair). A lexer pair consists of a terminal * value pair and a lexer. This allows the parser to reconstruct the states for terminals to the left of a syntax error, and attempt to make error corrections there. The queue consists of a pair of lists (x,y). New additions to the queue are cons'ed onto y. The first element of x is the top of the queue. If x is nil, then y is reversed and used in place of x. Algorithm: ---------- * The steady-state parser: This parser keeps the length of the queue of state stacks at a steady state by always removing an element from the front when another element is placed on the end. It has these arguments: stack: current stack queue: value of the queue lexPair ((terminal,value),lex stream) When SHIFT is encountered, the state to shift to and the value are are pushed onto the state stack. The state stack and lexPair are placed on the queue. The front element of the queue is removed. When REDUCTION is encountered, the rule is applied to the current stack to yield a triple (nonterm,value,new stack). A new stack is formed by adding (goto(top state of stack,nonterm),value) to the stack. When ACCEPT is encountered, the top value from the stack and the lexer are returned. When an ERROR is encountered, fixError is called. FixError takes the arguments to the parser, fixes the error if possible and returns a new set of arguments. * The distance-parser: This parser includes an additional argument distance. It pushes elements on the queue until it has parsed distance tokens, or an ACCEPT or ERROR occurs. It returns a stack, lexer, the number of tokens left unparsed, a queue, and an action option. *) signature FIFO = sig type 'a queue val empty : 'a queue exception Empty val get : 'a queue -> 'a * 'a queue val put : 'a * 'a queue -> 'a queue end (* drt (12/15/89) -- the functor should be used in development work, but it wastes space in the release version. functor ParserGen(structure LrTable : LR_TABLE structure Stream : STREAM) : LR_PARSER = *) structure LrParser :> LR_PARSER = struct structure LrTable = LrTable structure Stream = Stream fun eqT (LrTable.T i, LrTable.T i') = i = i' structure Token : TOKEN = struct structure LrTable = LrTable datatype ('a,'b) token = TOKEN of LrTable.term * ('a * 'b * 'b) val sameToken = fn (TOKEN(t,_),TOKEN(t',_)) => eqT (t,t') end open LrTable open Token val DEBUG1 = false val DEBUG2 = false exception ParseError exception ParseImpossible of int structure Fifo :> FIFO = struct type 'a queue = ('a list * 'a list) val empty = (nil,nil) exception Empty fun get(a::x, y) = (a, (x,y)) | get(nil, nil) = raise Empty | get(nil, y) = get(rev y, nil) fun put(a,(x,y)) = (x,a::y) end type ('a,'b) elem = (state * ('a * 'b * 'b)) type ('a,'b) stack = ('a,'b) elem list type ('a,'b) lexv = ('a,'b) token type ('a,'b) lexpair = ('a,'b) lexv * (('a,'b) lexv Stream.stream) type ('a,'b) distanceParse = ('a,'b) lexpair * ('a,'b) stack * (('a,'b) stack * ('a,'b) lexpair) Fifo.queue * int -> ('a,'b) lexpair * ('a,'b) stack * (('a,'b) stack * ('a,'b) lexpair) Fifo.queue * int * action option type ('a,'b) ecRecord = {is_keyword : term -> bool, preferred_change : (term list * term list) list, error : string * 'b * 'b -> unit, errtermvalue : term -> 'a, terms : term list, showTerminal : term -> string, noShift : term -> bool} local val print = fn s => TextIO.output(TextIO.stdOut,s) val println = fn s => (print s; print "\n") val showState = fn (STATE s) => "STATE " ^ (Int.toString s) in fun printStack(stack: ('a,'b) stack, n: int) = case stack of (state,_) :: rest => (print("\t" ^ Int.toString n ^ ": "); println(showState state); printStack(rest, n+1)) | nil => () fun prAction showTerminal (stack as (state,_) :: _, next as (TOKEN (term,_),_), action) = (println "Parse: state stack:"; printStack(stack, 0); print(" state=" ^ showState state ^ " next=" ^ showTerminal term ^ " action=" ); case action of SHIFT state => println ("SHIFT " ^ (showState state)) | REDUCE i => println ("REDUCE " ^ (Int.toString i)) | ERROR => println "ERROR" | ACCEPT => println "ACCEPT") | prAction _ (_,_,action) = () end (* ssParse: parser which maintains the queue of (state * lexvalues) in a steady-state. It takes a table, showTerminal function, saction function, and fixError function. It parses until an ACCEPT is encountered, or an exception is raised. When an error is encountered, fixError is called with the arguments of parseStep (lexv,stack,and queue). It returns the lexv, and a new stack and queue adjusted so that the lexv can be parsed *) val ssParse = fn (table,showTerminal,saction,fixError,arg) => let val prAction = prAction showTerminal val action = LrTable.action table val goto = LrTable.goto table fun parseStep(args as (lexPair as (TOKEN (terminal, value as (_,leftPos,_)), lexer ), stack as (state,_) :: _, queue)) = let val nextAction = action (state,terminal) val _ = if DEBUG1 then prAction(stack,lexPair,nextAction) else () in case nextAction of SHIFT s => let val newStack = (s,value) :: stack val newLexPair = Stream.get lexer val (_,newQueue) =Fifo.get(Fifo.put((newStack,newLexPair), queue)) in parseStep(newLexPair,(s,value)::stack,newQueue) end | REDUCE i => (case saction(i,leftPos,stack,arg) of (nonterm,value,stack as (state,_) :: _) => parseStep(lexPair,(goto(state,nonterm),value)::stack, queue) | _ => raise (ParseImpossible 197)) | ERROR => parseStep(fixError args) | ACCEPT => (case stack of (_,(topvalue,_,_)) :: _ => let val (token,restLexer) = lexPair in (topvalue,Stream.cons(token,restLexer)) end | _ => raise (ParseImpossible 202)) end | parseStep _ = raise (ParseImpossible 204) in parseStep end (* distanceParse: parse until n tokens are shifted, or accept or error are encountered. Takes a table, showTerminal function, and semantic action function. Returns a parser which takes a lexPair (lex result * lexer), a state stack, a queue, and a distance (must be > 0) to parse. The parser returns a new lex-value, a stack with the nth token shifted on top, a queue, a distance, and action option. *) val distanceParse = fn (table,showTerminal,saction,arg) => let val prAction = prAction showTerminal val action = LrTable.action table val goto = LrTable.goto table fun parseStep(lexPair,stack,queue,0) = (lexPair,stack,queue,0,NONE) | parseStep(lexPair as (TOKEN (terminal, value as (_,leftPos,_)), lexer ), stack as (state,_) :: _, queue,distance) = let val nextAction = action(state,terminal) val _ = if DEBUG1 then prAction(stack,lexPair,nextAction) else () in case nextAction of SHIFT s => let val newStack = (s,value) :: stack val newLexPair = Stream.get lexer in parseStep(newLexPair,(s,value)::stack, Fifo.put((newStack,newLexPair),queue),distance-1) end | REDUCE i => (case saction(i,leftPos,stack,arg) of (nonterm,value,stack as (state,_) :: _) => parseStep(lexPair,(goto(state,nonterm),value)::stack, queue,distance) | _ => raise (ParseImpossible 240)) | ERROR => (lexPair,stack,queue,distance,SOME nextAction) | ACCEPT => (lexPair,stack,queue,distance,SOME nextAction) end | parseStep _ = raise (ParseImpossible 242) in parseStep : ('_a,'_b) distanceParse end (* mkFixError: function to create fixError function which adjusts parser state so that parse may continue in the presence of an error *) fun mkFixError({is_keyword,terms,errtermvalue, preferred_change,noShift, showTerminal,error,...} : ('_a,'_b) ecRecord, distanceParse : ('_a,'_b) distanceParse, minAdvance,maxAdvance) (lexv as (TOKEN (term,value as (_,leftPos,rightPos)),_),stack,queue) = let val _ = if DEBUG2 then error("syntax error found at " ^ (showTerminal term), leftPos,rightPos) else () fun tokAt(t,p) = TOKEN(t,(errtermvalue t,p,p)) val minDelta = 3 (* pull all the state * lexv elements from the queue *) val stateList = let fun f q = let val (elem,newQueue) = Fifo.get q in elem :: (f newQueue) end handle Fifo.Empty => nil in f queue end (* now number elements of stateList, giving distance from error token *) val (_, numStateList) = List.foldr (fn (a,(num,r)) => (num+1,(a,num)::r)) (0, []) stateList (* Represent the set of potential changes as a linked list. Values of datatype Change hold information about a potential change. oper = oper to be applied pos = the # of the element in stateList that would be altered. distance = the number of tokens beyond the error token which the change allows us to parse. new = new terminal * value pair at that point orig = original terminal * value pair at the point being changed. *) datatype ('a,'b) change = CHANGE of {pos : int, distance : int, leftPos: 'b, rightPos: 'b, new : ('a,'b) lexv list, orig : ('a,'b) lexv list} val showTerms = concat o map (fn TOKEN(t,_) => " " ^ showTerminal t) val printChange = fn c => let val CHANGE {distance,new,orig,pos,...} = c in (print ("{distance= " ^ (Int.toString distance)); print (",orig ="); print(showTerms orig); print (",new ="); print(showTerms new); print (",pos= " ^ (Int.toString pos)); print "}\n") end val printChangeList = app printChange (* parse: given a lexPair, a stack, and the distance from the error token, return the distance past the error token that we are able to parse.*) fun parse (lexPair,stack,queuePos : int) = case distanceParse(lexPair,stack,Fifo.empty,queuePos+maxAdvance+1) of (_,_,_,distance,SOME ACCEPT) => if maxAdvance-distance-1 >= 0 then maxAdvance else maxAdvance-distance-1 | (_,_,_,distance,_) => maxAdvance - distance - 1 (* catList: concatenate results of scanning list *) fun catList l f = List.foldr (fn(a,r)=> f a @ r) [] l fun keywordsDelta new = if List.exists (fn(TOKEN(t,_))=>is_keyword t) new then minDelta else 0 fun tryChange{lex,stack,pos,leftPos,rightPos,orig,new} = let val lex' = List.foldr (fn (t',p)=>(t',Stream.cons p)) lex new val distance = parse(lex',stack,pos+length new-length orig) in if distance >= minAdvance + keywordsDelta new then [CHANGE{pos=pos,leftPos=leftPos,rightPos=rightPos, distance=distance,orig=orig,new=new}] else [] end (* tryDelete: Try to delete n terminals. Return single-element [success] or nil. Do not delete unshiftable terminals. *) fun tryDelete n ((stack,lexPair as (TOKEN(term,(_,l,r)),_)),qPos) = let fun del(0,accum,left,right,lexPair) = tryChange{lex=lexPair,stack=stack, pos=qPos,leftPos=left,rightPos=right, orig=rev accum, new=[]} | del(n,accum,left,right,(tok as TOKEN(term,(_,_,r)),lexer)) = if noShift term then [] else del(n-1,tok::accum,left,r,Stream.get lexer) in del(n,[],l,r,lexPair) end (* tryInsert: try to insert tokens before the current terminal; return a list of the successes *) fun tryInsert((stack,lexPair as (TOKEN(_,(_,l,_)),_)),queuePos) = catList terms (fn t => tryChange{lex=lexPair,stack=stack, pos=queuePos,orig=[],new=[tokAt(t,l)], leftPos=l,rightPos=l}) (* trySubst: try to substitute tokens for the current terminal; return a list of the successes *) fun trySubst ((stack,lexPair as (orig as TOKEN (term,(_,l,r)),lexer)), queuePos) = if noShift term then [] else catList terms (fn t => tryChange{lex=Stream.get lexer,stack=stack, pos=queuePos, leftPos=l,rightPos=r,orig=[orig], new=[tokAt(t,r)]}) (* do_delete(toks,lexPair) tries to delete tokens "toks" from "lexPair". If it succeeds, returns SOME(toks',l,r,lp), where toks' is the actual tokens (with positions and values) deleted, (l,r) are the (leftmost,rightmost) position of toks', lp is what remains of the stream after deletion *) fun do_delete(nil,lp as (TOKEN(_,(_,l,_)),_)) = SOME(nil,l,l,lp) | do_delete([t],(tok as TOKEN(t',(_,l,r)),lp')) = if eqT (t, t') then SOME([tok],l,r,Stream.get lp') else NONE | do_delete(t::rest,(tok as TOKEN(t',(_,l,r)),lp')) = if eqT (t,t') then case do_delete(rest,Stream.get lp') of SOME(deleted,l',r',lp'') => SOME(tok::deleted,l,r',lp'') | NONE => NONE else NONE fun tryPreferred((stack,lexPair),queuePos) = catList preferred_change (fn (delete,insert) => if List.exists noShift delete then [] (* should give warning at parser-generation time *) else case do_delete(delete,lexPair) of SOME(deleted,l,r,lp) => tryChange{lex=lp,stack=stack,pos=queuePos, leftPos=l,rightPos=r,orig=deleted, new=map (fn t=>(tokAt(t,r))) insert} | NONE => []) val changes = catList numStateList tryPreferred @ catList numStateList tryInsert @ catList numStateList trySubst @ catList numStateList (tryDelete 1) @ catList numStateList (tryDelete 2) @ catList numStateList (tryDelete 3) val findMaxDist = fn l => foldr (fn (CHANGE {distance,...},high) => Int.max(distance,high)) 0 l (* maxDist: max distance past error taken that we could parse *) val maxDist = findMaxDist changes (* remove changes which did not parse maxDist tokens past the error token *) val changes = catList changes (fn(c as CHANGE{distance,...}) => if distance=maxDist then [c] else []) in case changes of (l as change :: _) => let fun print_msg (CHANGE {new,orig,leftPos,rightPos,...}) = let val s = case (orig,new) of (_::_,[]) => "deleting " ^ (showTerms orig) | ([],_::_) => "inserting " ^ (showTerms new) | _ => "replacing " ^ (showTerms orig) ^ " with " ^ (showTerms new) in error ("syntax error: " ^ s,leftPos,rightPos) end val _ = (if length l > 1 andalso DEBUG2 then (print "multiple fixes possible; could fix it by:\n"; app print_msg l; print "chosen correction:\n") else (); print_msg change) (* findNth: find nth queue entry from the error entry. Returns the Nth queue entry and the portion of the queue from the beginning to the nth-1 entry. The error entry is at the end of the queue. Examples: queue = a b c d e findNth 0 = (e,a b c d) findNth 1 = (d,a b c) *) val findNth = fn n => let fun f (h::t,0) = (h,rev t) | f (h::t,n) = f(t,n-1) | f (nil,_) = let exception FindNth in raise FindNth end in f (rev stateList,n) end val CHANGE {pos,orig,new,...} = change val (last,queueFront) = findNth pos val (stack,lexPair) = last val lp1 = foldl(fn (_,(_,r)) => Stream.get r) lexPair orig val lp2 = foldr(fn(t,r)=>(t,Stream.cons r)) lp1 new val restQueue = Fifo.put((stack,lp2), foldl Fifo.put Fifo.empty queueFront) val (lexPair,stack,queue,_,_) = distanceParse(lp2,stack,restQueue,pos) in (lexPair,stack,queue) end | nil => (error("syntax error found at " ^ (showTerminal term), leftPos,rightPos); raise ParseError) end val parse = fn {arg,table,lexer,saction,void,lookahead, ec=ec as {showTerminal,...} : ('_a,'_b) ecRecord} => let val distance = 15 (* defer distance tokens *) val minAdvance = 1 (* must parse at least 1 token past error *) val maxAdvance = Int.max(lookahead,0)(* max distance for parse check *) val lexPair = Stream.get lexer val (TOKEN (_,(_,leftPos,_)),_) = lexPair val startStack = [(initialState table,(void,leftPos,leftPos))] val startQueue = Fifo.put((startStack,lexPair),Fifo.empty) val distanceParse = distanceParse(table,showTerminal,saction,arg) val fixError = mkFixError(ec,distanceParse,minAdvance,maxAdvance) val ssParse = ssParse(table,showTerminal,saction,fixError,arg) fun loop (lexPair,stack,queue,_,SOME ACCEPT) = ssParse(lexPair,stack,queue) | loop (lexPair,stack,queue,0,_) = ssParse(lexPair,stack,queue) | loop (lexPair,stack,queue,distance,SOME ERROR) = let val (lexPair,stack,queue) = fixError(lexPair,stack,queue) in loop (distanceParse(lexPair,stack,queue,distance)) end | loop _ = let exception ParseInternal in raise ParseInternal end in loop (distanceParse(lexPair,startStack,startQueue,distance)) end end;