
MLton Guide (20180207) i

MLton Guide (20180207)

MLton Guide (20180207) ii

Contents

1 MLton 1

2 AdamGoode 2

3 AdmitsEquality 3

4 Alice 6

5 AllocateRegisters 7

6 AndreiFormiga 8

7 ArrayLiteral 9

8 AST 11

9 BasisLibrary 13

10 Bug 22

11 Bugs20041109 23

12 Bugs20051202 25

13 Bugs20070826 27

14 Bugs20100608 29

15 Bugs20130715 30

16 Bugs20180207 31

17 CallGraph 32

18 CallingFromCToSML 34

19 CallingFromSMLToC 37

20 CallingFromSMLToCFunctionPointer 39

21 CCodegen 42

22 Changelog 43

23 ChrisClearwater 95

MLton Guide (20180207) iii

24 Chunkify 96

25 CKitLibrary 97

26 Closure 98

27 ClosureConvert 99

28 CMinusMinus 100

29 Codegen 101

30 CombineConversions 102

31 CommonArg 103

32 CommonBlock 108

33 CommonSubexp 110

34 CompilationManager 111

35 CompilerOverview 112

36 CompilerPassTemplate 113

37 CompileTimeOptions 114

38 CompilingWithSMLNJ 118

39 ConcurrentML 119

40 ConcurrentMLImplementation 120

41 ConstantPropagation 124

42 Contact 125

43 Contify 126

44 CoreML 127

45 CoreMLSimplify 128

46 Credits 129

47 CrossCompiling 131

48 CVS 132

MLton Guide (20180207) iv

49 DeadCode 133

50 DeepFlatten 134

51 DefineTypeBeforeUse 135

52 DefinitionOfStandardML 137

53 Defunctorize 138

54 Developers 140

55 Development 141

56 Documentation 142

57 Drawbacks 143

58 Eclipse 144

59 Elaborate 145

60 Emacs 149

61 EmacsBgBuildMode 150

62 EmacsDefUseMode 152

63 Enscript 154

64 EqualityType 155

65 EqualityTypeVariable 156

66 EtaExpansion 158

67 eXene 159

68 FAQ 160

69 Features 161

70 FirstClassPolymorphism 164

71 Fixpoints 166

72 Flatten 169

73 Fold 170

MLton Guide (20180207) v

74 Fold01N 182

75 ForeignFunctionInterface 184

76 ForeignFunctionInterfaceSyntax 185

77 ForeignFunctionInterfaceTypes 187

78 ForLoops 189

79 FrontEnd 193

80 FSharp 194

81 FunctionalRecordUpdate 195

82 fxp 198

83 GarbageCollection 199

84 GenerativeDatatype 200

85 GenerativeException 201

86 Git 203

87 Glade 204

88 Globalize 205

89 GnuMP 206

90 Google Summer of Code (2013) 207

91 Google Summer of Code (2014) 211

92 Google Summer of Code (2015) 214

93 HaMLet 218

94 HenryCejtin 219

95 History 220

96 HowProfilingWorks 221

97 Identifier 222

98 Immutable 223

MLton Guide (20180207) vi

99 ImperativeTypeVariable 224

100 ImplementExceptions 225

101 ImplementHandlers 226

102 ImplementProfiling 227

103 ImplementSuffix 228

104 InfixingOperators 229

105 Inline 232

106 InsertLimitChecks 233

107 InsertSignalChecks 234

108 Installation 235

109 IntermediateLanguage 237

110 IntroduceLoops 238

111 JesperLouisAndersen 239

112 JohnnyAndersen 240

113 KnownCase 241

114 LambdaCalculus 243

115 LambdaFree 244

116 LanguageChanges 245

117 Lazy 246

118 Libraries 247

119 LibrarySupport 249

120 License 252

121 LineDirective 253

122 LLVM 254

123 LLVMCodegen 255

MLton Guide (20180207) vii

124 LocalFlatten 256

125 LocalRef 257

126 Logo 258

127 LoopInvariant 259

128 LoopUnroll 260

129 LoopUnswitch 261

130 Machine 262

131 ManualPage 263

132 MatchCompilation 264

133 MatchCompile 265

134 MatthewFluet 267

135 mGTK 269

136 MichaelNorrish 270

137 MikeThomas 271

138 ML 272

139 MLAntlr 273

140 MLBasis 274

141 MLBasisAnnotationExamples 275

142 MLBasisAnnotations 276

143 MLBasisAvailableLibraries 278

144 MLBasisExamples 280

145 MLBasisPathMap 283

146 MLBasisSyntaxAndSemantics 284

147 MLj 285

148 MLKit 286

MLton Guide (20180207) viii

149 MLLex 287

150 MLLPTLibrary 288

151 MLmon 289

152 MLNLFFI 290

153 MLNLFFIGen 291

154 MLNLFFIImplementation 292

155 MLRISCLibrary 294

156 MLtonArray 296

157 MLtonBinIO 297

158 MLtonCont 298

159 MLtonContIsolateImplementation 299

160 MLtonCross 305

161 MLtonExn 306

162 MLtonFinalizable 307

163 MLtonGC 311

164 MLtonIntInf 312

165 MLtonIO 313

166 MLtonItimer 314

167 MLtonLibraryProject 315

168 MLtonMonoArray 316

169 MLtonMonoVector 317

170 MLtonPlatform 318

171 MLtonPointer 319

172 MLtonProcEnv 321

173 MLtonProcess 322

MLton Guide (20180207) ix

174 MLtonProfile 327

175 MLtonRandom 330

176 MLtonReal 331

177 MLtonRlimit 332

178 MLtonRusage 333

179 MLtonSignal 334

180 MLtonStructure 337

181 MLtonSyslog 341

182 MLtonTextIO 342

183 MLtonThread 343

184 MLtonVector 348

185 MLtonWeak 349

186 MLtonWord 350

187 MLtonWorld 351

188 MLULex 352

189 MLYacc 353

190 Monomorphise 354

191 MoscowML 356

192 Multi 357

193 Mutable 358

194 NeedsReview 359

195 NumericLiteral 360

196 ObjectOrientedProgramming 362

197 OCaml 367

198 OpenGL 368

MLton Guide (20180207) x

199 OperatorPrecedence 369

200 OptionalArguments 370

201 Overloading 373

202 PackedRepresentation 374

203 ParallelMove 375

204 Performance 376

205 PhantomType 380

206 PlatformSpecificNotes 381

207 PolyEqual 382

208 PolyHash 383

209 PolyML 384

210 PolymorphicEquality 385

211 Polyvariance 388

212 Poplog 389

213 PortingMLton 390

214 PrecedenceParse 393

215 Printf 394

216 PrintfGentle 396

217 ProductType 401

218 Profiling 402

219 ProfilingAllocation 403

220 ProfilingCounts 404

221 ProfilingTheStack 406

222 ProfilingTime 407

223 Projects 409

MLton Guide (20180207) xi

224 Pronounce 410

225 PropertyList 411

226 Pygments 413

227 RayRacine 414

228 Reachability 415

229 Redundant 416

230 RedundantTests 417

231 References 418

232 RefFlatten 426

233 Regions 427

234 Release20041109 429

235 Release20051202 430

236 Release20070826 432

237 Release20100608 434

238 Release20130715 437

239 Release20180207 439

240 ReleaseChecklist 441

241 Releases 444

242 RemoveUnused 445

243 Restore 446

244 ReturnStatement 447

245 RSSA 450

246 RSSAShrink 451

247 RSSASimplify 452

248 RunningOnAIX 453

MLton Guide (20180207) xii

249 RunningOnAlpha 454

250 RunningOnAMD64 455

251 RunningOnARM 456

252 RunningOnCygwin 457

253 RunningOnDarwin 458

254 RunningOnFreeBSD 459

255 RunningOnHPPA 460

256 RunningOnHPUX 461

257 RunningOnIA64 462

258 RunningOnLinux 463

259 RunningOnMinGW 464

260 RunningOnNetBSD 466

261 RunningOnOpenBSD 467

262 RunningOnPowerPC 468

263 RunningOnPowerPC64 469

264 RunningOnS390 470

265 RunningOnSolaris 471

266 RunningOnSparc 472

267 RunningOnX86 473

268 RunTimeOptions 474

269 ScopeInference 476

270 SelfCompiling 477

271 Serialization 478

272 ShareZeroVec 479

273 ShowBasis 481

MLton Guide (20180207) xiii

274 ShowBasisDirective 483

275 ShowProf 484

276 Shrink 485

277 SimplifyTypes 486

278 SML3d 487

279 SMLNET 488

280 SMLNJ 489

281 SMLNJDeviations 490

282 SMLNJLibrary 495

283 SMLofNJStructure 497

284 SMLSharp 499

285 Sources 500

286 SpaceSafety 501

287 SSA 502

288 SSA2 503

289 SSA2Simplify 504

290 SSASimplify 505

291 Stabilizers 507

292 StandardML 509

293 StandardMLBooks 511

294 StandardMLGotchas 512

295 StandardMLHistory 515

296 StandardMLImplementations 516

297 StandardMLPortability 517

298 StandardMLTutorials 518

MLton Guide (20180207) xiv

299 StaticSum 519

300 StephenWeeks 523

301 StyleGuide 524

302 Subversion 525

303 SuccessorML 526

304 SureshJagannathan 530

305 Swerve 531

306 SXML 532

307 SXMLShrink 533

308 SXMLSimplify 534

309 SyntacticConventions 535

310 Talk 542

311 TalkDiveIn 543

312 TalkFolkLore 544

313 TalkFromSMLTo 545

314 TalkHowHigherOrder 546

315 TalkHowModules 547

316 TalkHowPolymorphism 548

317 TalkMLtonApproach 549

318 TalkMLtonFeatures 550

319 TalkMLtonHistory 551

320 TalkStandardML 552

321 TalkTemplate 553

322 TalkWholeProgram 554

323 TILT 555

MLton Guide (20180207) xv

324 TipsForWritingConciseSML 556

325 ToMachine 559

326 TomMurphy 560

327 ToRSSA 561

328 ToSSA2 562

329 TypeChecking 563

330 TypeConstructor 566

331 TypeIndexedValues 567

332 TypeVariableScope 576

333 Unicode 579

334 UniversalType 580

335 UnresolvedBugs 582

336 UnsafeStructure 584

337 Useless 586

338 Users 587

339 Utilities 589

340 ValueRestriction 590

341 VariableArityPolymorphism 594

342 Variant 596

343 VesaKarvonen 597

344 WarnUnusedAnomalies 599

345 WesleyTerpstra 601

346 WholeProgramOptimization 602

347 WishList 603

348 XML 604

MLton Guide (20180207) xvi

349 XMLShrink 606

350 XMLSimplify 608

351 XMLSimplifyTypes 609

352 Zone 610

353 ZZZOrphanedPages 611

MLton Guide (20180207) xvii

Abstract

This is the guide for MLton, an open-source, whole-program, optimizing Standard ML compiler.

This guide was generated automatically from the MLton website, available online at http://mlton.org. It is up to date for MLton
20180207.

http://mlton.org

MLton Guide (20180207) 1 / 611

MLton

What is MLton?

MLton is an open-source, whole-program, optimizing Standard ML compiler.

What’s new?

• 20180207: Please try out our latest release, MLton 20180207.

• 20140730: Matthew Fluet and Lukasz Ziarek have been awarded an NSF CISE Research Infrastructure (CRI) grant titled
"Positioning MLton for Next-Generation Programming Languages Research;" read the award abstracts (Award #1405770 and
Award #1405614) for more details.

Next steps

• Read about MLton’s Features.

• Look at Documentation.

• See some Users of MLton.

• Download MLton.

• Meet the MLton Developers.

• Get involved with MLton Development.

• User-maintained FAQ.

• Contact us.

http://www.cs.rit.edu/%7emtf
http://www.cse.buffalo.edu/%7elziarek
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=12810
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1405770
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1405614
https://sourceforge.net/projects/mlton/files/mlton/20180207

MLton Guide (20180207) 2 / 611

AdamGoode

• I maintain the Fedora package of MLton, in Fedora.

• I have contributed some patches for Makefiles and PDF documentation building.

https://admin.fedoraproject.org/pkgdb/packages/name/mlton

MLton Guide (20180207) 3 / 611

AdmitsEquality

A TypeConstructor admits equality if whenever it is applied to equality types, the result is an EqualityType. This notion enables
one to determine whether a type constructor application yields an equality type solely from the application, without looking at
the definition of the type constructor. It helps to ensure that PolymorphicEquality is only applied to sensible values.

The definition of admits equality depends on whether the type constructor was declared by a type definition or a datatype
declaration.

Type definitions

For type definition

type (’a1, ..., ’an) t = ...

type constructor t admits equality if the right-hand side of the definition is an equality type after replacing ’a1, . . . , ’an by
equality types (it doesn’t matter which equality types are chosen).

For a nullary type definition, this amounts to the right-hand side being an equality type. For example, after the definition

type t = bool * int

type constructor t admits equality because bool * int is an equality type. On the other hand, after the definition

type t = bool * int * real

type constructor t does not admit equality, because real is not an equality type.

For another example, after the definition

type ’a t = bool * ’a

type constructor t admits equality because bool * int is an equality type (we could have chosen any equality type other than
int).

On the other hand, after the definition

type ’a t = real * ’a

type constructor t does not admit equality because real * int is not equality type.

We can check that a type constructor admits equality using an eqtype specification.

structure Ok: sig eqtype ’a t end =
struct

type ’a t = bool * ’a
end

structure Bad: sig eqtype ’a t end =
struct

type ’a t = real * int * ’a
end

On structure Bad, MLton reports the following error.

Error: z.sml 1.16-1.34.
Type in structure disagrees with signature (admits equality): t.
structure: type ’a t = [real] * _ * _
defn at: z.sml 3.15-3.15
signature: [eqtype] ’a t
spec at: z.sml 1.30-1.30

The structure: section provides an explanation of why the type did not admit equality, highlighting the problematic compo-
nent (real).

MLton Guide (20180207) 4 / 611

Datatype declarations

For a type constructor declared by a datatype declaration to admit equality, every variant of the datatype must admit equality. For
example, the following datatype admits equality because bool and char * int are equality types.

datatype t = A of bool | B of char * int

Nullary constructors trivially admit equality, so that the following datatype admits equality.

datatype t = A | B | C

For a parameterized datatype constructor to admit equality, we consider each variant as a type definition, and require that the
definition admit equality. For example, for the datatype

datatype ’a t = A of bool * ’a | B of ’a

the type definitions

type ’a tA = bool * ’a
type ’a tB = ’a

both admit equality. Thus, type constructor t admits equality.

On the other hand, the following datatype does not admit equality.

datatype ’a t = A of bool * ’a | B of real * ’a

As with type definitions, we can check using an eqtype specification.

structure Bad: sig eqtype ’a t end =
struct

datatype ’a t = A of bool * ’a | B of real * ’a
end

MLton reports the following error.

Error: z.sml 1.16-1.34.
Type in structure disagrees with signature (admits equality): t.
structure: datatype ’a t = B of [real] * _ | ...
defn at: z.sml 3.19-3.19
signature: [eqtype] ’a t
spec at: z.sml 1.30-1.30

MLton indicates the problematic constructor (B), as well as the problematic component of the constructor’s argument.

Recursive datatypes

A recursive datatype like

datatype t = A | B of int * t

introduces a new problem, since in order to decide whether t admits equality, we need to know for the B variant whether t
admits equality. The Definition answers this question by requiring a type constructor to admit equality if it is consistent to do so.
So, in our above example, if we assume that t admits equality, then the variant B of int * t admits equality. Then, since
the A variant trivially admits equality, so does the type constructor t. Thus, it was consistent to assume that t admits equality,
and so, t does admit equality.

On the other hand, in the following declaration

datatype t = A | B of real * t

MLton Guide (20180207) 5 / 611

if we assume that t admits equality, then the B variant does not admit equality. Hence, the type constructor t does not admit
equality, and our assumption was inconsistent. Hence, t does not admit equality.

The same kind of reasoning applies to mutually recursive datatypes as well. For example, the following defines both t and u to
admit equality.

datatype t = A | B of u
and u = C | D of t

But the following defines neither t nor u to admit equality.

datatype t = A | B of u * real
and u = C | D of t

As always, we can check whether a type admits equality using an eqtype specification.

structure Bad: sig eqtype t eqtype u end =
struct

datatype t = A | B of u * real
and u = C | D of t

end

MLton reports the following error.

Error: z.sml 1.16-1.40.
Type in structure disagrees with signature (admits equality): t.
structure: datatype t = B of [_str.u] * [real] | ...
defn at: z.sml 3.16-3.16
signature: [eqtype] t
spec at: z.sml 1.27-1.27

Error: z.sml 1.16-1.40.
Type in structure disagrees with signature (admits equality): u.
structure: datatype u = D of [_str.t] | ...
defn at: z.sml 4.11-4.11
signature: [eqtype] u
spec at: z.sml 1.36-1.36

MLton Guide (20180207) 6 / 611

Alice

Alice ML is an extension of SML with concurrency, dynamic typing, components, distribution, and constraint solving.

http://www.ps.uni-saarland.de/alice

MLton Guide (20180207) 7 / 611

AllocateRegisters

AllocateRegisters is an analysis pass for the RSSA IntermediateLanguage, invoked from ToMachine.

Description

Computes an allocation of RSSA variables as Machine register or stack operands.

Implementation

• allocate-registers.sig

• allocate-registers.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/allocate-registers.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/allocate-registers.fun

MLton Guide (20180207) 8 / 611

AndreiFormiga

I’m a graduate student just back in academia. I study concurrent and parallel systems, with a great deal of interest in programming
languages (theory, design, implementation). I happen to like functional languages.

I use the nickname tautologico on #sml and my email is andrei DOT formiga AT gmail DOT com.

MLton Guide (20180207) 9 / 611

ArrayLiteral

Standard ML does not have a syntax for array literals or vector literals. The only way to write down an array is like

Array.fromList [w, x, y, z]

No SML compiler produces efficient code for the above expression. The generated code allocates a list and then converts it to
an array. To alleviate this, one could write down the same array using Array.tabulate, or even using Array.array and
Array.update, but that is syntactically unwieldy.

Fortunately, using Fold, it is possible to define constants A, and ` so that one can write down an array like:

A ‘w ‘x ‘y ‘z $

This is as syntactically concise as the fromList expression. Furthermore, MLton, at least, will generate the efficient code as if
one had written down a use of Array.array followed by four uses of Array.update.

Along with A and `, one can define a constant V that makes it possible to define vector literals with the same syntax, e.g.,

V ‘w ‘x ‘y ‘z $

Note that the same element indicator, `, serves for both array and vector literals. Of course, the $ is the end-of-arguments marker
always used with Fold. The only difference between an array literal and vector literal is the A or V at the beginning.

Here is the implementation of A, V, and `. We place them in a structure and use signature abstraction to hide the type of the
accumulator. See Fold for more on this technique.

structure Literal:>
sig

type ’a z
val A: (’a z, ’a z, ’a array, ’d) Fold.t
val V: (’a z, ’a z, ’a vector, ’d) Fold.t
val ‘ : (’a, ’a z, ’a z, ’b, ’c, ’d) Fold.step1

end =
struct

type ’a z = int * ’a option * (’a array -> unit)

val A =
fn z =>
Fold.fold
((0, NONE, ignore),
fn (n, opt, fill) =>
case opt of

NONE =>
Array.tabulate (0, fn _ => raise Fail "array0")

| SOME x =>
let

val a = Array.array (n, x)
val () = fill a

in
a

end)
z

val V = fn z => Fold.post (A, Array.vector) z

val ‘ =
fn z =>
Fold.step1
(fn (x, (i, opt, fill)) =>
(i + 1,
SOME x,

MLton Guide (20180207) 10 / 611

fn a => (Array.update (a, i, x); fill a)))
z

end

The idea of the code is for the fold to accumulate a count of the number of elements, a sample element, and a function that fills
in all the elements. When the fold is complete, the finishing function allocates the array, applies the fill function, and returns
the array. The only difference between A and V is at the very end; A just returns the array, while V converts it to a vector using
post-composition, which is further described on the Fold page.

MLton Guide (20180207) 11 / 611

AST

AST is the IntermediateLanguage produced by the FrontEnd and translated by Elaborate to CoreML.

Description

The abstract syntax tree produced by the FrontEnd.

Implementation

• ast-programs.sig

• ast-programs.fun

• ast-modules.sig

• ast-modules.fun

• ast-core.sig

• ast-core.fun

• ast

Type Checking

The AST IntermediateLanguage has no independent type checker. Type inference is performed on an AST program as part of
Elaborate.

Details and Notes

Source locations

MLton makes use of a relatively clean method for annotating the abstract syntax tree with source location information. Every
source program phrase is "wrapped" with the WRAPPED interface:

signature WRAPPED =
sig

type node’
type obj

val dest: obj -> node’ * Region.t
val makeRegion’: node’ * SourcePos.t * SourcePos.t -> obj
val makeRegion: node’ * Region.t -> obj
val node: obj -> node’
val region: obj -> Region.t

end

The key idea is that node’ is the type of an unannotated syntax phrase and obj is the type of its annotated counterpart.
In the implementation, every node’ is annotated with a Region.t (region.sig, region.sml), which describes the
syntax phrase’s left source position and right source position, where SourcePos.t (source-pos.sig, source-pos.
sml) denotes a particular file, line, and column. A typical use of the WRAPPED interface is illustrated by the following code:

https://github.com/MLton/mlton/blob/master/mlton/ast/ast-programs.sig
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-programs.fun
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-modules.sig
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-modules.fun
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-core.sig
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-core.fun
https://github.com/MLton/mlton/tree/master/mlton/ast
https://github.com/MLton/mlton/blob/master/mlton/control/region.sig
https://github.com/MLton/mlton/blob/master/mlton/control/region.sml
https://github.com/MLton/mlton/blob/master/mlton/control/source-pos.sig
https://github.com/MLton/mlton/blob/master/mlton/control/source-pos.sml
https://github.com/MLton/mlton/blob/master/mlton/control/source-pos.sml

MLton Guide (20180207) 12 / 611

datatype node =
App of Longcon.t * t

| Const of Const.t
| Constraint of t * Type.t
| FlatApp of t vector
| Layered of {constraint: Type.t option,

fixop: Fixop.t,
pat: t,
var: Var.t}

| List of t vector
| Paren of t
| Or of t vector
| Record of {flexible: bool,

items: (Record.Field.t * Region.t * Item.t) vector}
| Tuple of t vector
| Var of {fixop: Fixop.t,

name: Longvid.t}
| Vector of t vector
| Wild

Thus, AST nodes are cleanly separated from source locations. By way of contrast, consider the approach taken by SML/NJ (and
also by the CKit Library). Each datatype denoting a syntax phrase dedicates a special constructor for annotating source locations:

datatype pat = WildPat (* empty pattern *)
| AppPat of {constr:pat,argument:pat} (* application *)
| MarkPat of pat * region (* mark a pattern *)

The main drawback of this approach is that static type checking is not sufficient to guarantee that the AST emitted from the
front-end is properly annotated.

MLton Guide (20180207) 13 / 611

BasisLibrary

The Standard ML Basis Library is a collection of modules dealing with basic types, input/output, OS interfaces, and simple
datatypes. It is intended as a portable library usable across all implementations of SML. For the official online version of the
Basis Library specification, see http://www.standardml.org/Basis. The Standard ML Basis Library is a book version that includes
all of the online version and more. For a reverse chronological list of changes to the specification, see http://www.standardml.org/-
Basis/history.html.

MLton implements all of the required portions of the Basis Library. MLton also implements many of the optional structures. You
can obtain a complete and current list of what’s available using mlton -show-basis (see ShowBasis). By default, MLton
makes the Basis Library available to user programs. You can also access the Basis Library from ML Basis files.

Below is a complete list of what MLton implements.

Top-level types and constructors

eqtype ’a array

datatype bool =false | true

eqtype char

type exn

eqtype int

datatype ’a list =nil | ::of (’a * ’a list)

datatype ’a option =NONE | SOME of ’a

datatype order =EQUAL | GREATER | LESS

type real

datatype ’a ref =ref of ’a

eqtype string

type substring

eqtype unit

eqtype ’a vector

eqtype word

Top-level exception constructors

Bind

Chr

Div

Domain

Empty

Fail of string

Match

Option

Overflow

Size

Span

Subscript

http://www.standardml.org/Basis
http://www.standardml.org/Basis/history.html
http://www.standardml.org/Basis/history.html

MLton Guide (20180207) 14 / 611

Top-level values

MLton does not implement the optional top-level value use:string -> unit, which conflicts with whole-program compi-
lation because it allows new code to be loaded dynamically.

MLton implements all other top-level values:

!, :=, <>, =, @, ˆ, app, before, ceil, chr, concat, exnMessage, exnName, explode, floor, foldl, foldr,
getOpt, hd, ignore, implode, isSome, length, map, not, null, o, ord, print, real, rev, round, size, str,
substring, tl, trunc, valOf, vector

Overloaded identifiers

*, +, -, /, <, <=, >, >=, ~, abs, div, mod

Top-level signatures

ARRAY

ARRAY2

ARRAY_SLICE

BIN_IO

BIT_FLAGS

BOOL

BYTE

CHAR

COMMAND_LINE

DATE

GENERAL

GENERIC_SOCK

IEEE_REAL

IMPERATIVE_IO

INET_SOCK

INTEGER

INT_INF

IO

LIST

LIST_PAIR

MATH

MONO_ARRAY

MONO_ARRAY2

MONO_ARRAY_SLICE

MONO_VECTOR

MONO_VECTOR_SLICE

NET_HOST_DB

MLton Guide (20180207) 15 / 611

NET_PROT_DB

NET_SERV_DB

OPTION

OS

OS_FILE_SYS

OS_IO

OS_PATH

OS_PROCESS

PACK_REAL

PACK_WORD

POSIX

POSIX_ERROR

POSIX_FILE_SYS

POSIX_IO

POSIX_PROCESS

POSIX_PROC_ENV

POSIX_SIGNAL

POSIX_SYS_DB

POSIX_TTY

PRIM_IO

REAL

SOCKET

STREAM_IO

STRING

STRING_CVT

SUBSTRING

TEXT

TEXT_IO

TEXT_STREAM_IO

TIME

TIMER

UNIX

UNIX_SOCK

VECTOR

VECTOR_SLICE

WORD

MLton Guide (20180207) 16 / 611

Top-level structures

structure Array:ARRAY

structure Array2:ARRAY2

structure ArraySlice:ARRAY_SLICE

structure BinIO:BIN_IO

structure BinPrimIO:PRIM_IO

structure Bool:BOOL

structure BoolArray:MONO_ARRAY

structure BoolArray2:MONO_ARRAY2

structure BoolArraySlice:MONO_ARRAY_SLICE

structure BoolVector:MONO_VECTOR

structure BoolVectorSlice:MONO_VECTOR_SLICE

structure Byte:BYTE

structure Char:CHAR

• Char characters correspond to ISO-8859-1. The Char functions do not depend on locale.

structure CharArray:MONO_ARRAY

structure CharArray2:MONO_ARRAY2

structure CharArraySlice:MONO_ARRAY_SLICE

structure CharVector:MONO_VECTOR

structure CharVectorSlice:MONO_VECTOR_SLICE

structure CommandLine:COMMAND_LINE

structure Date:DATE

• Date.fromString and Date.scan accept a space in addition to a zero for the first character of the day of the month. The
Basis Library specification only allows a zero.

structure FixedInt:INTEGER

structure General:GENERAL

structure GenericSock:GENERIC_SOCK

structure IEEEReal:IEEE_REAL

structure INetSock:INET_SOCK

structure IO:IO

structure Int:INTEGER

structure Int1:INTEGER

structure Int2:INTEGER

structure Int3:INTEGER

structure Int4:INTEGER

. . .

structure Int31:INTEGER

MLton Guide (20180207) 17 / 611

structure Int32:INTEGER

structure Int64:INTEGER

structure IntArray:MONO_ARRAY

structure IntArray2:MONO_ARRAY2

structure IntArraySlice:MONO_ARRAY_SLICE

structure IntVector:MONO_VECTOR

structure IntVectorSlice:MONO_VECTOR_SLICE

structure Int8:INTEGER

structure Int8Array:MONO_ARRAY

structure Int8Array2:MONO_ARRAY2

structure Int8ArraySlice:MONO_ARRAY_SLICE

structure Int8Vector:MONO_VECTOR

structure Int8VectorSlice:MONO_VECTOR_SLICE

structure Int16:INTEGER

structure Int16Array:MONO_ARRAY

structure Int16Array2:MONO_ARRAY2

structure Int16ArraySlice:MONO_ARRAY_SLICE

structure Int16Vector:MONO_VECTOR

structure Int16VectorSlice:MONO_VECTOR_SLICE

structure Int32:INTEGER

structure Int32Array:MONO_ARRAY

structure Int32Array2:MONO_ARRAY2

structure Int32ArraySlice:MONO_ARRAY_SLICE

structure Int32Vector:MONO_VECTOR

structure Int32VectorSlice:MONO_VECTOR_SLICE

structure Int64Array:MONO_ARRAY

structure Int64Array2:MONO_ARRAY2

structure Int64ArraySlice:MONO_ARRAY_SLICE

structure Int64Vector:MONO_VECTOR

structure Int64VectorSlice:MONO_VECTOR_SLICE

structure IntInf:INT_INF

structure LargeInt:INTEGER

structure LargeIntArray:MONO_ARRAY

structure LargeIntArray2:MONO_ARRAY2

structure LargeIntArraySlice:MONO_ARRAY_SLICE

structure LargeIntVector:MONO_VECTOR

structure LargeIntVectorSlice:MONO_VECTOR_SLICE

structure LargeReal:REAL

structure LargeRealArray:MONO_ARRAY

MLton Guide (20180207) 18 / 611

structure LargeRealArray2:MONO_ARRAY2

structure LargeRealArraySlice:MONO_ARRAY_SLICE

structure LargeRealVector:MONO_VECTOR

structure LargeRealVectorSlice:MONO_VECTOR_SLICE

structure LargeWord:WORD

structure LargeWordArray:MONO_ARRAY

structure LargeWordArray2:MONO_ARRAY2

structure LargeWordArraySlice:MONO_ARRAY_SLICE

structure LargeWordVector:MONO_VECTOR

structure LargeWordVectorSlice:MONO_VECTOR_SLICE

structure List:LIST

structure ListPair:LIST_PAIR

structure Math:MATH

structure NetHostDB:NET_HOST_DB

structure NetProtDB:NET_PROT_DB

structure NetServDB:NET_SERV_DB

structure OS:OS

structure Option:OPTION

structure PackReal32Big:PACK_REAL

structure PackReal32Little:PACK_REAL

structure PackReal64Big:PACK_REAL

structure PackReal64Little:PACK_REAL

structure PackRealBig:PACK_REAL

structure PackRealLittle:PACK_REAL

structure PackWord16Big:PACK_WORD

structure PackWord16Little:PACK_WORD

structure PackWord32Big:PACK_WORD

structure PackWord32Little:PACK_WORD

structure PackWord64Big:PACK_WORD

structure PackWord64Little:PACK_WORD

structure Position:INTEGER

structure Posix:POSIX

structure Real:REAL

structure RealArray:MONO_ARRAY

structure RealArray2:MONO_ARRAY2

structure RealArraySlice:MONO_ARRAY_SLICE

structure RealVector:MONO_VECTOR

structure RealVectorSlice:MONO_VECTOR_SLICE

structure Real32:REAL

MLton Guide (20180207) 19 / 611

structure Real32Array:MONO_ARRAY

structure Real32Array2:MONO_ARRAY2

structure Real32ArraySlice:MONO_ARRAY_SLICE

structure Real32Vector:MONO_VECTOR

structure Real32VectorSlice:MONO_VECTOR_SLICE

structure Real64:REAL

structure Real64Array:MONO_ARRAY

structure Real64Array2:MONO_ARRAY2

structure Real64ArraySlice:MONO_ARRAY_SLICE

structure Real64Vector:MONO_VECTOR

structure Real64VectorSlice:MONO_VECTOR_SLICE

structure Socket:SOCKET

• The Basis Library specification requires functions like Socket.sendVec to raise an exception if they fail. However, on
some platforms, sending to a socket that hasn’t yet been connected causes a SIGPIPE signal, which invokes the default signal
handler for SIGPIPE and causes the program to terminate. If you want the exception to be raised, you can ignore SIGPIPE
by adding the following to your program.

let
open MLton.Signal

in
setHandler (Posix.Signal.pipe, Handler.ignore)

end

structure String:STRING

• The String functions do not depend on locale.

structure StringCvt:STRING_CVT

structure Substring:SUBSTRING

structure SysWord:WORD

structure Text:TEXT

structure TextIO:TEXT_IO

structure TextPrimIO:PRIM_IO

structure Time:TIME

structure Timer:TIMER

structure Unix:UNIX

structure UnixSock:UNIX_SOCK

structure Vector:VECTOR

structure VectorSlice:VECTOR_SLICE

structure Word:WORD

structure Word1:WORD

structure Word2:WORD

structure Word3:WORD

MLton Guide (20180207) 20 / 611

structure Word4:WORD

. . .

structure Word31:WORD

structure Word32:WORD

structure Word64:WORD

structure WordArray:MONO_ARRAY

structure WordArray2:MONO_ARRAY2

structure WordArraySlice:MONO_ARRAY_SLICE

structure WordVectorSlice:MONO_VECTOR_SLICE

structure WordVector:MONO_VECTOR

structure Word8Array:MONO_ARRAY

structure Word8Array2:MONO_ARRAY2

structure Word8ArraySlice:MONO_ARRAY_SLICE

structure Word8Vector:MONO_VECTOR

structure Word8VectorSlice:MONO_VECTOR_SLICE

structure Word16Array:MONO_ARRAY

structure Word16Array2:MONO_ARRAY2

structure Word16ArraySlice:MONO_ARRAY_SLICE

structure Word16Vector:MONO_VECTOR

structure Word16VectorSlice:MONO_VECTOR_SLICE

structure Word32Array:MONO_ARRAY

structure Word32Array2:MONO_ARRAY2

structure Word32ArraySlice:MONO_ARRAY_SLICE

structure Word32Vector:MONO_VECTOR

structure Word32VectorSlice:MONO_VECTOR_SLICE

structure Word64Array:MONO_ARRAY

structure Word64Array2:MONO_ARRAY2

structure Word64ArraySlice:MONO_ARRAY_SLICE

structure Word64Vector:MONO_VECTOR

structure Word64VectorSlice:MONO_VECTOR_SLICE

Top-level functors

ImperativeIO

PrimIO

StreamIO

• MLton’s StreamIO functor takes structures ArraySlice and VectorSlice in addition to the arguments specified in the
Basis Library specification.

MLton Guide (20180207) 21 / 611

Type equivalences

The following types are equivalent.

FixedInt = Int64.int
LargeInt = IntInf.int
LargeReal.real = Real64.real
LargeWord = Word64.word

The default int, real, and word types may be set by the -default-type type compile-time option. By default, the
following types are equivalent:

int = Int.int = Int32.int
real = Real.real = Real64.real
word = Word.word = Word32.word

Real and Math functions

The Real, Real32, and Real64 modules are implemented using the C math library, so the SML functions will reflect the
behavior of the underlying library function. We have made some effort to unify the differences between the math libraries on
different platforms, and in particular to handle exceptional cases according to the Basis Library specification. However, there will
be differences due to different numerical algorithms and cases we may have missed. Please submit a bug report if you encounter
an error in the handling of an exceptional case.

On x86, real arithmetic is implemented internally using 80 bits of precision. Using higher precision for intermediate results
in computations can lead to different results than if all the computation is done at 32 or 64 bits. If you require strict IEEE
compliance, you can compile with -ieee-fp true, which will cause intermediate results to be stored after each operation.
This may cause a substantial performance penalty.

MLton Guide (20180207) 22 / 611

Bug

To report a bug, please send mail to mlton-devel@mlton.org. Please include the complete SML program that caused
the problem and a log of a compile of the program with -verbose 2. For large programs (over 256K), please send an email
containing the discussion text and a link to any large files.

There are some UnresolvedBugs that we don’t plan to fix.

We also maintain a list of bugs found with each release.

• Bugs20130715

• Bugs20100608

• Bugs20070826

• Bugs20051202

• Bugs20041109

mailto:mlton-devel@mlton.org

MLton Guide (20180207) 23 / 611

Bugs20041109

Here are the known bugs in MLton 20041109, listed in reverse chronological order of date reported.

• MLton.Finalizable.touch doesn’t necessarily keep values alive long enough. Our SVN has a patch to the compiler.
You must rebuild the compiler in order for the patch to take effect.

Thanks to Florian Weimer for reporting this bug.

• A bug in an optimization pass may incorrectly transform a program to flatten ref cells into their containing data structure,
yielding a type-error in the transformed program. Our CVS has a patch to the compiler. You must rebuild the compiler in order
for the patch to take effect.

Thanks to VesaKarvonen for reporting this bug.

• A bug in the front end mistakenly allows unary constructors to be used without an argument in patterns. For example, the
following program is accepted, and triggers a large internal error.

fun f x = case x of SOME => true | _ => false

We have fixed the problem in our CVS.

Thanks to William Lovas for reporting this bug.

• A bug in Posix.IO.{getlk,setlk,setlkw} causes a link-time error: undefined reference to Posix_IO
_FLock_typ Our CVS has a patch to the Basis Library implementation.

Thanks to Adam Chlipala for reporting this bug.

• A bug can cause programs compiled with -profile alloc to segfault. Our CVS has a patch to the compiler. You must
rebuild the compiler in order for the patch to take effect.

Thanks to John Reppy for reporting this bug.

• A bug in an optimization pass may incorrectly flatten ref cells into their containing data structure, breaking the sharing between
the cells. Our CVS has a patch to the compiler. You must rebuild the compiler in order for the patch to take effect.

Thanks to Paul Govereau for reporting this bug.

• Some arrays or vectors, such as (char * char) vector, are incorrectly implemented, and will conflate the first and
second components of each element. Our CVS has a patch to the compiler. You must rebuild the compiler in order for the
patch to take effect.

Thanks to Scott Cruzen for reporting this bug.

• Socket.Ctl.getLINGER and Socket.Ctl.setLINGER mistakenly raise Subscript. Our CVS has a patch to the
Basis Library implementation.

Thanks to Ray Racine for reporting the bug.

• CML Mailbox.send makes a call in the wrong atomic context. Our CVS has a patch to the CML implementation.

• OS.Path.joinDirFile and OS.Path.toString did not raise InvalidArc when they were supposed to. They now
do. Our CVS has a patch to the Basis Library implementation.

Thanks to Andreas Rossberg for reporting the bug.

• The front end incorrectly disallows sequences of expressions (separated by semicolons) after a topdec has already been pro-
cessed. For example, the following is incorrectly rejected.

val x = 0;
ignore x;
ignore x;

We have fixed the problem in our CVS.

Thanks to Andreas Rossberg for reporting the bug.

http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.35&r2=1.37
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/posix/primitive.sml.diff?r1=1.34&r2=1.35
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/ssa-to-rssa.fun.diff?r1=1.106&r2=1.107
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/packed-representation.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/socket.sml.diff?r1=1.14&r2=1.15
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/lib/cml/core-cml/mailbox.sml.diff?r1=1.3&r2=1.4
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/system/path.sml.diff?r1=1.8&r2=1.11

MLton Guide (20180207) 24 / 611

• The front end incorrectly disallows expansive val declarations that bind a type variable that doesn’t occur in the type of the
value being bound. For example, the following is incorrectly rejected.

val ’a x = let exception E of ’a in () end

We have fixed the problem in our CVS.

Thanks to Andreas Rossberg for reporting this bug.

• The x86 codegen fails to account for the possibility that a 64-bit move could interfere with itself (as simulated by 32-bit moves).
We have fixed the problem in our CVS.

Thanks to Scott Cruzen for reporting this bug.

• NetHostDB.scan and NetHostDB.fromString incorrectly raise an exception on internet addresses whose last com-
ponent is a zero, e.g 0.0.0.0. Our CVS has a patch to the Basis Library implementation.

Thanks to Scott Cruzen for reporting this bug.

• StreamIO.inputLine has an off-by-one error causing it to drop the first character after a newline in some situations. Our
CVS has a patch. to the Basis Library implementation.

Thanks to Scott Cruzen for reporting this bug.

• BinIO.getInstream and TextIO.getInstream are implemented incorrectly. This also impacts the behavior of
BinIO.scanStream and TextIO.scanStream. If you (directly or indirectly) realize a TextIO.StreamIO.ins
tream and do not (directly or indirectly) call TextIO.setInstream with a derived stream, you may lose input data. We
have fixed the problem in our CVS.

Thanks to WesleyTerpstra for reporting this bug.

• Posix.ProcEnv.setpgid doesn’t work. If you compile a program that uses it, you will get a link time error

undefined reference to ‘Posix_ProcEnv_setpgid’

The bug is due to Posix_ProcEnv_setpgid being omitted from the MLton runtime. We fixed the problem in our CVS
by adding the following definition to runtime/Posix/ProcEnv/ProcEnv.c

Int Posix_ProcEnv_setpgid (Pid p, Gid g) {
return setpgid (p, g);

}

Thanks to Tom Murphy for reporting this bug.

http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/net-host-db.sml.diff?r1=1.12&r2=1.13
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/io/stream-io.fun.diff?r1=text&tr1=1.29&r2=text&tr2=1.30&diff_format=h

MLton Guide (20180207) 25 / 611

Bugs20051202

Here are the known bugs in MLton 20051202, listed in reverse chronological order of date reported.

• Bug in the Real<N>.fmt, Real<N>.fromString, Real<N>.scan, and Real<N>.toString functions of the Basis
Library implementation. These functions were using TO_NEAREST semantics, but should obey the current rounding mode.
(Only Real<N>.fmt StringCvt.EXACT, Real<N>.fromDecimal, and Real<N>.toDecimal are specified to
override the current rounding mode with TO_NEAREST semantics.)

Thanks to Sean McLaughlin for the bug report.

Fixed by revision r5827.

• Bug in the treatment of floating-point operations. Floating-point operations depend on the current rounding mode, but were
being treated as pure.

Thanks to Sean McLaughlin for the bug report.

Fixed by revision r5794.

• Bug in the Real32.toInt function of the Basis Library implementation could lead incorrect results when applied to a
Real32.real value numerically close to valOf(Int.maxInt).

Fixed by revision r5764.

• The Socket structure of the Basis Library implementation used andb rather than orb to unmarshal socket options (for
Socket.Ctl.get<OPT> functions).

Thanks to Anders Petersson for the bug report and patch.

Fixed by revision r5735.

• Bug in the Date structure of the Basis Library implementation yielded some functions that would erroneously raise Date
when applied to a year before 1900.

Thanks to Joe Hurd for the bug report.

Fixed by revision r5732.

• Bug in monomorphisation pass could exhibit the error Type error:type mismatch.

Thanks to Vesa Karvonen for the bug report.

Fixed by revision r5731.

• The PackReal<N>.toBytes function in the Basis Library implementation incorrectly shared (and mutated) the result
vector.

Thanks to Eric McCorkle for the bug report and patch.

Fixed by revision r5281.

• Bug in elaboration of FFI forms. Using a unary FFI types (e.g., array, ref, vector) in places where MLton.Pointer.
t was required would lead to an internal error TypeError.

Fixed by revision r4890.

• The MONO_VECTOR signature of the Basis Library implementation incorrectly omits the specification of find.

Fixed by revision r4707.

• The optimizer reports an internal error (TypeError) when an imported C function is called but not used.

Thanks to "jq" for the bug report.

Fixed by revision r4690.

• Bug in pass to flatten data structures.

Thanks to Joe Hurd for the bug report.

Fixed by revision r4662.

http://www.standardml.org/Basis/real.html#SIG:REAL.fmt:VAL
http://www.standardml.org/Basis/real.html#SIG:REAL.fromString:VAL
http://www.standardml.org/Basis/real.html#SIG:REAL.scan:VAL
http://www.standardml.org/Basis/real.html#SIG:REAL.toString:VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5827
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5794
http://www.standardml.org/Basis/real.html#SIG:REAL.toInt:VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5764
http://www.standardml.org/Basis/socket.html
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5735
http://www.standardml.org/Basis/date.html
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5732
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5731
http://www.standardml.org/Basis/pack-float.html#SIG:PACK_REAL.toBytes:VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5281
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4890
http://www.standardml.org/Basis/mono-vector.html
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4707
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4690
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4662

MLton Guide (20180207) 26 / 611

• The native codegen’s implementation of the C-calling convention failed to widen 16-bit arguments to 32-bits.

Fixed by revision r4631.

• The PACK_REAL structures of the Basis Library implementation used byte, rather than element, indexing.

Fixed by revision r4411.

• MLton.share could cause a segmentation fault.

Fixed by revision r4400.

• The SSA simplifier could eliminate an irredundant test.

Fixed by revision r4370.

• A program with a very large number of functors could exhibit the error ElaborateEnv.functorClosure:firstTyc
ons.

Fixed by revision r4344.

https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4631
http://www.standardml.org/Basis/pack-float.html
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4411
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4400
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4370
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4344

MLton Guide (20180207) 27 / 611

Bugs20070826

Here are the known bugs in MLton 20070826, listed in reverse chronological order of date reported.

• Bug in the mark-compact garbage collector where the C library’s memcpy was used to move objects during the compaction
phase; this could lead to heap corruption and segmentation faults with newer versions of gcc and/or glibc, which assume that
src and dst in a memcpy do not overlap.

Fixed by revision r7461.

• Bug in elaboration of datatype declarations with withtype bindings.

Fixed by revision r7434.

• Performance bug in RefFlatten optimization pass.

Thanks to Reactive Systems for the bug report.

Fixed by revision r7379.

• Performance bug in SimplifyTypes optimization pass.

Thanks to Reactive Systems for the bug report.

Fixed by revisions r7377 and r7378.

• Bug in amd64 codegen register allocation of indirect C calls.

Thanks to David Hansel for the bug report.

Fixed by revision r7368.

• Bug in IntInf.scan and IntInf.fromString where leading spaces were only accepted if the stream had an explicit
sign character.

Thanks to David Hansel for the bug report.

Fixed by revisions r7227 and r7230.

• Bug in IntInf.~>> that could cause a glibc assertion.

Fixed by revisions r7083, r7084, and r7085.

• Bug in the return type of MLton.Process.reap.

Thanks to Risto Saarelma for the bug report.

Fixed by revision r7029.

• Bug in MLton.size and MLton.share when tracing the current stack.

Fixed by revisions r6978, r6981, r6988, r6989, and r6990.

• Bug in nested _export/_import functions.

Fixed by revision r6919.

• Bug in the name mangling of _import-ed functions with the stdcall convention.

Thanks to Lars Bergstrom for the bug report.

Fixed by revision r6672.

• Bug in Windows code to page the heap to disk when unable to grow the heap to a desired size.

Thanks to Sami Evangelista for the bug report.

Fixed by revisions r6600 and r6624.

• Bug in *NIX code to page the heap to disk when unable to grow the heap to a desired size.

Thanks to Nicolas Bertolotti for the bug report and patch.

Fixed by revisions r6596 and r6600.

https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7461
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7434
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7379
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7377
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7378
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7368
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7227
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7230
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7083
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7084
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7085
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7029
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6978
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6981
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6988
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6989
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6990
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6919
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6672
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6600
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6624
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6596
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6600

MLton Guide (20180207) 28 / 611

• Space-safety bug in pass to flatten refs into containing data structure.

Thanks to Daniel Spoonhower for the bug report and initial diagnosis and patch.

Fixed by revision r6395.

• Bug in the frontend that rejected op longvid patterns and expressions.

Thanks to Florian Weimer for the bug report.

Fixed by revision r6347.

• Bug in the IMPERATIVE_IO.canInput function of the Basis Library implementation.

Thanks to Ville Laurikari for the bug report.

Fixed by revision r6261.

• Bug in algebraic simplification of real primitives. REAL<N>.<=(x, x) is false when x is NaN.

Fixed by revision r6242.

• Bug in the FFI visible representation of Int16.int ref (and references of other primitive types smaller than 32-bits) on
big-endian platforms.

Thanks to Dave Herman for the bug report.

Fixed by revision r6267.

• Bug in type inference of flexible records. This would later cause the compiler to raise the TypeError exception.

Thanks to Wesley Terpstra for the bug report.

Fixed by revision r6229.

• Bug in cross-compilation of gdtoa library.

Thanks to Wesley Terpstra for the bug report and patch.

Fixed by revision r6620.

• Bug in pass to flatten refs into containing data structure.

Thanks to Ruy Ley-Wild for the bug report.

Fixed by revision r6191.

• Bug in the handling of weak pointers by the mark-compact garbage collector.

Thanks to Sean McLaughlin for the bug report and Florian Weimer for the initial diagnosis.

Fixed by revision r6183.

• Bug in the elaboration of structures with signature constraints. This would later cause the compiler to raise the TypeError
exception.

Thanks to Vesa Karvonen for the bug report.

Fixed by revision r6046.

• Bug in the interaction of _export-ed functions and signal handlers.

Thanks to Sean McLaughlin for the bug report.

Fixed by revision r6013.

• Bug in the implementation of _export-ed functions using the char type, leading to a linker error.

Thanks to Katsuhiro Ueno for the bug report.

Fixed by revision r5999.

https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6395
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6347
http://www.standardml.org/Basis/imperative-io.html#SIG:IMPERATIVE_IO.canInput:VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6261
http://www.standardml.org/Basis/real.html#SIG:REAL.\delimiter "026B30D @LTE\delimiter "026B30D :VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6242
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6267
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6229
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6620
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6191
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6183
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6046
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6013
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5999

MLton Guide (20180207) 29 / 611

Bugs20100608

Here are the known bugs in MLton 20100608, listed in reverse chronological order of date reported.

• Bugs in REAL.signBit, REAL.copySign, and REAL.toDecimal/REAL.fromDecimal.

Thanks to Phil Clayton for the bug report and examples.

Fixed by revisions r7571, r7572, and r7573.

• Bug in elaboration of type variables with and without equality status.

Thanks to Rob Simmons for the bug report and examples.

Fixed by revision r7565.

• Bug in redundant SSA optimization.

Thanks to Lars Magnusson for the bug report and example.

Fixed by revision r7561.

• Bug in SSA/SSA2 shrinker that could erroneously turn a non-tail function call with a Bug transfer as its continuation into a
tail function call.

Thanks to Lars Bergstrom for the bug report.

Fixed by revision r7546.

• Bug in translation from SSA2 to RSSA with case expressions over non-primitive-sized words.

Fixed by revision r7544.

• Bug with SSA/SSA2 type checking of case expressions over words.

Fixed by revision r7542.

• Bug with treatment of as-patterns, which should not allow the redefinition of constructor status.

Thanks to Michael Norrish for the bug report.

Fixed by revision r7530.

• Bug with treatment of nan in common subexpression elimination SSA optimization.

Thanks to Alexandre Hamez for the bug report.

Fixed by revision r7503.

• Bug in translation from SSA2 to RSSA with weak pointers.

Thanks to Alexandre Hamez for the bug report.

Fixed by revision r7502.

• Bug in amd64 codegen calling convention for varargs C calls.

Thanks to HenryCejtin for the bug report and WesleyTerpstra for the initial diagnosis.

Fixed by revision r7501.

• Bug in comment-handling in lexer for MLYacc’s input language.

Thanks to Michael Norrish for the bug report and patch.

Fixed by revision r7500.

• Bug in elaboration of function clauses with different numbers of arguments that would raise an uncaught Subscript excep-
tion.

Fixed by revision r75497.

https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7571
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7572
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7573
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7565
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7561
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7546
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7544
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7542
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7530
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7503
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7502
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7501
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7500
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r75497

MLton Guide (20180207) 30 / 611

Bugs20130715

Here are the known bugs in MLton 20130715, listed in reverse chronological order of date reported.

• Bug with simultaneous sharing of multiple structures.

Fixed by commit 9cb5164f6.

• Minor bug with exception replication.

Fixed by commit 1c89c42f6.

• Minor bug erroneously accepting symbolic identifiers for strid, sigid, and fctid and erroneously accepting symbolic identifiers
before . in long identifiers.

Fixed by commit 9a56be647.

• Minor bug in precedence parsing of function clauses.

Fixed by commit 1a6d25ec9.

• Performance bug in creation of worker threads to service calls of _export-ed functions.

Thanks to Bernard Berthomieu for the bug report.

Fixed by commit 97c2bdf1d.

• Bug in MLton.IntInf.fromRep that could yield values that violate the IntInf representation invariants.

Thanks to Rob Simmons for the bug report.

Fixed by commit 3add91eda.

• Bug in equality status of some arrays, vectors, and slices in Basis Library implementation.

Fixed by commit a7ed9cbf1.

https://github.com/MLton/mlton/commit/9cb5164f6
https://github.com/MLton/mlton/commit/1c89c42f6
https://github.com/MLton/mlton/commit/9a56be647
https://github.com/MLton/mlton/commit/1a6d25ec9
https://github.com/MLton/mlton/commit/97c2bdf1d
https://github.com/MLton/mlton/commit/3add91eda
https://github.com/MLton/mlton/commit/a7ed9cbf1

MLton Guide (20180207) 31 / 611

Bugs20180207

Here are the known bugs in MLton 20180207, listed in reverse chronological order of date reported.

MLton Guide (20180207) 32 / 611

CallGraph

For easier visualization of profiling data, mlprof can create a call graph of the program in dot format, from which you can use
the graphviz software package to create a PostScript or PNG graph. For example,

mlprof -call-graph foo.dot foo mlmon.out

will create foo.dot with a complete call graph. For each source function, there will be one node in the graph that contains the
function name (and source position with -show-line true), as well as the percentage of ticks. If you want to create a call
graph for your program without any profiling data, you can simply call mlprof without any mlmon.out files, as in

mlprof -call-graph foo.dot foo

Because SML has higher-order functions, the call graph is is dependent on MLton’s analysis of which functions call each
other. This analysis depends on many implementation details and might display spurious edges that a human could conclude are
impossible. However, in practice, the call graphs tend to be very accurate.

Because call graphs can get big, mlprof provides the -keep option to specify the nodes that you would like to see. This option
also controls which functions appear in the table that mlprof prints. The argument to -keep is an expression describing a set
of source functions (i.e. graph nodes). The expression e should be of the following form.

• all

• "s"

• (and e ...)

• (from e)

• (not e)

• (or e)

• (pred e)

• (succ e)

• (thresh x)

• (thresh-gc x)

• (thresh-stack x)

• (to e)

In the grammar, all denotes the set of all nodes. "s" is a regular expression denoting the set of functions whose name (followed
by a space and the source position) has a prefix matching the regexp. The and, not, and or expressions denote intersection,
complement, and union, respectively. The pred and succ expressions add the set of immediate predecessors or successors to
their argument, respectively. The from and to expressions denote the set of nodes that have paths from or to the set of nodes
denoted by their arguments, respectively. Finally, thresh, thresh-gc, and thresh-stack denote the set of nodes whose
percentage of ticks, gc ticks, or stack ticks, respectively, is greater than or equal to the real number x.

For example, if you want to see the entire call graph for a program, you can use -keep all (this is the default). If you want
to see all nodes reachable from function foo in your program, you would use -keep ’(from "foo")’. Or, if you want to
see all the functions defined in subdirectory bar of your project that used at least 1% of the ticks, you would use

-keep ’(and ".*/bar/" (thresh 1.0))’

http://www.research.att.com/sw/tools/graphviz/

MLton Guide (20180207) 33 / 611

To see all functions with ticks above a threshold, you can also use -thresh x, which is an abbreviation for -keep ’(thresh
x)’. You can not use multiple -keep arguments or both -keep and -thresh. When you use -keep to display a subset of
the functions, mlprof will add dashed edges to the call graph to indicate a path in the original call graph from one function to
another.

When compiling with -profile-stack true, you can use mlprof -gray true to make the nodes darker or lighter
depending on whether their stack percentage is higher or lower.

MLton’s optimizer may duplicate source functions for any of a number of reasons (functor duplication, monomorphisation,
polyvariance, inlining). By default, all duplicates of a function are treated as one. If you would like to treat the duplicates
separately, you can use mlprof -split regexp, which will cause all duplicates of functions whose name has a prefix
matching the regular expression to be treated separately. This can be especially useful for higher-order utility functions like
General.o.

Caveats

Technically speaking, mlprof produces a call-stack graph rather than a call graph, because it describes the set of possible call
stacks. The difference is in how tail calls are displayed. For example if f nontail calls g and g tail calls h, then the call-stack
graph has edges from f to g and f to h, while the call graph has edges from f to g and g to h. That is, a tail call from g to h
removes g from the call stack and replaces it with h.

MLton Guide (20180207) 34 / 611

CallingFromCToSML

MLton’s ForeignFunctionInterface allows programs to export SML functions to be called from C. Suppose you would like
export from SML a function of type real * char -> int as the C function foo. MLton extends the syntax of SML to
allow expressions like the following:

_export "foo": (real * char -> int) -> unit;

The above expression exports a C function named foo, with prototype

Int32 foo (Real64 x0, Char x1);

The _export expression denotes a function of type (real * char -> int) -> unit that when called with a function
f, arranges for the exported foo function to call f when foo is called. So, for example, the following exports and defines foo.

val e = _export "foo": (real * char -> int) -> unit;
val _ = e (fn (x, c) => 13 + Real.floor x + Char.ord c)

The general form of an _export expression is

_export "C function name" attr... : cFuncTy -> unit;

The type and the semicolon are not optional. As with _import, a sequence of attributes may follow the function name.

MLton’s -export-header option generates a C header file with prototypes for all of the functions exported from SML.
Include this header file in your C files to type check calls to functions exported from SML. This header file includes typedefs
for the types that can be passed between SML and C.

Example

Suppose that export.sml is

val e = _export "f": (int * real * char -> char) -> unit;
val _ = e (fn (i, r, _) =>

(print (concat ["i = ", Int.toString i,
" r = ", Real.toString r, "\n"])

; #"g"))
val g = _import "g" public reentrant: unit -> unit;
val _ = g ()
val _ = g ()

val e = _export "f2": (Word8.word -> word array) -> unit;
val _ = e (fn w =>

Array.tabulate (10, fn _ => Word.fromLargeWord (Word8.toLargeWord w)))
val g2 = _import "g2" public reentrant: unit -> word array;
val a = g2 ()
val _ = print (concat ["0wx", Word.toString (Array.sub (a, 0)), "\n"])

val e = _export "f3": (unit -> unit) -> unit;
val _ = e (fn () => print "hello\n");
val g3 = _import "g3" public reentrant: unit -> unit;
val _ = g3 ()

(* This example demonstrates mutual recursion between C and SML. *)
val e = _export "f4": (int -> unit) -> unit;
val g4 = _import "g4" public reentrant: int -> unit;
val _ = e (fn i => if i = 0 then () else g4 (i - 1))
val _ = g4 13

val (_, zzzSet) = _symbol "zzz" alloc: (unit -> int) * (int -> unit);

MLton Guide (20180207) 35 / 611

val () = zzzSet 42
val g5 = _import "g5" public: unit -> unit;
val _ = g5 ()

val _ = print "success\n"

Note that the the reentrant attribute is used for _import-ing the C functions that will call the _export-ed SML functions.

Create the header file with -export-header.

% mlton -default-ann ’allowFFI true’ \
-export-header export.h \
-stop tc \
export.sml

export.h now contains the following C prototypes.

Int8 f (Int32 x0, Real64 x1, Int8 x2);
Pointer f2 (Word8 x0);
void f3 ();
void f4 (Int32 x0);
extern Int32 zzz;

Use export.h in a C program, ffi-export.c, as follows.

#include <stdio.h>
#include "export.h"

/* Functions in C are by default PUBLIC symbols */
void g () {

Char8 c;

fprintf (stderr, "g starting\n");
c = f (13, 17.15, ’a’);
fprintf (stderr, "g done char = %c\n", c);

}

Pointer g2 () {
Pointer res;
fprintf (stderr, "g2 starting\n");
res = f2 (0xFF);
fprintf (stderr, "g2 done\n");
return res;

}

void g3 () {
fprintf (stderr, "g3 starting\n");
f3 ();
fprintf (stderr, "g3 done\n");

}

void g4 (Int32 i) {
fprintf (stderr, "g4 (%d)\n", i);
f4 (i);

}

void g5 () {
fprintf (stderr, "g5 ()\n");
fprintf (stderr, "zzz = %i\n", zzz);
fprintf (stderr, "g5 done\n");

}

MLton Guide (20180207) 36 / 611

Compile ffi-export.c and export.sml.

% gcc -c ffi-export.c
% mlton -default-ann ’allowFFI true’ \

export.sml ffi-export.o

Finally, run export.

% ./export
g starting
...
g4 (0)
success

Download

• export.sml

• ffi-export.c

https://raw.github.com/MLton/mlton/master/doc/examples/ffi/export.sml
https://raw.github.com/MLton/mlton/master/doc/examples/ffi/ffi-export.c

MLton Guide (20180207) 37 / 611

CallingFromSMLToC

MLton’s ForeignFunctionInterface allows an SML program to import C functions. Suppose you would like to import from C a
function with the following prototype:

int foo (double d, char c);

MLton extends the syntax of SML to allow expressions like the following:

_import "foo": real * char -> int;

This expression denotes a function of type real * char -> int whose behavior is implemented by calling the C function
whose name is foo. Thinking in terms of C, imagine that there are C variables d of type double, c of type unsigned char,
and i of type int. Then, the C statement i =foo (d, c) is executed and i is returned.

The general form of an _import expression is:

_import "C function name" attr... : cFuncTy;

The type and the semicolon are not optional.

The function name is followed by a (possibly empty) sequence of attributes, analogous to C __attribute__ specifiers.

Example

import.sml imports the C function ffi and the C variable FFI_INT as follows.

(* main.sml *)

(* Declare ffi to be implemented by calling the C function ffi. *)
val ffi = _import "ffi" public: real array * int * int ref * char ref * int -> char;
open Array

val size = 10
val a = tabulate (size, fn i => real i)
val ri = ref 0
val rc = ref #"0"
val n = 17

(* Call the C function *)
val c = ffi (a, Array.length a, ri, rc, n)

(* FFI_INT is declared as public in ffi-import.c *)
val (nGet, nSet) = _symbol "FFI_INT" public: (unit -> int) * (int -> unit);

val _ = print (concat [Int.toString (nGet ()), "\n"])

val _ =
print (if c = #"c" andalso !ri = 45 andalso !rc = c

then "success\n"
else "fail\n")

ffi-import.c is

#include "export.h"

Int32 FFI_INT = 13;
Word32 FFI_WORD = 0xFF;
Bool FFI_BOOL = 1;
Real64 FFI_REAL = 3.14159;

MLton Guide (20180207) 38 / 611

Char8 ffi (Pointer a1, Int32 a1len, Pointer a2, Pointer a3, Int32 n) {
double *ds = (double*)a1;
int *pi = (int*)a2;
char *pc = (char*)a3;
int i;
double sum;

sum = 0.0;
for (i = 0; i < a1len; ++i) {

sum += ds[i];
ds[i] += n;

}

*pi = (int)sum;

*pc = ’c’;
return ’c’;

}

Compile and run the program.

% mlton -default-ann ’allowFFI true’ -export-header export.h import.sml ffi-import.c
% ./import
13
success

Download

• import.sml

• ffi-import.c

Next Steps

• CallingFromSMLToCFunctionPointer

https://raw.github.com/MLton/mlton/master/doc/examples/ffi/import.sml
https://raw.github.com/MLton/mlton/master/doc/examples/ffi/ffi-import.c

MLton Guide (20180207) 39 / 611

CallingFromSMLToCFunctionPointer

Just as MLton can directly call C functions, it is possible to make indirect function calls; that is, function calls through a function
pointer. MLton extends the syntax of SML to allow expressions like the following:

_import * : MLton.Pointer.t -> real * char -> int;

This expression denotes a function of type

MLton.Pointer.t -> real * char -> int

whose behavior is implemented by calling the C function at the address denoted by the MLton.Pointer.t argument, and
supplying the C function two arguments, a double and an int. The C function pointer may be obtained, for example, by the
dynamic linking loader (dlopen, dlsym, . . .).

The general form of an indirect _import expression is:

_import * attr... : cPtrTy -> cFuncTy;

The type and the semicolon are not optional.

Example

This example uses dlopen and friends (imported using normal _import) to dynamically load the math library (libm) and
call the cos function. Suppose iimport.sml contains the following.

signature DYN_LINK =
sig

type hndl
type mode
type fptr

val dlopen : string * mode -> hndl
val dlsym : hndl * string -> fptr
val dlclose : hndl -> unit

val RTLD_LAZY : mode
val RTLD_NOW : mode

end

structure DynLink :> DYN_LINK =
struct

type hndl = MLton.Pointer.t
type mode = Word32.word
type fptr = MLton.Pointer.t

(* These symbols come from a system libray, so the default import scope

* of external is correct.

*)
val dlopen =

_import "dlopen" : string * mode -> hndl;
val dlerror =

_import "dlerror": unit -> MLton.Pointer.t;
val dlsym =

_import "dlsym" : hndl * string -> fptr;
val dlclose =

_import "dlclose" : hndl -> Int32.int;

val RTLD_LAZY = 0wx00001 (* Lazy function call binding. *)
val RTLD_NOW = 0wx00002 (* Immediate function call binding. *)

MLton Guide (20180207) 40 / 611

val dlerror = fn () =>
let

val addr = dlerror ()
in

if addr = MLton.Pointer.null
then NONE
else let

fun loop (index, cs) =
let

val w = MLton.Pointer.getWord8 (addr, index)
val c = Byte.byteToChar w

in
if c = #"\000"

then SOME (implode (rev cs))
else loop (index + 1, c::cs)

end
in

loop (0, [])
end

end

val dlopen = fn (filename, mode) =>
let

val filename = filename ^ "\000"
val hndl = dlopen (filename, mode)

in
if hndl = MLton.Pointer.null

then raise Fail (case dlerror () of
NONE => "???"

| SOME s => s)
else hndl

end

val dlsym = fn (hndl, symbol) =>
let

val symbol = symbol ^ "\000"
val fptr = dlsym (hndl, symbol)

in
case dlerror () of

NONE => fptr
| SOME s => raise Fail s

end

val dlclose = fn hndl =>
if MLton.Platform.OS.host = MLton.Platform.OS.Darwin

then () (* Darwin reports the following error message if you

* try to close a dynamic library.

* "dynamic libraries cannot be closed"

* So, we disable dlclose on Darwin.

*)
else

let
val res = dlclose hndl

in
if res = 0

then ()
else raise Fail (case dlerror () of

NONE => "???"
| SOME s => s)

end
end

MLton Guide (20180207) 41 / 611

val dll =
let

open MLton.Platform.OS
in

case host of
Cygwin => "cygwin1.dll"

| Darwin => "libm.dylib"
| _ => "libm.so"

end

val hndl = DynLink.dlopen (dll, DynLink.RTLD_LAZY)

local
val double_to_double =

_import * : DynLink.fptr -> real -> real;
val cos_fptr = DynLink.dlsym (hndl, "cos")

in
val cos = double_to_double cos_fptr

end

val _ = print (concat [" Math.cos(2.0) = ", Real.toString (Math.cos 2.0), "\n",
"libm.so::cos(2.0) = ", Real.toString (cos 2.0), "\n"])

val _ = DynLink.dlclose hndl

Compile and run iimport.sml.

% mlton -default-ann ’allowFFI true’ \
-target-link-opt linux -ldl \
-target-link-opt solaris -ldl \
iimport.sml

% iimport
Math.cos(2.0) = ~0.416146836547

libm.so::cos(2.0) = ~0.416146836547

This example also shows the -target-link-opt option, which uses the switch when linking only when on the specified
platform. Compile with -verbose 1 to see in more detail what’s being passed to gcc.

Download

• iimport.sml

https://raw.github.com/MLton/mlton/master/doc/examples/ffi/iimport.sml

MLton Guide (20180207) 42 / 611

CCodegen

The CCodegen is a code generator that translates the Machine IntermediateLanguage to C, which is further optimized and
compiled to native object code by gcc (or another C compiler).

Implementation

• c-codegen.sig

• c-codegen.fun

Details and Notes

The CCodegen is the original code generator for MLton.

https://github.com/MLton/mlton/blob/master/mlton/codegen/c-codegen/c-codegen.sig
https://github.com/MLton/mlton/blob/master/mlton/codegen/c-codegen/c-codegen.fun

MLton Guide (20180207) 43 / 611

Changelog

• CHANGELOG.adoc

= CHANGELOG

== Version 20180206

Here are the changes from version 20130715 to version 20180206.

=== Summary

* Compiler.

** Added an experimental LLVM codegen (‘-codegen llvm‘); requires LLVM tools
(‘llvm-as‘, ‘opt‘, ‘llc‘) version ≥ 3.7.

** Made many substantial cosmetic improvements to front-end diagnostic
messages, especially with respect to source location regions, type inference
for ‘fun‘ and ‘val rec‘ declarations, signature constraints applied to a
structure, ‘sharing type‘ specifications and ‘where type‘ signature
expressions, type constructor or type variable escaping scope, and
nonexhaustive pattern matching.

** Fixed minor bugs with exception replication, precedence parsing of function
clauses, and simultaneous ‘sharing‘ of multiple structures.

** Made compilation deterministic (eliminate output executable name from
compile-time specified ‘@MLton‘ runtime arguments; deterministically generate
magic constant for executable).

** Updated ‘-show-basis‘ (recursively expand structures in environments,
displaying components with long identifiers; append ‘(* @ region *)‘
annotations to items shown in environment).

** Forced amd64 codegen to generate PIC on amd64-linux targets.

* Runtime.

** Added ‘gc-summary-file file‘ runtime option.

** Reorganized runtime support for ‘IntInf‘ operations so that programs that
do not use ‘IntInf‘ compile to executables with no residual dependency on GMP.

** Changed heap representation to store forwarding pointer for an object in
the object header (rather than in the object data and setting the header to a
sentinel value).

* Language.

** Added support for selected SuccessorML features; see
http://mlton.org/SuccessorML for details.

** Added ‘(*#showBasis "file" *)‘ directive; see
http://mlton.org/ShowBasisDirective for details.

** FFI:

*** Added ‘pure‘, ‘impure‘, and ‘reentrant‘ attributes to ‘_import‘. An
unattributed ‘_import‘ is treated as ‘impure‘. A ‘pure‘ ‘_import‘ may be
subject to more aggressive optimizations (common subexpression elimination,
dead-code elimination). An ‘_import‘-ed C function that (directly or
indirectly) calls an ‘_export‘-ed SML function should be attributed
‘reentrant‘.

** ML Basis annotations.

*** Added ‘allowSuccessorML {false|true}‘ to enable all SuccessorML features
and other annotations to enable specific SuccessorML features; see
http://mlton.org/SuccessorML for details.

*** Split ‘nonexhaustiveMatch {warn|error|igore}‘ and ‘redundantMatch
{warn|error|ignore}‘ into ‘nonexhaustiveMatch‘ and ‘redundantMatch‘
(controls diagnostics for ‘case‘ expressions, ‘fn‘ expressions, and ‘fun‘
declarations (which may raise ‘Match‘ on failure)) and ‘nonexhaustiveBind‘
and ‘redundantBind‘ (controls diagnostics for ‘val‘ declarations (which may
raise ‘Bind‘ on failure)).

*** Added ‘valrecConstr {warn|error|ignore}‘ to report when a ‘val rec‘ (or
‘fun‘) declaration redefines an identifier that previously had constructor

https://github.com/MLton/mlton/blob/master/CHANGELOG.adoc

MLton Guide (20180207) 44 / 611

status.

* Libraries.

** Basis Library.

*** Improved performance of ‘Array.copy‘, ‘Array.copyVec‘, ‘Vector.append‘,
‘String.^‘, ‘String.concat‘, ‘String.concatWith‘, and other related
functions by using ‘memmove‘ rather than element-by-element constructions.

** ‘Unsafe‘ structure.

*** Added unsafe operations for array uninitialization and raw arrays; see
https://github.com/MLton/mlton/pull/207 for details.

** Other libraries.

*** Updated: ckit library, MLLPT library, MLRISC library, SML/NJ library

* Tools.

** mlnlffigen

*** Updated to warn and skip (rather than abort) when encountering functions
with ‘struct‘/‘union‘ argument or return type.

=== Details

* 2018-02-6

** Remove ancient and unused ‘cmcat‘ tool.

* 2018-02-03

** Upgrade ‘gdtoa.tgz‘.

* 2018-02-02

** Remove docs from ‘all‘ target of ‘./Makefile‘; this eliminates the
‘all-no-docs‘ target (which was frequently used in favor of ‘all‘).

* 2018-01-31

** Use C compiler with ‘-std=gnu11‘ (rather than ‘-std=gnu99‘).

** Revert rudimentary support for ‘./configure‘; the support was so minimal
that it seems unhelpful to pretend that there are exhaustive compatibility
checks being performed. All of the basic configuration can be accomplished
with simple ‘make‘ variable definitions.

* 2018-01-25

** Remove (expert, undocumented) ‘-debug-format‘ option; the same effect can
be achieved with ‘-as-opt‘ and ‘-cc-opt‘.

** Propagate C compiler from ‘./configure‘ to ‘mlton‘ script.

* 2018-01-24

** Extend ‘-target-*-opt‘ options to support ‘arch-os‘ pairs.

** Remove ‘./package/rpm/*‘ and corresponding targets in ‘./Makefile‘;
upstream MLton has not produced RPMs for years.

* 2018-01-24

** Slightly improve performance of ‘Vector.concat‘ and
‘String.{concat,concatWith,tokens,fields}‘ by avoiding ‘List.map‘-s.

* 2018-01-23

** Restore, but deprecate, ‘-drop-pass‘ compile-time expert option.

* 2018-01-19

** Update SML/NJ libraries to SML/NJ 110.82.

* 2017-12-29

** Add support for ‘(*#showBasis "file" *)‘ directives. This feature is
meant to facilitate auto-completion via
https://github.com/MatthewFluet/company-mlton[‘company-mlton‘] and similar
tools.

* 2017-12-20

MLton Guide (20180207) 45 / 611

** Update performance comparison on website. Thanks to Curtis Dunham for the
pull request.

* 2017-12-17

** Updates to ‘-show-basis‘:

*** ‘-show-basis-flat‘: Recursively expand structures in environments,
displaying components with long identifiers.

*** ‘-show-basis-def‘: Appends ‘(* @ region *)‘ annotations to items shown
in environment.

*** ‘-show-basis-compact‘: Tries to optimize vertical space (at the expense
of long lines).

* 2017-12-11

** Drop ‘_BSD_SOURCE‘ and ‘_POSIX_C_SOURCE‘ feature macros in
‘./runtime/cenv.h‘.

* 2017-12-10

** Add a ‘Dockerfile‘ to build/test MLton. Thanks to Richard Laughlin for the
pull request.

* 2017-12-06

** Remove ‘$PREFIX‘ and ‘$prefix‘ from top-level ‘Makefile.in‘; use
‘./configure --prefix path‘. Thanks to Richard Laughlin for the pull
request.

* 2017-12-03

** Fix heap invariant predicates.

* 2017-11-15

** Eliminate the use of (some) global mutable state for signal handling.

* 2017-11-14

** Store forwarding pointer for an object in the object header (rather than in
the object data and setting the header to a sentinel value).

* 2017-11-02

** Updates to stack management in backend:

*** Improve ‘Allocation.Stack.get‘.

*** Do not force ‘Cont‘ block arguments to stack.

* 2017-10-30

** In ‘signature SSA_TO_RSSA_STRUCTS‘ share by ‘Rssa.Atoms = Ssa.Atoms‘. This
is the idiom used elsewhere in the compiler, rather than sharing individual
sub-structures of ‘Atoms‘.

** Minor updates to ‘DirectedGraph‘ and ‘Tree‘ in MLton library.

* 2017-10-23

** Add ‘-seed-rand w‘ compile-time option, to seed the pseudo-random number
generator.

** Add a new MachineShuffle pass (disabled by default) that shuffles the
collection of chunks within the program and shuffles the collection of blocks
within a chunk. With the ‘-seed-rand w‘ compile-time option, can be used to
generate executables with distinct code placements.

* 2017-10-23

** Use a relative path in the ‘mlton‘ script, rather than an absolute path.
The absolute path needed to be set to the intended installation directory,
which made it difficult to install a binary release in a local directory.
Undertaken by Maksim Yegorov at RIT supported by NSF CISE Research
Infrastructure (CRI) award.

* 2017-10-21

MLton Guide (20180207) 46 / 611

** Add unsafe operations for array uninitialization and raw arrays.

*** Rename ‘Array_uninit: SeqIndex.int -> ’a array‘ primitive to
‘Array_alloc: SeqIndex.int -> ’a array‘.

*** Add ‘Array_uninit: ’a array * SeqIndex.int -> unit‘ primitive to set all
objptrs in the element at the given index to a bogus non-objptr value
(‘0wx1‘). One motivation for this primitive is to support space-efficient
polymorphic resizeable arrays. When shrinking a resizeable array, we would
like to "‘NULL‘" out the elements that are no longer part of the logical
array, in order to avoid a (logical) space leak.

*** Add ‘Array_uninitIsNop: ’a array -> bool‘ primitive to answer if the
‘Array_uninit‘ primitive applied to the same array would be a nop (i.e., if
the array has no objptrs in the elements). This can be used to skip a
bulk-‘Array_uninit‘ loop when it is known that the ‘Array_uninit‘ operations
would be nops.

*** Add ‘Array_allocRaw: SeqIndex.int -> ’a array‘ primitive to allocate an
array, but with a header that indicates that the array has no objptrs. Add
‘Array_toArray: ’a array -> ’a array‘ primitive to update the header of an
‘Array_allocRaw‘ allocated array to reveal the objptrs. One motiviation for
this primitive is that, in a parallel setting, the uninitialization of an
array can be a sequential bottleneck. The ‘Array_allocRaw‘ is a constant
time operation and the subsequent ‘Array_uninit‘ operations can be performed
in parallel.

*** Extend ‘structure Unsafe.Array‘ with additional operations. See
‘./basis-library/sml-nj/unsafe.sig‘.

* 2017-10-20

** Introduce ShareZeroVec SSA optimization to share zero-length vectors after
coercion-based optimizations. Undertaken by Maksim Yegorov at RIT supported
by NSF CISE Research Infrastructure (CRI) award.

* 2017-10-18

** New canonicalization strategy for CommonSubexp SSA optimization.
Previously, the canonicalization of commutative arithmetic primitives was
sensitive to variable hashes (created by an unseeded pseudo-random number
generator); now, the canonicalization of commutative arithmetic primitives is
sensitive to relative definition order of variables.

* 2017-10-12

** Fix bug in runtime argument option parsing.

* 2017-10-05

** Many updates and improvements to diagnostic messages. See
https://github.com/MLton/mlton/pull/195 for details.

* 2017-09-27

** Add rudimentary support for ‘./configure‘; in particular, support
‘--with-gmp-lib‘ and ‘--with-gmp-include‘ to set location of GMP and
‘--prefix‘ to specify an install prefix. Undertaken by Maksim Yegorov at RIT
supported by NSF CISE Research Infrastructure (CRI) award.

* 2017-08-21

** Introduce ‘Array_copyArray: ’a array * SeqIndex.int * ’a array *
SeqIndex.int * SeqIndex.int -> unit‘ and ‘Array_copyVector: ’a array *
SeqIndex.int * ’a vector * SeqIndex.int * SeqIndex.int -> unit‘ primitives
which are used to implement a number of array and vector construction
functions, particularly ‘append‘, ‘concat‘, and ‘concatWith‘. The primitives
compile to ‘memmove‘ operations, which (significantly) outperforms MLton’s
element-by-element construction for large sequences. Undertaken by Bryan Camp
at RIT supported by NSF CISE Research Infrastructure (CRI) award.

* 2017-07-25

** Force PIC generation on amd64-linux targets. Thanks to Kuen-Bang Hou

MLton Guide (20180207) 47 / 611

(Favonia) for the pull request.

* 2017-07-11

** Generalize the ‘subWord‘ primitives to
+

| WordArray_subWord of {seqSize:WordSize.t, eleSize: WordSize.t}
| WordArray_updateWord of {seqSize: WordSize.t, eleSize: WordSize.t}
| WordVector_subWord of {seqSize: WordSize.t, eleSize: WordSize.t}

+
Undertaken by Bryan Camp at RIT supported by NSF CISE Research Infrastructure
(CRI) award.

* 2017-07-11

** Add a parser combinator library (‘structure StreamParser‘) to the MLton
Library. Undertaken by Jason Carr at RIT supported by NSF CISE Research
Infrastructure (CRI) award.

** Add a parser for the SXML IR (‘structure ParseSxml‘). Undertaken by Jason
Carr at RIT supported by NSF CISE Research Infrastructure (CRI) award.

** Allow compilation to start with a ‘.sxml‘ file. Undertaken by Jason Carr
at RIT supported by NSF CISE Research Infrastructure (CRI) award.

* 2017-06-29

** Replace ‘-drop-pass regex‘ compile-time option with ‘-disable-pass regex‘
compile option and add ‘-enable-pass regex‘ compile option. Various XML,
SXML, SSA, SSA2, RSSA, and Machine IR optimization passes are initialized with
a default status, which can be overriden by ‘-{disable,enable}-pass‘. In
particular, it is now easy to add a work-in-progress (and potentially buggy)
pass to the simplification pipeline with ‘execute = false‘ default status, to
be selectively executed with ‘-enable-pass‘. Undertaken by Bryan Camp at RIT
supported by NSF CISE Research Infrastructure (CRI) award.

** Add LoopUnswitch and LoopUnroll SSA optimizations (undertaken by Matthew
Surawski as an RIT CS MS Capstone Project). Initial evaluation demonstrates
some non-trivial performance gains, no non-trivial performance losses, and
only minor code size increases, but currently disabled pending a more thorough
evaluation.

* 2017-05-23

** Expand the set of MLB annotations:

*** ‘nonexhaustiveBind‘, ‘nonexhaustiveExnBind‘, ‘redundantBind‘: controls
diagnostics for ‘val‘ declarations (which may raise ‘Bind‘ on failure).

*** ‘nonexhaustiveMatch‘, ‘nonexhaustiveExnMatch‘, ‘redundantMatch‘:
controls diagnostics for ‘case‘ expressions, ‘fn‘ expressions, and ‘fun‘
declarations (which may raise ‘Match‘ on failure).

*** ‘nonexhaustiveRaise‘, ‘nonexhaustiveExnRaise‘, ‘redundantRaise‘:
controls diagnostics for ‘handle‘ expressions (which implicitly re-raise on
failure). Note that ‘nonexhaustiveRaise‘ and ‘nonexhaustiveExnRaise‘
default to ‘ignore‘. The combination of ‘nonexhaustiveRaise warn‘ and
‘nonexhaustiveExnRaise ignore‘ can be useful for finding handlers that
handle some, but not all, values of an exception variant.

** Make a number of improvements to diagnostic messages:

*** Display nonexhaustive exception patterns as ‘_ : exn‘, rather than
‘e‘.

*** Normalize nonexhaustive patterns by sorting (e.g., by ‘ConApp‘ name).

*** Report complete enumeration of unhandled constants, rather than a single
example.

*** Report nonexhaustive patterns of record type as records, rather than as
tuples.

* 2017-04-20

** Updates to SSA, SSA2, and RSSA IR support infrastructure

MLton Guide (20180207) 48 / 611

*** Display more context when reporting SSA and SSA2 IR type errors.

*** Add ‘-layout-width n‘ compile expert option to control the target width
for the pretty printer.

*** Make cosmetic improvments to SSA and SSA2 IR display (uses of global
variables bound to small constants and conapps are commented with the
corresponding value; include loop forest for functions with ‘-keep dot‘).

*** Improve RSSA constant folding and copy propagation.

*** Limit Machine IR ‘Globals‘ to variables used outside of the ‘main‘
function.

* 2017-04-15

** Add ‘gc-summary-file file‘ runtime option.

* 2017-04-15

** Rename and add ‘smlnj-mlton-x{2,4,8,16}‘ top-level ‘Makefile‘ targets.

** Update SML/NJ librarys to SML/NJ 110.80 (making use of supported
SuccessorML features).

** Not support for SML/NJ extensions via SuccessorML MLB annotations on
website.

* 2017-04-14

** Add support for vector expressions (‘#[e1, e2, ..., en]‘) and vector
patterns (‘#[p1, p2, ..., pn]‘) and add ‘Vector_vector‘ n-ary primitive.
Initial support for vector expressions and the ‘Vector_vector‘ primitive were
undertaken by Krishna Ravikumar as an RIT CS MS Capstone Project.

* 2017-03-29

** Update DOS eol handling and tweak error messages in lexer.

* 2017-03-27

** Correct off-by-one error in column numbers. Thanks to Jacob Zimmerman for
the error report and pull request.

* 2017-03-15

** Updates to SuccessorML support:

*** Add an ‘allowSuccessorML {false|true}‘ MLB annotation to enable all
Successor ML features with a single annotation.

*** Fix parsing of numeric labels to only accept an INT token that does not
begin with 0, is not an extended literal, is not negative, and is decimal.

*** Drop the alternate word prefixes (‘0xw‘ and ‘0bw‘).

*** Unconditionally allow line comments in MLB files.

*** Allow UTF-8 byte sequences in text constants.

*** Refactor ‘ml.lex‘ and ‘mlb.lex‘ to be more maintainable.

*** Rename ‘allowRecPunning‘ annotation to ‘allowRecordPunExps‘.

* 2017-02-27

** Update ML-Yacc examples (‘calc‘, ‘fol‘, ‘pascal‘) to comply with MLton
build process. Thanks to Hai Nguyen Van for the pull request.

* 2017-01-25

** Update PortingMLton documentation and ‘./bin/add-cross‘ script. Thanks to
Daniel Moerner for the pull request.

* 2016-09-29

** Constant fold ‘CPointer_equal(NULL, NULL)‘ to ‘true‘.

* 2016-09-29

** Introduce ‘NEEDS_SIGALTSTACK_EXEC‘ config in runtime system.

* 2016-09-27

** Construct a devel build version string from last commit time and last
commit hash.

MLton Guide (20180207) 49 / 611

** Omit build date and build node from version banner; makes self-compiles
deterministic.

** Remove ‘upgrade-basis.sml‘ from build. The generated ‘upgrade-basis.sml‘
was introduced to handle incompatibilities in the Basis Library provided by an
old version of MLton and the Basis Library assumed by the current sources.
However, there are no incompatibilities with MLton 20130715, MLton 20100608,
or MLton 20070826. Nonetheless, the feature testing performed by
‘./bin/upgrade-basis‘ to generate ‘upgrade-basis.sml‘ is time consuming,
especially when trying to simply type check the compiler sources.

* 2016-06-20

** Do not ‘gzip‘ man pages on OpenBSD. Thanks to Alexander Abushkevich for
the pull request.

* 2016-06-20

** Generate position independent code for OpenBSD. Thanks to Alexander
Abushkevich for the pull request.

* 2016-06-20

** Fix profiling for amd64-openbsd and x86-openbsd. Thanks to Alexander
Abushkevich for the pull request.

* 2016-04-06

** Update SML/NJ librarys to SML/NJ 110.79.

* 2016-03-22

** Update LLVM codegen to support (and require) >= llvm-3.7. Thanks to Eugene
Akentyev for the pull request.

* 2016-02-26

** Configure GMP location via ‘Makefile‘.

* 2016-01-10

** Fix typo in ‘mlb-formal.tex‘. Thanks to Jon Sterling for the pull request.

* 2015-11-10

** Update SML/NJ librarys to SML/NJ 110.78. Use ‘allowOrPats‘ and
‘allowSigWithtype‘ to minimize diffs.

* 2015-10-20

** Fix elaboration of ‘withtype‘ in signature.

* 2015-10-06

** Add support for setting CM anchor bindings in ‘cm2mlb‘ tool.

* 2015-10-06

** Fix non-exhaustive match warnings with or-patterns. Thanks to Rob Simmons
for the bug report.

** Distinguish between partial and fully redundant matches.

** Report partial redundancy in ‘val‘ declarations.

** Lower precedence of or-patterns in parser.

** Make a variety of cosmetic improvements to non-exhaustive and redundant
error/warning messages, primarily to be consistent in formatting between
quoted AST and generated messages.

* 2015-07-10

** Extend support for arm64 (aarch64). Thanks to Edmund Evans for the patch.

* 2015-06-22

** Introduce ‘valrecConstr {warn|error|ignore}‘ MLB annotation to report when
a ‘val rec‘ (or ‘fun‘) declaration redefines an identifier that previously had
constructor status.

MLton Guide (20180207) 50 / 611

* 2015-06-19

** Add support for selected SuccessorML features (undertaken by Kevin Bradley
as an RIT CS MS Capstone Project).

*** ‘do‘-declarations (‘allowDoDecls‘)

*** extended literals (‘allowExtendedLiterals‘)

*** line comments (‘allowLineComments‘)

*** optional leading bar in matches, fun decls, and datatype decls
(‘allowOptBar‘)

*** optional trailing semicolon in sequence expressions (‘allowOptSemicolon‘)

*** or patterns (‘allowOrPats‘)

*** record expression punning (‘allowRecPunning‘)

*** withtype in signatures (‘allowSigWithtype‘)

* 2015-06-10

** Hide equality status of poly (and mono) vector and array slices.

** Hide type equality of mono and poly ‘Word8.word‘ arrays and vectors.

* 2015-06-08

** Added ‘reentrant‘ attribute to ‘_import‘. An ‘_import‘-ed C function that
(directly or indirectly) calls an ‘_export‘-ed SML function should be
attributed ‘reentrant‘.

* 2015-06-08

** Make compilation deterministic:

*** Eliminate output executable name from compile-time specified ‘@MLton‘
arguments.

*** Deterministically generate magic constant for executable.

* 2015-06-08

** Add ‘-keep ast‘ compile option. Undertaken by Ross Bayer at RIT supported
by NSF CISE Research Infrastructure (CRI) award.

* 2015-06-02

** Updates to Debian packaging. Thanks to Christopher Cramer for the pull
request.

* 2015-03-30

** Use ‘LANG=en_us‘ when computing version and build date. Thanks to Eugene
Akentyev for the pull request.

* 2015-02-17

** Update ‘mlnlffigen‘ to warn and skip functions with ‘struct‘/‘union‘
arguments. Thanks to Armando Doval for the pull request.

* 2014-12-22

** Move pervasive constructs from ‘./mlton/ast‘ to ‘./mlton/atoms‘, so that
‘./mlton/ast/sources.mlb‘ depends on ‘./mlton/atoms/sources.mlb‘ (and not the
other way around). Undertaken by Vedant Raiththa at RIT supported by NSF CISE
Research Infrastructure (CRI) award.

* 2014-12-17

** Cache a worker thread to service calls of ‘_export‘-ed functions. Thanks
to Bernard Berthomieu for the bug report.

* 2014-12-02

** Post-process generated front-end files for compatibility with SML/NJ’s
recent ‘ml-lex‘ and ‘ml-yacc‘ tools that generate log identifiers rather than
unqualified (top-level environment) identifiers.

** Corrected documentation for SML/NJ ‘Makefile‘ target and fixed
‘bootstrap-nj‘ target. Thanks to Daniel Rosenwasser for the pull request.

MLton Guide (20180207) 51 / 611

* 2014-11-21

** Reorganized runtime support for ‘IntInf‘ operations so that programs that
do not use ‘IntInf‘ compile to executables with no residual dependency on GMP.

** Fixed bug in ‘MLton.IntInf.fromRep‘ that could yield values that violate
the ‘IntInf‘ representation invariants. Thanks to Rob Simmons for the bug
report.

* 2014-10-24

** Added ‘pure‘ and ‘impure‘ attributes to ‘_import‘. An unattributed
‘_import‘ is treated as ‘impure‘. A ‘pure‘ ‘_import‘ may be subject to more
aggressive optimizations (common subexpression elimination, dead-code
elimination). Undertaken by Vedant Raiththa at RIT supported by NSF CISE
Research Infrastructure (CRI) award.

* 2014-10-22

** Various updates to treatment of ‘IntInf‘ constants in the compiler.

*** Recognize both ‘Big‘ and ‘Small‘ representations of ‘IntInf‘-s.

*** Translate ‘IntInf‘ consts to ‘Big‘ and ‘Small‘ representations in
conversion from SSA to RSSA. This is consistent with the treatment of other
‘IntInf‘ operations in the conversion. After the conversion, ‘IntInf‘ is no
longer treated as a primitive.

*** Remove ‘initIntInfs‘ from program initialization.

*** Constant fold ‘IntInf_toVector‘ and ‘WordVector_toIntInf‘ primitives.

* 2014-10-20

** Various updates to ‘structure WordXVector‘ in compiler proper.

*** Update the ‘WordXVector.layout‘ function. If the ‘elementSize‘ is
‘WordX.word8‘ and more than 90% of the characters satisfy ‘Char.isGraph
orelse Char.isSpace‘, then display as an SML string constant (with
non-printable characters SML-escaped). Otherwise, display as an SML/NJ-style
‘#[0x0, 0xF]‘ vector literal.

*** Update initialization of ‘static struct GC_vectorInit vectorInits[]‘
constants in runtime. If the ‘WordXVector‘’s (primitive) ‘elementSize‘ is
‘WordSize.W8‘, then emit a C-escaped string constant. Otherwise, emit a
C-array initialization.

* 2014-08-15

** More updates to benchmark infrastructure.

*** Make ‘update-counts.sh‘ script more robust.

*** Update ‘hamlet.sml‘ benchmark program to close input file after each
loop.

*** Update ‘fft.sml‘ benchmark program to only invoke ‘test‘ function with
power-of-2 arguments.

*** Update ‘model-elimination.sml‘ benchmark program to iterate ‘main ()‘
according to ‘doit‘ size parameter.

* 2014-08-11

** Include ‘winsock2.h‘ before ‘windows.h‘ in MinGW port. Thanks to Shu-Hung
You for the pull request.

* 2014-07-31

** Refactor array and vector implementation in Basis Library into a primitive
implementation (using ‘SeqInt.int‘ for indexing) and a wrapper implementation
(using the default ‘Int.int‘ for indexing). Thanks to Rob Simmons for the
pull request.

** Correct description of ‘MLton.{Vector,Array}.unfoldi‘ on website. Thanks
to Rob Simmons for the pull request.

* 2014-07-14

** Updates to benchmark infrastructure.

*** Add ‘even-odd.sml‘ benchmark that exercises mutual tail recursion.

*** Add ‘update-counts.sh‘ script to calculate appropriate benchmark

MLton Guide (20180207) 52 / 611

iteration counts and update benchmark iteration counts so that all
benchmarks run for at least 30 seconds.

*** Updates to benchmark driver program.

* 2014-07-07

** Change ‘./basis-library/integer/int-inf.sml‘ to reduce dependency on
GMP-specific details of ‘./basis-library/integer/int-inf0.sml‘. Thanks to Rob
Simmons for the pull request.

** Correct type and description of ‘MLton.IntInf.fromRep‘ on website. Thanks
to Rob Simmons for the pull request.

* 2014-07-01

** Add experimental LLVM codegen (undertaken by Brian Leibig as an RIT CS MS
Project).

* 2014-06-09

** Update ‘CallingFromSMLToC‘ page on website. Thanks to Bikal Gurung for the
pull request.

* 2014-03-18

** Updates for MinGW port.

* 2014-02-07

** Update AsciiDoc sources for website.

* 2013-10-31

** Various updates to website. Thanks to Mauricio C Antunes for the pull
request.

*** Add Tofte’s tutorial and Rossberg’s grammar.

*** Fix links to implementations.

* 2013-10-10

** Update links from ‘References‘ page on website. Thanks to Mauricio C
Antunes for the pull request.

* 2013-09-02

** Fix example for ‘Lazy‘ page on website. Thanks to Daniel Rosenwasser for
the pull request.

== Version 20130715

Here are the changes from version 20100608 to version 20130715.

=== Summary

* Compiler.

** Cosmetic improvements to type-error messages.

** Removed features:

*** Bytecode codegen: The bytecode codegen had not seen significant use and
it was not well understood by any of the active developers.

*** Support for ‘.cm‘ files as input: The ML Basis system provides much
better infrastructure for "programming in the very large" than the (very)
limited support for CM. The ‘cm2mlb‘ tool (available in the source
distribution) can be used to convert CM projects to MLB projects, preserving
the CM scoping of module identifiers.

** Bug fixes: see changelog

* Runtime.

** Bug fixes: see changelog

* Language.

** Interpret ‘(*#line line:col "file" *)‘ directives as relative
file names.

** ML Basis annotations.

MLton Guide (20180207) 53 / 611

*** Added: ‘resolveScope‘

* Libraries.

** Basis Library.

*** Improved performance of ‘String.concatWith‘.

*** Use bit operations for ‘REAL.class‘ and other low-level operations.

*** Support additional variables with ‘Posix.ProcEnv.sysconf‘.

*** Bug fixes: see changelog

** ‘MLton‘ structure.

*** Removed: ‘MLton.Socket‘

** Other libraries.

*** Updated: ckit library, MLRISC library, SML/NJ library

*** Added: MLLPT library

* Tools.

** mllex

*** Generate ‘(*#line line:col "file.lex" *)‘ directives with simple
(relative) file names, rather than absolute paths.

** mlyacc

*** Generate ‘(*#line line:col "file.grm" *)‘ directives with simple
(relative) file names, rather than absolute paths.

*** Fixed bug in comment-handling in lexer.

=== Details

* 2013-07-06

** Update SML/NJ libraries to SML/NJ 110.76.

* 2013-06-19

** Upgrade ‘gdtoa.tgz‘; fixed bug in ‘Real32.{fmt,toDecimal,toString}‘, which
in some cases produced too many digits

* 2013-06-18

** Removed ‘MLton.Socket‘ structure (deprecated in last release).

* 2013-06-10

** Improved performance of ‘String.concatWith‘.

* 2013-05-22

** Update SML/NJ libraries to SML/NJ 110.75.

* 2013-04-30

** Detect PowerPC 64 architecture.

* 2012-10-09

** Fixed bug in elaboration that erroneously accepted the following:

signature S = sig structure A : sig type t end
and B : sig type t end where type t = A.t end

* 2012-09-04

** Introduce an MLB annotation to control overload and flex record resolution
scope: ‘resolveScope {strdec|dec|topdec|program}‘.

* 2012-07-04

** Simplify use of ‘getsockopt‘ and ‘setsockopt‘ in Basis Library.

** Direct implementation of ‘Socket.Ctl.{getATMARK,getNREAD}‘ in runtime
system, rather than indirect implementation in Basis Library via ‘ioctl‘.

** Replace use of casting through a union with ‘memcpy‘ in runtime.

* 2012-06-11

** Use bit operations for ‘REAL.class‘ and other low-level operations.

** Fixed bugs in ‘REAL.copySign‘, ‘REAL.signBit‘, and ‘REAL.{to,from}Decimal‘.

MLton Guide (20180207) 54 / 611

* 2012-06-01

** Cosmetic improvements to type-error messages.

** Fixed bug in elaboration that erroneously rejected the following:

datatype (’a, ’’a) t = T
type (’a, ’’a) u = unit

and erroneously accepted the following:

fun f (x: ’a) : ’’a = x
fun g (x: ’a) : ’’a = if x = x then x else x

* 2012-02-24

** Fixed bug in redundant SSA optimization.

* 2011-06-20

** Support additional variables with ‘Posix.ProcEnv.sysconf‘.

* 2011-06-17

** Change ‘mllex‘ and ‘mlyacc‘ to generate ‘#line‘ directives with simple file
names, rather than absolute paths.

** Interpret ‘#line‘ directives as relative file names.

* 2011-06-14

** Fixed bug in SSA/SSA2 shrinker that could erroneously turn a non-tail
function call with a ‘Bug‘ transfer as its continuation into a tail function
call.

* 2011-06-11

** Update SML/NJ libraries to SML/NJ 110.73 and add ML-LPT library.

* 2011-06-10

** Fixed bug in translation from SSA2 to RSSA with case expressions over
non-primitive-sized words.

** Fixed bug in SSA/SSA2 type checking of case expressions over words.

* 2011-06-04

** Upgrade ‘gdtoa.tgz‘.

** Remove bytecode codegen.

** Remove support for ‘.cm‘ files as input.

* 2011-05-03

** Fixed a bug with the treatment of ‘as‘-patterns, which should not allow the
redefinition of constructor status.

* 2011-02-18

** Fixed bug with treatment of nan in common subexpression elimination SSA
optimization.

* 2011-02-18

** Fixed bug in translation from SSA2 to RSSA with weak pointers.

* 2011-02-05

** Fixed bug in amd64 codegen calling convention for varargs C calls.

* 2011-01-17

** Fixed bug in comment-handling in lexer for ‘mlyacc‘’s input language.

* 2010-06-22

** Fixed bug in elaboration of function clauses with different numbers of
arguments that would raise an uncaught ‘Subscript‘ exception.

MLton Guide (20180207) 55 / 611

== Version 20100608

Here are the changes from version 20070826 to version 20100608.

=== Summary

* New platforms.

** ia64-hpux

** powerpc64-aix

* Compiler.

** Command-line switches.

*** Added: ‘-mlb-path-var ’<name> <value>’‘

*** Removed: ‘-keep sml‘, ‘-stop sml‘

** Improved constant folding of floating-point operations.

** Experimental: Support for compiling to a C library; see wiki documentation.

** Extended ‘-show-def-use‘ output to include types of variable definitions.

** Deprecated features (to be removed in a future release)

*** Bytecode codegen: The bytecode codegen has not seen significant use and
it is not well understood by any of the active developers.

*** Support for ‘.cm‘ files as input: The ML Basis system provides much
better infrastructure for "programming in the very large" than the (very)
limited support for CM. The ‘cm2mlb‘ tool (available in the source
distribution) can be used to convert CM projects to MLB projects, preserving
the CM scoping of module identifiers.

** Bug fixes: see changelog

* Runtime.

** ‘@MLton‘ switches.

*** Added: ‘may-page-heap {false|true}‘

** ‘may-page-heap‘: By default, MLton will not page the heap to disk when
unable to grow the heap to accomodate an allocation. (Previously, this
behavior was the default, with no means to disable, with security an
least-surprise issues.)

** Bug fixes: see changelog

* Language.

** Allow numeric characters in ML Basis path variables.

* Libraries.

** Basis Library.

*** Bug fixes: see changelog.

** ‘MLton‘ structure.

*** Added: ‘MLton.equal‘, ‘MLton.hash‘, ‘MLton.Cont.isolate‘,
‘MLton.GC.Statistics, ‘MLton.Pointer.sizeofPointer‘,
‘MLton.Socket.Address.toVector‘

*** Changed:

*** Deprecated: ‘MLton.Socket‘

** ‘Unsafe‘ structure.

*** Added versions of all of the monomorphic array and vector structures.

** Other libraries.

*** Updated: ckit library, MLRISC library, SML/NJ library.

* Tools.

** ‘mllex‘

*** Eliminated top-level ‘type int = Int.int‘ in output.

*** Include ‘(*#line line:col "file.lex" *)‘ directives in output.

*** Added ‘%posint‘ command, to set the ‘yypos‘ type and allow the lexing of
multi-gigabyte files.

** ‘mlnlffigen‘

*** Added command-line switches ‘-linkage archive‘ and ‘-linkage shared‘.

*** Deprecated command-line switch ‘-linkage static‘.

*** Added support for ia64 and hppa targets.

** ‘mlyacc‘

*** Eliminated top-level ‘type int = Int.int‘ in output.

*** Include ‘(*#line line:col "file.grm" *)‘ directives in output.

MLton Guide (20180207) 56 / 611

=== Details

* 2010-05-12

** Fixed bug in the mark-compact garbage collector where the C library’s
‘memcpy‘ was used to move objects during the compaction phase; this could lead
to heap corruption and segmentation faults with newer versions of ‘gcc‘ and/or
‘glibc‘, which assume that src and dst in a ‘memcpy‘ do not overlap.

* 2010-03-12

** Fixed bug in elaboration of ‘datatype‘ declarations with ‘withtype‘
bindings.

* 2009-12-11

** Fixed performance bug in RefFlatten SSA2 optimization.

* 2009-12-09

** Fixed performance bug in SimplifyTypes SSA optimization.

* 2009-12-02

** Fixed bug in amd64 codegen register allocation of indirect C calls.

* 2009-09-17

** Fixed bug in ‘IntInf.scan‘ and ‘IntInf.fromString‘ where leading spaces
were only accepted if the stream had an explicit sign character.

* 2009-07-10

** Added CombineConversions SSA optimization.

* 2009-06-09

** Removed deprecated command line switch ‘-show-anns {false, true}‘.

* 2009-04-18

** Removed command line switches ‘-keep sml‘ and ‘-stop sml‘. Their meaning
was unclear with ‘.mlb‘ files; their effect with ‘.cm‘ files can be achieved
with ‘-stop f‘.

* 2009-04-16

** Fixed bug in ‘IntInf.~>>‘ that could cause a ‘glibc‘ assertion failure.

* 2009-04-01

** Fixed exported type of ‘MLton.Process.reap‘.

* 2009-01-27

** Added ‘MLton.Socket.Address.toVector‘ to get the network-byte-order
representation of an IP address.

* 2008-11-10

** Fixed bug in ‘MLton.size‘ and ‘MLton.share‘ when tracing the current stack.

* 2008-10-27

** Fixed phantom typing of sockets by hiding the representation of socket
types. Previously the representation of sockets was revealed rendering the
phantom types useless.

* 2008-10-10

** Fixed bug in nested ‘_export‘/‘_import‘ functions.

* 2008-09-12

** Improved constant folding of floating point operations.

* 2008-08-20

MLton Guide (20180207) 57 / 611

** Store the card/cross map at the end of the allocated ML heap; avoids
possible out of memory errors when resizing the ML heap cannot be followed by
a card/cross map allocation.

* 2008-07-24

** Added support for compiling to a C library. The relevant new compiler
options are ‘-ar‘ and ‘-format‘. Libraries are named based on the name of the
‘-export-header‘ file. Libraries have two extra methods:

*** ‘NAME_open(argc, argv)‘ initializes the library and runs the SML code
until it reaches the end of the program. If the SML code exits or raises an
uncaught exception, the entire program will terminate.

*** ‘NAME_close()‘ will execute any registered atExit functions, any
outstanding finalizers, and frees the ML heap.

* 2008-07-16

** Fixed bug in the name mangling of ‘_import‘-ed functions with the ‘stdcall‘
convention.

* 2008-06-12

** Added ‘MLton.Pointer.sizeofPointer‘.

* 2008-06-06

** Added expert command line switch ‘-emit-main {true|false}‘.

* 2008-05-17

** Fixed bug in Windows code to page the heap to disk when unable to grow the
heap to a desired size. Thanks to Sami Evangelista for the bug report.

* 2008-05-10

** Implemented ‘MLton.Cont.isolate‘.

* 2008-04-20

** Fixed bug in *NIX code to page the heap to disk when unable to grow the
heap to a desired size. Thanks to Nicolas Bertolotti for the bug report and
patch.

* 2008-04-07

** More flexible active/paused stack resizing policy. +
Removed ‘thread-shrink-ratio‘ runtime option. + Added
‘stack-current-grow-ratio‘, ‘stack-current-max-reserved-ratio‘,
‘stack-current-permit-ratio‘, ‘stack-current-shrink-ratio‘,
‘stack-max-reserved-ratio‘, and ‘stack-shrink-ratio‘ runtime options.

* 2008-04-07

** Fixed bugs in Basis Library where the representations of ‘OS.IO.iodesc‘,
‘Posix.IO.file_desc‘, ‘Posix.Signal.signal‘, ‘Socket.sock‘,
‘Socket.SOGK.sock_type‘ as integers were exposed.

* 2008-03-14

** Added unsafe versions of all of the monomorphic array and vector
structures.

* 2008-03-02

** Fixed bug in Basis Library where the representation of ‘OS.Process.status‘
as an integer was exposed.

* 2008-02-13

** Fixed space-safety bug in RefFlatten optimization (to flatten refs into
containing data structure). Thanks to Daniel Spoonhower for the bug report and
initial diagnosis and patch.

* 2008-01-25

MLton Guide (20180207) 58 / 611

** Various updates to GC statistics gathering. Some basic GC statistics can
be accessed from SML by ‘MLton.GC.Statistics.*‘ functions.

* 2008-01-24

** Added primitive (structural) polymorphic hash.

* 2008-01-21

** Fixed frontend to accept ‘op _longvid_‘ patterns and expressions. Thanks to
Florian Weimer for the bug report.

* 2008-01-17

** Extended ‘-show-def-use‘ output to include types of variable definitions.

* 2008-01-09

** Extended ‘MLton_equal‘ to be a structural equality on all types, including
‘real‘ and ‘->‘ types.

* 2007-12-18

** Changed ML-Yacc and ML-Lex to output line directives so that MLton’s
def-use information points to the source files (‘.grm‘ and ‘.lex‘) instead of
the generated implementations (‘.grm.sml‘ and ‘.lex.sml‘).

* 2007-12-14

** Added runtime option ‘may-page-heap {false|true}‘. By default, MLton will
not page the heap to disk when unable to grow the heap to a desired size.
(Previously, this behavior was the default, with no means to disable, with
security and least-surprise concerns.) Thanks to Wesley Terpstra for the
patch.

** Fixed bug the FFI visible representation of ‘Int16.int ref‘ (and references
of other primitive types smaller than 32-bits) on big-endian platforms. Thanks
to Dave Herman for the bug report.

* 2007-12-13

** Fixed bug in ‘ImperativeIOExtra.canInput‘ (‘TextIO.canInput‘). Thanks to
Ville Laurikari for the bug report.

* 2007-12-09

** Better constant folding of ‘IntInf‘ operations.

* 2007-12-07

** Fixed bug in algebraic simplification of ‘RealX‘ primitives. ‘Real.<= (x,
x)‘ is ‘false‘ when ‘x‘ is ‘NaN‘.

* 2007-11-29

** Fixed bug in type inference of flexible records. This would later cause
the compiler to raise the ‘TypeError‘ exception. Thanks to Wesley Terpstra for
the bug report.

* 2007-11-28

** Fixed bug in cross-compilation of ‘gdtoa‘ library. Thanks to Wesley
Terpstra for the bug report and patch.

* 2007-11-20

** Fixed bug in RefFlatten optimization (pass to flatten refs into containing
data structure). Thanks to Ruy LeyWild for the bug report.

* 2007-11-19

** Fixed bug in the handling of weak pointers by the mark-compact garbage
collector. Thanks to Sean McLaughlin for the bug report and Florian Weimer for
the initial diagnosis.

* 2007-11-07

MLton Guide (20180207) 59 / 611

** Added ‘%posint‘ command to ‘ml-lex‘, to set the ‘yypos‘ type and allow the
lexing of multi-gigabyte input files. Thanks to Florian Weimer for the feature
concept and original patch.

* 2007-11-07

** Added command-line switch ‘-mlb-path-var ’<name> <value>’‘ for specifying
MLB path variables.

* 2007-11-06

** Allow numeric characters in MLB path variables.

* 2007-09-20

** Fixed bug in elaboration of structures with signature constraints. This
would later cause the compiler to raise the ‘TypeError‘ exception. Thanks to
Vesa Karvonen for the bug report.

* 2007-09-11

** Fixed bug in interaction of ‘_export‘-ed functions and signal
handlers. Thanks to Sean McLaughlin for the bug report.

* 2007-09-03

** Fixed bug in implementation of ‘_export‘-ed functions using ‘char‘
type. Thanks to Katsuhiro Ueno for the bug report.

== Version 20070826

Here are the changes from version 20051202 to version 20070826.

=== Summary

* New platforms:

** amd64-linux, amd64-freebsd

** hppa-hpux

** powerpc-aix

** x86-darwin (Mac OS X)

* Compiler.

** Support for 64-bit platforms.

*** Native amd64 codegen.

** Command-line switches.

*** Added: ‘-codegen amd64‘, ‘-codegen x86‘, ‘-default-type <type>‘,
‘-profile-val {false|true}‘.

*** Changed: ‘-stop f‘ (file listing now includes ‘.mlb‘ files)

** Bytecode codegen.

*** Support for profiling.

*** Support for exception history.

* Language.

** ML Basis annotations.

*** Removed: ‘allowExport‘, ‘allowImport‘, ‘sequenceUnit‘, ‘warnMatch‘.

* Libraries.

** Basis Library.

*** Added: ‘PackWord16Big, ‘PackWord16Little‘, ‘PackWord64Big‘,
‘PackWord64Little‘.

*** Bug Fixes: see changelog.

** ‘MLton‘ structure.

*** Added: ‘MLTON_MONO_ARRAY‘, ‘MLTON_MONO_VECTOR‘, ‘MLTON_REAL‘,
‘MLton.BinIO.tempPrefix‘, ‘MLton.CharArray‘, ‘MLton.CharVector‘,
‘MLton.IntInf.BigWord‘, ‘MLton.IntInf.SmallInt‘,
‘MLton.Exn.defaultTopLevelHandler‘, ‘MLton.Exn.getTopLevelHandler‘,
‘MLton.Exn.setTopLevelHandler‘, ‘MLton.LargeReal‘, ‘MLton.LargeWord‘,
‘MLton.Real‘, ‘MLton.Real32‘, ‘MLton.Real64‘, ‘MLton.Rlimit.Rlim‘,
‘MLton.TextIO.tempPrefix‘, ‘MLton.Vector.create‘, ‘MLton.Word.bswap‘,

MLton Guide (20180207) 60 / 611

‘MLton.Word8.bswap‘, ‘MLton.Word16‘, ‘MLton.Word32‘, ‘MLton.Word64‘,
‘MLton.Word8Array‘, ‘MLton.Word8Vector‘.

*** Changed: ‘MLton.Array.unfoldi‘, ‘MLton.IntInf.rep‘, ‘MLton.Rlimit‘,
‘MLton.Vector.unfoldi‘.

*** Deprecated: ‘MLton.Socket‘

** Other libraries.

*** Added: MLRISC libary.

*** Updated: ckit library, SML/NJ library.

* Tools.

=== Details

* 2007-08-12

** Removed deprecated ML Basis annotations.

* 2007-08-06

** Fixed bug in treatment of ‘Real<N>.{scan,fromString}‘ operations.
‘Real<N>.{scan,fromString}‘ were using ‘TO_NEAREST‘ semantics, but should obey
current rounding mode. (Only ‘Real<N>.fromDecimal‘ is specified to always
have ‘TO_NEAREST‘ semantics.) Thanks to Sean McLaughlin for the bug report.

* 2007-07-27

** Fixed bugs in constant-folding of floating-point operations with C codegen.

* 2007-07-26

** Fixed bug in treatment of floating-point operations. Floating-point
operations depend on the current rounding mode, but were being treated as
pure. Thanks to Sean McLaughlin for the bug report.

* 2007-07-13

** Added ‘MLton.Exn.{default,get,set}TopLevelHandler‘.

* 2007-07-12

** Restored ‘native‘ option to ‘-codegen‘ flag.

* 2007-07-11

** Fixed bug in ‘Real32.toInt‘: conversion of real values close to
‘Int.maxInt‘ could be incorrect.

* 2007-07-07

** Updates to bytecode code generator: support for amd64-* targets, support
for profiling (including exception history).

** Fixed bug in ‘Socket‘ module of Basis Library; unmarshalling of socket
options (for ‘get*‘ functions) used ‘andb‘ rather than ‘orb‘. Thanks to Anders
Petersson for the bug report (and patch).

* 2007-07-06

** Fixed bug in ‘Date‘ module of Basis Library; some functions would
erroneously raise ‘Date‘ when given a year <= 1900. Thanks to Joe Hurd for the
bug report.

** Fixed a long-standing bug in monomorphisation pass. Thanks to Vesa Karvonen
for the bug report.

* 2007-05-18

** Native amd64 code generator for amd64-* targets.

** Eliminate ‘native‘ option from ‘-codegen‘ flag.

** Add ‘x86‘ and ‘amd64‘ options to ‘-codegen‘ flag.

* 2007-04-29

** Improved type checking of RSSA and Machine ILs.

* 2007-04-14

MLton Guide (20180207) 61 / 611

** Fixed aliasing issues with ‘basis/Real/*.c‘ files.

** Added real/word casts in ‘MLton‘ structure.

* 2007-04-12

** Added primitives for bit cast of word to/from real.

** Implement ‘PackReal<N>{Big,Little}‘ using ‘PackWord<N>{Big,Little}‘ and bit
casts.

* 2007-04-11

** Move all system header ‘#include‘-s to ‘platform/‘ os headers.

** Use C99 ‘<assert.h>‘, rather than custom ‘"assert.{h,c}"‘.

* 2007-03-13

** Implement ‘PackWord<N>{Big,Little}‘ entirely in ML, using an ML byte swap
function.

* 2007-02-25

** Change amd64-* target platforms from 32-bit compatibility mode (i.e.,
‘-m32‘) to 64-bit mode (i.e., ‘-m64‘). Currently, only the C codegen is able
to generate 64-bit executables.

* 2007-02-23

** Removed expert command line switch ‘-coalesce <n>‘.

** Added expert command line switch ‘-chunkify {coalesce<n>|func|one}‘.

* 2007-02-20

** Fixed bug in ‘PackReal<N>.toBytes‘. Thanks to Eric McCorkle for the bug
report (and patch).

* 2007-02-18

** Added command line switch ‘-profile-val‘, to profile the evaluation of
‘val‘ bindings; this is particularly useful with exception history for
debugging uncaught exceptions at the top-level.

* 2006-12-29

** Added command line switch ‘-show {anns|path-map}‘ and deprecated command
line switch ‘-show-anns {false|true}‘. Use ‘-show path-map‘ to see the
complete MLB path map as seen by the compiler.

* 2006-12-20

** Changed the output of command line switch ‘-stop f‘ to include ‘.mlb‘
files. This is useful for generating Makefile dependencies. The old output
is easy to recover if necessary (e.g. ‘grep -v ’\.mlb$’‘).

* 2006-12-08

** Added command line switches ‘-{,target}-{as,cc,link}-opt-quote‘, which pass
their argument as a single argument to ‘gcc‘ (i.e., without tokenization at
spaces). These options support using headers and libraries (including the
MLton runtime headers and libraries) from a path with spaces.

* 2006-12-02

** Extensive reorganization of garbage collector, runtime system, and Basis
Library implementation. (This is in preparation for future 64bit support.)
They should be more C standards compliant and easier to port to new systems.

** FFI revisions

*** Disallow nested indirect types (e.g., ‘int array array‘).

* 2006-11-30

** Fixed a bug in elaboration of FFI forms; unary FFI types (e.g., ‘array‘,
‘ref‘, ‘vector‘) could be used in places where ‘MLton.Pointer.t‘ was required.
This would later cause the compiler to raise the ‘TypeError‘ exception, along
with a lot of XML IL.

MLton Guide (20180207) 62 / 611

* 2006-11-19

** On *-darwin, work with GnuMP installed via Fink or MacPorts.

* 2006-10-30

** Ported to x86-darwin.

* 2006-09-23

** Added missing specification of ‘find‘ to the ‘MONO_VECTOR‘ signature.

* 2006-08-03

** Fixed a bug in Useless SSA optimization, caused by calling an imported C
function and then ignoring the result.

* 2006-06-24

** Fixed a bug in pass to flatten data structures. Thanks to Joe Hurd for the
bug report.

* 2006-06-08

** Fixed a bug in the native codegen’s implementation of the C-calling
convention.

* 2006-05-11

** Ported to PowerPC-AIX.

** Fixed a bug in the runtime for the cases where nonblocking IO with sockets
was implemented using ‘MSG_DONTWAIT‘. This flag does not exist on AIX,
Cygwin, HPUX, and MinGW and was previously just ignored. Now the runtime
simulates the flag for these platforms (except MinGW, yet, where it’s still
ignored).

* 2006-05-06

** Added ‘-default-type ’<ty><N>’‘ for specifying the binding of default types
in the Basis Library (e.g., ‘Int.int‘).

* 2006-04-25

** Ported to HPPA-HPUX.

** Fixed ‘PackReal{,32,64}{Big,Little}‘ to follow the Basis Library
specification.

* 2006-04-19

** Fixed a bug in ‘MLton.share‘ that could cause a segfault.

* 2006-03-30

** Changed ‘MLton.Vector.unfoldi‘ to return the state in addition to the
result vector.

* 2006-03-30

** Added ‘MLton.Vector.create‘, a more powerful vector-creation function than
is available in the basis library.

* 2006-03-04

** Added MLRISC from SML/NJ 110.57 to standard distribution.

* 2006-03-03

** Fixed bug in SSA simplifier that could eliminate an irredundant test.

* 2006-03-02

** Ported a bugfix from SML/NJ for a bug with the combination of ‘withNack‘
and ‘never‘ in CML.

* 2006-02-09

** Support compiler specific annotations in ML Basis files. If an annotation

MLton Guide (20180207) 63 / 611

contains ‘:‘, then the text preceding the ‘:‘ is meant to denote a compiler.
For MLton, if the text preceding the ‘:‘ is equal to ‘mlton‘, then the
remaining annotation is scanned as a normal annotation. If the text preceding
the ‘:‘ is not-equal to ‘mlton‘, then the annotation is ignored, and no
warning is issued.

* 2006-02-04

** Fixed bug in elaboration of functors; a program with a very large number of
functors could exhibit the error ‘ElaborateEnv.functorClosure: firstTycons‘.

== Version 20051202

Here are the changes from version 20041109 to version 20051202.

=== Summary

* New license: BSD-style instead of GPL.

* New platforms:

** hppa: Debian Linux.

** x86: MinGW.

* Compiler.

** improved exception history.

** Command-line switches.

*** Added: ‘-as-opt‘, ‘-mlb-path-map‘, ‘-target-as-opt‘, ‘-target-cc-opt‘.

*** Deprecated: none.

*** Removed: ‘-native‘, ‘-sequence-unit‘, ‘-warn-match‘, ‘-warn-unused‘.

* Language.

** FFI syntax changes and extensions.

*** Added: ‘_symbol‘.

*** Changed: ‘_export‘, ‘_import‘.

*** Removed: ‘_ffi‘.

** ML Basis annotations.

*** Added: ‘allowFFI‘, ‘nonexhaustiveExnMatch‘, ‘nonexhaustiveMatch‘,
‘redundantMatch‘, ‘sequenceNonUnit‘.

*** Deprecated: ‘allowExport‘, ‘allowImport‘, ‘sequenceUnit‘, ‘warnMatch‘.

* Libraries.

** Basis Library.

*** Added: ‘Int1‘, ‘Word1‘.

** ‘MLton‘ structure.

*** Added: ‘Process.create‘, ‘ProcEnv.setgroups‘, ‘Rusage.measureGC‘,
‘Socket.fdToSock‘, ‘Socket.Ctl.getError‘.

*** Changed: ‘MLton.Platform.Arch‘.

** Other libraries.

*** Added: ckit library, ML-NLFFI library, SML/NJ library.

* Tools.

** updates of ‘mllex‘ and ‘mlyacc‘ from SML/NJ.

** added ‘mlnlffigen‘.

** profiling supports better inclusion/exclusion of code.

=== Details

* 2005-11-19

** Updated SML/NJ Library and CKit Library from SML/NJ 110.57.

* 2005-11-15

** Fixed a bug in ‘MLton.ProcEnv.setgroups‘.

* 2005-11-11

** Fixed a bug in the interleaving of lexing/parsing and elaborating of ML
Basis files, which would raise an unhandled ‘Force‘ exception on cyclic basis
references. Thanks to John Dias for the bug report.

MLton Guide (20180207) 64 / 611

* 2005-11-10

** Fixed two bugs in ‘Time.scan‘. One would raise ‘Time‘ on a string with a
large fractional component. Thanks to Carsten Varming for the bug report.
The other failed to scan strings with an explicit sign followed by a decimal
point.

* 2005-11-03

** Removed ‘MLton.GC.setRusage‘.

** Added ‘MLton.Rusage.measureGC‘.

* 2005-09-11

** Fixed bug in display of types with large numbers of type variables, which
could cause unhandled exception ‘Chr‘.

* 2005-09-08

** Fixed bug in type inference of flexible records that would show up as
‘"Type error: variable applied to wrong number of type args"‘.

* 2005-09-06

** Fixed bug in ‘Real.signBit‘, which had assumed that the underlying C
signbit returned 0 or 1, when in fact any nonzero value is allowed to indicate
the signbit is set.

* 2005-09-05

** Added ‘-mlb-path-map‘ switch.

* 2005-08-25

** Fixed bug in ‘MLton.Finalizable.touch‘, which was not keeping alive
finalizable values in all cases.

* 2005-08-18

** Added SML/NJ Library and CKit Library from SML/NJ 110.55 to standard
distribution.

** Fixed bug in ‘Socket.Ctl.*‘, which got the endianness wrong on big-endian
machines. Thanks to Wesley Terpstra for the bug report and fix.

** Added ‘MLton.GC.setRusage‘.

** Fixed bug in ‘mllex‘, which had file positions starting at 2. They now
start at zero.

* 2005-08-15

** Fixed bug in ‘LargeInt.scan‘, which should skip leading ‘"0x"‘ and ‘"0X"‘.
Thanks to Wesley Terpstra for the bug report and fix.

* 2005-08-06

** Additional revisions of FFI:

*** Deprecated ‘_export‘ with incomplete annotation.

*** Added ‘_address‘ for address of C objects.

*** Eliminated address component of ‘_symbol‘.

*** Changed the type of the ‘_symbol*‘ expression.

*** See documentation for more detail.

* 2005-08-06

** Annotation changes:

*** Deprecated: ‘sequenceUnit‘

*** Added: ‘sequenceNonUnit‘

* 2005-08-03

** Annotation changes:

*** Deprecated: ‘allowExport‘, ‘allowImport‘, ‘warnMatch‘

*** Added: ‘allowFFI‘, ‘nonexhaustiveExnMatch‘, ‘nonexhaustiveMatch‘,
‘redundantMatch‘

MLton Guide (20180207) 65 / 611

* 2005-08-01

** Update ‘mllex‘ and ‘mlyacc‘ with SML/NJ 110.55+ versions. This
incorporates a small number of minor bug fixes.

* 2005-07-23

** Fixed bug in pass to flatten refs into containing data structure.

* 2005-07-23

** Overhaul of FFI:

*** Deprecated ‘_import‘ of C base types.

*** Added ‘_symbol‘ for address, getter, and setter of C base types.

*** See documentation for more detail.

* 2005-07-21

** Update ‘mllex‘ and ‘mlyacc‘ with SML/NJ 110.55 versions. This incorporates
a small number of minor bug fixes.

* 2005-07-20

** Fixed bug in front end that allowed unary constructors to be used without
an argument in patterns.

* 2005-07-19

** Eliminated ‘_ffi‘, which has been deprecated for some time.

* 2005-07-14

** Fixed bug in runtime that caused getrusage to be called on every GC, even
if timing info isn’t needed.

* 2005-07-13

** Fixed bug in closure conversion tickled by making a weak pointer to a
closure.

* 2005-07-12

** Changed ‘{OS,Posix}.Process.sleep‘ to call ‘nanosleep()‘ instead of
‘sleep()‘.

** Added ‘MLton.ProcEnv.setgroups‘.

* 2005-07-11

** ‘InetSock.{any,toAddr}‘ raise ‘SysErr‘ if port is not in [0, 2^16^).

* 2005-07-02

** Fixed bug in ‘Socket.recvVecFrom{,’,NB,NB’}‘. The type was too polymorphic
and allowed the creation of a bogus ‘sock_addr‘.

* 2005-06-28

** The front end now reports errors on encountering undefined or cyclicly
defined MLB path variables.

* 2005-05-22

** Fixed bug in ‘Posix.IO.{getlk,setlk,setlkw}‘ that caused a link-time error:
undefined reference to ‘Posix_IO_FLock_typ‘.

** Improved exception history so that the first entry in the history is the
source position of the raise, and the rest is the call stack.

* 2005-05-19

** Improved exception history for ‘Overflow‘ exceptions.

* 2005-04-20

** Fixed a bug in pass to flatten refs into containing data structure.

* 2005-04-14

MLton Guide (20180207) 66 / 611

** Fixed a front-end bug that could cause an internal bug message of the form
‘"missing flexInst"‘.

* 2005-04-13

** Fixed a bug in the representation of flat arrays/vectors that caused
incorrect behavior when the element size was 2 or 4 bytes and there were
multiple components to the element (e.g. ‘(char * char) vector‘).

* 2005-04-01

** Fixed a bug in ‘GC_arrayAllocate‘ that could cause a segfault.

* 2005-03-22

** Added structures ‘Int1‘, ‘Word1‘.

* 2005-03-19

** Fixed a bug that caused ‘Socket.Ctl.{get,set}LINGER‘ to raise ‘Subscript‘.
The problem was in the use of ‘PackWord32Little.update‘, which scales the
supplied index by ‘bytesPerElem‘.

* 2005-03-13

** Fixed a bug in CML mailboxes.

* 2005-02-26

** Fixed an off-by-one error in ‘mkstemp‘ defined in ‘mingw.c‘.

* 2005-02-13

** Added ‘mlnlffigen‘ tool (heavily adapted from SML/NJ).

* 2005-02-12

** Added MLNLFFI Library (heavily adapted from SML/NJ) to standard
distribution.

* 2005-02-04

** Fixed a bug in ‘OS.path.toString‘, which did not raise ‘InvalidArc‘ when
needed.

* 2005-02-03

** Fixed a bug in ‘OS.Path.joinDirFile‘, which did not raise ‘InvalidArc‘ when
passed a file that was not an arc.

* 2005-01-26

** Fixed a front end bug that incorrectly rejected expansive __valbind__s with
useless bound type variables.

* 2005-01-22

** Fixed x86 codegen bug which failed to account for the possibility that a
64-bit move could interfere with itself (as simulated by 32-bit moves).

* 2004-12-22

** Fixed ‘Real32.fmt StringCvt.EXACT‘, which had been producing too many
digits of precision because it was converting to a ‘Real64.real‘.

* 2004-12-15

** Replaced MLB path variable ‘MLTON_ROOT‘ with ‘SML_LIB‘, to use a more
compiler-independent name. We will keep ‘MLTON_ROOT‘ aliased to ‘SML_LIB‘
until after the next release.

* 2004-12-02

** ‘Unix.create‘ now works on all platforms (including Cygwin and MinGW).

* 2004-11-24

** Added support for ‘MLton.Process.create‘, which works on all platforms

MLton Guide (20180207) 67 / 611

(including Windows-based ones like Cygwin and MinGW) and allows better control
over ‘std{in,out,err}‘ for child process.

== Version 20041109

Here are the changes from version 20040227 to 20041109.

=== Summary

* New platforms:

** x86: FreeBSD 5.x, OpenBSD

** PowerPC: Darwin (MacOSX)

* Support for MLBasis files.

* Support for dynamic libraries.

* Support for Concurrent ML (CML).

* New structures: ‘Int2‘, ‘Int3‘, ..., ‘Int31‘ and ‘Word2‘, ‘Word3‘, ..., ‘Word31‘.

* A new form of profiling: ‘-profile count‘.

* A bytecode generator.

* Data representation improvements.

* ‘MLton‘ structure changes.

** Added: ‘share‘, ‘shareAll‘

** Changed: ‘Exn‘, ‘IntInf‘, ‘Signal‘, ‘Thread‘.

* Command-line switch changes.

** Deprecated:

*** ‘-native‘ (use ‘-codegen‘)

*** ‘-sequence-unit‘ (use ‘-default-ann‘)

*** ‘-warn-match‘ (use ‘-default-ann‘)

*** ‘-warn-unused‘ (use ‘-default-ann‘)

** Removed:

*** ‘-detect-overflow‘

*** ‘-exn-history‘ (use ‘-const‘)

*** ‘-safe‘

*** ‘-show-basis-used‘

** Added:

*** ‘-codegen‘

*** ‘-const‘

*** ‘-default-ann‘

*** ‘-disable-ann‘

*** ‘-profile-branch‘

*** ‘-target-link-opt‘

=== Details

* 2004-09-22

** Extended ‘_import‘ to support indirect function calls.

* 2004-09-13

** Made ‘Date.{fromString,scan}‘ accept a space (treated as zero) in the first
character of the day of the month.

* 2004-09-12

** Fixed bug in ‘IntInf‘ that could cause a segfault.

** Remove ‘MLton.IntInf.size‘.

* 2004-09-05

** Made ‘-detect-overflow‘ and ‘-safe‘ expert options.

* 2004-08-30

** Added ‘val MLton.share: ’a -> unit‘, which maximizes sharing in a heap
object.

MLton Guide (20180207) 68 / 611

* 2004-08-27

** Fixed bug in ‘Real.toLargeInt‘. It would incorrectly raise ‘Option‘
instead of ‘Overflow‘ in the case when the real was not an ‘INF‘, but rounding
produced an ‘INF‘.

** Fixed bugs in ‘Date.{fmt,fromString,scan,toString}‘. They incorrectly
allowed a space for the first character in the day of the month.

* 2004-08-18

** Changed ‘MLton.{Thread,Signal,World}‘ to distinguish between implicitly and
explicitly paused threads.

* 2004-07-28

** Added support for programming in the large using the ML Basis system.

* 2004-07-11

** Fixed bugs in ‘ListPair.*Eq‘ functions, which incorrectly raised the
‘UnequalLengths‘ exception.

* 2004-07-01

** Added ‘val MLton.Exn.addExnMessager: (exn -> string option) -> unit‘.

* 2004-06-23

** Runtime system options that take memory sizes now accept a "‘g‘" suffix
indicating gigabytes. They also now take a real instead of an integer,
e.g. ‘fixed-heap 0.5g‘. They also now accept uppercase, e.g. ‘150M‘.

* 2004-06-12

** Added support for OpenBSD.

* 2004-06-10

** Added support for FreeBSD 5.x.

* 2004-05-28

** Deprecated the ‘-native‘ flag. Instead, use the new flag ‘-codegen
{native|bytecode|C}‘. This is in anticipation of adding a bytecode compiler.

* 2004-05-26

** Fixed a front-end bug that could cause cascading error to print a very
large and unreadable internal bug message of the form ‘"datatype ... realized
with scheme Unknown"‘.

* 2004-05-17

** Automatically restart functions in the Basis Library that correspond
directly to interruptable system calls.

* 2004-05-13

** Added ‘-profile count‘, for dynamic counts of function calls and branches.

** Equate the types ‘Posix.Signal.signal‘ and ‘Unix.signal‘.

* 2004-05-11

** Fixed a bug with ‘-basis 1997‘ that would cause type errors due to
differences between types in the MLton structure and types in the rest of the
basis library.

* 2004-05-01

** Fixed a bug with sharing constraints in signatures that would sometimes
mistakenly treat two structures as identical when they shouldn’t have been.
This would cause some programs to be mistakenly rejected.

* 2004-04-30

** Added ‘MLton.Signal.{handled,restart}‘.

MLton Guide (20180207) 69 / 611

* 2004-04-23

** Added ‘Timer.checkCPUTimes‘, and updated the ‘Timer‘ structure to match the
latest basis spec. Also fixed ‘totalCPUTimer‘ and ‘totalRealTimer‘, which
were wrong.

* 2004-04-13

** Added ‘MLton.Signal.Mask.{getBlocked,isMember}‘.

* 2004-04-12

** Fix bug that mistakenly generalized variable types containing unknown types
when matching against a signature.

** Reasonable front-end error message when unification causes recursive
(circular) type.

* 2004-04-03

** Fixed bug in sharing constraints so that ‘sharing A = B = C‘ means that all
pairs ‘A = B‘, ‘A = C‘, ‘B = C‘ are shared, not just ‘A = B‘ and ‘B = C‘.
This matters in some situations.

* 2004-03-20

** Fixed ‘Time.now‘ which was treating microseconds as nanoseconds.

* 2004-03-14

** Fixed SSA optimizer bug that could cause the error ‘"<type> has no
tyconInfo property"‘.

* 2004-03-11

** Fixed ‘Time.fromReal‘ to raise ‘Time‘, not ‘Overflow‘, on unrepresentable
times.

* 2004-03-04

** Added structures ‘Word2‘, ‘Word3‘, ..., ‘Word31‘.

* 2004-03-03

** Added structures ‘Int2‘, ‘Int3‘, ..., ‘Int31‘.

** Fixed bug in elaboration of ‘and‘ with signatures, structures, and functors
so that it now evaluates all right-hand sides before binding any left-hand
sides.

== Version 20040227

Here are the changes from version 20030716 to 20040227.

=== Summary

* The front end now follows the Definition of SML and produces readable error
messages.

* Added support for NetBSD.

* Basis library changes tracking revisions to the specification.

* Added structures: ‘Int64‘, ‘Real32‘, ‘Word64‘.

* File positions use ‘Int64‘.

* Major improvements to ‘-show-basis‘, which now displays the basis in a very
readable way with full type information.

* Command-line switch changes.

** Deprecated: ‘-basis‘.

** Removed: ‘-lib-search‘, ‘-link‘, ‘-may-load-world‘, ‘-static‘.

** Added: ‘-link-opt‘, ‘-runtime‘, ‘-sequence-unit‘, ‘-show-def-use‘,
‘-stop tc‘, ‘-warn-match‘, ‘-warn-unused‘.

** Changed: ‘-export-header‘, ‘-show-basis‘, ‘-show-basis-used‘.

** Renamed: ‘-host‘ to ‘-target‘.

* FFI changes.

MLton Guide (20180207) 70 / 611

** Renamed ‘_ffi‘ as ‘_import‘.

** Added ‘cdecl‘ and ‘stdcall‘ attributes to ‘_import‘ and ‘_export‘
expressions.

* MLton structure changes.

** Added: Pointer.

** Removed: Ptrace.

** Changed: ‘Finalizable‘, ‘IntInf‘, ‘Platform‘, ‘Random‘, ‘Signal‘, ‘Word‘.

=== Details

* 2004-02-16

** Changed ‘-export-header‘, ‘-show-basis‘, ‘-show-basis-used‘ to take a file
name argument, and they no longer force compilation to halt.

** Added ‘-show-def-use‘ and ‘-warn-unused‘, which deal with def-use
information.

* 2004-02-13

** Added flag ‘-sequence-unit‘, which imposes the constraint that in the
sequence expression ‘(e1; e2)‘, ‘e1‘ must be of type ‘unit‘.

* 2004-02-10

** Lots of changes to ‘MLton.Signal‘: name changes, removal of superfluous
functions, additional functions.

* 2004-02-09

** Extended ‘-show-basis‘ so that when used with an input program, it shows
the basis defined by the input program.

** Added ‘stop‘ runtime argument.

** Made ‘-call-graph {false|true}‘ an option to ‘mlprof‘ that determines
whether or not a call graph file is written.

* 2004-01-20

** Fixed a bug in ‘IEEEReal.{fromString,scan}‘, which would improperly return
‘INF‘ instead of ‘ZERO‘ for things like ‘"0.0000e123456789012345"‘.

** Fixed a bug in ‘Real.{fromDecimal,fromString,scan}‘, which didn’t return an
appropriately signed zero for ‘~0.0‘.

** Fixed a bug in ‘Real.{toDecimal,fmt}‘, which didn’t correctly handle
‘~0.0‘.

** Report a compile-time error on unrepresentable real constants.

* 2004-01-05

** Removed option ‘-may-load-world‘. You can now use ‘-runtime no-load-world‘
instead.

** Removed option ‘-static‘. You can now use ‘-link-opt -static‘ instead.

** Changed ‘MLton.IntInf.size‘ to return 0 instead of 1 on small ints.

* 2003-12-28

** Fixed horrible bug in ‘MLton.Random.alphaNumString‘ that caused it to
return 0 for all characters beyond position 11.

* 2003-12-17

** Removed ‘-basis‘ as a normal flag. It is still available as an expert
flag, but its use is deprecated. It will almost certainly disappear after the
next release.

* 2003-12-10

** Allow multiple ‘@MLton --‘ runtime args in sequnce. This makes it easier
for scripts to prefix ‘@MLton‘ args without having to splice them with other
ones.

* 2003-12-04

** Added support for files larger than 2G. This included changing

MLton Guide (20180207) 71 / 611

‘Position‘ from ‘Int32‘ to ‘Int64‘.

* 2003-12-01

** Added ‘structure MLton.Pointer‘, which includes a ‘type t‘ for pointers
(memory addresses, not SML heap pointers) and operations for loading from and
storing to memory.

* 2003-11-03

** Fixed ‘Timer.checkGCTime‘ so that only the GC user time is included, not GC
system time.

* 2003-10-13

** Added ‘-warn-match‘ to control display nonexhaustive and redundant
match warnings.

** Fixed space leak in ‘StreamIO‘ causing the entire stream to be retained.
Thanks to Jared Showalter for the bug report and fix.

* 2003-10-10

** Added ‘-stop tc‘ switch to stop after type checking.

* 2003-09-25

** Fixed ‘Posix.IO.getfl‘, which had mistakenly called ‘fcntl‘ with ‘F_GETFD‘
instead of ‘F_GETFL‘.

** Tracking basis library changes:

*** ‘Socket‘ module datagram functions no longer return amount written,
since they always write the entire amount or fail. So,
‘send{Arr,Vec}To{,’}‘ now return ‘unit‘ instead of ‘int‘.

*** Added nonblocking versions of all the send and recv functions, as well
as accept and connect. So, we now have: ‘acceptNB‘, ‘connectNB‘,
‘recv{Arr,Vec}{,From}NB{,’}‘, ‘send{Arr,Vec}{,To}NB{,’}‘.

* 2003-09-24

** Tracking basis library changes:

*** ‘TextIO.inputLine‘ now returns a ‘string option‘.

*** Slices used in ‘Byte‘, ‘PRIM_IO‘, ‘PrimIO‘, ‘Posix.IO‘, ‘StreamIO‘.

*** ‘Posix.IO.readVec‘ raises ‘Size‘, not ‘Subscript‘, with negative
argument.

* 2003-09-22

** Fixed ‘Real.toManExp‘ so that the mantissa is in [0.5, 1), not [1, 2). The
spec says that 1.0 <= man * radix < radix, which since radix is 2, implies
that the mantissa is in [0.5, 1).

** Added ‘Time.{from,to}Nanoseconds‘.

* 2003-09-11

** Added ‘Real.realRound‘.

** Added ‘Char{Array,Vector}Slice‘ to ‘Text‘.

* 2003-09-11

** ‘OS.IO.poll‘ and ‘Socket.select‘ now raise errors on negative timeouts.

** ‘Time.time‘ is now implemented using ‘IntInf‘ instead of ‘Int‘, which means
that a much larger range of time values is representable.

* 2003-09-10

** ‘Word64‘ is now there.

* 2003-09-09

** Replaced ‘Pack32{Big,Little}‘ with ‘PackWord32{Big,Little}‘.

** Fixed bug in ‘OS.FileSys.fullPath‘, which mistakenly stopped as soon as it
hit a symbolic link.

* 2003-09-08

MLton Guide (20180207) 72 / 611

** Fixed ‘@MLton max-heap‘, which was mistakenly ignored. Cleaned up ‘@MLton
fixed-heap‘. Both ‘fixed-heap‘ and ‘max-heap‘ can use copying or mark-compact
collection.

* 2003-09-06

** ‘Int64‘ is completely there.

** Fixed ‘OS.FileSys.tmpName‘ so that it creates the file, and doesn’t use
‘tmpnam‘. This eliminates an annoying linker warning message.

* 2003-09-05

** Added structures ‘{LargeInt,LargeReal,LargeWord,Word}{Array,Array2,ArraySlice,Vector, ←↩
VectorSlice}‘

** Fixed bug in ‘Real.toDecimal‘, which return class ‘NORMAL‘ for subnormals.

** Fixed bug in ‘Real.toLargeInt‘, which didn’t return as precise an integer
as possible.

* 2003-09-03

** Lots of fixes to ‘REAL‘ functions.

*** ‘Real32‘ is now completely in place, except for ‘Real32.nextAfter‘ on
SunOS.

*** Fixed ‘Real.Math.exp‘ on x86 to return the right value when applied to
‘posInf‘ and ‘negInf‘.

*** Changed ‘Real.Math.{cos,sin,tan}‘ on x86 to always use a call to the C
math library instead of using the x86 instruction. This eliminates some
anomalies between compiling ‘-native false‘ and ‘-native true‘.

*** Change ‘Real.Math.pow‘ to handle exceptional cases in the SML code.

*** Fixed ‘Real.signBit‘ on Sparcs.

* 2003-08-28

** Fixed ‘PackReal{,64}Little‘ to work correctly on Sparc.

** Added ‘PackReal{,64}Big‘, ‘PackReal32{Big,Little}‘.

** Added ‘-runtime‘ switch, which passes arguments to the runtime via
‘@MLton‘. These arguments are processed before command line switches.

** Eliminated MLton switch ‘-may-load-world‘. Can use ‘-runtime‘ combined
with new runtime switch ‘-no-load-world‘ to disable load world in an
executable.

* 2003-08-26

** Changed ‘-host‘ to ‘-target‘.

** Split ‘MLton.Platform.{arch,os}‘ into ‘MLton.Platform.{Arch,OS}.t‘.

* 2003-08-21

** Fixed bug in C codegen that would cause undefined references to
‘Real_{fetch,move,store}‘ when compiling on Sparcs with ‘-align 4‘.

* 2003-08-17

** Eliminated ‘-link‘ and ‘-lib-search‘, which are no longer needed.
Eliminated support for passing ‘-l*‘, ‘-L*‘, and ‘*.a‘ on the command line.
Use ‘-link-opt‘ instead.

* 2003-08-16

** Added ‘-link-opt‘, for passing options to ‘gcc‘ when linking.

* 2003-07-19

** Renamed ‘_ffi‘ as ‘_import‘. The old ‘_ffi‘ will remain for a while, but
is deprecated and should be replaced with ‘_import‘.

** Added attributes to ‘_export‘ and ‘_import‘. For now, the only attributes
are ‘cdecl‘ and ‘stdcall‘.

== Version 20030716

MLton Guide (20180207) 73 / 611

Here are the changes from version 20030711 to 20030716.

== Summary

* Fixed several serious bugs with the 20030711 release.

== Details

* 2003-07-15

** Fixed bug that caused a segfault when attempting to create an
array that was too large, e.g

1 + Array.sub (Array.tabulate (valOf Int.maxInt, fn i => i), 0)

** mlton now checks the command line arguments following the file to compile
that are passed to the linker to make sure they are reasonable.

* 2003-07-14

** Fixed packaging for Cygwin and Sparc to include ‘libgmp.a‘.

** Eliminated bootstrap target. The ‘Makefile‘ automatically determines
whether to bootstrap or not.

** Fixed XML type checker bug that could cause error: ‘"empty tyvars in
PolyVal dec"‘.

* 2003-07-12

** Turned off ‘FORCE_GENERATIONAL‘ in gc. It had been set, which caused the
gc to always use generational collection. This could seriously slow apps down
that don’t need it.

== Version 20030711

Here are the changes from version 20030312 to 20030711.

=== Summary

* Added support for Sparc/SunOS using the C code generator.

* Completed the basis library implementation. At this point, the only missing
basis library function is ‘use‘.

* Added ‘_export‘, which allows one to call SML functions from C.

* Added weak pointers (via ‘MLton.Weak‘) and finalization (via
‘MLton.Finalizable‘).

* Added new integer modules: ‘Int8‘, ‘Int16‘.

* Better profiling call graphs

* Fixed conversions between reals and their decimal representations to be
correct using the gdtoa library.

=== Details

* 2003-07-07

** Profiling improvements:

*** Eliminated ‘mlton -profile-split‘. Added ‘mlprof -split‘. Now the
profiling infrastructure keeps track of the splits and allows one to decide
which splits to make (if any) when ‘mlprof‘ is run, which is much better
than having to decide at compile time.

*** Changed ‘mlprof -graph‘ to ‘mlprof -keep‘, and changed the behavior so
that ‘-keep‘ also controls which functions are displayed in the table.

*** Eliminated ‘mlprof -ignore‘: it’s behavior is now subsumed by ‘-keep‘,
whose meaning has changed to be more like -ignore on nodes that are not
kept.

** When calling ‘gcc‘ for linking, put ‘-link‘ args in same order as they
appeared on the MLton command line (they used to be reversed).

MLton Guide (20180207) 74 / 611

* 2003-07-03

** Making ‘OS.Process.{atExit,exit}‘ conform to the basis library spec in that
exceptions raised during cleaners are caught and ignored. Also, calls to
‘exit‘ from cleaners cause the rest of cleaners to run.

* 2003-07-02

** Fixed bug with negative ‘IntInf‘ constants that could cause compile time
error message: ‘"x86Translate.translateChunk ... strange Offset: base: ..."‘

** Changed argument type of ‘MLton.IntInf.Small‘ from ‘word‘ to ‘int‘.

** Added fix to profiling so that the ‘mlmon.out‘ file is written even when
the program terminates due to running out of memory.

* 2003-06-25

** Added ‘{Int{8,16},Word8}{,Array,ArraySlice,Vector,VectorSlice,Array2}‘
structures.

* 2003-06-25

** Fixed bug in ‘IntInf.sign‘, which returned the wrong value for zero.

* 2003-06-24

** Added ‘_export‘, for calling from C to SML.

* 2003-06-18

** Regularization of options:

*** ‘-diag‘ --> ‘-diag-pass‘

*** ‘-drop-pass‘ takes a regexp

* 2003-06-06

** Fixed bug in ‘OS.IO.poll‘ that caused it to return the input event types
polled for instead of what was actually available.

* 2003-06-04

** Fixed bug in KnownCase SSA optimization that could case incorrect results
in compiled programs.

* 2003-06-03

** Fixed bug in SSA optimizer that could cause the error message:

Type error: Type.equals
{from = char vector, to = unit vector}
Type error: analyze raised exception loopStatement: ...
unhandled exception: TypeError

* 2003-06-02

** Fixed ‘Real.rem‘ to work correctly on ‘inf‘-s and ‘nan‘-s.

** Fixed bug in profiling that caused the function name to be omitted on
functions defined by ‘val rec‘.

* 2003-05-31

** ‘Fixed Real.{fmt,fromString,scan,toString}‘ to match the basis library
spec.

** Added ‘IEEEReal.{fromString,scan}‘.

** Added ‘Real.{from,to}Decimal‘.

* 2003-05-25

** Added ‘Real.nextAfter‘.

** Added ‘OS.Path.{from,to}UnixPath‘, which are the identity function on Unix.

* 2003-05-20

** Added type ‘MLton.pointer‘, the type of C pointers, for use with the FFI.

MLton Guide (20180207) 75 / 611

* 2003-05-18

** Fixed two bugs in type inference that could cause the compiler to raise the
‘TypeError‘ exception, along with a lot of XML IL. The ‘type-check.sml‘
regression contains simple examples of what failed.

** Fixed a bug in the simplifier that could cause the message: ‘"shrinker
raised Prim.apply raised assertion failure: SmallIntInf.fromWord"‘.

* 2003-05-15

** Fixed bug in ‘Real.class‘ introduced on 04-28 that cause many regression
failures with reals when using newer ‘gcc‘-s.

** Replaced ‘MLton.Finalize‘ with ‘MLton.Finalizable‘, which has a more robust
approach to finalization.

* 2003-05-13

** Fixed bug in ‘MLton.FFI‘ on Cygwin that caused ‘Thread_returnToC‘ to be
undefined.

* 2003-05-12

** Added support for finalization with ‘MLton.Finalize‘.

* 2003-05-09

** Fixed a runtime system bug that could cause a segfault. This bug would
happen after a GC during heap resizing when copying a heap, if the heap was
allocated at a very low (<10M) address. The bug actually showed up on a
Cygwin system.

* 2003-05-08

** Fixed bug in ‘HashType‘ that raised ‘"Vector.forall2"‘ when the arity of a
type constructor is changed by ‘SimplifyTypes‘, but a newly constructed type
has the same hash value.

* 2003-05-02

** Switched over to new layered IO implementation, which completes the
implementation of the ‘BinIO‘ and ‘TextIO‘ modules.

* 2003-04-28

** Fixed bug that caused an assertion failure when generating a jump table for
a case dispatch on a non-word sized index with non-zero lower bound on the
range.

* 2003-04-24

** Added ‘-align {4|8}‘, which controls alignment of objects. With ‘-align
8‘, memory accesses to doubles are guaranteed to be aligned mod 8, and so
don’t need special routines to load or store.

* 2003-04-22

** Fixed bug that caused a total failure of time profiling with ‘-native
false‘. The bug was introduced with the C codegen improvements that split the
C into multiple files. Now, the C codegen declares all profile labels used in
each file so that they are global symbols.

* 2003-04-18

** Added ‘MLton.Weak‘, which supports weak pointers.

* 2003-04-10

** Replaced the basis library’s ‘MLton.hostType‘ with ‘MLton.Platform.arch‘
and ‘MLton.Platform.os‘.

* 2003-04

** Added support for SPARC/SunOS using the C codegen.

* 2003-03-25

MLton Guide (20180207) 76 / 611

** Added ‘MLton.FFI‘, which allows callbacks to SML from C.

* 2003-03-21

** Fixed ‘mlprof‘ so that the default ‘-graph arg‘ for data from
‘-profile-stack true‘ is ‘(thresh-stack x)‘, not ‘(thresh x)‘.

== Version 20030312

Here are the changes from version 20020923 to 20030312.

=== Summary

* Added source-level profiling of both time and allocation.

* Updated basis library to 2002 specification. To obtain the old
library, compile with ‘-basis 1997‘.

* Added many modules to basis library:

** ‘BinPrimIO‘, ‘GenericSock‘, ‘ImperativeIO‘, ‘INetSock‘, ‘NetHostDB‘,
‘NetProtDB‘, ‘NetServDB‘, ‘Socket‘, ‘StreamIO‘, ‘TextPrimIO‘, ‘UnixSock‘.

* Completed implementation of ‘IntInf‘ and ‘OS.IO‘.

=== Details

* 2003-02-23

** Replaced ‘-profile-combine‘ wih ‘-profile-split‘.

* 2003-02-11

** Regularization of options:

*** ‘-l‘ --> ‘-link‘

*** ‘-L‘ --> ‘-lib-search‘

*** ‘-o‘ --> ‘-output‘

*** ‘-v‘ --> ‘-verbose‘

* 2003-02-10

** Added option to ‘mlton‘: ‘-profile-combine {false|true}‘

* 2003-02-09

** Added options to ‘mlprof‘: ‘-graph-title‘, ‘-gray‘, ‘-ignore‘, ‘-mlmon‘,
‘-tolerant‘.

* 2002-11 - 2003-01

** Added source-level allocation and time profiling. This includes the new
options to mlton: ‘-profile‘ and ‘-profile-stack‘.

* 2002-12-28

** Added ‘NetHostDB‘, ‘NetProtDB‘, ‘NetServDB‘ structures.

** Added ‘Socket‘, ‘GenericSock‘, ‘INetSock‘, ‘UnixSock‘ structures.

* 2002-12-19

** Fixed bug in signal check insertion that could cause some signals to be
missed. The fix was to add a signal check on entry to each function in
addition to at each loop header.

* 2002-12-10

** Fixed bug in runtime that might cause the message ‘"Unable to set
cardMapForMutator"‘.

* 2002-11-23

** Added support for the latest Basis Library specification.

** Added option ‘-basis‘ to choose Basis Library version. Currently available
basis libraries are ‘2002‘, ‘2002-strict‘, ‘1997‘, and ‘none‘.

** Added ‘IntInf.{orb,xorb,andb,notb,<<,~>>}‘ values.

MLton Guide (20180207) 77 / 611

** Added ‘OS.IO.{poll_desc,poll_info}‘ types.

** Added ‘OS.IO.{pollDesc,pollToIODesc,infoToPollDesc,Poll}‘ values.

** Added ‘OS.IO.{pollIn,pollOut,pollPri,poll,isIn,isOut,isPri}‘ values.

** Added ‘BinPrimIO‘, ‘TextPrimIO‘ structures.

** Added ‘StreamIO‘, ‘ImperativeIO‘ functors.

* 2002-11-22

** Fixed bug that caused time profiling to fail (with a segfault) when
resuming a saved world.

* 2002-11-07

** Fixed bug in ‘MLton.eq‘ that could arise when using ‘eq‘ on functions.

* 2002-11-05

** Improvements to polymorphic equality. Equality on IntInfs, vectors, and
dataypes all do an ‘eq‘ test first before a more expensive comparison.

* 2002-11-01

** Added allocation profiling. Now, can compile with either ‘-profile alloc‘
or ‘-profile time‘. Renamed ‘MLton.Profile‘ as ‘MLton.ProfileTime‘. Added
‘MLton.ProfileAlloc‘. Cleaned up and changed most ‘mlprof‘ option names.

* 2002-10-31

** Eliminated ‘MLton.debug‘.

** Fixed bug in the optimizer that affected ‘IntInf.fmt‘. The optimizer had
been always using base 10, instead of the passed in radix.

* 2002-10-22

** Fixed ‘Real.toManExp‘ so that the mantissa is in [1, 2), not [0.5, 1).

** Added ‘Real.fromLargeInt‘, ‘Real.toLargeInt‘.

** Fixed ‘Real.split‘, which would return an incorrect whole part due to the
underlying primitive, ‘Real_modf‘, being treated as functional instead of
side-effecting.

* 2002-09-30

** Fixed ‘rpath‘ problem with packaging. All executables in packages
previously made had included a setting for ‘RPATH‘.

== Version 20020923

Here are the changes from version 20020410 to 20020923.

=== Summary

* MLton now runs on FreeBSD.

* Major runtime system improvements. The runtime now implements mark-compact
and generational collection, in addition to the copying collection that was
there before. It automatically switches between the the collection strategies
to improve performance and to try to avoid paging.

* Performance when compiling ‘-exn-history true‘ has been improved.

* Added ‘IntInf.log2‘, ‘MLton.GC.pack‘, ‘MLton.GC.unpack‘.

* Fixed bug in load world that could cause "sread failed" on Cygwin.

* Fixed optimizer bug that could cause ‘"no analyze var value property"‘
message.

=== Details

* 2002-09

** Integrated Sam Rushing’s changes to port MLton to FreeBSD.

* 2002-08-25

MLton Guide (20180207) 78 / 611

** Changed the implementation of exception history to be completely
functional. Now, the extra field in exceptions (when compiling ‘-exn-history
true‘) is a ‘string list‘ instead of a ‘string list ref‘, and ‘raise‘ conses a
new exception with a new element in the list instead of assigning to the list.
This changes the semantics of exception history (for the better) on some
programs. See ‘regression/exnHistory3.sml‘ for an example. It also
significantly improves performance when compiling ‘-exn-history true‘.

* 2002-07 and 2002-08

** Added generational GC, and code to the runtime that automatically turns it
on and off.

* 2002-08-20

** Fixed SSA optimizer bug that could cause the following error message: ‘"x_0
has no analyze var value property"‘

* 2002-07-28

** Added ‘MLton.GC.{pack,unpack}‘. ‘pack‘ shrinks the heap so that other
processes can use the RAM, and its dual, ‘unpack‘, resizes the heap to the
desired size.

* 2002-06 and 2002-07

** Added mark compact GC.

** Changed array layout so that arrays have three, not two header words. The
new word is a counter word that preceeds the array length and header.

** Changed all header words to be indices into an array of object descriptors.

* 2002-06-27

** Added patches from Michael Neumann to port runtime to FreeBSD 4.5.

* 2002-06-05

** Output file and intermediate file are now saved in the current directory
instead of in the directory containing the input file.

* 2002-05-31

** Fixed bug in overloading of ‘/‘ so that the following now type checks:

fun f (x, y) = x + y / y

* 2002-04-26

** Added back ‘max-heap‘ runtime option.

* 2002-04-25

** Fixed load/save world so that they use binary mode. This should fix the
‘sread failed‘ problem that Byron Hale saw on Cygwin that caused ‘mlton‘ to
fail to start.

** Added ‘IntInf.log2‘.

** Changed call to linker to use ‘libgmp.a‘ (if it exists) instead of
‘libgmp.so‘. This is because the linker adds a dependency to a shared library
even if there are no references to it

* 2002-04-23

** Rewrote heap resizing code. This fixed bug that was triggered with large
heaps and could cause a spurious out of memory error.

** Removed GnuMP from MLton sources (again :-).

== Version 20020410

Here are the changes from version 20011006 to version 20020410.

=== Details

MLton Guide (20180207) 79 / 611

* 2002-03-28

** Added BinIO.

* 2002-03-27

** Regularization of options

*** ‘-g‘ --> ‘-degug {false|true}‘

*** ‘-h n‘ --> ‘-fixed-heap n‘

*** ‘-p‘ --> ‘-profile {false|true}‘

* 2002-03-22

** Set up the stubs so that MLton can be compiled in the standard basis
library, with no ‘MLton‘ structure. Thus it is now easy to compile MLton with
an older (or newer) version of itself that has a different ‘MLton‘ structure.

* 2002-03-17

** Added ‘MLton.Process.{spawn,spawne,spawnp}‘, which use primitives when
running on Cygwin and fork/exec when running on Linux.

* 2002-02 - 2002-03

** Added the ability to cross-compile to Cygwin/Windows.

* 2002-02-24

** Added GnuMP back for use with Cygwin.

* 2002-02-10

** Reworked object header words so that ‘Array.maxLen = valOf Int.maxInt‘.
Also fixed a long-standing minor bug in MLton, where ‘Array.array
(Array.maxLen, ...)‘ would raise ‘Size‘ instead of attempting to allocate the
array. It was an off-by-one error in the meaning of ‘Array.maxLen‘.

* 2002-02-08

** Modifications to runtime to behave better in situations where the amount of
live data is a signifant fraction of the amount of RAM, based on code from
PolySpace. MLton executables by default can now use more than the available
amount of RAM. Executables will still respect the ‘max-heap‘ runtime arg if
it is set.

* 2002-02-04

** Improvements to runtime so that it fails to get space, it attempts to get
less space instead of failing. Based on PolySpace’s modifications.

** Added ‘MLton.eq‘.

* 2002-02-03

** Added ‘MLton.IntInf.gcd‘.

** Removed GnuMP from MLton sources. We now link with ‘/usr/lib/libgmp.a‘.

** Added ‘TextIO.getPosOut‘.

** Renamed type ‘MLton.Itimer.which‘ to ‘MLton.Itimer.t‘ and
‘MLton.Itimer.whichSignal‘ to ‘MLton.Itimer.signal‘.

** Added ‘-coalesce‘ flag, for use with the C backend.

* 2002-01-26

** Added ‘-show-basis-used‘, which prints out the parts of the basis library
that the input program uses.

** Changed several other flags (‘-print-at-fun-entry‘, ‘-show-basis‘,
‘-static‘) to follow the ‘{false|true}‘ convention.

* 2002-01-22

** Improved ‘MLton.profile‘ so that multiple profile arrays can exist
simultaneously and so that the current one being used can be set from the SML
side.

MLton Guide (20180207) 80 / 611

* 2002-01-18

** The Machine IL has been replaced with an RSSA (representation explicit SSA)
IL and an improved Machine IL.

* 2002-01-16

** Added KnownCase SSA optimization

* 2002-01-14

** Added rudimentary profiling control from with a MLton compile program via
the ‘MLton.Profile‘ structure.

* 2002-01-09

** Fixed bug in match compiler that caused case expressions on datatypes with
redundant cases to be compiled incorrectly.

* 2002-01-08

** Added redundant tuple construction elimination to SSA shrinker.

** Improved Flatten SSA optimization.

* 2001-12-06

** Changed the interface for ‘MLton.Signal‘. There is no longer a separate
‘Handler‘ substructure. This was done so that programs that just use
‘default‘ and ‘ignore‘ signal handlers don’t bring in the entire thread
mechanism.

* 2001-12-05

** Added LocalRef elimination SSA optimization.

* 2001-11-19

** The CPS IL has been replaced with an SSA (static-single assignment) IL.
All of the optimizations have been ported from CPS to SSA.

* 2001-10-24

** Fixed bug in ‘Thread_atomicEnd‘ -- ‘limit‘ was mistakenly set to ‘base‘
instead of to 0. This caused assertion failures when for executables compiled
‘-g‘ because ‘GC_enter‘ didn’t reset ‘limit‘.

** Fixed bug in register allocation of byte registers.

* 2001-10-23

** Added ‘-D‘ option to ‘cmcat‘ for preprocessor defines. Thanks to Anoq for
sending the code.

** Changed limit check insertion so that limit checks are only coalesced
within a single basic block -- not across blocks. This slows many benchmarks
down, but is needed to fix a bug in the way that limit checks were coalesced
across blocks. Hopefully we will figure out a better fix soon.

* 2001-10-18

** Fixed type inference of flexrecord so that it now follows the Definition.
Many programs containing flexrecords were incorrectly rejected. Added many
new tests to regression/flexrecord.sml.

** Changed the behavior of ‘-keep dot‘ combined with ‘-keep pass‘ for SSA
passes. Dot files are now saved for the program before and after, instead of
just after.

* 2001-10-11

** Fixed a bug in the type inference that caused type variables to be
mistakenly generalized. The bug was exposed in Norman Ramsey’s ‘sled.sml‘.
Added a test to ‘regression/flexrecord.sml‘ to catch the problem.

== Version 20011006

MLton Guide (20180207) 81 / 611

Here are the changes from version 20010806 to version 20011006.

=== Summary

* Added ‘MLton.Exn.history‘, which is similar to ‘SMLofNJ.exnHistory‘.

* Support for ‘#line‘ directives of the form ‘(*#line line.col "file"*)‘.

* Performance improvements in native codegenerator.

* Bug fixes in front-end, optimizer, register allocator,
‘Real.{maxFinite,minPos,toManExp}‘, and in heap save and restore.

=== Details

* 2001-10-05

** Fixed a bug in polymorphic layered patterns, like

val ’a a as b = []

These would always fail due to the variable ‘a‘ not being handled correctly.

** Fixed the syntax of ‘val rec‘ so that a pattern is allowed on the left-hand
side of the ‘=‘. Thus, we used to reject, but now accept, the following.

val rec a as b as c = fn _ => ()
val rec a : unit -> unit : unit -> unit = fn () => ()

Thanks again to Andreas Rossberg’s test files. This is now tested for in
‘valrec.sml‘.

** Fixed dynamic semantics of ‘val rec‘ so that if ‘val rec‘ is used to
override constructor status, then at run time, the ‘Bind‘ exception is raised
as per rule 126 of the Definition. So, for example, the following program
type checks and compiles, but raises ‘Bind‘ at run time.

val rec NONE = fn () => ()
val _ = NONE ()

Again, this is checked in ‘valrec.sml‘.

** Added ‘\r\n‘ to ml.lex so that Windows style newlines are acceptable in
input files.

* 2001-10-04

** Fixed bug in the implementation of ‘open‘ declarations, which in the case
of ‘open A B‘ had opened ‘A‘ and then looked up ‘B‘ in the resulting
environment. The correct behaviour (see rule 22 of the Definition) is to
lookup each _longstrid_ in the current environment, and then open them all in
sequence. This is now checked for in the ‘open.sml‘ regression test. Thanks
to Andreas Rossberg for pointing this bug out.

** Fixed bug that caused tyvars of length 1 (i.e. ‘’‘) to be rejected. This
is now checked in the ‘id.sml‘ regression test. Again, thanks to Andreas
Rossberg for the test.

* 2001-10-02

** Fixed bugs in ‘Real.toManExp‘ (which always returned the wrong result
because the call to ‘frexp‘ was not treated as side-effecting by the
optimizer) and in ‘Real.minPos‘, which was zero because of a mistake with
extra precision bits.

* 2001-10-01

** Added ‘MLton.Exn.history‘.

** Fixed register allocation bug with ‘fucom‘ instruction. Was allowing
‘fucomp‘ when the first source was not removable.

** Changed ‘Real.isFinite‘ to use the C ‘math.h‘ ‘finite‘ function. This
fixed the nontermination bug which occurred in any program that used
‘Real.maxFinite‘.

MLton Guide (20180207) 82 / 611

* 2001-09-22

** Bug fixes found from Ramsey’s ‘lrtl‘ in ‘contify.fun‘ and
‘unused-args.fun‘, both of which caused compile-time exceptions to be raised.

* 2001-09-21

** Fixed ‘MLton.World.{load,save}‘ so that the saved world does not store the
max heap size. Instead, the max heap size is computed upon load world in
exactly the same way as at program startup. This fixes a long-standing (but
only recently noticed) problem in which ‘mlton‘ (which uses a saved world)
would attempt to use as much memory as was on the machine used to build
‘world.mlton‘.

* 2001-08-29

** Overlow checking is now on by default in the C backend. This is a huge
performance hit, but who cares, since we never use the C backend except for
testing anyways.

* 2001-08-22

** Added support for #line directives of the form

(*#line line.col "file"*)

These directives only affect error messages produced by the parser and
elaborator.

* 2001-08-17

** Fixed bug in RemoveUnused optimzation that caused the following program to
fail to compile.

fun f l = case l of [] => f l | _ :: l => f l
val _ = f [13]

* 2001-08-14

** New x86-codegen infrastructure.

*** support for tracking liveness of stack slots and carrying them in
registers across basic blocks

*** more specific ‘Entry‘ and ‘Transfer‘ datatypes to make calling convention
distinctions more explicit

*** new heuristic for carrying values in registers across basic blocks (look
Ma, no Overflows!)

*** new "predict" model for generating register allocation hints

*** additional bug fixes

* 2001-08-07

** ‘MLton.Socket.shutdownWrite‘ flushes the outstream.

== Version 20010806

Here are the changes from version 20010706 to version 20010806.

=== Summary

* ‘Word.andb (w, 0xFF)‘ now works correctly

* ‘MLton.Rusage.rusage‘ has a patch to work around a linux kernel bug

* Programs of the form ‘_exp_ ; _program_‘ are now accepted

* Added the ‘MLton.Rlimit‘ structure

* Added the ‘-keep dot‘ flag, which produces call graphs, intraprocedural
control-flow graphs, and dominator trees

=== Details

MLton Guide (20180207) 83 / 611

* 2001-08-06

** Added simple CommonBlock elimination CPS optimization.

* 2001-08-02

** Took out ‘-keep il‘.

* 2001-07-31

** Performance improvements to ‘TextIO.{input, output, output1}‘.

* 2001-07-25

** Added RedundantTest elimination CPS optimization.

* 2001-07-21

** Added CommonSubexp elimination CPS optimization.

* 2001-07-20

** Bug fix to x86 codegen. The ‘commuteBinALMD‘ peephole optimization would
rewrite ‘mov 2,Y; add Y,Y‘ as ‘mov Y,Y; add 2,Y‘. Now the appropriate
interference checks are made.

** Added intraprocedural unused argument removal.

** Added intraprocedural flattener. This avoids some stupid tuple allocations
in loops. Decent speedup on a few benchmarks (‘count-graphs‘, ‘psdes-random‘,
‘wc-scanStream‘) and no noticeable slowdowns.

** Added ‘-keep dot‘ flag.

* 2001-07-17

** Modified grammar to properly handle ‘val rec‘. There were several problems.

*** MLton had accepted ‘val rec ’a ...‘ instead of ‘val ’a rec ...‘

*** MLton had not accepted ‘val x = 13 and rec f = fn () => ()‘

*** MLton had not accepted ‘val rec rec f = fn () => ()‘

*** MLton had not accepted ‘val rec f = fn () => () and rec g = fn () => ()‘

* 2001-07-16

** Workaround for Linux kernel bug that can cause ‘getrusage‘ to return a wrong
system time value (low by one second). See ‘fixedGetrusage‘ in ‘gc.c‘.

** Bug fix to x86 codegen. The register allocator could get confused when
doing comparisons of floating point numbers and use the wrong operand. The
bug seems to have never been detected because it only happens when both of the
operands are already on the floating point stack, which is rare, since one is
almost always in memory since we don’t carry floating point values in the
stack across basic blocks.

** Added production to the grammar on page 58 of the Definition that had been
missing from MLton since day one.

program ::= exp ; <program>

Also updated docs to reflect change.

** Modified grammar to accept the empty program.

** Added ‘-type-check‘ expert flag to turn on type checking in ILs.

* 2001-07-15

** Bug fix to the algebraic simplifier. It had been rewriting
‘Word32.andb (w, 0wxFF)‘ to ‘w‘ instead of
‘Word32.andb (w, 0wxFFFFFFFF)‘ to ‘w‘.

* 2001-07-13

** Improved CPS shrinker so that ‘if‘-tests where the ‘then‘ and ‘else‘ branch
jump to the same label is turned into a direct jump.

** Improved CPS shrinker (‘Prim.apply‘) to handle constructors

*** ‘A = A‘ --> ‘true‘

*** ‘A = B‘ --> ‘false‘

MLton Guide (20180207) 84 / 611

*** ‘A x‘ = ‘B y‘ --> ‘false‘

** Rewrote a lot of loops in the basis library to use inequalities instead of
equality for the loop termination test so that the (forthcoming) overflow
detection elimination will work on the loop index variable.

* 2001-07-11

** Fixed minor bugs in ‘Array2.{array,tabulate}‘, ‘Substring.{slice}‘ that
caused the ‘Overflow‘ exception to be raised instead of ‘Size‘ or ‘Subscript‘

** Fixed bug in ‘Pack32Big.update‘ that caused the wrong location to be updated.

** Fixed several bugs in ‘Pack32{Big,Little}.{subArr,subVec,update}‘ that
caused ‘Overflow‘ to be raised instead of ‘Subscript‘. Also, improved the
implementation so that bounds checking only occurs once per call (instead of
four times, which was sometimes happening.

** Fixed bugs in ‘Time.{toMilliseconds,toMicroseconds}‘ that could cause a
spurious ‘Overflow‘ exception.

** Fixed bugs in ‘Time.{fromMilliseconds,fromMicroseconds}‘ that could cause a
spurious ‘Time‘ exception.

** Improved ‘Pack32.sub*‘ by reordering the ‘orb‘-s.

** Improved ‘{Int,IntInf}.mod‘ to increase chances of constant folding.

** Switched many uses of ‘+‘, ‘-‘, ‘*‘ in basis library to the non-overflow
checked versions. Modules changed were: ‘Array‘, ‘Array2‘, ‘Byte‘, ‘Char‘,
‘Int‘, ‘IntInf‘, ‘List‘, ‘Pack32{Big,Little}‘, ‘Util‘, ‘String‘, ‘StringCvt‘,
‘Substring‘, ‘TextIO‘, ‘Time‘, ‘Vector‘.

** Added regression tests for ‘Array2‘, ‘Int‘ (overflow checking), ‘Pack32‘,
‘Substring‘, ‘Time‘.

** Changed CPS output so that it includes a dot graph for each CPS function.

* 2001-07-09

** Change ‘OS.Process.exit‘ so that it raises an exception if the exit status
is not in [0, 256).

** Added ‘MLton.Rlimit‘ to provide access to ‘getrlimit‘ and ‘setrlimit‘.

== Version 20010706

Here are the changes from the 20000906 version to the 20010706 version.

=== Summary

* Native X86 code generator (instead of using ‘gcc‘)

* Significantly improved compile times

* Significantly improved run times for generated executables

* Many bug fixes

* Correct raising of the ‘Overflow‘ exception for integer arithmetic

* New modules in the ‘MLton‘ structure

=== Details

* 2001-07-06

** GC mods from Henry. Mostly adding ‘inline‘ declarations.

* 2001-07-05

** Fixed several runtime bugs involving threads, critical sections, and
signals.

* 2001-06-29

** Fixed performance bug in ‘cps/two-point-lattice.fun‘ that caused quadratic
behavior. This affects the raise-to-jump and useless analayses. In
particular, the useless analysis was blowing up when compiling ‘fxp‘.

* 2001-06-27

** Henry improved ‘wordAlign‘ -- this sped up GC by 27% (during a self

MLton Guide (20180207) 85 / 611

compile).

* 2001-06-20

** Moved ‘MLton.random‘ to ‘MLton.Random.rand‘ and added other stuff to
‘MLton.Random‘

** Added ‘MLton.TextIO.mkstemp‘.

** Made ‘Int.{div,quot}‘ respect the ‘-detect-overflow‘ switch.

* 2001-06-20

** Added ‘MLton.Syslog‘.

* 2001-06-07

** Fixed bug in ‘MLton.Socket.accept‘ that was in the runtime implementation
‘Socket_accept‘. It did a ‘setsockopt SO_REUSEADDR‘ after the ‘accept‘. It
should have been after the call to ‘socket‘ in ‘Socket_listen‘. Thanks to
Doug Bagley for the fix.

* 2001-05-30

** Fixed bug in remove-unused that caused polymorphic equality to return
‘true‘ sometimes when constructors were never used in a pattern match. For
example, the following (in which ‘A‘ and ‘B‘ are not used as patterns):

datatype t = A | B
datatype u = C of t
val _ = if C A = C B then raise Fail "bug" else ()

* 2001-03-27

** Fixed bug that caused all of the following to fail:
‘{LargeWord,Word,SysWord}.{toLargeInt,toLargeIntX,fromLargeInt}‘ The problem
was the basis library file ‘integer/patch.sml‘ which fixed ‘Word32‘ but not
the other structures that are the same.

* 2001-02-12

** Fixed bug in match compiler that caused it to spend a lot of extra time in
deep patterns. It still could be exponential however. Hopefully this will
get fixed in the release after next. This bug could cause very slow compile
times in some cases. Anyways, this fix cut the ‘finish infer‘ time of a self
compile down from 22 to under 4 seconds. I.E. most of the time used to be
spent due to this bug.

* 2001-02-06

** Fixed bug in frontend that caused the wrong file and line number to be
reported with errors in functor bodys.

* 2001-01-03 - 2000-02-05

** Changes to CoreML, XML, SXML, and CPS ILs to replace lists by vectors in
order to decrease space usage.

* 2001-01-16

** Fixed a bug in constant propagation where the length of vectors was not
propagated properly.

* 2000-12-11 - 2001-01-03

** Major rewrite of elaborator to use a single hash table for each namespace
instead of a hash table for every environment.

* 2000-12-20

** Fixed some bugs in the SML/NJ compatibility library,
‘src/lib/mlton-subs-in-smlnj‘.

* 2000-12-08

** More careful removal of tracing code when compiling ‘MLton_debug=0‘. This

MLton Guide (20180207) 86 / 611

cut down self compile data size by 100k and compile time by a few seconds.

** Added built in character and word cases propagated throughout all ILs.

* 2000-12-06

** Added max stack size information to ‘gc-summary‘.

* 2000-12-05

** Added ‘src/benchmark‘, which contains an SML program that benchmarks all of
the SML compilers I have my hands on. The script has lots of hardwired paths
for now.

* 2000-12-04

** Fixed bug in ‘Posix.ProcEnv.environ,‘ which did not work correctly in a
saved world (the original ‘environ‘ was saved). In fact, it did not work at
all because the ML primitive expected a constant and the C was a nullary
function. This caused a segfault with any program using
‘Posix.ProcEnv.environ‘.

** ‘Added MLton.ProcEnv.setenv‘, since there doesn’t seem to be any ‘setenv‘
in the basis library.

* 2000-11-29

** Changed backend so that it should no longer generate machine programs with
‘void‘ operands.

** Added ‘-detect-overflow‘ and ‘-safe‘ flags.

* 2000-11-27 - 2000-11-28

** Changes in many places to use ‘List.revMap‘ instead of ‘List.map‘ to cut
down on allocation.

* 2000-11-21

** Added ‘MLton.Word.~‘ and ‘MLton.Word8.~‘ to the ‘MLton‘ structure.

* 2000-11-20

** Fixed a bug in the CPS shrinker that could cause a compile-time failure.
It was maintaining occurrence counts incorrectly.

* 2000-11-15

** Fixed a (performance) bug in constant propagation that caused the hashing
to be bad.

** Improved translation to XML so that the match compiler isn’t called on
tuple or if expressions. This should speed up the translation and make the
output smaller.

** Fixed a bug in the match compiler that caused it to not generate integer
case statements. This should speed up the mlyacc benchmark and the MLton
front end.

* 2000-11-09

** Added ‘IntInf_equal‘ and ‘IntInf_compare‘ primitives.

** Took out the automatic ‘-keep c‘ when compiling ‘-g‘.

* 2000-11-08

** Added a whole bunch of algebraic laws to the CPS shrinker, including some
specifically targeted to ‘IntInf‘ primitives.

* 2000-11-03

** Improved implementation of properties so that sets don’t allocate.

** Improved implementation of type homomorphism in type inference. What was
there before appears to have been a bug -- it didn’t use the property on
types.

* 2000-11-02

** Fixed timers used with ‘-v‘ option to use user + sys time.

MLton Guide (20180207) 87 / 611

* 2000-10-27

** Split the runtime basis library C files into many separate files so that
only the needed code would be included by the linker.

** Fixed several bugs in the front end grammar and elaborator that caused type
specifications to be handled incorrectly. The following three programs used
to be handled incorrectly, but are now handled correctly.

signature S = sig type t and u = int end (* reject *)
signature S = sig type t = int and u = t end (* accept *)
signature S = sig eqtype t and u = int end (* reject *)

* 2000-10-25

** Changes to ‘main.sml‘ to run complete compiles with ‘-native‘ switch.

* 2000-10-24

** Removed defunctorizer.

* 2000-10-20

** Fixed bug in ‘cps-tree.fun‘ with ‘PrimExp.maySideEffect‘. This bug could
cause ‘"no operand"‘ failures in the backend.

** Fixed bug in the runtime implementation of ‘MLton.size‘. The size for
stack objects was using the ‘used‘ instead of ‘reserved‘, and so was too low.

* 2000-10-19

** Replaced automatically generated dependencies in ‘src/runtime/Makefile‘
with hand generated ones. Took out ‘make depend‘ from ‘src/Makefile‘. ‘make
depend‘ was behaving really badly on RHAT 7.0.

** Tweaked compiler to shorten width of C output lines to work around bug in
RHAT 7.0 ‘cpp‘ which silently truncates (very) long lines.

** Fixed bug in grammar that didn’t allow ‘op‘ to occur in datatype and
exception bindings, causing the following to fail

datatype t = op T
exception op E = op Fail

** Improved error messages in CM processor. Fixed bug in CM Alias handling.

* 2000-10-18

** Fixed two bugs in the gc that did comparisons with ‘(s->limit -
s->frontier)‘, which of course doesn’t work if ‘frontier‘ is beyond ‘limit‘,
since these are unsigned. This could have caused segfaults, except that the
mutator checks the ‘frontier‘ upon return from the GC.

* 2000-10-17

** Fixed bug in backend in the calculation of ‘maxFrameSize‘. It could be
wrong (low) in some situations.

** Improved CPS inliner’s estimate of function sizes. The size of a function
now takes into account other inlined functions that the function calls. This
also changed the meaning of the size argument to the ‘-inline‘ switch. It now
corresponds (roughly) to the product of the size of the function and the
number of calls. In general, it should be larger than before.

* 2000-10-13

** Made some calls to ‘Array.sub‘ unsafe in the implementation of ‘Array2‘.

** Integrated Matthew’s new x86 backend with floating point support.

* 2000-10-09

** Fixed CM file processor so that MLton works if it is run from a different
directory than the main CM file.

* 2000-10-04

MLton Guide (20180207) 88 / 611

** Changed LimitCheck so it loops on the ‘frontier > limit‘ check. This fixed
a potential bug in threads caused when there is enough space available for a
thread, ‘t‘, before switching to another thread but not enough space when it
resumes. This could have caused a segfault.

* 2000-10-03

** More rewrites of ‘TextIO.StreamIO‘ to improve speed.

** Changed ‘TextIO‘ so that only ‘TextIO.stdErr‘ is unbuffered.

** Changed ‘TextIO‘ so that FIFOs and sockets are buffered.

* 2000-10-02

** Combined remove-unused-constructors, remove-unused-functions, and
remove-unused-globals into a single pass that runs to fixed-point and produces
results at least as good as running the previous three in (any) sequence.

* 2000-09-29

** Added ‘GC_FIRST_CHECK‘, which does a gc at each limit check the first time
it reached.

** Reimplemented ‘TextIO.StreamIO‘ (from 2000-09-12) to use lists of strings
instead of lists of characters so that the per char space overhead is small.

* 2000-09-21

** Fixed bug in profiling labels in C code. The label was always the basic
block label instead of the cps function label.

** Added ‘-b‘ switch to ‘mlprof‘ to gather data at the basic block level.

** Improved performance of ‘TextIO.input1‘ by about 3X.

* 2000-09-15 - 2000-09-19

** Added overflow exceptions to CPS and Machine ILs.

* 2000-09-12

** Fixed ‘TextIO.scanStream‘. It was very broken.

** Added ‘TextIO.{getInstream,mkInstream,setInstream}‘ and
‘TextIO.StreamIO.{canInput,closeIn,endOfStream,input1,input,inputAll,inputLine,inputN}‘.

* 2000-09-11

** Fixed ‘Real_qequal‘ in ‘mlton-lib.h‘. It was missing a paren that caused
code using it to not even compile. It was also semantically incorrect.

** Noted that ‘Real_{equal,lt,le,gt,ge}‘ may not follow basis library spec,
since ANSI does not require IEEE compliance, and hence these could return
wrong results when nans are involved.

== Version 20000906

Here are the changes from the 20000712 version to the 20000906 version.

=== Summary

* Version 20000906 is mostly a bugfix release over 20000712. The other major
changes are that ‘mllex‘ and ‘mlyacc‘ are now included and that ‘mlton‘ can now
process a limited subset of CM files as input.

=== Details

* 2000-09-06

** Fixed ‘Socket_listen‘ in ‘mlton-lib.c‘ so that it closes the socket if the
‘bind‘, ‘listen‘, or ‘getsockname‘ fails. This could have caused a file
descriptor leak.

* 2000-09-05

** Added ‘-static‘ commandline switch.

MLton Guide (20180207) 89 / 611

** Changed default max heap size to .85 RAM from .95 RAM.

** Added ‘PackRealLittle‘ structure to basis library.

* 2000-08-25

** Added cases on integers to ILs (instead of using sequences of tests) so
that backend can emit more efficient test (jump table, binary tree, ...).

* 2000-08-24

** Fixed bug in ‘gc.c‘. ‘dfsInitializeStack‘ would ‘smummap‘ a ‘NULL‘ pointer
whenver ‘toSpace‘ was ‘NULL‘. This could cause ‘MLton.size‘ to segfault.

** Fixed bug in ‘Popt‘ that caused ‘-k‘ to fail with no keeps.

* 2000-08-22 - 2000-08-23

** Ported ‘mllex‘ and ‘mlyacc‘ from SML/NJ

* 2000-08-20 - 2000-08-21

** Added ability to use a ‘.cm‘ file as input to MLton.

* 2000-08-16

** Ported ‘mlprof‘ to SML.

** Fixed bug in ‘library/basic/assert.sml‘ that caused asserts to be run even
when ‘MLton.debug = false‘.

* 2000-08-15

** Fixed bug in backend -- computation of ‘maxFrameSize‘ was wrong. It didn’t
count slots in frames that didn’t make nontail calls. This could lead to the
stack being overwritten because a stack limit check didn’t guarantee enough
space, and lead to a segfault.

** Fixed bug in ‘gc.c‘ ‘newThreadOfSize‘. If the thread allocation caused a
gc, then the stack wasn’t forwarded, leading to a segfault. The solution was
to ensure enough memory all at once, and then fill in both objects.

* 2000-08-14

** Changed limit checks so that checks < 512 bytes are replaced by a check for
0 bytes. The runtime also moves the limit down by 512. This is done so that
the common case, a small limit check, has less code and is faster.

** Fixed bug in ‘cps/cps-tree.fun‘. ‘Program.hasPrim‘ returned ‘true‘ for any
program that had *any* primapp, not just programs satisfying the predicate.
This caused ‘cps/once.fun‘ to be overly conservative, since it thought that
every program used continuations.

* 2000-08-10

** Fixed bug in CPS typechecker. It didn’t enforce that handlers should be
defined before any reference to them -- including implicit references in
‘HandlerPops‘. This caused an evil bug in the liveness analysis where a
variable that was only live in the handler was missed in a continuation
because the liveness for the handler wasn’t computed yet.

** Limited the size for moving up limit checks for arrays whose size is known
at compile time to avoid huge limit checks getting moved into loops.

** added ‘-indent‘, ‘-kp‘, ‘-show-types‘ switches.

** Put optimization in CPS IL suggested by Neal Glew. It determines for each
toplevel function if it can raise an exception to its caller. Also, it
removes ‘HanderPush‘ and ‘HandlerPop‘ for handlers that are not on top of the
stack for any nontail call.

* 2000-08-08

** Changed register allocator so that continuation formals can be allocated in
pseudo registers -- they aren’t necessarily forced to the stack.

* 2000-08-03

** Fixed bug in constant folding. ‘Word8.>>‘ had been used to implement
‘Word8.~>>‘.

MLton Guide (20180207) 90 / 611

** Fixed bug in allocate registers that was not forcing the size argument to
‘Primitive.Array.array‘ to be a stack slot. This could cause problems if
there was a thread switch in the limit check, since upon return the size
pseudo register would have a bogus value.

* 2000-08-01

** Turned back on XML simplification after monomorphisation.

* 2000-07-31

** Fixed bug in ‘MLton.Itimer.set‘ that caused the time to be doubled.

** Fixed bug in ‘MLton.Thread‘ that made it look like asynchronous exceptions
were allowed by ‘throw‘-ing an exception raising thunk to an interrupted
thread obtained via a signal handler. Attempting asynchronous exceptions will
now cause process death, with a helpful error message.

* 2000-07-27

** Updated docs to include ‘structure World: MLTON_WORLD‘ in ‘MLton‘
structure.

** Added toplevel signatures ‘MLTON_{CONT, ..., WORLD}‘ to basis library.

** Fixed broken link in docs to CM in ‘cmcat‘ section.

* 2000-07-26

** Eliminated ‘GC_switchToThread‘ and ‘Thread_switchTo1‘, since the inlined
version ‘Thread_switchTo‘ is all that’s needed, and Matt’s X86 backend now
handles it.

** Added ‘MLton.Signal.vtalrm‘, needed for ‘Itimer.Set{which =
Itimer.Virtual, ...}‘.

* 2000-07-25

** Added ‘MLton.Socket.shutdownWrite‘.

* 2000-07-21

** Updated ‘mlton-lib.c‘ ‘MLton_bug‘ with new email (MLton@sourcelight.com).

* 2000-07-19

** Fixed ‘Posix.Process.kill‘ to check for errors.

* 2000-07-18

** Fixed the following ‘Posix.ProcEnv‘ functions to check for errors:
‘setgid‘, ‘setpgid‘, ‘setsid‘, ‘setuid‘.

** Fixed ‘doc/examples/callcc.sml‘.

== Version 20000712

Here are the changes from the 1999-07-12 to the 20000712 version.

=== Details

* 2000-06-10 - 2000-07-12

** Too many changes to count: bug fixes, new basis library modules, optimizer
improvements.

* 2000-06-30

** Fixed bug in monomorphiser that caused programs with non-value carrying
exception declarations in polymorphic functions to have a compile-time error
because of a duplicate label. The problem was that the exception constructor
wasn’t duplicated.

* 2000-05-22 - 2000-06-10

** Finished the changes for the new CPS IL.

MLton Guide (20180207) 91 / 611

* 2000-01-01

** Fixed some errors in the basis library:

*** ‘Real.copySign‘

*** ‘Posix.FileSys.fpathconf‘

*** ‘Posix.IO.{lseek, getlk, setlk, setlkw}‘

*** ‘Posix.ProcEnv.setpgid‘

*** ‘Posix.TTY.getattr‘

*** ‘System.FileSys.realPath‘

* 1999-12-22

** Fixed bug in ‘src/closure-convert/abstract-value.fun‘ that caused a
compiler failure whenever a program had a vector where the element type
contained an ‘->‘.

* 1999-12-10

** Changed dead code elimination in ‘core-ml/dead-code.fun‘ so that wildcard
declarations (‘val _ = ...‘) in the basis are kept. Changed places in the
basis library to take advantage of this.

** Added ‘setTopLevelHander‘ primitive so that the basis library code can
define the toplevel handler.

** Changed ‘basis-library/misc/suffix.sml‘ to call ‘OS.Process.exit‘. Took
out ‘Halt‘ transfer from CPS, since the program never should reach it.

** Cleaned up ‘basis-library/system/{process.sml, unix.sml}‘ to use the new
signal handling stuff.

* 1999-11-28 - 1999-12-20

** Added support for threads and cleaned up signal handling. This involved a
number of changes:

*** The stack is now allocated as just another kind of heap object.

*** Limit checks are inserted at all loop headers, whether or not there is
any allocation. This is to ensure that the signal handler always has a
chance to get called.

*** The register allocator puts more variables in stack slots. The new rule
is that a variable goes in a stack slot if it is ever live across a nontail
call, in a handler, or (this is the new part) across a limit check.

*** Arguments are passed on the stack, with the convention determined by
argument types.

*** The "locals" array of pointers that was copied to/from for GC is now
gone, because no registers (in particular no pointer valued registers) can
be live at a limit check point.

* 1999-11-21

** Runtime system

*** Fixed a bug introduced by the signal code (presumably on 1999-08-09)
that caused a gc to *not* be performed when doing a save world. This caused
the heaps created by save world to be the same size as the heap -- not the
live data. This was quite bad.

*** Cleaned up the ‘Makefile‘. Add make depend.

*** Added max gc pause to ‘gc-summary‘ info.

*** Move heap translation variables that had been file statics into the
‘GC_state‘.

** Made ‘structure Position‘ available at toplevel.

** Basis Library

*** Added ‘MLton.loadWorld‘

** Added ‘Primitive.usesCallcc‘

** Added ‘Primitive.safe‘

** Removed special size functions from ‘cps/save-world‘ -- they are no longer
necessary since size doesn’t do a gc.

** Fixed another (sigh) bug in ‘cps/simplify-types.fun‘ that could cause it to
not terminate.

* 1999-11-16

MLton Guide (20180207) 92 / 611

** Cleaned up ‘backend/machine.fun‘ a bit so that it spits out macros for
allocation of objects and bumping of frontier. Added macros ‘MLTON_object‘
and ‘MLTON_incFrontier‘ to ‘include/mlton-lib.h‘.

** Fixed a bug in ‘backend/limit-check.fun‘ that caused loops to not be
detected if they were only reached by a case branch. This could cause there
to be loop that allocates with no limit check. Needless to say, this could
cause a segfault if the loop ran for long enough.

* 1999-10-18

** Added basis library function ‘Array2.copy‘.

* 1999-08-15

** Turned off globalization of ref cells (‘closure-convert/globalize.fun‘)
because it interacts badly with serialization.

* 1999-08-13

** Fixed bug in ‘mlton-lib.h‘ in ‘MLTON_allocArrayNoPointers‘ that was
triggered when ‘bytesPerElt == 0‘. The problem was that it wasn’t reserving
space for the forwarding pointer. This could cause a segfault.

* 1999-08-08 and 1999-08-09

** Added support for signal handling.

* 1999-08-07

** Fixed bugs in ‘Array.tabulate‘ (and other ‘tabulate‘ variants) caused if
the function argument used ‘callcc‘.

* 1999-08-01

** Added serialization, which was mostly code in ‘src/runtime/gc.c‘. +
‘GC_serialize‘ converts an object to a ‘Word8Vector.vector‘. +
‘GC_deserialize‘ undoes the conversion. + (de)Serialization should work for
all objects except for functions, because I haven’t yet added the support in
the flow analysis.

* 1999-07-31

** Cleaned up the GC. Changed headers, by stealing a bit from the number of
non pointers and making it a mark bit (used in ‘GC_size‘).

** Rewrote ‘GC_size‘ so that it runs in time proportional to the number of
pointers in the object. It does a depth-first-search now, using toSpace to
hold the stack.

* 1999-07-30

** Fixed bug in ‘SUBSTRING‘. ‘getc‘ had the wrong type. This bug wasn’t
noticed because MLton doesn’t do enough type checking.

** Fixed bug (segfault) caused when a GC immediately followed a throw.

* 1999-07-29

** Fixed bug in ‘Date.fmt‘ (‘basis-library/system/date.sml‘). It was not
setting ‘Tm.buf‘, and hence the time was always 0 unless there had been a
previous call to ‘setTmBuf‘.

* 1999-07-28

** Fixed bugs in ‘Posix.IO.FLock.{getlk,setlk,setlkw}‘, which would cause
compilation to fail because ‘FLock.toInt‘ was defined as the C ‘castInt‘,
which no longer exists. Instead, expand ‘FLock.toInt‘ to
‘MLTON_pointerToInt‘, which was added to ‘include/mlton-lib.h‘.

** Changed ‘Posix.Primitive.Flock‘ to ‘Posix.Primitive.FLock‘.

** Added ‘MLTON_chown‘, ‘MLTON_ftruncate‘ to ‘include/mlton-posix.h‘. They
were missing. This would cause compilation of any program using
‘Posix.FileSys.{chown,ftruncate}‘ to fail. Also made it so all of the
primitives in ‘basis-library/posix/primitive.sml‘ use ‘MLTON_‘ versions of
functions, even if a wrapper is unnecessary.

MLton Guide (20180207) 93 / 611

* 1999-07-25

** Added some other missing signature definitions to toplevel.

* 1999-07-24

** Added missing ‘OS_*‘ signature definitions to
‘basis-library/top-level/top-level.sml‘.

* 1999-07-19

** Fixed bug in ‘basis-library/arrays-and-vectors/mono-array.sml‘. Used ‘:>‘
instead of ‘:‘ so that the monomorphic array types are abstract.

== Version 19990712

Here are the changes from the 1999-03-19 version to the 1999-07-12 version.

=== Details

* 1999-07-12

** Changed ‘src/backend/machine.fun‘ so that the ’pointer locals’ array is
only as large as neccessary in order to copy all pointer-valued locals, not as
large as the number of pointer-valued locals.

* 1999-07-11

** Rewrote ‘src/backend/allocate-registers.fun‘ so that it does a better job
of sharing "registers" (i.e. C local variables) and stack slots. This should
cut down on the amount of copying that has to happen before and after a gc.
It should also cut down on the size of stack slots.

* 1999-07-10

** Fixed a bug in ‘src/backend/parallel-move.fun‘ that should have been
triggered on most any parallel move. I guess parallel moves almost never
happened due to the old register allocation strategy -- but, with the new one
(see note for 1999-07-12) parallel moves will be frequent.

* 1999-06-27

** Fixed ‘src/main.sml‘ so that when compiling ‘-p‘, the ‘.c‘ file is compiled
‘-g‘ and the ‘.o‘ is linked ‘-p‘.

** In ‘bakend/machine.fun‘, added profiling comments before chunkswitches and
put in an optimization to avoid printing repeated profiling comments. Also,
profiling comments are only output when compiling ‘-p‘.

* 1999-06-17

** Changed ‘-i‘ to ‘-inline‘, ‘-f‘ to ‘-flatten‘, ‘-np‘ to ‘-no-polyvariance‘,
‘-u‘ to ‘-unsafe‘.

** Added ‘-i‘, ‘-I‘, ‘-l‘, ‘-L‘ flags for includes and libraries.

** Updated documentation for these options and for ffi.

* 1999-06-16

** Hardwired version number in ‘src/control/control.sml‘. As it stood, the
version number was computed when MLton was built after someone downloaded it,
which was clearly wrong.

* 1999-06-16

** Fixed undefined variable ‘time‘ in ‘GC_done‘ in ‘src/runtime/gc.c‘.

* 19990-06-08

** in ‘include/mlton-lib.h‘:

*** removed ‘#include <huge_val.h>‘

*** added ‘#include <math.h>‘

*** and deleted all of the function signatures I had copied from ‘math.h‘

MLton Guide (20180207) 94 / 611

** Changed ‘Real.{minNormalPos, minPos, maxFinite}‘ so that they are computed
in ‘real.sml‘ instead of appearing as constants in the C.

* 1999-06-07
‘IntInf.pow‘ added to basis library.

* 1999-06-04

** ‘bin/mlton‘ changed to use ‘.arch-n-opsys‘ if it exists.

* 1999-06-03

** ‘src/Makefile‘ changed to use ‘sml-cm‘ instead of ‘sml‘

* 1999-05-10

** Patch to ‘src/atoms/small-int-inf.fun‘ to work around a bug in the SML/NJ
implementation of bignums. This bug was causing some hex bignum constants to
be lexed incorrectly.

* 1999-04-15

** Comments emitted in C code for profiling. The comments identify the CPS
function responsible for each C statement.

* 1999-04-15

** ‘callcc‘ and ‘throw‘ added.

* 1999-04-15

** Bug in ‘src/cps/simplify-types‘ fixed. The bug caused nontermination
whenever there was a circular datatype with a vector on the rhs.
E.g. ‘datatype t = T of t vector‘

== Version 19990319

Here are the changes from the 1998-08-26 version to the 1999-03-19 version.

=== Summary

* Compile time and code size have decreased.

* Runtime performance of executables has improved.

* Large programs can now be compiled.

* MLton is self hosting.

* The basis library is mostly complete and many bugs have been fixed.

* The monomorphiser (‘-m‘) is no longer available.

* The heap and stack are automatically resized.

* There are now facilities for heap checkpointing (‘MLton.saveWorld‘) and object
size computation (‘MLton.size‘).

* MLton uses the GNU multiprecision (GnuMP) library to provide a fast
implementation of ‘IntInf‘.

MLton Guide (20180207) 95 / 611

ChrisClearwater

MLton Guide (20180207) 96 / 611

Chunkify

Chunkify is an analysis pass for the RSSA IntermediateLanguage, invoked from ToMachine.

Description

It partitions all the labels (function and block) in an RSSA program into disjoint sets, referred to as chunks.

Implementation

• chunkify.sig

• chunkify.fun

Details and Notes

Breaking large RSSA functions into chunks is necessary for reasonable compile times with the CCodegen and the LLVMCode-
gen.

https://github.com/MLton/mlton/blob/master/mlton/backend/chunkify.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/chunkify.fun

MLton Guide (20180207) 97 / 611

CKitLibrary

The ckit Library is a C front end written in SML that translates C source code (after preprocessing) into abstract syntax repre-
sented as a set of SML datatypes. The ckit Library is distributed with SML/NJ. Due to differences between SML/NJ and MLton,
this library will not work out-of-the box with MLton.

As of 20180119, MLton includes a port of the ckit Library synchronized with SML/NJ version 110.82.

Usage

• You can import the ckit Library into an MLB file with:

MLB file Description
$(SML_LIB)/ckit-lib/ckit-lib.mlb

• If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following map is included by default:

ckit Library
$ckit-lib.cm $(SML_LIB)/ckit-lib
$ckit-lib.cm/ckit-lib.cm $(SML_LIB)/ckit-lib/ckit-lib.mlb

This will automatically convert a $/ckit-lib.cm import in an input .cm file into a $(SML_LIB)/ckit-lib/ckit-
lib.mlb import in the output .mlb file.

Details

The following changes were made to the ckit Library, in addition to deriving the .mlb file from the .cm file:

• ast/pp/pp-ast-adornment-sig.sml (modified): Rewrote use of signature in local.

• ast/pp/pp-ast-ext-sig.sml (modified): Rewrote use of signature in local.

• ast/type-util-sig.sml (modified): Rewrote use of signature in local.

• parser/parse-tree-sig.sml (modified): Rewrote use of (sequential) withtype in signature.

• parser/parse-tree.sml (modified): Rewrote use of (sequential) withtype.

Patch

• ckit.patch

http://www.smlnj.org/doc/ckit
https://github.com/MLton/mlton/blob/master/lib/ckit-lib/ckit.patch

MLton Guide (20180207) 98 / 611

Closure

A closure is a data structure that is the run-time representation of a function.

Typical Implementation

In a typical implementation, a closure consists of a code pointer (indicating what the function does) and an environment contain-
ing the values of the free variables of the function. For example, in the expression

let
val x = 5

in
fn y => x + y

end

the closure for fn y => x + y contains a pointer to a piece of code that knows to take its argument and add the value of x to
it, plus the environment recording the value of x as 5.

To call a function, the code pointer is extracted and jumped to, passing in some agreed upon location the environment and the
argument.

MLton’s Implementation

MLton does not implement closures traditionally. Instead, based on whole-program higher-order control-flow analysis, MLton
represents a function as an element of a sum type, where the variant indicates which function it is and carries the free variables
as arguments. See ClosureConvert and CejtinEtAl00 for details.

MLton Guide (20180207) 99 / 611

ClosureConvert

ClosureConvert is a translation pass from the SXML IntermediateLanguage to the SSA IntermediateLanguage.

Description

It converts an SXML program into an SSA program.

Defunctionalization is the technique used to eliminate Closures (see CejtinEtAl00).

Uses Globalize and LambdaFree analyses.

Implementation

• closure-convert.sig

• closure-convert.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/closure-convert/closure-convert.sig
https://github.com/MLton/mlton/blob/master/mlton/closure-convert/closure-convert.fun

MLton Guide (20180207) 100 / 611

CMinusMinus

C-- is a portable assembly language intended to make it easy for compilers for different high-level languages to share the same
backend. An experimental version of MLton has been made to generate C--.

• http://www.mlton.org/pipermail/mlton/2005-March/026850.html

Also see

• LLVM

http://cminusminus.org
http://www.mlton.org/pipermail/mlton/2005-March/026850.html

MLton Guide (20180207) 101 / 611

Codegen

Codegen is a translation pass from the Machine IntermediateLanguage to one or more compilation units that can be compiled to
native object code by an external tool.

Implementation

• codegen

Details and Notes

The following codegens are implemented:

• AMD64Codegen

• CCodegen

• LLVMCodegen

• X86Codegen

https://github.com/MLton/mlton/tree/master/mlton/codegen

MLton Guide (20180207) 102 / 611

CombineConversions

CombineConversions is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass looks for and simplifies nested calls to (signed) extension/truncation.

Implementation

• combine-conversions.fun

Details and Notes

It processes each block in dfs order (visiting definitions before uses):

• If the statement is not a PrimApp with Word_extdToWord, skip it.

• After processing a conversion, it tags the Var for subsequent use.

• When inspecting a conversion, check if the Var operand is also the result of a conversion. If it is, try to combine the two
operations. Repeatedly simplify until hitting either a non-conversion Var or a case where the conversion cannot be simplified.

The optimization rules are very simple:

x1 = ...
x2 = Word_extdToWord (W1, W2, {signed=s1}) x1
x3 = Word_extdToWord (W2, W3, {signed=s2}) x2

• If W1 =W2, then there is no conversions before x_1.

This is guaranteed because W2 =W3 will always trigger optimization.

• Case W1 <=W3 <=W2:

x3 = Word_extdToWord (W1, W3, {signed=s1}) x1

• Case W1 < W2 < W3 AND ((NOT s1) OR s2):

x3 = Word_extdToWord (W1, W3, {signed=s1}) x1

• Case W1 =W2 < W3:

unoptimized, because there are no conversions past W1 and x2 =x1

• Case W3 <=W2 <=W1 OR W3 <=W1 <=W2:

x_3 = Word_extdToWord (W1, W3, {signed=_}) x1

because W3 <=W1 && W3 <=W2, just clip x1

• Case W2 < W1 <=W3 OR W2 < W3 <=W1:

unoptimized, because W2 < W1 && W2 < W3, has truncation effect

• Case W1 < W2 < W3 AND (s1 AND (NOT s2)):

unoptimized, because each conversion affects the result separately

https://github.com/MLton/mlton/blob/master/mlton/ssa/combine-conversions.fun

MLton Guide (20180207) 103 / 611

CommonArg

CommonArg is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

It optimizes instances of Goto transfers that pass the same arguments to the same label; e.g.

L_1 ()
...
z1 = ?
...
L_3 (x, y, z1)

L_2 ()
...
z2 = ?
...
L_3 (x, y, z2)

L_3 (a, b, c)
...

This code can be simplified to:

L_1 ()
...
z1 = ?
...
L_3 (z1)

L_2 ()
...
z2 = ?
...
L_3 (z2)

L_3 (c)
a = x
b = y

which saves a number of resources: time of setting up the arguments for the jump to L_3, space (either stack or pseudo-registers)
for the arguments of L_3, etc. It may also expose some other optimizations, if more information is known about x or y.

Implementation

• common-arg.fun

Details and Notes

Three analyses were originally proposed to drive the optimization transformation. Only the Dominator Analysis is currently
implemented. (Implementations of the other analyses are available in the repository history.)

Syntactic Analysis

The simplest analysis I could think of maintains

varInfo: Var.t -> Var.t option list ref

initialized to [].

https://github.com/MLton/mlton/blob/master/mlton/ssa/common-arg.fun

MLton Guide (20180207) 104 / 611

• For each variable v bound in a Statement.t or in the Function.t args, then List.push(varInfo v, NONE).

• For each L (x1, ..., xn) transfer where (a1, ..., an) are the formals of L, then List.push(varInfo ai,
SOME xi).

• For each block argument a used in an unknown context (e.g., arguments of blocks used as continuations, handlers, arith success,
runtime return, or case switch labels), then List.push(varInfo a, NONE).

Now, any block argument a such that varInfo a =xs, where all of the elements of xs are equal to SOME x, can be optimized
by setting a =x at the beginning of the block and dropping the argument from Goto transfers.

That takes care of the example above. We can clearly do slightly better, by changing the transformation criteria to the following:
any block argument a such that varInfo a =xs, where all of the elements of xs are equal to SOME x or are equal to SOME
a, can be optimized by setting a =x at the beginning of the block and dropping the argument from Goto transfers. This
optimizes a case like:

L_1 ()
... z1 = ? ...
L_3 (x, y, z1)

L_2 ()
... z2 = ? ...
L_3(x, y, z2)

L_3 (a, b, c)
... w = ? ...
case w of
true => L_4 | false => L_5

L_4 ()
...
L_3 (a, b, w)

L_5 ()
...

where a common argument is passed to a loop (and is invariant through the loop). Of course, the LoopInvariant optimization
pass would normally introduce a local loop and essentially reduce this to the first example, but I have seen this in practice, which
suggests that some optimizations after LoopInvariant do enough simplifications to introduce (new) loop invariant arguments.

Fixpoint Analysis

However, the above analysis and transformation doesn’t cover the cases where eliminating one common argument exposes the
opportunity to eliminate other common arguments. For example:

L_1 ()
...
L_3 (x)

L_2 ()
...
L_3 (x)

L_3 (a)
...
L_5 (a)

L_4 ()
...
L_5 (x)

L_5 (b)
...

One pass of analysis and transformation would eliminate the argument to L_3 and rewrite the L_5(a) transfer to L_5 (x),
thereby exposing the opportunity to eliminate the common argument to L_5.

The interdependency the arguments to L_3 and L_5 suggest performing some sort of fixed-point analysis. This analysis is
relatively simple; maintain

MLton Guide (20180207) 105 / 611

varInfo: Var.t -> VarLattice.t

where

VarLattice.t ~=~ Bot | Point of Var.t | Top

(but is implemented by the FlatLattice functor with a lessThan list and value ref under the hood), initialized to Bot.

• For each variable v bound in a Statement.t or in the Function.t args, then VarLattice.<=(Point v, varIn
fo v)

• For each L (x1, ..., xn) transfer where (a1, ..., an) are the formals of L}, then VarLattice.<=(varInfo
xi, varInfo ai).

• For each block argument a used in an unknown context, then VarLattice.<=(Point a, varInfo a).

Now, any block argument a such that varInfo a =Point x can be optimized by setting a =x at the beginning of the block
and dropping the argument from Goto transfers.

Now, with the last example, we introduce the ordering constraints:

varInfo x <= varInfo a
varInfo a <= varInfo b
varInfo x <= varInfo b

Assuming that varInfo x =Point x, then we get varInfo a =Point x and varInfo b =Point x, and we opti-
mize the example as desired.

But, that is a rather weak assumption. It’s quite possible for varInfo x =Top. For example, consider:

G_1 ()
... n = 1 ...
L_0 (n)

G_2 ()
... m = 2 ...
L_0 (m)

L_0 (x)
...

L_1 ()
...
L_3 (x)

L_2 ()
...
L_3 (x)

L_3 (a)
...
L_5(a)

L_4 ()
...
L_5(x)

L_5 (b)
...

Now varInfo x =varInfo a =varInfo b =Top. What went wrong here? When varInfo x went to Top, it got
propagated all the way through to a and b, and prevented the elimination of any common arguments. What we’d like to do instead
is when varInfo x goes to Top, propagate on Point x— we have no hope of eliminating x, but if we hold x constant, then
we have a chance of eliminating arguments for which x is passed as an actual.

MLton Guide (20180207) 106 / 611

Dominator Analysis

Does anyone see where this is going yet? Pausing for a little thought, MatthewFluet realized that he had once before tried
proposing this kind of "fix" to a fixed-point analysis — when we were first investigating the Contify optimization in light of
John Reppy’s CWS paper. Of course, that "fix" failed because it defined a non-monotonic function and one couldn’t take the
fixed point. But, StephenWeeks suggested a dominator based approach, and we were able to show that, indeed, the dominator
analysis subsumed both the previous call based analysis and the cont based analysis. And, a moment’s reflection reveals further
parallels: when varInfo:Var.t -> Var.t option list ref, we have something analogous to the call analysis, and
when varInfo:Var.t -> VarLattice.t, we have something analogous to the cont analysis. Maybe there is something
analogous to the dominator approach (and therefore superior to the previous analyses).

And this turns out to be the case. Construct the graph G as follows:

nodes(G) = {Root} U Var.t
edges(G) = {Root -> v | v bound in a Statement.t or

in the Function.t args} U
{xi -> ai | L(x1, ..., xn) transfer where (a1, ..., an)

are the formals of L} U
{Root -> a | a is a block argument used in an unknown context}

Let idom(x) be the immediate dominator of x in G with root Root. Now, any block argument a such that idom(a) =x <>
Root can be optimized by setting a =x at the beginning of the block and dropping the argument from Goto transfers.

Furthermore, experimental evidence suggests (and we are confident that a formal presentation could prove) that the dominator
analysis subsumes the "syntactic" and "fixpoint" based analyses in this context as well and that the dominator analysis gets
"everything" in one go.

Final Thoughts

I must admit, I was rather surprised at this progression and final result. At the outset, I never would have thought of a connection
between Contify and CommonArg optimizations. They would seem to be two completely different optimizations. Although, this
may not really be the case. As one of the reviewers of the ICFP paper said:

I understand that such a form of CPS might be convenient in some cases, but when we’re talking about analyzing
code to detect that some continuation is constant, I think it makes a lot more sense to make all the continuation
arguments completely explicit.

I believe that making all the continuation arguments explicit will show that the optimization can be generalized to
eliminating constant arguments, whether continuations or not.

What I think the common argument optimization shows is that the dominator analysis does slightly better than the reviewer puts
it: we find more than just constant continuations, we find common continuations. And I think this is further justified by the fact
that I have observed common argument eliminate some env_X arguments which would appear to correspond to determining that
while the closure being executed isn’t constant it is at least the same as the closure being passed elsewhere.

At first, I was curious whether or not we had missed a bigger picture with the dominator analysis. When we wrote the contification
paper, I assumed that the dominator analysis was a specialized solution to a specialized problem; we never suggested that it was
a technique suited to a larger class of analyses. After initially finding a connection between Contify and CommonArg (and
thinking that the only connection was the technique), I wondered if the dominator technique really was applicable to a larger
class of analyses. That is still a question, but after writing up the above, I’m suspecting that the "real story" is that the dominator
analysis is a solution to the common argument optimization, and that the Contify optimization is specializing CommonArg to the
case of continuation arguments (with a different transformation at the end). (Note, a whole-program, inter-procedural common
argument analysis doesn’t really make sense (in our SSA IntermediateLanguage), because the only way of passing values between
functions is as arguments. (Unless of course in the case that the common argument is also a constant argument, in which case
ConstantPropagation could lift it to a global.) The inter-procedural Contify optimization works out because there we move the
function to the argument.)

Anyways, it’s still unclear to me whether or not the dominator based approach solves other kinds of problems.

MLton Guide (20180207) 107 / 611

Phase Ordering

On the downside, the optimization doesn’t have a huge impact on runtime, although it does predictably saved some code size. I
stuck it in the optimization sequence after Flatten and (the third round of) LocalFlatten, since it seems to me that we could have
cases where some components of a tuple used as an argument are common, but the whole tuple isn’t. I think it makes sense to
add it after IntroduceLoops and LoopInvariant (even though CommonArg get some things that LoopInvariant gets, it doesn’t get
all of them). I also think that it makes sense to add it before CommonSubexp, since identifying variables could expose more
common subexpressions. I would think a similar thought applies to RedundantTests.

MLton Guide (20180207) 108 / 611

CommonBlock

CommonBlock is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

It eliminates equivalent blocks in a SSA function. The equivalence criteria requires blocks to have no arguments or statements
and transfer via Raise, Return, or Goto of a single global variable.

Implementation

• common-block.fun

Details and Notes

• Rewrites

L_X ()
raise (global_Y)

to

L_X ()
L_Y’ ()

and adds

L_Y’ ()
raise (global_Y)

to the SSA function.

• Rewrites

L_X ()
return (global_Y)

to

L_X ()
L_Y’ ()

and adds

L_Y’ ()
return (global_Y)

to the SSA function.

• Rewrites

L_X ()
L_Z (global_Y)

to

L_X ()
L_Y’ ()

https://github.com/MLton/mlton/blob/master/mlton/ssa/common-block.fun

MLton Guide (20180207) 109 / 611

and adds

L_Y’ ()
L_Z (global_Y)

to the SSA function.

The Shrink pass rewrites all uses of L_X to L_Y’ and drops L_X.

For example, all uncaught Overflow exceptions in a SSA function share the same raising block.

MLton Guide (20180207) 110 / 611

CommonSubexp

CommonSubexp is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

It eliminates instances of common subexpressions.

Implementation

• common-subexp.fun

Details and Notes

In addition to getting the usual sorts of things like

•
(w + 0wx1) + (w + 0wx1)

rewritten to

let val w’ = w + 0wx1 in w’ + w’ end

it also gets things like

•
val a = Array_uninit n
val b = Array_length a

rewritten to

val a = Array_uninit n
val b = n

Arith transfers are handled specially. The result of an Arith transfer can be used in common Arith transfers that it domi-
nates:

•
val l = (n + m) + (n + m)

val k = (l + n) + ((l + m) handle Overflow => ((l + m)
handle Overflow => l + n))

is rewritten so that (n + m) is computed exactly once, as are (l + n) and (l + m).

https://github.com/MLton/mlton/blob/master/mlton/ssa/common-subexp.fun

MLton Guide (20180207) 111 / 611

CompilationManager

The Compilation Manager (CM) is SML/NJ’s mechanism for supporting programming-in-the-very-large.

Porting SML/NJ CM files to MLton

To help in porting CM files to MLton, the MLton source distribution includes the sources for a utility, cm2mlb, that will print an
ML Basis file with essentially the same semantics as the CM file — handling the full syntax of CM supported by your installed
SML/NJ version and correctly handling export filters. When cm2mlb encounters a .cm import, it attempts to convert it to a
corresponding .mlb import. CM anchored paths are translated to paths according to a default configuration file (cm2mlb-
map). For example, the default configuration includes

Standard ML Basis Library
$SMLNJ-BASIS $(SML_LIB)/basis
$basis.cm $(SML_LIB)/basis
$basis.cm/basis.cm $(SML_LIB)/basis/basis.mlb

to ensure that a $/basis.cm import is translated to a $(SML_LIB)/basis/basis.mlb import. See util/cm2mlb for
details. Building cm2mlb requires that you have already installed a recent version of SML/NJ.

http://www.smlnj.org/doc/CM/index.html
https://github.com/MLton/mlton/blob/master/util/cm2mlb/cm2mlb-map
https://github.com/MLton/mlton/blob/master/util/cm2mlb/cm2mlb-map

MLton Guide (20180207) 112 / 611

CompilerOverview

The following table shows the overall structure of the compiler. IntermediateLanguages are shown in the center column. The
names of compiler passes are listed in the left and right columns.

Compiler Overview
Translation Passes IntermediateLanguage Optimization Passes

Source
FrontEnd

AST
Elaborate

CoreML CoreMLSimplify
Defunctorize

XML XMLSimplify
Monomorphise

SXML SXMLSimplify
ClosureConvert

SSA SSASimplify
ToSSA2

SSA2 SSA2Simplify
ToRSSA

RSSA RSSASimplify
ToMachine

Machine
Codegen

The Compile functor (compile.sig, compile.fun), controls the high-level view of the compiler passes, from FrontEnd
to code generation.

https://github.com/MLton/mlton/blob/master/mlton/main/compile.sig
https://github.com/MLton/mlton/blob/master/mlton/main/compile.fun

MLton Guide (20180207) 113 / 611

CompilerPassTemplate

An analysis pass for the ZZZ IntermediateLanguage, invoked from ZZZOtherPass. An implementation pass for the ZZZ In-
termediateLanguage, invoked from ZZZSimplify. An optimization pass for the ZZZ IntermediateLanguage, invoked from
ZZZSimplify. A rewrite pass for the ZZZ IntermediateLanguage, invoked from ZZZOtherPass. A translation pass from the
ZZA IntermediateLanguage to the ZZB IntermediateLanguage.

Description

A short description of the pass.

Implementation

• ZZZ.fun

Details and Notes

Relevant details and notes.

https://github.com/MLton/mlton/blob/master/mlton/ZZZ.fun

MLton Guide (20180207) 114 / 611

CompileTimeOptions

MLton’s compile-time options control the name of the output file, the verbosity of compile-time messages, and whether or not
certain optimizations are performed. They also can specify which intermediate files are saved and can stop the compilation
process early, at some intermediate pass, in which case compilation can be resumed by passing the generated files to MLton.
MLton uses the input file suffix to determine the type of input program. The possibilities are .c, .mlb, .o, .s, and .sml.

With no arguments, MLton prints the version number and exits. For a usage message, run MLton with an invalid switch, e.g.
mlton -z. In the explanation below and in the usage message, for flags that take a number of choices (e.g. {true|false}),
the first value listed is the default.

Options

• -align n

Aligns object in memory by the specified alignment (4 or 8). The default varies depending on architecture.

• -as-opt option

Pass option to gcc when compiling assembler code. If you wish to pass an option to the assembler, you must use gcc’s -Wa,
syntax.

• -cc-opt option

Pass option to gcc when compiling C code.

• -codegen {native|amd64|c|llvm|x86}

Generate native object code via amd64 assembly, C code, LLVM code, or x86 code or C code. With -codegen native (-
codegen amd64 or -codegen x86), MLton typically compiles more quickly and generates better code.

• -const name value

Set the value of a compile-time constant. Here is a list of available constants, their default values, and what they control.

– Exn.keepHistory {false|true}

Enable MLton.Exn.history. See MLtonExn for details. There is a performance cost to setting this to true, both
in memory usage of exceptions and in run time, because of additional work that must be performed at each exception
construction, raise, and handle.

• -default-ann ann

Specify default ML Basis annotations. For example, -default-ann ’warnUnused true’ causes unused variable
warnings to be enabled by default. A default is overridden by the corresponding annotation in an ML Basis file.

• -default-type type

Specify the default binding for a primitive type. For example, -default-type word64 causes the top-level type word
and the top-level structure Word in the Basis Library to be equal to Word64.word and Word64:WORD, respectively. Sim-
ilarly, -default-type intinf causes the top-level type int and the top-level structure Int in the Basis Library to be
equal to IntInf.int and IntInf:INTEGER, respectively.

• -disable-ann ann

Ignore the specified ML Basis annotation in every ML Basis file. For example, to see all match and unused warnings, compile
with

-default-ann ’warnUnused true’
-disable-ann forceUsed
-disable-ann nonexhaustiveMatch
-disable-ann redundantMatch
-disable-ann warnUnused

• -export-header file

Write C prototypes to file for all of the functions in the program exported from SML to C.

MLton Guide (20180207) 115 / 611

• -ieee-fp {false|true}

Cause the x86 native code generator to be pedantic about following the IEEE floating point standard. By default, it is not,
because of the performance cost. This only has an effect with -codegen x86.

• -inline n

Set the inlining threshold used in the optimizer. The threshold is an approximate measure of code size of a procedure. The
default is 320.

• -keep {g|o}

Save intermediate files. If no -keep argument is given, then only the output file is saved.

g generated .c and .s files passed to gcc and generated .ll files passed to llvm-as
o object (.o) files

• -link-opt option

Pass option to gcc when linking. You can use this to specify library search paths, e.g. -link-opt -Lpath, and libraries
to link with, e.g., -link-opt -lfoo, or even both at the same time, e.g. -link-opt ’-Lpath -lfoo’. If you wish
to pass an option to the linker, you must use gcc’s -Wl, syntax, e.g., -link-opt ’-Wl,--export-dynamic’.

• -llvm-as-opt option

Pass option to llvm-as when assembling (.ll to .bc) LLVM code.

• -llvm-llc-opt option

Pass option to llc when compiling (.bc to .o) LLVM code.

• -llvm-opt-opt option

Pass option to opt when optimizing (.bc to .bc) LLVM code.

• -mlb-path-map file

Use file as an ML Basis path map to define additional MLB path variables. Multiple uses of -mlb-path-map and -mlb-
path-var are allowed, with variable definitions in later path maps taking precedence over earlier ones.

• -mlb-path-var name value

Define an additional MLB path variable. Multiple uses of -mlb-path-map and -mlb-path-var are allowed, with
variable definitions in later path maps taking precedence over earlier ones.

• -output file

Specify the name of the final output file. The default name is the input file name with its suffix removed and an appropriate,
possibly empty, suffix added.

• -profile {no|alloc|count|time}

Produce an executable that gathers profiling data. When such an executable is run, it produces an mlmon.out file.

• -profile-branch {false|true}

If true, the profiler will separately gather profiling data for each branch of a function definition, case expression, and if
expression.

• -profile-stack {false|true}

If true, the executable will gather profiling data for all functions on the stack, not just the currently executing function. See
ProfilingTheStack.

• -profile-val {false|true}

If true, the profiler will separately gather profiling data for each (expansive) val declaration.

MLton Guide (20180207) 116 / 611

• -runtime arg

Pass argument to the runtime system via @MLton. See RunTimeOptions. The argument will be processed before other @
MLton command line switches. Multiple uses of -runtime are allowed, and will pass all the arguments in order. If the same
runtime switch occurs more than once, then the last setting will take effect. There is no need to supply the leading @MLton or
the trailing --; these will be supplied automatically.

An argument to -runtime may contain spaces, which will cause the argument to be treated as a sequence of words by the
runtime. For example the command line:

mlton -runtime ’ram-slop 0.4’ foo.sml

will cause foo to run as if it had been called like:

foo @MLton ram-slop 0.4 --

An executable created with -runtime stop doesn’t process any @MLton arguments. This is useful to create an executable,
e.g., echo, that must treat @MLton like any other command-line argument.

% mlton -runtime stop echo.sml
% echo @MLton --
@MLton --

• -show-basis file

Pretty print to file the basis defined by the input program. See ShowBasis.

• -show-def-use file

Output def-use information to file. Each identifier that is defined appears on a line, followed on subsequent lines by the position
of each use.

• -stop {f|g|o|tc}

Specify when to stop.

f list of files on stdout (only makes sense when input is foo.mlb)
g generated .c and .s files
o object (.o) files
tc after type checking

If you compile with -stop g or -stop o, you can resume compilation by running MLton on the generated .c and .s or
.o files.

• -target {self|...}

Generate an executable that runs on the specified platform. The default is self, which means to compile for the machine that
MLton is running on. To use any other target, you must first install a cross compiler.

• -target-as-opt target option

Like -as-opt, this passes option to gcc when compliling assembler code, except it only passes option when the target
architecture, operating system, or arch-os pair is target.

• -target-cc-opt target option

Like -cc-opt, this passes option to gcc when compiling C code, except it only passes option when the target architecture,
operating system, or arch-os pair is target.

• -target-link-opt target option

Like -link-opt, this passes option to gcc when linking, except it only passes option when the target architecture, operating
system, or arch-os pair is target.

• -verbose {0|1|2|3}

How verbose to be about what passes are running. The default is 0.

MLton Guide (20180207) 117 / 611

0 silent
1 calls to compiler, assembler, and linker
2 1, plus intermediate compiler passes
3 2, plus some data structure sizes

MLton Guide (20180207) 118 / 611

CompilingWithSMLNJ

You can compile MLton with SML/NJ, however the resulting compiler will run much more slowly than MLton compiled by
itself. We don’t recommend using SML/NJ as a means of porting MLton to a new platform or bootstrapping on a new platform.

If you do want to build MLton with SML/NJ, it is best to have a binary MLton package installed. If you don’t, here are some
issues you may encounter when you run make smlnj-mlton.

You will get (many copies of) the error messages:

/bin/sh: mlton: command not found

and

make[2]: mlton: Command not found

The Makefile calls mlton to determine dependencies, and can proceed in spite of this error.

If you don’t have an mllex executable, you will get the error message:

mllex: Command not found

Building MLton requires mllex and mlyacc executables, which are distributed with a binary package of MLton. The easiest
solution is to copy the front-end lexer/parser files from a different machine (ml.grm.sml, ml.grm.sig, ml.lex.sml,
mlb.grm.sig, mlb.grm.sml).

MLton Guide (20180207) 119 / 611

ConcurrentML

Concurrent ML is an SML concurrency library based on synchronous message passing. MLton has an initial port of CML from
SML/NJ, but is missing a thread-safe wrapper around the Basis Library and event-based equivalents to IO and OS functions.

All of the core CML functionality is present.

structure CML: CML
structure SyncVar: SYNC_VAR
structure Mailbox: MAILBOX
structure Multicast: MULTICAST
structure SimpleRPC: SIMPLE_RPC
structure RunCML: RUN_CML

The RUN_CML signature is minimal.

signature RUN_CML =
sig

val isRunning: unit -> bool
val doit: (unit -> unit) * Time.time option -> OS.Process.status
val shutdown: OS.Process.status -> ’a

end

MLton’s RunCML structure does not include all of the cleanup and logging operations of SML/NJ’s RunCML structure. However,
the implementation does include the CML.timeOutEvt and CML.atTimeEvt functions, and a preemptive scheduler that
knows to sleep when there are no ready threads and some threads blocked on time events.

Because MLton does not wrap the Basis Library for CML, the "right" way to call a Basis Library function that is stateful is to
wrap the call with MLton.Thread.atomically.

Usage

• You can import the CML Library into an MLB file with:

MLB file Description
$(SML_LIB)/cml/cml.mlb

• If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following map is included by default:

CML Library
$cml $(SML_LIB)/cml
$cml/cml.cm $(SML_LIB)/cml/cml.mlb

This will automatically convert a $cml/cml.cm import in an input .cm file into a $(SML_LIB)/cml/cml.mlb import
in the output .mlb file.

Also see

• ConcurrentMLImplementation

• eXene

http://cml.cs.uchicago.edu/

MLton Guide (20180207) 120 / 611

ConcurrentMLImplementation

Here are some notes on MLton’s implementation of ConcurrentML.

Concurrent ML was originally implemented for SML/NJ. It was ported to MLton in the summer of 2004. The main difference
between the implementations is that SML/NJ uses continuations to implement CML threads, while MLton uses its underlying
thread package. Presently, MLton’s threads are a little more heavyweight than SML/NJ’s continuations, but it’s pretty clear that
there is some fat there that could be trimmed.

The implementation of CML in SML/NJ is built upon the first-class continuations of the SMLofNJ.Cont module.

type ’a cont
val callcc: (’a cont -> ’a) -> ’a
val isolate: (’a -> unit) -> ’a cont
val throw: ’a cont -> ’a -> ’b

The implementation of CML in MLton is built upon the first-class threads of the MLtonThread module.

type ’a t
val new: (’a -> unit) -> ’a t
val prepare: ’a t * ’a -> Runnable.t
val switch: (’a t -> Runnable.t) -> ’a

The port is relatively straightforward, because CML always throws to a continuation at most once. Hence, an "abstract" imple-
mentation of CML could be built upon first-class one-shot continuations, which map equally well to SML/NJ’s continuations and
MLton’s threads.

The "essence" of the port is to transform:

callcc (fn k => ... throw k’ v’)

to

switch (fn t => ... prepare (t’, v’))

which suffices for the vast majority of the CML implementation.

There was only one complicated transformation: blocking multiple base events. In SML/NJ CML, the representation of base
events is given by:

datatype ’a event_status
= ENABLED of {prio: int, doFn: unit -> ’a}
| BLOCKED of {

transId: trans_id ref,
cleanUp: unit -> unit,
next: unit -> unit

} -> ’a
type ’a base_evt = unit -> ’a event_status

When synchronizing on a set of base events, which are all blocked, we must invoke each BLOCKED function with the same
transId and cleanUp (the transId is (checked and) set to CANCEL by the cleanUp function, which is invoked by the
first enabled event; this "fizzles" every other event in the synchronization group that later becomes enabled). However, each
BLOCKED function is implemented by a callcc, so that when the event is enabled, it throws back to the point of synchronization.
Hence, the next function (which doesn’t return) is invoked by the BLOCKED function to escape the callcc and continue in the
thread performing the synchronization. In SML/NJ this is implemented as follows:

fun ext ([], blockFns) = callcc (fn k => let
val throw = throw k
val (transId, setFlg) = mkFlg()
fun log [] = S.atomicDispatch ()

| log (blockFn:: r) =
throw (blockFn {

MLton Guide (20180207) 121 / 611

transId = transId,
cleanUp = setFlg,
next = fn () => log r

})
in

log blockFns; error "[log]"
end)

(Note that S.atomicDispatch invokes the continuation of the next continuation on the ready queue.) This doesn’t map well
to the MLton thread model. Although it follows the

callcc (fn k => ... throw k v)

model, the fact that blockFn will also attempt to do

callcc (fn k’ => ... next ())

means that the naive transformation will result in nested switch-es.

We need to think a little more about what this code is trying to do. Essentially, each blockFn wants to capture this continuation,
hold on to it until the event is enabled, and continue with next; when the event is enabled, before invoking the continuation and
returning to the synchronization point, the cleanUp and other event specific operations are performed.

To accomplish the same effect in the MLton thread implementation, we have the following:

datatype ’a status =
ENABLED of {prio: int, doitFn: unit -> ’a}

| BLOCKED of {transId: trans_id,
cleanUp: unit -> unit,
next: unit -> rdy_thread} -> ’a

type ’a base = unit -> ’a status

fun ext ([], blockFns): ’a =
S.atomicSwitch
(fn (t: ’a S.thread) =>
let

val (transId, cleanUp) = TransID.mkFlg ()
fun log blockFns: S.rdy_thread =

case blockFns of
[] => S.next ()

| blockFn::blockFns =>
(S.prep o S.new)
(fn _ => fn () =>
let

val () = S.atomicBegin ()
val x = blockFn {transId = transId,

cleanUp = cleanUp,
next = fn () => log blockFns}

in S.switch(fn _ => S.prepVal (t, x))
end)

in
log blockFns

end)

To avoid the nested switch-es, I run the blockFn in it’s own thread, whose only purpose is to return to the synchronization
point. This corresponds to the throw (blockFn {...}) in the SML/NJ implementation. I’m worried that this implemen-
tation might be a little expensive, starting a new thread for each blocked event (when there are only multiple blocked events in a
synchronization group). But, I don’t see another way of implementing this behavior in the MLton thread model.

Note that another way of thinking about what is going on is to consider each blockFn as prepending a different set of actions
to the thread t. It might be possible to give a MLton.Thread.unsafePrepend.

MLton Guide (20180207) 122 / 611

fun unsafePrepend (T r: ’a t, f: ’b -> ’a): ’b t =
let

val t =
case !r of

Dead => raise Fail "prepend to a Dead thread"
| New g => New (g o f)
| Paused (g, t) => Paused (fn h => g (f o h), t)

in (* r := Dead; *)
T (ref t)

end

I have commented out the r :=Dead, which would allow multiple prepends to the same thread (i.e., not destroying the original
thread in the process). Of course, only one of the threads could be run: if the original thread were in the Paused state,
then multiple threads would share the underlying runtime/primitive thread. Now, this matches the "one-shot" nature of CML
continuations/threads, but I’m not comfortable with extending MLton.Thread with such an unsafe operation.

Other than this complication with blocking multiple base events, the port was quite routine. (As a very pleasant surprise, the
CML implementation in SML/NJ doesn’t use any SML/NJ-isms.) There is a slight difference in the way in which critical sections
are handled in SML/NJ and MLton; since MLton.Thread.switch always leaves a critical section, it is sometimes necessary
to add additional atomicBegin-s/atomicEnd-s to ensure that we remain in a critical section after a thread switch.

While looking at virtually every file in the core CML implementation, I took the liberty of simplifying things where it seemed
possible; in terms of style, the implementation is about half-way between Reppy’s original and MLton’s.

Some changes of note:

• util/ contains all pertinent data-structures: (functional and imperative) queues, (functional) priority queues. Hence, it should
be easier to switch in more efficient or real-time implementations.

• core-cml/scheduler.sml: in both implementations, this is where most of the interesting action takes place. I’ve made
the connection between MLton.Thread.t-s and ThreadId.thread_id-s more abstract than it is in the SML/NJ imple-
mentation, and encapsulated all of the MLton.Thread operations in this module.

• eliminated all of the "by hand" inlining

Future Extensions

The CML documentation says the following:

CML.joinEvt: thread_id -> unit event

• joinEvt tid

creates an event value for synchronizing on the termination of the thread with the ID tid. There are three ways
that a thread may terminate: the function that was passed to spawn (or spawnc) may return; it may call the exit
function, or it may have an uncaught exception. Note that joinEvt does not distinguish between these cases; it
also does not become enabled if the named thread deadlocks (even if it is garbage collected).

I believe that the MLton.Finalizable might be able to relax that last restriction. Upon the creation of a ’a Scheduler.
thread, we could attach a finalizer to the underlying ’a MLton.Thread.t that enables the joinEvt (in the associated
ThreadID.thread_id) when the ’a MLton.Thread.t becomes unreachable.

I don’t know why CML doesn’t have

CML.kill: thread_id -> unit

which has a fairly simple implementation — setting a kill flag in the thread_id and adjusting the scheduler to discard any
killed threads that it takes off the ready queue. The fairness of the scheduler ensures that a killed thread will eventually be
discarded. The semantics are little murky for blocked threads that are killed, though. For example, consider a thread blocked on

MLton Guide (20180207) 123 / 611

SyncVar.mTake mv and a thread blocked on SyncVar.mGet mv. If the first thread is killed while blocked, and a third
thread does SyncVar.mPut (mv, x), then we might expect that we’ll enable the second thread, and never the first. But,
when only the ready queue is able to discard killed threads, then the SyncVar.mPut could enable the first thread (putting it
on the ready queue, from which it will be discarded) and leave the second thread blocked. We could solve this by adjusting the
TransID.trans_id types and the "cleaner" functions to look for both canceled transactions and transactions on killed
threads.

John Reppy says that MarlowEtAl01 and FlattFindler04 explain why CML.kill would be a bad idea.

Between CML.timeOutEvt and CML.kill, one could give an efficient solution to the recent comp.lang.ml post about
terminating a function that doesn’t complete in a given time.

fun timeOut (f: unit -> ’a, t: Time.time): ’a option =
let

val iv = SyncVar.iVar ()
val tid = CML.spawn (fn () => SyncVar.iPut (iv, f ()))

in
CML.select
[CML.wrap (CML.timeOutEvt t, fn () => (CML.kill tid; NONE)),
CML.wrap (SyncVar.iGetEvt iv, fn x => SOME x)]

end

Space Safety

There are some CML related posts on the MLton mailing list:

• http://www.mlton.org/pipermail/mlton/2004-May/

that discuss concerns that SML/NJ’s implementation is not space efficient, because multi-shot continuations can be held indefi-
nitely on event queues. MLton is better off because of the one-shot nature — when an event enables a thread, all other copies of
the thread waiting in other event queues get turned into dead threads (of zero size).

http://www.mlton.org/pipermail/mlton/2004-May/

MLton Guide (20180207) 124 / 611

ConstantPropagation

ConstantPropagation is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This is whole-program constant propagation, even through data structures. It also performs globalization of (small) values
computed once.

Uses Multi.

Implementation

• constant-propagation.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/constant-propagation.fun

MLton Guide (20180207) 125 / 611

Contact

Mailing lists

There are three mailing lists available.

• MLton-user@mlton.org

MLton user community discussion

– subscribe archive (SourceForge; current), archive (PiperMail; through 201110)

• MLton-devel@mlton.org

MLton developer community discussion

– subscribe archive (SourceForge; current), archive (PiperMail; through 201110)

• MLton-commit@mlton.org

MLton code commits

– subscribe

– archive (SourceForge; current), archive (PiperMail; through 201110)

Mailing list policies

• Both mailing lists are unmoderated. However, the mailing lists are configured to discard all spam, to hold all non-subscriber
posts for moderation, to accept all subscriber posts, and to admin approve subscription requests. Please contact Matthew Fluet
if it appears that your messages are being discarded as spam.

• Large messages (over 256K) should not be sent. Rather, please send an email containing the discussion text and a link to any
large files.

• Discussions started on the mailing lists should stay on the mailing lists. Private replies may be bounced to the mailing list for
the benefit of those following the discussion.

• Discussions started on MLton-user@mlton.org may be migrated to MLton-devel@mlton.org, particularly when
the discussion shifts from how to use MLton to how to modify MLton (e.g., to fix a bug identified by the initial discussion).

IRC

• Some MLton developers and users are in channel #sml on http://freenode.net.

mailto:MLton-user@mlton.org
https://lists.sourceforge.net/lists/listinfo/mlton-user
https://sourceforge.net/mailarchive/forum.php?forum_name=mlton-user
http://www.mlton.org/pipermail/mlton-user/
mailto:MLton-devel@mlton.org
https://lists.sourceforge.net/lists/listinfo/mlton-devel
https://sourceforge.net/mailarchive/forum.php?forum_name=mlton-devel
http://www.mlton.org/pipermail/mlton-devel/
mailto:MLton-commit@mlton.org
https://lists.sourceforge.net/lists/listinfo/mlton-commit
https://sourceforge.net/mailarchive/forum.php?forum_name=mlton-commit
http://www.mlton.org/pipermail/mlton-commit/
mailto:matthew.fluet@gmail.com
mailto:MLton-user@mlton.org
mailto:MLton-devel@mlton.org
http://freenode.net

MLton Guide (20180207) 126 / 611

Contify

Contify is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

Contification is a compiler optimization that turns a function that always returns to the same place into a continuation. This
exposes control-flow information that is required by many optimizations, including traditional loop optimizations.

Implementation

• contify.fun

Details and Notes

See Contification Using Dominators. The intermediate language described in that paper has since evolved to the SSA Intermedi-
ateLanguage; hence, the complication described in Section 6.1 is no longer relevant.

https://github.com/MLton/mlton/blob/master/mlton/ssa/contify.fun

MLton Guide (20180207) 127 / 611

CoreML

Core ML is an IntermediateLanguage, translated from AST by Elaborate, optimized by CoreMLSimplify, and translated by
Defunctorize to XML.

Description

CoreML is polymorphic, higher-order, and has nested patterns.

Implementation

• core-ml.sig

• core-ml.fun

Type Checking

The CoreML IntermediateLanguage has no independent type checker.

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/core-ml/core-ml.sig
https://github.com/MLton/mlton/blob/master/mlton/core-ml/core-ml.fun

MLton Guide (20180207) 128 / 611

CoreMLSimplify

The single optimization pass for the CoreML IntermediateLanguage is controlled by the Compile functor (compile.fun).

The following optimization pass is implemented:

• DeadCode

https://github.com/MLton/mlton/blob/master/mlton/main/compile.fun

MLton Guide (20180207) 129 / 611

Credits

MLton was designed and implemented by HenryCejtin, MatthewFluet, SureshJagannathan, and StephenWeeks.

• HenryCejtin wrote the IntInf implementation, the original profiler, the original man pages, the .spec files for the RPMs,
and lots of little hacks to speed stuff up.

• MatthewFluet implemented the X86 and AMD64 native code generators, ported mlprof to work with the native code gener-
ator, did a lot of work on the SSA optimizer, both adding new optimizations and improving or porting existing optimizations,
updated the Basis Library implementation, ported ConcurrentML and ML-NLFFI to MLton, implemented the ML Basis sys-
tem, ported MLton to 64-bit platforms, and currently leads the project.

• SureshJagannathan implemented some early inlining and uncurrying optimizations.

• StephenWeeks implemented most of the original version of MLton, and continues to keep his fingers in most every part.

Many people have helped us over the years. Here is an alphabetical list.

• JesperLouisAndersen sent several patches to improve the runtime on FreeBSD and ported MLton to run on NetBSD and
OpenBSD.

• JohnnyAndersen implemented BinIO, modified MLton so it could cross compile to MinGW, and provided useful discussion
about cross-compilation.

• Alexander Abushkevich extended support for OpenBSD.

• Ross Bayer added the -keep ast compile-time option and experimented with porting the build system to CMake.

• Kevin Bradley added initial support for SuccessorML features.

• Bryan Camp added -disable-pass _regex_ and enable-pass _regex_ compile options to generalize -drop-
pass _regex_ and added Array_copyArray and Array_copyVector primitives.

• Jason Carr added a parser combinator library and a parser for the SXML IR, extended compilation to start with a .sxml file,
and experimented with alternate control-flow analyses for closure conversion.

• Christopher Cramer contributed support for additional Posix.ProcEnv.sysconf variables, performance improvements
for String.concatWith, and Debian packaging.

• Alain Deutsch and PolySpace Technologies provided many bug fixes and runtime system improvements, code to help the
Sparc/Solaris port, and funded a number of improvements to MLton.

• Armando Doval updated mlnlffigen to warn and skip functions with struct/union arguments.

• Martin Elsman provided helpful discussions in the development of the ML Basis system.

• Brent Fulgham ported MLton most of the way to MinGW.

• AdamGoode provided a script to build the PDF MLton Guide and maintains the Fedora packages.

• Simon Helsen provided bug reports, suggestions, and helpful discussions.

• Joe Hurd provided useful discussion and feedback on source-level profiling.

• VesaKarvonen contributed esml-mode.el and esml-mlb-mode.el (see Emacs), contributed patches for improving
match warnings, contributed esml-du-mlton.el and extended def-use output to include types of variable definitions (see
EmacsDefUseMode), and improved constant folding of floating-point operations.

• Richard Kelsey provided helpful discussions.

• Ville Laurikari ported MLton to IA64/HPUX, HPPA/HPUX, PowerPC/AIX, PowerPC64/AIX.

• Brian Leibig implemented the LLVMCodegen.

http://www.polyspace.com/
https://admin.fedoraproject.org/pkgdb/acls/name/mlton

MLton Guide (20180207) 130 / 611

• Geoffrey Mainland helped with FreeBSD packaging.

• Eric McCorkle ported MLton to Intel Mac.

• TomMurphy wrote the original version of MLton.Syslog as part of his mlftpd project, and has sent many useful bug
reports and suggestions.

• Michael Neumann helped to patch the runtime to compile under FreeBSD.

• Barak Pearlmutter built the original Debian package for MLton, and helped us to take over the process.

• Filip Pizlo ported MLton to (PowerPC) Darwin.

• Vedant Raiththa extended the ForeignFunctionInterface with support for pure and impure attributes to _import.

• Krishna Ravikumar added initial support for vector expressions and the Vector_vector primitive.

• John Reppy assisted in porting MLton to Intel Mac.

• Sam Rushing ported MLton to FreeBSD.

• Rob Simmons refactored the array and vector implementation in the Basis Library: into a primitive implementation (using
SeqInt.int for indexing) and a wrapper implementation (using the default Int.int for indexing).

• Jeffrey Mark Siskind provided helpful discussions and inspiration with his Stalin Scheme compiler.

• Matthew Surawski added LoopUnroll and LoopUnswitch SSA optimizations.

• WesleyTerpstra added support for MLton.Process.create, made a number of contributions to the ForeignFunctionInter-
face, contributed a number of runtime system patches, added support for compiling to a C library, ported MLton to MinGW
and all Debian supported architectures with cross-compiling support, and maintains the Debian and MinGW packages.

• Maksim Yegorov added rudimentary support for ./configure and other improvements to the build system and implemented
the ShareZeroVec SSA optimization.

• Luke Ziarek assisted in porting MLton to (PowerPC) Darwin.

We have also benefited from other software development tools and used code from other sources.

• MLton was developed using Standard ML of New Jersey and the Compilation Manager (CM)

• MLton’s lexer (mlton/frontend/ml.lex), parser (mlton/frontend/ml.grm), and precedence-parser (mlton/
elaborate/precedence-parse.fun) are modified versions of code from SML/NJ.

• The MLton Basis Library implementation of conversions between binary and decimal representations of reals uses David Gay’s
gdtoa library.

• The MLton Basis Library implementation uses modified versions of portions of the the SML/NJ Basis Library implementation
modules OS.IO, Posix.IO, Process, and Unix.

• The MLton Basis Library implementation uses modified versions of portions of the ML Kit Version 4.1.4 Basis Library imple-
mentation modules Path, Time, and Date.

• Many of the benchmarks come from the SML/NJ benchmark suite.

• Many of the regression tests come from the ML Kit Version 4.1.4 distribution, which borrowed them from the Moscow ML
distribution.

• MLton uses the GNU multiprecision library for its implementation of IntInf.

• MLton’s implementation of mllex, mlyacc, the ckit Library, the ML-LPT Library, the MLRISC Library, the SML/NJ Library,
Concurrent ML, mlnlffigen and ML-NLFFI are modified versions of code from SML/NJ.

http://packages.debian.org/mlton
http://mingw.org
http://packages.debian.org/search?keywords=mlton&searchon=names&suite=all§ion=all
http://packages.debian.org/search?keywords=mlton&searchon=names&suite=all§ion=all
http://mingw.org
http://www.netlib.org/fp/
http://www.dina.kvl.dk/%7Esestoft/mosml.html
http://www.gnu.org/software/gmp/gmp.html

MLton Guide (20180207) 131 / 611

CrossCompiling

MLton’s -target flag directs MLton to cross compile an application for another platform. By default, MLton is only able to
compile for the machine it is running on. In order to use MLton as a cross compiler, you need to do two things.

1. Install the GCC cross-compiler tools on the host so that GCC can compile to the target.

2. Cross compile the MLton runtime system to build the runtime libraries for the target.

To make the terminology clear, we refer to the host as the machine MLton is running on and the target as the machine that MLton
is compiling for.

To build a GCC cross-compiler toolset on the host, you can use the script bin/build-cross-gcc, available in the MLton
sources, as a template. The value of the target variable in that script is important, since that is what you will pass to MLton’s
-target flag. Once you have the toolset built, you should be able to test it by cross compiling a simple hello world program
on your host machine.

% gcc -b i386-pc-cygwin -o hello-world hello-world.c

You should now be able to run hello-world on the target machine, in this case, a Cygwin machine.

Next, you must cross compile the MLton runtime system and inform MLton of the availability of the new target. The script
bin/add-cross from the MLton sources will help you do this. Please read the comments at the top of the script. Here is a
sample run adding a Solaris cross compiler.

% add-cross sparc-sun-solaris sun blade
Making runtime.
Building print-constants executable.
Running print-constants on blade.

Running add-cross uses ssh to compile the runtime on the target machine and to create print-constants, which prints
out all of the constants that MLton needs in order to implement the Basis Library. The script runs print-constants on the
target machine (blade in this case), and saves the output.

Once you have done all this, you should be able to cross compile SML applications. For example,

mlton -target i386-pc-cygwin hello-world.sml

will create hello-world, which you should be able to run from a Cygwin shell on your Windows machine.

Cross-compiling alternatives

Building and maintaining cross-compiling gcc’s is complex. You may find it simpler to use mlton -keep g to generate the
files on the host, then copy the files to the target, and then use gcc or mlton on the target to compile the files.

MLton Guide (20180207) 132 / 611

CVS

CVS (Concurrent Versions System) is a version control system. The MLton project used CVS to maintain its source code, but
switched to Subversion on 20050730.

Here are some online CVS resources.

• Open Source Development with CVS

http://www.gnu.org/software/cvs/
http://cvsbook.red-bean.com/

MLton Guide (20180207) 133 / 611

DeadCode

DeadCode is an optimization pass for the CoreML IntermediateLanguage, invoked from CoreMLSimplify.

Description

This pass eliminates declarations from the Basis Library not needed by the user program.

Implementation

• dead-code.sig

• dead-code.fun

Details and Notes

In order to compile small programs rapidly, a pass of dead code elimination is run in order to eliminate as much of the Basis
Library as possible. The dead code elimination algorithm used is not safe in general, and only works because the Basis Library
implementation has special properties:

• it terminates

• it performs no I/O

The dead code elimination includes the minimal set of declarations from the Basis Library so that there are no free variables in
the user program (or remaining Basis Library implementation). It has a special hack to include all bindings of the form:

val _ = ...

There is an ML Basis annotation, deadCode true, that governs which code is subject to this unsafe dead-code elimination.

https://github.com/MLton/mlton/blob/master/mlton/core-ml/dead-code.sig
https://github.com/MLton/mlton/blob/master/mlton/core-ml/dead-code.fun

MLton Guide (20180207) 134 / 611

DeepFlatten

DeepFlatten is an optimization pass for the SSA2 IntermediateLanguage, invoked from SSA2Simplify.

Description

This pass flattens into mutable fields of objects and into vectors.

For example, an (int * int) ref is represented by a 2 word object, and an (int * int) array contains pairs of
int-s, rather than pointers to pairs of int-s.

Implementation

• deep-flatten.fun

Details and Notes

There are some performance issues with the deep flatten pass, where it consumes an excessive amount of memory.

• http://www.mlton.org/pipermail/mlton/2005-April/026990.html

• http://www.mlton.org/pipermail/mlton-user/2010-June/001626.html

• http://www.mlton.org/pipermail/mlton/2010-December/030876.html

A number of applications require compilation with -disable-pass deepFlatten to avoid exceeding available memory.
It is often asked whether the deep flatten pass usually has a significant impact on performance. The standard benchmark suite
was run with and without the deep flatten pass enabled when the pass was first introduced:

• http://www.mlton.org/pipermail/mlton/2004-August/025760.html

The conclusion is that it does not have a significant impact. However, these are micro benchmarks; other applications may derive
greater benefit from the pass.

https://github.com/MLton/mlton/blob/master/mlton/ssa/deep-flatten.fun
http://www.mlton.org/pipermail/mlton/2005-April/026990.html
http://www.mlton.org/pipermail/mlton-user/2010-June/001626.html
http://www.mlton.org/pipermail/mlton/2010-December/030876.html
http://www.mlton.org/pipermail/mlton/2004-August/025760.html

MLton Guide (20180207) 135 / 611

DefineTypeBeforeUse

Standard ML requires types to be defined before they are used. Because of type inference, the use of a type can be implicit;
hence, this requirement is more subtle than it might appear. For example, the following program is not type correct, because the
type of r is t option ref, but t is defined after r.

val r = ref NONE
datatype t = A | B
val () = r := SOME A

MLton reports the following error, indicating that the type defined on line 2 is used on line 1.

Error: z.sml 3.10-3.20.
Function applied to incorrect argument.
expects: _ * [???] option
but got: _ * [t] option
in: := (r, SOME A)
note: type would escape its scope: t
escape from: z.sml 2.10-2.10
escape to: z.sml 1.1-1.16

Warning: z.sml 1.5-1.5.
Type of variable was not inferred and could not be generalized: r.
type: ??? option ref
in: val r = ref NONE

While the above example is benign, the following example shows how to cast an integer to a function by (implicitly) using a
type before it is defined. In the example, the ref cell r is of type t option ref, where t is defined after r, as a parameter to
functor F.

val r = ref NONE
functor F (type t

val x: t) =
struct

val () = r := SOME x
fun get () = valOf (!r)

end
structure S1 = F (type t = unit -> unit

val x = fn () => ())
structure S2 = F (type t = int

val x = 13)
val () = S1.get () ()

MLton reports the following error.

Warning: z.sml 1.5-1.5.
Type of variable was not inferred and could not be generalized: r.
type: ??? option ref
in: val r = ref NONE

Error: z.sml 5.16-5.26.
Function applied to incorrect argument.
expects: _ * [???] option
but got: _ * [t] option
in: := (r, SOME x)
note: type would escape its scope: t
escape from: z.sml 2.17-2.17
escape to: z.sml 1.1-1.16

Warning: z.sml 6.11-6.13.
Type of variable was not inferred and could not be generalized: get.
type: unit -> ???
in: fun get () = (valOf (! r))

Error: z.sml 12.10-12.18.

MLton Guide (20180207) 136 / 611

Function not of arrow type.
function: [unit]
in: (S1.get ()) ()

MLton Guide (20180207) 137 / 611

DefinitionOfStandardML

The Definition of Standard ML (Revised) is a terse and formal specification of Standard ML’s syntax and semantics. The
language specified by this book is often referred to as SML 97. You can check its syntax grammar online (thanks to Andreas
Rossberg).

The Definition of Standard ML is an older version of the definition, published in 1990. The accompanying Commentary intro-
duces and explains the notation and approach. The same notation is used in the SML 97 definition, so it is worth keeping the
older definition and its commentary at hand if you intend a close study of the definition.

http://www.mpi-sws.org/~rossberg/sml.html

MLton Guide (20180207) 138 / 611

Defunctorize

Defunctorize is a translation pass from the CoreML IntermediateLanguage to the XML IntermediateLanguage.

Description

This pass converts a CoreML program to an XML program by performing:

• linearization

• MatchCompile

• polymorphic val dec expansion

• datatype lifting (to the top-level)

Implementation

• defunctorize.sig

• defunctorize.fun

Details and Notes

This pass is grossly misnamed and does not perform defunctorization.

Datatype Lifting

This pass moves all datatype declarations to the top level.

Standard ML datatype declarations can contain type variables that are not bound in the declaration itself. For example, the
following program is valid.

fun ’a f (x: ’a) =
let

datatype ’b t = T of ’a * ’b
val y: int t = T (x, 1)

in
13

end

Unfortunately, the datatype declaration can not be immediately moved to the top level, because that would leave ’a free.

datatype ’b t = T of ’a * ’b
fun ’a f (x: ’a) =

let
val y: int t = T (x, 1)

in
13

end

In order to safely move `datatype`s, this pass must close them, as well as add any free type variables as extra arguments to the
type constructor. For example, the above program would be translated to the following.

https://github.com/MLton/mlton/blob/master/mlton/defunctorize/defunctorize.sig
https://github.com/MLton/mlton/blob/master/mlton/defunctorize/defunctorize.fun

MLton Guide (20180207) 139 / 611

datatype (’a, ’b) t = T of ’a * ’b
fun ’a f (x: ’a) =

let
val y: (’a * int) t = T (x, 1)

in
13

end

Historical Notes

The Defunctorize pass originally eliminated Standard ML functors by duplicating their body at each application. These duties
have been adopted by the Elaborate pass.

MLton Guide (20180207) 140 / 611

Developers

Here is a picture of the MLton team at a meeting in Chicago in August 2003. From left to right we have:

StephenWeeks — MatthewFluet — HenryCejtin — SureshJagannathan

Also see the Credits for a list of specific contributions.

Developers list

A number of people read the developers mailing list, MLton-devel@mlton.org, and make contributions there. Here’s a list
of those who have a page here.

• AndreiFormiga

• JesperLouisAndersen

• JohnnyAndersen

• MichaelNorrish

• MikeThomas

• RayRacine

• WesleyTerpstra

• VesaKarvonen

mailto:MLton-devel@mlton.org

MLton Guide (20180207) 141 / 611

Development

This page is the central point for MLton development.

• Access the Sources.

• Check the current CHANGELOG.adoc or recent commits.

• Open Issues.

• Ideas for Projects to improve MLton.

• Developers that are or have been involved in the project.

Notes

• CompilerOverview

• CompilingWithSMLNJ

• CrossCompiling

• License

• NeedsReview

• PortingMLton

• ReleaseChecklist

• SelfCompiling

https://github.com/MLton/mlton/blob/master/CHANGELOG.adoc
https://github.com/MLton/mlton/commits/master
https://github.com/MLton/mlton/issues

MLton Guide (20180207) 142 / 611

Documentation

Documentation is available on the following topics.

• Standard ML

– Basis Library

– Additional libraries

• Installing MLton

• Using MLton

– Foreign function interface (FFI)

– Manual page (compile-time options run-time options)

– ML Basis system

– MLton structure

– Platform-specific notes

– Profiling

– Type checking

– Help for porting from SML/NJ to MLton.

• About MLton

– Credits

– Drawbacks

– Features

– History

– License

– Talk

– WishList

• Tools

– MLLex (mllex.pdf)

– MLYacc (mlyacc.pdf)

– MLNLFFIGen (mlyacc.pdf)

• References

MLton Guide (20180207) 143 / 611

Drawbacks

MLton has several drawbacks due to its use of whole-program compilation.

• Large compile-time memory requirement.

Because MLton performs whole-program analysis and optimization, compilation requires a large amount of memory. For
example, compiling MLton (over 140K lines) requires at least 512M RAM.

• Long compile times.

Whole-program compilation can take a long time. For example, compiling MLton (over 140K lines) on a 1.6GHz machine
takes five to ten minutes.

• No interactive top level.

Because of whole-program compilation, MLton does not provide an interactive top level. In particular, it does not implement
the optional Basis Library function use.

MLton Guide (20180207) 144 / 611

Eclipse

Eclipse is an open, extensible IDE.

ML-Dev is a plug-in for Eclipse, based on SML/NJ.

There has been some talk on the MLton mailing list about adding support to Eclipse for MLton/SML, and in particular, using
http://eclipsefp.sourceforge.net/. We are unaware of any progress along those lines.

http://eclipse.org/
http://www.cse.iitd.ernet.in/%7Ecsu02132/mldev/
http://eclipsefp.sourceforge.net/

MLton Guide (20180207) 145 / 611

Elaborate

Elaborate is a translation pass from the AST IntermediateLanguage to the CoreML IntermediateLanguage.

Description

This pass performs type inference and type checking according to the Definition. It also defunctorizes the program, eliminating
all module-level constructs.

Implementation

• elaborate.sig

• elaborate.fun

• elaborate-env.sig

• elaborate-env.fun

• elaborate-modules.sig

• elaborate-modules.fun

• elaborate-core.sig

• elaborate-core.fun

• elaborate

Details and Notes

At the modules level, the Elaborate pass:

• elaborates signatures with interfaces (see interface.sig and interface.fun)

The main trick is to use disjoint sets to efficiently handle sharing of tycons and of structures and then to copy signatures as
dags rather than as trees.

• checks functors at the point of definition, using functor summaries to speed up checking of functor applications.

When a functor is first type checked, we keep track of the dummy argument structure and the dummy result structure, as well
as all the tycons that were created while elaborating the body. Then, if we later need to type check an application of the functor
(as opposed to defunctorize an application), we pair up tycons in the dummy argument structure with the actual argument
structure and then replace the dummy tycons with the actual tycons in the dummy result structure, yielding the actual result
structure. We also generate new tycons for all the tycons that we created while originally elaborating the body.

• handles opaque signature constraints.

This is implemented by building a dummy structure realized from the signature, just as we would for a functor argument when
type checking a functor. The dummy structure contains exactly the type information that is in the signature, which is what
opacity requires. We then replace the variables (and constructors) in the dummy structure with the corresponding variables
(and constructors) from the actual structure so that the translation to CoreML uses the right stuff. For each tycon in the dummy
structure, we keep track of the corresponding type structure in the actual structure. This is used when producing the CoreML
types (see expandOpaque in type-env.sig and type-env.fun).

Then, within each structure or functor body, for each declaration (<dec> in the Standard ML grammar), the Elaborate
pass does three steps:

1. ScopeInference

2. – PrecedenceParse

https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate.fun
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-env.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-env.fun
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-modules.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-modules.fun
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-core.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-core.fun
https://github.com/MLton/mlton/tree/master/mlton/elaborate
https://github.com/MLton/mlton/blob/master/mlton/elaborate/interface.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/interface.fun
https://github.com/MLton/mlton/blob/master/mlton/elaborate/type-env.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/type-env.fun

MLton Guide (20180207) 146 / 611

– _{ex,im}port expansion
– profiling insertion
– unification

3. Overloaded {constant, function, record pattern} resolution

Defunctorization

The Elaborate pass performs a number of duties historically assigned to the Defunctorize pass.

As part of the Elaborate pass, all module level constructs (open, signature, structure, functor, long identifiers) are
removed. This works because the Elaborate pass assigns a unique name to every type and variable in the program. This also
allows the Elaborate pass to eliminate local declarations, which are purely for namespace management.

Examples

Here are a number of examples of elaboration.

• All variables bound in val declarations are renamed.

val x = 13
val y = x

val x_0 = 13
val y_0 = x_0

• All variables in fun declarations are renamed.

fun f x = g x
and g y = f y

fun f_0 x_0 = g_0 x_0
and g_0 y_0 = f_0 y_0

• Type abbreviations are removed, and the abbreviation is expanded wherever it is used.

type ’a u = int * ’a
type ’b t = ’b u * real
fun f (x : bool t) = x

fun f_0 (x_0 : (int * bool) * real) = x_0

• Exception declarations create a new constructor and rename the type.

type t = int
exception E of t * real

exception E_0 of int * real

• The type and value constructors in datatype declarations are renamed.

datatype t = A of int | B of real * t

datatype t_0 = A_0 of int | B_0 of real * t_0

• Local declarations are moved to the top-level. The environment keeps track of the variables in scope.

MLton Guide (20180207) 147 / 611

val x = 13
local val x = 14
in val y = x
end
val z = x

val x_0 = 13
val x_1 = 14
val y_0 = x_1
val z_0 = x_0

• Structure declarations are eliminated, with all declarations moved to the top level. Long identifiers are renamed.

structure S =
struct

type t = int
val x : t = 13

end
val y : S.t = S.x

val x_0 : int = 13
val y_0 : int = x_0

• Open declarations are eliminated.

val x = 13
val y = 14
structure S =

struct
val x = 15

end
open S
val z = x + y

val x_0 = 13
val y_0 = 14
val x_1 = 15
val z_0 = x_1 + y_0

• Functor declarations are eliminated, and the body of a functor is duplicated wherever the functor is applied.

functor F(val x : int) =
struct
val y = x

end
structure F1 = F(val x = 13)
structure F2 = F(val x = 14)
val z = F1.y + F2.y

val x_0 = 13
val y_0 = x_0
val x_1 = 14
val y_1 = x_1
val z_0 = y_0 + y_1

• Signature constraints are eliminated. Note that signatures do affect how subsequent variables are renamed.

MLton Guide (20180207) 148 / 611

val y = 13
structure S : sig

val x : int
end =

struct
val x = 14
val y = x

end
open S
val z = x + y

val y_0 = 13
val x_0 = 14
val y_1 = x_0
val z_0 = x_0 + y_0

MLton Guide (20180207) 149 / 611

Emacs

SML modes

There are a few Emacs modes for SML.

• sml-mode

– http://www.xemacs.org/Documentation/packages/html/sml-mode_3.html

– http://www.smlnj.org/doc/Emacs/sml-mode.html

– http://www.iro.umontreal.ca/%7Emonnier/elisp/

• mlton.el contains the Emacs lisp that StephenWeeks uses to interact with MLton (in addition to using sml-mode).

• http://primate.net/%7Eitz/mindent.tar, developed by Ian Zimmerman, who writes:

Unlike the widespread sml-mode.el it doesn’t try to indent code based on ML syntax. I gradually got skeptical
about this approach after writing the initial indentation support for caml mode and watching it bloat insanely as the
language added new features. Also, any such attempts that I know of impose a particular coding style, or at best a
choice among a limited set of styles, which I now oppose. Instead my mode is based on a generic package which
provides manual bindable commands for common indentation operations (example: indent the current line under
the n-th occurrence of a particular character in the previous non-blank line).

MLB modes

There is a mode for editing ML Basis files.

• esml-mlb-mode.el (plus other files)

Definitions and uses

There is a mode that supports the precise def-use information that MLton can output. It highlights definitions and uses and
provides commands for navigation (e.g., jump-to-def, jump-to-next, list-all-refs). It can be handy, for example,
for navigating in the MLton compiler source code. See EmacsDefUseMode for further information.

Building on the background

Tired of manually starting/stopping/restarting builds after editing files? Now you don’t have to. See EmacsBgBuildMode for
further information.

Error messages

MLton’s error messages are not among those that the Emacs next-error parser natively understands. The easiest way to fix
this is to add the following to your .emacs to teach Emacs to recognize MLton’s error messages.

(require ’compile)
(add-to-list ’compilation-error-regexp-alist ’mlton)
(add-to-list ’compilation-error-regexp-alist-alist

’(mlton
"^[[:space:]]*\\(\\(?:\\(Error\\)\\|\\(Warning\\)\\|\\(\\(?:\\(?:defn\\|spec ←↩

\\) at\\)\\|\\(?:escape \\(?:from\\|to\\)\\)\\|\\(?:scoped at\\)\\)\\): ←↩
\\(.+\\) \\([0-9]+\\)\\.\\([0-9]+\\)\\(?:-\\([0-9]+\\)\\.\\([0-9]+\\)\\) ←↩
?\\.?\\)$"

5 (6 . 8) (7 . 9) (3 . 4) 1))

http://www.xemacs.org/Documentation/packages/html/sml-mode_3.html
http://www.smlnj.org/doc/Emacs/sml-mode.html
http://www.iro.umontreal.ca/%7Emonnier/elisp/
https://github.com/MLton/mlton/blob/master/ide/emacs/mlton.el
http://primate.net/%7Eitz/mindent.tar
https://github.com/MLton/mlton/blob/master/ide/emacs/esml-mlb-mode.el

MLton Guide (20180207) 150 / 611

EmacsBgBuildMode

Do you really want to think about starting a build of you project? What if you had a personal slave that would restart a build
of your project whenever you save any file belonging to that project? The bg-build mode does just that. Just save the file, a
compile is started (silently!), you can continue working without even thinking about starting a build, and if there are errors, you
are notified (with a message), and can then jump to errors.

This mode is not specific to MLton per se, but is particularly useful for working with MLton due to the longer compile times. By
the time you start wondering about possible errors, the build is already on the way.

Functionality and Features

• Each time a file is saved, and after a user configurable delay period has been exhausted, a build is started silently in the
background.

• When the build is finished, a status indicator (message) is displayed non-intrusively.

• At any time, you can switch to a build process buffer where all the messages from the build are shown.

• Optionally highlights (error/warning) message locations in (source code) buffers after a finished build.

• After a build has finished, you can jump to locations of warnings and errors from the build process buffer or by using the
first-error and next-error commands.

• When a build fails, bg-build mode can optionally execute a user specified command. By default, bg-build mode executes
first-error.

• When starting a build of a particular project, a possible previous live build of the same project is interrupted first.

• A project configuration file specifies the commands required to build a project.

• Multiple projects can be loaded into bg-build mode and bg-build mode can build a given maximum number of projects concur-
rently.

• Supports both Gnu Emacs and XEmacs.

Download

There is no package for the mode at the moment. To install the mode you need to fetch the Emacs Lisp, *.el, files from the
MLton repository: emacs.

Setup

The easiest way to load the mode is to first tell Emacs where to find the files. For example, add

(add-to-list ’load-path (file-truename "path-to-the-el-files"))

to your ~/.emacs or ~/.xemacs/init.el. You’ll probably also want to start the mode automatically by adding

(require ’bg-build-mode)
(bg-build-mode)

to your Emacs init file. Once the mode is activated, you should see the BGB indicator on the mode line.

http://www.gnu.org/software/emacs/
http://www.xemacs.org
https://github.com/MLton/mlton/tree/master/ide/emacs

MLton Guide (20180207) 151 / 611

MLton and Compilation-Mode

At the time of writing, neither Gnu Emacs nor XEmacs contain an error regexp that would match MLton’s messages.

If you use Gnu Emacs, insert the following code into your .emacs file:

(require ’compile)
(add-to-list
’compilation-error-regexp-alist
’("^\\(Warning\\|Error\\): \\(.+\\) \\([0-9]+\\)\\.\\([0-9]+\\)\\.$"
2 3 4))

If you use XEmacs, insert the following code into your init.el file:

(require ’compile)
(add-to-list
’compilation-error-regexp-alist-alist
’(mlton
("^\\(Warning\\|Error\\): \\(.+\\) \\([0-9]+\\)\\.\\([0-9]+\\)\\.$"
2 3 4)))

(compilation-build-compilation-error-regexp-alist)

Usage

Typically projects are built (or compiled) using a tool like make, but the details vary. The bg-build mode needs a project
configuration file to know how to build your project. A project configuration file basically contains an Emacs Lisp expression
calling a function named bg-build that returns a project object. A simple example of a project configuration file would be the
(Build.bgb) file used with smlbot:

(bg-build
:name "SML-Bot"
:shell "nice -n5 make all")

The bg-build function takes a number of keyword arguments:

• :name specifies the name of the project. This can be any expression that evaluates to a string or to a nullary function that
returns a string.

• :shell specifies a shell command to execute. This can be any expression that evaluates to a string, a list of strings, or to a
nullary function returning a list of strings.

• :build? specifies a predicate to determine whether the project should be built after some files have been modified. The
predicate is given a list of filenames and should return a non-nil value when the project should be built and nil otherwise.

All of the keyword arguments, except :shell, are optional and can be left out.

Note the use of the nice command above. It means that background build process is given a lower priority by the system
process scheduler. Assuming your machine has enough memory, using nice ensures that your computer remains responsive.
(You probably won’t even notice when a build is started.)

Once you have written a project file for bg-build mode. Use the bg-build-add-project command to load the project file
for bg-build mode. The bg-build mode can also optionally load recent project files automatically at startup.

After the project file has been loaded and bg-build mode activated, each time you save a file in Emacs, the bg-build mode tries to
build your project.

The bg-build-status command creates a buffer that displays some status information on builds and allows you to manage
projects (start builds explicitly, remove a project from bg-build, . . .) as well as visit buffers created by bg-build. Notice the count
of started builds. At the end of the day it can be in the hundreds or thousands. Imagine the number of times you’ve been relieved
of starting a build explicitly!

http://www.gnu.org/software/make/
https://github.com/MLton/mltonlib/blob/master/com/ssh/async/unstable/example/smlbot/Build.bgb

MLton Guide (20180207) 152 / 611

EmacsDefUseMode

MLton provides an option, -show-def-use file, to output precise (giving exact source locations) and accurate (including
all uses and no false data) whole-program def-use information to a file. Unlike typical tags facilities, the information includes
local variables and distinguishes between different definitions even when they have the same name. The def-use Emacs mode
uses the information to provide navigation support, which can be particularly useful while reading SML programs compiled with
MLton (such as the MLton compiler itself).

Screen Capture

Note the highlighting and the type displayed in the minibuffer.

Features

• Highlights definitions and uses. Different colors for definitions, unused definitions, and uses.

• Shows types (with highlighting) of variable definitions in the minibuffer.

MLton Guide (20180207) 153 / 611

• Navigation: jump-to-def, jump-to-next, and jump-to-prev. These work precisely (no searching involved).

• Can list, visit and mark all references to a definition (within a program).

• Automatically reloads updated def-use files.

• Automatically loads previously used def-use files at startup.

• Supports both Gnu Emacs and XEmacs.

Download

There is no separate package for the def-use mode although the mode has been relatively stable for some time already. To install
the mode you need to get the Emacs Lisp, *.el, files from MLton’s repository: emacs. The easiest way to get the files is to
use Git to access MLton’s sources.

Setup

The easiest way to load def-use mode is to first tell Emacs where to find the files. For example, add

(add-to-list ’load-path (file-truename "path-to-the-el-files"))

to your ~/.emacs or ~/.xemacs/init.el. You’ll probably also want to start def-use-mode automatically by adding

(require ’esml-du-mlton)
(def-use-mode)

to your Emacs init file. Once the def-use mode is activated, you should see the DU indicator on the mode line.

Usage

To use def-use mode one typically first sets up the program’s makefile or build script so that the def-use information is saved each
time the program is compiled. In addition to the -show-def-use file option, the -prefer-abs-paths true expert
option is required. Note that the time it takes to save the information is small (compared to type-checking), so it is recommended
to simply add the options to the MLton invocation that compiles the program. However, it is only necessary to type check the
program (or library), so one can specify the -stop tc option. For example, suppose you have a program defined by an MLB
file named my-prg.mlb, you can save the def-use information to the file my-prg.du by invoking MLton as:

mlton -prefer-abs-paths true -show-def-use my-prg.du -stop tc my-prg.mlb

Finally, one needs to tell the mode where to find the def-use information. This is done with the esml-du-mlton command.
For example, to load the my-prg.du file, one would type:

M-x esml-du-mlton my-prg.du

After doing all of the above, find an SML file covered by the previously saved and loaded def-use information, and place the cursor
at some variable (definition or use, it doesn’t matter). You should see the variable being highlighted. (Note that specifications in
signatures do not define variables.)

You might also want to setup and use the Bg-Build mode to start builds automatically.

Types

-show-def-use output was extended to include types of variable definitions in revision r6333. To get good type names,
the types must be in scope at the end of the program. If you are using the ML Basis system, this means that the root MLB-file
for your application should not wrap the libraries used in the application inside local ...in ...end, because that would
remove them from the scope before the end of the program.

http://www.gnu.org/software/emacs/
http://www.xemacs.org
https://github.com/MLton/mlton/tree/master/ide/emacs
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6333

MLton Guide (20180207) 154 / 611

Enscript

GNU Enscript converts ASCII files to PostScript, HTML, and other output languages, applying language sensitive highlighting
(similar to Emacs’s font lock mode). Here are a few states files for highlighting Standard ML.

• sml_simple.st— Provides highlighting of keywords, string and character constants, and (nested) comments.

• sml_verbose.st— Supersedes the above, adding highlighting of numeric constants. Due to the limited parsing available,
numeric record labels are highlighted as numeric constants, in all contexts. Likewise, a binding precedence separated from
infix or infixr by a newline is highlighted as a numeric constant and a numeric record label selector separated from # by
a newline is highlighted as a numeric constant.

• sml_fancy.st— Supersedes the above, adding highlighting of type and constructor bindings, highlighting of explicit bind-
ing of type variables at val and fun declarations, and separate highlighting of core and modules level keywords. Due to the
limited parsing available, it is assumed that the input is a syntactically correct, top-level declaration.

• sml_gaudy.st— Supersedes the above, adding highlighting of type annotations, in both expressions and signatures. Due
to the limited parsing available, it is assumed that the input is a syntactically correct, top-level declaration.

Install and use

• Version 1.6.3 of GNU Enscript

– Copy all files to /usr/share/enscript/hl/ or .enscript/ in your home directory.

– Invoke enscript with --highlight=sml_simple (or --highlight=sml_verbose or --highlight=sml
_fancy or --highlight=sml_gaudy).

• Version 1.6.1 of GNU Enscript

– Append sml_all.st to /usr/share/enscript/enscript.st

– Invoke enscript with --pretty-print=sml_simple (or --pretty-print=sml_verbose or --pretty-
print=sml_fancy or --pretty-print=sml_gaudy).

Feedback

Comments and suggestions should be directed to MatthewFluet.

http://www.gnu.org/s/enscript/
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_simple.st
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_verbose.st
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_fancy.st
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_gaudy.st
http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_all.st

MLton Guide (20180207) 155 / 611

EqualityType

An equality type is a type to which PolymorphicEquality can be applied. The Definition and the Basis Library precisely spell out
which types are equality types.

• bool, char, IntInf.int, Int<N>.int, string, and Word<N>.word are equality types.

• for any t, both t array and t ref are equality types.

• if t is an equality type, then t list, and t vector are equality types.

• if t1, . . . , tn are equality types, then t1 * ...* tn and {l1:t1, ..., ln:tn} are equality types.

• if t1, . . . , tn are equality types and t AdmitsEquality, then (t1, ..., tn) t is an equality type.

To check that a type t is an equality type, use the following idiom.

structure S: sig eqtype t end =
struct

type t = ...
end

Notably, exn and real are not equality types. Neither is t1 -> t2, for any t1 and t2.

Equality on arrays and ref cells is by identity, not structure. For example, ref 13 =ref 13 is false. On the other hand,
equality for lists, strings, and vectors is by structure, not identity. For example, the following equalities hold.

val _ = [1, 2, 3] = 1 :: [2, 3]
val _ = "foo" = concat ["f", "o", "o"]
val _ = Vector.fromList [1, 2, 3] = Vector.tabulate (3, fn i => i + 1)

MLton Guide (20180207) 156 / 611

EqualityTypeVariable

An equality type variable is a type variable that starts with two or more primes, as in ”a or ”b. The canonical use of equality
type variables is in specifying the type of the PolymorphicEquality function, which is ”a * ’’a -> bool. Equality type
variables ensure that polymorphic equality is only used on equality types, by requiring that at every use of a polymorphic value,
equality type variables are instantiated by equality types.

For example, the following program is type correct because polymorphic equality is applied to variables of type ”a.

fun f (x: ’’a, y: ’’a): bool = x = y

On the other hand, the following program is not type correct, because polymorphic equality is applied to variables of type ’a,
which is not an equality type.

fun f (x: ’a, y: ’a): bool = x = y

MLton reports the following error, indicating that polymorphic equality expects equality types, but didn’t get them.

Error: z.sml 1.30-1.34.
Function applied to incorrect argument.
expects: [<equality>] * [<equality>]
but got: [’a] * [’a]
in: = (x, y)

As an example of using such a function that requires equality types, suppose that f has polymorphic type ”a -> unit. Then,
f 13 is type correct because int is an equality type. On the other hand, f 13.0 and f (fn x => x) are not type correct,
because real and arrow types are not equality types. We can test these facts with the following short programs. First, we verify
that such an f can be applied to integers.

functor Ok (val f: ’’a -> unit): sig end =
struct

val () = f 13
val () = f 14

end

We can do better, and verify that such an f can be applied to any integer.

functor Ok (val f: ’’a -> unit): sig end =
struct

fun g (x: int) = f x
end

Even better, we don’t need to introduce a dummy function name; we can use a type constraint.

functor Ok (val f: ’’a -> unit): sig end =
struct

val _ = f: int -> unit
end

Even better, we can use a signature constraint.

functor Ok (S: sig val f: ’’a -> unit end):
sig val f: int -> unit end = S

This functor concisely verifies that a function of polymorphic type ”a -> unit can be safely used as a function of type int
-> unit.

As above, we can verify that such an f can not be used at non-equality types.

MLton Guide (20180207) 157 / 611

functor Bad (S: sig val f: ’’a -> unit end):
sig val f: real -> unit end = S

functor Bad (S: sig val f: ’’a -> unit end):
sig val f: (’a -> ’a) -> unit end = S

MLton reports the following errors.

Error: z.sml 2.4-2.30.
Variable in structure disagrees with signature (type): f.
structure: val f: [<equality>] -> _
defn at: z.sml 1.25-1.25
signature: val f: [real] -> _
spec at: z.sml 2.12-2.12

Error: z.sml 5.4-5.36.
Variable in structure disagrees with signature (type): f.
structure: val f: [<equality>] -> _
defn at: z.sml 4.25-4.25
signature: val f: [_ -> _] -> _
spec at: z.sml 5.12-5.12

Equality type variables in type and datatype declarations

Equality type variables can be used in type and datatype declarations; however they play no special role. For example,

type ’a t = ’a * int

is completely identical to

type ’’a t = ’’a * int

In particular, such a definition does not require that t only be applied to equality types.

Similarly,

datatype ’a t = A | B of ’a

is completely identical to

datatype ’’a t = A | B of ’’a

MLton Guide (20180207) 158 / 611

EtaExpansion

Eta expansion is a simple syntactic change used to work around the ValueRestriction in Standard ML.

The eta expansion of an expression e is the expression fn z => e z, where z does not occur in e. This only makes sense
if e denotes a function, i.e. is of arrow type. Eta expansion delays the evaluation of e until the function is applied, and will
re-evaluate e each time the function is applied.

The name "eta expansion" comes from the eta-conversion rule of the lambda calculus. Expansion refers to the directionality of
the equivalence being used, namely taking e to fn z => e z rather than fn z => e z to e (eta contraction).

MLton Guide (20180207) 159 / 611

eXene

eXene is a multi-threaded X Window System toolkit written in ConcurrentML.

There is a group at K-State working toward eXene 2.0.

http://people.cs.uchicago.edu/%7Ejhr/eXene/index.html
http://www.cis.ksu.edu/%7Estough/eXene/

MLton Guide (20180207) 160 / 611

FAQ

Feel free to ask questions and to update answers by editing this page. Since we try to make as much information as possible
available on the web site and we like to avoid duplication, many of the answers are simply links to a web page that answers the
question.

How do you pronounce MLton?

Pronounce

What SML software has been ported to MLton?

Libraries

What graphical libraries are available for MLton?

Libraries

How does MLton’s performance compare to other SML compilers and to other languages?

MLton has excellent performance.

Does MLton treat monomorphic arrays and vectors specially?

MLton implements monomorphic arrays and vectors (e.g. BoolArray, Word8Vector) exactly as instantiations of their
polymorphic counterpart (e.g. bool array, Word8.word vector). Thus, there is no need to use the monomorphic
versions except when required to interface with the Basis Library or for portability with other SML implementations.

Why do I get a Segfault/Bus error in a program that uses IntInf/LargeInt to calculate numbers
with several hundred thousand digits?

GnuMP

How can I decrease compile-time memory usage?

• Compile with -verbose 3 to find out if the problem is due to an SSA optimization pass. If so, compile with -disable-
pass pass to skip that pass.

• Compile with @MLton hash-cons 0.5 --, which will instruct the runtime to hash cons the heap every other GC.

• Compile with -polyvariance false, which is an undocumented option that causes less code duplication.

Also, please Contact us to let us know the problem to help us better understand MLton’s limitations.

How portable is SML code across SML compilers?

StandardMLPortability

MLton Guide (20180207) 161 / 611

Features

MLton has the following features.

Portability

• Runs on a variety of platforms.

– ARM:

* Linux (Debian)

– Alpha:

* Linux (Debian)

– AMD64:

* Darwin (Mac OS X)

* FreeBSD

* Linux (Debian, Fedora, Ubuntu, . . .)

* OpenBSD

* Solaris (10 and above)

– HPPA:

* HPUX (11.11 and above)

* Linux (Debian)

– IA64:

* HPUX (11.11 and above)

* Linux (Debian)

– PowerPC:

* AIX (5.2 and above)

* Darwin (Mac OS X)

* Linux (Debian, Fedora, . . .)

– PowerPC64:

* AIX (5.2 and above)

– S390

* Linux (Debian)

– Sparc

* Linux (Debian)

* Solaris (8 and above)

– X86:

* Cygwin/Windows

* Darwin (Mac OS X)

* FreeBSD

* Linux (Debian, Fedora, Ubuntu, . . .)

* MinGW/Windows

* NetBSD

* OpenBSD

* Solaris (10 and above)

MLton Guide (20180207) 162 / 611

Robustness

• Supports the full SML 97 language as given in The Definition of Standard ML (Revised).

If there is a program that is valid according to the Definition that is rejected by MLton, or a program that is invalid according
to the Definition that is accepted by MLton, it is a bug. For a list of known bugs, see UnresolvedBugs.

• A complete implementation of the Basis Library.

MLton’s implementation matches latest Basis Library specification, and includes a complete implementation of all the required
modules, as well as many of the optional modules.

• Generates standalone executables.

No additional code or libraries are necessary in order to run an executable, except for the standard shared libraries. MLton can
also generate statically linked executables.

• Compiles large programs.

MLton is sufficiently efficient and robust that it can compile large programs, including itself (over 190K lines). The distributed
version of MLton was compiled by MLton.

• Support for large amounts of memory (up to 4G on 32-bit systems; more on 64-bit systems).

• Support for large array lengths (up to 231-1 on 32-bit systems; up to 263-1 on 64-bit systems).

• Support for large files, using 64-bit file positions.

Performance

• Executables have excellent running times.

• Generates small executables.

MLton takes advantage of whole-program compilation to perform very aggressive dead-code elimination, which often leads to
smaller executables than with other SML compilers.

• Untagged and unboxed native integers, reals, and words.

In MLton, integers and words are 8 bits, 16 bits, 32 bits, and 64 bits and arithmetic does not have any overhead due to tagging
or boxing. Also, reals (32-bit and 64-bit) are stored unboxed, avoiding any overhead due to boxing.

• Unboxed native arrays.

In MLton, an array (or vector) of integers, reals, or words uses the natural C-like representation. This is fast and supports
easy exchange of data with C. Monomorphic arrays (and vectors) use the same C-like representations as their polymorphic
counterparts.

• Multiple garbage collection strategies.

• Fast arbitrary precision arithmetic (IntInf) based on GnuMP.

For IntInf intensive programs, MLton can be an order of magnitude or more faster than Poly/ML or SML/NJ.

Tools

• Source-level Profiling of both time and allocation.

• MLLex lexer generator

• MLYacc parser generator

• MLNLFFIGen foreign-function-interface generator

http://www.standardml.org/Basis

MLton Guide (20180207) 163 / 611

Extensions

• A simple and fast C ForeignFunctionInterface that supports calling from SML to C and from C to SML.

• The ML Basis system for programming in the very large, separate delivery of library sources, and more.

• A number of extension libraries that provide useful functionality that cannot be implemented with the Basis Library. See below
for an overview and MLtonStructure for details.

– continuations
MLton supports continuations via callcc and throw.

– finalization
MLton supports finalizable values of arbitrary type.

– interval timers
MLton supports the functionality of the C setitimer function.

– random numbers
MLton has functions similar to the C rand and srand functions, as well as support for access to /dev/random and /
dev/urandom.

– resource limits
MLton has functions similar to the C getrlimit and setrlimit functions.

– resource usage
MLton supports a subset of the functionality of the C getrusage function.

– signal handlers
MLton supports signal handlers written in SML. Signal handlers run in a separate MLton thread, and have access to the
thread that was interrupted by the signal. Signal handlers can be used in conjunction with threads to implement preemptive
multitasking.

– size primitive
MLton includes a primitive that returns the size (in bytes) of any object. This can be useful in understanding the space
behavior of a program.

– system logging
MLton has a complete interface to the C syslog function.

– threads
MLton has support for its own threads, upon which either preemptive or non-preemptive multitasking can be implemented.
MLton also has support for Concurrent ML (CML).

– weak pointers
MLton supports weak pointers, which allow the garbage collector to reclaim objects that it would otherwise be forced to
keep. Weak pointers are also used to provide finalization.

– world save and restore
MLton has a facility for saving the entire state of a computation to a file and restarting it later. This facility can be used
for staging and for checkpointing computations. It can even be used from within signal handlers, allowing interrupt driven
checkpointing.

MLton Guide (20180207) 164 / 611

FirstClassPolymorphism

First-class polymorphism is the ability to treat polymorphic functions just like other values: pass them as arguments, store them
in data structures, etc. Although Standard ML does have polymorphic functions, it does not support first-class polymorphism.

For example, the following declares and uses the polymorphic function id.

val id = fn x => x
val _ = id 13
val _ = id "foo"

If SML supported first-class polymorphism, we could write the following.

fun useId id = (id 13; id "foo")

However, this does not type check. MLton reports the following error.

Error: z.sml 1.24-1.31.
Function applied to incorrect argument.
expects: [int]
but got: [string]
in: id "foo"

The error message arises because MLton infers from id 13 that id accepts an integer argument, but that id "foo" is passing
a string.

Using explicit types sheds some light on the problem.

fun useId (id: ’a -> ’a) = (id 13; id "foo")

On this, MLton reports the following errors.

Error: z.sml 1.29-1.33.
Function applied to incorrect argument.
expects: [’a]
but got: [int]
in: id 13

Error: z.sml 1.36-1.43.
Function applied to incorrect argument.
expects: [’a]
but got: [string]
in: id "foo"

The errors arise because the argument id is not polymorphic; rather, it is monomorphic, with type ’a -> ’a. It is perfectly
valid to apply id to a value of type ’a, as in the following

fun useId (id: ’a -> ’a, x: ’a) = id x (* type correct *)

So, what is the difference between the type specification on id in the following two declarations?

val id: ’a -> ’a = fn x => x
fun useId (id: ’a -> ’a) = (id 13; id "foo")

While the type specifications on id look identical, they mean different things. The difference can be made clearer by explicitly
scoping the type variables.

val ’a id: ’a -> ’a = fn x => x
fun ’a useId (id: ’a -> ’a) = (id 13; id "foo") (* type error *)

MLton Guide (20180207) 165 / 611

In val ’a id, the type variable scoping means that for any ’a, id has type ’a -> ’a. Hence, id can be applied to
arguments of type int, real, etc. Similarly, in fun ’a useId, the scoping means that useId is a polymorphic function
that for any ’a takes a function of type ’a -> ’a and does something. Thus, useId could be applied to a function of type
int -> int, real -> real, etc.

One could imagine an extension of SML that allowed scoping of type variables at places other than fun or val declarations, as
in the following.

fun useId (id: (’a).’a -> ’a) = (id 13; id "foo") (* not SML *)

Such an extension would need to be thought through very carefully, as it could cause significant complications with TypeInfer-
ence, possible even undecidability.

MLton Guide (20180207) 166 / 611

Fixpoints

This page discusses a framework that makes it possible to compute fixpoints over arbitrary products of abstract types. The code
is from an Extended Basis library (README).

First the signature of the framework (tie.sig):

(**
* A framework for computing fixpoints.

*
* In a strict language you sometimes want to provide a fixpoint

* combinator for an abstract type {t} to make it possible to write

* recursive definitions. Unfortunately, a single combinator {fix} of the

* type {(t -> t) -> t} does not support mutual recursion. To support

* mutual recursion, you would need to provide a family of fixpoint

* combinators having types of the form {(u -> u) -> u} where {u} is a

* type of the form {t * ... * t}. Unfortunately, even such a family of

* fixpoint combinators does not support mutual recursion over different

* abstract types.

*)
signature TIE = sig

include ETAEXP’
type ’a t = ’a etaexp
(** The type of fixpoint witnesses. *)

val fix : ’a t -> ’a Fix.t
(**
* Produces a fixpoint combinator from the given witness. For example,

* one can make a mutually recursive definition of functions:

*
*> val isEven & isOdd =

*> let open Tie in fix (function *‘ function) end

*> (fn isEven & isOdd =>

*> (fn 0 => true

*> | 1 => false

*> | n => isOdd (n-1)) &

*> (fn 0 => false

*> | 1 => true

*> | n => isEven (n-1)))

*)

(** == Making New Witnesses == *)

val pure : (’a * ’a UnOp.t) Thunk.t -> ’a t
(**
* {pure} is a more general version of {tier}. It is mostly useful for

* computing fixpoints in a non-imperative manner.

*)

val tier : (’a * ’a Effect.t) Thunk.t -> ’a t
(**
* {tier} is used to define fixpoint witnesses for new abstract types

* by providing a thunk whose instantiation allocates a mutable proxy

* and a procedure for updating it with the result.

*)

val id : ’a -> ’a t
(** {id x} is equivalent to {pure (const (x, id))}. *)

(** == Combining Existing Witnesses == *)

val iso : ’b t -> (’a, ’b) Iso.t -> ’a t

https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/README
https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/public/generic/tie.sig

MLton Guide (20180207) 167 / 611

(**
* Given an isomorphism between {’a} and {’b} and a witness for {’b},

* produces a witness for {’a}. This is useful when you have a new

* type that is isomorphic to some old type for which you already have

* a witness.

*)

val product : ’a t * (’a -> ’b t) -> (’a, ’b) Product.t t
(**
* Dependent product combinator. Given a witness for {’a} and a

* constructor from a {’a} to witness for {’b}, produces a witness for

* the product {(’a, ’b) Product.t}. The constructor for {’b} should

* not access the (proxy) value {’a} before it has been fixed.

*)

val *‘ : ’a t * ’b t -> (’a, ’b) Product.t t
(** {a *‘ b} is equivalent to {product (a, const b)}. *)

val tuple2 : ’a t * ’b t -> (’a * ’b) t
(**
* Given witnesses for {’a} and {’b} produces a witness for the product

* {’a * ’b}.

*)

(** == Particular Witnesses == *)

val function : (’a -> ’b) t
(** Witness for functions. *)

end

fix is a type-indexed function. The type-index parameter to fix is called a "witness". To compute fixpoints over products,
one uses the *` operator to combine witnesses. To provide a fixpoint combinator for an abstract type, one implements a witness
providing a thunk whose instantiation allocates a fresh, mutable proxy and a procedure for updating the proxy with the solution.
Naturally this means that not all possible ways of computing a fixpoint of a particular type are possible under the framework.
The pure combinator is a generalization of tier. The iso combinator is provided for reusing existing witnesses.

Note that instead of using an infix operator, we could alternatively employ an interface using Fold. Also, witnesses are eta-
expanded to work around the value restriction, while maintaining abstraction.

Here is the implementation (tie.sml):

structure Tie :> TIE = struct
open Product
infix &
type ’a etaexp_dom = Unit.t
type ’a etaexp_cod = (’a * ’a UnOp.t) Thunk.t
type ’a etaexp = ’a etaexp_dom -> ’a etaexp_cod
type ’a t = ’a etaexp
fun fix aT f = let val (a, ta) = aT () () in ta (f a) end
val pure = Thunk.mk
fun iso bT (iso as (_, b2a)) () () = let

val (b, fB) = bT () ()
in

(b2a b, Fn.map iso fB)
end
fun product (aT, a2bT) () () = let

val (a, fA) = aT () ()
val (b, fB) = a2bT a () ()

in
(a & b, Product.map (fA, fB))

end
(* The rest are not primitive operations. *)

https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/detail/generic/tie.sml

MLton Guide (20180207) 168 / 611

fun op *‘ (aT, bT) = product (aT, Fn.const bT)
fun tuple2 ab = iso (op *‘ ab) Product.isoTuple2
fun tier th = pure ((fn (a, ua) => (a, Fn.const a o ua)) o th)
fun id x = pure (Fn.const (x, Fn.id))
fun function ? =

pure (fn () => let
val r = ref (Basic.raising Fix.Fix)

in
(fn x => !r x, fn f => (r := f ; f))

end) ?
end

Let’s then take a look at a couple of additional examples.

Here is a naive implementation of lazy promises:

structure Promise :> sig
type ’a t
val lazy : ’a Thunk.t -> ’a t
val force : ’a t -> ’a
val Y : ’a t Tie.t

end = struct
datatype ’a t’ =

EXN of exn
| THUNK of ’a Thunk.t
| VALUE of ’a
type ’a t = ’a t’ Ref.t
fun lazy f = ref (THUNK f)
fun force t =

case !t
of EXN e => raise e
| THUNK f => (t := VALUE (f ()) handle e => t := EXN e ; force t)
| VALUE v => v

fun Y ? = Tie.tier (fn () => let
val r = lazy (raising Fix.Fix)

in
(r, r <\ op := o !)

end) ?
end

An example use of our naive lazy promises is to implement equally naive lazy streams:

structure Stream :> sig
type ’a t
val cons : ’a * ’a t -> ’a t
val get : ’a t -> (’a * ’a t) Option.t
val Y : ’a t Tie.t

end = struct
datatype ’a t = IN of (’a * ’a t) Option.t Promise.t
fun cons (x, xs) = IN (Promise.lazy (fn () => SOME (x, xs)))
fun get (IN p) = Promise.force p
fun Y ? = Tie.iso Promise.Y (fn IN p => p, IN) ?

end

Note that above we make use of the iso combinator. Here is a finite representation of an infinite stream of ones:

val ones = let
open Tie Stream

in
fix Y (fn ones => cons (1, ones))

end

MLton Guide (20180207) 169 / 611

Flatten

Flatten is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass flattens arguments to SSA constructors, blocks, and functions.

If a tuple is explicitly available at all uses of a function (resp. block), then:

• The formals and call sites are changed so that the components of the tuple are passed.

• The tuple is reconstructed at the beginning of the body of the function (resp. block).

Similarly, if a tuple is explicitly available at all uses of a constructor, then:

• The constructor argument datatype is changed to flatten the tuple type.

• The tuple is passed flat at each ConApp.

• The tuple is reconstructed at each Case transfer target.

Implementation

• flatten.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/flatten.fun

MLton Guide (20180207) 170 / 611

Fold

This page describes a technique that enables convenient syntax for a number of language features that are not explicitly supported
by Standard ML, including: variable number of arguments, optional arguments and labeled arguments, array and vector literals,
functional record update, and (seemingly) dependently typed functions like printf and scanf.

The key idea to fold is to define functions fold, step0, and $ such that the following equation holds.

fold (a, f) (step0 h1) (step0 h2) ... (step0 hn) $
= f (hn (... (h2 (h1 a))))

The name fold comes because this is like a traditional list fold, where a is the base element, and each step function, step0
hi, corresponds to one element of the list and does one step of the fold. The name $ is chosen to mean "end of arguments" from
its common use in regular-expression syntax.

Unlike the usual list fold in which the same function is used to step over each element in the list, this fold allows the step functions
to be different from each other, and even to be of different types. Also unlike the usual list fold, this fold includes a "finishing
function", f, that is applied to the result of the fold. The presence of the finishing function may seem odd because there is no
analogy in list fold. However, the finishing function is essential; without it, there would be no way for the folder to perform an
arbitrary computation after processing all the arguments. The examples below will make this clear.

The functions fold, step0, and $ are easy to define.

fun $ (a, f) = f a
fun id x = x
structure Fold =

struct
fun fold (a, f) g = g (a, f)
fun step0 h (a, f) = fold (h a, f)

end

We’ve placed fold and step0 in the Fold structure but left $ at the toplevel because it is convenient in code to always have
$ in scope. We’ve also defined the identity function, id, at the toplevel since we use it so frequently.

Plugging in the definitions, it is easy to verify the equation from above.

fold (a, f) (step0 h1) (step0 h2) ... (step0 hn) $
= step0 h1 (a, f) (step0 h2) ... (step0 hn) $
= fold (h1 a, f) (step0 h2) ... (step0 hn) $
= step0 h2 (h1 a, f) ... (step0 hn) $
= fold (h2 (h1 a), f) ... (step0 hn) $
...
= fold (hn (... (h2 (h1 a))), f) $
= $ (hn (... (h2 (h1 a))), f)
= f (hn (... (h2 (h1 a))))

Example: variable number of arguments

The simplest example of fold is accepting a variable number of (curried) arguments. We’ll define a function f and argument a
such that all of the following expressions are valid.

f $
f a $
f a a $
f a a a $
f a a a ... a a a $ (* as many a’s as we want *)

Off-hand it may appear impossible that all of the above expressions are type correct SML — how can a function f accept a
variable number of curried arguments? What could the type of f be? We’ll have more to say later on how type checking works.

MLton Guide (20180207) 171 / 611

For now, once we have supplied the definitions below, you can check that the expressions are type correct by feeding them to
your favorite SML implementation.

It is simple to define f and a. We define f as a folder whose base element is () and whose finish function does nothing. We
define a as the step function that does nothing. The only trickiness is that we must eta expand the definition of f and a to work
around the ValueRestriction; we frequently use eta expansion for this purpose without mention.

val base = ()
fun finish () = ()
fun step () = ()
val f = fn z => Fold.fold (base, finish) z
val a = fn z => Fold.step0 step z

One can easily apply the fold equation to verify by hand that f applied to any number of a’s evaluates to ().

f a ... a $
= finish (step (... (step base)))
= finish (step (... ()))
...
= finish ()
= ()

Example: variable-argument sum

Let’s look at an example that computes something: a variable-argument function sum and a stepper a such that

sum (a i1) (a i2) ... (a im) $ = i1 + i2 + ... + im

The idea is simple — the folder starts with a base accumulator of 0 and the stepper adds each element to the accumulator, s,
which the folder simply returns at the end.

val sum = fn z => Fold.fold (0, fn s => s) z
fun a i = Fold.step0 (fn s => i + s)

Using the fold equation, one can verify the following.

sum (a 1) (a 2) (a 3) $ = 6

Step1

It is sometimes syntactically convenient to omit the parentheses around the steps in a fold. This is easily done by defining a new
function, step1, as follows.

structure Fold =
struct

open Fold
fun step1 h (a, f) b = fold (h (b, a), f)

end

From the definition of step1, we have the following equivalence.

fold (a, f) (step1 h) b
= step1 h (a, f) b
= fold (h (b, a), f)

Using the above equivalence, we can compute the following equation for step1.

MLton Guide (20180207) 172 / 611

fold (a, f) (step1 h1) b1 (step1 h2) b2 ... (step1 hn) bn $
= fold (h1 (b1, a), f) (step1 h2) b2 ... (step1 hn) bn $
= fold (h2 (b2, h1 (b1, a)), f) ... (step1 hn) bn $
= fold (hn (bn, ... (h2 (b2, h1 (b1, a)))), f) $
= f (hn (bn, ... (h2 (b2, h1 (b1, a)))))

Here is an example using step1 to define a variable-argument product function, prod, with a convenient syntax.

val prod = fn z => Fold.fold (1, fn p => p) z
val ‘ = fn z => Fold.step1 (fn (i, p) => i * p) z

The functions prod and ` satisfy the following equation.

prod ‘i1 ‘i2 ... ‘im $ = i1 * i2 * ... * im

Note that in SML, `i1 is two different tokens, ` and i1. We often use ` for an instance of a step1 function because of its
syntactic unobtrusiveness and because no space is required to separate it from an alphanumeric token.

Also note that there are no parenthesis around the steps. That is, the following expression is not the same as the above one (in
fact, it is not type correct).

prod (‘i1) (‘i2) ... (‘im) $

Example: list literals

SML already has a syntax for list literals, e.g. [w, x, y, z]. However, using fold, we can define our own syntax.

val list = fn z => Fold.fold ([], rev) z
val ‘ = fn z => Fold.step1 (op ::) z

The idea is that the folder starts out with the empty list, the steps accumulate the elements into a list, and then the finishing
function reverses the list at the end.

With these definitions one can write a list like:

list ‘w ‘x ‘y ‘z $

While the example is not practically useful, it does demonstrate the need for the finishing function to be incorporated in fold.
Without a finishing function, every use of list would need to be wrapped in rev, as follows.

rev (list ‘w ‘x ‘y ‘z $)

The finishing function allows us to incorporate the reversal into the definition of list, and to treat list as a truly variable
argument function, performing an arbitrary computation after receiving all of its arguments.

See ArrayLiteral for a similar use of fold that provides a syntax for array and vector literals, which are not built in to SML.

Fold right

Just as fold is analogous to a fold left, in which the functions are applied to the accumulator left-to-right, we can define a
variant of fold that is analogous to a fold right, in which the functions are applied to the accumulator right-to-left. That is, we
can define functions foldr and step0 such that the following equation holds.

foldr (a, f) (step0 h1) (step0 h2) ... (step0 hn) $
= f (h1 (h2 (... (hn a))))

The implementation of fold right is easy, using fold. The idea is for the fold to start with f and for each step to precompose the
next hi. Then, the finisher applies the composed function to the base value, a. Here is the code.

MLton Guide (20180207) 173 / 611

structure Foldr =
struct

fun foldr (a, f) = Fold.fold (f, fn g => g a)
fun step0 h = Fold.step0 (fn g => g o h)

end

Verifying the fold-right equation is straightforward, using the fold-left equation.

foldr (a, f) (Foldr.step0 h1) (Foldr.step0 h2) ... (Foldr.step0 hn) $
= fold (f, fn g => g a)

(Fold.step0 (fn g => g o h1))
(Fold.step0 (fn g => g o h2))
...
(Fold.step0 (fn g => g o hn)) $

= (fn g => g a)
((fn g => g o hn) (... ((fn g => g o h2) ((fn g => g o h1) f))))

= (fn g => g a)
((fn g => g o hn) (... ((fn g => g o h2) (f o h1))))

= (fn g => g a) ((fn g => g o hn) (... (f o h1 o h2)))
= (fn g => g a) (f o h1 o h2 o ... o hn)
= (f o h1 o h2 o ... o hn) a
= f (h1 (h2 (... (hn a))))

One can also define the fold-right analogue of step1.

structure Foldr =
struct

open Foldr
fun step1 h = Fold.step1 (fn (b, g) => g o (fn a => h (b, a)))

end

Example: list literals via fold right

Revisiting the list literal example from earlier, we can use fold right to define a syntax for list literals that doesn’t do a reversal.

val list = fn z => Foldr.foldr ([], fn l => l) z
val ‘ = fn z => Foldr.step1 (op ::) z

As before, with these definitions, one can write a list like:

list ‘w ‘x ‘y ‘z $

The difference between the fold-left and fold-right approaches is that the fold-right approach does not have to reverse the list
at the end, since it accumulates the elements in the correct order. In practice, MLton will simplify away all of the intermediate
function composition, so the the fold-right approach will be more efficient.

Mixing steppers

All of the examples so far have used the same step function throughout a fold. This need not be the case. For example, consider
the following.

val n = fn z => Fold.fold (0, fn i => i) z
val I = fn z => Fold.step0 (fn i => i * 2) z
val O = fn z => Fold.step0 (fn i => i * 2 + 1) z

Here we have one folder, n, that can be used with two different steppers, I and O. By using the fold equation, one can verify the
following equations.

MLton Guide (20180207) 174 / 611

n O $ = 0
n I $ = 1
n I O $ = 2
n I O I $ = 5
n I I I O $ = 14

That is, we’ve defined a syntax for writing binary integer constants.

Not only can one use different instances of step0 in the same fold, one can also intermix uses of step0 and step1. For
example, consider the following.

val n = fn z => Fold.fold (0, fn i => i) z
val O = fn z => Fold.step0 (fn i => n * 8) z
val ‘ = fn z => Fold.step1 (fn (i, n) => n * 8 + i) z

Using the straightforward generalization of the fold equation to mixed steppers, one can verify the following equations.

n 0 $ = 0
n ‘3 O $ = 24
n ‘1 O ‘7 $ = 71

That is, we’ve defined a syntax for writing octal integer constants, with a special syntax, O, for the zero digit (admittedly contrived,
since one could just write `0 instead of O).

See NumericLiteral for a practical extension of this approach that supports numeric constants in any base and of any type.

(Seemingly) dependent types

A normal list fold always returns the same type no matter what elements are in the list or how long the list is. Variable-argument
fold is more powerful, because the result type can vary based both on the arguments that are passed and on their number. This
can provide the illusion of dependent types.

For example, consider the following.

val f = fn z => Fold.fold ((), id) z
val a = fn z => Fold.step0 (fn () => "hello") z
val b = fn z => Fold.step0 (fn () => 13) z
val c = fn z => Fold.step0 (fn () => (1, 2)) z

Using the fold equation, one can verify the following equations.

f a $ = "hello": string
f b $ = 13: int
f c $ = (1, 2): int * int

That is, f returns a value of a different type depending on whether it is applied to argument a, argument b, or argument c.

The following example shows how the type of a fold can depend on the number of arguments.

val grow = fn z => Fold.fold ([], fn l => l) z
val a = fn z => Fold.step0 (fn x => [x]) z

Using the fold equation, one can verify the following equations.

grow $ = []: ’a list
grow a $ = [[]]: ’a list list
grow a a $ = [[[]]]: ’a list list list

Clearly, the result type of a call to the variable argument grow function depends on the number of arguments that are passed.

As a reminder, this is well-typed SML. You can check it out in any implementation.

MLton Guide (20180207) 175 / 611

(Seemingly) dependently-typed functional results

Fold is especially useful when it returns a curried function whose arity depends on the number of arguments. For example,
consider the following.

val makeSum = fn z => Fold.fold (id, fn f => f 0) z
val I = fn z => Fold.step0 (fn f => fn i => fn x => f (x + i)) z

The makeSum folder constructs a function whose arity depends on the number of I arguments and that adds together all of its
arguments. For example, makeSum I $ is of type int -> int and makeSum I I $ is of type int -> int -> int.

One can use the fold equation to verify that the makeSum works correctly. For example, one can easily check by hand the
following equations.

makeSum I $ 1 = 1
makeSum I I $ 1 2 = 3
makeSum I I I $ 1 2 3 = 6

Returning a function becomes especially interesting when there are steppers of different types. For example, the following
makeSum folder constructs functions that sum integers and reals.

val makeSum = fn z => Foldr.foldr (id, fn f => f 0.0) z
val I = fn z => Foldr.step0 (fn f => fn x => fn i => f (x + real i)) z
val R = fn z => Foldr.step0 (fn f => fn x: real => fn r => f (x + r)) z

With these definitions, makeSum I R $ is of type int -> real -> real and makeSum R I I $ is of type real -
> int -> int -> real. One can use the foldr equation to check the following equations.

makeSum I $ 1 = 1.0
makeSum I R $ 1 2.5 = 3.5
makeSum R I I $ 1.5 2 3 = 6.5

We used foldr instead of fold for this so that the order in which the specifiers I and R appear is the same as the order in
which the arguments appear. Had we used fold, things would have been reversed.

An extension of this idea is sufficient to define Printf-like functions in SML.

An idiom for combining steps

It is sometimes useful to combine a number of steps together and name them as a single step. As a simple example, suppose that
one often sees an integer follower by a real in the makeSum example above. One can define a new compound step IR as follows.

val IR = fn u => Fold.fold u I R

With this definition in place, one can verify the following.

makeSum IR IR $ 1 2.2 3 4.4 = 10.6

In general, one can combine steps s1, s2, . . . sn as

fn u => Fold.fold u s1 s2 ... sn

The following calculation shows why a compound step behaves as the composition of its constituent steps.

fold u (fn u => fold u s1 s2 ... sn)
= (fn u => fold u s1 s2 ... sn) u
= fold u s1 s2 ... sn

MLton Guide (20180207) 176 / 611

Post composition

Suppose we already have a function defined via fold, w =fold (a, f), and we would like to construct a new fold function
that is like w, but applies g to the result produced by w. This is similar to function composition, but we can’t just do g o w,
because we don’t want to use g until w has been applied to all of its arguments and received the end-of-arguments terminator $.

More precisely, we want to define a post-composition function post that satisfies the following equation.

post (w, g) s1 ... sn $ = g (w s1 ... sn $)

Here is the definition of post.

structure Fold =
struct

open Fold
fun post (w, g) s = w (fn (a, h) => s (a, g o h))

end

The following calculations show that post satisfies the desired equation, where w =fold (a, f).

post (w, g) s
= w (fn (a, h) => s (a, g o h))
= fold (a, f) (fn (a, h) => s (a, g o h))
= (fn (a, h) => s (a, g o h)) (a, f)
= s (a, g o f)
= fold (a, g o f) s

Now, suppose si =step0 hi for i from 1 to n.

post (w, g) s1 s2 ... sn $
= fold (a, g o f) s1 s2 ... sn $
= (g o f) (hn (... (h1 a)))
= g (f (hn (... (h1 a))))
= g (fold (a, f) s1 ... sn $)
= g (w s1 ... sn $)

For a practical example of post composition, see ArrayLiteral.

Lift

We now define a peculiar-looking function, lift0, that is, equationally speaking, equivalent to the identity function on a step
function.

fun lift0 s (a, f) = fold (fold (a, id) s $, f)

Using the definitions, we can prove the following equation.

fold (a, f) (lift0 (step0 h)) = fold (a, f) (step0 h)

Here is the proof.

fold (a, f) (lift0 (step0 h))
= lift0 (step0 h) (a, f)
= fold (fold (a, id) (step0 h) $, f)
= fold (step0 h (a, id) $, f)
= fold (fold (h a, id) $, f)
= fold ($ (h a, id), f)
= fold (id (h a), f)
= fold (h a, f)
= step0 h (a, f)
= fold (a, f) (step0 h)

If lift0 is the identity, then why even define it? The answer lies in the typing of fold expressions, which we have, until now,
left unexplained.

MLton Guide (20180207) 177 / 611

Typing

Perhaps the most surprising aspect of fold is that it can be checked by the SML type system. The types involved in fold
expressions are complex; fortunately type inference is able to deduce them. Nevertheless, it is instructive to study the types of
fold functions and steppers. More importantly, it is essential to understand the typing aspects of fold in order to write down
signatures of functions defined using fold and step.

Here is the FOLD signature, and a recapitulation of the entire Fold structure, with additional type annotations.

signature FOLD =
sig

type (’a, ’b, ’c, ’d) step = ’a * (’b -> ’c) -> ’d
type (’a, ’b, ’c, ’d) t = (’a, ’b, ’c, ’d) step -> ’d
type (’a1, ’a2, ’b, ’c, ’d) step0 =

(’a1, ’b, ’c, (’a2, ’b, ’c, ’d) t) step
type (’a11, ’a12, ’a2, ’b, ’c, ’d) step1 =

(’a12, ’b, ’c, ’a11 -> (’a2, ’b, ’c, ’d) t) step

val fold: ’a * (’b -> ’c) -> (’a, ’b, ’c, ’d) t
val lift0: (’a1, ’a2, ’a2, ’a2, ’a2) step0

-> (’a1, ’a2, ’b, ’c, ’d) step0
val post: (’a, ’b, ’c1, ’d) t * (’c1 -> ’c2)

-> (’a, ’b, ’c2, ’d) t
val step0: (’a1 -> ’a2) -> (’a1, ’a2, ’b, ’c, ’d) step0
val step1: (’a11 * ’a12 -> ’a2)

-> (’a11, ’a12, ’a2, ’b, ’c, ’d) step1
end

structure Fold:> FOLD =
struct

type (’a, ’b, ’c, ’d) step = ’a * (’b -> ’c) -> ’d

type (’a, ’b, ’c, ’d) t = (’a, ’b, ’c, ’d) step -> ’d

type (’a1, ’a2, ’b, ’c, ’d) step0 =
(’a1, ’b, ’c, (’a2, ’b, ’c, ’d) t) step

type (’a11, ’a12, ’a2, ’b, ’c, ’d) step1 =
(’a12, ’b, ’c, ’a11 -> (’a2, ’b, ’c, ’d) t) step

fun fold (a: ’a, f: ’b -> ’c)
(g: (’a, ’b, ’c, ’d) step): ’d =

g (a, f)

fun step0 (h: ’a1 -> ’a2)
(a1: ’a1, f: ’b -> ’c): (’a2, ’b, ’c, ’d) t =

fold (h a1, f)

fun step1 (h: ’a11 * ’a12 -> ’a2)
(a12: ’a12, f: ’b -> ’c)
(a11: ’a11): (’a2, ’b, ’c, ’d) t =

fold (h (a11, a12), f)

fun lift0 (s: (’a1, ’a2, ’a2, ’a2, ’a2) step0)
(a: ’a1, f: ’b -> ’c): (’a2, ’b, ’c, ’d) t =

fold (fold (a, id) s $, f)

fun post (w: (’a, ’b, ’c1, ’d) t,
g: ’c1 -> ’c2)

(s: (’a, ’b, ’c2, ’d) step): ’d =
w (fn (a, h) => s (a, g o h))

end

MLton Guide (20180207) 178 / 611

That’s a lot to swallow, so let’s walk through it one step at a time. First, we have the definition of type Fold.step.

type (’a, ’b, ’c, ’d) step = ’a * (’b -> ’c) -> ’d

As a fold proceeds over its arguments, it maintains two things: the accumulator, of type ’a, and the finishing function, of type
’b -> ’c. Each step in the fold is a function that takes those two pieces (i.e. ’a * (’b -> ’c) and does something to
them (i.e. produces ’d). The result type of the step is completely left open to be filled in by type inference, as it is an arrow type
that is capable of consuming the rest of the arguments to the fold.

A folder, of type Fold.t, is a function that consumes a single step.

type (’a, ’b, ’c, ’d) t = (’a, ’b, ’c, ’d) step -> ’d

Expanding out the type, we have:

type (’a, ’b, ’c, ’d) t = (’a * (’b -> ’c) -> ’d) -> ’d

This shows that the only thing a folder does is to hand its accumulator (’a) and finisher (’b -> ’c) to the next step (’a *
(’b -> ’c) -> ’d). If SML had first-class polymorphism, we would write the fold type as follows.

type (’a, ’b, ’c) t = Forall ’d . (’a, ’b, ’c, ’d) step -> ’d

This type definition shows that a folder had nothing to do with the rest of the fold, it only deals with the next step.

We now can understand the type of fold, which takes the initial value of the accumulator and the finishing function, and
constructs a folder, i.e. a function awaiting the next step.

val fold: ’a * (’b -> ’c) -> (’a, ’b, ’c, ’d) t
fun fold (a: ’a, f: ’b -> ’c)

(g: (’a, ’b, ’c, ’d) step): ’d =
g (a, f)

Continuing on, we have the type of step functions.

type (’a1, ’a2, ’b, ’c, ’d) step0 =
(’a1, ’b, ’c, (’a2, ’b, ’c, ’d) t) step

Expanding out the type a bit gives:

type (’a1, ’a2, ’b, ’c, ’d) step0 =
’a1 * (’b -> ’c) -> (’a2, ’b, ’c, ’d) t

So, a step function takes the accumulator (’a1) and finishing function (’b -> ’c), which will be passed to it by the previous
folder, and transforms them to a new folder. This new folder has a new accumulator (’a2) and the same finishing function.

Again, imagining that SML had first-class polymorphism makes the type clearer.

type (’a1, ’a2) step0 =
Forall (’b, ’c) . (’a1, ’b, ’c, (’a2, ’b, ’c) t) step

Thus, in essence, a step0 function is a wrapper around a function of type ’a1 -> ’a2, which is exactly what the definition
of step0 does.

val step0: (’a1 -> ’a2) -> (’a1, ’a2, ’b, ’c, ’d) step0
fun step0 (h: ’a1 -> ’a2)

(a1: ’a1, f: ’b -> ’c): (’a2, ’b, ’c, ’d) t =
fold (h a1, f)

It is not much beyond step0 to understand step1.

type (’a11, ’a12, ’a2, ’b, ’c, ’d) step1 =
(’a12, ’b, ’c, ’a11 -> (’a2, ’b, ’c, ’d) t) step

MLton Guide (20180207) 179 / 611

A step1 function takes the accumulator (’a12) and finisher (’b -> ’c) passed to it by the previous folder and transforms
them into a function that consumes the next argument (’a11) and produces a folder that will continue the fold with a new
accumulator (’a2) and the same finisher.

fun step1 (h: ’a11 * ’a12 -> ’a2)
(a12: ’a12, f: ’b -> ’c)
(a11: ’a11): (’a2, ’b, ’c, ’d) t =

fold (h (a11, a12), f)

With first-class polymorphism, a step1 function is more clearly seen as a wrapper around a binary function of type ’a11 *
’a12 -> ’a2.

type (’a11, ’a12, ’a2) step1 =
Forall (’b, ’c) . (’a12, ’b, ’c, ’a11 -> (’a2, ’b, ’c) t) step

The type of post is clear: it takes a folder with a finishing function that produces type ’c1, and a function of type ’c1 ->
’c2 to postcompose onto the folder. It returns a new folder with a finishing function that produces type ’c2.

val post: (’a, ’b, ’c1, ’d) t * (’c1 -> ’c2)
-> (’a, ’b, ’c2, ’d) t

fun post (w: (’a, ’b, ’c1, ’d) t,
g: ’c1 -> ’c2)

(s: (’a, ’b, ’c2, ’d) step): ’d =
w (fn (a, h) => s (a, g o h))

We will return to lift0 after an example.

An example typing

Let’s type check our simplest example, a variable-argument fold. Recall that we have a folder f and a stepper a defined as
follows.

val f = fn z => Fold.fold ((), fn () => ()) z
val a = fn z => Fold.step0 (fn () => ()) z

Since the accumulator and finisher are uninteresting, we’ll use some abbreviations to simplify things.

type ’d step = (unit, unit, unit, ’d) Fold.step
type ’d fold = ’d step -> ’d

With these abbreviations, f and a have the following polymorphic types.

f: ’d fold
a: ’d step

Suppose we want to type check

f a a a $: unit

As a reminder, the fully parenthesized expression is

((((f a) a) a) a) $

The observation that we will use repeatedly is that for any type z, if f:z fold and s:z step, then f s:z. So, if we want

(f a a a) $: unit

then we must have

f a a a: unit fold
$: unit step

MLton Guide (20180207) 180 / 611

Applying the observation again, we must have

f a a: unit fold fold
a: unit fold step

Applying the observation two more times leads to the following type derivation.

f: unit fold fold fold fold a: unit fold fold fold step
f a: unit fold fold fold a: unit fold fold step
f a a: unit fold fold a: unit fold step
f a a a: unit fold $: unit step
f a a a $: unit

So, each application is a fold that consumes the next step, producing a fold of one smaller type.

One can expand some of the type definitions in f to see that it is indeed a function that takes four curried arguments, each one a
step function.

f: unit fold fold fold step
-> unit fold fold step
-> unit fold step
-> unit step
-> unit

This example shows why we must eta expand uses of fold and step0 to work around the value restriction and make folders
and steppers polymorphic. The type of a fold function like f depends on the number of arguments, and so will vary from use to
use. Similarly, each occurrence of an argument like a has a different type, depending on the number of remaining arguments.

This example also shows that the type of a folder, when fully expanded, is exponential in the number of arguments: there are as
many nested occurrences of the fold type constructor as there are arguments, and each occurrence duplicates its type argument.
One can observe this exponential behavior in a type checker that doesn’t share enough of the representation of types (e.g. one
that represents types as trees rather than directed acyclic graphs).

Generalizing this type derivation to uses of fold where the accumulator and finisher are more interesting is straightforward. One
simply includes the type of the accumulator, which may change, for each step, and the type of the finisher, which doesn’t change
from step to step.

Typing lift

The lack of first-class polymorphism in SML causes problems if one wants to use a step in a first-class way. Consider the
following double function, which takes a step, s, and produces a composite step that does s twice.

fun double s = fn u => Fold.fold u s s

The definition of double is not type correct. The problem is that the type of a step depends on the number of remaining
arguments but that the parameter s is not polymorphic, and so can not be used in two different positions.

Fortunately, we can define a function, lift0, that takes a monotyped step function and lifts it into a polymorphic step function.
This is apparent in the type of lift0.

val lift0: (’a1, ’a2, ’a2, ’a2, ’a2) step0
-> (’a1, ’a2, ’b, ’c, ’d) step0

fun lift0 (s: (’a1, ’a2, ’a2, ’a2, ’a2) step0)
(a: ’a1, f: ’b -> ’c): (’a2, ’b, ’c, ’d) t =

fold (fold (a, id) s $, f)

The following definition of double uses lift0, appropriately eta wrapped, to fix the problem.

fun double s =
let

val s = fn z => Fold.lift0 s z
in

fn u => Fold.fold u s s
end

MLton Guide (20180207) 181 / 611

With that definition of double in place, we can use it as in the following example.

val f = fn z => Fold.fold ((), fn () => ()) z
val a = fn z => Fold.step0 (fn () => ()) z
val a2 = fn z => double a z
val () = f a a2 a a2 $

Of course, we must eta wrap the call double in order to use its result, which is a step function, polymorphically.

Hiding the type of the accumulator

For clarity and to avoid mistakes, it can be useful to hide the type of the accumulator in a fold. Reworking the simple variable-
argument example to do this leads to the following.

structure S:>
sig

type ac
val f: (ac, ac, unit, ’d) Fold.t
val s: (ac, ac, ’b, ’c, ’d) Fold.step0

end =
struct

type ac = unit
val f = fn z => Fold.fold ((), fn () => ()) z
val s = fn z => Fold.step0 (fn () => ()) z

end

The idea is to name the accumulator type and use opaque signature matching to make it abstract. This can prevent improper
manipulation of the accumulator by client code and ensure invariants that the folder and stepper would like to maintain.

For a practical example of this technique, see ArrayLiteral.

Also see

Fold has a number of practical applications. Here are some of them.

• ArrayLiteral

• Fold01N

• FunctionalRecordUpdate

• NumericLiteral

• OptionalArguments

• Printf

• VariableArityPolymorphism

There are a number of related techniques. Here are some of them.

• StaticSum

• TypeIndexedValues

MLton Guide (20180207) 182 / 611

Fold01N

A common use pattern of Fold is to define a variable-arity function that combines multiple arguments together using a binary
function. It is slightly tricky to do this directly using fold, because of the special treatment required for the case of zero or one
argument. Here is a structure, Fold01N, that solves the problem once and for all, and eases the definition of such functions.

structure Fold01N =
struct

fun fold {finish, start, zero} =
Fold.fold ((id, finish, fn () => zero, start),

fn (finish, _, p, _) => finish (p ()))

fun step0 {combine, input} =
Fold.step0 (fn (_, finish, _, f) =>

(finish,
finish,
fn () => f input,
fn x’ => combine (f input, x’)))

fun step1 {combine} z input =
step0 {combine = combine, input = input} z

end

If one has a value zero, and functions start, c, and finish, then one can define a variable-arity function f and stepper ` as
follows.

val f = fn z => Fold01N.fold {finish = finish, start = start, zero = zero} z
val ‘ = fn z => Fold01N.step1 {combine = c} z

One can then use the fold equation to prove the following equations.

f $ = zero
f ‘a1 $ = finish (start a1)
f ‘a1 ‘a2 $ = finish (c (start a1, a2))
f ‘a1 ‘a2 ‘a3 $ = finish (c (c (start a1, a2), a3))
...

For an example of Fold01N, see VariableArityPolymorphism.

Typing Fold01N

Here is the signature for Fold01N. We use a trick to avoid having to duplicate the definition of some rather complex types in
both the signature and the structure. We first define the types in a structure. Then, we define them via type re-definitions in the
signature, and via open in the full structure.

structure Fold01N =
struct

type (’input, ’accum1, ’accum2, ’answer, ’zero,
’a, ’b, ’c, ’d, ’e) t =

((’zero -> ’zero)

* (’accum2 -> ’answer)

* (unit -> ’zero)

* (’input -> ’accum1),
(’a -> ’b) * ’c * (unit -> ’a) * ’d,
’b,
’e) Fold.t

type (’input1, ’accum1, ’input2, ’accum2,
’a, ’b, ’c, ’d, ’e, ’f) step0 =

(’a * ’b * ’c * (’input1 -> ’accum1),

MLton Guide (20180207) 183 / 611

’b * ’b * (unit -> ’accum1) * (’input2 -> ’accum2),
’d, ’e, ’f) Fold.step0

type (’accum1, ’input, ’accum2,
’a, ’b, ’c, ’d, ’e, ’f, ’g) step1 =

(’a,
’b * ’c * ’d * (’a -> ’accum1),
’c * ’c * (unit -> ’accum1) * (’input -> ’accum2),
’e, ’f, ’g) Fold.step1

end

signature FOLD_01N =
sig

type (’a, ’b, ’c, ’d, ’e, ’f, ’g, ’h, ’i, ’j) t =
(’a, ’b, ’c, ’d, ’e, ’f, ’g, ’h, ’i, ’j) Fold01N.t

type (’a, ’b, ’c, ’d, ’e, ’f, ’g, ’h, ’i, ’j) step0 =
(’a, ’b, ’c, ’d, ’e, ’f, ’g, ’h, ’i, ’j) Fold01N.step0

type (’a, ’b, ’c, ’d, ’e, ’f, ’g, ’h, ’i, ’j) step1 =
(’a, ’b, ’c, ’d, ’e, ’f, ’g, ’h, ’i, ’j) Fold01N.step1

val fold:
{finish: ’accum2 -> ’answer,
start: ’input -> ’accum1,
zero: ’zero}

-> (’input, ’accum1, ’accum2, ’answer, ’zero,
’a, ’b, ’c, ’d, ’e) t

val step0:
{combine: ’accum1 * ’input2 -> ’accum2,
input: ’input1}

-> (’input1, ’accum1, ’input2, ’accum2,
’a, ’b, ’c, ’d, ’e, ’f) step0

val step1:
{combine: ’accum1 * ’input -> ’accum2}
-> (’accum1, ’input, ’accum2,

’a, ’b, ’c, ’d, ’e, ’f, ’g) step1
end

structure Fold01N: FOLD_01N =
struct

open Fold01N

fun fold {finish, start, zero} =
Fold.fold ((id, finish, fn () => zero, start),

fn (finish, _, p, _) => finish (p ()))

fun step0 {combine, input} =
Fold.step0 (fn (_, finish, _, f) =>

(finish,
finish,
fn () => f input,
fn x’ => combine (f input, x’)))

fun step1 {combine} z input =
step0 {combine = combine, input = input} z

end

MLton Guide (20180207) 184 / 611

ForeignFunctionInterface

MLton’s foreign function interface (FFI) extends Standard ML and makes it easy to take the address of C global objects, access
C global variables, call from SML to C, and call from C to SML. MLton also provides ML-NLFFI, which is a higher-level FFI
for calling C functions and manipulating C data from SML.

Overview

• Foreign Function Interface Types

• Foreign Function Interface Syntax

Importing Code into SML

• Calling From SML To C

• Calling From SML To C Function Pointer

Exporting Code from SML

• Calling From C To SML

Building System Libraries

• Library Support

MLton Guide (20180207) 185 / 611

ForeignFunctionInterfaceSyntax

MLton extends the syntax of SML with expressions that enable a ForeignFunctionInterface to C. The following description of
the syntax uses some abbreviations.

C base type cBaseTy Foreign Function Interface types
C argument type cArgTy cBaseTy1 * . . . * cBaseTyn or unit
C return type cRetTy cBaseTy or unit
C function type cFuncTy cArgTy -> cRetTy
C pointer type cPtrTy MLton.Pointer.t

The type annotation and the semicolon are not optional in the syntax of ForeignFunctionInterface expressions. However, the type
is lexed, parsed, and elaborated as an SML type, so any type (including type abbreviations) may be used, so long as it elaborates
to a type of the correct form.

Address

_address "CFunctionOrVariableName" attr... : cPtrTy;

Denotes the address of the C function or variable.

attr... denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

• external : import with external symbol scope (see LibrarySupport) (default).

• private : import with private symbol scope (see LibrarySupport).

• public : import with public symbol scope (see LibrarySupport).

See MLtonPointer for functions that manipulate C pointers.

Symbol

_symbol "CVariableName" attr... : (unit -> cBaseTy) * (cBaseTy -> unit);

Denotes the getter and setter for a C variable. The cBaseTys must be identical.

attr... denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

• alloc : allocate storage (and export a symbol) for the C variable.

• external : import or export with external symbol scope (see LibrarySupport) (default if not alloc).

• private : import or export with private symbol scope (see LibrarySupport).

• public : import or export with public symbol scope (see LibrarySupport) (default if alloc).

_symbol * : cPtrTy -> (unit -> cBaseTy) * (cBaseTy -> unit);

Denotes the getter and setter for a C pointer to a variable. The cBaseTys must be identical.

MLton Guide (20180207) 186 / 611

Import

_import "CFunctionName" attr... : cFuncTy;

Denotes an SML function whose behavior is implemented by calling the C function. See Calling from SML to C for more details.

attr... denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

• cdecl : call with the cdecl calling convention (default).

• external : import with external symbol scope (see LibrarySupport) (default).

• impure: assert that the function depends upon state and/or performs side effects (default).

• private : import with private symbol scope (see LibrarySupport).

• public : import with public symbol scope (see LibrarySupport).

• pure: assert that the function does not depend upon state or perform any side effects; such functions are subject to various
optimizations (e.g., CommonSubexp, RemoveUnused)

• reentrant: assert that the function (directly or indirectly) calls an _export-ed SML function.

• stdcall : call with the stdcall calling convention (ignored except on Cygwin and MinGW).

_import * attr... : cPtrTy -> cFuncTy;

Denotes an SML function whose behavior is implemented by calling a C function through a C function pointer.

attr... denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

• cdecl : call with the cdecl calling convention (default).

• impure: assert that the function depends upon state and/or performs side effects (default).

• pure: assert that the function does not depend upon state or perform any side effects; such functions are subject to various
optimizations (e.g., CommonSubexp, RemoveUnused)

• reentrant: assert that the function (directly or indirectly) calls an _export-ed SML function.

• stdcall : call with the stdcall calling convention (ignored except on Cygwin and MinGW).

See Calling from SML to C function pointer for more details.

Export

_export "CFunctionName" attr... : cFuncTy -> unit;

Exports a C function with the name CFunctionName that can be used to call an SML function of the type cFuncTy. When the
function denoted by the export expression is applied to an SML function f, subsequent C calls to CFunctionName will call
f. It is an error to call CFunctionName before the export has been applied. The export may be applied more than once, with
each application replacing any previous definition of CFunctionName.

attr... denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

• cdecl : call with the cdecl calling convention (default).

• private : export with private symbol scope (see LibrarySupport).

• public : export with public symbol scope (see LibrarySupport) (default).

• stdcall : call with the stdcall calling convention (ignored except on Cygwin and MinGW).

See Calling from C to SML for more details.

MLton Guide (20180207) 187 / 611

ForeignFunctionInterfaceTypes

MLton’s ForeignFunctionInterface only allows values of certain SML types to be passed between SML and C. The following
types are allowed: bool, char, int, real, word. All of the different sizes of (fixed-sized) integers, reals, and words are
supported as well: Int8.int, Int16.int, Int32.int, Int64.int, Real32.real, Real64.real, Word8.word,
Word16.word, Word32.word, Word64.word. There is a special type, MLton.Pointer.t, for passing C pointers —
see MLtonPointer for details.

Arrays, refs, and vectors of the above types are also allowed. Because in MLton monomorphic arrays and vectors are exactly the
same as their polymorphic counterpart, these are also allowed. Hence, string, char vector, and CharVector.vector
are also allowed. Strings are not null terminated, unless you manually do so from the SML side.

Unfortunately, passing tuples or datatypes is not allowed because that would interfere with representation optimizations.

The C header file that -export-header generates includes typedefs for the C types corresponding to the SML types. Here
is the mapping between SML types and C types.

SML type C typedef C type Note
array Pointer unsigned char *
bool Bool int32_t
char Char8 uint8_t
Int8.int Int8 int8_t
Int16.int Int16 int16_t
Int32.int Int32 int32_t
Int64.int Int64 int64_t
int Int32 int32_t (default)
MLton.Pointer.t Pointer unsigned char *
Real32.real Real32 float
Real64.real Real64 double
real Real64 double (default)
ref Pointer unsigned char *
string Pointer unsigned char * (read only)
vector Pointer unsigned char * (read only)
Word8.word Word8 uint8_t
Word16.word Word16 uint16_t
Word32.word Word32 uint32_t
Word64.word Word64 uint64_t
word Word32 uint32_t (default)

Note (default): The default int, real, and word types may be set by the -default-type type compiler option. The
given C typedef and C types correspond to the default behavior.

Note (read only): Because MLton assumes that vectors and strings are read-only (and will perform optimizations that, for
instance, cause them to share space), you must not modify the data pointed to by the unsigned char * in C code.

Although the C type of an array, ref, or vector is always Pointer, in reality, the object has the natural C representation. Your C
code should cast to the appropriate C type if you want to keep the C compiler from complaining.

When calling an imported C function from SML that returns an array, ref, or vector result or when calling an exported SML
function from C that takes an array, ref, or string argument, then the object must be an ML object allocated on the ML heap.
(Although an array, ref, or vector object has the natural C representation, the object also has an additional header used by the
SML runtime system.)

In addition, there is an MLBasis file, $(SML_LIB)/basis/c-types.mlb, which provides structure aliases for various C
types:

C type Structure Signature
char C_Char INTEGER
signed char C_SChar INTEGER

MLton Guide (20180207) 188 / 611

unsigned char C_UChar WORD
short C_Short INTEGER
signed short C_SShort INTEGER
unsigned short C_UShort WORD
int C_Int INTEGER
signed int C_SInt INTEGER
unsigned int C_UInt WORD
long C_Long INTEGER
signed long C_SLong INTEGER
unsigned long C_ULong WORD
long long C_LongLong INTEGER
signed long long C_SLongLong INTEGER
unsigned long long C_ULongLong WORD
float C_Float REAL
double C_Double REAL
size_t C_Size WORD
ptrdiff_t C_Ptrdiff INTEGER
intmax_t C_Intmax INTEGER
uintmax_t C_UIntmax WORD
intptr_t C_Intptr INTEGER
uintptr_t C_UIntptr WORD
void * C_Pointer WORD

These aliases depend on the configuration of the C compiler for the target architecture, and are independent of the configuration
of MLton (including the -default-type type compiler option).

MLton Guide (20180207) 189 / 611

ForLoops

A for-loop is typically used to iterate over a range of consecutive integers that denote indices of some sort. For example, in
OCaml a for-loop takes either the form

for <name> = <lower> to <upper> do <body> done

or the form

for <name> = <upper> downto <lower> do <body> done

Some languages provide considerably more flexible for-loop or foreach-constructs.

A bit surprisingly, Standard ML provides special syntax for while-loops, but not for for-loops. Indeed, in SML, many uses of
for-loops are better expressed using app, foldl/foldr, map and many other higher-order functions provided by the Basis
Library for manipulating lists, vectors and arrays. However, the Basis Library does not provide a function for iterating over a
range of integer values. Fortunately, it is very easy to write one.

A fairly simple design

The following implementation imitates both the syntax and semantics of the OCaml for-loop.

datatype for = to of int * int
| downto of int * int

infix to downto

val for =
fn lo to up =>

(fn f => let fun loop lo = if lo > up then ()
else (f lo; loop (lo+1))

in loop lo end)
| up downto lo =>
(fn f => let fun loop up = if up < lo then ()

else (f up; loop (up-1))
in loop up end)

For example,

for (1 to 9)
(fn i => print (Int.toString i))

would print 123456789 and

for (9 downto 1)
(fn i => print (Int.toString i))

would print 987654321.

Straightforward formatting of nested loops

for (a to b)
(fn i =>

for (c to d)
(fn j =>

...))

is fairly readable, but tends to cause the body of the loop to be indented quite deeply.

MLton Guide (20180207) 190 / 611

Off-by-one

The above design has an annoying feature. In practice, the upper bound of the iterated range is almost always excluded and most
loops would subtract one from the upper bound:

for (0 to n-1) ...
for (n-1 downto 0) ...

It is probably better to break convention and exclude the upper bound by default, because it leads to more concise code and
becomes idiomatic with very little practice. The iterator combinators described below exclude the upper bound by default.

Iterator combinators

While the simple for-function described in the previous section is probably good enough for many uses, it is a bit cumbersome
when one needs to iterate over a Cartesian product. One might also want to iterate over more than just consecutive integers. It
turns out that one can provide a library of iterator combinators that allow one to implement iterators more flexibly.

Since the types of the combinators may be a bit difficult to infer from their implementations, let’s first take a look at a signature
of the iterator combinator library:

signature ITER =
sig
type ’a t = (’a -> unit) -> unit

val return : ’a -> ’a t
val >>= : ’a t * (’a -> ’b t) -> ’b t

val none : ’a t

val to : int * int -> int t
val downto : int * int -> int t

val inList : ’a list -> ’a t
val inVector : ’a vector -> ’a t
val inArray : ’a array -> ’a t

val using : (’a, ’b) StringCvt.reader -> ’b -> ’a t

val when : ’a t * (’a -> bool) -> ’a t
val by : ’a t * (’a -> ’b) -> ’b t
val @@ : ’a t * ’a t -> ’a t
val ** : ’a t * ’b t -> (’a, ’b) product t

val for : ’a -> ’a
end

Several of the above combinators are meant to be used as infix operators. Here is a set of suitable infix declarations:

infix 2 to downto
infix 1 @@ when by
infix 0 >>= **

A few notes are in order:

• The ’a t type constructor with the return and >>= operators forms a monad.

• The to and downto combinators will omit the upper bound of the range.

• for is the identity function. It is purely for syntactic sugar and is not strictly required.

• The @@ combinator produces an iterator for the concatenation of the given iterators.

MLton Guide (20180207) 191 / 611

• The ** combinator produces an iterator for the Cartesian product of the given iterators.

– See ProductType for the type constructor (’a, ’b) product used in the type of the iterator produced by **.

• The using combinator allows one to iterate over slices, streams and many other kinds of sequences.

• when is the filtering combinator. The name when is inspired by OCaml’s guard clauses.

• by is the mapping combinator.

The below implementation of the ITER-signature makes use of the following basic combinators:

fun const x _ = x
fun flip f x y = f y x
fun id x = x
fun opt fno fso = fn NONE => fno () | SOME ? => fso ?
fun pass x f = f x

Here is an implementation the ITER-signature:

structure Iter :> ITER =
struct
type ’a t = (’a -> unit) -> unit

val return = pass
fun (iA >>= a2iB) f = iA (flip a2iB f)

val none = ignore

fun (l to u) f = let fun ‘l = if l<u then (f l; ‘(l+1)) else () in ‘l end
fun (u downto l) f = let fun ‘u = if u>l then (f (u-1); ‘(u-1)) else () in ‘u end

fun inList ? = flip List.app ?
fun inVector ? = flip Vector.app ?
fun inArray ? = flip Array.app ?

fun using get s f = let fun ‘s = opt (const ()) (fn (x, s) => (f x; ‘s)) (get s) in ‘s ←↩
end

fun (iA when p) f = iA (fn a => if p a then f a else ())
fun (iA by g) f = iA (f o g)
fun (iA @@ iB) f = (iA f : unit; iB f)
fun (iA ** iB) f = iA (fn a => iB (fn b => f (a & b)))

val for = id
end

Note that some of the above combinators (e.g. **) could be expressed in terms of the other combinators, most notably return
and >>=. Another implementation issue worth mentioning is that downto is written specifically to avoid computing l-1, which
could cause an Overflow.

To use the above combinators the Iter-structure needs to be opened

open Iter

and one usually also wants to declare the infix status of the operators as shown earlier.

Here is an example that illustrates some of the features:

for (0 to 10 when (fn x => x mod 3 <> 0) ** inList ["a", "b"] ** 2 downto 1 by real)
(fn x & y & z =>

print ("("^Int.toString x^", \""^y^"\", "^Real.toString z^")\n"))

MLton Guide (20180207) 192 / 611

Using the Iter combinators one can easily produce more complicated iterators. For example, here is an iterator over a "triangle":

fun triangle (l, u) = l to u >>= (fn i => i to u >>= (fn j => return (i, j)))

MLton Guide (20180207) 193 / 611

FrontEnd

FrontEnd is a translation pass from source to the AST IntermediateLanguage.

Description

This pass performs lexing and parsing to produce an abstract syntax tree.

Implementation

• front-end.sig

• front-end.fun

Details and Notes

The lexer is produced by MLLex from ml.lex.

The parser is produced by MLYacc from ml.grm.

The specifications for the lexer and parser were originally taken from SML/NJ (version 109.32), but have been heavily modified
since then.

https://github.com/MLton/mlton/blob/master/mlton/front-end/front-end.sig
https://github.com/MLton/mlton/blob/master/mlton/front-end/front-end.fun
https://github.com/MLton/mlton/blob/master/mlton/front-end/ml.lex
https://github.com/MLton/mlton/blob/master/mlton/front-end/ml.grm

MLton Guide (20180207) 194 / 611

FSharp

F# is a functional programming language developed at Microsoft Research. F# was partly inspired by the OCaml language and
shares some common core constructs with it. F# is integrated with Visual Studio 2010 as a first-class language.

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

MLton Guide (20180207) 195 / 611

FunctionalRecordUpdate

Functional record update is the copying of a record while replacing the values of some of the fields. Standard ML does not have
explicit syntax for functional record update. We will show below how to implement functional record update in SML, with a
little boilerplate code.

As an example, the functional update of the record

{a = 13, b = 14, c = 15}

with c =16 yields a new record

{a = 13, b = 14, c = 16}

Functional record update also makes sense with multiple simultaneous updates. For example, the functional update of the record
above with a =18, c =19 yields a new record

{a = 18, b = 14, c = 19}

One could easily imagine an extension of the SML that supports functional record update. For example

e with {a = 16, b = 17}

would create a copy of the record denoted by e with field a replaced with 16 and b replaced with 17.

Since there is no such syntax in SML, we now show how to implement functional record update directly. We first give a simple
implementation that has a number of problems. We then give an advanced implementation, that, while complex underneath, is a
reusable library that admits simple use.

Simple implementation

To support functional record update on the record type

{a: ’a, b: ’b, c: ’c}

first, define an update function for each component.

fun withA ({a = _, b, c}, a) = {a = a, b = b, c = c}
fun withB ({a, b = _, c}, b) = {a = a, b = b, c = c}
fun withC ({a, b, c = _}, c) = {a = a, b = b, c = c}

Then, one can express e with {a =16, b =17} as

withB (withA (e, 16), 17)

With infix notation

infix withA withB withC

the syntax is almost as concise as a language extension.

e withA 16 withB 17

This approach suffers from the fact that the amount of boilerplate code is quadratic in the number of record fields. Furthermore,
changing, adding, or deleting a field requires time proportional to the number of fields (because each with<L> function must
be changed). It is also annoying to have to define a with<L> function, possibly with a fixity declaration, for each field.

Fortunately, there is a solution to these problems.

MLton Guide (20180207) 196 / 611

Advanced implementation

Using Fold one can define a family of makeUpdate<N> functions and single update operator U so that one can define a
functional record update function for any record type simply by specifying a (trivial) isomorphism between that type and function
argument list. For example, suppose that we would like to do functional record update on records with fields a and b. Then one
defines a function updateAB as follows.

val updateAB =
fn z =>
let

fun from v1 v2 = {a = v1, b = v2}
fun to f {a = v1, b = v2} = f v1 v2

in
makeUpdate2 (from, from, to)

end
z

The functions from (think from function arguments) and to (think to function arguements) specify an isomorphism between
a,b records and function arguments. There is a second use of from to work around the lack of first-class polymorphism in SML.

With the definition of updateAB in place, the following expressions are valid.

updateAB {a = 13, b = "hello"} (set#b "goodbye") $
updateAB {a = 13.5, b = true} (set#b false) (set#a 12.5) $

As another example, suppose that we would like to do functional record update on records with fields b, c, and d. Then one
defines a function updateBCD as follows.

val updateBCD =
fn z =>
let

fun from v1 v2 v3 = {b = v1, c = v2, d = v3}
fun to f {b = v1, c = v2, d = v3} = f v1 v2 v3

in
makeUpdate3 (from, from, to)

end
z

With the definition of updateBCD in place, the following expression is valid.

updateBCD {b = 1, c = 2, d = 3} (set#c 4) (set#c 5) $

Note that not all fields need be updated and that the same field may be updated multiple times. Further note that the same set
operator is used for all update functions (in the above, for both updateAB and updateBCD).

In general, to define a functional-record-update function on records with fields f1, f2, . . . , fN, use the following template.

val update =
fn z =>
let

fun from v1 v2 ... vn = {f1 = v1, f2 = v2, ..., fn = vn}
fun to f {f1 = v1, f2 = v2, ..., fn = vn} = v1 v2 ... vn

in
makeUpdateN (from, from, to)

end
z

With this, one can update a record as follows.

update {f1 = v1, ..., fn = vn} (set#fi1 vi1) ... (set#fim vim) $

MLton Guide (20180207) 197 / 611

The FunctionalRecordUpdate structure

Here is the implementation of functional record update.

structure FunctionalRecordUpdate =
struct

local
fun next g (f, z) x = g (f x, z)
fun f1 (f, z) x = f (z x)
fun f2 z = next f1 z
fun f3 z = next f2 z

fun c0 from = from
fun c1 from = c0 from f1
fun c2 from = c1 from f2
fun c3 from = c2 from f3

fun makeUpdate cX (from, from’, to) record =
let

fun ops () = cX from’
fun vars f = to f record

in
Fold.fold ((vars, ops), fn (vars, _) => vars from)

end
in

fun makeUpdate0 z = makeUpdate c0 z
fun makeUpdate1 z = makeUpdate c1 z
fun makeUpdate2 z = makeUpdate c2 z
fun makeUpdate3 z = makeUpdate c3 z

fun upd z = Fold.step2 (fn (s, f, (vars, ops)) => (fn out => vars (s (ops ()) (out ←↩
, f)), ops)) z

fun set z = Fold.step2 (fn (s, v, (vars, ops)) => (fn out => vars (s (ops ()) (out ←↩
, fn _ => v)), ops)) z

end
end

The idea of makeUpdate is to build a record of functions which can replace the contents of one argument out of a list of
arguments. The functions f<X> replace the 0th, 1st, . . . argument with their argument z. The c<X> functions pass the first X f
functions to the record constructor.

The #field notation of Standard ML allows us to select the map function which replaces the corresponding argument. By
converting the record to an argument list, feeding that list through the selected map function and piping the list into the record
constructor, functional record update is achieved.

Efficiency

With MLton, the efficiency of this approach is as good as one would expect with the special syntax. Namely a sequence of
updates will be optimized into a single record construction that copies the unchanged fields and fills in the changed fields with
their new values.

Before Sep 14, 2009, this page advocated an alternative implementation of FunctionalRecordUpdate. However, the old structure
caused exponentially increasing compile times. We advise you to switch to the newer version.

Applications

Functional record update can be used to implement labelled optional arguments.

MLton Guide (20180207) 198 / 611

fxp

fxp is an XML parser written in Standard ML.

It has a patch to compile with MLton.

http://atseidl2.informatik.tu-muenchen.de/%7Eberlea/Fxp/
http://atseidl2.informatik.tu-muenchen.de/%7Eberlea/Fxp/mlton.html

MLton Guide (20180207) 199 / 611

GarbageCollection

For a good introduction and overview to garbage collection, see Jones99.

MLton’s garbage collector uses copying, mark-compact, and generational collection, automatically switching between them at
run time based on the amount of live data relative to the amount of RAM. The runtime system tries to keep the heap within RAM
if at all possible.

MLton’s copying collector is a simple, two-space, breadth-first, Cheney-style collector. The design for the generational and
mark-compact GC is based on Sansom91.

Design notes

• http://www.mlton.org/pipermail/mlton/2002-May/012420.html

object layout and header word design

Also see

• Regions

http://www.mlton.org/pipermail/mlton/2002-May/012420.html

MLton Guide (20180207) 200 / 611

GenerativeDatatype

In Standard ML, datatype declarations are said to be generative, because each time a datatype declaration is evaluated, it yields
a new type. Thus, any attempt to mix the types will lead to a type error at compile-time. The following program, which does not
type check, demonstrates this.

functor F () =
struct

datatype t = T
end

structure S1 = F ()
structure S2 = F ()
val _: S1.t -> S2.t = fn x => x

Generativity also means that two different datatype declarations define different types, even if they define identical constructors.
The following program does not type check due to this.

datatype t = A | B
val a1 = A
datatype t = A | B
val a2 = A
val _ = if true then a1 else a2

Also see

• GenerativeException

MLton Guide (20180207) 201 / 611

GenerativeException

In Standard ML, exception declarations are said to be generative, because each time an exception declaration is evaluated, it
yields a new exception.

The following program demonstrates the generativity of exceptions.

exception E
val e1 = E
fun isE1 (e: exn): bool =

case e of
E => true

| _ => false
exception E
val e2 = E
fun isE2 (e: exn): bool =

case e of
E => true

| _ => false
fun pb (b: bool): unit =

print (concat [Bool.toString b, "\n"])
val () = (pb (isE1 e1)

;pb (isE1 e2)
; pb (isE2 e1)
; pb (isE2 e2))

In the above program, two different exception declarations declare an exception E and a corresponding function that returns true
only on that exception. Although declared by syntactically identical exception declarations, e1 and e2 are different exceptions.
The program, when run, prints true, false, false, true.

A slight modification of the above program shows that even a single exception declaration yields a new exception each time it is
evaluated.

fun f (): exn * (exn -> bool) =
let

exception E
in

(E, fn E => true | _ => false)
end

val (e1, isE1) = f ()
val (e2, isE2) = f ()
fun pb (b: bool): unit =

print (concat [Bool.toString b, "\n"])
val () = (pb (isE1 e1)

; pb (isE1 e2)
; pb (isE2 e1)
; pb (isE2 e2))

Each call to f yields a new exception and a function that returns true only on that exception. The program, when run, prints
true, false, false, true.

Type Safety

Exception generativity is required for type safety. Consider the following valid SML program.

fun f (): (’a -> exn) * (exn -> ’a) =
let

exception E of ’a
in

(E, fn E x => x | _ => raise Fail "f")

MLton Guide (20180207) 202 / 611

end
fun cast (a: ’a): ’b =

let
val (make: ’a -> exn, _) = f ()
val (_, get: exn -> ’b) = f ()

in
get (make a)

end
val _ = ((cast 13): int -> int) 14

If exceptions weren’t generative, then each call f () would yield the same exception constructor E. Then, our cast function
could use make:’a -> exn to convert any value into an exception and then get:exn -> ’b to convert that exception to a
value of arbitrary type. If cast worked, then we could cast an integer as a function and apply. Of course, because of generative
exceptions, this program raises Fail "f".

Applications

The exn type is effectively a universal type.

Also see

• GenerativeDatatype

MLton Guide (20180207) 203 / 611

Git

Git is a distributed version control system. The MLton project currently uses Git to maintain its source code.

Here are some online Git resources.

• Reference Manual

• ProGit, by Scott Chacon

http://git-scm.com/
http://git-scm.com/docs
http://git-scm.com/book

MLton Guide (20180207) 204 / 611

Glade

Glade is a tool for generating Gtk user interfaces.

WesleyTerpstra is working on a Glade→mGTK converter.

• http://www.mlton.org/pipermail/mlton/2004-December/016865.html

http://glade.gnome.org/features.html
http://www.mlton.org/pipermail/mlton/2004-December/016865.html

MLton Guide (20180207) 205 / 611

Globalize

Globalize is an analysis pass for the SXML IntermediateLanguage, invoked from ClosureConvert.

Description

This pass marks values that are constant, allowing ClosureConvert to move them out to the top level so they are only evaluated
once and do not appear in closures.

Implementation

• globalize.sig

• globalize.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/closure-convert/globalize.sig
https://github.com/MLton/mlton/blob/master/mlton/closure-convert/globalize.fun

MLton Guide (20180207) 206 / 611

GnuMP

The GnuMP library (GNU Multiple Precision arithmetic library) is a library for arbitrary precision integer arithmetic. MLton
uses the GnuMP library to implement the Basis Library IntInf module.

Known issues

• There is a known problem with the GnuMP library (prior to version 4.2.x), where it requires a lot of stack space for some
computations, e.g. IntInf.toString of a million digit number. If you run with stack size limited, you may see a segfault
in such programs. This problem is mentioned in the GnuMP FAQ, where they describe two solutions.

– Increase (or unlimit) your stack space. From your program, use setrlimit, or from the shell, use ulimit.

– Configure and rebuild libgmp with --disable-alloca, which will cause it to allocate temporaries using malloc
instead of on the stack.

• On some platforms, the GnuMP library may be configured to use one of multiple ABIs (Application Binary Interfaces). For
example, on some 32-bit architectures, GnuMP may be configured to represent a limb as either a 32-bit long or as a 64-bit
long long. Similarly, GnuMP may be configured to use specific CPU features.

In order to efficiently use the GnuMP library, MLton represents an IntInf.int value in a manner compatible with the
GnuMP library’s representation of a limb. Hence, it is important that MLton and the GnuMP library agree upon the represen-
tation of a limb.

– When using a source package of MLton, building will detect the GnuMP library’s representation of a limb.

– When using a binary package of MLton that is dynamically linked against the GnuMP library, the build machine and the
install machine must have the GnuMP library configured with the same representation of a limb. (On the other hand, the
build machine need not have the GnuMP library configured with CPU features compatible with the install machine.)

– When using a binary package of MLton that is statically linked against the GnuMP library, the build machine and the install
machine need not have the GnuMP library configured with the same representation of a limb. (On the other hand, the build
machine must have the GnuMP library configured with CPU features compatible with the install machine.)
However, MLton will be configured with the representation of a limb from the GnuMP library of the build machine. Ex-
ecutables produced by MLton will be incompatible with the GnuMP library of the install machine. To reconfigure MLton
with the representation of a limb from the GnuMP library of the install machine, one must edit:

/usr/lib/mlton/self/sizes

changing the

mplimb = ??

entry so that ?? corresponds to the bytes in a limb; and, one must edit:

/usr/lib/mlton/sml/basis/config/c/arch-os/c-types.sml

changing the

(* from "gmp.h" *)
structure C_MPLimb = struct open Word?? type t = word end
functor C_MPLimb_ChooseWordN (A: CHOOSE_WORDN_ARG) = ChooseWordN_Word?? (A)

entries so that ?? corresponds to the bits in a limb.

http://gmplib.org
http://gmplib.org/#FAQ

MLton Guide (20180207) 207 / 611

Google Summer of Code (2013)

Mentors

The following developers have agreed to serve as mentors for the 2013 Google Summer of Code:

• Matthew Fluet

• Lukasz (Luke) Ziarek

• Suresh Jagannathan

Ideas List

Implement a Partial Redundancy Elimination (PRE) Optimization

Partial redundancy elimination (PRE) is a program transformation that removes operations that are redundant on some, but not
necessarily all paths, through the program. PRE can subsume both common subexpression elimination and loop-invariant code
motion, and is therefore a potentially powerful optimization. However, a naïve implementation of PRE on a program in static
single assignment (SSA) form is unlikely to be effective. This project aims to adapt and implement the SSAPRE algorithm(s) of
Thomas VanDrunen in MLton’s SSA intermediate language.

Background:

• Anticipation-based partial redundancy elimination for static single assignment form; Thomas VanDrunen and Antony L. Hosk-
ing

• Partial Redundancy Elimination for Global Value Numbering; Thomas VanDrunen

• Value-Based Partial Redundancy Elimination; Thomas VanDrunen and Antony L. Hosking

• Partial redundancy elimination in SSA form; Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred
Chow

Recommended Skills: SML programming experience; some middle-end compiler experience

Design and Implement a Heap Profiler

A heap profile is a description of the space usage of a program. A heap profile is concerned with the allocation, retention, and
deallocation (via garbage collection) of heap data during the execution of a program. A heap profile can be used to diagnose
performance problems in a functional program that arise from space leaks. This project aims to design and implement a heap
profiler for MLton compiled programs.

Background:

• GCspy: an adaptable heap visualisation framework; Tony Printezis and Richard Jones

• New dimensions in heap profiling; Colin Runciman and Niklas Röjemo

• Heap profiling for space efficiency; Colin Runciman and Niklas Röjemo

• Heap profiling of lazy functional programs; Colin Runciman and David Wakeling

Recommended Skills: C and SML programming experience; some experience with UI and visualization

http://www.cs.rit.edu/%7Emtf
http://www.cse.buffalo.edu/%7Elziarek/
http://www.cs.purdue.edu/homes/suresh/
http://onlinelibrary.wiley.com/doi/10.1002/spe.618/abstract
http://cs.wheaton.edu/%7Etvandrun/writings/thesis.pdf
http://www.springerlink.com/content/w06m3cw453nphm1u/
http://portal.acm.org/citation.cfm?doid=319301.319348
http://portal.acm.org/citation.cfm?doid=583854.582451
http://journals.cambridge.org/action/displayAbstract?aid=1349892
http://www.springerlink.com/content/710501660722gw37/
http://journals.cambridge.org/action/displayAbstract?aid=1323096

MLton Guide (20180207) 208 / 611

Garbage Collector Improvements

The garbage collector plays a significant role in the performance of functional languages. Garbage collect too often, and program
performance suffers due to the excessive time spent in the garbage collector. Garbage collect not often enough, and program
performance suffers due to the excessive space used by the uncollected garbage. One particular issue is ensuring that a program
utilizing a garbage collector "plays nice" with other processes on the system, by not using too much or too little physical mem-
ory. While there are some reasonable theoretical results about garbage collections with heaps of fixed size, there seems to be
insufficient work that really looks carefully at the question of dynamically resizing the heap in response to the live data demands
of the application and, similarly, in response to the behavior of the operating system and other processes. This project aims to
investigate improvements to the memory behavior of MLton compiled programs through better tuning of the garbage collector.

Background:

• Automated Heap Sizing in the Poly/ML Runtime (Position Paper); David White, Jeremy Singer, Jonathan Aitken, and David
Matthews

• Isla Vista Heap Sizing: Using Feedback to Avoid Paging; Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski

• Controlling garbage collection and heap growth to reduce the execution time of Java applications; Tim Brecht, Eshrat Arjo-
mandi, Chang Li, and Hang Pham

• Garbage collection without paging; Matthew Hertz, Yi Feng, and Emery D. Berger

• Automatic heap sizing: taking real memory into account; Ting Yang, Matthew Hertz, Emery D. Berger, Scott F. Kaplan, and J.
Eliot B. Moss

Recommended Skills: C programming experience; some operating systems and/or systems programming experience; some
compiler and garbage collector experience

Implement Successor ML Language Features

Any programming language, including Standard ML, can be improved. The community has identified a number of modest
extensions and revisions to the Standard ML programming language that would likely prove useful in practice. This project aims
to implement these language features in the MLton compiler.

Background:

• Successor ML

• HaMLet (Successor ML)

• A critique of Standard ML; Andrew W. Appel

Recommended Skills: SML programming experience; some front-end compiler experience (i.e., scanners and parsers)

Implement Source-level Debugging

Debugging is a fact of programming life. Unfortunately, most SML implementations (including MLton) provide little to no
source-level debugging support. This project aims to add basic to intermediate source-level debugging support to the MLton
compiler. MLton already supports source-level profiling, which can be used to attribute bytes allocated or time spent in source
functions. It should be relatively straightforward to leverage this source-level information into basic source-level debugging
support, with the ability to set/unset breakpoints and step through declarations and functions. It may be possible to also provide
intermediate source-level debugging support, with the ability to inspect in-scope variables of basic types (e.g., types compatible
with MLton’s foreign function interface).

Background:

• MLton — How Profiling Works

http://www.dcs.gla.ac.uk/%7Ewhited/papers/automated_heap_sizing.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4145125
http://portal.acm.org/citation.cfm?doid=1152649.1152652
http://portal.acm.org/citation.cfm?doid=1065010.1065028
http://portal.acm.org/citation.cfm?doid=1029873.1029881
http://successor-ml.org/index.php?title=Main_Page
http://www.mpi-sws.org/%7Erossberg/hamlet/index.html#successor-ml
http://journals.cambridge.org/action/displayAbstract?aid=1322628
http://mlton.org/HowProfilingWorks

MLton Guide (20180207) 209 / 611

• MLton — Foreign Function Interface Types

• DWARF Debugging Standard

• STABS Debugging Format

Recommended Skills: SML programming experience; some compiler experience

SIMD Primitives

Most modern processors offer some direct support for SIMD (Single Instruction, Multiple Data) operations, such as Intel’s
MMX/SSE instructions, AMD’s 3DNow! instructions, and IBM’s AltiVec. Such instructions are particularly useful for multime-
dia, scientific, and cryptographic applications. This project aims to add preliminary support for vector data and vector operations
to the MLton compiler. Ideally, after surveying SIMD instruction sets and SIMD support in other compilers, a core set of SIMD
primitives with broad architecture and compiler support can be identified. After adding SIMD primitives to the core compiler and
carrying them through to the various backends, there will be opportunities to design and implement an SML library that exposes
the primitives to the SML programmer as well as opportunities to design and implement auto-vectorization optimizations.

Background:

• SIMD

• Auto-vectorization in GCC

• Auto-vectorization in LLVM

Recommended Skills: SML programming experience; some compiler experience; some computer architecture experience

RTOS Support

This project entails porting the MLton compiler to RTOSs such as: RTEMS, RT Linux, and FreeRTOS. The project will include
modifications to the MLton build and configuration process. Students will need to extend the MLton configuration process for
each of the RTOSs. The MLton compilation process will need to be extended to invoke the C cross compilers the RTOSs provide
for embedded support. Test scripts for validation will be necessary and these will need to be run in emulators for supported
architectures.

Recommended Skills: C programming experience; some scripting experience

Region Based Memory Management

Region based memory management is an alternative automatic memory management scheme to garbage collection. Regions can
be inferred by the compiler (e.g., Cyclone and MLKit) or provided to the programmer through a library. Since many students do
not have extensive experience with compilers we plan on adopting the later approach. Creating a viable region based memory
solution requires the removal of the GC and changes to the allocator. Additionally, write barriers will be necessary to ensure
references between two ML objects is never established if the left hand side of the assignment has a longer lifetime than the
right hand side. Students will need to come up with an appropriate interface for creating, entering, and exiting regions (examples
include RTSJ scoped memory and SCJ scoped memory).

Background:

• Cyclone

• MLKit

• RTSJ + SCJ scopes

Recommended Skills: SML programming experience; C programming experience; some compiler and garbage collector experi-
ence

http://mlton.org/ForeignFunctionInterfaceTypes
http://dwarfstd.org/
http://sourceware.org/gdb/current/onlinedocs/stabs/index.html
http://en.wikipedia.org/wiki/SIMD
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://llvm.org/docs/Vectorizers.html

MLton Guide (20180207) 210 / 611

Integration of Multi-MLton

MultiMLton is a compiler and runtime environment that targets scalable multicore platforms. It is an extension of MLton. It
combines new language abstractions and associated compiler analyses for expressing and implementing various kinds of fine-
grained parallelism (safe futures, speculation, transactions, etc.), along with a sophisticated runtime system tuned to efficiently
handle large numbers of lightweight threads. The core stable features of MultiMLton will need to be integrated with the latest
MLton public release. Certain experimental features, such as support for the Intel SCC and distributed runtime will be omitted.
This project requires students to understand the delta between the MultiMLton code base and the MLton code base. Students
will need to create build and configuration scripts for MLton to enable MultiMLton features.

Background

• MultiMLton — Publications

Recommended Skills: SML programming experience; C programming experience; some compiler experience

http://multimlton.cs.purdue.edu
http://multimlton.cs.purdue.edu/mML/Publications.html

MLton Guide (20180207) 211 / 611

Google Summer of Code (2014)

Mentors

The following developers have agreed to serve as mentors for the 2014 Google Summer of Code:

• Matthew Fluet

• Lukasz (Luke) Ziarek

• John Reppy

• KC Sivaramakrishnan

Ideas List

Implement a Partial Redundancy Elimination (PRE) Optimization

Partial redundancy elimination (PRE) is a program transformation that removes operations that are redundant on some, but not
necessarily all paths, through the program. PRE can subsume both common subexpression elimination and loop-invariant code
motion, and is therefore a potentially powerful optimization. However, a naïve implementation of PRE on a program in static
single assignment (SSA) form is unlikely to be effective. This project aims to adapt and implement the SSAPRE algorithm(s) of
Thomas VanDrunen in MLton’s SSA intermediate language.

Background:

• Anticipation-based partial redundancy elimination for static single assignment form; Thomas VanDrunen and Antony L. Hosk-
ing

• Partial Redundancy Elimination for Global Value Numbering; Thomas VanDrunen

• Value-Based Partial Redundancy Elimination; Thomas VanDrunen and Antony L. Hosking

• Partial redundancy elimination in SSA form; Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred
Chow

Recommended Skills: SML programming experience; some middle-end compiler experience

Design and Implement a Heap Profiler

A heap profile is a description of the space usage of a program. A heap profile is concerned with the allocation, retention, and
deallocation (via garbage collection) of heap data during the execution of a program. A heap profile can be used to diagnose
performance problems in a functional program that arise from space leaks. This project aims to design and implement a heap
profiler for MLton compiled programs.

Background:

• GCspy: an adaptable heap visualisation framework; Tony Printezis and Richard Jones

• New dimensions in heap profiling; Colin Runciman and Niklas Röjemo

• Heap profiling for space efficiency; Colin Runciman and Niklas Röjemo

• Heap profiling of lazy functional programs; Colin Runciman and David Wakeling

Recommended Skills: C and SML programming experience; some experience with UI and visualization

http://www.cs.rit.edu/%7Emtf
http://www.cse.buffalo.edu/%7Elziarek/
http://people.cs.uchicago.edu/~jhr/
http://www.cs.purdue.edu/homes/chandras
http://onlinelibrary.wiley.com/doi/10.1002/spe.618/abstract
http://cs.wheaton.edu/%7Etvandrun/writings/thesis.pdf
http://www.springerlink.com/content/w06m3cw453nphm1u/
http://portal.acm.org/citation.cfm?doid=319301.319348
http://portal.acm.org/citation.cfm?doid=583854.582451
http://journals.cambridge.org/action/displayAbstract?aid=1349892
http://www.springerlink.com/content/710501660722gw37/
http://journals.cambridge.org/action/displayAbstract?aid=1323096

MLton Guide (20180207) 212 / 611

Garbage Collector Improvements

The garbage collector plays a significant role in the performance of functional languages. Garbage collect too often, and program
performance suffers due to the excessive time spent in the garbage collector. Garbage collect not often enough, and program
performance suffers due to the excessive space used by the uncollected garbage. One particular issue is ensuring that a program
utilizing a garbage collector "plays nice" with other processes on the system, by not using too much or too little physical mem-
ory. While there are some reasonable theoretical results about garbage collections with heaps of fixed size, there seems to be
insufficient work that really looks carefully at the question of dynamically resizing the heap in response to the live data demands
of the application and, similarly, in response to the behavior of the operating system and other processes. This project aims to
investigate improvements to the memory behavior of MLton compiled programs through better tuning of the garbage collector.

Background:

• Automated Heap Sizing in the Poly/ML Runtime (Position Paper); David White, Jeremy Singer, Jonathan Aitken, and David
Matthews

• Isla Vista Heap Sizing: Using Feedback to Avoid Paging; Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski

• Controlling garbage collection and heap growth to reduce the execution time of Java applications; Tim Brecht, Eshrat Arjo-
mandi, Chang Li, and Hang Pham

• Garbage collection without paging; Matthew Hertz, Yi Feng, and Emery D. Berger

• Automatic heap sizing: taking real memory into account; Ting Yang, Matthew Hertz, Emery D. Berger, Scott F. Kaplan, and J.
Eliot B. Moss

Recommended Skills: C programming experience; some operating systems and/or systems programming experience; some
compiler and garbage collector experience

Implement Successor ML Language Features

Any programming language, including Standard ML, can be improved. The community has identified a number of modest
extensions and revisions to the Standard ML programming language that would likely prove useful in practice. This project aims
to implement these language features in the MLton compiler.

Background:

• Successor ML

• HaMLet (Successor ML)

• A critique of Standard ML; Andrew W. Appel

Recommended Skills: SML programming experience; some front-end compiler experience (i.e., scanners and parsers)

Implement Source-level Debugging

Debugging is a fact of programming life. Unfortunately, most SML implementations (including MLton) provide little to no
source-level debugging support. This project aims to add basic to intermediate source-level debugging support to the MLton
compiler. MLton already supports source-level profiling, which can be used to attribute bytes allocated or time spent in source
functions. It should be relatively straightforward to leverage this source-level information into basic source-level debugging
support, with the ability to set/unset breakpoints and step through declarations and functions. It may be possible to also provide
intermediate source-level debugging support, with the ability to inspect in-scope variables of basic types (e.g., types compatible
with MLton’s foreign function interface).

Background:

• MLton — How Profiling Works

http://www.dcs.gla.ac.uk/%7Ewhited/papers/automated_heap_sizing.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4145125
http://portal.acm.org/citation.cfm?doid=1152649.1152652
http://portal.acm.org/citation.cfm?doid=1065010.1065028
http://portal.acm.org/citation.cfm?doid=1029873.1029881
http://successor-ml.org/index.php?title=Main_Page
http://www.mpi-sws.org/%7Erossberg/hamlet/index.html#successor-ml
http://journals.cambridge.org/action/displayAbstract?aid=1322628
http://mlton.org/HowProfilingWorks

MLton Guide (20180207) 213 / 611

• MLton — Foreign Function Interface Types

• DWARF Debugging Standard

• STABS Debugging Format

Recommended Skills: SML programming experience; some compiler experience

Region Based Memory Management

Region based memory management is an alternative automatic memory management scheme to garbage collection. Regions can
be inferred by the compiler (e.g., Cyclone and MLKit) or provided to the programmer through a library. Since many students do
not have extensive experience with compilers we plan on adopting the later approach. Creating a viable region based memory
solution requires the removal of the GC and changes to the allocator. Additionally, write barriers will be necessary to ensure
references between two ML objects is never established if the left hand side of the assignment has a longer lifetime than the
right hand side. Students will need to come up with an appropriate interface for creating, entering, and exiting regions (examples
include RTSJ scoped memory and SCJ scoped memory).

Background:

• Cyclone

• MLKit

• RTSJ + SCJ scopes

Recommended Skills: SML programming experience; C programming experience; some compiler and garbage collector experi-
ence

Integration of Multi-MLton

MultiMLton is a compiler and runtime environment that targets scalable multicore platforms. It is an extension of MLton. It
combines new language abstractions and associated compiler analyses for expressing and implementing various kinds of fine-
grained parallelism (safe futures, speculation, transactions, etc.), along with a sophisticated runtime system tuned to efficiently
handle large numbers of lightweight threads. The core stable features of MultiMLton will need to be integrated with the latest
MLton public release. Certain experimental features, such as support for the Intel SCC and distributed runtime will be omitted.
This project requires students to understand the delta between the MultiMLton code base and the MLton code base. Students
will need to create build and configuration scripts for MLton to enable MultiMLton features.

Background

• MultiMLton — Publications

Recommended Skills: SML programming experience; C programming experience; some compiler experience

Concurrent ML Improvements

Concurrent ML is an SML concurrency library based on synchronous message passing. MLton has a partial implementation of
the CML message-passing primitives, but its use in real-world applications has been stymied by the lack of completeness and
thread-safe I/O libraries. This project would aim to flesh out the CML implementation in MLton to be fully compatible with the
"official" version distributed as part of SML/NJ. Furthermore, time permitting, runtime system support could be added to allow
use of modern OS features, such as asynchronous I/O, in the implementation of CML’s system interfaces.

Background

• http://cml.cs.uchicago.edu/

• http://mlton.org/ConcurrentML

• http://mlton.org/ConcurrentMLImplementation

Recommended Skills: SML programming experience; knowledge of concurrent programming; some operating systems and/or
systems programming experience

http://mlton.org/ForeignFunctionInterfaceTypes
http://dwarfstd.org/
http://sourceware.org/gdb/current/onlinedocs/stabs/index.html
http://multimlton.cs.purdue.edu
http://multimlton.cs.purdue.edu/mML/Publications.html
http://cml.cs.uchicago.edu/
http://cml.cs.uchicago.edu/
http://mlton.org/ConcurrentML
http://mlton.org/ConcurrentMLImplementation

MLton Guide (20180207) 214 / 611

Google Summer of Code (2015)

Mentors

The following developers have agreed to serve as mentors for the 2015 Google Summer of Code:

• Matthew Fluet

• Lukasz (Luke) Ziarek

Ideas List

Design and Implement a Heap Profiler

A heap profile is a description of the space usage of a program. A heap profile is concerned with the allocation, retention, and
deallocation (via garbage collection) of heap data during the execution of a program. A heap profile can be used to diagnose
performance problems in a functional program that arise from space leaks. This project aims to design and implement a heap
profiler for MLton compiled programs.

Background:

• GCspy: an adaptable heap visualisation framework; Tony Printezis and Richard Jones

• New dimensions in heap profiling; Colin Runciman and Niklas Röjemo

• Heap profiling for space efficiency; Colin Runciman and Niklas Röjemo

• Heap profiling of lazy functional programs; Colin Runciman and David Wakeling

Recommended Skills: C and SML programming experience; some experience with UI and visualization

Garbage Collector Improvements

The garbage collector plays a significant role in the performance of functional languages. Garbage collect too often, and program
performance suffers due to the excessive time spent in the garbage collector. Garbage collect not often enough, and program
performance suffers due to the excessive space used by the uncollected garbage. One particular issue is ensuring that a program
utilizing a garbage collector "plays nice" with other processes on the system, by not using too much or too little physical mem-
ory. While there are some reasonable theoretical results about garbage collections with heaps of fixed size, there seems to be
insufficient work that really looks carefully at the question of dynamically resizing the heap in response to the live data demands
of the application and, similarly, in response to the behavior of the operating system and other processes. This project aims to
investigate improvements to the memory behavior of MLton compiled programs through better tuning of the garbage collector.

Background:

• The Garbage Collection Handbook: The Art of Automatic Memory Management; Richard Jones, Antony Hosking, Eliot Moss

• Dual-Mode Garbage Collection; Patrick Sansom

• Automatic Heap Sizing: Taking Real Memory into Account; Ting Yang, Matthew Hertz, Emery D. Berger, Scott F. Kaplan,
and J. Eliot B. Moss

• Controlling Garbage Collection and Heap Growth to Reduce the Execution Time of Java Applications; Tim Brecht, Eshrat
Arjomandi, Chang Li, and Hang Pham

• Isla Vista Heap Sizing: Using Feedback to Avoid Paging; Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski

• The Economics of Garbage Collection; Jeremy Singer, Richard E. Jones, Gavin Brown, and Mikel Luján

http://www.cs.rit.edu/%7Emtf
http://www.cse.buffalo.edu/%7Elziarek/
http://portal.acm.org/citation.cfm?doid=583854.582451
http://journals.cambridge.org/action/displayAbstract?aid=1349892
http://www.springerlink.com/content/710501660722gw37/
http://journals.cambridge.org/action/displayAbstract?aid=1323096
http://gchandbook.org/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.1020
http://portal.acm.org/citation.cfm?doid=1029873.1029881
http://portal.acm.org/citation.cfm?doid=1152649.1152652
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4145125
http://portal.acm.org/citation.cfm?doid=1806651.1806669

MLton Guide (20180207) 215 / 611

• Automated Heap Sizing in the Poly/ML Runtime (Position Paper); David White, Jeremy Singer, Jonathan Aitken, and David
Matthews

• Control Theory for Principled Heap Sizing; David R. White, Jeremy Singer, Jonathan M. Aitken, and Richard E. Jones

Recommended Skills: C programming experience; some operating systems and/or systems programming experience; some
compiler and garbage collector experience

Heap-allocated Activation Records

Activation records (a.k.a., stack frames) are traditionally allocated on a stack. This naturally corresponds to the call-return
pattern of function invocation. However, there are some disadvantages to stack-allocated activation records. In a functional
programming language, functions may be deeply recursive, resulting in call stacks that are much larger than typically supported
by the operating system; hence, a functional programming language implementation will typically store its stack in its heap.
Furthermore, a functional programming language implementation must handle and recover from stack overflow, by allocating a
larger stack (again, in its heap) and copying activation records from the old stack to the new stack. In the presence of threads,
stacks must be allocated in a heap and, in the presence of a garbage collector, should be garbage collected when unreachable.
While heap-allocated activation records avoid many of these disadvantages, they have not been widely implemented. This project
aims to implement and evaluate heap-allocated activation records in the MLton compiler.

Background:

• Empirical and Analytic Study of Stack Versus Heap Cost for Languages with Closures; Andrew W. Appel and Zhong Shao

• Space-efficient closure representations; Zhong Shao and Andrew W. Appel

• Representing control in the presence of first-class continuations; R. Hieb, R. Kent Dybvig, and Carl Bruggeman

Recommended Skills: SML programming experience; some middle- and back-end compiler experience

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is the de facto representation for floating-point computation.
However, it is a binary (base 2) representation of floating-point values, while many applications call for input and output of
floating-point values in decimal (base 10) representation. The decimal-to-binary conversion problem takes a decimal floating-
point representation (e.g., a string like "0.1") and returns the best binary floating-point representation of that number. The
binary-to-decimal conversion problem takes a binary floating-point representation and returns a decimal floating-point repre-
sentation using the smallest number of digits that allow the decimal floating-point representation to be converted to the original
binary floating-point representation. For both conversion routines, "best" is dependent upon the current floating-point rounding
mode.

MLton uses David Gay’s gdtoa library for floating-point conversions. While this is an exellent library, it generalizes the decimal-
to-binary and binary-to-decimal conversion routines beyond what is required by the Standard ML Basis Library and induces
an external dependency on the compiler. Native implementations of these conversion routines in Standard ML would obviate
the dependency on the gdtoa library, while also being able to take advantage of Standard ML features in the implementation
(e.g., the published algorithms often require use of infinite precision arithmetic, which is provided by the IntInf structure in
Standard ML, but is provided in an ad hoc fasion in the gdtoa library).

This project aims to develop a native implementation of the conversion routines in Standard ML.

Background:

• What every computer scientist should know about floating-point arithmetic; David Goldberg

• How to print floating-point numbers accurately; Guy L. Steele, Jr. and Jon L. White

• How to read floating point numbers accurately; William D. Clinger

• Correctly Rounded Binary-Decimal and Decimal-Binary Conversions; David Gay

http://www.dcs.gla.ac.uk/%7Ejsinger/pdfs/tfp12.pdf
http://portal.acm.org/citation.cfm?doid=2555670.2466481
http://journals.cambridge.org/action/displayAbstract?aid=1295104
http://portal.acm.org/citation.cfm?doid=182590.156783
http://portal.acm.org/citation.cfm?doid=93548.93554
http://en.wikipedia.org/wiki/IEEE_754-2008
http://www.netlib.org/fp/gdtoa.tgz
http://standardml.org/Basis/
http://dl.acm.org/citation.cfm?doid=103162.103163
http://dl.acm.org/citation.cfm?doid=93542.93559
http://dl.acm.org/citation.cfm?doid=93542.93557
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz

MLton Guide (20180207) 216 / 611

• Printing floating-point numbers quickly and accurately; Robert G. Burger and R. Kent Dybvig

• Printing floating-point numbers quickly and accurately with integers; Florian Loitsch

Recommended Skills: SML programming experience; algorithm design and implementation

Implement Source-level Debugging

Debugging is a fact of programming life. Unfortunately, most SML implementations (including MLton) provide little to no
source-level debugging support. This project aims to add basic to intermediate source-level debugging support to the MLton
compiler. MLton already supports source-level profiling, which can be used to attribute bytes allocated or time spent in source
functions. It should be relatively straightforward to leverage this source-level information into basic source-level debugging
support, with the ability to set/unset breakpoints and step through declarations and functions. It may be possible to also provide
intermediate source-level debugging support, with the ability to inspect in-scope variables of basic types (e.g., types compatible
with MLton’s foreign function interface).

Background:

• MLton — How Profiling Works

• MLton — Foreign Function Interface Types

• DWARF Debugging Standard

• STABS Debugging Format

Recommended Skills: SML programming experience; some compiler experience

Region Based Memory Management

Region based memory management is an alternative automatic memory management scheme to garbage collection. Regions can
be inferred by the compiler (e.g., Cyclone and MLKit) or provided to the programmer through a library. Since many students do
not have extensive experience with compilers we plan on adopting the later approach. Creating a viable region based memory
solution requires the removal of the GC and changes to the allocator. Additionally, write barriers will be necessary to ensure
references between two ML objects is never established if the left hand side of the assignment has a longer lifetime than the
right hand side. Students will need to come up with an appropriate interface for creating, entering, and exiting regions (examples
include RTSJ scoped memory and SCJ scoped memory).

Background:

• Cyclone

• MLKit

• RTSJ + SCJ scopes

Recommended Skills: SML programming experience; C programming experience; some compiler and garbage collector experi-
ence

Adding Real-Time Capabilities

This project focuses on exposing real-time APIs from a real-time OS kernel at the SML level. This will require mapping the
current MLton (or MultiMLton) threading framework to real-time threads that the RTOS provides. This will include associating
priorities with MLton threads and building priority based scheduling algorithms. Additionally, support for perdioc, aperiodic,
and sporadic tasks should be supported. A real-time SML library will need to be created to provide a forward facing interface for
programmers. Stretch goals include reworking the MLton atomic statement and associated synchronization primitives built on
top of the MLton atomic statement.

Recommended Skills: SML programming experience; C programming experience; real-time experience a plus but not required

http://dl.acm.org/citation.cfm?doid=249069.231397
http://dl.acm.org/citation.cfm?doid=1806596.1806623
http://mlton.org/HowProfilingWorks
http://mlton.org/ForeignFunctionInterfaceTypes
http://dwarfstd.org/
http://sourceware.org/gdb/current/onlinedocs/stabs/index.html
http://multimlton.cs.purdue.edu

MLton Guide (20180207) 217 / 611

Real-Time Garbage Collection

This project focuses on modifications to the MLton GC to support real-time garbage collection. We will model the real-time
GC on the Schism RTGC. The first task will be to create a fixed size runtime object representation. Large structures will need
to be represented as a linked lists of fixed sized objects. Arrays and vectors will be transferred into dense trees. Compaction
and copying can therefore be removed from the GC algorithms that MLton currently supports. Lastly, the GC will be made
concurrent, allowing for the execution of the GC threads as the lowest priority task in the system. Stretch goals include a priority
aware mechanism for the GC to signal to real-time ML threads that it needs to scan their stack and identification of places where
the stack is shallow to bound priority inversion during this procedure.

Recommended Skills: C programming experience; garbage collector experience a plus but not required

MLton Guide (20180207) 218 / 611

HaMLet

HaMLet is a Standard ML implementation. It is intended as reference implementation of The Definition of Standard ML (Re-
vised) and not for serious practical work.

http://www.mpi-sws.org/~rossberg/hamlet/

MLton Guide (20180207) 219 / 611

HenryCejtin

I was one of the original developers of Mathematica (actually employee #1). My background is a combination of mathematics
and computer science. Currently I am doing various things in Chicago.

MLton Guide (20180207) 220 / 611

History

In April 1997, Stephen Weeks wrote a defunctorizer for Standard ML and integrated it with SML/NJ. The defunctorizer used
SML/NJ’s visible compiler and operated on the Ast intermediate representation produced by the SML/NJ front end. Experi-
ments showed that defunctorization gave a speedup of up to six times over separate compilation and up to two times over batch
compilation without functor expansion.

In August 1997, we began development of an independent compiler for SML. At the time the compiler was called smlc. By
October, we had a working monomorphiser. By November, we added a polyvariant higher-order control-flow analysis. At that
point, MLton was about 10,000 lines of code.

Over the next year and half, smlc morphed into a full-fledged compiler for SML. It was renamed MLton, and first released in
March 1999.

From the start, MLton has been driven by whole-program optimization and an emphasis on performance. Also from the start,
MLton has had a fast C FFI and IntInf based on the GNU multiprecision library. At its first release, MLton was 48,006 lines.

Between the March 1999 and January 2002, MLton grew to 102,541 lines, as we added a native code generator, mllex, mlyacc,
a profiler, many optimizations, and many libraries including threads and signal handling.

During 2002, MLton grew to 112,204 lines and we had releases in April and September. We added support for cross compilation
and used this to enable MLton to run on Cygwin/Windows and FreeBSD. We also made improvements to the garbage collector,
so that it now works with large arrays and up to 4G of memory and so that it automatically uses copying, mark-compact, or
generational collection depending on heap usage and RAM size. We also continued improvements to the optimizer and libraries.

During 2003, MLton grew to 122,299 lines and we had releases in March and July. We extended the profiler to support source-
level profiling of time and allocation and to display call graphs. We completed the Basis Library implementation, and added new
MLton-specific libraries for weak pointers and finalization. We extended the FFI to allow callbacks from C to SML. We added
support for the Sparc/Solaris platform, and made many improvements to the C code generator.

MLton Guide (20180207) 221 / 611

HowProfilingWorks

Here’s how Profiling works. If profiling is on, the front end (elaborator) inserts Enter and Leave statements into the source
program for function entry and exit. For example,

fun f n = if n = 0 then 0 else 1 + f (n - 1)

becomes

fun f n =
let

val () = Enter "f"
val res = (if n = 0 then 0 else 1 + f (n - 1))

handle e => (Leave "f"; raise e)
val () = Leave "f"

in
res

end

Actually there is a bit more information than just the source function name; there is also lexical nesting and file position.

Most of the middle of the compiler ignores, but preserves, Enter and Leave. However, so that profiling preserves tail calls,
the SSA shrinker has an optimization that notices when the only operations that cause a call to be a nontail call are profiling
operations, and if so, moves them before the call, turning it into a tail call. If you observe a program that has a tail call that
appears to be turned into a nontail when compiled with profiling, please report a bug.

There is the checkProf function in type-check.fun, which checks that the Enter/Leave statements match up.

In the backend, just before translating to the Machine IL, the profiler uses the Enter/Leave statements to infer the "local"
portion of the control stack at each program point. The profiler then removes the Enters/Leaves and inserts different infor-
mation depending on which kind of profiling is happening. For time profiling (with the AMD64Codegen and X86Codegen), the
profiler inserts labels that cover the code (i.e. each statement has a unique label in its basic block that prefixes it) and associates
each label with the local control stack. For time profiling (with the CCodegen and LLVMCodegen), the profiler inserts code that
sets a global field that records the local control stack. For allocation profiling, the profiler inserts calls to a C function that will
maintain byte counts. With stack profiling, the profiler also inserts a call to a C function at each nontail call in order to maintain
information at runtime about what SML functions are on the stack.

At run time, the profiler associates counters (either clock ticks or byte counts) with source functions. When the program finishes,
the profiler writes the counts out to the mlmon.out file. Then, mlprof uses source information stored in the executable to
associate the counts in the mlmon.out file with source functions.

For time profiling, the profiler catches the SIGPROF signal 100 times per second and increments the appropriate counter, deter-
mined by looking at the label prefixing the current program counter and mapping that to the current source function.

Caveats

There may be a few missed clock ticks or bytes allocated at the very end of the program after the data is written.

Profiling has not been tested with signals or threads. In particular, stack profiling may behave strangely.

https://github.com/MLton/mlton/blob/master/mlton/ssa/type-check.fun

MLton Guide (20180207) 222 / 611

Identifier

In Standard ML, there are syntactically two kinds of identifiers.

• Alphanumeric: starts with a letter or prime (’) and is followed by letters, digits, primes and underbars (_).

Examples: abc, ABC123, Abc_123, ’a.

• Symbolic: a sequence of the following

! % & $ # + - / : < = > ? @ | ~ ‘ ^ | *

Examples: +=, <=, >>, $.

With the exception of =, reserved words can not be identifiers.

There are a number of different classes of identifiers, some of which have additional syntactic rules.

• Identifiers not starting with a prime.

– value identifier (includes variables and constructors)

– type constructor

– structure identifier

– signature identifier

– functor identifier

• Identifiers starting with a prime.

– type variable

• Identifiers not starting with a prime and numeric labels (1, 2, . . .).

– record label

MLton Guide (20180207) 223 / 611

Immutable

Immutable means not mutable and is an adjective meaning "can not be modified". Most values in Standard ML are immutable.
For example, constants, tuples, records, lists, and vectors are all immutable.

MLton Guide (20180207) 224 / 611

ImperativeTypeVariable

In Standard ML, an imperative type variable is a type variable whose second character is a digit, as in ’1a or ’2b. Imperative
type variables were used as an alternative to the ValueRestriction in an earlier version of SML, but no longer play a role. They
are treated exactly as other type variables.

MLton Guide (20180207) 225 / 611

ImplementExceptions

ImplementExceptions is a pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass implements exceptions.

Implementation

• implement-exceptions.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/xml/implement-exceptions.fun

MLton Guide (20180207) 226 / 611

ImplementHandlers

ImplementHandlers is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass implements the (threaded) exception handler stack.

Implementation

• implement-handlers.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/implement-handlers.fun

MLton Guide (20180207) 227 / 611

ImplementProfiling

ImplementProfiling is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass implements profiling.

Implementation

• implement-profiling.fun

Details and Notes

See HowProfilingWorks.

https://github.com/MLton/mlton/blob/master/mlton/backend/implement-profiling.fun

MLton Guide (20180207) 228 / 611

ImplementSuffix

ImplementSuffix is a pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass implements the TopLevel_setSuffix primitive, which installs a function to exit the program.

Implementation

• implement-suffix.fun

Details and Notes

ImplementSuffix works by introducing a new ref cell to contain the function of type unit -> unit that should be called on
program exit.

• The following code (appropriately alpha-converted) is appended to the beginning of the SXML program:

val z_0 =
fn a_0 =>
let

val x_0 =
"toplevel suffix not installed"

val x_1 =
MLton_bug (x_0)

in
x_1

end
val topLevelSuffixCell =
Ref_ref (z_0)

• Any occurrence of

val x_0 =
TopLevel_setSuffix (f_0)

is rewritten to

val x_0 =
Ref_assign (topLevelSuffixCell, f_0)

• The following code (appropriately alpha-converted) is appended to the end of the SXML program:

val f_0 =
Ref_deref (topLevelSuffixCell)

val z_0 =
()

val x_0 =
f_0 z_0

https://github.com/MLton/mlton/blob/master/mlton/xml/implement-suffix.fun

MLton Guide (20180207) 229 / 611

InfixingOperators

Fixity specifications are not part of signatures in Standard ML. When one wants to use a module that provides functions designed
to be used as infix operators there are several obvious alternatives:

• Use only prefix applications. Unfortunately there are situations where infix applications lead to considerably more readable
code.

• Make the fixity declarations at the top-level. This may lead to collisions and may be unsustainable in a large project. Pollution
of the top-level should be avoided.

• Make the fixity declarations at each scope where you want to use infix applications. The duplication becomes inconvenient if
the operators are widely used. Duplication of code should be avoided.

• Use non-standard extensions, such as the ML Basis system to control the scope of fixity declarations. This has the obvious
drawback of reduced portability.

• Reuse existing infix operator symbols (ˆ, +, -, . . .). This can be convenient when the standard operators aren’t needed in
the same scope with the new operators. On the other hand, one is limited to the standard operator symbols and the code may
appear confusing.

None of the obvious alternatives is best in every case. The following describes a slightly less obvious alternative that can
sometimes be useful. The idea is to approximate Haskell’s special syntax for treating any identifier enclosed in grave accents
(backquotes) as an infix operator. In Haskell, instead of writing the prefix application f x y one can write the infix application
x `f` y.

Infixing operators

Let’s first take a look at the definitions of the operators:

infix 3 <\ fun x <\ f = fn y => f (x, y) (* Left section *)
infix 3 \> fun f \> y = f y (* Left application *)
infixr 3 /> fun f /> y = fn x => f (x, y) (* Right section *)
infixr 3 </ fun x </ f = f x (* Right application *)

infix 2 o (* See motivation below *)
infix 0 :=

The left and right sectioning operators, <\ and />, are useful in SML for partial application of infix operators. ML For the
Working Programmer describes curried functions secl and secr for the same purpose on pages 179-181. For example,

List.map (op- /> y)

is a function for subtracting y from a list of integers and

List.exists (x <\ op=)

is a function for testing whether a list contains an x.

Together with the left and right application operators, \> and </, the sectioning operators provide a way to treat any binary
function (i.e. a function whose domain is a pair) as an infix operator. In general,

x0 <\f1\> x1 <\f2\> x2 ... <\fN\> xN = fN (... f2 (f1 (x0, x1), x2) ..., xN)

and

xN </fN/> ... x2 </f2/> x1 </f1/> x0 = fN (xN, ... f2 (x2, f1 (x1, x0)) ...)

MLton Guide (20180207) 230 / 611

Examples

As a fairly realistic example, consider providing a function for sequencing comparisons:

structure Order (* ... *) =
struct

(* ... *)
val orWhenEq = fn (EQUAL, th) => th ()

| (other, _) => other
(* ... *)

end

Using orWhenEq and the infixing operators, one can write a compare function for triples as

fun compare (fad, fbe, fcf) ((a, b, c), (d, e, f)) =
fad (a, d) <\Order.orWhenEq\> ‘fbe (b, e) <\Order.orWhenEq\> ‘fcf (c, f)

where ` is defined as

fun ‘f x = fn () => f x

Although orWhenEq can be convenient (try rewriting the above without it), it is probably not useful enough to be defined at the
top level as an infix operator. Fortunately we can use the infixing operators and don’t have to.

Another fairly realistic example would be to use the infixing operators with the technique described on the Printf page. Assuming
that you would have a Printf module binding printf, `, and formatting combinators named int and string, you could
write

let open Printf in
printf (‘"Here’s an int "<\int\>" and a string "<\string\>".") 13 "foo" end

without having to duplicate the fixity declarations. Alternatively, you could write

P.printf (P.‘"Here’s an int "<\P.int\>" and a string "<\P.string\>".") 13 "foo"

assuming you have the made the binding

structure P = Printf

Application and piping operators

The left and right application operators may also provide some notational convenience on their own. In general,

f \> x1 \> ... \> xN = f x1 ... xN

and

xN </ ... </ x1 </ f = f x1 ... xN

If nothing else, both of them can eliminate parentheses. For example,

foo (1 + 2) = foo \> 1 + 2

The left and right application operators are related to operators that could be described as the right and left piping operators:

infix 1 >| val op>| = op</ (* Left pipe *)
infixr 1 |< val op|< = op\> (* Right pipe *)

As you can see, the left and right piping operators, >| and |<, are the same as the right and left application operators, respectively,
except the associativities are reversed and the binding strength is lower. They are useful for piping data through a sequence of
operations. In general,

MLton Guide (20180207) 231 / 611

x >| f1 >| ... >| fN = fN (... (f1 x) ...) = (fN o ... o f1) x

and

fN |< ... |< f1 |< x = fN (... (f1 x) ...) = (fN o ... o f1) x

The right piping operator, |<, is provided by the Haskell prelude as $. It can be convenient in CPS or continuation passing style.

A use for the left piping operator is with parsing combinators. In a strict language, like SML, eta-reduction is generally unsafe.
Using the left piping operator, parsing functions can be formatted conveniently as

fun parsingFunc input =
input >| (* ... *)

|| (* ... *)
|| (* ... *)

where || is supposed to be a combinator provided by the parsing combinator library.

About precedences

You probably noticed that we redefined the precedences of the function composition operator o and the assignment operator :
=. Doing so is not strictly necessary, but can be convenient and should be relatively safe. Consider the following motivating
examples from Wesley W. Terpstra relying on the redefined precedences:

Word8.fromInt o Char.ord o s <\String.sub
(* Combining sectioning and composition *)

x := s <\String.sub\> i
(* Assigning the result of an infixed application *)

In imperative languages, assignment usually has the lowest precedence (ignoring statement separators). The precedence of := in
the Basis Library is perhaps unnecessarily high, because an expression of the form r :=x always returns a unit, which makes
little sense to combine with anything. Dropping := to the lowest precedence level makes it behave more like in other imperative
languages.

The case for o is different. With the exception of before and :=, it doesn’t seem to make much sense to use o with any of
the operators defined by the Basis Library in an unparenthesized expression. This is simply because none of the other operators
deal with functions. It would seem that the precedence of o could be chosen completely arbitrarily from the set {1, ..., 9}
without having any adverse effects with respect to other infix operators defined by the Basis Library.

Design of the symbols

The closest approximation of Haskell’s x `f` y syntax achievable in Standard ML would probably be something like x `fˆ
y, but ˆ is already used for string concatenation by the Basis Library. Other combinations of the characters ` and ˆ would be
possible, but none seems clearly the best visually. The symbols <\, \>, </, and /> are reasonably concise and have a certain
self-documenting appearance and symmetry, which can help to remember them. As the names suggest, the symbols of the piping
operators >| and |< are inspired by Unix shell pipelines.

Also see

• Utilities

MLton Guide (20180207) 232 / 611

Inline

Inline is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass inlines SSA functions using a size-based metric.

Implementation

• inline.sig

• inline.fun

Details and Notes

The Inline pass can be invoked to use one of three metrics:

• NonRecursive(product, small)— inline any function satisfying (numCalls -1) * (size -small) <=pr
oduct, where numCalls is the static number of calls to the function and size is the size of the function.

• Leaf(size)— inline any leaf function smaller than size

• LeafNoLoop(size)— inline any leaf function without loops smaller than size

https://github.com/MLton/mlton/blob/master/mlton/ssa/inline.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/inline.fun

MLton Guide (20180207) 233 / 611

InsertLimitChecks

InsertLimitChecks is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass inserts limit checks.

Implementation

• limit-check.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/limit-check.fun

MLton Guide (20180207) 234 / 611

InsertSignalChecks

InsertSignalChecks is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass inserts signal checks.

Implementation

• limit-check.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/limit-check.fun

MLton Guide (20180207) 235 / 611

Installation

MLton runs on a variety of platforms and is distributed in both source and binary form.

A .tgz or .tbz binary package can be extracted at any location, yielding README.adoc (this file), CHANGELOG.adoc,
LICENSE, Makefile, bin/, lib/, and share/. The compiler and tools can be executed in-place (e.g., ./bin/mlton).

A small set of Makefile variables can be used to customize the binary package via make update:

• CC: Specify C compiler. Can be used for alternative tools (e.g., CC=clang or CC=gcc-7).

• WITH_GMP_DIR, WITH_GMP_INC_DIR, WITH_GMP_LIB_DIR: Specify GMP include and library paths, if not on default
search paths. (If WITH_GMP_DIR is set, then WITH_GMP_INC_DIR defaults to $(WITH_GMP_DIR)/include and
WITH_GMP_LIB_DIR defaults to $(WITH_GMP_DIR)/lib.)

For example:

$ make CC=clang WITH_GMP_DIR=/opt/gmp update

On typical platforms, installing MLton (after optionally performing make update) to /usr/local can be accomplished
via:

$ make install

A small set of Makefile variables can be used to customize the installation:

• PREFIX: Specify the installation prefix.

• CC: Specify C compiler. Can be used for alternative tools (e.g., CC=clang or CC=gcc-7).

• WITH_GMP_DIR, WITH_GMP_INC_DIR, WITH_GMP_LIB_DIR: Specify GMP include and library paths, if not on default
search paths. (If WITH_GMP_DIR is set, then WITH_GMP_INC_DIR defaults to $(WITH_GMP_DIR)/include and
WITH_GMP_LIB_DIR defaults to $(WITH_GMP_DIR)/lib.)

For example:

$ make PREFIX=/opt/mlton install

Installation of MLton creates the following files and directories.

• prefix/bin/mllex

The MLLex lexer generator.

• prefix/bin/mlnlffigen

The ML-NLFFI tool.

• prefix/bin/mlprof

A Profiling tool.

• prefix/bin/mlton

A script to call the compiler. This script may be moved anywhere, however, it makes use of files in prefix/lib/mlton.

• prefix/bin/mlyacc

The MLYacc parser generator.

• prefix/lib/mlton

Directory containing libraries and include files needed during compilation.

• prefix/share/man/man1/{mllex,mlnlffigen,mlprof,mlton,mlyacc}.1

Man pages.

• prefix/share/doc/mlton

Directory containing the user guide for MLton, mllex, and mlyacc, as well as example SML programs (in the examples
directory), and license information.

MLton Guide (20180207) 236 / 611

Hello, World!

Once you have installed MLton, create a file called hello-world.sml with the following contents.

print "Hello, world!\n";

Now create an executable, hello-world, with the following command.

mlton hello-world.sml

You can now run hello-world to verify that it works. There are more small examples in prefix/share/doc/mlton/
examples.

Installation on Cygwin

When installing the Cygwin tgz, you should use Cygwin’s bash and tar. The use of an archiving tool that is not aware of
Cygwin’s mounts will put the files in the wrong place.

MLton Guide (20180207) 237 / 611

IntermediateLanguage

MLton uses a number of intermediate languages in translating from the input source program to low-level code. Here is a list in
the order which they are translated to.

• AST. Pretty close to the source.

• CoreML. Explicitly typed, no module constructs.

• XML. Polymorphic, HigherOrder.

• SXML. SimplyTyped, HigherOrder.

• SSA. SimplyTyped, FirstOrder.

• SSA2. SimplyTyped, FirstOrder.

• RSSA. Explicit data representations.

• Machine. Untyped register transfer language.

MLton Guide (20180207) 238 / 611

IntroduceLoops

IntroduceLoops is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass rewrites any SSA function that calls itself in tail position into one with a local loop and no self tail calls.

A SSA function like

fun F (arg_0, arg_1) = L_0 ()
...
L_16 (x_0)
...
F (z_0, z_1) Tail

...

becomes

fun F (arg_0’, arg_1’) = loopS_0 ()
loopS_0 ()
loop_0 (arg_0’, arg_1’)

loop_0 (arg_0, arg_1)
L_0 ()

...
L_16 (x_0)
...
loop_0 (z_0, z_1)

...

Implementation

• introduce-loops.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/introduce-loops.fun

MLton Guide (20180207) 239 / 611

JesperLouisAndersen

Jesper Louis Andersen is an undergraduate student at DIKU, the department of computer science, Copenhagen university. His
contributions to MLton are few, though he has made the port of MLton to the NetBSD and OpenBSD platforms.

His general interests in computer science are compiler theory, language theory, algorithms and datastructures and programming.
His assets are his general knowledge of UNIX systems, knowledge of system administration, knowledge of operating system
kernels; NetBSD in particular.

He was employed by the university as a system administrator for 2 years, which has set him back somewhat in his studies.
Currently he is trying to learn mathematics (real analysis, general topology, complex functional analysis and algebra).

Projects using MLton

A register allocator

For internal use at a compiler course at DIKU. It is written in the literate programming style and implements the Iterated Register
Coalescing algorithm by Lal George and Andrew Appel http://citeseer.ist.psu.edu/george96iterated.html. The status of the project
is that it is unfinished. Most of the basic parts of the algorithm is done, but the interface to the students (simple) datatype takes
some conversion.

A configuration management system in SML

At this time, only loose plans exists for this. The plan is to build a Configuration Management system on the principles of the
OpenCM system, see http://www.opencm.org/docs.html. The basic idea is to unify "naming" and "identity" into one by uniquely
identifying all objects managed in the repository by the use of cryptographic checksums. This mantra guides the rest of the
system, providing integrity, accessibility and confidentiality.

http://citeseer.ist.psu.edu/george96iterated.html
http://www.opencm.org/docs.html

MLton Guide (20180207) 240 / 611

JohnnyAndersen

Johnny Andersen (aka Anoq of the Sun)

Here is a picture in front of the academy building at the University of Athens, Greece, taken in September 2003.

MLton Guide (20180207) 241 / 611

KnownCase

KnownCase is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass duplicates and simplifies Case transfers when the constructor of the scrutinee is known.

Uses Restore.

For example, the program

val rec last =
fn [] => 0
| [x] => x
| _ :: l => last l

val _ = 1 + last [2, 3, 4, 5, 6, 7]

gives rise to the SSA function

fun last_0 (x_142) = loopS_1 ()
loopS_1 ()
loop_11 (x_142)

loop_11 (x_143)
case x_143 of

nil_1 => L_73 | ::_0 => L_74
L_73 ()
return global_5

L_74 (x_145, x_144)
case x_145 of

nil_1 => L_75 | _ => L_76
L_75 ()
return x_144

L_76 ()
loop_11 (x_145)

which is simplified to

fun last_0 (x_142) = loopS_1 ()
loopS_1 ()
case x_142 of

nil_1 => L_73 | ::_0 => L_118
L_73 ()
return global_5

L_118 (x_230, x_229)
L_74 (x_230, x_229, x_142)

L_74 (x_145, x_144, x_232)
case x_145 of

nil_1 => L_75 | ::_0 => L_114
L_75 ()
return x_144

L_114 (x_227, x_226)
L_74 (x_227, x_226, x_145)

Implementation

• known-case.fun

https://github.com/MLton/mlton/blob/master/mlton/ssa/known-case.fun

MLton Guide (20180207) 242 / 611

Details and Notes

One interesting aspect of KnownCase, is that it often has the effect of unrolling list traversals by one iteration, moving the nil/:
: check to the end of the loop, rather than the beginning.

MLton Guide (20180207) 243 / 611

LambdaCalculus

The lambda calculus is the formal system underlying Standard ML.

http://en.wikipedia.org/wiki/Lambda_calculus

MLton Guide (20180207) 244 / 611

LambdaFree

LambdaFree is an analysis pass for the SXML IntermediateLanguage, invoked from ClosureConvert.

Description

This pass descends the entire SXML program and attaches a property to each Lambda PrimExp.t in the program. Then, you
can use lambdaFree and lambdaRec to get free variables of that Lambda.

Implementation

• lambda-free.sig

• lambda-free.fun

Details and Notes

For Lambda-s bound in a Fun dec, lambdaFree gives the union of the frees of the entire group of mutually recursive functions.
Hence, lambdaFree for every Lambda in a single Fun dec is the same. Furthermore, for a Lambda bound in a Fun dec,
lambdaRec gives the list of other functions bound in the same dec defining that Lambda.

For example:

val rec f = fn x => ... y ... g ... f ...
and g = fn z => ... f ... w ...

lambdaFree(fn x =>) = [y, w]
lambdaFree(fn z =>) = [y, w]
lambdaRec(fn x =>) = [g, f]
lambdaRec(fn z =>) = [f]

https://github.com/MLton/mlton/blob/master/mlton/closure-convert/lambda-free.sig
https://github.com/MLton/mlton/blob/master/mlton/closure-convert/lambda-free.fun

MLton Guide (20180207) 245 / 611

LanguageChanges

We are sometimes asked to modify MLton to change the language it compiles. In short, we are conservative about making such
changes. There are a number of reasons for this.

• The Definition of Standard ML is an extremely high standard of specification. The value of the Definition would be significantly
diluted by changes that are not specified at an equally high level, and the dilution increases with the complexity of the language
change and its interaction with other language features.

• The SML community is small and there are a number of SML implementations. Without an agreed-upon standard, it becomes
very difficult to port programs between compilers, and the community would be balkanized.

• Our main goal is to enable programmers to be as effective as possible with MLton/SML. There are a number of improvements
other than language changes that we could spend our time on that would provide more benefit to programmers.

• The more the language that MLton compiles changes over time, the more difficult it is to use MLton as a stable platform for
serious program development.

Despite these drawbacks, we have extended SML in a couple of cases.

• Foreign function interface

• ML Basis system

• Successor ML features

We allow these language extensions because they provide functionality that is impossible to achieve without them or have non-
trivial community support. The Definition does not define a foreign function interface. So, we must either extend the language or
greatly restrict the class of programs that can be written. Similarly, the Definition does not provide a mechanism for namespace
control at the module level, making it impossible to deliver packaged libraries and have a hope of users using them without name
clashes. The ML Basis system addresses this problem. We have also provided a formal specification of the ML Basis system at
the level of the Definition.

Also see

• http://www.mlton.org/pipermail/mlton/2004-August/016165.html

• http://www.mlton.org/pipermail/mlton-user/2004-December/000320.html

http://www.mlton.org/pipermail/mlton/2004-August/016165.html
http://www.mlton.org/pipermail/mlton-user/2004-December/000320.html

MLton Guide (20180207) 246 / 611

Lazy

In a lazy (or non-strict) language, the arguments to a function are not evaluated before calling the function. Instead, the arguments
are suspended and only evaluated by the function if needed.

Standard ML is an eager (or strict) language, not a lazy language. However, it is easy to delay evaluation of an expression in
SML by creating a thunk, which is a nullary function. In SML, a thunk is written fn () => e. Another essential feature of
laziness is memoization, meaning that once a suspended argument is evaluated, subsequent references look up the value. We can
express this in SML with a function that maps a thunk to a memoized thunk.

signature LAZY =
sig

val lazy: (unit -> ’a) -> unit -> ’a
end

This is easy to implement in SML.

structure Lazy: LAZY =
struct

fun lazy (th: unit -> ’a): unit -> ’a =
let

datatype ’a lazy_result = Unevaluated of (unit -> ’a)
| Evaluated of ’a
| Failed of exn

val r = ref (Unevaluated th)
in

fn () =>
case !r of

Unevaluated th => let
val a = th ()

handle x => (r := Failed x; raise x)
val () = r := Evaluated a

in
a

end
| Evaluated a => a
| Failed x => raise x

end
end

MLton Guide (20180207) 247 / 611

Libraries

In theory every strictly conforming Standard ML program should run on MLton. However, often large SML projects use imple-
mentation specific features so some "porting" is required. Here is a partial list of software that is known to run on MLton.

• Utility libraries:

– SMLNJLibrary - distributed with MLton

– MLtonLibraryProject - various libraries located on the MLton subversion repository

– mlton - the internal MLton utility library, which we hope to cleanup and make more accessible someday

– sml-ext, a grab bag of libraries for MLton and other SML implementations (by Sean McLaughlin)

– sml-lib, a grab bag of libraries for MLton and other SML implementations (by TomMurphy)

• Scanner generators:

– MLLPTLibrary - distributed with MLton

– MLLex - distributed with MLton

– MLULex -

• Parser generators:

– MLAntlr -

– MLLPTLibrary - distributed with MLton

– MLYacc - distributed with MLton

• Concurrency: ConcurrentML - distributed with MLton

• Graphics

– SML3d

– mGTK

• Misc. libraries:

– CKitLibrary - distributed with MLton

– MLRISCLibrary - distributed with MLton

– ML-NLFFI - distributed with MLton

– Swerve, an HTTP server

– fxp, an XML parser

Ports in progress

Contact us for details on any of these.

• MLDoc http://people.cs.uchicago.edu/%7Ejhr/tools/ml-doc.html

• Unicode

More

More projects using MLton can be seen on the Users page.

https://github.com/MLton/mlton/tree/master/lib/mlton
http://github.com/seanmcl/sml-ext
http://tom7misc.cvs.sourceforge.net/tom7misc/sml-lib/
http://people.cs.uchicago.edu/%7Ejhr/tools/ml-doc.html

MLton Guide (20180207) 248 / 611

Software for SML implementations other than MLton

• PostgreSQL

– Moscow ML: http://www.dina.kvl.dk/%7Esestoft/mosmllib/Postgres.html

– SML/NJ NLFFI: http://smlweb.sourceforge.net/smlsql/

• Web:

– ML Kit: SMLserver (a plugin for AOLserver)

– Moscow ML: ML Server Pages (support for PHP-style CGI scripting)

– SML/NJ: smlweb

http://www.dina.kvl.dk/%7Esestoft/mosmllib/Postgres.html
http://smlweb.sourceforge.net/smlsql/
http://www.smlserver.org
http://ellemose.dina.kvl.dk/%7Esestoft/msp/index.msp
http://smlweb.sourceforge.net/

MLton Guide (20180207) 249 / 611

LibrarySupport

MLton supports both linking to and creating system-level libraries. While Standard ML libraries should be designed with the
MLBasis system to work with other Standard ML programs, system-level library support allows MLton to create libraries for use
by other programming languages. Even more importantly, system-level library support allows MLton to access libraries from
other languages. This article will explain how to use libraries portably with MLton.

The Basics

A Dynamic Shared Object (DSO) is a piece of executable code written in a format understood by the operating system. Executable
programs and dynamic libraries are the two most common examples of a DSO. They are called shared because if they are used
more than once, they are only loaded once into main memory. For example, if you start two instances of your web browser (an
executable), there may be two processes running, but the program code of the executable is only loaded once. A dynamic library,
for example a graphical toolkit, might be used by several different executable programs, each possibly running multiple times.
Nevertheless, the dynamic library is only loaded once and it’s program code is shared between all of the processes.

In addition to program code, DSOs contain a table of textual strings called symbols. These are used in order to make the DSO
do something useful, like execute. For example, on linux the symbol _start refers to the point in the program code where
the operating system should start executing the program. Dynamic libraries generally provide many symbols, corresponding to
functions which can be called and variables which can be read or written. Symbols can be used by the DSO itself, or by other
DSOs which require services.

When a DSO creates a symbol, this is called exporting. If a DSO needs to use a symbol, this is called importing. A DSO might
need to use symbols defined within itself or perhaps from another DSO. In both cases, it is importing that symbol, but the scope
of the import differs. Similarly, a DSO might export a symbol for use only within itself, or it might export a symbol for use by
other DSOs. Some symbols are resolved at compile time by the linker (those used within the DSO) and some are resolved at
runtime by the dynamic link loader (symbols accessed between DSOs).

Symbols in MLton

Symbols in MLton are both imported and exported via the ForeignFunctionInterface. The notation _import "symbolname"
imports functions, _symbol "symbolname" imports variables, and _address "symbolname" imports an address.
To create and export a symbol, _export "symbolname" creates a function symbol and _symbol "symbolname"
’alloc’ creates and exports a variable. For details of the syntax and restrictions on the supported FFI types, read the For-
eignFunctionInterface page. In this discussion it only matters that every FFI use is either an import or an export.

When exporting a symbol, MLton supports controlling the export scope. If the symbol should only be used within the same DSO,
that symbol has private scope. Conversely, if the symbol should also be available to other DSOs the symbol has public
scope. Generally, one should have as few public exports as possible. Since they are public, other DSOs will come to depend on
them, limiting your ability to change them. You specify the export scope in MLton by putting private or public after the
symbol’s name in an FFI directive. eg: _export "foo" private:int->int; or _export "bar" public:int-
>int; .

For technical reasons, the linker and loader on various platforms need to know the scope of a symbol being imported. If the
symbol is exported by the same DSO, use public or private as appropriate. If the symbol is exported by a different
DSO, then the scope external should be used to import it. Within a DSO, all references to a symbol must use the same
scope. MLton will check this at compile time, reporting: symbol "foo" redeclared as public (previously
external). This may cause linker errors. However, MLton can only check usage within Standard ML. All objects being
linked into a resulting DSO must agree, and it is the programmer’s responsibility to ensure this.

Summary of symbol scopes:

• private: used for symbols exported within a DSO only for use within that DSO

• public: used for symbols exported within a DSO that may also be used outside that DSO

• external: used for importing symbols from another DSO

• All uses of a symbol within a DSO (both imports and exports) must agree on the symbol scope

MLton Guide (20180207) 250 / 611

Output Formats

MLton can create executables (-format executable) and dynamic shared libraries (-format library). To link a
shared library, use -link-opt -l<dso_name>. The default output format is executable.

MLton can also create archives. An archive is not a DSO, but it does have a collection of symbols. When an archive is linked into
a DSO, it is completely absorbed. Other objects being compiled into the DSO should refer to the public symbols in the archive
as public, since they are still in the same DSO. However, in the interest of modular programming, private symbols in an archive
cannot be used outside of that archive, even within the same DSO.

Although both executables and libraries are DSOs, some implementation details differ on some platforms. For this reason,
MLton can create two types or archives. A normal archive (-format archive) is appropriate for linking into an executable.
Conversely, a libarchive (-format libarchive) should be used if it will be linked into a dynamic library.

When MLton does not create an executable, it creates two special symbols. The symbol libname_open is a function which
must be called before any other symbols are accessed. The libname is controlled by the -libname compile option and defaults
to the name of the output, with any prefixing lib stripped (eg: foo→ foo, libfoo→ foo). The symbol libname_close
is a function which should be called to clean up memory once done.

Summary of -format options:

• executable: create an executable (a DSO)

• library: create a dynamic shared library (a DSO)

• archive: create an archive of symbols (not a DSO) that can be linked into an executable

• libarchive: create an archive of symbols (not a DSO) that can be linked into a library

Related options:

• -libname x: controls the name of the special _open and _close functions.

Interfacing with C

MLton can generate a C header file. When the output format is not an executable, it creates one by default named libname.h.
This can be overridden with -export-header foo.h. This header file should be included by any C files using the exported
Standard ML symbols.

If C is being linked with Standard ML into the same output archive or DSO, then the C code should #define PART_OF_L
IBNAME before it includes the header file. This ensures that the C code is using the symbols with correct scope. Any symbols
exported from C should also be marked using the PRIVATE/PUBLIC/EXTERNAL macros defined in the Standard ML export
header. The declared C scope on exported C symbols should match the import scope used in Standard ML.

An example:

#define PART_OF_FOO
#include "foo.h"

PUBLIC int cFoo() {
return smlFoo();

}

val () = _export "smlFoo" private: unit -> int; (fn () => 5)
val cFoo = _import "cFoo" public: unit -> int;

MLton Guide (20180207) 251 / 611

Operating-system specific details

On Windows, libarchive and archive are the same. However, depending on this will lead to portability problems. Win-
dows is also especially sensitive to mixups of public and external. If an archive is linked, make sure it’s symbols are
imported as public. If a DLL is linked, make sure it’s symbols are imported as external. Using external instead of
public will result in link errors that __imp__foo is undefined. Using public instead of external will result in
inconsistent function pointer addresses and failure to update the imported variables.

On Linux, libarchive and archive are different. Libarchives are quite rare, but necessary if creating a library from an
archive. It is common for a library to provide both an archive and a dynamic library on this platform. The linker will pick one or
the other, usually preferring the dynamic library. While a quirk of the operating system allows external import to work for both
archives and libraries, portable projects should not depend on this behaviour. On other systems it can matter how the library is
linked (static or dynamic).

MLton Guide (20180207) 252 / 611

License

Web Site

In order to allow the maximum freedom for the future use of the content in this web site, we require that contributions to the web
site be dedicated to the public domain. That means that you can only add works that are already in the public domain, or that you
must hold the copyright on the work that you agree to dedicate the work to the public domain.

By contributing to this web site, you agree to dedicate your contribution to the public domain.

Software

As of 20050812, MLton software is licensed under the BSD-style license below. By contributing code to the project, you agree
to release the code under this license. Contributors can retain copyright to their contributions by asserting copyright in their code.
Contributors may also add to the list of copyright holders in doc/license/MLton-LICENSE, which appears below.

../../LICENSE

MLton Guide (20180207) 253 / 611

LineDirective

To aid in the debugging of code produced by program generators such as Noweb, MLton supports comments with line directives
of the form

(*#line l.c "f"*)

Here, l and c are sequences of decimal digits and f is the source file. The first character of a source file has the position 1.1. A
line directive causes the front end to believe that the character following the right parenthesis is at the line and column of the
specified file. A line directive only affects the reporting of error messages and does not affect program semantics (except for
functions like MLton.Exn.history that report source file positions). Syntactically invalid line directives are ignored. To
prevent incompatibilities with SML, the file name may not contain the character sequence *).

http://www.eecs.harvard.edu/%7Enr/noweb/

MLton Guide (20180207) 254 / 611

LLVM

The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.

MLton supports code generation via LLVM (-codegen llvm); see LLVMCodegen.

Also see

• CMinusMinus

http://www.llvm.org/

MLton Guide (20180207) 255 / 611

LLVMCodegen

The LLVMCodegen is a code generator that translates the Machine IntermediateLanguage to LLVM assembly, which is further
optimized and compiled to native object code by the LLVM toolchain.

It requires LLVM version 3.7 or greater to be installed.

In benchmarks performed on the AMD64 architecture, code size with this generator is usually slightly smaller than either the
native or the C code generators. Compile time is worse than native, but slightly better than C. Run time is often better than either
native or C.

Implementation

• llvm-codegen.sig

• llvm-codegen.fun

Details and Notes

The LLVMCodegen was initially developed by Brian Leibig (see An LLVM Back-end for MLton).

https://github.com/MLton/mlton/blob/master/mlton/codegen/llvm-codegen/llvm-codegen.sig
https://github.com/MLton/mlton/blob/master/mlton/codegen/llvm-codegen/llvm-codegen.fun

MLton Guide (20180207) 256 / 611

LocalFlatten

LocalFlatten is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass flattens arguments to SSA blocks.

A block argument is flattened as long as it only flows to selects and there is some tuple constructed in this function that flows to
it.

Implementation

• local-flatten.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/local-flatten.fun

MLton Guide (20180207) 257 / 611

LocalRef

LocalRef is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass optimizes ref cells local to a SSA function:

• global ref-s only used in one function are moved to the function

• ref-s only created, read from, and written to (i.e., don’t escape) are converted into function local variables

Uses Multi and Restore.

Implementation

• local-ref.fun

Details and Notes

Moving a global ref requires the Multi analysis, because a global ref can only be moved into a function that is executed at
most once.

Conversion of non-escaping ref-s is structured in three phases:

• analysis — a variable r =Ref_ref x escapes if

– r is used in any context besides Ref_assign (r, _) or Ref_deref r

– all uses r reachable from a (direct or indirect) call to Thread_copyCurrent are of the same flavor (either Ref_assign
or Ref_deref); this also requires the Multi analysis.

• transformation

– rewrites r =Ref_ref x to r =x

– rewrites _ =Ref_assign (r, y) to r =y

– rewrites z =Ref_deref r to z =r

Note that the resulting program violates the SSA condition.

• Restore — restore the SSA condition.

https://github.com/MLton/mlton/blob/master/mlton/ssa/local-ref.fun

MLton Guide (20180207) 258 / 611

Logo

Files

• mlton.svg

• mlton-1024.png

• mlton-512.png

• mlton-256.png

• mlton-128.png

• mlton-64.png

• mlton-32.png

guide/Logo.attachments/mlton.svg
guide/Logo.attachments/mlton-1024.png
guide/Logo.attachments/mlton-512.png
guide/Logo.attachments/mlton-256.png
guide/Logo.attachments/mlton-128.png
guide/Logo.attachments/mlton-64.png
guide/Logo.attachments/mlton-32.png

MLton Guide (20180207) 259 / 611

LoopInvariant

LoopInvariant is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass removes loop invariant arguments to local loops.

loop (x, y)
...

...
loop (x, z)

...

becomes

loop’ (x, y)
loop (y)

loop (y)
...

...
loop (z)

...

Implementation

• loop-invariant.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/loop-invariant.fun

MLton Guide (20180207) 260 / 611

LoopUnroll

LoopUnroll is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

A simple loop unrolling optimization.

Implementation

• loop-unroll.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/loop-unroll.fun

MLton Guide (20180207) 261 / 611

LoopUnswitch

LoopUnswitch is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

A simple loop unswitching optimization.

Implementation

• loop-unswitch.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/loop-unswitch.fun

MLton Guide (20180207) 262 / 611

Machine

Machine is an IntermediateLanguage, translated from RSSA by ToMachine and used as input by the Codegen.

Description

Machine is an Untyped IntermediateLanguage, corresponding to a abstract register machine.

Implementation

• machine.sig

• machine.fun

Type Checking

The Machine IntermediateLanguage has a primitive type checker (machine.sig, machine.fun), which only checks some
liveness properties.

Details and Notes

The runtime structure sets some constants according to the configuration files on the target architecture and OS.

https://github.com/MLton/mlton/blob/master/mlton/backend/machine.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/machine.fun
https://github.com/MLton/mlton/blob/master/mlton/backend/machine.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/machine.fun

MLton Guide (20180207) 263 / 611

ManualPage

MLton is run from the command line with a collection of options followed by a file name and a list of files to compile, assemble,
and link with.

mlton [option ...] file.{c|mlb|o|sml} [file.{c|o|s|S} ...]

The simplest case is to run mlton foo.sml, where foo.sml contains a valid SML program, in which case MLton compiles
the program to produce an executable foo. Since MLton does not support separate compilation, the program must be the entire
program you wish to compile. However, the program may refer to signatures and structures defined in the Basis Library.

Larger programs, spanning many files, can be compiled with the ML Basis system. In this case, mlton foo.mlb will compile
the complete SML program described by the basis foo.mlb, which may specify both SML files and additional bases.

Next Steps

• CompileTimeOptions

• RunTimeOptions

MLton Guide (20180207) 264 / 611

MatchCompilation

Match compilation is the process of translating an SML match into a nested tree (or dag) of simple case expressions and tests.

MLton’s match compiler is described here.

Match compilation in other compilers

• BaudinetMacQueen85

• Leroy90, pages 60-69.

• Sestoft96

• ScottRamsey00

MLton Guide (20180207) 265 / 611

MatchCompile

MatchCompile is a translation pass, agnostic in the IntermediateLanguages between which it translates.

Description

Match compilation converts a case expression with nested patterns into a case expression with flat patterns.

Implementation

• match-compile.sig

• match-compile.fun

Details and Notes

val matchCompile:
{caseType: Type.t, (* type of entire expression *)
cases: (NestedPat.t * ((Var.t -> Var.t) -> Exp.t)) vector,
conTycon: Con.t -> Tycon.t,
region: Region.t,
test: Var.t,
testType: Type.t,
tyconCons: Tycon.t -> {con: Con.t, hasArg: bool} vector}
-> Exp.t * (unit -> ((Layout.t * {isOnlyExns: bool}) vector) vector)

matchCompile is complicated by the desire for modularity between the match compiler and its caller. Its caller is responsible
for building the right hand side of a rule p => e. On the other hand, the match compiler is responsible for destructing the
test and binding new variables to the components. In order to connect the new variables created by the match compiler with
the variables in the pattern p, the match compiler passes an environment back to its caller that maps each variable in p to the
corresponding variable introduced by the match compiler.

The match compiler builds a tree of n-way case expressions by working from outside to inside and left to right in the patterns.
For example,

case x of
(_, C1 a) => e1

| (C2 b, C3 c) => e2

is translated to

let
fun f1 a = e1
fun f2 (b, c) = e2

in
case x of

(x1, x2) =>
(case x1 of

C2 b’ => (case x2 of
C1 a’ => f1 a’

| C3 c’ => f2(b’,c’)
| _ => raise Match)

| _ => (case x2 of
C1 a_ => f1 a_

| _ => raise Match))
end

https://github.com/MLton/mlton/blob/master/mlton/match-compile/match-compile.sig
https://github.com/MLton/mlton/blob/master/mlton/match-compile/match-compile.fun

MLton Guide (20180207) 266 / 611

Here you can see the necessity of abstracting out the ride hand sides of the cases in order to avoid code duplication. Right hand
sides are always abstracted. The simplifier cleans things up. You can also see the new (primed) variables introduced by the match
compiler and how the renaming works. Finally, you can see how the match compiler introduces the necessary default clauses in
order to make a match exhaustive, i.e. cover all the cases.

The match compiler uses numCons and tyconCons to determine the exhaustivity of matches against constructors.

MLton Guide (20180207) 267 / 611

MatthewFluet

Matthew Fluet (matthew.fluet@gmail.com , http://www.cs.rit.edu/%7Emtf) is an Assistant Professor at the Rochester Institute
of Technology.

Current MLton projects:

• general maintenance

• release new version

Misc. and underspecified TODOs:

• understand RefFlatten and DeepFlatten

– http://www.mlton.org/pipermail/mlton/2005-April/026990.html

– http://www.mlton.org/pipermail/mlton/2007-November/030056.html

– http://www.mlton.org/pipermail/mlton/2008-April/030250.html

– http://www.mlton.org/pipermail/mlton/2008-July/030279.html

– http://www.mlton.org/pipermail/mlton/2008-August/030312.html

– http://www.mlton.org/pipermail/mlton/2008-September/030360.html

– http://www.mlton.org/pipermail/mlton-user/2009-June/001542.html

• MSG_DONTWAIT isn’t Posix

• coordinate w/ Dan Spoonhower and Lukasz Ziarek and Armand Navabi on multi-threaded

– http://www.mlton.org/pipermail/mlton/2008-March/030214.html

• Intel Research bug: no tyconRep property (company won’t release sample code)

– http://www.mlton.org/pipermail/mlton-user/2008-March/001358.html

• treatment of real constants

– http://www.mlton.org/pipermail/mlton/2008-May/030262.html

– http://www.mlton.org/pipermail/mlton/2008-June/030271.html

• representation of bool and _bool in ForeignFunctionInterface

– http://www.mlton.org/pipermail/mlton/2008-May/030264.html

• http://www.icfpcontest.org

– John Reppy claims that "It looks like the card-marking overhead that one incurs when using generational collection swamps
the benefits of generational collection."

• page to disk policy / single heap

– http://www.mlton.org/pipermail/mlton/2008-June/030278.html

– http://www.mlton.org/pipermail/mlton/2008-August/030318.html

• MLton.GC.pack doesn’t keep a small heap if a garbage collection occurs before MLton.GC.unpack.

mailto:matthew.fluet@gmail.com
http://www.cs.rit.edu/%7Emtf
http://www.rit.edu
http://www.rit.edu
http://www.mlton.org/pipermail/mlton/2005-April/026990.html
http://www.mlton.org/pipermail/mlton/2007-November/030056.html
http://www.mlton.org/pipermail/mlton/2008-April/030250.html
http://www.mlton.org/pipermail/mlton/2008-July/030279.html
http://www.mlton.org/pipermail/mlton/2008-August/030312.html
http://www.mlton.org/pipermail/mlton/2008-September/030360.html
http://www.mlton.org/pipermail/mlton-user/2009-June/001542.html
http://www.mlton.org/pipermail/mlton/2008-March/030214.html
http://www.mlton.org/pipermail/mlton-user/2008-March/001358.html
http://www.mlton.org/pipermail/mlton/2008-May/030262.html
http://www.mlton.org/pipermail/mlton/2008-June/030271.html
http://www.mlton.org/pipermail/mlton/2008-May/030264.html
http://www.icfpcontest.org
http://www.mlton.org/pipermail/mlton/2008-June/030278.html
http://www.mlton.org/pipermail/mlton/2008-August/030318.html

MLton Guide (20180207) 268 / 611

– It might be preferable for MLton.GC.pack to be implemented as a (new) MLton.GC.Ratios.setLive 1.1 fol-
lowed by MLton.GC.collect () and for MLton.GC.unpack to be implemented as MLton.GC.Ratios.setLi
ve 8.0 followed by MLton.GC.collect ().

• The static struct GC_objectType objectTypes[] = array includes many duplicates. Objects of distinct source
type, but equivalent representations (in terms of size, bytes non-pointers, number pointers) can share the objectType index.

• PolySpace bug: Redundant optimization (company won’t release sample code)

– http://www.mlton.org/pipermail/mlton/2008-September/030355.html

• treatment of exception raised during BasisLibrary evaluation

– http://www.mlton.org/pipermail/mlton/2008-December/030501.html

– http://www.mlton.org/pipermail/mlton/2008-December/030502.html

– http://www.mlton.org/pipermail/mlton/2008-December/030503.html

• Use memcpy

– http://www.mlton.org/pipermail/mlton-user/2009-January/001506.html

– http://www.mlton.org/pipermail/mlton/2009-January/030506.html

• Implement more 64bit primops in x86 codegen

– http://www.mlton.org/pipermail/mlton/2009-January/030507.html

• Enrich path-map file syntax:

– http://www.mlton.org/pipermail/mlton/2008-September/030348.html

– http://www.mlton.org/pipermail/mlton-user/2009-January/001507.html

• PolySpace bug: crash during Cheney-copy collection

– http://www.mlton.org/pipermail/mlton/2009-February/030513.html

• eliminate -build-constants

– all _const-s are known by runtime/gen/basis-ffi.def

– generate gen-constants.c from basis-ffi.def

– generate constants from gen-constants.c and libmlton.a

– similar to gen-sizes.c and sizes

• eliminate "Windows hacks" for Cygwin from Path module

– http://www.mlton.org/pipermail/mlton/2009-July/030606.html

• extend IL type checkers to check for empty property lists

• make (unsafe) IntInf conversions into primitives

– http://www.mlton.org/pipermail/mlton/2009-July/030622.html

http://www.mlton.org/pipermail/mlton/2008-September/030355.html
http://www.mlton.org/pipermail/mlton/2008-December/030501.html
http://www.mlton.org/pipermail/mlton/2008-December/030502.html
http://www.mlton.org/pipermail/mlton/2008-December/030503.html
http://www.mlton.org/pipermail/mlton-user/2009-January/001506.html
http://www.mlton.org/pipermail/mlton/2009-January/030506.html
http://www.mlton.org/pipermail/mlton/2009-January/030507.html
http://www.mlton.org/pipermail/mlton/2008-September/030348.html
http://www.mlton.org/pipermail/mlton-user/2009-January/001507.html
http://www.mlton.org/pipermail/mlton/2009-February/030513.html
http://www.mlton.org/pipermail/mlton/2009-July/030606.html
http://www.mlton.org/pipermail/mlton/2009-July/030622.html

MLton Guide (20180207) 269 / 611

mGTK

mGTK is a wrapper for GTK+, a GUI toolkit.

We recommend using mGTK 0.93, which is not listed on their home page, but is available at the file release page. To test it, after
unpacking, do cd examples;make mlton, after which you should be able to run the many examples (signup-mlton,
listview-mlton, . . .).

Also see

• Glade

http://mgtk.sourceforge.net/
http://www.gtk.org/
http://sourceforge.net/project/showfiles.php?group_id=23226&package_id=16523

MLton Guide (20180207) 270 / 611

MichaelNorrish

I am a researcher at NICTA, with a web-page here.

I’m interested in MLton because of the chance that it might be a good vehicle for future implementations of the HOL theorem-
proving system. It’s beginning to look as if one route forward will be to embed an SML interpreter into a MLton-compiled
executable. I don’t know if an extensible interpreter of the kind we’re looking for already exists.

http://nicta.com.au
http://web.rsise.anu.edu.au/%7Emichaeln/
http://hol.sf.net

MLton Guide (20180207) 271 / 611

MikeThomas

Here is a picture at home in Brisbane, Queensland, Australia, taken in January 2004.

MLton Guide (20180207) 272 / 611

ML

ML stands for meta language. ML was originally designed in the 1970s as a programming language to assist theorem proving in
the logic LCF. In the 1980s, ML split into two variants, Standard ML and OCaml, both of which are still used today.

MLton Guide (20180207) 273 / 611

MLAntlr

MLAntlr is a parser generator for Standard ML.

Also see

• MLULex

• MLLPTLibrary

http://smlnj-gforge.cs.uchicago.edu/projects/ml-lpt/

MLton Guide (20180207) 274 / 611

MLBasis

The ML Basis system extends Standard ML to support programming-in-the-very-large, namespace management at the module
level, separate delivery of library sources, and more. While Standard ML modules are a sophisticated language for programming-
in-the-large, it is difficult, if not impossible, to accomplish a number of routine namespace management operations when a
program draws upon multiple libraries provided by different vendors.

The ML Basis system is a simple, yet powerful, approach that builds upon the programmer’s intuitive notion (and The Definition
of Standard ML (Revised)’s formal notion) of the top-level environment (a basis). The system is designed as a natural extension
of Standard ML; the formal specification of the ML Basis system (mlb-formal.pdf) is given in the style of the Definition.

Here are some of the key features of the ML Basis system:

1. Explicit file order: The order of files (and, hence, the order of evaluation) in the program is explicit. The ML Basis system’s
semantics are structured in such a way that for any well-formed project, there will be exactly one possible interpretation of
the project’s syntax, static semantics, and dynamic semantics.

2. Implicit dependencies: A source file (corresponding to an SML top-level declaration) is elaborated in the environment
described by preceding declarations. It is not necessary to explicitly list the dependencies of a file.

3. Scoping and renaming: The ML Basis system provides mechanisms for limiting the scope of (i.e, hiding) and renaming
identifiers.

4. No naming convention for finding the file that defines a module. To import a module, its defining file must appear in some
ML Basis file.

Next steps

• MLBasisSyntaxAndSemantics

• MLBasisExamples

• MLBasisPathMap

• MLBasisAnnotations

• MLBasisAvailableLibraries

MLton Guide (20180207) 275 / 611

MLBasisAnnotationExamples

Here are some example uses of MLBasisAnnotations.

Eliminate spurious warnings in automatically generated code

Programs that automatically generate source code can often produce nonexhaustive patterns, relying on invariants of the generated
code to ensure that the pattern matchings never fail. A programmer may wish to elide the nonexhaustive warnings from this code,
in order that legitimate warnings are not missed in a flurry of false positives. To do so, the programmer simply annotates the
generated code with the nonexhaustiveBind ignore and nonexhaustiveMatch ignore annotations:

local
$(GEN_ROOT)/gen-lib.mlb

ann
"nonexhaustiveBind ignore"
"nonexhaustiveMatch ignore"

in
foo.gen.sml

end
in

signature FOO
structure Foo

end

Deliver a library

Standard ML libraries can be delivered via .mlb files. Authors of such libraries should strive to be mindful of the ways in
which programmers may choose to compile their programs. For example, although the defaults for sequenceNonUnit and
warnUnused are ignore and false, periodically compiling with these annotations defaulted to warn and true can help
uncover likely bugs. However, a programmer is unlikely to be interested in unused modules from an imported library, and the
behavior of sequenceNonUnit error may be incompatible with some libraries. Hence, a library author may choose to
deliver a library as follows:

ann
"nonexhaustiveBind warn" "nonexhaustiveMatch warn"
"redundantBind warn" "redundantMatch warn"
"sequenceNonUnit warn"
"warnUnused true" "forceUsed"

in
local
file1.sml
...
filen.sml

in
functor F1
...
signature S1
...
structure SN
...

end
end

The annotations nonexhaustiveBind warn, redundantBind warn, nonexhaustiveMatch warn, redundan
tMatch warn, and sequenceNonUnit warn have the obvious effect on elaboration. The annotations warnUnused
true and forceUsed work in conjunction — warning on any identifiers that do not contribute to the exported modules, and
preventing warnings on exported modules that are not used in the remainder of the program. Many of the available libraries are
delivered with these annotations.

MLton Guide (20180207) 276 / 611

MLBasisAnnotations

ML Basis annotations control options that affect the elaboration of SML source files. Conceptually, a basis file is elaborated in a
default annotation environment (just as it is elaborated in an empty basis). The declaration ann "ann" in basdec end merges
the annotation ann with the "current" annotation environment for the elaboration of basdec. To allow for future expansion, "ann"
is lexed as a single SML string constant. To conveniently specify multiple annotations, the following derived form is provided:

ann "ann" ("ann")+ in basdec end⇒ ann "ann" in ann ("ann")+ in basdec end end

Here are the available annotations. In the explanation below, for annotations that take an argument, the first value listed is the
default.

• allowFFI {false|true}

If true, allow _address, _export, _import, and _symbol expressions to appear in source files. See ForeignFunc-
tionInterface.

• allowSuccessorML {false|true}

Allow or disallow all of the SuccessorML features. This is a proxy for all of the following annotations.

– allowDoDecls {false|true}

If true, allow a do exp declaration form.

– allowExtendedConsts {false|true}

Allow or disallow all of the extended constants features. This is a proxy for all of the following annotations.

* allowExtendedNumConsts {false|true}
If true, allow extended numeric constants.

* allowExtendedTextConsts {false|true}
If true, allow extended text constants.

– allowLineComments {false|true}

If true, allow line comments beginning with the token (*).

– allowOptBar {false|true}

If true, allow a bar to appear before the first match rule of a case, fn, or handle expression, allow a bar to appear
before the first function-value binding of a fun declaration, and allow a bar to appear before the first constructor binding or
description of a datatype declaration or specification.

– allowOptSemicolon {false|true}

If true, allows a semicolon to appear after the last expression in a sequence expression or let body.

– allowOrPats {false|true}

If true, allows disjunctive (a.k.a., "or") patterns of the form pat | pat.

– allowRecordPunExps {false|true}

If true, allows record punning expressions.

– allowSigWithtype {false|true}

If true, allows withtype to modify a datatype specification in a signature.

– allowVectorExpsAndPats {false|true}

Allow or disallow vector expressions and vector patterns. This is a proxy for all of the following annotations.

* allowVectorExps {false|true}
If true, allow vector expressions.

* allowVectorPats {false|true}
If true, allow vector patterns.

• forceUsed

Force all identifiers in the basis denoted by the body of the ann to be considered used; use in conjunction with warnUnused
true.

MLton Guide (20180207) 277 / 611

• nonexhaustiveBind {warn|error|ignore}

If error or warn, report nonexhaustive patterns in val declarations (i.e., pattern-match failures that raise the Bind excep-
tion). An error will abort a compile, while a warning will not.

• nonexhaustiveExnBind {default|ignore}

If ignore, suppress errors and warnings about nonexhaustive matches in val declarations that arise solely from unmatched
exceptions. If default, follow the behavior of nonexhaustiveBind.

• nonexhaustiveExnMatch {default|ignore}

If ignore, suppress errors and warnings about nonexhaustive matches in fn expressions, case expressions, and fun decla-
rations that arise solely from unmatched exceptions. If default, follow the behavior of nonexhaustiveMatch.

• nonexhaustiveExnRaise {ignore|default}

If ignore, suppress errors and warnings about nonexhaustive matches in handle expressions that arise solely from un-
matched exceptions. If default, follow the behavior of nonexhaustiveRaise.

• nonexhaustiveMatch {warn|error|ignore}

If error or warn, report nonexhaustive patterns in fn expressions, case expressions, and fun declarations (i.e., pattern-
match failures that raise the Match exception). An error will abort a compile, while a warning will not.

• nonexhaustiveRaise {ignore|warn|error}

If error or warn, report nonexhaustive patterns in handle expressions (i.e., pattern-match failures that implicitly (re)raise
the unmatched exception). An error will abort a compile, while a warning will not.

• redundantBind {warn|error|ignore}

If error or warn, report redundant patterns in val declarations. An error will abort a compile, while a warning will not.

• redundantMatch {warn|error|ignore}

If error or warn, report redundant patterns in fn expressions, case expressions, and fun declarations. An error will abort
a compile, while a warning will not.

• redundantRaise {warn|error|ignore}

If error or warn, report redundant patterns in handle expressions. An error will abort a compile, while a warning will not.

• resolveScope {strdec|dec|topdec|program}

Used to control the scope at which overload constraints are resolved to default types (if not otherwise resolved by type infer-
ence) and the scope at which unresolved flexible record constraints are reported.

The syntactic-class argument means to perform resolution checks at the smallest enclosing syntactic form of the given class.
The default behavior is to resolve at the smallest enclosing strdec (which is equivalent to the largest enclosing dec). Other
useful behaviors are to resolve at the smallest enclosing topdec (which is equivalent to the largest enclosing strdec) and at the
smallest enclosing program (which corresponds to a single .sml file and does not correspond to the whole .mlb program).

• sequenceNonUnit {ignore|error|warn}

If error or warn, report when e1 is not of type unit in the sequence expression (e1;e2). This can be helpful in detecting
curried applications that are mistakenly not fully applied. To silence spurious messages, you can use ignore e1.

• valrecConstr {warn|error|ignore}

If error or warn, report when a val rec (or fun) declaration redefines an identifier that previously had constructor status.
An error will abort a compile, while a warning will not.

• warnUnused {false|true}

Report unused identifiers.

Next Steps

• MLBasisAnnotationExamples

• WarnUnusedAnomalies

MLton Guide (20180207) 278 / 611

MLBasisAvailableLibraries

MLton comes with the following ML Basis files available.

• $(SML_LIB)/basis/basis.mlb

The Basis Library.

• $(SML_LIB)/basis/basis-1997.mlb

The (deprecated) 1997 version of the Basis Library.

• $(SML_LIB)/basis/mlton.mlb

The MLton structure and signatures.

• $(SML_LIB)/basis/c-types.mlb

Various structure aliases useful as ForeignFunctionInterfaceTypes.

• $(SML_LIB)/basis/unsafe.mlb

The Unsafe structure and signature.

• $(SML_LIB)/basis/sml-nj.mlb

The SMLofNJ structure and signature.

• $(SML_LIB)/mlyacc-lib/mlyacc-lib.mlb

Modules used by parsers built with MLYacc.

• $(SML_LIB)/cml/cml.mlb

ConcurrentML, a library for message-passing concurrency.

• $(SML_LIB)/mlnlffi-lib/mlnlffi-lib.mlb

ML-NLFFI, a library for foreign function interfaces.

• $(SML_LIB)/mlrisc-lib/...

MLRISCLibrary, a library for retargetable and optimizing compiler back ends.

• $(SML_LIB)/smlnj-lib/...

SMLNJLibrary, a collection of libraries distributed with SML/NJ.

• $(SML_LIB)/ckit-lib/ckit-lib.mlb

CKitLibrary, a library for C source code.

• $(SML_LIB)/mllpt-lib/mllpt-lib.mlb

MLLPTLibrary, a support library for the MLULex scanner generator and the MLAntlr parser generator.

Basis fragments

There are a number of specialized ML Basis files for importing fragments of the Basis Library that can not be expressed within
SML.

• $(SML_LIB)/basis/pervasive-types.mlb

The top-level types and constructors of the Basis Library.

• $(SML_LIB)/basis/pervasive-exns.mlb

The top-level exception constructors of the Basis Library.

MLton Guide (20180207) 279 / 611

• $(SML_LIB)/basis/pervasive-vals.mlb

The top-level values of the Basis Library, without infix status.

• $(SML_LIB)/basis/overloads.mlb

The top-level overloaded values of the Basis Library, without infix status.

• $(SML_LIB)/basis/equal.mlb

The polymorphic equality = and inequality <> values, without infix status.

• $(SML_LIB)/basis/infixes.mlb

The infix declarations of the Basis Library.

• $(SML_LIB)/basis/pervasive.mlb

The entire top-level value and type environment of the Basis Library, with infix status. This is the same as importing the above
six MLB files.

MLton Guide (20180207) 280 / 611

MLBasisExamples

Here are some example uses of ML Basis files.

Complete program

Suppose your complete program consists of the files file1.sml, . . . , filen.sml, which depend upon libraries lib1.mlb,
. . . , libm.mlb.

(* import libraries *)
lib1.mlb
...
libm.mlb

(* program files *)
file1.sml
...
filen.sml

The bases denoted by lib1.mlb, . . . , libm.mlb are merged (bindings of names in later bases take precedence over bindings
of the same name in earlier bases), producing a basis in which file1.sml, . . . , filen.sml are elaborated, adding additional
bindings to the basis.

Export filter

Suppose you only want to export certain structures, signatures, and functors from a collection of files.

local
file1.sml
...
filen.sml

in
(* export filter here *)
functor F
structure S

end

While file1.sml, . . . , filen.sml may declare top-level identifiers in addition to F and S, such names are not accessible to
programs and libraries that import this .mlb.

Export filter with renaming

Suppose you want an export filter, but want to rename one of the modules.

local
file1.sml
...
filen.sml

in
(* export filter, with renaming, here *)
functor F
structure S’ = S

end

Note that functor F is an abbreviation for functor F =F, which simply exports an identifier under the same name.

MLton Guide (20180207) 281 / 611

Import filter

Suppose you only want to import a functor F from one library and a structure S from another library.

local
lib1.mlb

in
(* import filter here *)
functor F

end
local

lib2.mlb
in

(* import filter here *)
structure S

end
file1.sml
...
filen.sml

Import filter with renaming

Suppose you want to import a structure S from one library and another structure S from another library.

local
lib1.mlb

in
(* import filter, with renaming, here *)
structure S1 = S

end
local

lib2.mlb
in

(* import filter, with renaming, here *)
structure S2 = S

end
file1.sml
...
filen.sml

Full Basis

Since the Modules level of SML is the natural means for organizing program and library components, MLB files provide con-
venient syntax for renaming Modules level identifiers (in fact, renaming of functor identifiers provides a mechanism that is not
available in SML). However, please note that .mlb files elaborate to full bases including top-level types and values (including
infix status), in addition to structures, signatures, and functors. For example, suppose you wished to extend the Basis Library
with an (’a, ’b) either datatype corresponding to a disjoint sum; the type and some operations should be available at the
top-level; additionally, a signature and structure provide the complete interface.

We could use the following files.

either-sigs.sml

signature EITHER_GLOBAL =
sig
datatype (’a, ’b) either = Left of ’a | Right of ’b
val & : (’a -> ’c) * (’b -> ’c) -> (’a, ’b) either -> ’c
val && : (’a -> ’c) * (’b -> ’d) -> (’a, ’b) either -> (’c, ’d) either

end

MLton Guide (20180207) 282 / 611

signature EITHER =
sig
include EITHER_GLOBAL
val isLeft : (’a, ’b) either -> bool
val isRight : (’a, ’b) either -> bool
...

end

either-strs.sml

structure Either : EITHER =
struct
datatype (’a, ’b) either = Left of ’a | Right of ’b
fun f & g = fn x =>

case x of Left z => f z | Right z => g z
fun f && g = (Left o f) & (Right o g)
fun isLeft x = ((fn _ => true) & (fn _ => false)) x
fun isRight x = (not o isLeft) x
...

end
structure EitherGlobal : EITHER_GLOBAL = Either

either-infixes.sml

infixr 3 & &&

either-open.sml

open EitherGlobal

either.mlb

either-infixes.sml
local

(* import Basis Library *)
$(SML_LIB)/basis/basis.mlb
either-sigs.sml
either-strs.sml

in
signature EITHER
structure Either
either-open.sml

end

A client that imports either.mlb will have access to neither EITHER_GLOBAL nor EitherGlobal, but will have access
to the type either and the values & and && (with infix status) in the top-level environment. Note that either-infixes.
sml is outside the scope of the local, because we want the infixes available in the implementation of the library and to clients of
the library.

MLton Guide (20180207) 283 / 611

MLBasisPathMap

An ML Basis path map describes a map from ML Basis path variables (of the form $(VAR)) to file system paths. ML Basis
path variables provide a flexible way to refer to libraries while allowing them to be moved without changing their clients.

The format of an mlb-path-map file is a sequence of lines; each line consists of two, white-space delimited tokens. The
first token is a path variable VAR and the second token is the path to which the variable is mapped. The path may include path
variables, which are recursively expanded.

The mapping from path variables to paths is initialized by the compiler. Additional path maps can be specified with -mlb-
path-map and individual path variable mappings can be specified with -mlb-path-var (see CompileTimeOptions). Con-
figuration files are processed from first to last and from top to bottom, later mappings take precedence over earlier mappings.

The compiler and system-wide configuration file makes the following path variables available.

MLB path variable Description
SML_LIB path to system-wide libraries, usually /usr/lib/mlton/sml

TARGET_ARCH string representation of target architecture
TARGET_OS string representation of target operating system
DEFAULT_INT binding for default int, usually int32
DEFAULT_WORD binding for default word, usually word32
DEFAULT_REAL binding for default real, usually real64

MLton Guide (20180207) 284 / 611

MLBasisSyntaxAndSemantics

An ML Basis (MLB) file should have the .mlb suffix and should contain a basis declaration.

Syntax

A basis declaration (basdec) must be one of the following forms.

• basis basid = basexp (and basid = basexp)*

• open basid1 . . . basidn

• local basdec in basdec end

• basdec [;] basdec

• structure strid [= strid] (and strid[= strid])*

• signature sigid [= sigid] (and sigid [= sigid])*

• functor funid [= funid] (and funid [= funid])*

• path.sml, path.sig, or path.fun

• path.mlb

• ann "ann" in basdec end

A basis expression (basexp) must be of one the following forms.

• bas basdec end

• basid

• let basdec in basexp end

Nested SML-style comments (enclosed with (* and *)) are ignored (but LineDirectives are recognized).

Paths can be relative or absolute. Relative paths are relative to the directory containing the MLB file. Paths may include path
variables and are expanded according to a path map. Unquoted paths may include alpha-numeric characters and the symbols "-
" and "_", along with the arc separator "/" and extension separator ".". More complicated paths, including paths with spaces,
may be included by quoting the path with ". A quoted path is lexed as an SML string constant.

Annotations allow a library author to control options that affect the elaboration of SML source files.

Semantics

There is a formal semantics for ML Basis files in the style of the Definition. Here, we give an informal explanation.

An SML structure is a collection of types, values, and other structures. Similarly, a basis is a collection, but of more kinds of
objects: types, values, structures, fixities, signatures, functors, and other bases.

A basis declaration denotes a basis. A structure, signature, or functor declaration denotes a basis containing the corresponding
module. Sequencing of basis declarations merges bases, with later definitions taking precedence over earlier ones, just like
sequencing of SML declarations. Local declarations provide name hiding, just like SML local declarations. A reference to an
SML source file causes the file to be elaborated in the basis extant at the point of reference. A reference to an MLB file causes
the basis denoted by that MLB file to be imported — the basis at the point of reference does not affect the imported basis.

Basis expressions and basis identifiers allow binding a basis to a name.

An MLB file is elaborated starting in an empty basis. Each MLB file is elaborated and evaluated only once, with the result being
cached. Subsequent references use the cached value. Thus, any observable effects due to evaluation are not duplicated if the
MLB file is referred to multiple times.

MLton Guide (20180207) 285 / 611

MLj

MLj is a Standard ML implementation that targets Java bytecode. It is no longer maintained. It has morphed into SML.NET.

Also see

• BentonEtAl98

• BentonKennedy99

http://www.dcs.ed.ac.uk/home/mlj/

MLton Guide (20180207) 286 / 611

MLKit

The ML Kit is a Standard ML implementation.

MLKit supports:

• SML’97

– including most of the latest Basis Library specification,

• ML Basis files

– and separate compilation,

• Region-Based Memory Management

– and garbage collection,

• Multiple backends, including

– native x86,

– bytecode, and

– JavaScript (see SMLtoJs).

At the time of writing, MLKit does not support:

• concurrent programming / threads,

• calling from C to SML.

http://sourceforge.net/apps/mediawiki/mlkit
http://www.standardml.org/Basis
http://www.itu.dk/people/mael/smltojs/

MLton Guide (20180207) 287 / 611

MLLex

MLLex is a lexical analyzer generator for Standard ML modeled after the Lex lexical analyzer generator.

A version of MLLex, ported from the SML/NJ sources, is distributed with MLton.

Description

MLLex takes as input the lex language as defined in the ML-Lex manual, and outputs a lexical analyzer in SML.

Implementation

• lexgen.sml

• main.sml

• call-main.sml

Details and Notes

There are 3 main passes in the MLLex tool:

• Source parsing. In this pass, lex source program are parsed into internal representations. The core part of this pass is a hand-
written lexer and an LL(1) parser. The output of this pass is a record of user code, rules (along with start states) and actions.
(MLLex definitions are wiped off.)

• DFA construction. In this pass, a DFA is constructed by the algorithm of H. Yamada et. al.

• Output. In this pass, the generated DFA is written out as a transition table, along with a table-driven algorithm, to an SML file.

Also see

• mllex.pdf

• MLYacc

• AppelEtAl94

• Price09

https://github.com/MLton/mlton/blob/master/mllex/lexgen.sml
https://github.com/MLton/mlton/blob/master/mllex/main.sml
https://github.com/MLton/mlton/blob/master/mllex/call-main.sml

MLton Guide (20180207) 288 / 611

MLLPTLibrary

The ML-LPT Library is a support library for the MLULex scanner generator and the MLAntlr parser generator. The ML-LPT
Library is distributed with SML/NJ.

As of 20180119, MLton includes the ML-LPT Library synchronized with SML/NJ version 110.82.

Usage

• You can import the ML-LPT Library into an MLB file with:

MLB file Description
$(SML_LIB)/mllpt-lib/mllpt-lib.mlb

• If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following map is included by default:

MLLPT Library
$ml-lpt-lib.cm $(SML_LIB)/mllpt-lib
$ml-lpt-lib.cm/ml-lpt-lib.cm $(SML_LIB)/mllpt-lib/mllpt-lib.mlb

This will automatically convert a $/mllpt-lib.cm import in an input .cm file into a $(SML_LIB)/mllpt-lib/
mllpt-lib.mlb import in the output .mlb file.

Details

Patch

• ml-lpt.patch

http://smlnj-gforge.cs.uchicago.edu/projects/ml-lpt/
https://github.com/MLton/mlton/blob/master/lib/mllpt-lib/ml-lpt.patch

MLton Guide (20180207) 289 / 611

MLmon

An mlmon.out file records dynamic profiling counts.

File format

An mlmon.out file is a text file with a sequence of lines.

• The string "MLton prof".

• The string "alloc", "count", or "time", depending on the kind of profiling information, corresponding to the command-line
argument supplied to mlton -profile.

• The string "current" or "stack" depending on whether profiling data was gathered for only the current function (the top
of the stack) or for all functions on the stack. This corresponds to whether the executable was compiled with -profile-
stack false or -profile-stack true.

• The magic number of the executable.

• The number of non-gc ticks, followed by a space, then the number of GC ticks.

• The number of (split) functions for which data is recorded.

• A line for each (split) function with counts. Each line contains an integer count of the number of ticks while the function was
current. In addition, if stack data was gathered (-profile-stack true), then the line contains two additional tick counts:

– the number of ticks while the function was on the stack.

– the number of ticks while the function was on the stack and a GC was performed.

• The number of (master) functions for which data is recorded.

• A line for each (master) function with counts. The lines have the same format and meaning as with split-function counts.

MLton Guide (20180207) 290 / 611

MLNLFFI

ML-NLFFI is the no-longer-foreign-function interface library for SML.

As of 20050212, MLton has an initial port of ML-NLFFI from SML/NJ to MLton. All of the ML-NLFFI functionality is present.

Additionally, MLton has an initial port of the mlnlffigen tool from SML/NJ to MLton. Due to low-level details, the code
generated by SML/NJ’s ml-nlffigen is not compatible with MLton, and vice-versa. However, the generated code has the
same interface, so portable client code can be written. MLton’s mlnlffigen does not currently support C functions with
struct or union arguments.

Usage

• You can import the ML-NLFFI Library into an MLB file with

MLB file Description
$(SML_LIB)/mlnlffi-lib/mlnlffi-lib.mlb

• If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following maps are included by default:

MLNLFFI Library
$c $(SML_LIB)/mlnlffi-lib
$c/c.cm $(SML_LIB)/mlnlffi-lib/mlnlffi-lib.mlb

This will automatically convert a $/c.cm import in an input .cm file into a $(SML_LIB)/mlnlffi-lib/mlnlffi-
lib.mlb import in the output .mlb file.

Also see

• Blume01

• MLNLFFIImplementation

• MLNLFFIGen

MLton Guide (20180207) 291 / 611

MLNLFFIGen

mlnlffigen generates a MLNLFFI binding from a collection of .c files. It is based on the CKitLibrary, which is primarily
designed to handle standardized C and thus does not understand many (any?) compiler extensions; however, it attempts to recover
from errors when seeing unrecognized definitions.

In order to work around common gcc extensions, it may be useful to add -cppopt options to the command line; for example
-cppopt ’-D__extension__’ may be occasionally useful. Fortunately, most portable libraries largely avoid the use of
these types of extensions in header files.

mlnlffigen will normally not generate bindings for #included files; see -match and -allSU if this is desirable.

MLton Guide (20180207) 292 / 611

MLNLFFIImplementation

MLton’s implementation(s) of the MLNLFFI library differs from the SML/NJ implementation in two important ways:

• MLton cannot utilize the Unsafe.cast "cheat" described in Section 3.7 of Blume01. (MLton’s representation of closures
and aggressive representation optimizations make an Unsafe.cast even more "unsafe" than in other implementations.)

We have considered two solutions:

– One solution is to utilize an additional type parameter (as described in Section 3.7 of Blume01):

signature C = sig
type (’t, ’f, ’c) obj
eqtype (’t, ’f, ’c) obj’
...
type (’o, ’f) ptr
eqtype (’o, ’f) ptr’
...
type ’f fptr
type ’f ptr’
...
structure T : sig

type (’t, ’f) typ
...

end
end

The rule for (’t, ’f, ’c) obj,(’t, ’f, ’c) ptr, and also (’t, ’f) T.typ is that whenever F
fptr occurs within the instantiation of ’t, then ’f must be instantiated to F. In all other cases, ’f will be
instantiated to unit.

(In the actual MLton implementation, an abstract type naf (not-a-function) is used instead of unit.)
While this means that type-annotated programs may not type-check under both the SML/NJ implementation and the MLton
implementation, this should not be a problem in practice. Tools, like ml-nlffigen, which are necessarily implementation
dependent (in order to make calls through a C function pointer), may be easily extended to emit the additional type parameter.
Client code which uses such generated glue-code (e.g., Section 1 of Blume01) need rarely write type-annotations, thanks to
the magic of type inference.

– The above implementation suffers from two disadvantages.
First, it changes the MLNLFFI Library interface, meaning that the same program may not type-check under both the SML/NJ
implementation and the MLton implementation (though, in light of type inference and the richer MLRep structure provided
by MLton, this point is mostly moot).
Second, it appears to unnecessarily duplicate type information. For example, an external C variable of type int (*
f[3])(int) (that is, an array of three function pointers), would be represented by the SML type (((sint -> sint)
fptr, dec dg3) arr, sint -> sint, rw) obj. One might well ask why the ’f instantiation (sint ->
sint in this case) cannot be extracted from the ’t instantiation (((sint -> sint) fptr, dec dg3) arr in
this case), obviating the need for a separate function-type type argument. There are a number of components to an complete
answer to this question. Foremost is the fact that Standard ML supports neither (general) type-level functions nor intensional
polymorphism.
A more direct answer for MLNLFFI is that in the SML/NJ implemention, the definition of the types (’t, ’c) obj and
(’t, ’c) ptr are made in such a way that the type variables ’t and ’c are phantom (not contributing to the run-time
representation of an (’t, ’c) obj or (’t, ’c) ptr value), despite the fact that the types ((sint -> sint)
fptr, rw) ptr and ((double -> double) fptr, rw) ptr necessarily carry distinct (and type incompatible)
run-time (C-)type information (RTTI), corresponding to the different calling conventions of the two C functions. The
Unsafe.cast "cheat" overcomes the type incompatibility without introducing a new type variable (as in the first solution
above).
Hence, the reason that function-type type cannot be extracted from the ’t type variable instantiation is that the type of the
representation of RTTI doesn’t even see the (phantom) ’t type variable. The solution which presents itself is to give up on
the phantomness of the ’t type variable, making it available to the representation of RTTI.

MLton Guide (20180207) 293 / 611

This is not without some small drawbacks. Because many of the types used to instantiate ’t carry more structure than
is strictly necessary for ’t’s RTTI, it is sometimes necessary to wrap and unwrap RTTI to accommodate the additional
structure. (In the other implementations, the corresponding operations can pass along the RTTI unchanged.) However, these
coercions contribute minuscule overhead; in fact, in a majority of cases, MLton’s optimizations will completely eliminate
the RTTI from the final program.

The implementation distributed with MLton uses the second solution.

Bonus question: Why can’t one use a universal type to eliminate the use of Unsafe.cast?

– Answer: ???

• MLton (in both of the above implementations) provides a richer MLRep structure, utilizing Int<N> and Word<N> structures.

structure MLRep = struct
structure Char =

struct
structure Signed = Int8
structure Unsigned = Word8
(* word-style bit-operations on integers... *)
structure <:SignedBitops:> = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure Short =
struct

structure Signed = Int16
structure Unsigned = Word16
(* word-style bit-operations on integers... *)
structure <:SignedBitops:> = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure Int =
struct

structure Signed = Int32
structure Unsigned = Word32
(* word-style bit-operations on integers... *)
structure <:SignedBitops:> = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure Long =
struct

structure Signed = Int32
structure Unsigned = Word32
(* word-style bit-operations on integers... *)
structure <:SignedBitops:> = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure <:LongLong:> =
struct

structure Signed = Int64
structure Unsigned = Word64
(* word-style bit-operations on integers... *)
structure <:SignedBitops:> = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure Float = Real32
structure Double = Real64

end

This would appear to be a better interface, even when an implementation must choose Int32 and Word32 as the representa-
tion for smaller C-types.

MLton Guide (20180207) 294 / 611

MLRISCLibrary

The MLRISC Library is a framework for retargetable and optimizing compiler back ends. The MLRISC Library is distributed
with SML/NJ. Due to differences between SML/NJ and MLton, this library will not work out-of-the box with MLton.

As of 20180119, MLton includes a port of the MLRISC Library synchronized with SML/NJ version 110.82.

Usage

• You can import a sub-library of the MLRISC Library into an MLB file with:

MLB file Description
$(SML_LIB)/mlrisc-lib/mlb/ALPHA.mlb The ALPHA backend
$(SML_LIB)/mlrisc-lib/mlb/AMD64.mlb The AMD64 backend
$(SML_LIB)/mlrisc-lib/mlb/AMD64-
Peephole.mlb

The AMD64 peephole optimizer

$(SML_LIB)/mlrisc-lib/mlb/CCall.mlb
$(SML_LIB)/mlrisc-lib/mlb/CCall-sparc.
mlb
$(SML_LIB)/mlrisc-lib/mlb/CCall-x86-
64.mlb
$(SML_LIB)/mlrisc-lib/mlb/CCall-x86.
mlb
$(SML_LIB)/mlrisc-lib/mlb/Control.mlb
$(SML_LIB)/mlrisc-lib/mlb/Graphs.mlb
$(SML_LIB)/mlrisc-lib/mlb/HPPA.mlb The HPPA backend
$(SML_LIB)/mlrisc-lib/mlb/IA32.mlb The IA32 backend
$(SML_LIB)/mlrisc-lib/mlb/IA32-
Peephole.mlb

The IA32 peephole optimizer

$(SML_LIB)/mlrisc-lib/mlb/Lib.mlb
$(SML_LIB)/mlrisc-lib/mlb/MLRISC.mlb
$(SML_LIB)/mlrisc-lib/mlb/MLTREE.mlb
$(SML_LIB)/mlrisc-lib/mlb/Peephole.mlb
$(SML_LIB)/mlrisc-lib/mlb/PPC.mlb The PPC backend
$(SML_LIB)/mlrisc-lib/mlb/RA.mlb
$(SML_LIB)/mlrisc-lib/mlb/SPARC.mlb The Sparc backend
$(SML_LIB)/mlrisc-lib/mlb/StagedAlloc.
mlb
$(SML_LIB)/mlrisc-lib/mlb/Visual.mlb

• If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following map is included by default:

MLRISC Library
$SMLNJ-MLRISC $(SML_LIB)/mlrisc-lib/mlb

This will automatically convert a $SMLNJ-MLRISC/MLRISC.cm import in an input .cm file into a $(SML_LIB)/mlr
isc-lib/mlb/MLRISC.mlb import in the output .mlb file.

Details

The following changes were made to the MLRISC Library, in addition to deriving the .mlb files from the .cm files:

• eliminate sequential withtype expansions: Most could be rewritten as a sequence of type definitions and datatype definitions.

• eliminate higher-order functors: Every higher-order functor definition and application could be uncurried in the obvious way.

http://www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html

MLton Guide (20180207) 295 / 611

• eliminate where <str> =<str>: Quite painful to expand out all the flexible types in the respective structures. Further-
more, many of the implied type equalities aren’t needed, but it’s too hard to pick out the right ones.

• library/array-noneq.sml (added, not exported): Implements signature ARRAY_NONEQ, similar to signature
ARRAY from the Basis Library, but replacing the latter’s eqtype ’a array =’a array and type ’a vector =
’a Vector.vector with type ’a array and type ’a vector. Thus, array-like containers may match ARRAY
_NONEQ, whereas only the pervasive ’a array container may math ARRAY. (SML/NJ’s implementation of signature
ARRAY omits the type realizations.)

• library/dynamic-array.sml and library/hash-array.sml (modifed): Replace include ARRAY with inc
lude ARRAY_NONEQ; see above.

Patch

• MLRISC.patch

https://github.com/MLton/mlton/blob/master/lib/mlrisc-lib/MLRISC.patch

MLton Guide (20180207) 296 / 611

MLtonArray

signature MLTON_ARRAY =
sig

val unfoldi: int * ’b * (int * ’b -> ’a * ’b) -> ’a array * ’b
end

• unfoldi (n, b, f)

constructs an array a of length n, whose elements ai are determined by the equations b0 = b and (ai, bi+1) = f (i, bi).

MLton Guide (20180207) 297 / 611

MLtonBinIO

signature MLTON_BIN_IO = MLTON_IO

See MLtonIO.

MLton Guide (20180207) 298 / 611

MLtonCont

signature MLTON_CONT =
sig

type ’a t

val callcc: (’a t -> ’a) -> ’a
val isolate: (’a -> unit) -> ’a t
val prepend: ’a t * (’b -> ’a) -> ’b t
val throw: ’a t * ’a -> ’b
val throw’: ’a t * (unit -> ’a) -> ’b

end

• type ’a t

the type of continuations that expect a value of type ’a.

• callcc f

applies f to the current continuation. This copies the entire stack; hence, callcc takes time proportional to the size of the
current stack.

• isolate f

creates a continuation that evaluates f in an empty context. This is a constant time operation, and yields a constant size stack.

• prepend (k, f)

composes a function f with a continuation k to create a continuation that first does f and then does k. This is a constant time
operation.

• throw (k, v)

throws value v to continuation k. This copies the entire stack of k; hence, throw takes time proportional to the size of this
stack.

• throw’ (k, th)

a generalization of throw that evaluates th () in the context of k. Thus, for example, if th () raises an exception or captures
another continuation, it will see k, not the current continuation.

Also see

• MLtonContIsolateImplementation

MLton Guide (20180207) 299 / 611

MLtonContIsolateImplementation

As noted before, it is fairly easy to get the operational behavior of isolate with just callcc and throw, but establishing the
right space behavior is trickier. Here, we show how to start from the obvious, but inefficient, implementation of isolate using
only callcc and throw, and derive an equivalent, but more efficient, implementation of isolate using MLton’s primitive
stack capture and copy operations. This isn’t a formal derivation, as we are not formally showing the equivalence of the programs
(though I believe that they are all equivalent, modulo the space behavior).

Here is a direct implementation of isolate using only callcc and throw:

val isolate: (’a -> unit) -> ’a t =
fn (f: ’a -> unit) =>
callcc
(fn k1 =>
let

val x = callcc (fn k2 => throw (k1, k2))
val _ = (f x ; Exit.topLevelSuffix ())

handle exn => MLtonExn.topLevelHandler exn
in

raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end)

We use the standard nested callcc trick to return a continuation that is ready to receive an argument, execute the isolated
function, and exit the program. Both Exit.topLevelSuffix and MLtonExn.topLevelHandler will terminate the
program.

Throwing to an isolated function will execute the function in a semantically empty context, in the sense that we never re-execute
the original continuation of the call to isolate (i.e., the context that was in place at the time isolate was called). However, we
assume that the compiler isn’t able to recognize that the original continuation is unused; for example, while we (the programmer)
know that Exit.topLevelSuffix and MLtonExn.topLevelHandler will terminate the program, the compiler may
only see opaque calls to unknown foreign-functions. So, that original continuation (in its entirety) is part of the continuation
returned by isolate and throwing to the continuation returned by isolate will execute f x (with the exit wrapper) in the
context of that original continuation. Thus, the garbage collector will retain everything reachable from that original continuation
during the evaluation of f x, even though it is semantically garbage.

Note that this space-leak is independent of the implementation of continuations (it arises in both MLton’s stack copying im-
plementation of continuations and would arise in SML/NJ’s CPS-translation implementation); we are only assuming that the
implementation can’t see the program termination, and so must retain the original continuation (and anything reachable from it).

So, we need an empty continuation in which to execute f x. (No surprise there, as that is the written description of isolate.)
To do this, we capture a top-level continuation and throw to that in order to execute f x:

local
val base: (unit -> unit) t =

callcc
(fn k1 =>
let

val th = callcc (fn k2 => throw (k1, k2))
val _ = (th () ; Exit.topLevelSuffix ())

handle exn => MLtonExn.topLevelHandler exn
in

raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end)

in
val isolate: (’a -> unit) -> ’a t =

fn (f: ’a -> unit) =>
callcc
(fn k1 =>
let

val x = callcc (fn k2 => throw (k1, k2))
in

throw (base, fn () => f x)

MLton Guide (20180207) 300 / 611

end)
end

We presume that base is evaluated early in the program. There is a subtlety here, because one needs to believe that this base
continuation (which technically corresponds to the entire rest of the program evaluation) works as an empty context; in particular,
we want it to be the case that executing f x in the base context retains less space than executing f x in the context in place
at the call to isolate (as occurred in the previous implementation of isolate). This isn’t particularly easy to believe if
one takes a normal substitution-based operational semantics, because it seems that the context captured and bound to base is
arbitrarily large. However, this context is mostly unevaluated code; the only heap-allocated values that are reachable from it are
those that were evaluated before the evaluation of base (and used in the program after the evaluation of base). Assuming that
base is evaluated early in the program, we conclude that there are few heap-allocated values reachable from its continuation.
In contrast, the previous implementation of isolate could capture a context that has many heap-allocated values reachable
from it (because we could evaluate isolate f late in the program and deep in a call stack), which would all remain reachable
during the evaluation of f x. [We’ll return to this point later, as it is taking a slightly MLton-esque view of the evaluation of a
program, and may not apply as strongly to other implementations (e.g., SML/NJ).]

Now, once we throw to base and begin executing f x, only the heap-allocated values reachable from f and x and the few
heap-allocated values reachable from base are retained by the garbage collector. So, it seems that base works as an empty
context.

But, what about the continuation returned from isolate f? Note that the continuation returned by isolate is one that
receives an argument x and then throws to base to evaluate f x. If we used a CPS-translation implementation (and assume
sufficient beta-contractions to eliminate administrative redexes), then the original continuation passed to isolate (i.e., the
continuation bound to k1) will not be free in the continuation returned by isolate f. Rather, the only free variables in the
continuation returned by isolate f will be base and f, so the only heap-allocated values reachable from the continuation
returned by isolate f will be those values reachable from base (assumed to be few) and those values reachable from f
(necessary in order to execute f at some later point).

But, MLton doesn’t use a CPS-translation implementation. Rather, at each call to callcc in the body of isolate, MLton will
copy the current execution stack. Thus, k2 (the continuation returned by isolate f) will include execution stack at the time
of the call to isolate f— that is, it will include the original continuation of the call to isolate f. Thus, the heap-allocated
values reachable from the continuation returned by isolate f will include those values reachable from base, those values
reachable from f, and those values reachable from the original continuation of the call to isolate f. So, just holding on to
the continuation returned by isolate f will retain all of the heap-allocated values live at the time isolate f was called.
This leaks space, since, semantically, the continuation returned by isolate f only needs the heap-allocated values reachable
from f (and base).

In practice, this probably isn’t a significant issue. A common use of isolate is implement abort:

fun abort th = throw (isolate th, ())

The continuation returned by isolate th is dead immediately after being thrown to — the continuation isn’t retained, so
neither is the semantic garbage it would have retained.

But, it is easy enough to move onto the empty context base the capturing of the context that we want to be returned by isolate
f:

local
val base: (unit -> unit) t =

callcc
(fn k1 =>
let

val th = callcc (fn k2 => throw (k1, k2))
val _ = (th () ; Exit.topLevelSuffix ())

handle exn => MLtonExn.topLevelHandler exn
in

raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end)

in
val isolate: (’a -> unit) -> ’a t =

fn (f: ’a -> unit) =>

MLton Guide (20180207) 301 / 611

callcc
(fn k1 =>
throw (base, fn () =>

let
val x = callcc (fn k2 => throw (k1, k2))

in
throw (base, fn () => f x)

end))
end

This implementation now has the right space behavior; the continuation returned by isolate f will only retain the heap-
allocated values reachable from f and from base. (Technically, the continuation will retain two copies of the stack that was in
place at the time base was evaluated, but we are assuming that that stack small.)

One minor inefficiency of this implementation (given MLton’s implementation of continuations) is that every callcc and
throw entails copying a stack (albeit, some of them are small). We can avoid this in the evaluation of base by using a reference
cell, because base is evaluated at the top-level:

local
val base: (unit -> unit) option t =

let
val baseRef: (unit -> unit) option t option ref = ref NONE
val th = callcc (fn k => (base := SOME k; NONE))

in
case th of

NONE => (case !baseRef of
NONE => raise Fail "MLton.Cont.isolate: missing base"

| SOME base => base)
| SOME th => let

val _ = (th () ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn

in
raise Fail "MLton.Cont.isolate: return from (wrapped)
func"

end
end

in
val isolate: (’a -> unit) -> ’a t =

fn (f: ’a -> unit) =>
callcc
(fn k1 =>
throw (base, SOME (fn () =>

let
val x = callcc (fn k2 => throw (k1, k2))

in
throw (base, SOME (fn () => f x))

end)))
end

Now, to evaluate base, we only copy the stack once (instead of 3 times). Because we don’t have a dummy continuation around
to initialize the reference cell, the reference cell holds a continuation option. To distinguish between the original evaluation of
base (when we want to return the continuation) and the subsequent evaluations of base (when we want to evaluate a thunk),
we capture a (unit -> unit) option continuation.

This seems to be as far as we can go without exploiting the concrete implementation of continuations in MLtonCont. Examining
the implementation, we note that the type of continuations is given by

type ’a t = (unit -> ’a) -> unit

and the implementation of throw is given by

fun (’a, ’b) throw’ (k: ’a t, v: unit -> ’a): ’b =

MLton Guide (20180207) 302 / 611

(k v; raise Fail "MLton.Cont.throw’: return from continuation")

fun (’a, ’b) throw (k: ’a t, v: ’a): ’b = throw’ (k, fn () => v)

Suffice to say, a continuation is simply a function that accepts a thunk to yield the thrown value and the body of the function
performs the actual throw. Using this knowledge, we can create a dummy continuation to initialize baseRef and greatly
simplify the body of isolate:

local
val base: (unit -> unit) option t =

let
val baseRef: (unit -> unit) option t ref =

ref (fn _ => raise Fail "MLton.Cont.isolate: missing base")
val th = callcc (fn k => (baseRef := k; NONE))

in
case th of

NONE => !baseRef
| SOME th => let

val _ = (th () ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn

in
raise Fail "MLton.Cont.isolate: return from (wrapped)
func"

end
end

in
val isolate: (’a -> unit) -> ’a t =

fn (f: ’a -> unit) =>
fn (v: unit -> ’a) =>
throw (base, SOME (f o v))

end

Note that this implementation of isolate makes it clear that the continuation returned by isolate f only retains the heap-
allocated values reachable from f and base. It also retains only one copy of the stack that was in place at the time base was
evaluated. Finally, it completely avoids making any copies of the stack that is in place at the time isolate f is evaluated;
indeed, isolate f is a constant-time operation.

Next, suppose we limited ourselves to capturing unit continuations with callcc. We can’t pass the thunk to be evaluated in
the empty context directly, but we can use a reference cell.

local
val thRef: (unit -> unit) option ref = ref NONE
val base: unit t =

let
val baseRef: unit t ref =

ref (fn _ => raise Fail "MLton.Cont.isolate: missing base")
val () = callcc (fn k => baseRef := k)

in
case !thRef of

NONE => !baseRef
| SOME th =>

let
val _ = thRef := NONE
val _ = (th () ; Exit.topLevelSuffix ())

handle exn => MLtonExn.topLevelHandler exn
in

raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end

end
in
val isolate: (’a -> unit) -> ’a t =

fn (f: ’a -> unit) =>

MLton Guide (20180207) 303 / 611

fn (v: unit -> ’a) =>
let

val () = thRef := SOME (f o v)
in

throw (base, ())
end

end

Note that it is important to set thRef to NONE before evaluating the thunk, so that the garbage collector doesn’t retain all the
heap-allocated values reachable from f and v during the evaluation of f (v ()). This is because thRef is still live during
the evaluation of the thunk; in particular, it was allocated before the evaluation of base (and used after), and so is retained by
continuation on which the thunk is evaluated.

This implementation can be easily adapted to use MLton’s primitive stack copying operations.

local
val thRef: (unit -> unit) option ref = ref NONE
val base: Thread.preThread =

let
val () = Thread.copyCurrent ()

in
case !thRef of

NONE => Thread.savedPre ()
| SOME th =>

let
val () = thRef := NONE
val _ = (th () ; Exit.topLevelSuffix ())

handle exn => MLtonExn.topLevelHandler exn
in

raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end

end
in
val isolate: (’a -> unit) -> ’a t =

fn (f: ’a -> unit) =>
fn (v: unit -> ’a) =>
let

val () = thRef := SOME (f o v)
val new = Thread.copy base

in
Thread.switchTo new

end
end

In essence, Thread.copyCurrent copies the current execution stack and stores it in an implicit reference cell in the runtime
system, which is fetchable with Thread.savedPre. When we are ready to throw to the isolated function, Thread.copy
copies the saved execution stack (because the stack is modified in place during execution, we need to retain a pristine copy in
case the isolated function itself throws to other isolated functions) and Thread.switchTo abandons the current execution
stack, installing the newly copied execution stack.

The actual implementation of MLton.Cont.isolate simply adds some Thread.atomicBegin and Thread.atomi
cEnd commands, which effectively protect the global thRef and accommodate the fact that Thread.switchTo does an
implicit Thread.atomicEnd (used for leaving a signal handler thread).

local
val thRef: (unit -> unit) option ref = ref NONE
val base: Thread.preThread =

let
val () = Thread.copyCurrent ()

in
case !thRef of

NONE => Thread.savedPre ()

MLton Guide (20180207) 304 / 611

| SOME th =>
let

val () = thRef := NONE
val _ = MLton.atomicEnd (* Match 1 *)
val _ = (th () ; Exit.topLevelSuffix ())

handle exn => MLtonExn.topLevelHandler exn
in

raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end

end
in
val isolate: (’a -> unit) -> ’a t =

fn (f: ’a -> unit) =>
fn (v: unit -> ’a) =>
let

val _ = MLton.atomicBegin (* Match 1 *)
val () = thRef := SOME (f o v)
val new = Thread.copy base
val _ = MLton.atomicBegin (* Match 2 *)

in
Thread.switchTo new (* Match 2 *)

end
end

It is perhaps interesting to note that the above implementation was originally derived by specializing implementations of the
MLtonThread new, prepare, and switch functions as if their only use was in the following implementation of isolate:

val isolate: (’a -> unit) -> ’a t =
fn (f: ’a -> unit) =>
fn (v: unit -> ’a) =>
let

val th = (f (v ()) ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn

val t = MLton.Thread.prepare (MLton.Thread.new th, ())
in

MLton.Thread.switch (fn _ => t)
end

It was pleasant to discover that it could equally well be derived starting from the callcc and throw implementation.

As a final comment, we noted that the degree to which the context of base could be considered empty (i.e., retaining few heap-
allocated values) depended upon a slightly MLton-esque view. In particular, MLton does not heap allocate executable code. So,
although the base context keeps a lot of unevaluated code live, such code is not heap allocated. In a system like SML/NJ,
that does heap allocate executable code, one might want it to be the case that after throwing to an isolated function, the garbage
collector retains only the code necessary to evaluate the function, and not any code that was necessary to evaluate the base
context.

MLton Guide (20180207) 305 / 611

MLtonCross

The debian package MLton-Cross adds various targets to MLton. In combination with the emdebian project, this allows a debian
system to compile SML files to other architectures.

Currently, these targets are supported:

• Windows (MinGW)

– -target i586-mingw32msvc (mlton-target-i586-mingw32msvc)

– -target amd64-mingw32msvc(mlton-target-amd64-mingw32msvc)

• Linux (Debian)

– -target alpha-linux-gnu (mlton-target-alpha-linux-gnu)

– -target arm-linux-gnueabi (mlton-target-arm-linux-gnueabi)

– -target hppa-linux-gnu (mlton-target-hppa-linux-gnu)

– -target i486-linux-gnu (mlton-target-i486-linux-gnu)

– -target ia64-linux-gnu (mlton-target-ia64-linux-gnu)

– -target mips-linux-gnu (mlton-target-mips-linux-gnu)

– -target mipsel-linux-gnu (mlton-target-mipsel-linux-gnu)

– -target powerpc-linux-gnu (mlton-target-powerpc-linux-gnu)

– -target s390-linux-gnu (mlton-target-s390-linux-gnu)

– -target sparc-linux-gnu (mlton-target-sparc-linux-gnu)

– -target x86-64-linux-gnu (mlton-target-x86-64-linux-gnu)

Download

MLton-Cross is kept in-sync with the current MLton release.

• mlton-cross_20100608.orig.tar.gz

guide/MLtonCross.attachments/mlton-cross_20100608.orig.tar.gz

MLton Guide (20180207) 306 / 611

MLtonExn

signature MLTON_EXN =
sig

val addExnMessager: (exn -> string option) -> unit
val history: exn -> string list

val defaultTopLevelHandler: exn -> ’a
val getTopLevelHandler: unit -> (exn -> unit)
val setTopLevelHandler: (exn -> unit) -> unit
val topLevelHandler: exn -> ’a

end

• addExnMessager f

adds f as a pretty-printer to be used by General.exnMessage for converting exceptions to strings. Messagers are tried in
order from most recently added to least recently added.

• history e

returns call stack at the point that e was first raised. Each element of the list is a file position. The elements are in reverse
chronological order, i.e. the function called last is at the front of the list.

history e will return [] unless the program is compiled with -const ’Exn.keepHistory true’.

• defaultTopLevelHandler e

function that behaves as the default top level handler; that is, print out the unhandled exception message for e and exit.

• getTopLevelHandler ()

get the top level handler.

• setTopLevelHandler f

set the top level handler to the function f. The function f should not raise an exception or return normally.

• topLevelHandler e

behaves as if the top level handler received the exception e.

MLton Guide (20180207) 307 / 611

MLtonFinalizable

signature MLTON_FINALIZABLE =
sig

type ’a t

val addFinalizer: ’a t * (’a -> unit) -> unit
val finalizeBefore: ’a t * ’b t -> unit
val new: ’a -> ’a t
val touch: ’a t -> unit
val withValue: ’a t * (’a -> ’b) -> ’b

end

A finalizable value is a container to which finalizers can be attached. A container holds a value, which is reachable as long as the
container itself is reachable. A finalizer is a function that runs at some point after garbage collection determines that the container
to which it is attached has become unreachable. A finalizer is treated like a signal handler, in that it runs asynchronously in a
separate thread, with signals blocked, and will not interrupt a critical section (see MLtonThread).

• addFinalizer (v, f)

adds f as a finalizer to v. This means that sometime after the last call to withValue on v completes and v becomes
unreachable, f will be called with the value of v.

• finalizeBefore (v1, v2)

ensures that v1 will be finalized before v2. A cycle of values v = v1, . . . , vn = v with finalizeBefore (vi, vi+1)
will result in none of the vi being finalized.

• new x

creates a new finalizable value, v, with value x. The finalizers of v will run sometime after the last call to withValue on v
when the garbage collector determines that v is unreachable.

• touch v

ensures that v’s finalizers will not run before the call to touch.

• withValue (v, f)

returns the result of applying f to the value of v and ensures that v’s finalizers will not run before f completes. The call to f
is a nontail call.

Example

Suppose that finalizable.sml contains the following:

signature CLIST =
sig

type t

val cons: int * t -> t
val sing: int -> t
val sum: t -> int

end

functor CList (structure F: MLTON_FINALIZABLE
structure P: MLTON_POINTER
structure Prim:

sig
val cons: int * P.t -> P.t
val free: P.t -> unit
val sing: int -> P.t

MLton Guide (20180207) 308 / 611

val sum: P.t -> int
end): CLIST =

struct
type t = P.t F.t

fun cons (n: int, l: t) =
F.withValue
(l, fn w’ =>
let

val c = F.new (Prim.cons (n, w’))
val _ = F.addFinalizer (c, Prim.free)
val _ = F.finalizeBefore (c, l)

in
c

end)

fun sing n =
let

val c = F.new (Prim.sing n)
val _ = F.addFinalizer (c, Prim.free)

in
c

end

fun sum c = F.withValue (c, Prim.sum)
end

functor Test (structure CList: CLIST
structure MLton: sig

structure GC:
sig

val collect: unit -> unit
end

end) =
struct

fun f n =
if n = 1

then ()
else

let
val a = Array.tabulate (n, fn i => i)
val _ = Array.sub (a, 0) + Array.sub (a, 1)

in
f (n - 1)

end

val l = CList.sing 2
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val _ = MLton.GC.collect ()
val _ = f 100
val _ = print (concat ["listSum(l) = ",

Int.toString (CList.sum l),
"\n"])

val _ = MLton.GC.collect ()
val _ = f 100

end

MLton Guide (20180207) 309 / 611

structure CList =
CList (structure F = MLton.Finalizable

structure P = MLton.Pointer
structure Prim =

struct
val cons = _import "listCons": int * P.t -> P.t;
val free = _import "listFree": P.t -> unit;
val sing = _import "listSing": int -> P.t;
val sum = _import "listSum": P.t -> int;

end)

structure S = Test (structure CList = CList
structure MLton = MLton)

Suppose that cons.c contains the following.

#include <stdio.h>

typedef unsigned int uint;

typedef struct Cons {
struct Cons *next;
int value;

} *Cons;

Cons listCons (int n, Cons c) {
Cons res;

res = (Cons) malloc (sizeof(*res));
fprintf (stderr, "0x%08x = listCons (%d)\n", (uint)res, n);
res->next = c;
res->value = n;
return res;

}

Cons listSing (int n) {
Cons res;

res = (Cons) malloc (sizeof(*res));
fprintf (stderr, "0x%08x = listSing (%d)\n", (uint)res, n);
res->next = NULL;
res->value = n;
return res;

}

void listFree (Cons p) {
fprintf (stderr, "listFree (0x%08x)\n", (uint)p);
free (p);

}

int listSum (Cons c) {
int res;

fprintf (stderr, "listSum\n");
res = 0;
for (; c != NULL; c = c->next)

res += c->value;
return res;

}

We can compile these to create an executable with

MLton Guide (20180207) 310 / 611

% mlton -default-ann ’allowFFI true’ finalizable.sml cons.c

Running this executable will create output like the following.

% finalizable
0x08072890 = listSing (2)
0x080728a0 = listCons (2)
0x080728b0 = listCons (2)
0x080728c0 = listCons (2)
0x080728d0 = listCons (2)
0x080728e0 = listCons (2)
0x080728f0 = listCons (2)
listSum
listSum(l) = 14
listFree (0x080728f0)
listFree (0x080728e0)
listFree (0x080728d0)
listFree (0x080728c0)
listFree (0x080728b0)
listFree (0x080728a0)
listFree (0x08072890)

Synchronous Finalizers

Finalizers in MLton are asynchronous. That is, they run at an unspecified time, interrupting the user program. It is also possible,
and sometimes useful, to have synchronous finalizers, where the user program explicitly decides when to run enabled finalizers.
We have considered this in MLton, and it seems possible, but there are some unresolved design issues. See the thread at

• http://www.mlton.org/pipermail/mlton/2004-September/016570.html

Also see

• Boehm03

http://www.mlton.org/pipermail/mlton/2004-September/016570.html

MLton Guide (20180207) 311 / 611

MLtonGC

signature MLTON_GC =
sig

val collect: unit -> unit
val pack: unit -> unit
val setMessages: bool -> unit
val setSummary: bool -> unit
val unpack: unit -> unit
structure Statistics :

sig
val bytesAllocated: unit -> IntInf.int
val lastBytesLive: unit -> IntInf.int
val numCopyingGCs: unit -> IntInf.int
val numMarkCompactGCs: unit -> IntInf.int
val numMinorGCs: unit -> IntInf.int
val maxBytesLive: unit -> IntInf.int

end
end

• collect ()

causes a garbage collection to occur.

• pack ()

shrinks the heap as much as possible so that other processes can use available RAM.

• setMessages b

controls whether diagnostic messages are printed at the beginning and end of each garbage collection. It is the same as the
gc-messages runtime system option.

• setSummary b

controls whether a summary of garbage collection statistics is printed upon termination of the program. It is the same as the
gc-summary runtime system option.

• unpack ()

resizes a packed heap to the size desired by the runtime.

• Statistics.bytesAllocated ()

returns bytes allocated (as of the most recent garbage collection).

• Statistics.lastBytesLive ()

returns bytes live (as of the most recent garbage collection).

• Statistics.numCopyingGCs ()

returns number of (major) copying garbage collections performed (as of the most recent garbage collection).

• Statistics.numMarkCompactGCs ()

returns number of (major) mark-compact garbage collections performed (as of the most recent garbage collection).

• Statistics.numMinorGCs ()

returns number of minor garbage collections performed (as of the most recent garbage collection).

• Statistics.maxBytesLive ()

returns maximum bytes live (as of the most recent garbage collection).

MLton Guide (20180207) 312 / 611

MLtonIntInf

signature MLTON_INT_INF =
sig

type t = IntInf.int

val areSmall: t * t -> bool
val gcd: t * t -> t
val isSmall: t -> bool

structure BigWord : WORD
structure SmallInt : INTEGER
datatype rep =

Big of BigWord.word vector
| Small of SmallInt.int

val rep: t -> rep
val fromRep : rep -> t option

end

MLton represents an arbitrary precision integer either as an unboxed word with the bottom bit set to 1 and the top bits representing
a small signed integer, or as a pointer to a vector of words, where the first word indicates the sign and the rest are the limbs of a
GnuMP big integer.

• type t

the same as type IntInf.int.

• areSmall (a, b)

returns true iff both a and b are small.

• gcd (a, b)

uses the GnuMP’s fast gcd implementation.

• isSmall a

returns true iff a is small.

• BigWord :WORD

representation of a big IntInf.int as a vector of words; on 32-bit platforms, BigWord is likely to be equivalent to
Word32, and on 64-bit platforms, BigWord is likely to be equivalent to Word64.

• SmallInt :INTEGER

representation of a small IntInf.int as a signed integer; on 32-bit platforms, SmallInt is likely to be equivalent to
Int32, and on 64-bit platforms, SmallInt is likely to be equivalent to Int64.

• datatype rep

the underlying representation of an IntInf.int.

• rep i

returns the underlying representation of i.

• fromRep r

converts from the underlying representation back to an IntInf.int. If fromRep r is given anything besides the valid
result of rep i for some i, this function call will return NONE.

MLton Guide (20180207) 313 / 611

MLtonIO

signature MLTON_IO =
sig

type instream
type outstream

val inFd: instream -> Posix.IO.file_desc
val mkstemp: string -> string * outstream
val mkstemps: {prefix: string, suffix: string} -> string * outstream
val newIn: Posix.IO.file_desc * string -> instream
val newOut: Posix.IO.file_desc * string -> outstream
val outFd: outstream -> Posix.IO.file_desc
val tempPrefix: string -> string

end

• inFd ins

returns the file descriptor corresponding to ins.

• mkstemp s

like the C mkstemp function, generates and open a temporary file with prefix s.

• mkstemps {prefix, suffix}

like mkstemp, except it has both a prefix and suffix.

• newIn (fd, name)

creates a new instream from file descriptor fd, with name used in any Io exceptions later raised.

• newOut (fd, name)

creates a new outstream from file descriptor fd, with name used in any Io exceptions later raised.

• outFd out

returns the file descriptor corresponding to out.

• tempPrefix s

adds a suitable system or user specific prefix (directory) for temp files.

MLton Guide (20180207) 314 / 611

MLtonItimer

signature MLTON_ITIMER =
sig

datatype t =
Prof

| Real
| Virtual

val set: t * {interval: Time.time, value: Time.time} -> unit
val signal: t -> Posix.Signal.signal

end

• set (t, {interval, value})

sets the interval timer (using setitimer) specified by t to the given interval and value.

• signal t

returns the signal corresponding to t.

MLton Guide (20180207) 315 / 611

MLtonLibraryProject

We have a MLton Library repository that is intended to collect libraries.

https://github.com/MLton/mltonlib

Libraries are kept in the master branch, and are grouped according to domain name, in the Java package style. For example,
VesaKarvonen, who works at ssh.com, has been putting code at:

https://github.com/MLton/mltonlib/tree/master/com/ssh

StephenWeeks, owning sweeks.com, has been putting code at:

https://github.com/MLton/mltonlib/tree/master/com/sweeks

A "library" is a subdirectory of some such directory. For example, Stephen’s basis-library replacement library is at

https://github.com/MLton/mltonlib/tree/master/com/sweeks/basic

We use "transparent per-library branching" to handle library versioning. Each library has an "unstable" subdirectory in which
work happens. When one is happy with a library, one tags it by copying it to a stable version directory. Stable libraries are
immutable — when one refers to a stable library, one always gets exactly the same code. No one has actually made a stable
library yet, but, when I’m ready to tag my library, I was thinking that I would do something like copying

https://github.com/MLton/mltonlib/tree/master/com/sweeks/basic/unstable

to

https://github.com/MLton/mltonlib/tree/master/com/sweeks/basic/v1

So far, libraries in the MLton repository have been licensed under MLton’s License. We haven’t decided on whether that will
be a requirement to be in the repository or not. For the sake of simplicity (a single license) and encouraging widest use of code,
contributors are encouraged to use that license. But it may be too strict to require it.

If someone wants to contribute a new library to our repository or to work on an old one, they can make a pull request. If people
want to work in their own repository, they can do so — that’s the point of using domain names to prevent clashes. The idea is
that a user should be able to bring library collections in from many different repositories without problems. And those libraries
could even work with each other.

At some point we may want to settle on an MLBasisPathMap variable for the root of the library project. Or, we could reuse
SML_LIB, and migrate what we currently keep there into the library infrastructure.

https://github.com/MLton/mltonlib

MLton Guide (20180207) 316 / 611

MLtonMonoArray

signature MLTON_MONO_ARRAY =
sig

type t
type elem
val fromPoly: elem array -> t
val toPoly: t -> elem array

end

• type t

type of monomorphic array

• type elem

type of array elements

• fromPoly a

type cast a polymorphic array to its monomorphic counterpart; the argument and result arrays share the same identity

• toPoly a

type cast a monomorphic array to its polymorphic counterpart; the argument and result arrays share the same identity

MLton Guide (20180207) 317 / 611

MLtonMonoVector

signature MLTON_MONO_VECTOR =
sig

type t
type elem
val fromPoly: elem vector -> t
val toPoly: t -> elem vector

end

• type t

type of monomorphic vector

• type elem

type of vector elements

• fromPoly v

type cast a polymorphic vector to its monomorphic counterpart; in MLton, this is a constant-time operation

• toPoly v

type cast a monomorphic vector to its polymorphic counterpart; in MLton, this is a constant-time operation

MLton Guide (20180207) 318 / 611

MLtonPlatform

signature MLTON_PLATFORM =
sig

structure Arch:
sig

datatype t = Alpha | AMD64 | ARM | ARM64 | HPPA | IA64 | m68k
| MIPS | PowerPC | PowerPC64 | S390 | Sparc | X86

val fromString: string -> t option
val host: t
val toString: t -> string

end

structure OS:
sig

datatype t = AIX | Cygwin | Darwin | FreeBSD | Hurd | HPUX
| Linux | MinGW | NetBSD | OpenBSD | Solaris

val fromString: string -> t option
val host: t
val toString: t -> string

end
end

• datatype Arch.t

processor architectures

• Arch.fromString a

converts from string to architecture. Case insensitive.

• Arch.host

the architecture for which the program is compiled.

• Arch.toString

string for architecture.

• datatype OS.t

operating systems

• OS.fromString

converts from string to operating system. Case insensitive.

• OS.host

the operating system for which the program is compiled.

• OS.toString

string for operating system.

MLton Guide (20180207) 319 / 611

MLtonPointer

signature MLTON_POINTER =
sig

eqtype t

val add: t * word -> t
val compare: t * t -> order
val diff: t * t -> word
val getInt8: t * int -> Int8.int
val getInt16: t * int -> Int16.int
val getInt32: t * int -> Int32.int
val getInt64: t * int -> Int64.int
val getPointer: t * int -> t
val getReal32: t * int -> Real32.real
val getReal64: t * int -> Real64.real
val getWord8: t * int -> Word8.word
val getWord16: t * int -> Word16.word
val getWord32: t * int -> Word32.word
val getWord64: t * int -> Word64.word
val null: t
val setInt8: t * int * Int8.int -> unit
val setInt16: t * int * Int16.int -> unit
val setInt32: t * int * Int32.int -> unit
val setInt64: t * int * Int64.int -> unit
val setPointer: t * int * t -> unit
val setReal32: t * int * Real32.real -> unit
val setReal64: t * int * Real64.real -> unit
val setWord8: t * int * Word8.word -> unit
val setWord16: t * int * Word16.word -> unit
val setWord32: t * int * Word32.word -> unit
val setWord64: t * int * Word64.word -> unit
val sizeofPointer: word
val sub: t * word -> t

end

• eqtype t

the type of pointers, i.e. machine addresses.

• add (p, w)

returns the pointer w bytes after than p. Does not check for overflow.

• compare (p1, p2)

compares the pointer p1 to the pointer p2 (as addresses).

• diff (p1, p2)

returns the number of bytes w such that add (p2, w) =p1. Does not check for overflow.

• get<X> (p, i)

returns the object stored at index i of the array of X objects pointed to by p. For example, getWord32 (p, 7) returns the
32-bit word stored 28 bytes beyond p.

• null

the null pointer, i.e. 0.

• set<X> (p, i, v)

assigns v to the object stored at index i of the array of X objects pointed to by p. For example, setWord32 (p, 7, w)
stores the 32-bit word w at the address 28 bytes beyond p.

MLton Guide (20180207) 320 / 611

• sizeofPointer

size, in bytes, of a pointer.

• sub (p, w)

returns the pointer w bytes before p. Does not check for overflow.

MLton Guide (20180207) 321 / 611

MLtonProcEnv

signature MLTON_PROC_ENV =
sig

type gid

val setenv: {name: string, value: string} -> unit
val setgroups: gid list -> unit

end

• setenv {name, value}

like the C setenv function. Does not require name or value to be null terminated.

• setgroups grps

like the C setgroups function.

MLton Guide (20180207) 322 / 611

MLtonProcess

signature MLTON_PROCESS =
sig

type pid

val spawn: {args: string list, path: string} -> pid
val spawne: {args: string list, env: string list, path: string} -> pid
val spawnp: {args: string list, file: string} -> pid

type (’stdin, ’stdout, ’stderr) t

type input
type output

type none
type chain
type any

exception MisuseOfForget
exception DoublyRedirected

structure Child:
sig
type (’use, ’dir) t

val binIn: (BinIO.instream, input) t -> BinIO.instream
val binOut: (BinIO.outstream, output) t -> BinIO.outstream
val fd: (Posix.FileSys.file_desc, ’dir) t -> Posix.FileSys.file_desc
val remember: (any, ’dir) t -> (’use, ’dir) t
val textIn: (TextIO.instream, input) t -> TextIO.instream
val textOut: (TextIO.outstream, output) t -> TextIO.outstream

end

structure Param:
sig
type (’use, ’dir) t

val child: (chain, ’dir) Child.t -> (none, ’dir) t
val fd: Posix.FileSys.file_desc -> (none, ’dir) t
val file: string -> (none, ’dir) t
val forget: (’use, ’dir) t -> (any, ’dir) t
val null: (none, ’dir) t
val pipe: (’use, ’dir) t
val self: (none, ’dir) t

end

val create:
{args: string list,
env: string list option,
path: string,
stderr: (’stderr, output) Param.t,
stdin: (’stdin, input) Param.t,
stdout: (’stdout, output) Param.t}

-> (’stdin, ’stdout, ’stderr) t
val getStderr: (’stdin, ’stdout, ’stderr) t -> (’stderr, input) Child.t
val getStdin: (’stdin, ’stdout, ’stderr) t -> (’stdin, output) Child.t
val getStdout: (’stdin, ’stdout, ’stderr) t -> (’stdout, input) Child.t
val kill: (’stdin, ’stdout, ’stderr) t * Posix.Signal.signal -> unit
val reap: (’stdin, ’stdout, ’stderr) t -> Posix.Process.exit_status

end

MLton Guide (20180207) 323 / 611

Spawn

The spawn functions provide an alternative to the fork/exec idiom that is typically used to create a new process. On most
platforms, the spawn functions are simple wrappers around fork/exec. However, under Windows, the spawn functions are
primitive. All spawn functions return the process id of the spawned process. They differ in how the executable is found and the
environment that it uses.

• spawn {args, path}

starts a new process running the executable specified by path with the arguments args. Like Posix.Process.exec.

• spawne {args, env, path}

starts a new process running the executable specified by path with the arguments args and environment env. Like Posix.
Process.exece.

• spawnp {args, file}

search the PATH environment variable for an executable named file, and start a new process running that executable with
the arguments args. Like Posix.Process.execp.

Create

MLton.Process.create provides functionality similar to Unix.executeInEnv, but provides more control control over
the input, output, and error streams. In addition, create works on all platforms, including Cygwin and MinGW (Windows)
where Posix.fork is unavailable. For greatest portability programs should still use the standard Unix.execute, Unix.
executeInEnv, and OS.Process.system.

The following types and sub-structures are used by the create function. They provide static type checking of correct stream
usage.

Child

• (’use, ’dir) Child.t

This represents a handle to one of a child’s standard streams. The ’dir is viewed with respect to the parent. Thus a (’a,
input) Child.t handle means that the parent may input the output from the child.

• Child.{bin,text}{In,Out} h

These functions take a handle and bind it to a stream of the named type. The type system will detect attempts to reverse the
direction of a stream or to use the same stream in multiple, incompatible ways.

• Child.fd h

This function behaves like the other Child.* functions; it opens a stream. However, it does not enforce that you read or write
from the handle. If you use the descriptor in an inappropriate direction, the behavior is undefined. Furthermore, this function
may potentially be unavailable on future MLton host platforms.

• Child.remember h

This function takes a stream of use any and resets the use of the stream so that the stream may be used by Child.*.
An any stream may have had use none or ’use prior to calling Param.forget. If the stream was none and is used,
MisuseOfForget is raised.

Param

• (’use, ’dir) Param.t

This is a handle to an input/output source and will be passed to the created child process. The ’dir is relative to the child
process. Input means that the child process will read from this stream.

MLton Guide (20180207) 324 / 611

• Param.child h

Connect the stream of the new child process to the stream of a previously created child process. A single child stream should
be connected to only one child process or else DoublyRedirected will be raised.

• Param.fd fd

This creates a stream from the provided file descriptor which will be closed when create is called. This function may not be
available on future MLton host platforms.

• Param.forget h

This hides the type of the actual parameter as any. This is useful if you are implementing an application which conditionally
attaches the child process to files or pipes. However, you must ensure that your use after Child.remember matches the
original type.

• Param.file s

Open the given file and connect it to the child process. Note that the file will be opened only when create is called. So any
exceptions will be raised there and not by this function. If used for input, the file is opened read-only. If used for output,
the file is opened read-write.

• Param.null

In some situations, the child process should have its output discarded. The null param when passed as stdout or stderr
does this. When used for stdin, the child process will either receive EOF or a failure condition if it attempts to read from
stdin.

• Param.pipe

This will connect the input/output of the child process to a pipe which the parent process holds. This may later form the input
to one of the Child.* functions and/or the Param.child function.

• Param.self

This will connect the input/output of the child process to the corresponding stream of the parent process.

Process

• type (’stdin, ’stdout, ’stderr) t

represents a handle to a child process. The type arguments capture how the named stream of the child process may be used.

• type any

bypasses the type system in situations where an application does not want the it to enforce correct usage. See Child.
remember and Param.forget.

• type chain

means that the child process’s stream was connected via a pipe to the parent process. The parent process may pass this pipe in
turn to another child, thus chaining them together.

• type input, output

record the direction that a stream flows. They are used as a part of Param.t and Child.t and is detailed there.

• type none

means that the child process’s stream my not be used by the parent process. This happens when the child process is connected
directly to some source.

The types BinIO.instream, BinIO.outstream, TextIO.instream, TextIO.outstream, and Posix.File
Sys.file_desc are also valid types with which to instantiate child streams.

• exception MisuseOfForget

may be raised if Child.remember and Param.forget are used to bypass the normal type checking. This exception will
only be raised in cases where the forget mechanism allows a misuse that would be impossible with the type-safe versions.

MLton Guide (20180207) 325 / 611

• exception DoublyRedirected

raised if a stream connected to a child process is redirected to two separate child processes. It is safe, though bad style, to use
the a Child.t with the same Child.* function repeatedly.

• create {args, path, env, stderr, stdin, stdout}

starts a child process with the given command-line args (excluding the program name). path should be an absolute path
to the executable run in the new child process; relative paths work, but are less robust. Optionally, the environment may be
overridden with env where each string element has the form "key=value". The std* options must be provided by the
Param.* functions documented above.

Processes which are create-d must be either reap-ed or kill-ed.

• getStd{in,out,err} proc

gets a handle to the specified stream. These should be used by the Child.* functions. Failure to use a stream connected via
pipe to a child process may result in runtime dead-lock and elicits a compiler warning.

• kill (proc, sig)

terminates the child process immediately. The signal may or may not mean anything depending on the host platform. A good
value is Posix.Signal.term.

• reap proc

waits for the child process to terminate and return its exit status.

Important usage notes

When building an application with many pipes between child processes, it is important to ensure that there are no cycles in the
undirected pipe graph. If this property is not maintained, deadlocks are a very serious potential bug which may only appear under
difficult to reproduce conditions.

The danger lies in that most operating systems implement pipes with a fixed buffer size. If process A has two output pipes which
process B reads, it can happen that process A blocks writing to pipe 2 because it is full while process B blocks reading from pipe
1 because it is empty. This same situation can happen with any undirected cycle formed between processes (vertexes) and pipes
(undirected edges) in the graph.

It is possible to make this safe using low-level I/O primitives for polling. However, these primitives are not very portable and
difficult to use properly. A far better approach is to make sure you never create a cycle in the first place.

For these reasons, the Unix.executeInEnv is a very dangerous function. Be careful when using it to ensure that the child
process only operates on either stdin or stdout, but not both.

Example use of MLton.Process.create

The following example program launches the ipconfig utility, pipes its output through grep, and then reads the result back
into the program.

open MLton.Process
val p =

create {args = ["/all"],
env = NONE,
path = "C:\\WINDOWS\\system32\\ipconfig.exe",
stderr = Param.self,
stdin = Param.null,
stdout = Param.pipe}

val q =
create {args = ["IP-Ad"],

env = NONE,
path = "C:\\msys\\bin\\grep.exe",
stderr = Param.self,
stdin = Param.child (getStdout p),

MLton Guide (20180207) 326 / 611

stdout = Param.pipe}
fun suck h =

case TextIO.inputLine h of
NONE => ()
| SOME s => (print ("’" ^ s ^ "’\n"); suck h)

val () = suck (Child.textIn (getStdout q))

MLton Guide (20180207) 327 / 611

MLtonProfile

signature MLTON_PROFILE =
sig

structure Data:
sig

type t

val equals: t * t -> bool
val free: t -> unit
val malloc: unit -> t
val write: t * string -> unit

end

val isOn: bool
val withData: Data.t * (unit -> ’a) -> ’a

end

MLton.Profile provides Profiling control from within the program, allowing you to profile individual portions of your
program. With MLton.Profile, you can create many units of profiling data (essentially, mappings from functions to counts)
during a run of a program, switch between them while the program is running, and output multiple mlmon.out files.

• isOn

a compile-time constant that is false only when compiling -profile no.

• type Data.t

the type of a unit of profiling data. In order to most efficiently execute non-profiled programs, when compiling -profile
no (the default), Data.t is equivalent to unit ref.

• Data.equals (x, y)

returns true if the x and y are the same unit of profiling data.

• Data.free x

frees the memory associated with the unit of profiling data x. It is an error to free the current unit of profiling data or to free a
previously freed unit of profiling data. When compiling -profile no, Data.free x is a no-op.

• Data.malloc ()

returns a new unit of profiling data. Each unit of profiling data is allocated from the process address space (but is not in
the MLton heap) and consumes memory proportional to the number of source functions. When compiling -profile no,
Data.malloc () is equivalent to allocating a new unit ref.

• write (x, f)

writes the accumulated ticks in the unit of profiling data x to file f. It is an error to write a previously freed unit of profiling
data. When compiling -profile no, write (x, f) is a no-op. A profiled program will always write the current unit of
profiling data at program exit to a file named mlmon.out.

• withData (d, f)

runs f with d as the unit of profiling data, and returns the result of f after restoring the current unit of profiling data. When
compiling -profile no, withData (d, f) is equivalent to f ().

Example

Here is an example, taken from the examples/profiling directory, showing how to profile the executions of the fib and
tak functions separately. Suppose that fib-tak.sml contains the following.

MLton Guide (20180207) 328 / 611

structure Profile = MLton.Profile

val fibData = Profile.Data.malloc ()
val takData = Profile.Data.malloc ()

fun wrap (f, d) x =
Profile.withData (d, fn () => f x)

val rec fib =
fn 0 => 0
| 1 => 1
| n => fib (n - 1) + fib (n - 2)

val fib = wrap (fib, fibData)

fun tak (x,y,z) =
if not (y < x)

then z
else tak (tak (x - 1, y, z),

tak (y - 1, z, x),
tak (z - 1, x, y))

val tak = wrap (tak, takData)

val rec f =
fn 0 => ()
| n => (fib 38; f (n-1))

val _ = f 2

val rec g =
fn 0 => ()
| n => (tak (18,12,6); g (n-1))

val _ = g 500

fun done (data, file) =
(Profile.Data.write (data, file)
; Profile.Data.free data)

val _ = done (fibData, "mlmon.fib.out")
val _ = done (takData, "mlmon.tak.out")

Compile and run the program.

% mlton -profile time fib-tak.sml
% ./fib-tak

Separately display the profiling data for fib

% mlprof fib-tak mlmon.fib.out
5.77 seconds of CPU time (0.00 seconds GC)
function cur
--------- -----
fib 96.9%
<unknown> 3.1%

and for tak

% mlprof fib-tak mlmon.tak.out
0.68 seconds of CPU time (0.00 seconds GC)
function cur
-------- ------
tak 100.0%

MLton Guide (20180207) 329 / 611

Combine the data for fib and tak by calling mlprof with multiple mlmon.out files.

% mlprof fib-tak mlmon.fib.out mlmon.tak.out mlmon.out
6.45 seconds of CPU time (0.00 seconds GC)
function cur
--------- -----
fib 86.7%
tak 10.5%
<unknown> 2.8%

MLton Guide (20180207) 330 / 611

MLtonRandom

signature MLTON_RANDOM =
sig

val alphaNumChar: unit -> char
val alphaNumString: int -> string
val rand: unit -> word
val seed: unit -> word option
val srand: word -> unit
val useed: unit -> word option

end

• alphaNumChar ()

returns a random alphanumeric character.

• alphaNumString n

returns a string of length n of random alphanumeric characters.

• rand ()

returns the next pseudo-random number.

• seed ()

returns a random word from /dev/random. Useful as an arg to srand. If /dev/random can not be read from, seed ()
returns NONE. A call to seed may block until enough random bits are available.

• srand w

sets the seed used by rand to w.

• useed ()

returns a random word from /dev/urandom. Useful as an arg to srand. If /dev/urandom can not be read from, useed
() returns NONE. A call to useed will never block — it will instead return lower quality random bits.

MLton Guide (20180207) 331 / 611

MLtonReal

signature MLTON_REAL =
sig

type t

val fromWord: word -> t
val fromLargeWord: LargeWord.word -> t
val toWord: IEEEReal.rounding_mode -> t -> word
val toLargeWord: IEEEReal.rounding_mode -> t -> LargeWord.word

end

• type t

the type of reals. For MLton.LargeReal this is LargeReal.real, for MLton.Real this is Real.real, for MLton.
Real32 this is Real32.real, for MLton.Real64 this is Real64.real.

• fromWord w

• fromLargeWord w

convert the word w to a real value. If the value of w is larger than (the appropriate) REAL.maxFinite, then infinity is
returned. If w cannot be exactly represented as a real value, then the current rounding mode is used to determine the resulting
value.

• toWord mode r

• toLargeWord mode r

convert the argument r to a word type using the specified rounding mode. They raise Overflow if the result is not repre-
sentable, in particular, if r is an infinity. They raise Domain if r is NaN.

• MLton.Real32.castFromWord w

• MLton.Real64.castFromWord w

convert the argument w to a real type as a bit-wise cast.

• MLton.Real32.castToWord r

• MLton.Real64.castToWord r

convert the argument r to a word type as a bit-wise cast.

MLton Guide (20180207) 332 / 611

MLtonRlimit

signature MLTON_RLIMIT =
sig

structure RLim : sig
type t
val castFromSysWord: SysWord.word -> t
val castToSysWord: t -> SysWord.word

end

val infinity: RLim.t

type t

val coreFileSize: t (* CORE max core file size *)
val cpuTime: t (* CPU CPU time in seconds *)
val dataSize: t (* DATA max data size *)
val fileSize: t (* FSIZE Maximum filesize *)
val numFiles: t (* NOFILE max number of open files *)
val lockedInMemorySize: t (* MEMLOCK max locked address space *)
val numProcesses: t (* NPROC max number of processes *)
val residentSetSize: t (* RSS max resident set size *)
val stackSize: t (* STACK max stack size *)
val virtualMemorySize: t (* AS virtual memory limit *)

val get: t -> {hard: rlim, soft: rlim}
val set: t * {hard: rlim, soft: rlim} -> unit

end

MLton.Rlimit provides a wrapper around the C getrlimit and setrlimit functions.

• type Rlim.t

the type of resource limits.

• infinity

indicates that a resource is unlimited.

• type t

the types of resources that can be inspected and modified.

• get r

returns the current hard and soft limits for resource r. May raise OS.SysErr.

• set (r, {hard, soft})

sets the hard and soft limits for resource r. May raise OS.SysErr.

MLton Guide (20180207) 333 / 611

MLtonRusage

signature MLTON_RUSAGE =
sig

type t = {utime: Time.time, (* user time *)
stime: Time.time} (* system time *)

val measureGC: bool -> unit
val rusage: unit -> {children: t, gc: t, self: t}

end

• type t

corresponds to a subset of the C struct rusage.

• measureGC b

controls whether garbage collection time is separately measured during program execution. This affects the behavior of both
rusage and Timer.checkCPUTimes, both of which will return gc times of zero with measureGC false. Garbage
collection time is always measured when either gc-messages or gc-summary is given as a runtime system option.

• rusage ()

corresponds to the C getrusage function. It returns the resource usage of the exited children, the garbage collector, and the
process itself. The self component includes the usage of the gc component, regardless of whether measureGC is true or
false. If rusage is used in a program, either directly, or indirectly via the Timer structure, then measureGC true is
automatically called at the start of the program (it can still be disable by user code later).

MLton Guide (20180207) 334 / 611

MLtonSignal

signature MLTON_SIGNAL =
sig

type t = Posix.Signal.signal
type signal = t

structure Handler:
sig

type t

val default: t
val handler: (Thread.Runnable.t -> Thread.Runnable.t) -> t
val ignore: t
val isDefault: t -> bool
val isIgnore: t -> bool
val simple: (unit -> unit) -> t

end

structure Mask:
sig

type t

val all: t
val allBut: signal list -> t
val block: t -> unit
val getBlocked: unit -> t
val isMember: t * signal -> bool
val none: t
val setBlocked: t -> unit
val some: signal list -> t
val unblock: t -> unit

end

val getHandler: t -> Handler.t
val handled: unit -> Mask.t
val prof: t
val restart: bool ref
val setHandler: t * Handler.t -> unit
val suspend: Mask.t -> unit
val vtalrm: t

end

Signals handlers are functions from (runnable) threads to (runnable) threads. When a signal arrives, the corresponding signal
handler is invoked, its argument being the thread that was interrupted by the signal. The signal handler runs asynchronously, in
its own thread. The signal handler returns the thread that it would like to resume execution (this is often the thread that it was
passed). It is an error for a signal handler to raise an exception that is not handled within the signal handler itself.

A signal handler is never invoked while the running thread is in a critical section (see MLtonThread). Invoking a signal handler
implicitly enters a critical section and the normal return of a signal handler implicitly exits the critical section; hence, a signal
handler is never interrupted by another signal handler.

• type t

the type of signals.

• type Handler.t

the type of signal handlers.

• Handler.default

handles the signal with the default action.

MLton Guide (20180207) 335 / 611

• Handler.handler f

returns a handler h such that when a signal s is handled by h, f will be passed the thread that was interrupted by s and should
return the thread that will resume execution.

• Handler.ignore

is a handler that will ignore the signal.

• Handler.isDefault

returns true if the handler is the default handler.

• Handler.isIgnore

returns true if the handler is the ignore handler.

• Handler.simple f

returns a handler that executes f () and does not switch threads.

• type Mask.t

the type of signal masks, which are sets of blocked signals.

• Mask.all

a mask of all signals.

• Mask.allBut l

a mask of all signals except for those in l.

• Mask.block m

blocks all signals in m.

• Mask.getBlocked ()

gets the signal mask m, i.e. a signal is blocked if and only if it is in m.

• Mask.isMember (m, s)

returns true if the signal s is in m.

• Mask.none

a mask of no signals.

• Mask.setBlocked m

sets the signal mask to m, i.e. a signal is blocked if and only if it is in m.

• Mask.some l

a mask of the signals in l.

• Mask.unblock m

unblocks all signals in m.

• getHandler s

returns the current handler for signal s.

• handled ()

returns the signal mask m corresponding to the currently handled signals; i.e., a signal is handled if and only if it is in m.

• prof

SIGPROF, the profiling signal.

• restart

dynamically determines the behavior of interrupted system calls; when true, interrupted system calls are restarted; when
false, interrupted system calls raise OS.SysError.

MLton Guide (20180207) 336 / 611

• setHandler (s, h)

sets the handler for signal s to h.

• suspend m

temporarily sets the signal mask to m and suspends until an unmasked signal is received and handled, at which point suspend
resets the mask and returns.

• vtalrm

SIGVTALRM, the signal for virtual timers.

Interruptible System Calls

Signal handling interacts in a non-trivial way with those functions in the Basis Library that correspond directly to interrupt-
ible system calls (a subset of those functions that may raise OS.SysError). The desire is that these functions should have
predictable semantics. The principal concerns are:

1. System calls that are interrupted by signals should, by default, be restarted; the alternative is to raise

OS.SysError (Posix.Error.errorMsg Posix.Error.intr,
SOME Posix.Error.intr)

This behavior is determined dynamically by the value of Signal.restart.

2. Signal handlers should always get a chance to run (when outside a critical region). If a system call is interrupted by a
signal, then the signal handler will run before the call is restarted or OS.SysError is raised; that is, before the Signal.
restart check.

3. A system call that must be restarted while in a critical section will be restarted with the handled signals blocked (and the
previously blocked signals remembered). This encourages the system call to complete, allowing the program to make
progress towards leaving the critical section where the signal can be handled. If the system call completes, the set of
blocked signals are restored to those previously blocked.

MLton Guide (20180207) 337 / 611

MLtonStructure

The MLton structure contains a lot of functionality that is not available in the Basis Library. As a warning, please keep in mind
that the MLton structure and its substructures do change from release to release of MLton.

structure MLton:
sig

val eq: ’a * ’a -> bool
val equal: ’a * ’a -> bool
val hash: ’a -> Word32.word
val isMLton: bool
val share: ’a -> unit
val shareAll: unit -> unit
val size: ’a -> int

structure Array: MLTON_ARRAY
structure BinIO: MLTON_BIN_IO
structure CharArray: MLTON_MONO_ARRAY where type t = CharArray.array

where type elem = CharArray.elem
structure CharVector: MLTON_MONO_VECTOR where type t = CharVector.vector

where type elem = CharVector.elem
structure Cont: MLTON_CONT
structure Exn: MLTON_EXN
structure Finalizable: MLTON_FINALIZABLE
structure GC: MLTON_GC
structure IntInf: MLTON_INT_INF
structure Itimer: MLTON_ITIMER
structure LargeReal: MLTON_REAL where type t = LargeReal.real
structure LargeWord: MLTON_WORD where type t = LargeWord.word
structure Platform: MLTON_PLATFORM
structure Pointer: MLTON_POINTER
structure ProcEnv: MLTON_PROC_ENV
structure Process: MLTON_PROCESS
structure Profile: MLTON_PROFILE
structure Random: MLTON_RANDOM
structure Real: MLTON_REAL where type t = Real.real
structure Real32: sig

include MLTON_REAL
val castFromWord: Word32.word -> t
val castToWord: t -> Word32.word

end where type t = Real32.real
structure Real64: sig

include MLTON_REAL
val castFromWord: Word64.word -> t
val castToWord: t -> Word64.word

end where type t = Real64.real
structure Rlimit: MLTON_RLIMIT
structure Rusage: MLTON_RUSAGE
structure Signal: MLTON_SIGNAL
structure Syslog: MLTON_SYSLOG
structure TextIO: MLTON_TEXT_IO
structure Thread: MLTON_THREAD
structure Vector: MLTON_VECTOR
structure Weak: MLTON_WEAK
structure Word: MLTON_WORD where type t = Word.word
structure Word8: MLTON_WORD where type t = Word8.word
structure Word16: MLTON_WORD where type t = Word16.word
structure Word32: MLTON_WORD where type t = Word32.word
structure Word64: MLTON_WORD where type t = Word64.word
structure Word8Array: MLTON_MONO_ARRAY where type t = Word8Array.array

where type elem = Word8Array.elem

MLton Guide (20180207) 338 / 611

structure Word8Vector: MLTON_MONO_VECTOR where type t = Word8Vector.vector
where type elem = Word8Vector.elem

structure World: MLTON_WORLD
end

Substructures

• MLtonArray

• MLtonBinIO

• MLtonCont

• MLtonExn

• MLtonFinalizable

• MLtonGC

• MLtonIntInf

• MLtonIO

• MLtonItimer

• MLtonMonoArray

• MLtonMonoVector

• MLtonPlatform

• MLtonPointer

• MLtonProcEnv

• MLtonProcess

• MLtonRandom

• MLtonReal

• MLtonRlimit

• MLtonRusage

• MLtonSignal

• MLtonSyslog

• MLtonTextIO

• MLtonThread

• MLtonVector

• MLtonWeak

• MLtonWord

• MLtonWorld

MLton Guide (20180207) 339 / 611

Values

• eq (x, y)

returns true if x and y are equal as pointers. For simple types like char, int, and word, this is the same as equals. For
arrays, datatypes, strings, tuples, and vectors, this is a simple pointer equality. The semantics is a bit murky.

• equal (x, y)

returns true if x and y are structurally equal. For equality types, this is the same as PolymorphicEquality. For other types, it is
a conservative approximation of equivalence.

• hash x

returns a structural hash of x. The hash function is consistent between execution of the same program, but may not be consistent
between different programs.

• isMLton

is always true in a MLton implementation, and is always false in a stub implementation.

• share x

maximizes sharing in the heap for the object graph reachable from x.

• shareAll ()

maximizes sharing in the heap by sharing space for equivalent immutable objects. A call to shareAll performs a major
garbage collection, and takes time proportional to the size of the heap.

• size x

returns the amount of heap space (in bytes) taken by the value of x, including all objects reachable from x by following
pointers. It takes time proportional to the size of x. See below for an example.

Example of MLton.size

This example, size.sml, demonstrates the application of MLton.size to many different kinds of objects.

fun ’a printSize (name: string, value: ’a): unit=
(print "The size of "
; print name
; print " is "
; print (Int.toString (MLton.size value))
; print " bytes.\n")

val l = [1, 2, 3, 4]

val _ =
(
printSize ("an int list of length 4", l)
; printSize ("a string of length 10", "0123456789")
; printSize ("an int array of length 10", Array.tabulate (10, fn _ => 0))
; printSize ("a double array of length 10",

Array.tabulate (10, fn _ => 0.0))
; printSize ("an array of length 10 of 2-ples of ints",

Array.tabulate (10, fn i => (i, i + 1)))
; printSize ("a useless function", fn _ => 13)
)

(* This is here so that the list is "useful".

* If it were removed, then the optimizer (remove-unused-constructors)

* would remove l entirely.

*)
val _ = if 10 = foldl (op +) 0 l

MLton Guide (20180207) 340 / 611

then ()
else raise Fail "bug"

local
open MLton.Cont

in
val rc: int option t option ref = ref NONE
val _ =

case callcc (fn k: int option t => (rc := SOME k; throw (k, NONE))) of
NONE => ()

| SOME i => print (concat [Int.toString i, "\n"])
end

val _ = printSize ("a continuation option ref", rc)

val _ =
case !rc of

NONE => ()
| SOME k => (rc := NONE; MLton.Cont.throw (k, SOME 13))

Compile and run as usual.

% mlton size.sml
% ./size
The size of an int list of length 4 is 48 bytes.
The size of a string of length 10 is 24 bytes.
The size of an int array of length 10 is 52 bytes.
The size of a double array of length 10 is 92 bytes.
The size of an array of length 10 of 2-ples of ints is 92 bytes.
The size of a useless function is 0 bytes.
The size of a continuation option ref is 4544 bytes.
13
The size of a continuation option ref is 8 bytes.

Note that sizes are dependent upon the target platform and compiler optimizations.

MLton Guide (20180207) 341 / 611

MLtonSyslog

signature MLTON_SYSLOG =
sig

type openflag

val CONS : openflag
val NDELAY : openflag
val NOWAIT : openflag
val ODELAY : openflag
val PERROR : openflag
val PID : openflag

type facility

val AUTHPRIV : facility
val CRON : facility
val DAEMON : facility
val KERN : facility
val LOCAL0 : facility
val LOCAL1 : facility
val LOCAL2 : facility
val LOCAL3 : facility
val LOCAL4 : facility
val LOCAL5 : facility
val LOCAL6 : facility
val LOCAL7 : facility
val LPR : facility
val MAIL : facility
val NEWS : facility
val SYSLOG : facility
val USER : facility
val UUCP : facility

type loglevel

val EMERG : loglevel
val ALERT : loglevel
val CRIT : loglevel
val ERR : loglevel
val WARNING : loglevel
val NOTICE : loglevel
val INFO : loglevel
val DEBUG : loglevel

val closelog: unit -> unit
val log: loglevel * string -> unit
val openlog: string * openflag list * facility -> unit

end

MLton.Syslog is a complete interface to the system logging facilities. See man 3 syslog for more details.

• closelog ()

closes the connection to the system logger.

• log (l, s)

logs message s at a loglevel l.

• openlog (name, flags, facility)

opens a connection to the system logger. name will be prefixed to each message, and is typically set to the program name.

MLton Guide (20180207) 342 / 611

MLtonTextIO

signature MLTON_TEXT_IO = MLTON_IO

See MLtonIO.

MLton Guide (20180207) 343 / 611

MLtonThread

signature MLTON_THREAD =
sig

structure AtomicState:
sig

datatype t = NonAtomic | Atomic of int
end

val atomically: (unit -> ’a) -> ’a
val atomicBegin: unit -> unit
val atomicEnd: unit -> unit
val atomicState: unit -> AtomicState.t

structure Runnable:
sig

type t
end

type ’a t

val atomicSwitch: (’a t -> Runnable.t) -> ’a
val new: (’a -> unit) -> ’a t
val prepend: ’a t * (’b -> ’a) -> ’b t
val prepare: ’a t * ’a -> Runnable.t
val switch: (’a t -> Runnable.t) -> ’a

end

MLton.Thread provides access to MLton’s user-level thread implementation (i.e. not OS-level threads). Threads are lightweight
data structures that represent a paused computation. Runnable threads are threads that will begin or continue computing when
switch-ed to. MLton.Thread does not include a default scheduling mechanism, but it can be used to implement both
preemptive and non-preemptive threads.

• type AtomicState.t

the type of atomic states.

• atomically f

runs f in a critical section.

• atomicBegin ()

begins a critical section.

• atomicEnd ()

ends a critical section.

• atomicState ()

returns the current atomic state.

• type Runnable.t

the type of threads that can be resumed.

• type ’a t

the type of threads that expect a value of type ’a.

• atomicSwitch f

like switch, but assumes an atomic calling context. Upon switch-ing back to the current thread, an implicit atomicEnd
is performed.

MLton Guide (20180207) 344 / 611

• new f

creates a new thread that, when run, applies f to the value given to the thread. f must terminate by `switch`ing to another
thread or exiting the process.

• prepend (t, f)

creates a new thread (destroying t in the process) that first applies f to the value given to the thread and then continues with
t. This is a constant time operation.

• prepare (t, v)

prepares a new runnable thread (destroying t in the process) that will evaluate t on v.

• switch f

applies f to the current thread to get rt, and then start running thread rt. It is an error for f to perform another switch. f
is guaranteed to run atomically.

Example of non-preemptive threads

structure Queue:
sig

type ’a t

val new: unit -> ’a t
val enque: ’a t * ’a -> unit
val deque: ’a t -> ’a option

end =
struct

datatype ’a t = T of {front: ’a list ref, back: ’a list ref}

fun new () = T {front = ref [], back = ref []}

fun enque (T {back, ...}, x) = back := x :: !back

fun deque (T {front, back}) =
case !front of

[] => (case !back of
[] => NONE

| l => let val l = rev l
in case l of

[] => raise Fail "deque"
| x :: l => (back := []; front := l; SOME x)

end)
| x :: l => (front := l; SOME x)

end

structure Thread:
sig

val exit: unit -> ’a
val run: unit -> unit
val spawn: (unit -> unit) -> unit
val yield: unit -> unit

end =
struct

open MLton
open Thread

val topLevel: Thread.Runnable.t option ref = ref NONE

local
val threads: Thread.Runnable.t Queue.t = Queue.new ()

MLton Guide (20180207) 345 / 611

in
fun ready (t: Thread.Runnable.t) : unit =

Queue.enque(threads, t)
fun next () : Thread.Runnable.t =

case Queue.deque threads of
NONE => valOf (!topLevel)

| SOME t => t
end

fun ’a exit (): ’a = switch (fn _ => next ())

fun new (f: unit -> unit): Thread.Runnable.t =
Thread.prepare
(Thread.new (fn () => ((f () handle _ => exit ())

; exit ())),
())

fun schedule t = (ready t; next ())

fun yield (): unit = switch (fn t => schedule (Thread.prepare (t, ())))

val spawn = ready o new

fun run(): unit =
(switch (fn t =>

(topLevel := SOME (Thread.prepare (t, ()))
; next()))

; topLevel := NONE)
end

val rec loop =
fn 0 => ()
| n => (print(concat[Int.toString n, "\n"])

; Thread.yield()
; loop(n - 1))

val rec loop’ =
fn 0 => ()
| n => (Thread.spawn (fn () => loop n); loop’ (n - 2))

val _ = Thread.spawn (fn () => loop’ 10)

val _ = Thread.run ()

val _ = print "success\n"

Example of preemptive threads

structure Queue:
sig

type ’a t

val new: unit -> ’a t
val enque: ’a t * ’a -> unit
val deque: ’a t -> ’a option

end =
struct

datatype ’a t = T of {front: ’a list ref, back: ’a list ref}

fun new () = T {front = ref [], back = ref []}

MLton Guide (20180207) 346 / 611

fun enque (T {back, ...}, x) = back := x :: !back

fun deque (T {front, back}) =
case !front of

[] => (case !back of
[] => NONE

| l => let val l = rev l
in case l of

[] => raise Fail "deque"
| x :: l => (back := []; front := l; SOME x)

end)
| x :: l => (front := l; SOME x)

end

structure Thread:
sig

val exit: unit -> ’a
val run: unit -> unit
val spawn: (unit -> unit) -> unit
val yield: unit -> unit

end =
struct

open Posix.Signal
open MLton
open Itimer Signal Thread

val topLevel: Thread.Runnable.t option ref = ref NONE

local
val threads: Thread.Runnable.t Queue.t = Queue.new ()

in
fun ready (t: Thread.Runnable.t) : unit =

Queue.enque(threads, t)
fun next () : Thread.Runnable.t =

case Queue.deque threads of
NONE => valOf (!topLevel)

| SOME t => t
end

fun ’a exit (): ’a = switch (fn _ => next ())

fun new (f: unit -> unit): Thread.Runnable.t =
Thread.prepare
(Thread.new (fn () => ((f () handle _ => exit ())

; exit ())),
())

fun schedule t = (ready t; next ())

fun yield (): unit = switch (fn t => schedule (Thread.prepare (t, ())))

val spawn = ready o new

fun setItimer t =
Itimer.set (Itimer.Real,

{value = t,
interval = t})

fun run (): unit =
(switch (fn t =>

(topLevel := SOME (Thread.prepare (t, ()))

MLton Guide (20180207) 347 / 611

; new (fn () => (setHandler (alrm, Handler.handler schedule)
; setItimer (Time.fromMilliseconds 20)))))

; setItimer Time.zeroTime
; ignore alrm
; topLevel := NONE)

end

val rec delay =
fn 0 => ()
| n => delay (n - 1)

val rec loop =
fn 0 => ()
| n => (delay 500000; loop (n - 1))

val rec loop’ =
fn 0 => ()
| n => (Thread.spawn (fn () => loop n); loop’ (n - 1))

val _ = Thread.spawn (fn () => loop’ 10)

val _ = Thread.run ()

val _ = print "success\n"

MLton Guide (20180207) 348 / 611

MLtonVector

signature MLTON_VECTOR =
sig

val create: int -> {done: unit -> ’a vector,
sub: int -> ’a,
update: int * ’a -> unit}

val unfoldi: int * ’b * (int * ’b -> ’a * ’b) -> ’a vector * ’b
end

• create n

initiates the construction a vector v of length n, returning functions to manipulate the vector. The done function may be
called to return the created vector; it is an error to call done before all entries have been initialized; it is an error to call done
after having called done. The sub function may be called to return an initialized vector entry; it is not an error to call sub
after having called done. The update function may be called to initialize a vector entry; it is an error to call update after
having called done. One must initialize vector entries in order from lowest to highest; that is, before calling update (i,
x), one must have already called update (j, x) for all j in [0, i). The done, sub, and update functions are all
constant-time operations.

• unfoldi (n, b, f)

constructs a vector v of length n, whose elements vi are determined by the equations b0 = b and (vi, bi+1) = f (i, bi).

MLton Guide (20180207) 349 / 611

MLtonWeak

signature MLTON_WEAK =
sig

type ’a t

val get: ’a t -> ’a option
val new: ’a -> ’a t

end

A weak pointer is a pointer to an object that is nulled if the object becomes unreachable due to garbage collection. The weak
pointer does not itself cause the object it points to be retained by the garbage collector — only other strong pointers can do that.
For objects that are not allocated in the heap, like integers, a weak pointer will always be nulled. So, if w:int Weak.t, then
Weak.get w =NONE.

• type ’a t

the type of weak pointers to objects of type ’a

• get w

returns NONE if the object pointed to by w no longer exists. Otherwise, returns SOME of the object pointed to by w.

• new x

returns a weak pointer to x.

MLton Guide (20180207) 350 / 611

MLtonWord

signature MLTON_WORD =
sig

type t

val bswap: t -> t
val rol: t * word -> t
val ror: t * word -> t

end

• type t

the type of words. For MLton.LargeWord this is LargeWord.word, for MLton.Word this is Word.word, for MLton.
Word8 this is Word8.word, for MLton.Word16 this is Word16.word, for MLton.Word32 this is Word32.word, for
MLton.Word64 this is Word64.word.

• bswap w

byte swap.

• rol (w, w’)

rotates left (circular).

• ror (w, w’)

rotates right (circular).

MLton Guide (20180207) 351 / 611

MLtonWorld

signature MLTON_WORLD =
sig

datatype status = Clone | Original

val load: string -> ’a
val save: string -> status
val saveThread: string * Thread.Runnable.t -> unit

end

• datatype status

specifies whether a world is original or restarted (a clone).

• load f

loads the saved computation from file f.

• save f

saves the entire state of the computation to the file f. The computation can then be restarted at a later time using World.
load or the load-world runtime option. The call to save in the original computation returns Original and the call in
the restarted world returns Clone.

• saveThread (f, rt)

saves the entire state of the computation to the file f that will resume with thread rt upon restart.

Notes

Executables that save and load worlds are incompatible with address space layout randomization (ASLR) of the executable
(though, not of shared libraries). The state of a computation includes addresses into the code and data segments of the executable
(e.g., static runtime-system data, return addresses); such addresses are invalid when interpreted by the executable loaded at a
different base address.

Executables that save and load worlds should be compiled with an option to suppress the generation of position-independent
executables.

• Darwin 11 (Mac OS X Lion) and higher : -link-opt -fno-PIE

Example

Suppose that save-world.sml contains the following.

open MLton.World

val _ =
case save "world" of

Original => print "I am the original\n"
| Clone => print "I am the clone\n"

Then, if we compile save-world.sml and run it, the Original branch will execute, and a file named world will be
created.

% mlton save-world.sml
% ./save-world
I am the original

We can then load world using the load-world run time option.

% ./save-world @MLton load-world world --
I am the clone

http://en.wikipedia.org/wiki/Address_space_layout_randomization

MLton Guide (20180207) 352 / 611

MLULex

MLULex is a scanner generator for Standard ML.

Also see

• MLAntlr

• MLLPTLibrary

• OwensEtAl09

http://smlnj-gforge.cs.uchicago.edu/projects/ml-lpt/

MLton Guide (20180207) 353 / 611

MLYacc

MLYacc is a parser generator for Standard ML modeled after the Yacc parser generator.

A version of MLYacc, ported from the SML/NJ sources, is distributed with MLton.

Also see

• mlyacc.pdf

• MLLex

• TarditiAppel00

• Price09

MLton Guide (20180207) 354 / 611

Monomorphise

Monomorphise is a translation pass from the XML IntermediateLanguage to the SXML IntermediateLanguage.

Description

Monomorphisation eliminates polymorphic values and datatype declarations by duplicating them for each type at which they are
used.

Consider the following XML program.

datatype ’a t = T of ’a
fun ’a f (x: ’a) = T x
val a = f 1
val b = f 2
val z = f (3, 4)

The result of monomorphising this program is the following SXML program:

datatype t1 = T1 of int
datatype t2 = T2 of int * int
fun f1 (x: int) = T1 x
fun f2 (x: int * int) = T2 x
val a = f1 1
val b = f1 2
val z = f2 (3, 4)

Implementation

• monomorphise.sig

• monomorphise.fun

Details and Notes

The monomorphiser works by making one pass over the entire program. On the way down, it creates a cache for each variable
declared in a polymorphic declaration that maps a lists of type arguments to a new variable name. At a variable reference, it
consults the cache (based on the types the variable is applied to). If there is already an entry in the cache, it is used. If not, a new
entry is created. On the way up, the monomorphiser duplicates a variable declaration for each entry in the cache.

As with variables, the monomorphiser records all of the type at which constructors are used. After the entire program is processed,
the monomorphiser duplicates each datatype declaration and its associated constructors.

The monomorphiser duplicates all of the functions declared in a fun declaration as a unit. Consider the following program

fun ’a f (x: ’a) = g x
and g (y: ’a) = f y
val a = f 13
val b = g 14
val c = f (1, 2)

and its monomorphisation

fun f1 (x: int) = g1 x
and g1 (y: int) = f1 y
fun f2 (x : int * int) = g2 x
and g2 (y : int * int) = f2 y
val a = f1 13
val b = g1 14
val c = f2 (1, 2)

https://github.com/MLton/mlton/blob/master/mlton/xml/monomorphise.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/monomorphise.fun

MLton Guide (20180207) 355 / 611

Pathological datatype declarations

SML allows a pathological polymorphic datatype declaration in which recursive uses of the defined type constructor are applied
to different type arguments than the definition. This has been disallowed by others on type theoretic grounds. A canonical
example is the following.

datatype ’a t = A of ’a | B of (’a * ’a) t
val z : int t = B (B (A ((1, 2), (3, 4))))

The presence of the recursion in the datatype declaration might appear to cause the need for the monomorphiser to create an
infinite number of types. However, due to the absence of polymorphic recursion in SML, there are in fact only a finite number of
instances of such types in any given program. The monomorphiser translates the above program to the following one.

datatype t1 = B1 of t2
datatype t2 = B2 of t3
datatype t3 = A3 of (int * int) * (int * int)
val z : int t = B1 (B2 (A3 ((1, 2), (3, 4))))

It is crucial that the monomorphiser be allowed to drop unused constructors from datatype declarations in order for the translation
to terminate.

MLton Guide (20180207) 356 / 611

MoscowML

Moscow ML is a Standard ML implementation. It is a byte-code compiler, so it compiles code quickly, but the code runs slowly.
See Performance.

http://mosml.org

MLton Guide (20180207) 357 / 611

Multi

Multi is an analysis pass for the SSA IntermediateLanguage, invoked from ConstantPropagation and LocalRef.

Description

This pass analyzes the control flow of a SSA program to determine which SSA functions and blocks might be executed more
than once or by more than one thread. It also determines when a program uses threads and when functions and blocks directly or
indirectly invoke Thread_copyCurrent.

Implementation

• multi.sig

• multi.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/multi.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/multi.fun

MLton Guide (20180207) 358 / 611

Mutable

Mutable is an adjective meaning "can be modified". In Standard ML, ref cells and arrays are mutable, while all other values are
immutable.

MLton Guide (20180207) 359 / 611

NeedsReview

This page documents some patches and bug fixes that need additional review by experienced developers:

• Bug in transparent signature match:

– What is an original interface and why does the equivalence of original interfaces implies the equivalence of the actual
interfaces?

– http://www.mlton.org/pipermail/mlton/2007-September/029991.html

– http://www.mlton.org/pipermail/mlton/2007-September/029995.html

– SVN Revision: r6046

• Bug in DeepFlatten pass:

– Should we allow argument to Weak_new to be flattened?

– SVN Revision: r6189 (regression test demonstrating bug)

– SVN Revision: r6191

http://www.mlton.org/pipermail/mlton/2007-September/029991.html
http://www.mlton.org/pipermail/mlton/2007-September/029995.html
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6046
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6189
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6191

MLton Guide (20180207) 360 / 611

NumericLiteral

Numeric literals in Standard ML can be written in either decimal or hexadecimal notation. Sometimes it can be convenient to
write numbers down in other bases. Fortunately, using Fold, it is possible to define a concise syntax for numeric literals that
allows one to write numeric constants in any base and of various types (int, IntInf.int, word, and more).

We will define constants I, II, W, and ` so that, for example,

I 10 ‘1‘2‘3 $

denotes 123:int in base 10, while

II 8 ‘2‘3 $

denotes 19:IntInf.int in base 8, and

W 2 ‘1‘1‘0‘1 $

denotes 0w13:word.

Here is the code.

structure Num =
struct

fun make (op *, op +, i2x) iBase =
let

val xBase = i2x iBase
in

Fold.fold
((i2x 0,

fn (i, x) =>
if 0 <= i andalso i < iBase then

x * xBase + i2x i
else

raise Fail (concat
["Num: ", Int.toString i,
" is not a valid\
\ digit in base ",
Int.toString iBase])),

fst)
end

fun I ? = make (op *, op +, id) ?
fun II ? = make (op *, op +, IntInf.fromInt) ?
fun W ? = make (op *, op +, Word.fromInt) ?

fun ‘ ? = Fold.step1 (fn (i, (x, step)) =>
(step (i, x), step)) ?

val a = 10
val b = 11
val c = 12
val d = 13
val e = 14
val f = 15

end

where

fun fst (x, _) = x

MLton Guide (20180207) 361 / 611

The idea is for the fold to start with zero and to construct the result one digit at a time, with each stepper multiplying the previous
result by the base and adding the next digit. The code is abstracted in two different ways for extra generality. First, the make
function abstracts over the various primitive operations (addition, multiplication, etc) that are needed to construct a number. This
allows the same code to be shared for constants I, II, W used to write down the various numeric types. It also allows users to
add new constants for additional numeric types, by supplying the necessary arguments to make.

Second, the step function, `, is abstracted over the actual construction operation, which is created by make, and passed along
the fold. This allows the same constant, `, to be used for all numeric types. The alternative approach, having a different step
function for each numeric type, would be more painful to use.

On the surface, it appears that the code checks the digits dynamically to ensure they are valid for the base. However, MLton will
simplify everything away at compile time, leaving just the final numeric constant.

MLton Guide (20180207) 362 / 611

ObjectOrientedProgramming

Standard ML does not have explicit support for object-oriented programming. Here are some papers that show how to express
certain object-oriented concepts in SML.

• OO Programming styles in ML

• Object-oriented programming and Standard ML

• mGTK: An SML binding of Gtk+

• Phantom Types and Subtyping

The question of OO programming in SML comes up every now and then. The following discusses a simple object-oriented (OO)
programming technique in Standard ML. The reader is assumed to be able to read Java and SML code.

Motivation

SML doesn’t provide subtyping, but it does provide parametric polymorphism, which can be used to encode some forms of
subtyping. Most articles on OO programming in SML concentrate on such encoding techniques. While those techniques are
interesting — and it is recommended to read such articles — and sometimes useful, it seems that basically all OO gurus agree
that (deep) subtyping (or inheritance) hierarchies aren’t as practical as they were thought to be in the early OO days. "Good",
flexible, "OO" designs tend to have a flat structure

Interface
^
|

- - -+-------+-------+- - -
| | |

ImplA ImplB ImplC

and deep inheritance hierarchies

ClassA
^
|

ClassB
^
|

ClassC
^
|

tend to be signs of design mistakes. There are good underlying reasons for this, but a thorough discussion is not in the scope
of this article. However, the point is that perhaps the encoding of subtyping is not as important as one might believe. In the
following we ignore subtyping and rather concentrate on a very simple and basic dynamic dispatch technique.

Dynamic Dispatch Using a Recursive Record of Functions

Quite simply, the basic idea is to implement a "virtual function table" using a record that is wrapped inside a (possibly recursive)
datatype. Let’s first take a look at a simple concrete example.

Consider the following Java interface:

public interface Counter {
public void inc();
public int get();

}

MLton Guide (20180207) 363 / 611

We can translate the Counter interface to SML as follows:

datatype counter = Counter of {inc : unit -> unit, get : unit -> int}

Each value of type counter can be thought of as an object that responds to two messages inc and get. To actually send
messages to a counter, it is useful to define auxiliary functions

local
fun mk m (Counter t) = m t ()

in
val cGet = mk#get
val cInc = mk#inc

end

that basically extract the "function table" t from a counter object and then select the specified method m from the table.

Let’s then implement a simple function that increments a counter until a given maximum is reached:

fun incUpto counter max = while cGet counter < max do cInc counter

You can easily verify that the above code compiles even without any concrete implementation of a counter, thus it is clear that it
doesn’t depend on a particular counter implementation.

Let’s then implement a couple of counters. First consider the following Java class implementing the Counter interface given
earlier.

public class BasicCounter implements Counter {
private int cnt;
public BasicCounter(int initialCnt) { this.cnt = initialCnt; }
public void inc() { this.cnt += 1; }
public int get() { return this.cnt; }

}

We can translate the above to SML as follows:

fun newBasicCounter initialCnt = let
val cnt = ref initialCnt

in
Counter {inc = fn () => cnt := !cnt + 1,

get = fn () => !cnt}
end

The SML function newBasicCounter can be described as a constructor function for counter objects of the BasicCounter
"class". We can also have other counter implementations. Here is the constructor for a counter decorator that logs messages:

fun newLoggedCounter counter =
Counter {inc = fn () => (print "inc\n" ; cInc counter),

get = fn () => (print "get\n" ; cGet counter)}

The incUpto function works just as well with objects of either class:

val aCounter = newBasicCounter 0
val () = incUpto aCounter 5
val () = print (Int.toString (cGet aCounter) ^"\n")

val aCounter = newLoggedCounter (newBasicCounter 0)
val () = incUpto aCounter 5
val () = print (Int.toString (cGet aCounter) ^"\n")

In general, a dynamic dispatch interface is represented as a record type wrapped inside a datatype. Each field of the record
corresponds to a public method or field of the object:

MLton Guide (20180207) 364 / 611

datatype interface =
Interface of {method : t1 -> t2,

immutableField : t,
mutableField : t ref}

The reason for wrapping the record inside a datatype is that records, in SML, can not be recursive. However, SML datatypes
can be recursive. A record wrapped in a datatype can contain fields that contain the datatype. For example, an interface such as
Cloneable

datatype cloneable = Cloneable of {clone : unit -> cloneable}

can be represented using recursive datatypes.

Like in OO languages, interfaces are abstract and can not be instantiated to produce objects. To be able to instantiate objects,
the constructors of a concrete class are needed. In SML, we can implement constructors as simple functions from arbitrary
arguments to values of the interface type. Such a constructor function can encapsulate arbitrary private state and functions using
lexical closure. It is also easy to share implementations of methods between two or more constructors.

While the Counter example is rather trivial, it should not be difficult to see that this technique quite simply doesn’t require a
huge amount of extra verbiage and is more than usable in practice.

SML Modules and Dynamic Dispatch

One might wonder about how SML modules and the dynamic dispatch technique work together. Let’s investigate! Let’s use
a simple dispenser framework as a concrete example. (Note that this isn’t intended to be an introduction to the SML module
system.)

Programming with SML Modules

Using SML signatures we can specify abstract data types (ADTs) such as dispensers. Here is a signature for an "abstract"
functional (as opposed to imperative) dispenser:

signature ABSTRACT_DISPENSER = sig
type ’a t
val isEmpty : ’a t -> bool
val push : ’a * ’a t -> ’a t
val pop : ’a t -> (’a * ’a t) option

end

The term "abstract" in the name of the signature refers to the fact that the signature gives no way to instantiate a dispenser. It has
nothing to do with the concept of abstract data types.

Using SML functors we can write "generic" algorithms that manipulate dispensers of an unknown type. Here are a couple of
very simple algorithms:

functor DispenserAlgs (D : ABSTRACT_DISPENSER) = struct
open D

fun pushAll (xs, d) = foldl push d xs

fun popAll d = let
fun lp (xs, NONE) = rev xs
| lp (xs, SOME (x, d)) = lp (x::xs, pop d)

in
lp ([], pop d)

end

fun cp (from, to) = pushAll (popAll from, to)
end

MLton Guide (20180207) 365 / 611

As one can easily verify, the above compiles even without any concrete dispenser structure. Functors essentially provide a form
a static dispatch that one can use to break compile-time dependencies.

We can also give a signature for a concrete dispenser

signature DISPENSER = sig
include ABSTRACT_DISPENSER
val empty : ’a t

end

and write any number of concrete structures implementing the signature. For example, we could implement stacks

structure Stack :> DISPENSER = struct
type ’a t = ’a list
val empty = []
val isEmpty = null
val push = op ::
val pop = List.getItem

end

and queues

structure Queue :> DISPENSER = struct
datatype ’a t = T of ’a list * ’a list
val empty = T ([], [])
val isEmpty = fn T ([], _) => true | _ => false
val normalize = fn ([], ys) => (rev ys, []) | q => q
fun push (y, T (xs, ys)) = T (normalize (xs, y::ys))
val pop = fn (T (x::xs, ys)) => SOME (x, T (normalize (xs, ys))) | _ => NONE

end

One can now write code that uses either the Stack or the Queue dispenser. One can also instantiate the previously defined
functor to create functions for manipulating dispensers of a type:

structure S = DispenserAlgs (Stack)
val [4,3,2,1] = S.popAll (S.pushAll ([1,2,3,4], Stack.empty))

structure Q = DispenserAlgs (Queue)
val [1,2,3,4] = Q.popAll (Q.pushAll ([1,2,3,4], Queue.empty))

There is no dynamic dispatch involved at the module level in SML. An attempt to do dynamic dispatch

val q = Q.push (1, Stack.empty)

will give a type error.

Combining SML Modules and Dynamic Dispatch

Let’s then combine SML modules and the dynamic dispatch technique introduced in this article. First we define an interface for
dispensers:

structure Dispenser = struct
datatype ’a t =

I of {isEmpty : unit -> bool,
push : ’a -> ’a t,
pop : unit -> (’a * ’a t) option}

fun O m (I t) = m t

fun isEmpty t = O#isEmpty t ()
fun push (v, t) = O#push t v
fun pop t = O#pop t ()

end

MLton Guide (20180207) 366 / 611

The Dispenser module, which we can think of as an interface for dispensers, implements the ABSTRACT_DISPENSER
signature using the dynamic dispatch technique, but we leave the signature ascription until later.

Then we define a DispenserClass functor that makes a "class" out of a given dispenser module:

functor DispenserClass (D : DISPENSER) : DISPENSER = struct
open Dispenser

fun make d =
I {isEmpty = fn () => D.isEmpty d,

push = fn x => make (D.push (x, d)),
pop = fn () =>

case D.pop d of
NONE => NONE

| SOME (x, d) => SOME (x, make d)}

val empty =
I {isEmpty = fn () => true,

push = fn x => make (D.push (x, D.empty)),
pop = fn () => NONE}

end

Finally we seal the Dispenser module:

structure Dispenser : ABSTRACT_DISPENSER = Dispenser

This isn’t necessary for type safety, because the unsealed Dispenser module does not allow one to break encapsulation, but
makes sure that only the DispenserClass functor can create dispenser classes (because the constructor Dispenser.I is
no longer accessible).

Using the DispenserClass functor we can turn any concrete dispenser module into a dispenser class:

structure StackClass = DispenserClass (Stack)
structure QueueClass = DispenserClass (Queue)

Each dispenser class implements the same dynamic dispatch interface and the ABSTRACT_DISPENSER -signature.

Because the dynamic dispatch Dispenser module implements the ABSTRACT_DISPENSER-signature, we can use it to in-
stantiate the DispenserAlgs-functor:

structure D = DispenserAlgs (Dispenser)

The resulting D module, like the Dispenser module, works with any dispenser class and uses dynamic dispatch:

val [4, 3, 2, 1] = D.popAll (D.pushAll ([1, 2, 3, 4], StackClass.empty))
val [1, 2, 3, 4] = D.popAll (D.pushAll ([1, 2, 3, 4], QueueClass.empty))

MLton Guide (20180207) 367 / 611

OCaml

OCaml is a variant of ML and is similar to Standard ML.

OCaml and SML

Here’s a comparison of some aspects of the OCaml and SML languages.

• Standard ML has a formal Definition, while OCaml is specified by its lone implementation and informal documentation.

• Standard ML has a number of compilers, while OCaml has only one.

• OCaml has built-in support for object-oriented programming, while Standard ML does not (however, see ObjectOrientedPro-
gramming).

• Andreas Rossberg has a side-by-side comparison of the syntax of SML and OCaml.

• Adam Chlipala has a point-by-point comparison of OCaml and SML.

OCaml and MLton

Here’s a comparison of some aspects of OCaml and MLton.

• Performance

– Both OCaml and MLton have excellent performance.
– MLton performs extensive WholeProgramOptimization, which can provide substantial improvements in large, modular

programs.
– MLton uses native types, like 32-bit integers, without any penalty due to tagging or boxing. OCaml uses 31-bit integers with

a penalty due to tagging, and 32-bit integers with a penalty due to boxing.
– MLton uses native types, like 64-bit floats, without any penalty due to boxing. OCaml, in some situations, boxes 64-bit

floats.
– MLton represents arrays of all types unboxed. In OCaml, only arrays of 64-bit floats are unboxed, and then only when it is

syntactically apparent.
– MLton represents records compactly by reordering and packing the fields.
– In MLton, polymorphic and monomorphic code have the same performance. In OCaml, polymorphism can introduce a

performance penalty.
– In MLton, module boundaries have no impact on performance. In OCaml, moving code between modules can cause a

performance penalty.
– MLton’s ForeignFunctionInterface is simpler than OCaml’s.

• Tools

– OCaml has a debugger, while MLton does not.
– OCaml supports separate compilation, while MLton does not.
– OCaml compiles faster than MLton.
– MLton supports profiling of both time and allocation.

• Libraries

– OCaml has more available libraries.

• Community

– OCaml has a larger community than MLton.
– MLton has a very responsive developer list.

http://caml.inria.fr/
http://www.mpi-sws.org/%7Erossberg/sml-vs-ocaml.html
http://adam.chlipala.net/mlcomp
http://www.mlton.org/mailman/listinfo/mlton

MLton Guide (20180207) 368 / 611

OpenGL

There are at least two interfaces to OpenGL for MLton/SML, both of which should be considered alpha quality.

• MikeThomas built a low-level interface, directly translating many of the functions, covering GL, GLU, and GLUT. This is
available in the MLton Sources: opengl. The code contains a number of small, standard OpenGL examples translated to
SML.

• ChrisClearwater has written at least an interface to GL, and possibly more. See

– http://mlton.org/pipermail/mlton/2005-January/026669.html

Contact us for more information or an update on the status of these projects.

https://github.com/MLton/mltonlib/tree/master/org/mlton/mike/opengl
http://mlton.org/pipermail/mlton/2005-January/026669.html

MLton Guide (20180207) 369 / 611

OperatorPrecedence

Standard ML has a built in notion of precedence for certain symbols. Every program that includes the Basis Library automatically
gets the following infix declarations. Higher number indicates higher precedence.

infix 7 * / mod div
infix 6 + - ^
infixr 5 :: @
infix 4 = <> > >= < <=
infix 3 := o
infix 0 before

MLton Guide (20180207) 370 / 611

OptionalArguments

Standard ML does not have built-in support for optional arguments. Nevertheless, using Fold, it is easy to define functions that
take optional arguments.

For example, suppose that we have the following definition of a function f.

fun f (i, r, s) =
concat [Int.toString i, ", ", Real.toString r, ", ", s]

Using the OptionalArg structure described below, we can define a function f’, an optionalized version of f, that takes 0, 1,
2, or 3 arguments. Embedded within f’ will be default values for i, r, and s. If f’ gets no arguments, then all the defaults
are used. If f’ gets one argument, then that will be used for i. Two arguments will be used for i and r respectively. Three
arguments will override all default values. Calls to f’ will look like the following.

f’ $
f’ ‘2 $
f’ ‘2 ‘3.0 $
f’ ‘2 ‘3.0 ‘"four" $

The optional argument indicator, `, is not special syntax --- it is a normal SML value, defined in the OptionalArg structure
below.

Here is the definition of f’ using the OptionalArg structure, in particular, OptionalArg.make and OptionalArg.D.

val f’ =
fn z =>
let open OptionalArg in

make (D 1) (D 2.0) (D "three") $
end (fn i & r & s => f (i, r, s))
z

The definition of f’ is eta expanded as with all uses of fold. A call to OptionalArg.make is supplied with a variable number
of defaults (in this case, three), the end-of-arguments terminator, $, and the function to run, taking its arguments as an n-ary
product. In this case, the function simply converts the product to an ordinary tuple and calls f. Often, the function body will
simply be written directly.

In general, the definition of an optional-argument function looks like the following.

val f =
fn z =>
let open OptionalArg in

make (D <default1>) (D <default2>) ... (D <defaultn>) $
end (fn x1 & x2 & ... & xn =>

<function code goes here>)
z

Here is the definition of OptionalArg.

structure OptionalArg =
struct

val make =
fn z =>
Fold.fold
((id, fn (f, x) => f x),
fn (d, r) => fn func =>
Fold.fold ((id, d ()), fn (f, d) =>

let
val d & () = r (id, f d)

in
func d

end))

MLton Guide (20180207) 371 / 611

z

fun D d = Fold.step0 (fn (f, r) =>
(fn ds => f (d & ds),
fn (f, a & b) => r (fn x => f a & x, b)))

val ‘ =
fn z =>
Fold.step1 (fn (x, (f, _ & d)) => (fn d => f (x & d), d))
z

end

OptionalArg.make uses a nested fold. The first fold accumulates the default values in a product, associated to the right,
and a reversal function that converts a product (of the same arity as the number of defaults) from right associativity to left
associativity. The accumulated defaults are used by the second fold, which recurs over the product, replacing the appropriate
component as it encounters optional arguments. The second fold also constructs a "fill" function, f, that is used to reconstruct
the product once the end-of-arguments is reached. Finally, the finisher reconstructs the product and uses the reversal function to
convert the product from right associative to left associative, at which point it is passed to the user-supplied function.

Much of the complexity comes from the fact that while recurring over a product from left to right, one wants it to be right-
associative, e.g., look like

a & (b & (c & d))

but the user function in the end wants the product to be left associative, so that the product argument pattern can be written
without parentheses (since & is left associative).

Labelled optional arguments

In addition to the positional optional arguments described above, it is sometimes useful to have labelled optional arguments.
These allow one to define a function, f, with defaults, say a and b. Then, a caller of f can supply values for a and b by name.
If no value is supplied then the default is used.

Labelled optional arguments are a simple extension of FunctionalRecordUpdate using post composition. Suppose, for example,
that one wants a function f with labelled optional arguments a and b with default values 0 and 0.0 respectively. If one has a
functional-record-update function updateAB for records with a and b fields, then one can define f in the following way.

val f =
fn z =>
Fold.post
(updateAB {a = 0, b = 0.0},
fn {a, b} => print (concat [Int.toString a, " ",

Real.toString b, "\n"]))
z

The idea is that f is the post composition (using Fold.post) of the actual code for the function with a functional-record
updater that starts with the defaults.

Here are some example calls to f.

val () = f $
val () = f (U#a 13) $
val () = f (U#a 13) (U#b 17.5) $
val () = f (U#b 17.5) (U#a 13) $

Notice that a caller can supply neither of the arguments, either of the arguments, or both of the arguments, and in either order.
All that matter is that the arguments be labelled correctly (and of the right type, of course).

Here is another example.

MLton Guide (20180207) 372 / 611

val f =
fn z =>
Fold.post
(updateBCD {b = 0, c = 0.0, d = "<>"},
fn {b, c, d} =>
print (concat [Int.toString b, " ",

Real.toString c, " ",
d, "\n"]))

z

Here are some example calls.

val () = f $
val () = f (U#d "goodbye") $
val () = f (U#d "hello") (U#b 17) (U#c 19.3) $

MLton Guide (20180207) 373 / 611

Overloading

In Standard ML, constants (like 13, 0w13, 13.0) are overloaded, meaning that they can denote a constant of the appropriate
type as determined by context. SML defines the overloading classes Int, Real, and Word, which denote the sets of types that
integer, real, and word constants may take on. In MLton, these are defined as follows.

Int Int2.int, Int3.int, . . . Int32.int, Int64.int, Int.int, IntInf.int,
LargeInt.int, FixedInt.int, Position.int

Real Real32.real, Real64.real, Real.real, LargeReal.real
Word Word2.word, Word3.word, . . . Word32.word, Word64.word, Word.word,

LargeWord.word, SysWord.word

The Definition allows flexibility in how much context is used to resolve overloading. It says that the context is no larger than the
smallest enclosing structure-level declaration, but that an implementation may require that a smaller context determines the type.
MLton uses the largest possible context allowed by SML in resolving overloading. If the type of a constant is not determined by
context, then it takes on a default type. In MLton, these are defined as follows.

Int Int.int
Real Real.real
Word Word.word

Other implementations may use a smaller context or different default types.

Also see

• discussion of overloading in the Basis Library

Examples

• The following program is rejected.

structure S:
sig

val x: Word8.word
end =
struct

val x = 0w0
end

The smallest enclosing structure declaration for 0w0 is val x =0w0. Hence, 0w0 receives the default type for words, which
is Word.word.

http://www.standardml.org/Basis/top-level-chapter.html

MLton Guide (20180207) 374 / 611

PackedRepresentation

PackedRepresentation is an analysis pass for the SSA2 IntermediateLanguage, invoked from ToRSSA.

Description

This pass analyzes a SSA2 program to compute a packed representation for each object.

Implementation

• representation.sig

• packed-representation.fun

Details and Notes

Has a special case to make sure that true is represented as 1 and false is represented as 0.

https://github.com/MLton/mlton/blob/master/mlton/backend/representation.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/packed-representation.fun

MLton Guide (20180207) 375 / 611

ParallelMove

ParallelMove is a rewrite pass, agnostic in the IntermediateLanguage which it produces.

Description

This function computes a sequence of individual moves to effect a parallel move (with possibly overlapping froms and tos).

Implementation

• parallel-move.sig

• parallel-move.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/parallel-move.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/parallel-move.fun

MLton Guide (20180207) 376 / 611

Performance

This page compares the performance of a number of SML compilers on a range of benchmarks.

This page compares the following SML compiler versions.

• MLton 20171211 (git 79d4a623c)

• ML Kit 4.3.12 (20171210)

• Moscow ML 2.10.1 ++ (git f529b33bb, 20170711)

• Poly/ML 5.7.2 Testing (git 5.7.1-35-gcb73407a)

• SML/NJ 110.81 (20170501)

There are tables for run time, code size, and compile time.

Setup

All benchmarks were compiled and run on a 2.6 GHz Core i7-5600U with 16G of RAM. The benchmarks were compiled
with the default settings for all the compilers, except for Moscow ML, which was passed the -orthodox -standalone
-toplevel switches. The Poly/ML executables were produced using polyc. The SML/NJ executables were produced by
wrapping the entire program in a local declaration whose body performs an SMLofNJ.exportFn.

For more details, or if you want to run the benchmarks yourself, please see the benchmark directory of our Sources.

All of the benchmarks are available for download from this page. Some of the benchmarks were obtained from the SML/NJ
benchmark suite. Some of the benchmarks expect certain input files to exist in the DATA subdirectory.

• hamlet.sml hamlet-input.sml

• ray.sml ray

• raytrace.sml chess.gml

• vliw.sml ndotprod.s

Run-time ratio

The following table gives the ratio of the run time of each benchmark when compiled by another compiler to the run time when
compiled by MLton. That is, the larger the number, the slower the generated code runs. A number larger than one indicates
that the corresponding compiler produces code that runs more slowly than MLton. A * in an entry means the compiler failed to
compile the benchmark or that the benchmark failed to run.

benchmark MLton ML-Kit MosML Poly/ML SML/NJ
barnes-hut.sml 1.00 10.11 19.36 2.98 1.24
boyer.sml 1.00 * 7.87 1.22 1.75
checksum.sml 1.00 30.79 * 10.94 9.08
count-graphs.sml 1.00 6.51 40.42 2.34 2.32
DLXSimulator.sml 1.00 0.97 * 0.60 *
even-odd.sml 1.00 0.50 11.50 0.42 0.42
fft.sml 1.00 7.35 81.51 4.03 1.19
fib.sml 1.00 1.41 10.94 1.25 1.17
flat-array.sml 1.00 7.19 68.33 5.28 13.16
hamlet.sml 1.00 4.97 22.85 1.58 *
imp-for.sml 1.00 4.99 57.84 3.34 4.67
knuth-bendix.sml 1.00 * 18.43 3.18 3.06

https://github.com/MLton/mlton/tree/master/benchmark
https://github.com/MLton/mlton/tree/master/benchmark/tests/DATA
https://raw.github.com/MLton/mlton/master/benchmark/tests/hamlet.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/DATA/hamlet-input.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/ray.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/DATA/ray
https://raw.github.com/MLton/mlton/master/benchmark/tests/raytrace.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/DATA/chess.gml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vliw.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/DATA/ndotprod.s
https://raw.github.com/MLton/mlton/master/benchmark/tests/barnes-hut.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/boyer.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/checksum.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/count-graphs.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/DLXSimulator.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/even-odd.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/fft.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/fib.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/flat-array.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/hamlet.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/imp-for.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/knuth-bendix.sml

MLton Guide (20180207) 377 / 611

benchmark MLton ML-Kit MosML Poly/ML SML/NJ
lexgen.sml 1.00 2.76 7.94 3.19 *
life.sml 1.00 1.80 20.19 0.89 1.50
logic.sml 1.00 5.10 11.06 1.15 1.27
mandelbrot.sml 1.00 3.50 25.52 1.33 1.28
matrix-multiply.sml 1.00 29.40 183.02 7.41 15.19
md5.sml 1.00 95.18 * 32.61 47.47
merge.sml 1.00 1.42 * 0.74 3.24
mlyacc.sml 1.00 1.83 8.45 0.84 *
model-elimination.
sml

1.00 4.03 12.42 1.70 2.25

mpuz.sml 1.00 3.73 57.44 2.05 3.22
nucleic.sml 1.00 3.96 * 1.73 1.20
output1.sml 1.00 6.26 30.85 7.82 5.99
peek.sml 1.00 9.37 44.78 2.18 2.15
psdes-random.sml 1.00 * * 2.79 3.59
ratio-regions.sml 1.00 5.68 165.56 3.92 37.52
ray.sml 1.00 12.05 25.08 8.73 1.75
raytrace.sml 1.00 * * 2.11 3.33
simple.sml 1.00 2.95 24.03 3.67 1.93
smith-normal-form.
sml

1.00 * * 1.04 *

string-concat.sml 1.00 1.88 28.01 0.70 2.67
tailfib.sml 1.00 1.58 23.57 0.90 1.04
tak.sml 1.00 1.69 15.90 1.57 2.01
tensor.sml 1.00 * * * 2.07
tsp.sml 1.00 2.19 66.76 3.27 1.48
tyan.sml 1.00 * 19.43 1.08 1.03
vector32-concat.sml 1.00 13.85 * 1.80 12.48
vector64-concat.sml 1.00 * * * 13.92
vector-rev.sml 1.00 7.88 68.85 9.39 68.80
vliw.sml 1.00 2.46 15.39 1.43 1.55
wc-input1.sml 1.00 6.00 * 29.25 9.54
wc-scanStream.sml 1.00 80.43 * 19.45 8.71
zebra.sml 1.00 4.62 35.56 1.68 9.97
zern.sml 1.00 * * * 1.60

Note: for SML/NJ, the smith-normal-form.sml benchmark was killed after running for over 51,000 seconds.

Code size

The following table gives the code size of each benchmark in bytes. The size for MLton and the ML Kit is the sum of text and
data for the standalone executable as reported by size. The size for Moscow ML is the size in bytes of the executable a.out.
The size for Poly/ML is the difference in size of the database before the session start and after the commit. The size for SML/NJ
is the size of the heap file created by exportFn and does not include the size of the SML/NJ runtime system (approximately
100K). A * in an entry means that the compiler failed to compile the benchmark.

benchmark MLton ML-Kit MosML Poly/ML SML/NJ
barnes-hut.sml 180,788 810,267 199,503 148,120 402,480
boyer.sml 250,246 * 248,018 196,984 496,664
checksum.sml 122,422 225,274 * 106,088 406,560
count-graphs.sml 151,878 250,126 187,048 144,032 428,136
DLXSimulator.sml 223,073 827,483 * 272,664 *
even-odd.sml 122,350 87,586 181,415 106,072 380,928
fft.sml 145,008 237,230 186,228 131,400 418,896

https://raw.github.com/MLton/mlton/master/benchmark/tests/lexgen.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/life.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/logic.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/mandelbrot.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/matrix-multiply.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/md5.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/merge.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/mlyacc.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/model-elimination.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/model-elimination.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/mpuz.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/nucleic.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/output1.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/peek.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/psdes-random.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/ratio-regions.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/ray.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/raytrace.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/simple.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/smith-normal-form.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/smith-normal-form.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/string-concat.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tailfib.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tak.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tensor.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tsp.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tyan.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vector32-concat.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vector64-concat.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vector-rev.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vliw.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/wc-input1.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/wc-scanStream.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/zebra.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/zern.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/smith-normal-form.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/barnes-hut.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/boyer.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/checksum.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/count-graphs.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/DLXSimulator.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/even-odd.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/fft.sml

MLton Guide (20180207) 378 / 611

benchmark MLton ML-Kit MosML Poly/ML SML/NJ
fib.sml 122,310 87,402 181,312 106,088 380,928
flat-array.sml 121,958 104,102 181,464 106,072 394,256
hamlet.sml 1,503,849 2,280,691 407,219 2,249,504 *
imp-for.sml 122,078 89,346 181,470 106,088 381,952
knuth-bendix.sml 193,145 * 192,659 161,080 400,408
lexgen.sml 308,296 826,819 213,128 268,272 *
life.sml 141,862 721,419 186,463 118,552 384,024
logic.sml 211,086 782,667 188,908 198,408 409,624
mandelbrot.sml 122,086 700,075 183,037 106,104 386,048
matrix-multiply.sml 124,398 280,006 184,328 110,232 416,784
md5.sml 150,497 271,794 * 122,624 399,416
merge.sml 123,846 100,858 181,542 106,136 381,960
mlyacc.sml 678,920 1,233,587 263,721 576,728 *
model-elimination.
sml

846,779 1,432,283 297,108 777,664 985,304

mpuz.sml 124,126 229,078 184,440 114,584 392,232
nucleic.sml 298,038 507,186 * 475,808 456,744
output1.sml 157,973 699,003 181,680 118,800 380,928
peek.sml 156,401 201,138 183,438 110,456 385,072
psdes-random.sml 126,486 106,166 * 106,088 393,256
ratio-regions.sml 150,174 265,694 190,088 184,536 414,760
ray.sml 260,863 736,795 195,064 198,976 512,160
raytrace.sml 384,905 * * 446,424 623,824
simple.sml 365,578 895,139 197,765 1,051,952 708,696
smith-normal-form.
sml

286,474 * * 262,616 547,984

string-concat.sml 119,102 140,626 183,249 106,088 390,160
tailfib.sml 122,110 87,890 181,369 106,072 381,952
tak.sml 122,246 87,402 181,349 106,088 376,832
tensor.sml 186,545 * * * 421,984
tsp.sml 163,033 722,571 188,634 126,984 393,264
tyan.sml 235,449 * 195,401 184,816 478,296
vector32-concat.sml 123,790 104,398 * 106,200 394,256
vector64-concat.sml 123,846 * * * 405,552
vector-rev.sml 122,982 104,614 181,534 106,072 394,256
vliw.sml 538,074 1,182,851 249,884 580,792 749,752
wc-input1.sml 186,152 699,459 191,347 127,200 386,048
wc-scanStream.sml 196,232 700,131 191,539 127,232 387,072
zebra.sml 230,433 128,354 186,322 127,048 390,184
zern.sml 156,902 * * * 453,768

Compile time

The following table gives the compile time of each benchmark in seconds. A * in an entry means that the compiler failed to
compile the benchmark.

benchmark MLton ML-Kit MosML Poly/ML SML/NJ
barnes-hut.sml 2.70 0.89 0.15 0.29 0.20
boyer.sml 2.87 * 0.14 0.20 0.41
checksum.sml 2.21 0.24 * 0.07 0.05
count-graphs.sml 2.28 0.34 0.04 0.11 0.21
DLXSimulator.sml 2.93 1.01 * 0.27 *
even-odd.sml 2.23 0.20 0.01 0.07 0.04
fft.sml 2.35 0.28 0.03 0.09 0.10
fib.sml 2.16 0.19 0.01 0.07 0.04

https://raw.github.com/MLton/mlton/master/benchmark/tests/fib.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/flat-array.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/hamlet.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/imp-for.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/knuth-bendix.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/lexgen.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/life.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/logic.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/mandelbrot.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/matrix-multiply.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/md5.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/merge.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/mlyacc.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/model-elimination.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/model-elimination.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/mpuz.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/nucleic.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/output1.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/peek.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/psdes-random.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/ratio-regions.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/ray.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/raytrace.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/simple.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/smith-normal-form.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/smith-normal-form.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/string-concat.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tailfib.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tak.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tensor.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tsp.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tyan.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vector32-concat.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vector64-concat.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vector-rev.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vliw.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/wc-input1.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/wc-scanStream.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/zebra.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/zern.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/barnes-hut.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/boyer.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/checksum.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/count-graphs.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/DLXSimulator.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/even-odd.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/fft.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/fib.sml

MLton Guide (20180207) 379 / 611

benchmark MLton ML-Kit MosML Poly/ML SML/NJ
flat-array.sml 2.16 0.20 0.01 0.07 0.04
hamlet.sml 12.28 19.25 23.75 6.44 *
imp-for.sml 2.14 0.20 0.01 0.08 0.04
knuth-bendix.sml 2.48 * 0.08 0.14 0.23
lexgen.sml 3.31 0.75 0.15 0.22 *
life.sml 2.25 0.32 0.03 0.09 0.10
logic.sml 2.72 0.57 0.07 0.17 0.21
mandelbrot.sml 2.14 0.24 0.01 0.07 0.04
matrix-multiply.sml 2.14 0.24 0.01 0.08 0.05
md5.sml 2.31 0.39 * 0.12 0.27
merge.sml 2.15 0.21 0.01 0.07 0.04
mlyacc.sml 7.07 4.53 2.05 0.80 *
model-elimination.
sml

6.78 4.76 1.20 1.65 4.78

mpuz.sml 2.14 0.28 0.02 0.08 0.07
nucleic.sml 3.96 2.12 * 0.37 0.49
output1.sml 2.30 0.22 0.01 0.07 0.04
peek.sml 2.26 0.20 0.01 0.07 0.04
psdes-random.sml 2.12 0.22 * 9.83 12.55
ratio-regions.sml 2.59 0.47 0.07 0.16 0.24
ray.sml 2.95 0.46 0.05 0.17 0.14
raytrace.sml 3.93 * * 0.45 0.74
simple.sml 3.42 1.23 0.30 0.32 0.53
smith-normal-form.
sml

3.23 * * 0.15 0.32

string-concat.sml 2.25 0.28 0.01 0.08 0.05
tailfib.sml 2.24 0.21 0.01 0.08 0.05
tak.sml 2.23 0.20 0.01 0.08 0.05
tensor.sml 2.73 * * * 0.44
tsp.sml 2.42 0.38 0.05 0.11 0.11
tyan.sml 2.93 * 0.10 0.27 0.31
vector32-concat.sml 2.23 0.22 * 0.07 0.04
vector64-concat.sml 2.18 * * * 0.04
vector-rev.sml 2.23 0.22 0.01 0.08 0.05
vliw.sml 5.25 2.93 0.63 0.94 1.85
wc-input1.sml 2.46 0.24 0.01 0.08 0.05
wc-scanStream.sml 2.61 0.25 0.01 0.08 0.05
zebra.sml 2.99 0.35 0.03 0.09 0.11
zern.sml 2.31 * * * 0.11

https://raw.github.com/MLton/mlton/master/benchmark/tests/flat-array.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/hamlet.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/imp-for.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/knuth-bendix.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/lexgen.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/life.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/logic.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/mandelbrot.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/matrix-multiply.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/md5.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/merge.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/mlyacc.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/model-elimination.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/model-elimination.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/mpuz.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/nucleic.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/output1.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/peek.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/psdes-random.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/ratio-regions.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/ray.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/raytrace.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/simple.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/smith-normal-form.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/smith-normal-form.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/string-concat.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tailfib.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tak.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tensor.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tsp.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/tyan.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vector32-concat.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vector64-concat.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vector-rev.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/vliw.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/wc-input1.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/wc-scanStream.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/zebra.sml
https://raw.github.com/MLton/mlton/master/benchmark/tests/zern.sml

MLton Guide (20180207) 380 / 611

PhantomType

A phantom type is a type that has no run-time representation, but is used to force the type checker to ensure invariants at compile
time. This is done by augmenting a type with additional arguments (phantom type variables) and expressing constraints by
choosing phantom types to stand for the phantom types in the types of values.

Also see

• Blume01

– dimensions

– C type system

• FluetPucella06

– subtyping

• socket module in Basis Library

MLton Guide (20180207) 381 / 611

PlatformSpecificNotes

Here are notes about using MLton on the following platforms.

Operating Systems

• AIX

• Cygwin

• Darwin

• FreeBSD

• HPUX

• Linux

• MinGW

• NetBSD

• OpenBSD

• Solaris

Architectures

• AMD64

• HPPA

• PowerPC

• PowerPC64

• Sparc

• X86

Also see

• PortingMLton

MLton Guide (20180207) 382 / 611

PolyEqual

PolyEqual is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass implements polymorphic equality.

Implementation

• poly-equal.fun

Details and Notes

For each datatype, tycon, and vector type, it builds and equality function and translates calls to MLton_equal into calls to that
function.

Also generates calls to Word_equal.

For tuples, it does the equality test inline; i.e., it does not create a separate equality function for each tuple type.

All equality functions are created only if necessary, i.e., if equality is actually used at a type.

Optimizations:

• for datatypes that are enumerations, do not build a case dispatch, just use MLton_eq, as the backend will represent these as
ints

• deep equality always does an MLton_eq test first

• If one argument to = is a constant and the type will get translated to an IntOrPointer, then just use eq instead of the full
equality. This is important for implementing code like the following efficiently:

if x = 0 ... (* where x is of type IntInf.int *)

• Also convert pointer equality on scalar types to type specific primitives.

https://github.com/MLton/mlton/blob/master/mlton/ssa/poly-equal.fun

MLton Guide (20180207) 383 / 611

PolyHash

PolyHash is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass implements polymorphic, structural hashing.

Implementation

• poly-hash.fun

Details and Notes

For each datatype, tycon, and vector type, it builds and equality function and translates calls to MLton_hash into calls to that
function.

For tuples, it does the equality test inline; i.e., it does not create a separate equality function for each tuple type.

All equality functions are created only if necessary, i.e., if equality is actually used at a type.

https://github.com/MLton/mlton/blob/master/mlton/ssa/poly-hash.fun

MLton Guide (20180207) 384 / 611

PolyML

Poly/ML is a Standard ML implementation.

Also see

• Matthews95

http://www.polyml.org/

MLton Guide (20180207) 385 / 611

PolymorphicEquality

Polymorphic equality is a built-in function in Standard ML that compares two values of the same type for equality. It is specified
as

val = : ’’a * ’’a -> bool

The ”a in the specification are equality type variables, and indicate that polymorphic equality can only be applied to values of an
equality type. It is not allowed in SML to rebind =, so a programmer is guaranteed that = always denotes polymorphic equality.

Equality of ground types

Ground types like char, int, and word may be compared (to values of the same type). For example, 13 =14 is type correct
and yields false.

Equality of reals

The one ground type that can not be compared is real. So, 13.0 =14.0 is not type correct. One can use Real.== to
compare reals for equality, but beware that this has different algebraic properties than polymorphic equality.

See http://standardml.org/Basis/real.html for a discussion of why real is not an equality type.

Equality of functions

Comparison of functions is not allowed.

Equality of immutable types

Polymorphic equality can be used on immutable values like tuples, records, lists, and vectors. For example,

(1, 2, 3) = (4, 5, 6)

is a type-correct expression yielding false, while

[1, 2, 3] = [1, 2, 3]

is type correct and yields true.

Equality on immutable values is computed by structure, which means that values are compared by recursively descending the
data structure until ground types are reached, at which point the ground types are compared with primitive equality tests (like
comparison of characters). So, the expression

[1, 2, 3] = [1, 1 + 1, 1 + 1 + 1]

is guaranteed to yield true, even though the lists may occupy different locations in memory.

Because of structural equality, immutable values can only be compared if their components can be compared. For example, [1,
2, 3] can be compared, but [1.0, 2.0, 3.0] can not. The SML type system uses equality types to ensure that structural
equality is only applied to valid values.

http://standardml.org/Basis/real.html

MLton Guide (20180207) 386 / 611

Equality of mutable values

In contrast to immutable values, polymorphic equality of mutable values (like ref cells and arrays) is performed by pointer
comparison, not by structure. So, the expression

ref 13 = ref 13

is guaranteed to yield false, even though the ref cells hold the same contents.

Because equality of mutable values is not structural, arrays and refs can be compared even if their components are not equality
types. Hence, the following expression is type correct (and yields true).

let
val r = ref 13.0

in
r = r

end

Equality of datatypes

Polymorphic equality of datatypes is structural. Two values of the same datatype are equal if they are of the same variant and if
the variant’s arguments are equal (recursively). So, with the datatype

datatype t = A | B of t

then B (B A) =B A is type correct and yields false, while A =A and B A =B A yield true.

As polymorphic equality descends two values to compare them, it uses pointer equality whenever it reaches a mutable value. So,
with the datatype

datatype t = A of int ref | ...

then A (ref 13) =A (ref 13) is type correct and yields false, because the pointer equality on the two ref cells yields
false.

One weakness of the SML type system is that datatypes do not inherit the special property of the ref and array type construc-
tors that allows them to be compared regardless of their component type. For example, after declaring

datatype ’a t = A of ’a ref

one might expect to be able to compare two values of type real t, because pointer comparison on a ref cell would suffice.
Unfortunately, the type system can only express that a user-defined datatype admits equality or not. In this case, t admits equality,
which means that int t can be compared but that real t can not. We can confirm this with the program

datatype ’a t = A of ’a ref
fun f (x: real t, y: real t) = x = y

on which MLton reports the following error.

Error: z.sml 2.32-2.36.
Function applied to incorrect argument.
expects: [<equality>] t * [<equality>] t
but got: [real] t * [real] t
in: = (x, y)

MLton Guide (20180207) 387 / 611

Implementation

Polymorphic equality is implemented by recursively descending the two values being compared, stopping as soon as they are
determined to be unequal, or exploring the entire values to determine that they are equal. Hence, polymorphic equality can take
time proportional to the size of the smaller value.

MLton uses some optimizations to improve performance.

• When computing structural equality, first do a pointer comparison. If the comparison yields true, then stop and return true,
since the structural comparison is guaranteed to do so. If the pointer comparison fails, then recursively descend the values.

• If a datatype is an enum (e.g. datatype t =A | B | C), then a single comparison suffices to compare values of the
datatype. No case dispatch is required to determine whether the two values are of the same variant.

• When comparing a known constant non-value-carrying variant, use a single comparison. For example, the following code will
compile into a single comparison for A =x.

datatype t = A | B | C of ...
fun f x = ... if A = x then ...

• When comparing a small constant IntInf.int to another IntInf.int, use a single comparison against the constant. No
case dispatch is required.

Also see

• AdmitsEquality

• EqualityType

• EqualityTypeVariable

MLton Guide (20180207) 388 / 611

Polyvariance

Polyvariance is an optimization pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass duplicates a higher-order, let bound function at each variable reference, if the cost is smaller than some threshold.

Implementation

• polyvariance.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/xml/polyvariance.fun

MLton Guide (20180207) 389 / 611

Poplog

POPLOG is a development environment that includes implementations of a number of languages, including Standard ML.

While POPLOG is actively developed, the ML support predates SML’97, and there is no support for the Basis Library specifica-
tion.

Also see

• Mixed-language programming in ML and Pop-11.

http://www.cs.bham.ac.uk/research/poplog/poplog.info.html
http://www.standardml.org/Basis
http://www.standardml.org/Basis
http://www.cs.bham.ac.uk/research/poplog/doc/pmlhelp/mlinpop

MLton Guide (20180207) 390 / 611

PortingMLton

Porting MLton to a new target platform (architecture or OS) involves the following steps.

1. Make the necessary changes to the scripts, runtime system, Basis Library implementation, and compiler.

2. Get the regressions working using a cross compiler.

3. Cross compile MLton and bootstrap on the target.

MLton has a native code generator only for AMD64 and X86, so, if you are porting to another architecture, you must use the C
code generator. These notes do not cover building a new native code generator.

Some of the following steps will not be necessary if MLton already supports the architecture or operating system you are porting
to.

What code to change

• Scripts.

– In bin/platform, add new cases to define $HOST_OS and $HOST_ARCH.

• Runtime system.

The goal of this step is to be able to successfully run make in the runtime directory on the target machine.

– In platform.h, add a new case to include platform/<arch>.h and platform/<os>.h.

– In platform/<arch>.h:

* define MLton_Platform_Arch_host.

– In platform/<os>.h:

* include platform-specific includes.

* define MLton_Platform_OS_host.

* define all of the HAS_* macros.

– In platform/<os>.c implement any platform-dependent functions that the runtime needs.

– Add rounding mode control to basis/Real/IEEEReal.c for the new arch (if not HAS_FEROUND)

– Compile and install the GnuMP. This varies from platform to platform. In platform/<os>.h, you need to include the
appropriate gmp.h.

• Basis Library implementation (basis-library/*)

– In primitive/prim-mlton.sml:

* Add a new variant to the MLton.Platform.Arch.t datatype.

* modify the constants that define MLton.Platform.Arch.host to match with MLton_Platform_Arch_host,
as set in runtime/platform/<arch>.h.

* Add a new variant to the MLton.Platform.OS.t datatype.

* modify the constants that define MLton.Platform.OS.host to match with MLton_Platform_OS_host, as set
in runtime/platform/<os>.h.

– In mlton/platform.{sig,sml} add a new variant.

– In sml-nj/sml-nj.sml, modify getOSKind.

– Look at all the uses of MLton.Platform in the Basis Library implementation and see if you need to do anything special.
You might use the following command to see where to look.

find basis-library -type f | xargs grep ’MLton\.Platform’

If in doubt, leave the code alone and wait to see what happens when you run the regression tests.

MLton Guide (20180207) 391 / 611

• Compiler.

– In lib/stubs/mlton-stubs/platform.sig add any new variants, as was done in the Basis Library.

– In lib/stubs/mlton-stubs/mlton.sml add any new variants in MLton.Platform, as was done in the Basis
Library.

The string used to identify a particular architecture or operating system must be the same (except for possibly case of letters) in
the scripts, runtime, Basis Library implementation, and compiler (stubs). In mlton/main/main.fun, MLton itself uses the
conversions to and from strings:

MLton.Platform.{Arch,OS}.{from,to}String

If the there is a mismatch, you may see the error message strange arch or strange os.

Running the regressions with a cross compiler

When porting to a new platform, it is always best to get all (or as many as possible) of the regressions working before moving
to a self compile. It is easiest to do this by modifying and rebuilding the compiler on a working machine and then running the
regressions with a cross compiler. It is not easy to build a gcc cross compiler, so we recommend generating the C and assembly
on a working machine (using MLton’s -target and -stop g flags, copying the generated files to the target machine, then
compiling and linking there.

1. Remake the compiler on a working machine.

2. Use bin/add-cross to add support for the new target. In particular, this should create build/lib/mlton/targ
ets/<target>/ with the platform-specific necessary cross-compilation information.

3. Run the regression tests with the cross-compiler. To cross-compile all the tests, do

bin/regression -cross <target>

This will create all the executables. Then, copy bin/regression and the regression directory to the target ma-
chine, and do

bin/regression -run-only <target>

This should run all the tests.

Repeat this step, interleaved with appropriate compiler modifications, until all the regressions pass.

Bootstrap

Once you’ve got all the regressions working, you can build MLton for the new target. As with the regressions, the idea for
bootstrapping is to generate the C and assembly on a working machine, copy it to the target machine, and then compile and link
there. Here’s the sequence of steps.

1. On a working machine, with the newly rebuilt compiler, in the mlton directory, do:

mlton -stop g -target <target> mlton.mlb

2. Copy to the target machine.

3. On the target machine, move the libraries to the right place. That is, in build/lib/mlton/targets, do:

rm -rf self
mv <target> self

MLton Guide (20180207) 392 / 611

Also make sure you have all the header files in build/lib/mlton/include. You can copy them from a host machine that has
run make runtime.

4. On the target machine, compile and link MLton. That is, in the mlton directory, do something like:

gcc -c -Ibuild/lib/mlton/include -Ibuild/lib/mlton/targets/self/include -O1 -w mlton/ ←↩
mlton.*.[cs]

gcc -o build/lib/mlton/mlton-compile \
-Lbuild/lib/mlton/targets/self \
-L/usr/local/lib \
mlton.*.o \
-lmlton -lgmp -lgdtoa -lm

5. At this point, MLton should be working and you can finish the rest of a usual make on the target machine.

make basis-no-check script mlbpathmap constants libraries tools

6. Making the last tool, mlyacc, will fail, because mlyacc cannot bootstrap its own yacc.grm.* files. On the host machine, run
make -C mlyacc src/yacc.grm.sml. Then copy both files to the target machine, and compile mlyacc, making
sure to supply the path to your newly compile mllex: make -C mlyacc MLLEX=mllex/mllex.

There are other details to get right, like making sure that the tools directories were clean so that the tools are rebuilt on the new
platform, but hopefully this structure works. Once you’ve got a compiler on the target machine, you should test it by running all
the regressions normally (i.e. without the -cross flag) and by running a couple rounds of self compiles.

Also see

The above description is based on the following emails sent to the MLton list.

• http://www.mlton.org/pipermail/mlton/2002-October/013110.html

• http://www.mlton.org/pipermail/mlton/2004-July/016029.html

http://www.mlton.org/pipermail/mlton/2002-October/013110.html
http://www.mlton.org/pipermail/mlton/2004-July/016029.html

MLton Guide (20180207) 393 / 611

PrecedenceParse

PrecedenceParse is an analysis/rewrite pass for the AST IntermediateLanguage, invoked from Elaborate.

Description

This pass rewrites AST function clauses, expressions, and patterns to resolve OperatorPrecedence.

Implementation

• precedence-parse.sig

• precedence-parse.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/elaborate/precedence-parse.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/precedence-parse.fun

MLton Guide (20180207) 394 / 611

Printf

Programmers coming from C or Java often ask if Standard ML has a printf function. It does not. However, it is possible to
implement your own version with only a few lines of code.

Here is a definition for printf and fprintf, along with format specifiers for booleans, integers, and reals.

structure Printf =
struct

fun $ (_, f) = f (fn p => p ()) ignore
fun fprintf out f = f (out, id)
val printf = fn z => fprintf TextIO.stdOut z
fun one ((out, f), make) g =

g (out, fn r =>
f (fn p =>

make (fn s =>
r (fn () => (p (); TextIO.output (out, s))))))

fun ‘ x s = one (x, fn f => f s)
fun spec to x = one (x, fn f => f o to)
val B = fn z => spec Bool.toString z
val I = fn z => spec Int.toString z
val R = fn z => spec Real.toString z

end

Here’s an example use.

val () = printf ‘"Int="I‘" Bool="B‘" Real="R‘"\n" $ 1 false 2.0

This prints the following.

Int=1 Bool=false Real=2.0

In general, a use of printf looks like

printf <spec1> ... <specn> $ <arg1> ... <argm>

where each <speci> is either a specifier like B, I, or R, or is an inline string, like `"foo". A backtick (`) must precede each
inline string. Each <argi> must be of the appropriate type for the corresponding specifier.

SML printf is more powerful than its C counterpart in a number of ways. In particular, the function produced by printf is
a perfectly ordinary SML function, and can be passed around, used multiple times, etc. For example:

val f: int -> bool -> unit = printf ‘"Int="I‘" Bool="B‘"\n" $
val () = f 1 true
val () = f 2 false

The definition of printf is even careful to not print anything until it is fully applied. So, examples like the following will work
as expected.

val f: int -> bool -> unit = printf ‘"Int="I‘" Bool="B‘"\n" $ 13
val () = f true
val () = f false

It is also easy to define new format specifiers. For example, suppose we wanted format specifiers for characters and strings.

val C = fn z => spec Char.toString z
val S = fn z => spec (fn s => s) z

One can define format specifiers for more complex types, e.g. pairs of integers.

MLton Guide (20180207) 395 / 611

val I2 =
fn z =>
spec (fn (i, j) =>

concat ["(", Int.toString i, ", ", Int.toString j, ")"])
z

Here’s an example use.

val () = printf ‘"Test "I2‘" a string "S‘"\n" $ (1, 2) "hello"

Printf via Fold

printf is best viewed as a special case of variable-argument Fold that inductively builds a function as it processes its arguments.
Here is the definition of a Printf structure in terms of fold. The structure is equivalent to the above one, except that it uses the
standard $ instead of a specialized one.

structure Printf =
struct

fun fprintf out =
Fold.fold ((out, id), fn (_, f) => f (fn p => p ()) ignore)

val printf = fn z => fprintf TextIO.stdOut z

fun one ((out, f), make) =
(out, fn r =>
f (fn p =>

make (fn s =>
r (fn () => (p (); TextIO.output (out, s))))))

val ‘ =
fn z => Fold.step1 (fn (s, x) => one (x, fn f => f s)) z

fun spec to = Fold.step0 (fn x => one (x, fn f => f o to))

val B = fn z => spec Bool.toString z
val I = fn z => spec Int.toString z
val R = fn z => spec Real.toString z

end

Viewing printf as a fold opens up a number of possibilities. For example, one can name parts of format strings using the fold
idiom for naming sequences of steps.

val IB = fn u => Fold.fold u ‘"Int="I‘" Bool="B
val () = printf IB‘" "IB‘"\n" $ 1 true 3 false

One can even parametrize over partial format strings.

fun XB X = fn u => Fold.fold u ‘"X="X‘" Bool="B
val () = printf (XB I)‘" "(XB R)‘"\n" $ 1 true 2.0 false

Also see

• PrintfGentle

• Functional Unparsing

MLton Guide (20180207) 396 / 611

PrintfGentle

This page provides a gentle introduction and derivation of Printf, with sections and arrangement more suitable to a talk.

Introduction

SML does not have printf. Could we define it ourselves?

val () = printf ("here’s an int %d and a real %f.\n", 13, 17.0)
val () = printf ("here’s three values (%d, %f, %f).\n", 13, 17.0, 19.0)

What could the type of printf be?

This obviously can’t work, because SML functions take a fixed number of arguments. Actually they take one argument, but if
that’s a tuple, it can only have a fixed number of components.

From tupling to currying

What about currying to get around the typing problem?

val () = printf "here’s an int %d and a real %f.\n" 13 17.0
val () = printf "here’s three values (%d, %f, %f).\n" 13 17.0 19.0

That fails for a similar reason. We need two types for printf.

val printf: string -> int -> real -> unit
val printf: string -> int -> real -> real -> unit

This can’t work, because printf can only have one type. SML doesn’t support programmer-defined overloading.

Overloading and dependent types

Even without worrying about number of arguments, there is another problem. The type of printf depends on the format string.

val () = printf "here’s an int %d and a real %f.\n" 13 17.0
val () = printf "here’s a real %f and an int %d.\n" 17.0 13

Now we need

val printf: string -> int -> real -> unit
val printf: string -> real -> int -> unit

Again, this can’t possibly working because SML doesn’t have overloading, and types can’t depend on values.

Idea: express type information in the format string

If we express type information in the format string, then different uses of printf can have different types.

type ’a t (* the type of format strings *)
val printf: ’a t -> ’a
infix D F
val fs1: (int -> real -> unit) t = "here’s an int "D" and a real "F".\n"
val fs2: (int -> real -> real -> unit) t =

"here’s three values ("D", "F", "F").\n"
val () = printf fs1 13 17.0
val () = printf fs2 13 17.0 19.0

Now, our two calls to printf type check, because the format string specializes printf to the appropriate type.

MLton Guide (20180207) 397 / 611

The types of format characters

What should the type of format characters D and F be? Each format character requires an additional argument of the appropriate
type to be supplied to printf.

Idea: guess the final type that will be needed for printf the format string and verify it with each format character.

type (’a, ’b) t (* ’a = rest of type to verify, ’b = final type *)
val ‘ : string -> (’a, ’a) t (* guess the type, which must be verified *)
val D: (int -> ’a, ’b) t * string -> (’a, ’b) t (* consume an int *)
val F: (real -> ’a, ’b) t * string -> (’a, ’b) t (* consume a real *)
val printf: (unit, ’a) t -> ’a

Don’t worry. In the end, type inference will guess and verify for us.

Understanding guess and verify

Now, let’s build up a format string and a specialized printf.

infix D F
val f0 = ‘"here’s an int "
val f1 = f0 D " and a real "
val f2 = f1 F ".\n"
val p = printf f2

These definitions yield the following types.

val f0: (int -> real -> unit, int -> real -> unit) t
val f1: (real -> unit, int -> real -> unit) t
val f2: (unit, int -> real -> unit) t
val p: int -> real -> unit

So, p is a specialized printf function. We could use it as follows

val () = p 13 17.0
val () = p 14 19.0

Type checking this using a functor

signature PRINTF =
sig

type (’a, ’b) t
val ‘ : string -> (’a, ’a) t
val D: (int -> ’a, ’b) t * string -> (’a, ’b) t
val F: (real -> ’a, ’b) t * string -> (’a, ’b) t
val printf: (unit, ’a) t -> ’a

end

functor Test (P: PRINTF) =
struct

open P
infix D F

val () = printf (‘"here’s an int "D" and a real "F".\n") 13 17.0
val () = printf (‘"here’s three values ("D", "F ", "F").\n") 13 17.0 19.0

end

MLton Guide (20180207) 398 / 611

Implementing Printf

Think of a format character as a formatter transformer. It takes the formatter for the part of the format string before it and
transforms it into a new formatter that first does the left hand bit, then does its bit, then continues on with the rest of the format
string.

structure Printf: PRINTF =
struct

datatype (’a, ’b) t = T of (unit -> ’a) -> ’b

fun printf (T f) = f (fn () => ())

fun ‘ s = T (fn a => (print s; a ()))

fun D (T f, s) =
T (fn g => f (fn () => fn i =>

(print (Int.toString i); print s; g ())))

fun F (T f, s) =
T (fn g => f (fn () => fn i =>

(print (Real.toString i); print s; g ())))
end

Testing printf

structure Z = Test (Printf)

User-definable formats

The definition of the format characters is pretty much the same. Within the Printf structure we can define a format character
generator.

val newFormat: (’a -> string) -> (’a -> ’b, ’c) t * string -> (’b, ’c) t =
fn toString => fn (T f, s) =>
T (fn th => f (fn () => fn a => (print (toString a); print s ; th ())))

val D = fn z => newFormat Int.toString z
val F = fn z => newFormat Real.toString z

A core Printf

We can now have a very small PRINTF signature, and define all the format strings externally to the core module.

signature PRINTF =
sig

type (’a, ’b) t
val ‘ : string -> (’a, ’a) t
val newFormat: (’a -> string) -> (’a -> ’b, ’c) t * string -> (’b, ’c) t
val printf: (unit, ’a) t -> ’a

end

structure Printf: PRINTF =
struct

datatype (’a, ’b) t = T of (unit -> ’a) -> ’b

fun printf (T f) = f (fn () => ())

MLton Guide (20180207) 399 / 611

fun ‘ s = T (fn a => (print s; a ()))

fun newFormat toString (T f, s) =
T (fn th =>

f (fn () => fn a =>
(print (toString a)
; print s
; th ())))

end

Extending to fprintf

One can implement fprintf by threading the outstream through all the transformers.

signature PRINTF =
sig

type (’a, ’b) t
val ‘ : string -> (’a, ’a) t
val fprintf: (unit, ’a) t * TextIO.outstream -> ’a
val newFormat: (’a -> string) -> (’a -> ’b, ’c) t * string -> (’b, ’c) t
val printf: (unit, ’a) t -> ’a

end

structure Printf: PRINTF =
struct

type out = TextIO.outstream
val output = TextIO.output

datatype (’a, ’b) t = T of (out -> ’a) -> out -> ’b

fun fprintf (T f, out) = f (fn _ => ()) out

fun printf t = fprintf (t, TextIO.stdOut)

fun ‘ s = T (fn a => fn out => (output (out, s); a out))

fun newFormat toString (T f, s) =
T (fn g =>

f (fn out => fn a =>
(output (out, toString a)
; output (out, s)
; g out)))

end

Notes

• Lesson: instead of using dependent types for a function, express the the dependency in the type of the argument.

• If printf is partially applied, it will do the printing then and there. Perhaps this could be fixed with some kind of terminator.

A syntactic or argument terminator is not necessary. A formatter can either be eager (as above) or lazy (as below). A lazy
formatter accumulates enough state to print the entire string. The simplest lazy formatter concatenates the strings as they
become available:

structure PrintfLazyConcat: PRINTF =
struct

datatype (’a, ’b) t = T of (string -> ’a) -> string -> ’b

fun printf (T f) = f print ""

MLton Guide (20180207) 400 / 611

fun ‘ s = T (fn th => fn s’ => th (s’ ^ s))

fun newFormat toString (T f, s) =
T (fn th =>

f (fn s’ => fn a =>
th (s’ ^ toString a ^ s)))

end

It is somewhat more efficient to accumulate the strings as a list:

structure PrintfLazyList: PRINTF =
struct

datatype (’a, ’b) t = T of (string list -> ’a) -> string list -> ’b

fun printf (T f) = f (List.app print o List.rev) []

fun ‘ s = T (fn th => fn ss => th (s::ss))

fun newFormat toString (T f, s) =
T (fn th =>

f (fn ss => fn a =>
th (s::toString a::ss)))

end

Also see

• Printf

• Functional Unparsing

MLton Guide (20180207) 401 / 611

ProductType

Standard ML has special syntax for products (tuples). A product type is written as

t1 * t2 * ... * tN

and a product pattern is written as

(p1, p2, ..., pN)

In most situations the syntax is quite convenient. However, there are situations where the syntax is cumbersome. There are also
situations in which it is useful to construct and destruct n-ary products inductively, especially when using Fold.

In such situations, it is useful to have a binary product datatype with an infix constructor defined as follows.

datatype (’a, ’b) product = & of ’a * ’b
infix &

With these definitions, one can write an n-ary product as a nested binary product quite conveniently.

x1 & x2 & ... & xn

Because of left associativity, this is the same as

(((x1 & x2) & ...) & xn)

Because & is a constructor, the syntax can also be used for patterns.

The symbol & is inspired by the Curry-Howard isomorphism: the proof of a conjunction (A & B) is a pair of proofs (a, b).

Example: parser combinators

A typical parser combinator library provides a combinator that has a type of the form.

’a parser * ’b parser -> (’a * ’b) parser

and produces a parser for the concatenation of two parsers. When more than two parsers are concatenated, the result of the
resulting parser is a nested structure of pairs

(...((p1, p2), p3)..., pN)

which is somewhat cumbersome.

By using a product type, the type of the concatenation combinator then becomes

’a parser * ’b parser -> (’a, ’b) product parser

While this doesn’t stop the nesting, it makes the pattern significantly easier to write. Instead of

(...((p1, p2), p3)..., pN)

the pattern is written as

p1 & p2 & p3 & ... & pN

which is considerably more concise.

Also see

• VariableArityPolymorphism

• Utilities

MLton Guide (20180207) 402 / 611

Profiling

With MLton and mlprof, you can profile your program to find out bytes allocated, execution counts, or time spent in each
function. To profile you program, compile with -profile kind, where kind is one of alloc, count, or time. Then, run
the executable, which will write an mlmon.out file when it finishes. You can then run mlprof on the executable and the
mlmon.out file to see the performance data.

Here are the three kinds of profiling that MLton supports.

• ProfilingAllocation

• ProfilingCounts

• ProfilingTime

Next steps

• CallGraphs to visualize profiling data.

• HowProfilingWorks

• MLmon

• MLtonProfile to selectively profile parts of your program.

• ProfilingTheStack

• ShowProf

MLton Guide (20180207) 403 / 611

ProfilingAllocation

With MLton and mlprof, you can profile your program to find out how many bytes each function allocates. To do so, compile
your program with -profile alloc. For example, suppose that list-rev.sml is the following.

fun append (l1, l2) =
case l1 of

[] => l2
| x :: l1 => x :: append (l1, l2)

fun rev l =
case l of

[] => []
| x :: l => append (rev l, [x])

val l = List.tabulate (1000, fn i => i)
val _ = 1 + hd (rev l)

Compile and run list-rev as follows.

% mlton -profile alloc list-rev.sml
% ./list-rev
% mlprof -show-line true list-rev mlmon.out
6,030,136 bytes allocated (108,336 bytes by GC)

function cur
----------------------- -----
append list-rev.sml: 1 97.6%
<gc> 1.8%
<main> 0.4%
rev list-rev.sml: 6 0.2%

The data shows that most of the allocation is done by the append function defined on line 1 of list-rev.sml. The table
also shows how special functions like gc and main are handled: they are printed with surrounding brackets. C functions are
displayed similarly. In this example, the allocation done by the garbage collector is due to stack growth, which is usually the
case.

The run-time performance impact of allocation profiling is noticeable, because it inserts additional C calls for object allocation.

Compile with -profile alloc -profile-branch true to find out how much allocation is done in each branch of a
function; see ProfilingCounts for more details on -profile-branch.

MLton Guide (20180207) 404 / 611

ProfilingCounts

With MLton and mlprof, you can profile your program to find out how many times each function is called and how many times
each branch is taken. To do so, compile your program with -profile count -profile-branch true. For example,
suppose that tak.sml contains the following.

structure Tak =
struct

fun tak1 (x, y, z) =
let

fun tak2 (x, y, z) =
if y >= x

then z
else

tak1 (tak2 (x - 1, y, z),
tak2 (y - 1, z, x),
tak2 (z - 1, x, y))

in
if y >= x

then z
else

tak1 (tak2 (x - 1, y, z),
tak2 (y - 1, z, x),
tak2 (z - 1, x, y))

end
end

val rec f =
fn 0 => ()
| ~1 => print "this branch is not taken\n"
| n => (Tak.tak1 (18, 12, 6) ; f (n-1))

val _ = f 5000

fun uncalled () = ()

Compile with count profiling and run the program.

% mlton -profile count -profile-branch true tak.sml
% ./tak

Display the profiling data, along with raw counts and file positions.

% mlprof -raw true -show-line true tak mlmon.out
623,610,002 ticks

function cur raw
--------------------------------- ----- -------------
Tak.tak1.tak2 tak.sml: 5 38.2% (238,530,000)
Tak.tak1.tak2.<true> tak.sml: 7 27.5% (171,510,000)
Tak.tak1 tak.sml: 3 10.7% (67,025,000)
Tak.tak1.<true> tak.sml: 14 10.7% (67,025,000)
Tak.tak1.tak2.<false> tak.sml: 9 10.7% (67,020,000)
Tak.tak1.<false> tak.sml: 16 2.0% (12,490,000)
f tak.sml: 23 0.0% (5,001)
f.<branch> tak.sml: 25 0.0% (5,000)
f.<branch> tak.sml: 23 0.0% (1)
uncalled tak.sml: 29 0.0% (0)
f.<branch> tak.sml: 24 0.0% (0)

Branches are displayed with lexical nesting followed by <branch> where the function name would normally be, or <true>
or <false> for if-expressions. It is best to run mlprof with -show-line true to help identify the branch.

MLton Guide (20180207) 405 / 611

One use of -profile count is as a code-coverage tool, to help find code in your program that hasn’t been tested. For this
reason, mlprof displays functions and branches even if they have a count of zero. As the above output shows, the branch on
line 24 was never taken and the function defined on line 29 was never called. To see zero counts, it is best to run mlprof with
-raw true, since some code (e.g. the branch on line 23 above) will show up with 0.0% but may still have been executed and
hence have a nonzero raw count.

MLton Guide (20180207) 406 / 611

ProfilingTheStack

For all forms of Profiling, you can gather counts for all functions on the stack, not just the currently executing function. To do so,
compile your program with -profile-stack true. For example, suppose that list-rev.sml contains the following.

fun append (l1, l2) =
case l1 of

[] => l2
| x :: l1 => x :: append (l1, l2)

fun rev l =
case l of

[] => []
| x :: l => append (rev l, [x])

val l = List.tabulate (1000, fn i => i)
val _ = 1 + hd (rev l)

Compile with stack profiling and then run the program.

% mlton -profile alloc -profile-stack true list-rev.sml
% ./list-rev

Display the profiling data.

% mlprof -show-line true list-rev mlmon.out
6,030,136 bytes allocated (108,336 bytes by GC)

function cur stack GC
----------------------- ----- ----- ----
append list-rev.sml: 1 97.6% 97.6% 1.4%
<gc> 1.8% 0.0% 1.8%
<main> 0.4% 98.2% 1.8%
rev list-rev.sml: 6 0.2% 97.6% 1.8%

In the above table, we see that rev, defined on line 6 of list-rev.sml, is only responsible for 0.2% of the allocation, but is
on the stack while 97.6% of the allocation is done by the user program and while 1.8% of the allocation is done by the garbage
collector.

The run-time performance impact of -profile-stack true can be noticeable since there is some extra bookkeeping at
every nontail call and return.

MLton Guide (20180207) 407 / 611

ProfilingTime

With MLton and mlprof, you can profile your program to find out how much time is spent in each function over an entire run
of the program. To do so, compile your program with -profile time. For example, suppose that tak.sml contains the
following.

structure Tak =
struct

fun tak1 (x, y, z) =
let

fun tak2 (x, y, z) =
if y >= x

then z
else

tak1 (tak2 (x - 1, y, z),
tak2 (y - 1, z, x),
tak2 (z - 1, x, y))

in
if y >= x

then z
else

tak1 (tak2 (x - 1, y, z),
tak2 (y - 1, z, x),
tak2 (z - 1, x, y))

end
end

val rec f =
fn 0 => ()
| ~1 => print "this branch is not taken\n"
| n => (Tak.tak1 (18, 12, 6) ; f (n-1))

val _ = f 5000

fun uncalled () = ()

Compile with time profiling and run the program.

% mlton -profile time tak.sml
% ./tak

Display the profiling data.

% mlprof tak mlmon.out
6.00 seconds of CPU time (0.00 seconds GC)
function cur
------------- -----
Tak.tak1.tak2 75.8%
Tak.tak1 24.2%

This example shows how mlprof indicates lexical nesting: as a sequence of period-separated names indicating the structures
and functions in which a function definition is nested. The profiling data shows that roughly three-quarters of the time is spent in
the Tak.tak1.tak2 function, while the rest is spent in Tak.tak1.

Display raw counts in addition to percentages with -raw true.

% mlprof -raw true tak mlmon.out
6.00 seconds of CPU time (0.00 seconds GC)

function cur raw
------------- ----- -------
Tak.tak1.tak2 75.8% (4.55s)
Tak.tak1 24.2% (1.45s)

MLton Guide (20180207) 408 / 611

Display the file name and line number for each function in addition to its name with -show-line true.

% mlprof -show-line true tak mlmon.out
6.00 seconds of CPU time (0.00 seconds GC)

function cur
------------------------- -----
Tak.tak1.tak2 tak.sml: 5 75.8%
Tak.tak1 tak.sml: 3 24.2%

Time profiling is designed to have a very small performance impact. However, in some cases there will be a run-time performance
cost, which may perturb the results. There is more likely to be an impact with -codegen c than -codegen native.

You can also compile with -profile time -profile-branch true to find out how much time is spent in each branch
of a function; see ProfilingCounts for more details on -profile-branch.

Caveats

With -profile time, use of the following in your program will cause a run-time error, since they would interfere with the
profiler signal handler.

• MLton.Itimer.set (MLton.Itimer.Prof, ...)

• MLton.Signal.setHandler (MLton.Signal.prof, ...)

Also, because of the random sampling used to implement -profile time, it is best to have a long running program (at least
tens of seconds) in order to get reasonable time

MLton Guide (20180207) 409 / 611

Projects

We have lots of ideas for projects to improve MLton, many of which we do not have time to implement, or at least haven’t started
on yet. Here is a list of some of those improvements, ranging from the easy (1 week) to the difficult (several months). If you
have any interest in working on one of these, or some other improvement to MLton not listed here, please send mail to MLton-
devel@mlton.org.

• Port to new platform: Windows (native, not Cygwin or MinGW), . . .

• Source-level debugger

• Heap profiler

• Interfaces to libraries: OpenGL, Gtk+, D-BUS, . . .

• More libraries written in SML (see mltonlib)

• Additional constant types: structure Real80:REAL, . . .

• An IDE (possibly integrated with Eclipse)

• Port MLRISC and use for code generation

• Optimizations

– Improved closure representation
Right now, MLton’s closure conversion algorithm uses a simple flat closure to represent each function.

* http://www.mlton.org/pipermail/mlton/2003-October/024570.html

* http://www.mlton.org/pipermail/mlton-user/2007-July/001150.html

* ShaoAppel94

– Elimination of array bounds checks in loops

– Elimination of overflow checks on array index computations

– Common-subexpression elimination of repeated array subscripts

– Loop-invariant code motion, especially for tuple selects

– Partial redundancy elimination

* http://www.mlton.org/pipermail/mlton/2006-April/028598.html

– Loop unrolling, especially for small loops

– Auto-vectorization, for MMX/SSE/3DNow!/AltiVec (see the work done on GCC)

– Optimize MLton_eq: pointer equality is necessarily false when one of the arguments is freshly allocated in the block

• Analyses

– Uncaught exception analysis

mailto:MLton-devel@mlton.org
mailto:MLton-devel@mlton.org
https://github.com/MLton/mltonlib
http://www.mlton.org/pipermail/mlton/2003-October/024570.html
http://www.mlton.org/pipermail/mlton-user/2007-July/001150.html
http://www.mlton.org/pipermail/mlton/2006-April/028598.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

MLton Guide (20180207) 410 / 611

Pronounce

Here is how "MLton" sounds.

"MLton" is pronounced in two syllables, with stress on the first syllable. The first syllable sounds like the word mill (as in "steel
mill"), the second like the word tin (as in "cookie tin").

guide/Pronounce.attachments/pronounce-mlton.mp3

MLton Guide (20180207) 411 / 611

PropertyList

A property list is a dictionary-like data structure into which properties (name-value pairs) can be inserted and from which
properties can be looked up by name. The term comes from the Lisp language, where every symbol has a property list for storing
information, and where the names are typically symbols and keys can be any type of value.

Here is an SML signature for property lists such that for any type of value a new property can be dynamically created to
manipulate that type of value in a property list.

signature PROPERTY_LIST =
sig

type t

val new: unit -> t
val newProperty: unit -> {add: t * ’a -> unit,

peek: t -> ’a option}
end

Here is a functor demonstrating the use of property lists. It first creates a property list, then two new properties (of different
types), and adds a value to the list for each property.

functor Test (P: PROPERTY_LIST) =
struct

val pl = P.new ()

val {add = addInt: P.t * int -> unit, peek = peekInt} = P.newProperty ()
val {add = addReal: P.t * real -> unit, peek = peekReal} = P.newProperty ()

val () = addInt (pl, 13)
val () = addReal (pl, 17.0)
val s1 = Int.toString (valOf (peekInt pl))
val s2 = Real.toString (valOf (peekReal pl))
val () = print (concat [s1, " ", s2, "\n"])

end

Applied to an appropriate implementation PROPERTY_LIST, the Test functor will produce the following output.

13 17.0

Implementation

Because property lists can hold values of any type, their implementation requires a UniversalType. Given that, a property list is
simply a list of elements of the universal type. Adding a property adds to the front of the list, and looking up a property scans the
list.

functor PropertyList (U: UNIVERSAL_TYPE): PROPERTY_LIST =
struct

datatype t = T of U.t list ref

fun new () = T (ref [])

fun ’a newProperty () =
let

val (inject, out) = U.embed ()
fun add (T r, a: ’a): unit = r := inject a :: (!r)
fun peek (T r) =

Option.map (valOf o out) (List.find (isSome o out) (!r))
in

{add = add, peek = peek}
end

end

MLton Guide (20180207) 412 / 611

If U:UNIVERSAL_TYPE, then we can test our code as follows.

structure Z = Test (PropertyList (U))

Of course, a serious implementation of property lists would have to handle duplicate insertions of the same property, as well as
the removal of elements in order to avoid space leaks.

Also see

• MLton relies heavily on property lists for attaching information to syntax tree nodes in its intermediate languages. See prop
erty-list.sig and property-list.fun.

• The MLRISCLibrary uses property lists extensively.

https://github.com/MLton/mlton/blob/master/lib/mlton/basic/property-list.sig
https://github.com/MLton/mlton/blob/master/lib/mlton/basic/property-list.sig
https://github.com/MLton/mlton/blob/master/lib/mlton/basic/property-list.fun

MLton Guide (20180207) 413 / 611

Pygments

Pygments is a generic syntax highlighter. Here is a lexer for highlighting Standard ML.

• sml_lexer— Provides highlighting of keywords, special constants, and (nested) comments.

Install and use

• Checkout all files and install as a Pygments plugin.

$ git clone https://github.com/MLton/mlton.git mlton
$ cd mlton/ide/pygments
$ python setup.py install

• Invoke pygmentize with -l sml.

Feedback

Comments and suggestions should be directed to MatthewFluet.

http://pygments.org/
https://github.com/MLton/mlton/tree/master/ide/pygments/sml_lexer
http://pygments.org/

MLton Guide (20180207) 414 / 611

RayRacine

Using SML in some Semantic Web stuff. Anyone interested in similar, please contact me. GreyLensman on #sml on IRC or
rracine at this domain adelphia with a dot here net.

Current areas of coding.

1. Pretty solid, high performance Rete implementation - base functionality is complete.

2. N3 parser - mostly complete

3. RDF parser based on fxg - not started.

4. Swerve HTTP server - 1/2 done.

5. SPARQL implementation - not started.

6. Persistent engine based on BerkelyDB - not started.

7. Native implementation of Postgresql protocol - underway, ways to go.

8. I also have a small change to the MLton compiler to add PackWord<N> - changes compile but needs some more work,
clean-up and unit tests.

MLton Guide (20180207) 415 / 611

Reachability

Reachability is a notion dealing with the graph of heap objects maintained at runtime. Nodes in the graph are heap objects and
edges correspond to the pointers between heap objects. As the program runs, it allocates new objects (adds nodes to the graph),
and those new objects can contain pointers to other objects (new edges in the graph). If the program uses mutable objects (refs
or arrays), it can also change edges in the graph.

At any time, the program has access to some finite set of root nodes, and can only ever access nodes that are reachable by
following edges from these root nodes. Nodes that are unreachable can be garbage collected.

Also see

• MLtonFinalizable

• MLtonWeak

MLton Guide (20180207) 416 / 611

Redundant

Redundant is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

The redundant SSA optimization eliminates redundant function and label arguments; an argument of a function or label is
redundant if it is always the same as another argument of the same function or label. The analysis finds an equivalence relation
on the arguments of a function or label, such that all arguments in an equivalence class are redundant with respect to the other
arguments in the equivalence class; the transformation selects one representative of each equivalence class and drops the binding
occurrence of non-representative variables and renames use occurrences of the non-representative variables to the representative
variable. The analysis finds the equivalence classes via a fixed-point analysis. Each vector of arguments to a function or label is
initialized to equivalence classes that equate all arguments of the same type; one could start with an equivalence class that equates
all arguments, but arguments of different type cannot be redundant. Variables bound in statements are initialized to singleton
equivalence classes. The fixed-point analysis repeatedly refines these equivalence classes on the formals by the equivalence
classes of the actuals.

Implementation

• redundant.fun

Details and Notes

The reason Redundant got put in was due to some output of the ClosureConvert pass converter where the environment record,
or components of it, were passed around in several places. That may have been more relevant with polyvariant analyses (which
are long gone). But it still seems possibly relevant, especially with more aggressive flattening, which should reveal some fields
in nested closure records that are redundant.

https://github.com/MLton/mlton/blob/master/mlton/ssa/redundant.fun

MLton Guide (20180207) 417 / 611

RedundantTests

RedundantTests is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass simplifies conditionals whose results are implied by a previous conditional test.

Implementation

• redundant-tests.fun

Details and Notes

An additional test will sometimes eliminate the overflow test when adding or subtracting 1. In particular, it will eliminate it in
the following cases:

if x < y
then ... x + 1 ...

else ... y - 1 ...

https://github.com/MLton/mlton/blob/master/mlton/ssa/redundant-tests.fun

MLton Guide (20180207) 418 / 611

References

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

• An Experimental Analysis of Self-Adjusting Computation Umut Acar, Guy Blelloch, Matthias Blume, and Kanat Tang-
wongsan. PLDI 2006.

• Compiling with Continuations (addall). ISBN 0521416957. Andrew W. Appel. Cambridge University Press, 1992.

• A Critique of Standard ML. Andrew W. Appel. JFP 1993.

• Modern Compiler Implementation in ML (addall). ISBN 0521582741 Andrew W. Appel. Cambridge University Press, 1998.

• Shrinking Lambda Expressions in Linear Time Andrew Appel and Trevor Jim. JFP 1997.

• A lexical analyzer generator for Standard ML. Version 1.6.0 Andrew W. Appel, James S. Mattson, and David R. Tarditi. 1994

B

• Tree Pattern Matching for ML. Marianne Baudinet, David MacQueen. 1985.

Describes the match compiler used in an early version of SML/NJ.

• Compiling Standard ML to Java Bytecodes. Nick Benton, Andrew Kennedy, and George Russell. ICFP 1998.

• Interlanguage Working Without Tears: Blending SML with Java. Nick Benton and Andrew Kennedy. ICFP 1999.

• Exceptional Syntax. Nick Benton and Andrew Kennedy. JFP 2001.

• Adventures in Interoperability: The SML.NET Experience. Nick Benton, Andrew Kennedy, and Claudio Russo. PPDP 2004.

• Shrinking Reductions in SML.NET. Nick Benton, Andrew Kennedy, Sam Lindley and Claudio Russo. IFL 2004.

Describes a linear-time implementation of an Appel-Jim shrinker, using a mutable IL, and shows that it yields nice
speedups in SML.NET’s compile times. There are also benchmarks showing that SML.NET when compiled by
MLton runs roughly five times faster than when compiled by SML/NJ.

• Embedded Interpreters. Nick Benton. JFP 2005.

• The Edinburgh SML Library. Dave Berry. University of Edinburgh Technical Report ECS-LFCS-91-148, 1991.

• A semantics for ML concurrency primitives. Dave Berry, Robin Milner, and David N. Turner. POPL 1992.

• Lessons From the Design of a Standard ML Library. Dave Berry. JFP 1993.

• Compiling SML to Java Bytecode. Peter Bertelsen. Master’s Thesis, 1998.

• OO Programming styles in ML. Bernard Berthomieu. LAAS Report #2000111, 2000.

• No-Longer-Foreign: Teaching an ML compiler to speak C "natively". Matthias Blume. BABEL 2001.

• Portable library descriptions for Standard ML. Matthias Blume. 2001.

• Destructors, Finalizers, and Synchronization. Hans Boehm. POPL 2003.

Discusses a number of issues in the design of finalizers. Many of the design choices are consistent with MLtonFi-
nalizable.

http://www.umut-acar.org/publications/pldi2006.pdf
http://us.cambridge.org/titles/catalogue.asp?isbn=0521416957
http://www.addall.com/New/submitNew.cgi?query=0-521-41695-7&type=ISBN&location=10000&state=&dispCurr=USD
http://www.cs.princeton.edu/research/techreps/TR-364-92
http://us.cambridge.org/titles/catalogue.asp?isbn=0521582741
http://www.addall.com/New/submitNew.cgi?query=0-521-58274-1&type=ISBN&location=10000&state=&dispCurr=USD
http://ncstrl.cs.princeton.edu/expand.php?id=TR-556-97
http://www.smlnj.org/doc/ML-Lex/manual.html
http://www.classes.cs.uchicago.edu/archive/2011/spring/22620-1/papers/macqueen-baudinet85.pdf
http://research.microsoft.com/en-us/um/people/nick/icfp98.pdf
http://research.microsoft.com/en-us/um/people/nick/SMLJavaInterop.pdf
http://research.microsoft.com/en-us/um/people/akenn/sml/ExceptionalSyntax.pdf
http://research.microsoft.com/en-us/um/people/nick/p53-Benton.pdf
http://research.microsoft.com/en-us/um/people/nick/shrinking.pdf
http://research.microsoft.com/en-us/um/people/nick/benton03.pdf
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-148/ECS-LFCS-91-148.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.7958&rep=rep1&type=ps
http://journals.cambridge.org/abstract_S0956796800000873
http://www.petermb.dk/sml2jvm.ps.gz
http://homepages.laas.fr/bernard/oo/ooml.html
http://people.cs.uchicago.edu/~blume/papers/nlffi-entcs.pdf
http://people.cs.uchicago.edu/~blume/pgraph/proposal.pdf
http://www.hpl.hp.com/techreports/2002/HPL-2002-335.html

MLton Guide (20180207) 419 / 611

C

• Flow-directed Closure Conversion for Typed Languages. Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. ESOP 2000.

Describes MLton’s closure-conversion algorithm, which translates from its simply-typed higher-order intermediate
language to its simply-typed first-order intermediate language.

• A Parallel, Real-Time Garbage Collector. Perry Cheng and Guy E. Blelloch. PLDI 2001.

• QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. Koen Claessen and John Hughes. ICFP 2000.

• Proper Tail Recursion and Space Efficiency. William D. Clinger. PLDI 1998.

• Adding Threads to Standard ML. Eric C. Cooper and J. Gregory Morrisett. CMU Technical Report CMU-CS-90-186, 1990.

• Stream Fusion: From Lists to Streams to Nothing at All. Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Submitted
for publication. April 2007.

D

• Principal Type-Schemes for Functional Programs. Luis Damas and Robin Milner. POPL 1982.

• Functional Unparsing. Olivier Danvy. BRICS Technical Report RS 98-12, 1998.

• Exhancements to eXene. Dustin B. deBoer. Master of Science Thesis, 2005.

Describes ways to improve widget concurrency, handling of input focus, X resources and selections.

• A Concurrent, Generational Garbage Collector for a Multithreaded Implementation of ML. Damien Doligez and Xavier Leroy.
POPL 1993.

• Modular Type Classes. Derek Dreyer, Robert Harper, Manuel M.T. Chakravarty, Gabriele Keller. University of Chicago
Technical Report TR-2007-02, 2006.

• Principal Type Schemes for Modular Programs. Derek Dreyer and Matthias Blume. ESOP 2007.

• Extensional Polymorphism. Catherin Dubois, Francois Rouaix, and Pierre Weis. POPL 1995.

An extension of ML that allows the definition of ad-hoc polymorphic functions by inspecting the type of their
argument.

E

• Garbage Collection Safety for Region-based Memory Management. Martin Elsman. TLDI 2003.

• Type-Specialized Serialization with Sharing. Martin Elsman. University of Copenhagen. IT University Technical Report
TR-2004-43, 2004.

F

• The Little MLer (addall). ISBN 026256114X. Matthias Felleisen and Dan Freidman. The MIT Press, 1998.

• Kill-Safe Synchronization Abstractions. Matthew Flatt and Robert Bruce Findler. PLDI 2004.

• Contification Using Dominators. Matthew Fluet and Stephen Weeks. ICFP 2001.

Describes contification, a generalization of tail-recursion elimination that is an optimization operating on MLton’s
static single assignment (SSA) intermediate language.

• Phantom Types and Subtyping. Matthew Fluet and Riccardo Pucella. JFP 2006.

http://www.cs.purdue.edu/homes/suresh/papers/icfp99.ps.gz
http://www.cs.cmu.edu/afs/cs/project/pscico/pscico/papers/gc01/pldi-final.pdf
http://users.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://www.cesura17.net/~will/Professional/Research/Papers/tail.pdf
http://www.eecs.harvard.edu/~greg/papers/jgmorris-mlthreads.ps
http://metagraph.org/papers/stream_fusion.pdf
http://groups.csail.mit.edu/pag/6.883/readings/p207-damas.pdf
http://www.brics.dk/RS/98/12
http://alleystoughton.us/eXene/dusty-thesis.pdf
http://cristal.inria.fr/~doligez/publications/doligez-leroy-popl-1993.pdf
http://www.mpi-sws.org/~dreyer/papers/mtc/main-long.pdf
http://www.mpi-sws.org/~dreyer/papers/infmod/main-long.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Francois.Rouaix/generics.dvi.Z
http://www.elsman.com/tldi03.pdf
http://www.elsman.com/ITU-TR-2004-43.pdf
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=4787
http://www3.addall.com/New/submitNew.cgi?query=026256114X&type=ISBN
http://www.cs.utah.edu/plt/kill-safe/
http://www.cs.rit.edu/~mtf/research/contification
http://www.cs.rit.edu/~mtf/research/phantom-subtyping/jfp06/jfp06.pdf

MLton Guide (20180207) 420 / 611

• Generic Polymorphism in ML. J. Furuse. JFLA 2001.

The formalism behind G’CAML, which has an approach to ad-hoc polymorphism based on Dubois95, the differ-
ences being in how type checking works an an improved compilation approach for typecase that does the matching
at compile time, not run time.

G

• A Multi-Threaded Higher-order User Interface Toolkit. Emden R. Gansner and John H. Reppy. User Interface Software, 1993.

• The Standard ML Basis Library. (addall) ISBN 9780521794787. Emden R. Gansner and John H. Reppy. Cambridge University
Press, 2004.

An introduction and overview of the Basis Library, followed by a detailed description of each module. The module
descriptions are also available online.

• Region-based Memory Management in Cyclone. Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,
and James Cheney. PLDI 2002.

H

• Combining Region Inference and Garbage Collection. Niels Hallenberg, Martin Elsman, and Mads Tofte. PLDI 2002.

• Introduction to Programming Using SML (addall). ISBN 0201398206. Michael R. Hansen, Hans Rischel. Addison-Wesley,
1999.

• Programming in Standard ML. Robert Harper.

• Typing First-Class Continuations in ML. Robert Harper, Bruce F. Duba, and David MacQueen. JFP 1993.

• On the Type Structure of Standard ML. Robert Harper and John C. Mitchell. TOPLAS 1992.

• On the Practicality and Desirability of Highly-concurrent, Mostly-functional Programming. Carl H. Hauser and David B.
Benson. ACSD 2004.

Describes the use of Concurrent ML in implementing the Ped text editor. Argues that using large numbers of threads
and message passing style is a practical and effective way of modularizing a program.

• A Functional Description of TeX’s Formula Layout. Reinhold Heckmann and Reinhard Wilhelm. JFP 1997.

• Safe and Flexible Memory Management in Cyclone. Mike Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. University
of Maryland Technical Report CS-TR-4514, 2003.

• Compiling HOL4 to Native Code. Joe Hurd. TPHOLs 2004.

Describes a port of HOL from Moscow ML to MLton, the difficulties encountered in compiling large programs, and
the speedups achieved (roughly 10x).

I

J

• Garbage Collection: Algorithms for Automatic Memory Management (addall). ISBN 0471941484. Richard Jones. John Wiley
& Sons, 1999.

http://jfla.inria.fr/2001/actes/07-furuse.ps
http://alleystoughton.us/eXene/1993-trends.pdf
http://www.cambridge.org/gb/academic/subjects/computer-science/programming-languages-and-applied-logic/standard-ml-basis-library
http://www3.addall.com/New/submitNew.cgi?query=9780521794787&type=ISBN
http://www.standardml.org/Basis
http://www.cs.umd.edu/projects/cyclone/papers/cyclone-regions.pdf
http://www.itu.dk/people/tofte/publ/pldi2002.pdf
http://www.it.dtu.dk/introSML
http://www3.addall.com/New/submitNew.cgi?query=0201398206&type=ISBN
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/papers/callcc/jfp.pdf
http://www.cs.cmu.edu/~rwh/papers/xml/toplas93.pdf
http://doi.ieeecomputersociety.org/10.1109/CSD.2004.1309122
http://rw4.cs.uni-sb.de/~heckmann/abstracts/neuform.html
http://wwwold.cs.umd.edu/Library/TRs/CS-TR-4514/CS-TR-4514.pdf
http://www.gilith.com/research/talks/tphols2004.pdf
http://www.cs.kent.ac.uk/people/staff/rej/gcbook
http://www3.addall.com/New/submitNew.cgi?query=0471941484&type=ISBN

MLton Guide (20180207) 421 / 611

K

• Mistakes and Ambiguities in the Definition of Standard ML. Stefan Kahrs. University of Edinburgh Technical Report ECS-
LFCS-93-257, 1993.

Describes a number of problems with the 1990 Definition, many of which were fixed in the 1997 Definition.
Also see the addenda published in 1996.

• Generics for the Working ML’er. Vesa Karvonen. ML 2007. Slides from the presentation are also available.

• Pickler Combinators. Andrew Kennedy. JFP 2004.

• sml2java: A Source To Source Translator. Justin Koser, Haakon Larsen, Jeffrey A. Vaughan. DPCOOL 2003.

L

• Faster Algorithms for Finding Minimal Consistent DFAs. Kevin Lang. 1999.

• mGTK: An SML binding of Gtk+. Ken Larsen and Henning Niss. USENIX Annual Technical Conference, 2004.

• An LLVM Back-end for MLton. Brian Leibig. MS Project Report, 2013.

Describes MLton’s LLVMCodegen.

• The ZINC Experiment: an Economical Implementation of the ML Language. Xavier Leroy. Technical report 117, INRIA,
1990.

A detailed explanation of the design and implementation of a bytecode compiler and interpreter for ML with a
machine model aimed at efficient implementation.

• Polymorphism by Name for References and Continuations. Xavier Leroy. POPL 1993.

• MLRISC Annotations. Allen Leung and Lal George. 1999.

M

• Asynchronous Exceptions in Haskell. Simon Marlow, Simon Peyton Jones, Andy Moran and John Reppy. PLDI 2001.

An asynchronous exception is a signal that one thread can send to another, and is useful for the receiving thread to
treat as an exception so that it can clean up locks or other state relevant to its current context.

• An Ideal Model for Recursive Polymorphic Types. David MacQueen, Gordon Plotkin, Ravi Sethi. POPL 1984.

• A Distributed Concurrent Implementation of Standard ML. David Matthews. University of Edinburgh Technical Report ECS-
LFCS-91-174, 1991.

• Papers on Poly/ML. David C. J. Matthews. University of Edinburgh Technical Report ECS-LFCS-95-335, 1995.

• That About Wraps it Up: Using FIX to Handle Errors Without Exceptions, and Other Programming Tricks. Bruce J. McAdam.
University of Edinburgh Technical Report ECS-LFCS-97-375, 1997.

• A Just-In-Time Backend for Moscow ML 2.00 in SML. Bjarke Meier, Kristian Nørgaard. Masters Thesis, 2003.

A just-in-time compiler using GNU Lightning, showing a speedup of up to four times over Moscow ML’s usual
bytecode interpreter.
The full report is only available in Danish.

• A Theory of Type Polymorphism in Programming. Robin Milner. Journal of Computer and System Sciences, 1978.

• How ML Evolved. Robin Milner. Polymorphism—The ML/LCF/Hope Newsletter, 1983.

http://kar.kent.ac.uk/21122/
http://www.cs.kent.ac.uk/~smk/errors-new.ps.Z
http://dl.acm.org/citation.cfm?doid=1292535.1292547
http://research.microsoft.com/~crusso/ml2007/slides/ml08rp-karvonen-slides.pdf
http://research.microsoft.com/~akenn/fun/picklercombinators.pdf
http://www.litech.org/~vaughan/pdf/dpcool2003.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.7130&rep=rep1&type=ps
http://usenix.org/publications/library/proceedings/usenix04/tech/freenix/full_papers/larsen/larsen.pdf
http://www.cs.rit.edu/~bal6053/msproject/
http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-ZINC.html
http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-poly-par-nom.html
http://www.cs.nyu.edu/leunga/my-papers/annotations.ps
http://community.haskell.org/~simonmar/papers/async.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/Ideal_model.pdf
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-174
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-335
http://www.lfcs.inf.ed.ac.uk/reports/97/ECS-LFCS-97-375
http://www.itu.dk/stud/speciale/bmkn/fundanemt/download/report
http://courses.engr.illinois.edu/cs421/sp2013/project/milner-polymorphism.pdf
http://homepages.inf.ed.ac.uk/dts/fps/papers/evolved.dvi.gz

MLton Guide (20180207) 422 / 611

• Commentary on Standard ML (addall) ISBN 0262631377. Robin Milner and Mads Tofte. The MIT Press, 1991.

Introduces and explains the notation and approach used in The Definition of Standard ML.

• The Definition of Standard ML. (addall) ISBN 0262631326. Robin Milner, Mads Tofte, and Robert Harper. The MIT Press,
1990.

Superseded by The Definition of Standard ML (Revised). Accompanied by the Commentary on Standard ML.

• The Definition of Standard ML (Revised). (addall) ISBN 0262631814. Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The MIT Press, 1997.

A terse and formal specification of Standard ML’s syntax and semantics. Supersedes The Definition of Standard
ML.

• Principles and a Preliminary Design for ML2000. The ML2000 working group, 1999.

• Automatic Code Generation from Coloured Petri Nets for an Access Control System. Kjeld H. Mortensen. Workshop on
Practical Use of Coloured Petri Nets and Design/CPN, 1999.

• Procs and Locks: a Portable Multiprocessing Platform for Standard ML of New Jersey. J. Gregory Morrisett and Andrew
Tolmach. PPoPP 1993.

• ML Grid Programming with ConCert. Tom Murphy VII. ML 2006.

N

• fxp - Processing Structured Documents in SML. Andreas Neumann. Scottish Functional Programming Workshop, 1999.

Describes fxp, an XML parser implemented in Standard ML.

• Parsing and Querying XML Documents in SML. Andreas Neumann. Doctoral Thesis, 1999.

• Compiling ML Polymorphism with Explicit Layout Bitmap. Huu-Duc Nguyen and Atsushi Ohori. PPDP 2006.

O

• Purely Functional Data Structures. ISBN 9780521663502. Chris Okasaki. Cambridge University Press, 1999.

• A Simple Semantics for ML Polymorphism. Atsushi Ohori. FPCA 1989.

• A Polymorphic Record Calculus and Its Compilation. Atsushi Ohori. TOPLAS 1995.

• An Unboxed Operational Semantics for ML Polymorphism. Atsushi Ohori and Tomonobu Takamizawa. LASC 1997.

• Type-Directed Specialization of Polymorphism. Atsushi Ohori. IC 1999.

• Regular-expression derivatives reexamined. Scott Owens, John Reppy, and Aaron Turon. JFP 2009.

P

• ML For the Working Programmer (addall) ISBN 052156543X. Larry C. Paulson. Cambridge University Press, 1996.

• The HiPE/x86 Erlang Compiler: System Description and Performance Evaluation. Mikael Pettersson, Konstantinos Sagonas,
and Erik Johansson. FLOPS 2002.

Describes a native x86 Erlang compiler and a comparison of many different native x86 compilers (including MLton)
and their register usage and call stack implementations.

• User’s Guide to ML-Lex and ML-Yacc Roger Price. 2009.

• Reactive Programming in Standard ML. Riccardo R. Puccella. 1998. ICCL 1998.

http://www.itu.dk/people/tofte/publ/1990sml/1990sml.html
http://www3.addall.com/New/submitNew.cgi?query=0262631377&type=ISBN
http://www.itu.dk/people/tofte/publ/1990sml/1990sml.html
http://www3.addall.com/New/submitNew.cgi?query=0262631326&type=ISBN
http://mitpress.mit.edu/books/definition-standard-ml
http://www3.addall.com/New/submitNew.cgi?query=0262631814&type=ISBN
http://flint.cs.yale.edu/flint/publications/ml2000.html
http://daimi.au.dk/CPnets/workshop99/papers/Mortensen.pdf
http://web.cecs.pdx.edu/~apt/ppopp93.ps
http://www.cs.cmu.edu/~tom7/papers/grid-ml06.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.9485&rep=rep1&type=ps
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.8108&rep=rep1&type=ps
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/NguyenOhoriPPDP06.pdf
http://www.cambridge.org/gb/academic/subjects/computer-science/programming-languages-and-applied-logic/purely-functional-data-structures
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/fpca89.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/toplas95.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/jlsc97.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/ic98.pdf
http://www.mpi-sws.org/~turon/re-deriv.pdf
http://www.cambridge.org/co/academic/subjects/computer-science/programming-languages-and-applied-logic/ml-working-programmer-2nd-edition
http://www3.addall.com/New/submitNew.cgi?query=052156543X&type=ISBN
http://user.it.uu.se/~kostis/Papers/flops02_22.ps.gz
http://rogerprice.org/#UG
http://arxiv.org/abs/cs.PL/0405080

MLton Guide (20180207) 423 / 611

Q

R

• Concurrent Programming in ML. Norman Ramsey. Princeton University Technical Report CS-TR-262-90, 1990.

• Embedding an Interpreted Language Using Higher-Order Functions and Types. Norman Ramsey. JFP 2011.

• An Expressive Language of Signatures. Norman Ramsey, Kathleen Fisher, and Paul Govereau. ICFP 2005.

• Widening Integer Arithmetic. Kevin Redwine and Norman Ramsey. CC 2004.

Describes a method to implement numeric types and operations (like Int31 or Word17) for sizes smaller than
that provided by the processor.

• Synchronous Operations as First-Class Values. John Reppy. PLDI 1988.

• Concurrent Programming in ML (addall). ISBN 9780521714723. John Reppy. Cambridge University Press, 2007.

Describes ConcurrentML.

• Definitional Interpreters Revisited. John C. Reynolds. HOSC 1998.

• Definitional Interpreters for Higher-Order Programming Languages John C. Reynolds. HOSC 1998.

• Defects in the Revised Definition of Standard ML. Andreas Rossberg. 2001.

S

• Dual-Mode Garbage Collection. Patrick M. Sansom. Workshop on the Parallel Implementation of Functional Languages,
1991.

• When Do Match-Compilation Heuristics Matter. Kevin Scott and Norman Ramsey. University of Virginia Technical Report
CS-2000-13, 2000.

Modified SML/NJ to experimentally compare a number of match-compilation heuristics and showed that choice of
heuristic usually does not significantly affect code size or run time.

• ML Pattern Match Compilation and Partial Evaluation. Peter Sestoft. Partial Evaluation, 1996.

Describes the derivation of the match compiler used in Moscow ML.

• Space-Efficient Closure Representations. Zhong Shao and Andrew W. Appel. LFP 1994.

• Unix System Programming with Standard ML. Anthony L. Shipman. 2002.

Includes a description of the Swerve HTTP server written in SML.

• Calcul Statique des Applications de Modules Parametres. Julien Signoles. JFLA 2003.

Describes a defunctorizer for OCaml, and compares it to existing defunctorizers, including MLton.

• Incremental Execution of Transformation Specifications. Ganesh Sittampalam, Oege de Moor, and Ken Friis Larsen. POPL
2004.

Mentions a port from Moscow ML to MLton of MuDDY, an SML wrapper around the BuDDY BDD package.

• A Separate Compilation Extension to Standard ML. David Swasey, Tom Murphy VII, Karl Crary and Robert Harper. ML
2006.

https://www.cs.princeton.edu/research/techreps/TR-262-90
http://www.cs.tufts.edu/~nr/pubs/embedj-abstract.html
http://www.cs.tufts.edu/~nr/pubs/els-abstract.html
http://www.cs.tufts.edu/~nr/pubs/widen-abstract.html
http://www.cambridge.org/co/academic/subjects/computer-science/distributed-networked-and-mobile-computing/concurrent-programming-ml
http://www3.addall.com/New/submitNew.cgi?query=9780521714723&type=ISBN
https://users-cs.au.dk/hosc/local/HOSC-11-4-pp355-361.pdf
https://users-cs.au.dk/hosc/local/HOSC-11-4-pp363-397.pdf
http://www.mpi-sws.org/~rossberg/papers/Rossberg%20-%20Defects%20in%20the%20Revised%20Definition%20of%20Standard%20ML%20%5B2007-01-22%20Update%5D.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.1020&rep=rep1&type=ps
http://www.cs.tufts.edu/~nr/pubs/match-abstract.html
http://www.itu.dk/~sestoft/papers/match.ps.gz
http://flint.cs.yale.edu/flint/publications/closure.html
http://caml.inria.fr/cgi-bin/hump.en.cgi?contrib=382
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.1349&rep=rep1&type=ps
http://www.itu.dk/research/muddy/
http://sourceforge.net/projects/buddy
http://www.cs.cmu.edu/~tom7/papers/smlsc2-ml06.pdf

MLton Guide (20180207) 424 / 611

T

• ML-Yacc User’s Manual. Version 2.4 David R. Tarditi and Andrew W. Appel. 2000.

• No Assembly Required: Compiling Standard ML to C. David Tarditi, Peter Lee, and Anurag Acharya. 1990.

• Object-oriented programming and Standard ML. Lars Thorup and Mads Tofte. ML, 1994.

• Type Inference for Polymorphic References. Mads Tofte. IC 1990.

• Essentials of Standard ML Modules. Mads Tofte.

• Tips for Computer Scientists on Standard ML (Revised). Mads Tofte.

• A Debugger for Standard ML. Andrew Tolmach and Andrew W. Appel. JFP 1995.

• Combining Closure Conversion with Closure Analysis using Algebraic Types. Andrew Tolmach. TIC 1997.

Describes a closure-conversion algorithm for a monomorphic IL. The algorithm uses a unification-based flow anal-
ysis followed by defunctionalization and is similar to the approach used in MLton (CejtinEtAl00).

• From ML to Ada: Strongly-typed Language Interoperability via Source Translation. Andrew Tolmach and Dino Oliva. JFP
1998.

Describes a compiler for RML, a core SML-like language. The compiler is similar in structure to MLton, using
monomorphisation, defunctionalization, and optimization on a first-order IL.

U

• Elements of ML Programming (addall). ISBN 0137903871. Jeffrey D. Ullman. Prentice-Hall, 1998.

V

W

• A Types-as-Sets Semantics for Milner-Style Polymorphism. Mitchell Wand. POPL 1984.

• Managing Memory with Types. Daniel C. Wang. PhD Thesis.

Chapter 6 describes an implementation of a type-preserving garbage collector for MLton.

• Type-Preserving Garbage Collectors. Daniel C. Wang and Andrew W. Appel. POPL 2001.

Shows how to modify MLton to generate a strongly-typed garbage collector as part of a program.

• Programming With Recursion Schemes. Daniel C. Wang and Tom Murphy VII.

Describes a programming technique for data abstraction, along with benchmarks of MLton and other SML compil-
ers.

• Whole-Program Compilation in MLton. Stephen Weeks. ML 2006.

• Simple Imperative Polymorphism. Andrew Wright. LASC, 8(4):343-355, 1995.

The origin of the ValueRestriction.

X

Y

• Encoding Types in ML-like Languages. Zhe Yang. ICFP 1998.

http://www.smlnj.org/doc/ML-Yacc/index.html
http://research.microsoft.com/pubs/68738/loplas-sml2c.ps
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.5372&rep=rep1&type=ps
http://www.itu.dk/courses/FDP/E2004/Tofte-1996-Essentials_of_SML_Modules.pdf
http://www.itu.dk/people/tofte/publ/tips.pdf
http://web.cecs.pdx.edu/~apt/jfp95.ps
http://web.cecs.pdx.edu/~apt/tic97.ps
http://web.cecs.pdx.edu/~apt/jfp98.ps
http://www-db.stanford.edu/~ullman/emlp.html
http://www3.addall.com/New/submitNew.cgi?query=0137903871&type=ISBN
http://portal.acm.org/citation.cfm?id=800527
http://ncstrl.cs.princeton.edu/expand.php?id=TR-640-01
http://www.cs.princeton.edu/~appel/papers/typegc.pdf
http://www.cs.cmu.edu/~tom7/papers/wang-murphy-recursion.pdf
http://homepages.inf.ed.ac.uk/dts/fps/papers/wright.ps.gz
http://cs.nyu.edu/zheyang/papers/YangZ--ICFP98.html

MLton Guide (20180207) 425 / 611

Z

• Stabilizers: A Modular Checkpointing Abstraction for Concurrent Functional Programs. Lukasz Ziarek, Philip Schatz, and
Suresh Jagannathan. ICFP 2006.

• Flattening tuples in an SSA intermediate representation. Lukasz Ziarek, Stephen Weeks, and Suresh Jagannathan. HOSC 2008.

Abbreviations

• ACSD = International Conference on Application of Concurrency to System Design

• BABEL = Workshop on multi-language infrastructure and interoperability

• CC = International Conference on Compiler Construction

• DPCOOL = Workshop on Declarative Programming in the Context of OO Languages

• ESOP = European Symposium on Programming

• FLOPS = Symposium on Functional and Logic Programming

• FPCA = Conference on Functional Programming Languages and Computer Architecture

• HOSC = Higher-Order and Symbolic Computation

• IC = Information and Computation

• ICCL = IEEE International Conference on Computer Languages

• ICFP = International Conference on Functional Programming

• IFL = International Workshop on Implementation and Application of Functional Languages

• IVME = Workshop on Interpreters, Virtual Machines and Emulators

• JFLA = Journees Francophones des Langages Applicatifs

• JFP = Journal of Functional Programming

• LASC = Lisp and Symbolic Computation

• LFP = Lisp and Functional Programming

• ML = Workshop on ML

• PLDI = Conference on Programming Language Design and Implementation

• POPL = Symposium on Principles of Programming Languages

• PPDP = International Conference on Principles and Practice of Declarative Programming

• PPoPP = Principles and Practice of Parallel Programming

• TCS = IFIP International Conference on Theoretical Computer Science

• TIC = Types in Compilation

• TLDI = Workshop on Types in Language Design and Implementation

• TOPLAS = Transactions on Programming Languages and Systems

• TPHOLs = International Conference on Theorem Proving in Higher Order Logics

http://www.cs.purdue.edu/homes/lziarek/icfp06.pdf
http://www.cse.buffalo.edu/~lziarek/hosc.pdf

MLton Guide (20180207) 426 / 611

RefFlatten

RefFlatten is an optimization pass for the SSA2 IntermediateLanguage, invoked from SSA2Simplify.

Description

This pass flattens a ref cell into its containing object. The idea is to replace, where possible, a type like

(int ref * real)

with a type like

(int[m] * real)

where the [m] indicates a mutable field of a tuple.

Implementation

• ref-flatten.fun

Details and Notes

The savings is obvious, I hope. We avoid an extra heap-allocated object for the ref, which in the above case saves two words.
We also save the time and code for the extra indirection at each get and set. There are lots of useful data structures (singly-linked
and doubly-linked lists, union-find, Fibonacci heaps, . . .) that I believe we are paying through the nose right now because of the
absence of ref flattening.

The idea is to compute for each occurrence of a ref type in the program whether or not that ref can be represented as an offset
of some object (constructor or tuple). As before, a unification-based whole-program with deep abstract values makes sure the
analysis is consistent.

The only syntactic part of the analysis that remains is the part that checks that for a variable bound to a value constructed by
Ref_ref:

• the object allocation is in the same block. This is pretty draconian, and it would be nice to generalize it some day to allow
flattening as long as the ref allocation and object allocation "line up one-to-one" in the same loop-free chunk of code.

• updates occur in the same block (and hence it is safe-for-space because the containing object is still alive). It would be nice to
relax this to allow updates as long as it can be provedthat the container is live.

Prevent flattening of unit ref-s.

RefFlatten is safe for space. The idea is to prevent a ref being flattened into an object that has a component of unbounded size
(other than possibly the ref itself) unless we can prove that at each point the ref is live, then the containing object is live too.
I used a pretty simple approximation to liveness.

https://github.com/MLton/mlton/blob/master/mlton/ssa/ref-flatten.fun

MLton Guide (20180207) 427 / 611

Regions

In region-based memory management, the heap is divided into a collection of regions into which objects are allocated. At compile
time, either in the source program or through automatic inference, allocation points are annotated with the region in which the
allocation will occur. Typically, although not always, the regions are allocated and deallocated according to a stack discipline.

MLton does not use region-based memory management; it uses traditional GarbageCollection. We have considered integrating
regions with MLton, but in our opinion it is far from clear that regions would provide MLton with improved performance, while
they would certainly add a lot of complexity to the compiler and complicate reasoning about and achieving SpaceSafety. Region-
based memory management and garbage collection have different strengths and weaknesses; it’s pretty easy to come up with
programs that do significantly better under regions than under GC, and vice versa. We believe that it is the case that common
SML idioms tend to work better under GC than under regions.

One common argument for regions is that the region operations can all be done in (approximately) constant time; therefore,
you eliminate GC pause times, leading to a real-time GC. However, because of space safety concerns (see below), we believe
that region-based memory management for SML must also include a traditional garbage collector. Hence, to achieve real-time
memory management for MLton/SML, we believe that it would be both easier and more efficient to implement a traditional
real-time garbage collector than it would be to implement a region system.

Regions, the ML Kit, and space safety

The ML Kit pioneered the use of regions for compiling Standard ML. The ML Kit maintains a stack of regions at run time. At
compile time, it uses region inference to decide when data can be allocated in a stack-like manner, assigning it to an appropriate
region. The ML Kit has put a lot of effort into improving the supporting analyses and representations of regions, which are all
necessary to improve the performance.

Unfortunately, under a pure stack-based region system, space leaks are inevitable in theory, and costly in practice. Data for which
region inference can not determine the lifetime is moved into the "global region" whose lifetime is the entire program. There are
two ways in which region inference will place an object to the global region.

• When the inference is too conservative, that is, when the data is used in a stack-like manner but the region inference can’t
figure it out.

• When data is not used in a stack-like manner. In this case, correctness requires region inference to place the object

This global region is a source of space leaks. No matter what region system you use, there are some programs such that the
global region must exist, and its size will grow to an unbounded multiple of the live data size. For these programs one must have
a GC to achieve space safety.

To solve this problem, the ML Kit has undergone work to combine garbage collection with region-based memory management.
HallenbergEtAl02 and Elsman03 describe the addition of a garbage collector to the ML Kit’s region-based system. These papers
provide convincing evidence for space leaks in the global region. They show a number of benchmarks where the memory usage
of the program running with just regions is a large multiple (2, 10, 50, even 150) of the program running with regions plus GC.

These papers also give some numbers to show the ML Kit with just regions does better than either a system with just GC or
a combined system. Unfortunately, a pure region system isn’t practical because of the lack of space safety. And the other
performance numbers are not so convincing, because they compare to an old version of SML/NJ and not at all with MLton. It
would be interesting to see a comparison with a more serious collector.

Regions, Garbage Collection, and Cyclone

One possibility is to take Cyclone’s approach, and provide both region-based memory management and garbage collection, but
at the programmer’s option (GrossmanEtAl02, HicksEtAl03).

One might ask whether we might do the same thing — i.e., provide a MLton.Regions structure with explicit region based
memory management operations, so that the programmer could use them when appropriate. MatthewFluet has thought about this
question

MLton Guide (20180207) 428 / 611

• http://www.cs.cornell.edu/People/fluet/rgn-monad/index.html

Unfortunately, his conclusion is that the SML type system is too weak to support this option, although there might be a "poor-
man’s" version with dynamic checks.

http://www.cs.cornell.edu/People/fluet/rgn-monad/index.html

MLton Guide (20180207) 429 / 611

Release20041109

This is an archived public release of MLton, version 20041109.

Changes since the last public release

• New platforms:

– x86: FreeBSD 5.x, OpenBSD

– PowerPC: Darwin (MacOSX)

• Support for the ML Basis system, a new mechanism supporting programming in the very large, separate delivery of library
sources, and more.

• Support for dynamic libraries.

• Support for ConcurrentML (CML).

• New structures: Int2, Int3, . . . , Int31 and Word2, Word3, . . . , Word31.

• Front-end bug fixes and improvements.

• A new form of profiling with -profile count, which can be used to test code coverage.

• A bytecode generator, available via -codegen bytecode.

• Representation improvements:

– Tuples and datatypes are packed to decrease space usage.

– Ref cells may be unboxed into their containing object.

– Arrays of tuples may represent the tuples unboxed.

For a complete list of changes and bug fixes since 20040227, see the changelog.

Also see

• Bugs20041109

https://raw.github.com/MLton/mlton/on-20041109-release/doc/changelog

MLton Guide (20180207) 430 / 611

Release20051202

This is an archived public release of MLton, version 20051202.

Changes since the last public release

• The MLton license is now BSD-style instead of the GPL.

• New platforms: X86/MinGW and HPPA/Linux.

• Improved and expanded documentation, based on the MLton wiki.

• Compiler.

– improved exception history.

– Command-line switches.

* Added: -as-opt, -mlb-path-map, -target-as-opt, -target-cc-opt.

* Removed: -native, -sequence-unit, -warn-match, -warn-unused.

• Language.

– FFI syntax changes and extensions.

* Added: _symbol.

* Changed: _export, _import.

* Removed: _ffi.

– ML Basis annotations.

* Added: allowFFI, nonexhaustiveExnMatch, nonexhaustiveMatch, redundantMatch, sequenceNon
Unit.

* Deprecated: allowExport, allowImport, sequenceUnit, warnMatch.

• Libraries.

– Basis Library.

* Added: Int1, Word1.

– MLton structure.

* Added: Process.create, ProcEnv.setgroups, Rusage.measureGC, Socket.fdToSock, Socket.Ctl.
getError.

* Changed: MLton.Platform.Arch.

– Other libraries.

* Added: ckit, ML-NLFFI library, SML/NJ library.

• Tools.

– Updates of mllex and mlyacc from SML/NJ.

– Added mlnlffigen.

– Profiling supports better inclusion/exclusion of code.

For a complete list of changes and bug fixes since Release20041109, see the changelog and Bugs20041109.

https://raw.github.com/MLton/mlton/on-20051202-release/doc/changelog

MLton Guide (20180207) 431 / 611

20051202 binary packages

• x86

– Cygwin 1.5.18-1

– FreeBSD 5.4

– Linux

* Debian sid

* Debian stable (Sarge)

* RedHat 7.1-9.3 FC1-FC4

* tgz for other distributions (glibc 2.3)

– MinGW

– NetBSD 2.0.2

– OpenBSD 3.7

• PowerPC

– Darwin 7.9.0 (Mac OS X)

• Sparc

– Solaris 8

20051202 source packages

• source tgz

• Debian dsc, diff.gz, orig.tar.gz

• RedHat source rpm

Packages available at other sites

• Debian

• FreeBSD

• Fedora Core 4 5

• Ubuntu

Also see

• Bugs20051202

• MLton Guide (20051202).

A snapshot of the MLton wiki at the time of release.

http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.i386-cygwin.tgz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.i386-freebsd.tbz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton_20051202-1_i386.deb
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton_20051202-1_i386.stable.deb
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.i386.rpm
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.i386-linux.tgz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.i386-mingw.tgz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.i386-netbsd.tgz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.i386-openbsd.tgz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.powerpc-darwin.tgz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.sparc-solaris.tgz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.src.tgz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton_20051202-1.dsc
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton_20051202-1.diff.gz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton_20051202.orig.tar.gz
http://sourceforge.net/projects/mlton/files/mlton/20051202/mlton-20051202-1.src.rpm
http://packages.debian.org/cgi-bin/search_packages.pl?searchon=names&version=all&exact=1&keywords=mlton
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://fedoraproject.org/extras/4/i386/repodata/repoview/mlton-0-20051202-8.fc4.html
http://fedoraproject.org/extras/5/i386/repodata/repoview/mlton-0-20051202-8.fc5.html
http://packages.ubuntu.com/dapper/devel/mlton
http://www.mlton.org/guide/20051202/

MLton Guide (20180207) 432 / 611

Release20070826

This is an archived public release of MLton, version 20070826.

Changes since the last public release

• New platforms:

– AMD64/Linux, AMD64/FreeBSD

– HPPA/HPUX

– PowerPC/AIX

– X86/Darwin (Mac OS X)

• Compiler.

– Support for 64-bit platforms.

* Native amd64 codegen.

– Compile-time options.

* Added: -codegen amd64, -codegen x86, -default-type type, -profile-val {false|true}.

* Changed: -stop f (file listing now includes .mlb files).

– Bytecode codegen.

* Support for exception history.

* Support for profiling.

• Language.

– ML Basis annotations.

* Removed: allowExport, allowImport, sequenceUnit, warnMatch.

• Libraries.

– Basis Library.

* Added: PackWord16Big, PackWord16Little, PackWord64Big, PackWord64Little.

* Bug fixes: see changelog.

– MLton structure.

* Added: MLTON_MONO_ARRAY, MLTON_MONO_VECTOR, MLTON_REAL, MLton.BinIO.tempPrefix, MLton.
CharArray, MLton.CharVector, MLton.Exn.defaultTopLevelHandler, MLton.Exn.getTopLeve
lHandler, MLton.Exn.setTopLevelHandler, MLton.IntInf.BigWord, Mlton.IntInf.SmallInt,
MLton.LargeReal, MLton.LargeWord, MLton.Real, MLton.Real32, MLton.Real64, MLton.Rlimit.
Rlim, MLton.TextIO.tempPrefix, MLton.Vector.create, MLton.Word.bswap, MLton.Word8.bswap,
MLton.Word16, MLton.Word32, MLton.Word64, MLton.Word8Array, MLton.Word8Vector.

* Changed: MLton.Array.unfoldi, MLton.IntInf.rep, MLton.Rlimit, MLton.Vector.unfoldi.

* Deprecated: MLton.Socket.

– Other libraries.

* Added: MLRISC library.

* Updated: ckit library, SML/NJ library.

• Tools.

For a complete list of changes and bug fixes since Release20051202, see the changelog and Bugs20051202.

https://raw.github.com/MLton/mlton/on-20070826-release/doc/changelog
https://raw.github.com/MLton/mlton/on-20070826-release/doc/changelog

MLton Guide (20180207) 433 / 611

20070826 binary packages

• AMD64

– Linux, glibc 2.3

• HPPA

– HPUX 11.00 and above, statically linked against GnuMP

• PowerPC

– AIX 5.1 and above, statically linked against GnuMP
– Darwin 8.10 (Mac OS X), statically linked against GnuMP
– Darwin 8.10 (Mac OS X), dynamically linked against GnuMP in /opt/local/lib (suitable for MacPorts install of

GnuMP)

• Sparc

– Solaris 8 and above, statically linked against GnuMP

• X86

– Cygwin 1.5.24-2
– Darwin (.tgz) 8.10 (Mac OS X), dynamically linked against GnuMP in /opt/local/lib (suitable for MacPorts install

of GnuMP)
– Darwin (.dmg) 8.10 (Mac OS X), dynamically linked against GnuMP in /opt/local/lib (suitable for MacPorts install

of GnuMP)
– Darwin (.tgz) 8.10 (Mac OS X), statically linked against GnuMP
– Darwin (.dmg) 8.10 (Mac OS X), statically linked against GnuMP
– FreeBSD
– Linux, glibc 2.3
– Linux, glibc 2.1, statically linked against GnuMP
– MinGW, dynamically linked against GnuMP (requires libgmp-3.dll)
– MinGW, statically linked against GnuMP

20070826 source packages

• source tgz

• Debian dsc, diff.gz, orig.tar.gz

Packages available at other sites

• Debian

• FreeBSD

• Fedora

• Ubuntu

Also see

• Bugs20070826

• MLton Guide (20070826).

A snapshot of the MLton wiki at the time of release.

http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.amd64-linux.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.hppa-hpux1100.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.powerpc-aix51.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.powerpc-darwin.gmp-static.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.powerpc-darwin.gmp-macports.tgz
http://macports.org
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.sparc-solaris8.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-cygwin.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-darwin.gmp-macports.tgz
http://macports.org
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-darwin.gmp-macports.dmg
http://macports.org
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-darwin.gmp-static.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-darwin.gmp-static.dmg
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-freebsd.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-linux.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-linux.glibc213.gmp-static.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-mingw.gmp-dll.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.x86-mingw.gmp-static.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton-20070826-1.src.tgz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton_20070826-1.dsc
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton_20070826-1.diff.gz
http://sourceforge.net/projects/mlton/files/mlton/20070826/mlton_20070826.orig.tar.gz
http://packages.debian.org/search?keywords=mlton&searchon=names&suite=all§ion=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
https://admin.fedoraproject.org/pkgdb/packages/name/mlton
http://packages.ubuntu.com/cgi-bin/search_packages.pl?keywords=mlton&searchon=names&version=all&release=all
http://www.mlton.org/guide/20070826/

MLton Guide (20180207) 434 / 611

Release20100608

This is an archived public release of MLton, version 20100608.

Changes since the last public release

• New platforms.

– AMD64/Darwin (Mac OS X Snow Leopard)

– IA64/HPUX

– PowerPC64/AIX

• Compiler.

– Command-line switches.

* Added: -mlb-path-var <name> <value>

* Removed: -keep sml, -stop sml

– Improved constant folding of floating-point operations.

– Experimental: Support for compiling to a C library; see documentation.

– Extended -show-def-use output to include types of variable definitions.

– Deprecated features (to be removed in a future release)

* Bytecode codegen: The bytecode codegen has not seen significant use and it is not well understood by any of the active
developers.

* Support for .cm files as input: The ML Basis system provides much better infrastructure for "programming in the very
large" than the (very) limited support for CM. The cm2mlb tool (available in the source distribution) can be used to
convert CM projects to MLB projects, preserving the CM scoping of module identifiers.

– Bug fixes: see changelog

• Runtime.

– @MLton switches.

* Added: may-page-heap {false|true}

– may-page-heap: By default, MLton will not page the heap to disk when unable to grow the heap to accommodate an
allocation. (Previously, this behavior was the default, with no means to disable, with security an least-surprise issues.)

– Bug fixes: see changelog

• Language.

– Allow numeric characters in ML Basis path variables.

• Libraries.

– Basis Library.

* Bug fixes: see changelog

– MLton structure.

* Added: MLton.equal, MLton.hash, MLton.Cont.isolate, MLton.GC.Statistics, MLton.Pointer.
sizeofPointer, MLton.Socket.Address.toVector

* Changed:

* Deprecated: MLton.Socket

– Unsafe structure.

https://raw.github.com/MLton/mlton/on-20100608-release/doc/changelog
https://raw.github.com/MLton/mlton/on-20100608-release/doc/changelog
https://raw.github.com/MLton/mlton/on-20100608-release/doc/changelog

MLton Guide (20180207) 435 / 611

* Added versions of all of the monomorphic array and vector structures.

– Other libraries.

* Updated: ckit library, MLRISC library, SML/NJ library.

• Tools.

– mllex

* Eliminated top-level type int =Int.int in output.

* Include (*#line line:col "file.lex" *) directives in output.

* Added %posint command, to set the yypos type and allow the lexing of multi-gigabyte files.

– mlnlffigen

* Added command-line switches -linkage archive and -linkage shared.

* Deprecated command-line switch -linkage static.

* Added support for IA64 and HPPA targets.

– mlyacc

* Eliminated top-level type int =Int.int in output.

* Include (*#line line:col "file.grm" *) directives in output.

For a complete list of changes and bug fixes since Release20070826, see the changelog and Bugs20070826.

20100608 binary packages

• AMD64 (aka "x86-64" or "x64")

– Darwin (.tgz) 10.3 (Mac OS X Snow Leopard), dynamically linked against GnuMP in /opt/local/lib (suitable for
MacPorts install of GnuMP)

– Darwin (.tgz) 10.3 (Mac OS X Snow Leopard), statically linked against GnuMP (but requires GnuMP for generated exe-
cutables)

– Linux, glibc 2.11

– Linux, statically linked

– Windows MinGW 32/64 self-extracting (28MB) or MSI (61MB) installer

• X86

– Cygwin 1.7.5

– Darwin (.tgz) 9.8 (Mac OS X Leopard), dynamically linked against GnuMP in /opt/local/lib (suitable for MacPorts
install of GnuMP)

– Darwin (.tgz) 9.8 (Mac OS X Leopard), statically linked against GnuMP (but requires GnuMP for generated executables)

– Linux, glibc 2.11

– Linux, statically linked

– Windows MinGW 32/64 self-extracting (28MB) or MSI (61MB) installer

20100608 source packages

• mlton-20100608.src.tgz

https://raw.github.com/MLton/mlton/on-20100608-release/doc/changelog
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608-1.amd64-darwin.gmp-macports.tgz
http://macports.org
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608-1.amd64-darwin.gmp-static.tgz
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608-1.amd64-linux.tgz
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608-1.amd64-linux.static.tgz
http://sourceforge.net/projects/mlton/files/mlton/20100608/MLton-20100608-1.exe
http://sourceforge.net/projects/mlton/files/mlton/20100608/MLton-20100608-1.msi
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608-1.x86-cygwin.tgz
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608-1.x86-darwin.gmp-macports.tgz
http://macports.org
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608-1.x86-darwin.gmp-static.tgz
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608-1.x86-linux.tgz
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608-1.x86-linux.static.tgz
http://sourceforge.net/projects/mlton/files/mlton/20100608/MLton-20100608-1.exe
http://sourceforge.net/projects/mlton/files/mlton/20100608/MLton-20100608-1.msi
http://sourceforge.net/projects/mlton/files/mlton/20100608/mlton-20100608.src.tgz

MLton Guide (20180207) 436 / 611

Packages available at other sites

• Debian

• FreeBSD

• Fedora

• Ubuntu

Also see

• Bugs20100608

• MLton Guide (20100608).

A snapshot of the MLton wiki at the time of release.

http://packages.debian.org/search?keywords=mlton&searchon=names&suite=all§ion=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
https://admin.fedoraproject.org/pkgdb/acls/name/mlton
http://packages.ubuntu.com/search?suite=default§ion=all&arch=any&searchon=names&keywords=mlton
http://www.mlton.org/guide/20100608/

MLton Guide (20180207) 437 / 611

Release20130715

This is an archived public release of MLton, version 20130715.

Changes since the last public release

• Compiler.

– Cosmetic improvements to type-error messages.

– Removed features:

* Bytecode codegen: The bytecode codegen had not seen significant use and it was not well understood by any of the active
developers.

* Support for .cm files as input: The ML Basis system provides much better infrastructure for "programming in the very
large" than the (very) limited support for CM. The cm2mlb tool (available in the source distribution) can be used to
convert CM projects to MLB projects, preserving the CM scoping of module identifiers.

– Bug fixes: see changelog

• Runtime.

– Bug fixes: see changelog

• Language.

– Interpret (*#line line:col "file" *) directives as relative file names.

– ML Basis annotations.

* Added: resolveScope

• Libraries.

– Basis Library.

* Improved performance of String.concatWith.

* Use bit operations for REAL.class and other low-level operations.

* Support additional variables with Posix.ProcEnv.sysconf.

* Bug fixes: see changelog

– MLton structure.

* Removed: MLton.Socket

– Other libraries.

* Updated: ckit library, MLRISC library, SML/NJ library

* Added: MLLPT library

• Tools.

– mllex

* Generate (*#line line:col "file.lex" *) directives with simple (relative) file names, rather than absolute
paths.

– mlyacc

* Generate (*#line line:col "file.grm" *) directives with simple (relative) file names, rather than absolute
paths.

* Fixed bug in comment-handling in lexer.

For a complete list of changes and bug fixes since Release20100608, see the changelog and Bugs20100608.

https://raw.github.com/MLton/mlton/on-20130715-release/doc/changelog
https://raw.github.com/MLton/mlton/on-20130715-release/doc/changelog
https://raw.github.com/MLton/mlton/on-20130715-release/doc/changelog
https://raw.github.com/MLton/mlton/on-20130715-release/doc/changelog

MLton Guide (20180207) 438 / 611

20130715 binary packages

• AMD64 (aka "x86-64" or "x64")

– Darwin (.tgz) 11.4 (Mac OS X Lion), dynamically linked against GnuMP in /opt/local/lib (suitable for MacPorts
install of GnuMP)

– Darwin (.tgz) 11.4 (Mac OS X Lion), statically linked against GnuMP (but requires GnuMP for generated executables)

– Linux, glibc 2.15

• X86

– Linux, glibc 2.15

20130715 source packages

• mlton-20130715.src.tgz

Downstream packages

• Debian

• FreeBSD

• Fedora

• Ubuntu

Also see

• Bugs20130715

• MLton Guide (20130715).

A snapshot of the MLton website at the time of release.

http://sourceforge.net/projects/mlton/files/mlton/20130715/mlton-20130715-1.amd64-darwin.gmp-macports.tgz
http://macports.org
http://sourceforge.net/projects/mlton/files/mlton/20130715/mlton-20130715-1.amd64-darwin.gmp-static.tgz
http://sourceforge.net/projects/mlton/files/mlton/20130715/mlton-20130715-1.amd64-linux.tgz
http://sourceforge.net/projects/mlton/files/mlton/20130715/mlton-20130715-1.x86-linux.tgz
http://sourceforge.net/projects/mlton/files/mlton/20130715/mlton-20130715.src.tgz
http://packages.debian.org/search?keywords=mlton&searchon=names&suite=all§ion=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
https://admin.fedoraproject.org/pkgdb/acls/name/mlton
http://packages.ubuntu.com/search?suite=default§ion=all&arch=any&searchon=names&keywords=mlton
http://www.mlton.org/guide/20130715/

MLton Guide (20180207) 439 / 611

Release20180207

Here you can download the latest public release of MLton, version 20180207.

Changes since the last public release

• Compiler.

– Added an experimental LLVM codegen (-codegen llvm); requires LLVM tools (llvm-as, opt, llc) version ≥ 3.7.

– Made many substantial cosmetic improvements to front-end diagnostic messages, especially with respect to source location
regions, type inference for fun and val rec declarations, signature constraints applied to a structure, sharing type
specifications and where type signature expressions, type constructor or type variable escaping scope, and nonexhaustive
pattern matching.

– Fixed minor bugs with exception replication, precedence parsing of function clauses, and simultaneous sharing of multi-
ple structures.

– Made compilation deterministic (eliminate output executable name from compile-time specified @MLton runtime argu-
ments; deterministically generate magic constant for executable).

– Updated -show-basis (recursively expand structures in environments, displaying components with long identifiers; ap-
pend (* @region *) annotations to items shown in environment).

– Forced amd64 codegen to generate PIC on amd64-linux targets.

• Runtime.

– Added gc-summary-file file runtime option.

– Reorganized runtime support for IntInf operations so that programs that do not use IntInf compile to executables with
no residual dependency on GMP.

– Changed heap representation to store forwarding pointer for an object in the object header (rather than in the object data and
setting the header to a sentinel value).

• Language.

– Added support for selected SuccessorML features; see http://mlton.org/SuccessorML for details.

– Added (*#showBasis "file" *) directive; see http://mlton.org/ShowBasisDirective for details.

– FFI:

* Added pure, impure, and reentrant attributes to _import. An unattributed _import is treated as impure.
A pure _import may be subject to more aggressive optimizations (common subexpression elimination, dead-code
elimination). An _import-ed C function that (directly or indirectly) calls an _export-ed SML function should be
attributed reentrant.

– ML Basis annotations.

* Added allowSuccessorML {false|true} to enable all SuccessorML features and other annotations to enable
specific SuccessorML features; see http://mlton.org/SuccessorML for details.

* Split nonexhaustiveMatch {warn|error|igore} and redundantMatch {warn|error|ignore} into
nonexhaustiveMatch and redundantMatch (controls diagnostics for case expressions, fn expressions, and
fun declarations (which may raise Match on failure)) and nonexhaustiveBind and redundantBind (controls
diagnostics for val declarations (which may raise Bind on failure)).

* Added valrecConstr {warn|error|ignore} to report when a val rec (or fun) declaration redefines an
identifier that previously had constructor status.

• Libraries.

– Basis Library.

http://mlton.org/SuccessorML
http://mlton.org/ShowBasisDirective
http://mlton.org/SuccessorML

MLton Guide (20180207) 440 / 611

* Improved performance of Array.copy, Array.copyVec, Vector.append, String.ˆ, String.concat,
String.concatWith, and other related functions by using memmove rather than element-by-element constructions.

– Unsafe structure.

* Added unsafe operations for array uninitialization and raw arrays; see https://github.com/MLton/mlton/pull/207 for de-
tails.

– Other libraries.

* Updated: ckit library, MLLPT library, MLRISC library, SML/NJ library

• Tools.

– mlnlffigen

* Updated to warn and skip (rather than abort) when encountering functions with struct/union argument or return type.

For a complete list of changes and bug fixes since Release20130715, see the CHANGELOG.adoc and Bugs20130715.

20180207 binary packages

• AMD64 (aka "x86-64" or "x64")

– Darwin (.tgz) 16.7 (Mac OS X Sierra), dynamically linked against GnuMP in /usr/local/lib (suitable for Homebrew
install of GnuMP)

– Darwin (.tgz) 16.7 (Mac OS X Sierra), statically linked against GnuMP (but requires GnuMP for generated executables)

– Linux, glibc 2.23

20180207 source packages

• mlton-20180207.src.tgz

Also see

• Bugs20180207

• MLton Guide (20180207).

A snapshot of the MLton website at the time of release.

https://github.com/MLton/mlton/pull/207
https://github.com/MLton/mlton/blob/on-20180207-release/CHANGELOG.adoc
https://sourceforge.net/projects/mlton/files/mlton/20180207/mlton-20180207-1.amd64-darwin.gmp-homebrew.tgz
https://brew.sh/
https://sourceforge.net/projects/mlton/files/mlton/20180207/mlton-20180207-1.amd64-darwin.gmp-static.tgz
https://sourceforge.net/projects/mlton/files/mlton/20180207/mlton-20180207-1.amd64-linux.tgz
https://sourceforge.net/projects/mlton/files/mlton/20180207/mlton-20180207.src.tgz
http://www.mlton.org/guide/20180207/

MLton Guide (20180207) 441 / 611

ReleaseChecklist

Advance preparation for release

• Update ./CHANGELOG.adoc.

– Write entries for missing notable commits.
– Write summary of changes from previous release.
– Update with estimated release date.

• Update ./README.adoc.

– Check features and description.

• Update man/{mlton,mlprof}.1.

– Check compile-time and run-time options in man/mlton.1.
– Check options in man/mlprof.1.
– Update with estimated release date.

• Update doc/guide.

– Synchronize Features page with ./README.adoc.
– Update Credits page with acknowledgements.
– Create ReleaseYYYYMM?? page (i.e., forthcoming release) based on ReleaseXXXXLLCC (i.e., previous release).

* Update summary from ./CHANGELOG.adoc.

* Update links to estimated release date.
– Create BugsYYYYMM?? page based on BugsXXXXLLCC.

* Update links to estimated release date.
– Spell check pages.

• Ensure that all updates are pushed to master branch of mlton.

Prepare sources for tagging

• Update ./CHANGELOG.adoc.

– Update with proper release date.

• Update man/{mlton,mlprof}.1.

– Update with proper release date.

• Update doc/guide.

– Rename ReleaseYYYYMM?? to ReleaseYYYYMMDD with proper release date.

* Update links with proper release date.
– Rename BugsYYYYMM?? to BugsYYYYMMDD with proper release date.

* Update links with proper release date.
– Update ReleaseXXXXLLCC.

* Change intro to "This is an archived public release of MLton, version XXXXLLCC."
– Update Home with note of new release.

* Change What’s new? text to Please try out our new release, <:ReleaseYYYYMMDD:MLton YYY
YMMDD>.

* Update Download link with proper release date.
– Update Releases with new release.

• Ensure that all updates are pushed to master branch of mlton.

https://github.com/MLton/mlton
https://github.com/MLton/mlton

MLton Guide (20180207) 442 / 611

Tag sources

• Shell commands:

git clone http://github.com/MLton/mlton mlton.git
cd mlton.git
git checkout master
git tag -a -m "Tagging YYYYMMDD release" on-YYYYMMDD-release master
git push origin on-YYYYMMDD-release

Packaging

SourceForge FRS

• Create YYYYMMDD directory:

sftp user@frs.sourceforge.net:/home/frs/project/mlton/mlton
sftp> mkdir YYYYMMDD
sftp> quit

Source release

• Create mlton-YYYYMMDD.src.tgz:

git clone http://github.com/MLton/mlton mlton
cd mlton
git checkout on-YYYYMMDD-release
make MLTON_VERSION=YYYYMMDD source-release
cd ..

or

wget https://github.com/MLton/mlton/archive/on-YYYYMMDD-release.tar.gz
tar xzvf on-YYYYMMDD-release.tar.gz
cd mlton-on-YYYYMMDD-release
make MLTON_VERSION=YYYYMMDD source-release
cd ..

• Upload mlton-YYYYMMDD.src.tgz:

scp mlton-YYYYMMDD.src.tgz user@frs.sourceforge.net:/home/frs/project/mlton/mlton/YYYYMMDD ←↩
/

• Update ReleaseYYYYMMDD with mlton-YYYYMMDD.src.tgz link.

Binary releases

• Build and create mlton-YYYYMMDD-1.ARCH-OS.tgz:

wget http://sourceforge.net/projects/mlton/files/mlton/YYYYMMDD/mlton-YYYYMMDD.src.tgz
tar xzvf mlton-YYYYMMDD.src.tgz
cd mlton-YYYYMMDD
make binary-release
cd ..

• Upload mlton-YYYYMMDD-1.ARCH-OS.tgz:

scp mlton-YYYYMMDD-1.ARCH-OS.tgz user@frs.sourceforge.net:/home/frs/project/mlton/mlton/ ←↩
YYYYMMDD/

• Update ReleaseYYYYMMDD with mlton-YYYYMMDD-1.ARCH-OS.tgz link.

MLton Guide (20180207) 443 / 611

Website

• guide/YYYYMMDD gets a copy of doc/guide/localhost.

• Shell commands:

wget http://sourceforge.net/projects/mlton/files/mlton/YYYYMMDD/mlton-YYYYMMDD.src.tgz
tar xzvf mlton-YYYYMMDD.src.tgz
cd mlton-YYYYMMDD
cd doc/guide
cp -prf localhost YYYYMMDD
tar czvf guide-YYYYMMDD.tgz YYYYMMDD
rsync -avzP --delete -e ssh YYYYMMDD user@web.sourceforge.net:/home/project-web/mlton/ ←↩

htdocs/guide/
rsync -avzP --delete -e ssh guide-YYYYMMDD.tgz user@web.sourceforge.net:/home/project-web/ ←↩

mlton/htdocs/guide/

Announce release

• Mail announcement to:

– MLton-devel@mlton.org

– MLton-user@mlton.org

Misc.

• Generate new Performance numbers.

mailto:MLton-devel@mlton.org
mailto:MLton-user@mlton.org

MLton Guide (20180207) 444 / 611

Releases

Public releases of MLton:

• Release20180207

• Release20130715

• Release20100608

• Release20070826

• Release20051202

• Release20041109

• Release20040227

• Release20030716

• Release20030711

• Release20030312

• Release20020923

• Release20020410

• Release20011006

• Release20010806

• Release20010706

• Release20000906

• Release20000712

• Release19990712

• Release19990319

• Release19980826

MLton Guide (20180207) 445 / 611

RemoveUnused

RemoveUnused is an optimization pass for both the SSA and SSA2 IntermediateLanguages, invoked from SSASimplify and
SSA2Simplify.

Description

This pass aggressively removes unused:

• datatypes

• datatype constructors

• datatype constructor arguments

• functions

• function arguments

• function returns

• blocks

• block arguments

• statements (variable bindings)

• handlers from non-tail calls (mayRaise analysis)

• continuations from non-tail calls (mayReturn analysis)

Implementation

• remove-unused.fun

• remove-unused2.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/remove-unused.fun
https://github.com/MLton/mlton/blob/master/mlton/ssa/remove-unused2.fun

MLton Guide (20180207) 446 / 611

Restore

Restore is a rewrite pass for the SSA and SSA2 IntermediateLanguages, invoked from KnownCase and LocalRef.

Description

This pass restores the SSA condition for a violating SSA or SSA2 program; the program must satisfy:

Every path from the root to a use of a variable (excluding globals) passes through a def of that variable.

Implementation

• restore.sig

• restore.fun

• restore2.sig

• restore2.fun

Details and Notes

Based primarily on Section 19.1 of Modern Compiler Implementation in ML.

The main deviation is the calculation of liveness of the violating variables, which is used to predicate the insertion of phi
arguments. This is due to the algorithm’s bias towards imperative languages, for which it makes the assumption that all variables
are defined in the start block and all variables are "used" at exit.

This is "optimized" for restoration of functions with small numbers of violating variables — use bool vectors to represent sets of
violating variables.

Also, we use a Promise.t to suspend part of the dominance frontier computation.

https://github.com/MLton/mlton/blob/master/mlton/ssa/restore.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/restore.fun
https://github.com/MLton/mlton/blob/master/mlton/ssa/restore2.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/restore2.fun

MLton Guide (20180207) 447 / 611

ReturnStatement

Programmers coming from languages that have a return statement, such as C, Java, and Python, often ask how one can translate
functions that return early into SML. This page briefly describes a number of ways to translate uses of return to SML.

Conditional iterator function

A conditional iterator function, such as List.find, List.exists, or List.all is probably what you want in most cases.
Unfortunately, it might be the case that the particular conditional iteration pattern that you want isn’t provided for your data
structure. Usually the best alternative in such a case is to implement the desired iteration pattern as a higher-order function. For
example, to implement a find function for arrays (which already exists as Array.find) one could write

fun find predicate array = let
fun loop i =

if i = Array.length array then
NONE

else if predicate (Array.sub (array, i)) then
SOME (Array.sub (array, i))

else
loop (i+1)

in
loop 0

end

Of course, this technique, while probably the most common case in practice, applies only if you are essentially iterating over
some data structure.

Escape handler

Probably the most direct way to translate code using return statements is to basically implement return using exception
handling. The mechanism can be packaged into a reusable module with the signature (exit.sig):

(**
* Signature for exit (or escape) handlers.

*
* Note that the implementation necessarily uses exception handling. This

* is to make proper resource handling possible. Exceptions raised by the

* implementation can be caught by wildcard exception handlers. Wildcard

* exception handlers should generally reraise exceptions after performing

* their effects.

*)
signature EXIT = sig

type ’a t
(** The type of exits. *)

val within : (’a t, ’a) CPS.t
(**
* Sets up an exit and passes it to the given function. The function

* may then return normally or by calling {to} with the exit and a

* return value. For example,

*
*> Exit.within

*> (fn l =>

*> if condition then

*> Exit.to l 1

*> else

*> 2)

*

http://www.standardml.org/Basis/list.html#SIG:LIST.find:VAL
http://www.standardml.org/Basis/list.html#SIG:LIST.exists:VAL
http://www.standardml.org/Basis/list.html#SIG:LIST.all:VAL
http://www.standardml.org/Basis/array.html#SIG:ARRAY.findi:VAL
https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/public/control/exit.sig

MLton Guide (20180207) 448 / 611

* evaluates either to {1} or to {2} depending on the {condition}.

*
* Note that the function receiving the exit is called from a non-tail

* position.

*)

val to : ’a t -> ’a -> ’b
(**
* {to l v} returns from the {within} invocation that introduced the

* exit {l} with the value {v}. Evaluating {to l v} outside of the

* {within} invocation that introduced {l} is a programming error and

* raises an exception.

*
* Note that the type variable {’b} only appears as the return type.

* This means that {to} doesn’t return normally to the caller and can

* be called from a context of any type.

*)

val call : (’a -> ’b, ’a) CPS.t
(**
* Simpler, but less flexibly typed, interface to {within} and {to}.

* Specifically, {call f} is equivalent to {within (f o to)}.

*)
end

(Typing First-Class Continuations in ML discusses the typing of a related construct.) The implementation (exit.sml) is
straightforward:

structure Exit :> EXIT = struct
type ’a t = ’a -> exn

fun within block = let
exception EscapedExit of ’a

in
block EscapedExit
handle EscapedExit value => value

end

fun to exit value = raise exit value

fun call block = within (block o to)
end

Here is an example of how one could implement a find function given an app function:

fun appToFind (app : (’a -> unit) -> ’b -> unit)
(predicate : ’a -> bool)
(data : ’b) =

Exit.call
(fn return =>

(app (fn x =>
if predicate x then

return (SOME x)
else

())
data

; NONE))

In the above, as soon as the expression predicate x evaluates to true the app invocation is terminated.

https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/detail/control/exit.sml

MLton Guide (20180207) 449 / 611

Continuation-passing Style (CPS)

A general way to implement complex control patterns is to use CPS. In CPS, instead of returning normally, functions invoke a
function passed as an argument. In general, multiple continuation functions may be passed as arguments and the ordinary return
continuation may also be used. As an example, here is a function that finds the leftmost element of a binary tree satisfying a
given predicate:

datatype ’a tree = LEAF | BRANCH of ’a tree * ’a * ’a tree

fun find predicate = let
fun recurse continue =

fn LEAF =>
continue ()

| BRANCH (lhs, elem, rhs) =>
recurse

(fn () =>
if predicate elem then

SOME elem
else

recurse continue rhs)
lhs

in
recurse (fn () => NONE)

end

Note that the above function returns as soon as the leftmost element satisfying the predicate is found.

http://en.wikipedia.org/wiki/Continuation-passing_style

MLton Guide (20180207) 450 / 611

RSSA

RSSA is an IntermediateLanguage, translated from SSA2 by ToRSSA, optimized by RSSASimplify, and translated by ToMa-
chine to Machine.

Description

RSSA is a IntermediateLanguage that makes representation decisions explicit.

Implementation

• rssa.sig

• rssa.fun

Type Checking

The new type language is aimed at expressing bit-level control over layout and associated packing of data representations. There
are singleton types that denote constants, other atomic types for things like integers and reals, and arbitrary sum types and
sequence (tuple) types. The big change to the type system is that type checking is now based on subtyping, not type equality.
So, for example, the singleton type 0xFFFFEEBB whose only inhabitant is the eponymous constant is a subtype of the type
Word32.

Details and Notes

SSA is an abbreviation for Static Single Assignment. The RSSA IntermediateLanguage is a variant of SSA.

https://github.com/MLton/mlton/blob/master/mlton/backend/rssa.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/rssa.fun

MLton Guide (20180207) 451 / 611

RSSAShrink

RSSAShrink is an optimization pass for the RSSA IntermediateLanguage.

Description

This pass implements a whole family of compile-time reductions, like:

• constant folding, copy propagation

• inline the Goto to a block with a unique predecessor

Implementation

• rssa.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/rssa.fun

MLton Guide (20180207) 452 / 611

RSSASimplify

The optimization passes for the RSSA IntermediateLanguage are collected and controlled by the Backend functor (backend.
sig, backend.fun).

The following optimization pass is implemented:

• RSSAShrink

The following implementation passes are implemented:

• ImplementHandlers

• ImplementProfiling

• InsertLimitChecks

• InsertSignalChecks

The optimization passes can be controlled from the command-line by the options

• -diag-pass <pass>— keep diagnostic info for pass

• -drop-pass <pass>— omit optimization pass

• -keep-pass <pass>— keep the results of pass

https://github.com/MLton/mlton/blob/master/mlton/backend/backend.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/backend.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/backend.fun

MLton Guide (20180207) 453 / 611

RunningOnAIX

MLton runs fine on AIX.

Also see

• RunningOnPowerPC

• RunningOnPowerPC64

MLton Guide (20180207) 454 / 611

RunningOnAlpha

MLton runs fine on the Alpha architecture.

Notes

• When compiling for Alpha, MLton doesn’t support native code generation (-codegen native). Hence, performance is
not as good as it might be and compile times are longer. Also, the quality of code generated by gcc is important. By default,
MLton calls gcc -O1. You can change this by calling MLton with -cc-opt -O2.

• When compiling for Alpha, MLton uses -align 8 by default.

MLton Guide (20180207) 455 / 611

RunningOnAMD64

MLton runs fine on the AMD64 (aka "x86-64" or "x64") architecture.

Notes

• When compiling for AMD64, MLton targets the 64-bit ABI.

• On AMD64, MLton supports native code generation (-codegen native or -codegen amd64).

• When compiling for AMD64, MLton uses -align 8 by default. Using -align 4 may be incompatible with optimized
builds of the GnuMP library, which assume 8-byte alignment. (See the thread at http://www.mlton.org/pipermail/mlton/2009-
October/030674.html for more details.)

http://www.mlton.org/pipermail/mlton/2009-October/030674.html
http://www.mlton.org/pipermail/mlton/2009-October/030674.html

MLton Guide (20180207) 456 / 611

RunningOnARM

MLton runs fine on the ARM architecture.

Notes

• When compiling for ARM, MLton doesn’t support native code generation (-codegen native). Hence, performance is not
as good as it might be and compile times are longer. Also, the quality of code generated by gcc is important. By default,
MLton calls gcc -O1. You can change this by calling MLton with -cc-opt -O2.

MLton Guide (20180207) 457 / 611

RunningOnCygwin

MLton runs on the Cygwin emulation layer, which provides a Posix-like environment while running on Windows. To run MLton
with Cygwin, you must first install Cygwin on your Windows machine. To do this, visit the Cygwin site from your Windows
machine and run their setup.exe script. Then, you can unpack the MLton binary tgz in your Cygwin environment.

To run MLton cross-compiled executables on Windows, you must install the Cygwin dll on the Windows machine.

Known issues

• Time profiling is disabled.

• Cygwin’s mmap emulation is less than perfect. Sometimes it interacts badly with Posix.Process.fork.

• The socket.sml regression test fails. We suspect this is not a bug and is simply due to our test relying on a certain behavior
when connecting to a socket that has not yet accepted, which is handled differently on Cygwin than other platforms. Any help
in understanding and resolving this issue is appreciated.

Also see

• RunningOnMinGW

http://www.cygwin.com/
https://raw.github.com/MLton/mlton/master/regression/socket.sml

MLton Guide (20180207) 458 / 611

RunningOnDarwin

MLton runs fine on Darwin (and on Mac OS X).

Notes

• MLton requires the GnuMP library, which is available via Fink, MacPorts, Homebrew.

• For Intel-based Macs, MLton targets the AMD64 architecture on Darwin 10 (Mac OS X Snow Leopard) and higher and targets
the x86 architecture on Darwin 8 (Mac OS X Tiger) and Darwin 9 (Mac OS X Leopard).

Known issues

• Executables that save and load worlds on Darwin 11 (Mac OS X Lion) and higher should be compiled with -link-opt -
fno-PIE ; see MLtonWorld for more details.

• ProfilingTime may give inaccurate results on multi-processor machines. The SIGPROF signal, used to sample the profiled
program, is supposed to be delivered 100 times a second (i.e., at 10000us intervals), but there can be delays of over 1 minute
between the delivery of consecutive SIGPROF signals. A more complete description may be found here and here.

Also see

• RunningOnAMD64

• RunningOnPowerPC

• RunningOnX86

http://www.finkproject.org
http://www.macports.com
http://mxcl.github.io/homebrew/
http://lists.apple.com/archives/Unix-porting/2007/Aug/msg00000.html
http://lists.apple.com/archives/Darwin-dev/2007/Aug/msg00045.html

MLton Guide (20180207) 459 / 611

RunningOnFreeBSD

MLton runs fine on FreeBSD.

Notes

• MLton is available as a FreeBSD port.

Known issues

• Executables often run more slowly than on a comparable Linux machine. We conjecture that part of this is due to costs due to
heap resizing and kernel zeroing of pages. Any help in solving the problem would be appreciated.

• FreeBSD defaults to a datasize limit of 512M, even if you have more than that amount of memory in the computer. Hence,
your MLton process will be limited in the amount of memory it has. To fix this problem, turn up the datasize and the default
datasize available to a process: Edit /boot/loader.conf to set the limits. For example, the setting

kern.maxdsiz="671088640"
kern.dfldsiz="671088640"
kern.maxssiz="134217728"

will give a process 640M of datasize memory, default to 640M available and set 128M of stack size memory.

http://www.freebsd.org/
http://www.freebsd.org/
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all

MLton Guide (20180207) 460 / 611

RunningOnHPPA

MLton runs fine on the HPPA architecture.

Notes

• When compiling for HPPA, MLton targets the 32-bit HPPA architecture.

• When compiling for HPPA, MLton doesn’t support native code generation (-codegen native). Hence, performance is
not as good as it might be and compile times are longer. Also, the quality of code generated by gcc is important. By default,
MLton calls gcc -O1. You can change this by calling MLton with -cc-opt -O2.

• When compiling for HPPA, MLton uses -align 8 by default. While this speeds up reals, it also may increase object sizes.
If your program does not make significant use of reals, you might see a speedup with -align 4.

MLton Guide (20180207) 461 / 611

RunningOnHPUX

MLton runs fine on HPUX.

Also see

• RunningOnHPPA

MLton Guide (20180207) 462 / 611

RunningOnIA64

MLton runs fine on the IA64 architecture.

Notes

• When compiling for IA64, MLton targets the 64-bit ABI.

• When compiling for IA64, MLton doesn’t support native code generation (-codegen native). Hence, performance is not
as good as it might be and compile times are longer. Also, the quality of code generated by gcc is important. By default,
MLton calls gcc -O1. You can change this by calling MLton with -cc-opt -O2.

• When compiling for IA64, MLton uses -align 8 by default.

• On the IA64, the GnuMP library supports multiple ABIs. See the GnuMP page for more details.

MLton Guide (20180207) 463 / 611

RunningOnLinux

MLton runs fine on Linux.

MLton Guide (20180207) 464 / 611

RunningOnMinGW

MLton runs on MinGW, a library for porting Unix applications to Windows. Some library functionality is missing or changed.

Notes

• To compile MLton on MinGW:

– The GnuMP library is required.

– The Bash shell is required. If you are using a prebuilt MSYS, you probably want to symlink bash to sh.

Known issues

• Many functions are unimplemented and will raise SysErr.

– MLton.Itimer.set

– MLton.ProcEnv.setgroups

– MLton.Process.kill

– MLton.Process.reap

– MLton.World.load

– OS.FileSys.readLink

– OS.IO.poll

– OS.Process.terminate

– Posix.FileSys.chown

– Posix.FileSys.fchown

– Posix.FileSys.fpathconf

– Posix.FileSys.link

– Posix.FileSys.mkfifo

– Posix.FileSys.pathconf

– Posix.FileSys.readlink

– Posix.FileSys.symlink

– Posix.IO.dupfd

– Posix.IO.getfd

– Posix.IO.getfl

– Posix.IO.getlk

– Posix.IO.setfd

– Posix.IO.setfl

– Posix.IO.setlkw

– Posix.IO.setlk

– Posix.ProcEnv.ctermid

– Posix.ProcEnv.getegid

– Posix.ProcEnv.geteuid

– Posix.ProcEnv.getgid

– Posix.ProcEnv.getgroups

– Posix.ProcEnv.getlogin

http://mingw.org

MLton Guide (20180207) 465 / 611

– Posix.ProcEnv.getpgrp

– Posix.ProcEnv.getpid

– Posix.ProcEnv.getppid

– Posix.ProcEnv.getuid

– Posix.ProcEnv.setgid

– Posix.ProcEnv.setpgid

– Posix.ProcEnv.setsid

– Posix.ProcEnv.setuid

– Posix.ProcEnv.sysconf

– Posix.ProcEnv.times

– Posix.ProcEnv.ttyname

– Posix.Process.exece

– Posix.Process.execp

– Posix.Process.exit

– Posix.Process.fork

– Posix.Process.kill

– Posix.Process.pause

– Posix.Process.waitpid_nh

– Posix.Process.waitpid

– Posix.SysDB.getgrgid

– Posix.SysDB.getgrnam

– Posix.SysDB.getpwuid

– Posix.TTY.TC.drain

– Posix.TTY.TC.flow

– Posix.TTY.TC.flush

– Posix.TTY.TC.getattr

– Posix.TTY.TC.getpgrp

– Posix.TTY.TC.sendbreak

– Posix.TTY.TC.setattr

– Posix.TTY.TC.setpgrp

– Unix.kill

– Unix.reap

– UnixSock.fromAddr

– UnixSock.toAddr

MLton Guide (20180207) 466 / 611

RunningOnNetBSD

MLton runs fine on NetBSD.

Installing the correct packages for NetBSD

The NetBSD system installs 3rd party packages by a mechanism known as pkgsrc. This is a tree of Makefiles which when
invoked downloads the source code, builds a package and installs it on the system. In order to run MLton on NetBSD, you will
have to install several packages for it to work:

• shells/bash

• devel/gmp

• devel/gmake

In order to get graphical call-graphs of profiling information, you will need the additional package

• graphics/graphviz

To build the documentation for MLton, you will need the addtional package

• textproc/asciidoc.

Tips for compiling and using MLton on NetBSD

MLton can be a memory-hog on computers with little memory. While 640Mb of RAM ought to be enough to self-compile
MLton one might want to do some tuning to the NetBSD VM subsystem in order to succeed. The notes presented here is what
JesperLouisAndersen uses for compiling MLton on his laptop.

The NetBSD VM subsystem

NetBSD uses a VM subsystem named UVM. Tuning the VM system can be done via the sysctl(8)-interface with the "VM"
MIB set.

Tuning the NetBSD VM subsystem for MLton

MLton uses a lot of anonymous pages when it is running. Thus, we will need to tune up the default of 80 for anonymous pages.
Setting

sysctl -w vm.anonmax=95
sysctl -w vm.anonmin=50
sysctl -w vm.filemin=2
sysctl -w vm.execmin=2
sysctl -w vm.filemax=4
sysctl -w vm.execmax=4

makes it less likely for the VM system to swap out anonymous pages. For a full explanation of the above flags, see the documen-
tation.

The result is that my laptop goes from a MLton compile where it swaps a lot to a MLton compile with no swapping.

http://www.netbsd.org/
http://www.ccrc.wustl.edu/pub/chuck/tech/uvm/
http://www.selonen.org/arto/netbsd/vm_tune.html

MLton Guide (20180207) 467 / 611

RunningOnOpenBSD

MLton runs fine on OpenBSD.

Known issues

• The socket.sml regression test fails. We suspect this is not a bug and is simply due to our test relying on a certain behavior
when connecting to a socket that has not yet accepted, which is handled differently on OpenBSD than other platforms. Any
help in understanding and resolving this issue is appreciated.

http://www.openbsd.org/
https://raw.github.com/MLton/mlton/master/regression/socket.sml

MLton Guide (20180207) 468 / 611

RunningOnPowerPC

MLton runs fine on the PowerPC architecture.

Notes

• When compiling for PowerPC, MLton targets the 32-bit PowerPC architecture.

• When compiling for PowerPC, MLton doesn’t support native code generation (-codegen native). Hence, performance is
not as good as it might be and compile times are longer. Also, the quality of code generated by gcc is important. By default,
MLton calls gcc -O1. You can change this by calling MLton with -cc-opt -O2.

• On the PowerPC, the GnuMP library supports multiple ABIs. See the GnuMP page for more details.

MLton Guide (20180207) 469 / 611

RunningOnPowerPC64

MLton runs fine on the PowerPC64 architecture.

Notes

• When compiling for PowerPC64, MLton targets the 64-bit PowerPC architecture.

• When compiling for PowerPC64, MLton doesn’t support native code generation (-codegen native). Hence, performance
is not as good as it might be and compile times are longer. Also, the quality of code generated by gcc is important. By default,
MLton calls gcc -O1. You can change this by calling MLton with -cc-opt -O2.

• On the PowerPC64, the GnuMP library supports multiple ABIs. See the GnuMP page for more details.

MLton Guide (20180207) 470 / 611

RunningOnS390

MLton runs fine on the S390 architecture.

Notes

• When compiling for S390, MLton doesn’t support native code generation (-codegen native). Hence, performance is not
as good as it might be and compile times are longer. Also, the quality of code generated by gcc is important. By default,
MLton calls gcc -O1. You can change this by calling MLton with -cc-opt -O2.

MLton Guide (20180207) 471 / 611

RunningOnSolaris

MLton runs fine on Solaris.

Notes

• You must install the binutils, gcc, and make packages. You can find out how to get these at sunfreeware.com.

• Making the documentation requires that you install latex and dvips, which are available in the tetex package.

Known issues

• Bootstrapping on the Sparc architecture is so slow as to be impractical (many hours on a 500MHz UltraSparc). For this reason,
we strongly recommend building with a cross compiler.

Also see

• RunningOnAMD64

• RunningOnSparc

• RunningOnX86

http://www.sunfreeware.com

MLton Guide (20180207) 472 / 611

RunningOnSparc

MLton runs fine on the Sparc architecture.

Notes

• When compiling for Sparc, MLton targets the 32-bit Sparc architecture (i.e., Sparc V8).

• When compiling for Sparc, MLton doesn’t support native code generation (-codegen native). Hence, performance is not
as good as it might be and compile times are longer. Also, the quality of code generated by gcc is important. By default,
MLton calls gcc -O1. You can change this by calling MLton with -cc-opt -O2. We have seen this speed up some
programs by as much as 30%, especially those involving floating point; however, it can also more than double compile times.

• When compiling for Sparc, MLton uses -align 8 by default. While this speeds up reals, it also may increase object sizes.
If your program does not make significant use of reals, you might see a speedup with -align 4.

Known issues

• Bootstrapping on the Sparc architecture is so slow as to be impractical (many hours on a 500MHz UltraSparc). For this reason,
we strongly recommend building with a cross compiler.

Also see

• RunningOnSolaris

MLton Guide (20180207) 473 / 611

RunningOnX86

MLton runs fine on the x86 architecture.

Notes

• On x86, MLton supports native code generation (-codegen native or -codegen x86).

MLton Guide (20180207) 474 / 611

RunTimeOptions

Executables produced by MLton take command line arguments that control the runtime system. These arguments are optional,
and occur before the executable’s usual arguments. To use these options, the first argument to the executable must be @MLton.
The optional arguments then follow, must be terminated by --, and are followed by any arguments to the program. The optional
arguments are not made available to the SML program via CommandLine.arguments. For example, a valid call to hello-
world is:

hello-world @MLton gc-summary fixed-heap 10k -- a b c

In the above example, CommandLine.arguments () =["a", "b", "c"].

It is allowed to have a sequence of @MLton arguments, as in:

hello-world @MLton gc-summary -- @MLton fixed-heap 10k -- a b c

Run-time options can also control MLton, as in

mlton @MLton fixed-heap 0.5g -- foo.sml

Options

• fixed-heap x{k|K|m|M|g|G}

Use a fixed size heap of size x, where x is a real number and the trailing letter indicates its units.

k or K 1024
m or M 1,048,576
g or G 1,073,741,824

A value of 0 means to use almost all the RAM present on the machine.

The heap size used by fixed-heap includes all memory allocated by SML code, including memory for the stack (or stacks,
if there are multiple threads). It does not, however, include any memory used for code itself or memory used by C globals, the
C stack, or malloc.

• gc-messages

Print a message at the start and end of every garbage collection.

• gc-summary

Print a summary of garbage collection statistics upon program termination to standard error.

• gc-summary-file file

Print a summary of garbage collection statistics upon program termination to the file specified by file.

• load-world world

Restart the computation with the file specified by world, which must have been created by a call to MLton.World.save by
the same executable. See MLtonWorld.

• max-heap x{k|K|m|M|g|G}

Run the computation with an automatically resized heap that is never larger than x, where x is a real number and the trailing
letter indicates the units as with fixed-heap. The heap size for max-heap is accounted for as with fixed-heap.

• may-page-heap {false|true}

Enable paging the heap to disk when unable to grow the heap to a desired size.

MLton Guide (20180207) 475 / 611

• no-load-world

Disable load-world. This can be used as an argument to the compiler via -runtime no-load-world to create exe-
cutables that will not load a world. This may be useful to ensure that set-uid executables do not load some strange world.

• ram-slop x

Multiply x by the amount of RAM on the machine to obtain what the runtime views as the amount of RAM it can use. Typically
x is less than 1, and is used to account for space used by other programs running on the same machine.

• stop

Causes the runtime to stop processing @MLton arguments once the next -- is reached. This can be used as an argument to the
compiler via -runtime stop to create executables that don’t process any @MLton arguments.

MLton Guide (20180207) 476 / 611

ScopeInference

Scope inference is an analysis/rewrite pass for the AST IntermediateLanguage, invoked from Elaborate.

Description

This pass adds free type variables to the val or fun declaration where they are implicitly scoped.

Implementation

scope.sig scope.fun

Details and Notes

Scope inference determines for each type variable, the declaration where it is bound. Scope inference is a direct implementation
of the specification given in section 4.6 of the Definition. Recall that a free occurrence of a type variable ’a in a declaration d
is unguarded in d if ’a is not part of a smaller declaration. A type variable ’a is implicitly scoped at d if ’a is unguarded in d
and ’a does not occur unguarded in any declaration containing d.

The first pass of scope inference walks down the tree and renames all explicitly bound type variables in order to avoid name
collisions. It then walks up the tree and adds to each declaration the set of unguarded type variables occurring in that declaration.
At this point, if declaration d contains an unguarded type variable ’a and the immediately containing declaration does not
contain ’a, then ’a is implicitly scoped at d. The final pass walks down the tree leaving a ’a at the a declaration where it is
scoped and removing it from all enclosed declarations.

https://github.com/MLton/mlton/blob/master/mlton/elaborate/scope.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/scope.fun

MLton Guide (20180207) 477 / 611

SelfCompiling

If you want to compile MLton, you must first get the Sources. You can compile with either MLton or SML/NJ, but we strongly
recommend using MLton, since it generates a much faster and more robust executable.

Compiling with MLton

To compile with MLton, you need the binary versions of mlton, mllex, and mlyacc that come with the MLton binary
package. To be safe, you should use the same version of MLton that you are building. However, older versions may work, as
long as they don’t go back too far. To build MLton, run make from within the root directory of the sources. This will build
MLton first with the already installed binary version of MLton and will then rebuild MLton with itself.

First, the Makefile calls mllex and mlyacc to build the lexer and parser, and then calls mlton to compile itself. When
making MLton using another version the Makefile automatically uses mlton-stubs.mlb, which will put in enough stubs
to emulate the structure MLton. Once MLton is built, the Makefile will rebuild MLton with itself, this time using
mlton.mlb and the real structure MLton from the Basis Library. This second round of compilation is essential in order
to achieve a fast and robust MLton.

Compiling MLton requires at least 1GB of RAM for 32-bit platforms (2GB is preferable) and at least 2GB RAM for 64-bit
platforms (4GB is preferable). If your machine has less RAM, self-compilation will likely fail, or at least take a very long time
due to paging. Even if you have enough memory, there simply may not be enough available, due to memory consumed by other
processes. In this case, you may see an Out of memory message, or self-compilation may become extremely slow. The only
fix is to make sure that enough memory is available.

Possible Errors

• The C compiler may not be able to find the GnuMP header file, gmp.h leading to an error like the following.

cenv.h:49:18: fatal error: gmp.h: No such file or directory

The solution is to install (or build) GnuMP on your machine. If you install it at a location not on the default seach path, then
run make WITH_GMP_INC_DIR=/path/to/gmp/include WITH_GMP_LIB_DIR=/path/to/gmp/lib.

• The following errors indicates that a binary version of MLton could not be found in your path.

/bin/sh: mlton: command not found

make[2]: mlton: Command not found

You need to have mlton in your path to build MLton from source.

During the build process, there are various times that the Makefile-s look for a mlton in your path and in src/build/
bin. It is OK if the latter doesn’t exist when the build starts; it is the target being built. Failure to find a mlton in your path
will abort the build.

Compiling with SML/NJ

To compile with SML/NJ, run make bootstrap-smlnj from within the root directory of the sources. You must use a recent
version of SML/NJ. First, the Makefile calls ml-lex and ml-yacc to build the lexer and parser. Then, it calls SML/NJ with
the appropriate sources.cm file. Once MLton is built with SML/NJ, the Makefile will rebuild MLton with this SML/NJ
built MLton and then will rebuild MLton with the MLton built MLton. Building with SML/NJ takes significant time (particularly
during the "parseAndElaborate" phase when the SML/NJ built MLton is compiling MLton). Unless you are doing compiler
development and need rapid recompilation, we recommend compiling with MLton.

MLton Guide (20180207) 478 / 611

Serialization

Standard ML does not have built-in support for serialization. Here are papers that describe user-level approaches:

• Elsman04

• Kennedy04

The MLton repository also contains an experimental generic programming library (see README) that includes a pickling (seri-
alization) generic (see pickle.sig).

https://github.com/MLton/mltonlib/blob/master/com/ssh/generic/unstable/README
https://github.com/MLton/mltonlib/blob/master/com/ssh/generic/unstable/public/value/pickle.sig

MLton Guide (20180207) 479 / 611

ShareZeroVec

ShareZeroVec is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

An SSA optimization to share zero-length vectors.

From be8c5f576, which replaced the use of the Array_array0Const primitive in the Basis Library implementation with
a (nullary) Vector_vector primitive:

The original motivation for the Array_array0Const primitive was to share the heap space required for zero-
length vectors among all vectors (of a given type). It was claimed that this optimization is important, e.g., in a
self-compile, where vectors are used for lots of syntax tree elements and many of those vectors are empty. See:
http://www.mlton.org/pipermail/mlton-devel/2002-February/021523.html

Curiously, the full effect of this optimization has been missing for quite some time (perhaps since the port of
ConstantPropagation to the SSA IL). While ConstantPropagation has "globalized" the nullary application of the
Array_array0Const primitive, it also simultaneously transformed it to an application of the Array_uninit
(previously, the Array_array) primitive to the zero constant. The hash-consing of globals, meant to create exactly
one global for each distinct constant, treats Array_uninit primitives as unequal (appropriately, since Array_un
init allocates an array with identity (though the identity may be supressed by a subsequent Array_toVector)),
hence each distinct Array_array0Const primitive in the program remained as distinct globals. The limited
amount of inlining prior to ConstantPropagation meant that there were typically fewer than a dozen "copies" of the
same empty vector in a program for a given type.

As a "functional" primitive, a nullary Vector_vector is globalized by ClosureConvert, but is further recognized
by ConstantPropagation and hash-consed into a unique instance for each type.

However, a single, shared, global Vector_vector () inhibits the coercion-based optimizations of Useless. For example,
consider the following program:

val n = valOf (Int.fromString (hd (CommandLine.arguments ())))

val v1 = Vector.tabulate (n, fn i =>
let val w = Word16.fromInt i
in (w - 0wx1, w, w + 0wx1 + w)
end)

val v2 = Vector.map (fn (w1, w2, w3) => (w1, 0wx2 * w2, 0wx3 * w3)) v1
val v3 = VectorSlice.vector (VectorSlice.slice (v1, 1, SOME (n - 2)))
val ans1 = Vector.foldl (fn ((w1,w2,w3),w) => w + w1 + w2 + w3) 0wx0 v1
val ans2 = Vector.foldl (fn ((_,w2,_),w) => w + w2) 0wx0 v2
val ans3 = Vector.foldl (fn ((_,w2,_),w) => w + w2) 0wx0 v3

val _ = print (concat ["ans1 = ", Word16.toString ans1, " ",
"ans2 = ", Word16.toString ans2, " ",
"ans3 = ", Word16.toString ans3, "\n"])

We would like v2 and v3 to be optimized from (word16 * word16 * word16) vector to word16 vector because
only the 2nd component of the elements is needed to compute the answer.

With Array_array0Const, each distinct occurrence of Array_array0Const((word16 * word16 * word16))
arising from polyvariance and inlining remained a distinct Array_uninit((word16 * word16 * word16)) (0x0)
global, which resulted in distinct occurrences for the val v1 =Vector.tabulate ... and for the val v2 =Vector.
map The latter could be optimized to Array_uninit(word16) (0x0) by Useless, because its result only flows
to places requiring the 2nd component of the elements.

With Vector_vector (), the distinct occurrences of Vector_vector((word16 * word16 * word16)) () aris-
ing from polyvariance are globalized during ClosureConvert, those global references may be further duplicated by inlining,

https://github.com/MLton/mlton/commit/be8c5f576
http://www.mlton.org/pipermail/mlton-devel/2002-February/021523.html

MLton Guide (20180207) 480 / 611

but the distinct occurrences of Vector_vector((word16 * word16 * word16)) () are merged to a single occur-
rence. Because this result flows to places requiring all three components of the elements, it remains Vector_vector((word1
6 * word16 * word16)) () after Useless. Furthermore, because one cannot (in constant time) coerce a (word16 *
word16 * word16) vector to a word16 vector, the v2 value remains of type (word16 * word16 * word16)
vector.

One option would be to drop the 0-element vector "optimization" entirely. This costs some space (no sharing of empty vectors)
and some time (allocation and garbage collection of empty vectors).

Another option would be to reinstate the Array_array0Const primitive and associated ConstantPropagation treat-
ment. But, the semantics and purpose of Array_array0Const was poorly understood, resulting in this break.

The ShareZeroVec pass pursues a different approach: perform the 0-element vector "optimization" as a separate optimization,
after ConstantPropagation and Useless. A trivial static analysis is used to match val v:t vector =Array_toV
ector(t) (a) with corresponding val a:array =Array_uninit(t) (l) and the later are expanded to val a:t
array =if 0 =l then zeroArr_[t] else Array_uninit(t) (l) with a single global val zeroArr_[t]
=Array_uninit(t) (0) created for each distinct type (after coercion-based optimizations).

One disadvantage of this approach, compared to the Vector_vector(t) () approach, is that Array_toVector is applied
each time a vector is created, even if it is being applied to the zeroArr_[t] zero-length array. (Although, this was the behavior
of the Array_array0Const approach.) This updates the object header each time, whereas the Vector_vector(t) ()
approach would have updated the object header once, when the global was created, and the zeroVec_[t] global and the
Array_toVector result would flow to the join point.

It would be possible to properly share zero-length vectors, but doing so is a more sophisticated analysis and transformation,
because there can be arbitrary code between the val a:t array =Array_uninit(t) (l) and the corresponding val
v:v vector =Array_toVector(t) (a), although, in practice, nothing happens when a zero-length vector is created.
It may be best to pursue a more general "array to vector" optimization that transforms creations of static-length vectors (e.g., all
the Vector.new<N> functions) into Vector_vector primitives (some of which could be globalized).

Implementation

• share-zero-vec.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/share-zero-vec.fun

MLton Guide (20180207) 481 / 611

ShowBasis

MLton has a flag, -show-basis <file>, that causes MLton to pretty print to file the basis defined by the input program.
For example, if foo.sml contains

fun f x = x + 1

then mlton -show-basis foo.basis foo.sml will create foo.basis with the following contents.

val f: int -> int

If you only want to see the basis and do not wish to compile the program, you can call MLton with -stop tc.

Displaying signatures

When displaying signatures, MLton prefixes types defined in the signature them with _sig. to distinguish them from types
defined in the environment. For example,

signature SIG =
sig

type t
val x: t * int -> unit

end

is displayed as

signature SIG =
sig

type t
val x: _sig.t * int -> unit

end

Notice that int occurs without the _sig. prefix.

MLton also uses a canonical name for each type in the signature, and that name is used everywhere for that type, no matter what
the input signature looked like. For example:

signature SIG =
sig

type t
type u = t
val x: t
val y: u

end

is displayed as

signature SIG =
sig

type t
type u = _sig.t
val x: _sig.t
val y: _sig.t

end

Canonical names are always relative to the "top" of the signature, even when used in nested substructures. For example:

MLton Guide (20180207) 482 / 611

signature S =
sig

type t
val w: t
structure U:

sig
type u
val x: t
val y: u

end
val z: U.u

end

is displayed as

signature S =
sig

type t
val w: _sig.t
val z: _sig.U.u
structure U:

sig
type u
val x: _sig.t
val y: _sig.U.u

end
end

Displaying structures

When displaying structures, MLton uses signature constraints wherever possible, combined with where type clauses to spec-
ify the meanings of the types defined within the signature. For example:

signature SIG =
sig

type t
val x: t

end
structure S: SIG =

struct
type t = int
val x = 13

end
structure S2:> SIG = S

is displayed as

signature SIG =
sig

type t
val x: _sig.t

end
structure S: SIG

where type t = int
structure S2: SIG

where type t = S2.t

MLton Guide (20180207) 483 / 611

ShowBasisDirective

A comment of the form (*#showBasis "<file>"*) is recognized as a directive to save the current basis (i.e., environment)
to <file> (in the same format as the -show-basis <file> compile-time option). The <file> is interpreted relative to
the source file in which it appears. The comment is lexed as a distinct token and is parsed as a structure-level declaration. [Note
that treating the directive as a top-level declaration would prohibit using it inside a functor body, which would make the feature
significantly less useful in the context of the MLton compiler sources (with its nearly fully functorial style).]

This feature is meant to facilitate auto-completion via company-mlton and similar tools.

https://github.com/MatthewFluet/company-mlton

MLton Guide (20180207) 484 / 611

ShowProf

If an executable is compiled for profiling, then it accepts a special command-line runtime system argument, show-prof, that
outputs information about the source functions that are profiled. Normally, this information is used by mlprof. This page
documents the show-prof output format, and is intended for those working on the profiler internals.

The show-prof output is ASCII, and consists of a sequence of lines.

• The magic number of the executable.

• The number of source names in the executable.

• A line for each source name giving the name of the function, a tab, the filename of the file containing the function, a colon, a
space, and the line number that the function starts on in that file.

• The number of (split) source functions.

• A line for each (split) source function, where each line consists of a source-name index (into the array of source names) and a
successors index (into the array of split-source sequences, defined below).

• The number of split-source sequences.

• A line for each split-source sequence, where each line is a space separated list of (split) source functions.

The latter two arrays, split sources and split-source sequences, define a directed graph, which is the call-graph of the program.

MLton Guide (20180207) 485 / 611

Shrink

Shrink is a rewrite pass for the SSA and SSA2 IntermediateLanguages, invoked from every optimization pass (see SSASimplify
and SSA2Simplify).

Description

This pass implements a whole family of compile-time reductions, like:

• #1(a, b)⇒ a

• case C x of C y => e⇒ let y =x in e

• constant folding, copy propagation

• eta blocks

• tuple reconstruction elimination

Implementation

• shrink.sig

• shrink.fun

• shrink2.sig

• shrink2.fun

Details and Notes

The Shrink pass is run after every SSA and SSA2 optimization pass.

The Shrink implementation also includes functions to eliminate unreachable blocks from a SSA or SSA2 program or function.
The Shrink pass does not guarantee to eliminate all unreachable blocks. Doing so would unduly complicate the implementation,
and it is almost always the case that all unreachable blocks are eliminated. However, a small number of optimization passes
require that the input have no unreachable blocks (essentially, when the analysis works on the control flow graph and the rewrite
iterates on the vector of blocks). These passes explicitly call eliminateDeadBlocks.

The Shrink pass has a special case to turn a non-tail call where the continuation and handler only do Profile statements into a
tail call where the Profile statements precede the tail call.

https://github.com/MLton/mlton/blob/master/mlton/ssa/shrink.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/shrink.fun
https://github.com/MLton/mlton/blob/master/mlton/ssa/shrink2.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/shrink2.fun

MLton Guide (20180207) 486 / 611

SimplifyTypes

SimplifyTypes is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass computes a "cardinality" of each datatype, which is an abstraction of the number of values of the datatype.

• Zero means the datatype has no values (except for bottom).

• One means the datatype has one value (except for bottom).

• Many means the datatype has many values.

This pass removes all datatypes whose cardinality is Zero or One and removes:

• components of tuples

• function args

• constructor args

which are such datatypes.

This pass marks constructors as one of:

• Useless: it never appears in a ConApp.

• Transparent: it is the only variant in its datatype and its argument type does not contain any uses of array or vector.

• Useful: otherwise

This pass also removes Useless and Transparent constructors.

Implementation

• simplify-types.fun

Details and Notes

This pass must happen before polymorphic equality is implemented because

• it will make polymorphic equality faster because some types are simpler

• it removes uses of polymorphic equality that must return true

We must keep track of Transparent constructors whose argument type uses array because of datatypes like the following:

datatype t = T of t array

Such a datatype has Cardinality.Many, but we cannot eliminate the datatype and replace the lhs by the rhs, i.e. we must
keep the circularity around.

Must do similar things for vectors.

Also, to eliminate as many Transparent constructors as possible, for something like the following,

datatype t = T of u array
and u = U of t vector

we (arbitrarily) expand one of the datatypes first. The result will be something like

datatype u = U of u array array

where all uses of t are replaced by u array.

https://github.com/MLton/mlton/blob/master/mlton/ssa/simplify-types.fun

MLton Guide (20180207) 487 / 611

SML3d

The SML3d Project is a collection of libraries to support 3D graphics programming using Standard ML and the OpenGL graphics
API. It currently requires the MLton implementation of SML and is supported on Linux, Mac OS X, and Microsoft Windows.
There is also support for OpenCL.

http://sml3d.cs.uchicago.edu/
http://www.opengl.org/
http://www.khronos.org/opencl/

MLton Guide (20180207) 488 / 611

SMLNET

SML.NET is a Standard ML implementation that targets the .NET Common Language Runtime.

SML.NET is based on the MLj compiler.

Also see

• BentonEtAl04

http://www.cl.cam.ac.uk/research/tsg/SMLNET

MLton Guide (20180207) 489 / 611

SMLNJ

SML/NJ is a Standard ML implementation. It is a native code compiler that runs on a variety of platforms and has a number of
libraries and tools.

We maintain a list of SML/NJ’s deviations from The Definition of Standard ML.

MLton has support for some features of SML/NJ in order to ease porting between MLton and SML/NJ.

• CompilationManager (CM)

• LineDirectives

• SMLofNJStructure

• UnsafeStructure

http://www.smlnj.org/

MLton Guide (20180207) 490 / 611

SMLNJDeviations

Here are some deviations of SML/NJ from The Definition of Standard ML (Revised). Some of these are documented in the SML
’97 Conversion Guide. Since MLton does not deviate from the Definition, you should look here if you are having trouble porting
a program from MLton to SML/NJ or vice versa. If you discover other deviations of SML/NJ that aren’t listed here, please send
mail to MLton-devel@mlton.org.

• SML/NJ allows spaces in long identifiers, as in S .x. Section 2.5 of the Definition implies that S .x should be treated as
three separate lexical items.

• SML/NJ allows op to appear in val specifications:

signature FOO = sig
val op + : int * int -> int

end

The grammar on page 14 of the Definition does not allow it. Recent versions of SML/NJ do give a warning.

• SML/NJ rejects

(op *)

as an unmatched close comment.

• SML/NJ allows = to be rebound by the declaration:

val op = = 13

This is explicitly forbidden on page 5 of the Definition. Recent versions of SML/NJ do give a warning.

• SML/NJ allows rebinding true, false, nil, ::, and ref by the declarations:

fun true () = ()
fun false () = ()
fun nil () = ()
fun op :: () = ()
fun ref () = ()

This is explicitly forbidden on page 9 of the Definition.

• SML/NJ extends the syntax of the language to allow vector expressions and patterns like the following:

val v = #[1,2,3]
val #[x,y,z] = v

MLton supports vector expressions and patterns with the allowVectorExpsAndPats ML Basis annotation.

• SML/NJ extends the syntax of the language to allow or patterns like the following:

datatype foo = Foo of int | Bar of int
val (Foo x | Bar x) = Foo 13

MLton supports or patterns with the allowOrPats ML Basis annotation.

• SML/NJ allows higher-order functors, that is, functors can be components of structures and can be passed as functor arguments
and returned as functor results. As a consequence, SML/NJ allows abbreviated functor definitions, as in the following:

signature S =
sig

type t
val x: t

end
functor F (structure A: S): S =

http://www.smlnj.org/doc/Conversion/index.html
http://www.smlnj.org/doc/Conversion/index.html
mailto:MLton-devel@mlton.org

MLton Guide (20180207) 491 / 611

struct
type t = A.t * A.t
val x = (A.x, A.x)

end
functor G = F

• SML/NJ extends the syntax of the language to allow functor and signature declarations to occur within the scope of
local and structure declarations.

• SML/NJ allows duplicate type specifications in signatures when the duplicates are introduced by include, as in the following:

signature SIG1 =
sig

type t
type u

end
signature SIG2 =

sig
type t
type v

end
signature SIG =

sig
include SIG1
include SIG2

end

This is disallowed by rule 77 of the Definition.

• SML/NJ allows sharing constraints between type abbreviations in signatures, as in the following:

signature SIG =
sig

type t = int * int
type u = int * int
sharing type t = u

end

These are disallowed by rule 78 of the Definition. Recent versions of SML/NJ correctly disallow sharing constraints between
type abbreviations in signatures.

• SML/NJ disallows multiple where type specifications of the same type name, as in the following

signature S =
sig

type t
type u = t

end
where type u = int

This is allowed by rule 64 of the Definition.

• SML/NJ allows and in sharing specs in signatures, as in

signature S =
sig

type t
type u
type v
sharing type t = u
and type u = v

end

MLton Guide (20180207) 492 / 611

• SML/NJ does not expand the withtype derived form as described by the Definition. According to page 55 of the Definition,
the type bindings of a withtype declaration are substituted simultaneously in the connected datatype. Consider the following
program.

type u = real ;
datatype a =

A of t
| B of u

withtype u = int
and t = u

According to the Definition, it should be expanded to the following.

type u = real ;
datatype a =

A of u
| B of int ;

type u = int
and t = u

However, SML/NJ expands withtype bindings sequentially, meaning that earlier bindings are expanded within later ones.
Hence, the above program is expanded to the following.

type u = real ;
datatype a =

A of int
| B of int ;

type u = int
type t = int

• SML/NJ allows withtype specifications in signatures.

MLton supports withtype specifications in signatures with the allowSigWithtype ML Basis annotation.

• SML/NJ allows a where structure specification that is similar to a where type specification. For example:

structure S = struct type t = int end
signature SIG =
sig

structure T : sig type t end
end where T = S

This is equivalent to:

structure S = struct type t = int end
signature SIG =
sig

structure T : sig type t end
end where type T.t = S.t

SML/NJ also allows a definitional structure specification that is similar to a definitional type specification. For example:

structure S = struct type t = int end
signature SIG =
sig

structure T : sig type t end = S
end

This is equivalent to the previous examples and to:

structure S = struct type t = int end
signature SIG =
sig

structure T : sig type t end where type t = S.t
end

MLton Guide (20180207) 493 / 611

• SML/NJ disallows binding non-datatypes with datatype replication. For example, it rejects the following program that should
be allowed according to the Definition.

type (’a, ’b) t = ’a * ’b
datatype u = datatype t

This idiom can be useful when one wants to rename a type without rewriting all the type arguments. For example, the above
would have to be written in SML/NJ as follows.

type (’a, ’b) t = ’a * ’b
type (’a, ’b) u = (’a, ’b) t

• SML/NJ disallows sharing a structure with one of its substructures. For example, SML/NJ disallows the following.

signature SIG =
sig

structure S:
sig

type t
structure T: sig type t end

end
sharing S = S.T

end

This signature is allowed by the Definition.

• SML/NJ disallows polymorphic generalization of refutable patterns. For example, SML/NJ disallows the following.

val [x] = [[]]
val _ = (1 :: x, "one" :: x)

Recent versions of SML/NJ correctly allow polymorphic generalization of refutable patterns.

• SML/NJ uses an overly restrictive context for type inference. For example, SML/NJ rejects both of the following.

structure S =
struct
val z = (fn x => x) []
val y = z :: [true] :: nil

end

structure S : sig val z : bool list end =
struct
val z = (fn x => x) []

end

These structures are allowed by the Definition.

Deviations from the Basis Library Specification

Here are some deviations of SML/NJ from the Basis Library specification.

• SML/NJ exposes the equality of the vector type in structures such as Word8Vector that abstractly match MONO_VECTOR,
which says type vector, not eqtype vector. So, for example, SML/NJ accepts the following program:

fun f (v: Word8Vector.vector) = v = v

• SML/NJ exposes the equality property of the type status in OS.Process. This means that programs which directly
compare two values of type status will work with SML/NJ but not MLton.

http://www.standardml.org/Basis

MLton Guide (20180207) 494 / 611

• Under SML/NJ on Windows, OS.Path.validVolume incorrectly considers absolute empty volumes to be valid. In other
words, when the expression

OS.Path.validVolume { isAbs = true, vol = "" }

is evaluated by SML/NJ on Windows, the result is true. MLton, on the other hand, correctly follows the Basis Library
Specification, which states that on Windows, OS.Path.validVolume should return false whenever isAbs =true
and vol ="".

This incorrect behavior causes other OS.Path functions to behave differently. For example, when the expression

OS.Path.toString (OS.Path.fromString "\\usr\\local")

is evaluated by SML/NJ on Windows, the result is "\\usr\\local", whereas under MLton on Windows, evaluating this
expression (correctly) causes an OS.Path.Path exception to be raised.

MLton Guide (20180207) 495 / 611

SMLNJLibrary

The SML/NJ Library is a collection of libraries that are distributed with SML/NJ. Due to differences between SML/NJ and
MLton, these libraries will not work out-of-the box with MLton.

As of 20180119, MLton includes a port of the SML/NJ Library synchronized with SML/NJ version 110.82.

Usage

• You can import a sub-library of the SML/NJ Library into an MLB file with:

MLB file Description
$(SML_LIB)/smlnj-lib/Util/smlnj-lib.
mlb

Various utility modules, included collections, simple
formating, . . .

$(SML_LIB)/smlnj-lib/Controls/
controls-lib.mlb

A library for managing control flags in an application.

$(SML_LIB)/smlnj-lib/HashCons/hash-
cons-lib.mlb

Support for implementing hash-consed data structures.

$(SML_LIB)/smlnj-lib/HTML/html-lib.mlb HTML 3.2 parsing and pretty-printing library.
$(SML_LIB)/smlnj-lib/HTML4/html4-lib.
mlb

HTML 4.01 parsing and pretty-printing library.

$(SML_LIB)/smlnj-lib/INet/inet-lib.mlb Networking utilities; supported on both Unix and
Windows systems.

$(SML_LIB)/smlnj-lib/JSON/json-lib.mlb JavaScript Object Notation (JSON) reading and writing
library.

$(SML_LIB)/smlnj-lib/PP/pp-lib.mlb Pretty-printing library.
$(SML_LIB)/smlnj-lib/Reactive/
reactive-lib.mlb

Reactive scripting library.

$(SML_LIB)/smlnj-lib/RegExp/regexp-
lib.mlb

Regular expression library.

$(SML_LIB)/smlnj-lib/SExp/sexp-lib.mlb S-expression library.
$(SML_LIB)/smlnj-lib/Unix/unix-lib.mlb Utilities for Unix-based operating systems.
$(SML_LIB)/smlnj-lib/XML/xml-lib.mlb XML library.

• If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following maps are included by default:

SMLNJ Library
$SMLNJ-LIB $(SML_LIB)/smlnj-lib
$smlnj-lib.cm $(SML_LIB)/smlnj-lib/Util
$controls-lib.cm $(SML_LIB)/smlnj-lib/Controls
$hash-cons-lib.cm $(SML_LIB)/smlnj-lib/HashCons
$html-lib.cm $(SML_LIB)/smlnj-lib/HTML
$html4-lib.cm $(SML_LIB)/smlnj-lib/HTML4
$inet-lib.cm $(SML_LIB)/smlnj-lib/INet
$json-lib.cm $(SML_LIB)/smlnj-lib/JSON
$pp-lib.cm $(SML_LIB)/smlnj-lib/PP
$reactive-lib.cm $(SML_LIB)/smlnj-lib/Reactive
$regexp-lib.cm $(SML_LIB)/smlnj-lib/RegExp
$sexp-lib.cm $(SML_LIB)/smlnj-lib/SExp
$unix-lib.cm $(SML_LIB)/smlnj-lib/Unix
$xml-lib.cm $(SML_LIB)/smlnj-lib/XML

This will automatically convert a $/smlnj-lib.cm import in an input .cm file into a $(SML_LIB)/smlnj-lib/Util/
smlnj-lib.mlb import in the output .mlb file.

http://www.smlnj.org/doc/smlnj-lib/index.html

MLton Guide (20180207) 496 / 611

Details

The following changes were made to the SML/NJ Library, in addition to deriving the .mlb files from the .cm files:

• HTML4/pp-init.sml (added): Implements structure PrettyPrint using the SML/NJ PP Library. This implemen-
tation is taken from the SML/NJ compiler source, since the SML/NJ HTML4 Library used the structure PrettyPrint
provided by the SML/NJ compiler itself.

• Util/base64.sml (modified): Rewrote use of Unsafe.CharVector.create and Unsafe.CharVector.upd
ate; MLton assumes that vectors are immutable.

• Util/engine.mlton.sml (added, not exported): Implements structure Engine, providing time-limited, resumable
computations using MLtonThread, MLtonSignal, and MLtonItimer.

• Util/graph-scc-fn.sml (modified): Rewrote use of where structure specification.

• Util/redblack-map-fn.sml (modified): Rewrote use of where structure specification.

• Util/redblack-set-fn.sml (modified): Rewrote use of where structure specification.

• Util/time-limit.mlb (added): Exports structure TimeLimit, which is not exported by smlnj-lib.mlb.
Since MLton is very conservative in the presence of threads and signals, program performance may be adversely affected
by unnecessarily including structure TimeLimit.

• Util/time-limit.mlton.sml (added): Implements structure TimeLimit using structure Engine. The
SML/NJ implementation of structure TimeLimit uses SML/NJ’s first-class continuations, signals, and interval timer.

Patch

• smlnj-lib.patch

https://github.com/MLton/mlton/blob/master/lib/smlnj-lib/smlnj-lib.patch

MLton Guide (20180207) 497 / 611

SMLofNJStructure

signature SML_OF_NJ =
sig

structure Cont:
sig

type ’a cont
val callcc: (’a cont -> ’a) -> ’a
val isolate: (’a -> unit) -> ’a cont
val throw: ’a cont -> ’a -> ’b

end
structure SysInfo:

sig
exception UNKNOWN
datatype os_kind = BEOS | MACOS | OS2 | UNIX | WIN32

val getHostArch: unit -> string
val getOSKind: unit -> os_kind
val getOSName: unit -> string

end

val exnHistory: exn -> string list
val exportFn: string * (string * string list -> OS.Process.status) -> unit
val exportML: string -> bool
val getAllArgs: unit -> string list
val getArgs: unit -> string list
val getCmdName: unit -> string

end

SMLofNJ implements a subset of the structure of the same name provided in Standard ML of New Jersey. It is included to make
it easier to port programs between the two systems. The semantics of these functions may be different than in SML/NJ.

• structure Cont

implements continuations.

• SysInfo.getHostArch ()

returns the string for the architecture.

• SysInfo.getOSKind

returns the OS kind.

• SysInfo.getOSName ()

returns the string for the host.

• exnHistory

the same as MLton.Exn.history.

• getCmdName ()

the same as CommandLine.name ().

• getArgs ()

the same as CommandLine.arguments ().

• getAllArgs ()

the same as getCmdName()::getArgs().

• exportFn f

saves the state of the computation to a file that will apply f to the command-line arguments upon restart.

MLton Guide (20180207) 498 / 611

• exportML f

saves the state of the computation to file f and continue. Returns true in the restarted computation and false in the
continuing computation.

MLton Guide (20180207) 499 / 611

SMLSharp

SML# is an implementation of an extension of SML.

It includes some generally useful SML tools including a pretty printer generator, a document generator, and a regression testing
framework, and scripting library.

http://www.pllab.riec.tohoku.ac.jp/smlsharp/
http://www.pllab.riec.tohoku.ac.jp/smlsharp/?Tools
http://www.pllab.riec.tohoku.ac.jp/smlsharp/?Library%2FScripting

MLton Guide (20180207) 500 / 611

Sources

We maintain our sources with Git. You can view them on the web or access them with a git client.

Anonymous read-only access is available via

https://github.com/MLton/mlton.git

or

git://github.com/MLton/mlton.git

Commit email

All commits are sent to MLton-commit@mlton.org (subscribe, archive, archive) which is a read-only mailing list for com-
mit emails. Discussion should go to MLton-devel@mlton.org.

Changelog

See CHANGELOG.adoc for a list of changes and bug fixes.

Subversion

Prior to 20130308, we used Subversion.

CVS

Prior to 20050730, we used CVS.

https://github.com/MLton/mlton/
mailto:MLton-commit@mlton.org
https://lists.sourceforge.net/lists/listinfo/mlton-commit
https://sourceforge.net/mailarchive/forum.php?forum_name=mlton-commit
http://www.mlton.org/pipermail/mlton-commit/
mailto:MLton-devel@mlton.org
https://github.com/MLton/mlton/blob/master/CHANGELOG.adoc

MLton Guide (20180207) 501 / 611

SpaceSafety

Informally, space safety is a property of a language implementation that asymptotically bounds the space used by a running
program.

Also see

• Chapter 12 of Appel92

• Clinger98

MLton Guide (20180207) 502 / 611

SSA

SSA is an IntermediateLanguage, translated from SXML by ClosureConvert, optimized by SSASimplify, and translated by
ToSSA2 to SSA2.

Description

SSA is a FirstOrder, SimplyTyped IntermediateLanguage. It is the main IntermediateLanguage used for optimizations.

An SSA program consists of a collection of datatype declarations, a sequence of global statements, and a collection of functions,
along with a distinguished "main" function. Each function consists of a collection of basic blocks, where each basic block is a
sequence of statements ending with some control transfer.

Implementation

• ssa.sig

• ssa.fun

• ssa-tree.sig

• ssa-tree.fun

Type Checking

Type checking (type-check.sig, type-check.fun) of a SSA program verifies the following:

• no duplicate definitions (tycons, cons, vars, labels, funcs)

• no out of scope references (tycons, cons, vars, labels, funcs)

• variable definitions dominate variable uses

• case transfers are exhaustive and irredundant

• Enter/Leave profile statements match

• "traditional" well-typedness

Details and Notes

SSA is an abbreviation for Static Single Assignment.

For some initial design discussion, see the thread at:

• http://mlton.org/pipermail/mlton/2001-August/019689.html

For some retrospectives, see the threads at:

• http://mlton.org/pipermail/mlton/2003-January/023054.html

• http://mlton.org/pipermail/mlton/2007-February/029597.html

https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa.fun
https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa-tree.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa-tree.fun
https://github.com/MLton/mlton/blob/master/mlton/ssa/type-check.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/type-check.fun
http://mlton.org/pipermail/mlton/2001-August/019689.html
http://mlton.org/pipermail/mlton/2003-January/023054.html
http://mlton.org/pipermail/mlton/2007-February/029597.html

MLton Guide (20180207) 503 / 611

SSA2

SSA2 is an IntermediateLanguage, translated from SSA by ToSSA2, optimized by SSA2Simplify, and translated by ToRSSA to
RSSA.

Description

SSA2 is a FirstOrder, SimplyTyped IntermediateLanguage, a slight variant of the SSA IntermediateLanguage,

Like SSA, an SSA2 program consists of a collection of datatype declarations, a sequence of global statements, and a collection
of functions, along with a distinguished "main" function. Each function consists of a collection of basic blocks, where each basic
block is a sequence of statements ending with some control transfer.

Unlike SSA, SSA2 includes mutable fields in objects and makes the vector type constructor n-ary instead of unary. This allows
optimizations like RefFlatten and DeepFlatten to be expressed.

Implementation

• ssa2.sig

• ssa2.fun

• ssa-tree2.sig

• ssa-tree2.fun

Type Checking

Type checking (type-check2.sig, type-check2.fun) of a SSA2 program verifies the following:

• no duplicate definitions (tycons, cons, vars, labels, funcs)

• no out of scope references (tycons, cons, vars, labels, funcs)

• variable definitions dominate variable uses

• case transfers are exhaustive and irredundant

• Enter/Leave profile statements match

• "traditional" well-typedness

Details and Notes

SSA is an abbreviation for Static Single Assignment.

https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa2.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa2.fun
https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa-tree2.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa-tree2.fun
https://github.com/MLton/mlton/blob/master/mlton/ssa/type-check2.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/type-check2.fun

MLton Guide (20180207) 504 / 611

SSA2Simplify

The optimization passes for the SSA2 IntermediateLanguage are collected and controlled by the Simplify2 functor (simpli
fy2.sig, simplify2.fun).

The following optimization passes are implemented:

• DeepFlatten

• RefFlatten

• RemoveUnused

• Zone

There are additional analysis and rewrite passes that augment many of the other optimization passes:

• Restore

• Shrink

The optimization passes can be controlled from the command-line by the options

• -diag-pass <pass>— keep diagnostic info for pass

• -disable-pass <pass>— skip optimization pass (if normally performed)

• -enable-pass <pass>— perform optimization pass (if normally skipped)

• -keep-pass <pass>— keep the results of pass

• -loop-passes <n>— loop optimization passes

• -ssa2-passes <passes>— ssa optimization passes

https://github.com/MLton/mlton/blob/master/mlton/ssa/simplify2.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/simplify2.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/simplify2.fun

MLton Guide (20180207) 505 / 611

SSASimplify

The optimization passes for the SSA IntermediateLanguage are collected and controlled by the Simplify functor (simplify.
sig, simplify.fun).

The following optimization passes are implemented:

• CombineConversions

• CommonArg

• CommonBlock

• CommonSubexp

• ConstantPropagation

• Contify

• Flatten

• Inline

• IntroduceLoops

• KnownCase

• LocalFlatten

• LocalRef

• LoopInvariant

• LoopUnfoll

• LoopUnswitch

• Redundant

• RedundantTests

• RemoveUnused

• ShareZeroVec

• SimplifyTypes

• Useless

The following implementation passes are implemented:

• PolyEqual

• PolyHash

There are additional analysis and rewrite passes that augment many of the other optimization passes:

• Multi

• Restore

• Shrink

The optimization passes can be controlled from the command-line by the options:

https://github.com/MLton/mlton/blob/master/mlton/ssa/simplify.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/simplify.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/simplify.fun

MLton Guide (20180207) 506 / 611

• -diag-pass <pass>— keep diagnostic info for pass

• -disable-pass <pass>— skip optimization pass (if normally performed)

• -enable-pass <pass>— perform optimization pass (if normally skipped)

• -keep-pass <pass>— keep the results of pass

• -loop-passes <n>— loop optimization passes

• -ssa-passes <passes>— ssa optimization passes

MLton Guide (20180207) 507 / 611

Stabilizers

Installation

• Stabilizers currently require the MLton sources, this should be fixed by the next release

License

• Stabilizers are released under the MLton License

Instructions

• Download and build a source copy of MLton

• Extract the tar.gz file attached to this page

• Some examples are provided in the "examples/" sub directory, more examples will be added to this page in the following week

Bug reports / Suggestions

• Please send any errors you encounter to schatzp and lziarek at cs.purdue.edu

• We are looking to expand the usability of stabilizers

• Please send any suggestions and desired functionality to the above email addresses

Note

• This is an alpha release. We expect to have another release shortly with added functionality soon

• More documentation, such as signatures and descriptions of functionality, will be forthcoming

Documentation

signature STABLE =
sig

type checkpoint

val stable: (’a -> ’b) -> (’a -> ’b)
val stabilize: unit -> ’a

val stableCP: ((’a -> ’b) * (unit -> unit)) ->
((’a -> ’b) * checkpoint)

val stabilizeCP: checkpoint -> unit

val unmonitoredAssign: (’a ref * ’a) -> unit
val monitoredAssign: (’a ref * ’a) -> unit

end

Stable provides functions to manage stable sections.

• type checkpoint

handle used to stabilize contexts other than the current one.

MLton Guide (20180207) 508 / 611

• stable f

returns a function identical to f that will execute within a stable section.

• stabilize ()

unrolls the effects made up to the current context to at least the nearest enclosing stable section. These effects may have
propagated to other threads, so all affected threads are returned to a globally consistent previous state. The return is undefined
because control cannot resume after stabilize is called.

• stableCP (f, comp)

returns a function f’ and checkpoint tag cp. Function f’ is identical to f but when applied will execute within a stable
section. comp will be executed if f’ is later stabilized. cp is used by stabilizeCP to stabilize a given checkpoint.

• stabilizeCP cp

same as stabilize except that the (possibly current) checkpoint to stabilize is provided.

• unmonitoredAssign (r, v)

standard assignment (:=). The version of CML distributed rebinds := to a monitored version so interesting effects can be
recorded.

• monitoredAssign (r, v)

the assignment operator that should be used in programs that use stabilizers. := is rebound to this by including CML.

Download

• stabilizers_alpha_2006-10-09.tar.gz

Also see

• ZiarekEtAl06

guide/Stabilizers.attachments/stabilizers_alpha_2006-10-09.tar.gz

MLton Guide (20180207) 509 / 611

StandardML

Standard ML (SML) is a programming language that combines excellent support for rapid prototyping, modularity, and develop-
ment of large programs, with performance approaching that of C.

SML Resources

• Tutorials

• Books

• Implementations

Aspects of SML

• DefineTypeBeforeUse

• EqualityType

• EqualityTypeVariable

• GenerativeDatatype

• GenerativeException

• Identifier

• OperatorPrecedence

• Overloading

• PolymorphicEquality

• TypeVariableScope

• ValueRestriction

Using SML

• Fixpoints

• ForLoops

• FunctionalRecordUpdate

• InfixingOperators

• Lazy

• ObjectOrientedProgramming

• OptionalArguments

• Printf

• PropertyList

• ReturnStatement

• Serialization

• StandardMLGotchas

• StyleGuide

• TipsForWritingConciseSML

• UniversalType

MLton Guide (20180207) 510 / 611

Programming in SML

• Emacs

• Enscript

• Pygments

Notes

• History of SML

• Regions

Related Languages

• Alice

• F#

• OCaml

MLton Guide (20180207) 511 / 611

StandardMLBooks

Introductory Books

• Elements of ML Programming

• ML For the Working Programmer

• Introduction to Programming using SML

• The Little MLer

Applications

• Unix System Programming with Standard ML

Reference Books

• The Standard ML Basis Library

• The Definition of Standard ML (Revised)

Related Topics

• Concurrent Programming in ML

• Purely Functional Data Structures

MLton Guide (20180207) 512 / 611

StandardMLGotchas

This page contains brief explanations of some recurring sources of confusion and problems that SML newbies encounter.

Many confusions about the syntax of SML seem to arise from the use of an interactive REPL (Read-Eval Print Loop) while trying
to learn the basics of the language. While writing your first SML programs, you should keep the source code of your programs
in a form that is accepted by an SML compiler as a whole.

The and keyword

It is a common mistake to misuse the and keyword or to not know how to introduce mutually recursive definitions. The purpose
of the and keyword is to introduce mutually recursive definitions of functions and datatypes. For example,

fun isEven 0w0 = true
| isEven 0w1 = false
| isEven n = isOdd (n-0w1)

and isOdd 0w0 = false
| isOdd 0w1 = true
| isOdd n = isEven (n-0w1)

and

datatype decl = VAL of id * pat * expr
(* | ... *)

and expr = LET of decl * expr
(* | ... *)

You can also use and as a shorthand in a couple of other places, but it is not necessary.

Constructed patterns

It is a common mistake to forget to parenthesize constructed patterns in fun bindings. Consider the following invalid definition:

fun length nil = 0
| length h :: t = 1 + length t

The pattern `h
t` needs to be parenthesized:

fun length nil = 0
| length (h :: t) = 1 + length t

The parentheses are needed, because a fun definition may have multiple consecutive constructed patterns through currying.

The same applies to nonfix constructors. For example, the parentheses in

fun valOf NONE = raise Option
| valOf (SOME x) = x

are required. However, the outermost constructed pattern in a fn or case expression need not be parenthesized, because in
those cases there is always just one constructed pattern. So, both

val valOf = fn NONE => raise Option
| SOME x => x

and

fun valOf x = case x of
NONE => raise Option

| SOME x => x

are fine.

MLton Guide (20180207) 513 / 611

Declarations and expressions

It is a common mistake to confuse expressions and declarations. Normally an SML source file should only contain declarations.
The following are declarations:

datatype dt = ...
fun f ... = ...
functor Fn (...) = ...
infix ...
infixr ...
local ... in ... end
nonfix ...
open ...
signature SIG = ...
structure Struct = ...
type t = ...
val v = ...

Note that

let ... in ... end

isn’t a declaration.

To specify a side-effecting computation in a source file, you can write:

val () = ...

Equality types

SML has a fairly intricate built-in notion of equality. See EqualityType and EqualityTypeVariable for a thorough discussion.

Nested cases

It is a common mistake to write nested case expressions without the necessary parentheses. See UnresolvedBugs for a discussion.

(op *)

It used to be a common mistake to parenthesize op * as (op *). Before SML’97, *) was considered a comment terminator in
SML and caused a syntax error. At the time of writing, SML/NJ still rejects the code. An extra space may be used for portability:
(op *). However, parenthesizing op is redundant, even though it is a widely used convention.

Overloading

A number of standard operators (+, -, ~, *, <, >, . . .) and numeric constants are overloaded for some of the numeric types (int,
real, word). It is a common surprise that definitions using overloaded operators such as

fun min (x, y) = if y < x then y else x

are not overloaded themselves. SML doesn’t really support (user-defined) overloading or other forms of ad hoc polymorphism.
In cases such as the above where the context doesn’t resolve the overloading, expressions using overloaded operators or constants
get assigned a default type. The above definition gets the type

val min : int * int -> int

See Overloading and TypeIndexedValues for further discussion.

MLton Guide (20180207) 514 / 611

Semicolons

It is a common mistake to use redundant semicolons in SML code. This is probably caused by the fact that in an SML REPL, a
semicolon (and enter) is used to signal the REPL that it should evaluate the preceding chunk of code as a unit. In SML source
files, semicolons are really needed in only two places. Namely, in expressions of the form

(exp ; ... ; exp)

and

let ... in exp ; ... ; exp end

Note that semicolons act as expression (or declaration) separators rather than as terminators.

Stale bindings

Unresolved records

Value restriction

See ValueRestriction.

Type Variable Scope

See TypeVariableScope.

MLton Guide (20180207) 515 / 611

StandardMLHistory

Standard ML grew out of ML in the early 1980s.

For an excellent overview of SML’s history, see Appendix F of the Definition.

For an overview if its history before 1982, see How ML Evolved.

MLton Guide (20180207) 516 / 611

StandardMLImplementations

There are a number of implementations of Standard ML, from interpreters, to byte-code compilers, to incremental compilers, to
whole-program compilers.

• Alice ML

• HaMLet

• ML Kit

• MLton

• Moscow ML

• Poly/ML

• SML#

• SML/NJ

• SML.NET

• TILT

Not Actively Maintained

• Edinburgh ML

• MLj

• MLWorks

• Poplog

• TIL

http://www.dcs.ed.ac.uk/home/edml/
http://www.cs.cornell.edu/Info/People/jgm/til.tar.Z

MLton Guide (20180207) 517 / 611

StandardMLPortability

Technically, SML’97 as defined in the Definition requires only a minimal initial basis, which, while including the types int,
real, char, and string, need have no operations on those base types. Hence, the only observable output of an SML’97
program is termination or raising an exception. Most SML compilers should agree there, to the degree each agrees with the
Definition. See UnresolvedBugs for MLton’s very few corner cases.

Realistically, a program needs to make use of the Basis Library. Within the Basis Library, there are numerous places where the
behavior is implementation dependent. For a trivial example:

val _ = valOf (Int.maxInt)

may either raise the Option exception (if Int.maxInt ==NONE) or may terminate normally. The default Int/Real/Word sizes
are the biggest implementation dependent aspect; so, one implementation may raise Overflow while another can accommodate
the result. Also, maximum array and vector lengths are implementation dependent. Interfacing with the operating system is a bit
murky, and implementations surely differ in handling of errors there.

MLton Guide (20180207) 518 / 611

StandardMLTutorials

• A Gentle Introduction to ML. Andrew Cummings.

• Programming in Standard ML ’97: An Online Tutorial. Stephen Gilmore.

• Programming in Standard ML. Robert Harper.

• Essentials of Standard ML Modules. Mads Tofte.

• Tips for Computer Scientists on Standard ML (Revised). Mads Tofte.

http://www.dcs.napier.ac.uk/course-notes/sml/manual.html
http://www.dcs.ed.ac.uk/home/stg/NOTES/

MLton Guide (20180207) 519 / 611

StaticSum

While SML makes it impossible to write functions whose types would depend on the values of their arguments, or so called
dependently typed functions, it is possible, and arguably commonplace, to write functions whose types depend on the types of
their arguments. Indeed, the types of parametrically polymorphic functions like map and foldl can be said to depend on the
types of their arguments. What is less commonplace, however, is to write functions whose behavior would depend on the types
of their arguments. Nevertheless, there are several techniques for writing such functions. Type-indexed values and fold are two
such techniques. This page presents another such technique dubbed static sums.

Ordinary Sums

Consider the sum type as defined below:

structure Sum = struct
datatype (’a, ’b) t = INL of ’a | INR of ’b

end

While a generic sum type such as defined above is very useful, it has a number of limitations. As an example, we could write the
function out to extract the value from a sum as follows:

fun out (s : (’a, ’a) Sum.t) : ’a =
case s
of Sum.INL a => a
| Sum.INR a => a

As can be seen from the type of out, it is limited in the sense that it requires both variants of the sum to have the same type. So,
out cannot be used to extract the value of a sum of two different types, such as the type (int, real) Sum.t. As another
example of a limitation, consider the following attempt at a succ function:

fun succ (s : (int, real) Sum.t) : ??? =
case s
of Sum.INL i => i + 1
| Sum.INR r => Real.nextAfter (r, Real.posInf)

The above definition of succ cannot be typed, because there is no type for the codomain within SML.

Static Sums

Interestingly, it is possible to define values inL, inR, and match that satisfy the laws

match (inL x) (f, g) = f x
match (inR x) (f, g) = g x

and do not suffer from the same limitions. The definitions are actually quite trivial:

structure StaticSum = struct
fun inL x (f, _) = f x
fun inR x (_, g) = g x
fun match x = x

end

Now, given the succ function defined as

fun succ s =
StaticSum.match s

(fn i => i + 1,
fn r => Real.nextAfter (r, Real.posInf))

MLton Guide (20180207) 520 / 611

we get

succ (StaticSum.inL 1) = 2
succ (StaticSum.inR Real.maxFinite) = Real.posInf

To better understand how this works, consider the following signature for static sums:

structure StaticSum :> sig
type (’dL, ’cL, ’dR, ’cR, ’c) t
val inL : ’dL -> (’dL, ’cL, ’dR, ’cR, ’cL) t
val inR : ’dR -> (’dL, ’cL, ’dR, ’cR, ’cR) t
val match : (’dL, ’cL, ’dR, ’cR, ’c) t -> (’dL -> ’cL) * (’dR -> ’cR) -> ’c

end = struct
type (’dL, ’cL, ’dR, ’cR, ’c) t = (’dL -> ’cL) * (’dR -> ’cR) -> ’c
open StaticSum

end

Above, ’d stands for domain and ’c for codomain. The key difference between an ordinary sum type, like (int, real)
Sum.t, and a static sum type, like (int, real, real, int, real) StaticSum.t, is that the ordinary sum type
says nothing about the type of the result of deconstructing a sum while the static sum type specifies the type.

With the sealed static sum module, we get the type

val succ : (int, int, real, real, ’a) StaticSum.t -> ’a

for the previously defined succ function. The type specifies that succ maps a left int to an int and a right real to a real.
For example, the type of StaticSum.inL 1 is (int, ’cL, ’dR, ’cR, ’cL) StaticSum.t. Unifying this with
the argument type of succ gives the type (int, int, real, real, int) StaticSum.t -> int.

The out function is quite useful on its own. Here is how it can be defined:

structure StaticSum = struct
open StaticSum
val out : (’a, ’a, ’b, ’b, ’c) t -> ’c =
fn s => match s (fn x => x, fn x => x)

end

Due to the value restriction, lack of first class polymorphism and polymorphic recursion, the usefulness and convenience of static
sums is somewhat limited in SML. So, don’t throw away the ordinary sum type just yet. Static sums can nevertheless be quite
useful.

Example: Send and Receive with Argument Type Dependent Result Types

In some situations it would seem useful to define functions whose result type would depend on some of the arguments. Tradi-
tionally such functions have been thought to be impossible in SML and the solution has been to define multiple functions. For
example, the Socket structure of the Basis library defines 16 send and 16 recv functions. In contrast, the Net structure
(net.sig) of the Basic library designed by Stephen Weeks defines only a single send and a single receive and the result
types of the functions depend on their arguments. The implementation (net.sml) uses static sums (with a slighly different
signature: static-sum.sig).

Example: Picking Monad Results

Suppose that we need to write a parser that accepts a pair of integers and returns their sum given a monadic parsing combinator
library. A part of the signature of such library could look like this

signature PARSING = sig
include MONAD
val int : int t
val lparen : unit t
val rparen : unit t

http://www.standardml.org/Basis/socket.html
https://github.com/MLton/mltonlib/blob/master/com/sweeks/basic/unstable/net.sig
https://github.com/MLton/mltonlib/blob/master/com/sweeks/basic/unstable/net.sml
https://github.com/MLton/mltonlib/blob/master/com/sweeks/basic/unstable/static-sum.sig

MLton Guide (20180207) 521 / 611

val comma : unit t
(* ... *)

end

where the MONAD signature could be defined as

signature MONAD = sig
type ’a t
val return : ’a -> ’a t
val >>= : ’a t * (’a -> ’b t) -> ’b t

end
infix >>=

The straightforward, but tedious, way to write the desired parser is:

val p = lparen >>= (fn _ =>
int >>= (fn x =>
comma >>= (fn _ =>
int >>= (fn y =>
rparen >>= (fn _ =>
return (x + y))))))

In Haskell, the parser could be written using the do notation considerably less verbosely as:

p = do { lparen ; x <- int ; comma ; y <- int ; rparen ; return $ x + y }

SML doesn’t provide a do notation, so we need another solution.

Suppose we would have a "pick" notation for monads that would allows us to write the parser as

val p = ‘lparen ^ \int ^ ‘comma ^ \int ^ ‘rparen @ (fn x & y => x + y)

using four auxiliary combinators: `, \, ˆ, and @.

Roughly speaking

• `p means that the result of p is dropped,

• \p means that the result of p is taken,

• p ˆ q means that results of p and q are taken as a product, and

• p @a means that the results of p are passed to the function a and that result is returned.

The difficulty is in implementing the concatenation combinator ˆ. The type of the result of the concatenation depends on the
types of the arguments.

Using static sums and the product type, the pick notation for monads can be implemented as follows:

functor MkMonadPick (include MONAD) = let
open StaticSum

in
struct

fun ‘a = inL (a >>= (fn _ => return ()))
val \ = inR
fun a @ f = out a >>= (return o f)
fun a ^ b =

(match b o match a)
(fn a =>

(fn b => inL (a >>= (fn _ => b)),
fn b => inR (a >>= (fn _ => b))),

fn a =>
(fn b => inR (a >>= (fn a => b >>= (fn _ => return a))),
fn b => inR (a >>= (fn a => b >>= (fn b => return (a & b))))))

end
end

MLton Guide (20180207) 522 / 611

The above implementation is inefficient, however. It uses many more bind operations, >>=, than necessary. That can be solved
with an additional level of abstraction:

functor MkMonadPick (include MONAD) = let
open StaticSum

in
struct

fun ‘a = inL (fn b => a >>= (fn _ => b ()))
fun \a = inR (fn b => a >>= b)
fun a @ f = out a (return o f)
fun a ^ b =

(match b o match a)
(fn a => (fn b => inL (fn c => a (fn () => b c)),

fn b => inR (fn c => a (fn () => b c))),
fn a => (fn b => inR (fn c => a (fn a => b (fn () => c a))),

fn b => inR (fn c => a (fn a => b (fn b => c (a & b))))))
end

end

After instantiating and opening either of the above monad pick implementations, the previously given definition of p can be
compiled and results in a parser whose result is of type int. Here is a functor to test the theory:

functor Test (Arg : PARSING) = struct
local

structure Pick = MkMonadPick (Arg)
open Pick Arg

in
val p : int t =

‘lparen ^ \int ^ ‘comma ^ \int ^ ‘rparen @ (fn x & y => x + y)
end

end

Also see

There are a number of related techniques. Here are some of them.

• Fold

• TypeIndexedValues

MLton Guide (20180207) 523 / 611

StephenWeeks

I live in the New York City area and work at Jane Street Capital.

My home page.

You can email me at sweeks@sweeks.com.

http://janestcapital.com
http://sweeks.com/
mailto:sweeks@sweeks.com

MLton Guide (20180207) 524 / 611

StyleGuide

These conventions are chosen so that inertia is towards modularity, code reuse and finding bugs early, not to save typing.

• SyntacticConventions

MLton Guide (20180207) 525 / 611

Subversion

Subversion is a version control system. The MLton project used Subversion to maintain its source code, but switched to Git on
20130308.

Here are some online Subversion resources.

• Version Control with Subversion

http://subversion.apache.org/
http://svnbook.red-bean.com

MLton Guide (20180207) 526 / 611

SuccessorML

The purpose of successor ML, or sML for short, is to provide a vehicle for the continued evolution of ML, using Standard ML as
a starting point. The intention is for successor ML to be a living, evolving dialect of ML that is responsive to community needs
and advances in language design, implementation, and semantics.

SuccessorML Features in MLton

The following SuccessorML features have been implemented in MLton. The features are disabled by default, and may be
enabled utilizing the feature’s corresponding ML Basis annotation which is listed directly after the feature name. In addition, the
allowSuccessorML {false|true} annotation can be used to simultaneously enable all of the features.

• do Declarations: allowDoDecls {false|true}

Allow a do exp declaration form, which evaluates exp for its side effects. The following example uses a do declaration:

do print "Hello world.\n"

and is equivalent to:

val () = print "Hello world.\n"

• Extended Constants: allowExtendedConsts {false|true}

Allow or disallow all of the extended constants features. This is a proxy for all of the following annotations.

– Extended Numeric Constants: allowExtendedNumConsts {false|true}

Allow underscores as a separator in numeric constants and allow binary integer and word constants.
Underscores in a numeric constant must occur between digits and consecutive underscores are allowed.
Binary integer constants use the prefix 0b and binary word constants use the prefix 0wb.
The following example uses extended numeric constants (although it may be incorrectly syntax highlighted):

val pb = 0b10101
val nb = ~0b10_10_10
val wb = 0wb1010
val i = 4__327__829
val r = 6.022_140_9e23

– Extended Text Constants: allowExtendedTextConsts {false|true}

Allow characters with integer codes ≥ 128 and ≤ 247 that correspond to syntactically well-formed UTF-8 byte sequences
in text constants.
Any 1, 2, 3, or 4 byte sequence that can be properly decoded to a binary number according to the UTF-8 encoding/decod-
ing scheme is allowed in a text constant (but invalid sequences are not explicitly rejected) and denotes the corresponding
sequence of characters with integer codes ≥ 128 and ≤ 247. This feature enables "UTF-8 convenience" (but not compre-
hensive Unicode support); in particular, it allows one to copy text from a browser and paste it into a string constant in an
editor and, furthermore, if the string is printed to a terminal, then will (typically) appear as the original text. The following
example uses UTF-8 byte sequences:

val s1 : String.string = "\240\159\130\161"
val s2 : String.string = "🂡"
val _ = print ("s1 --> " ^ s1 ^ "\n")
val _ = print ("s2 --> " ^ s2 ^ "\n")
val _ = print ("String.size s1 --> " ^ Int.toString (String.size s1) ^ "\n")
val _ = print ("String.size s2 --> " ^ Int.toString (String.size s2) ^ "\n")
val _ = print ("s1 = s2 --> " ^ Bool.toString (s1 = s2) ^ "\n")

and, when compiled and executed, will display:

http://sml-family.org/successor-ml/

MLton Guide (20180207) 527 / 611

s1 --> 🂡
s2 --> 🂡
String.size s1 --> 4
String.size s2 --> 4
s1 = s2 --> true

Note that the String.string type corresponds to any sequence of 8-bit values, including invalid UTF-8 sequences;
hence the string constant "\192" (a UTF-8 leading byte with no UTF-8 continuation byte) is valid. Similarly, the Char.
char type corresponds to a single 8-bit value; hence the char constant #"α" is not valid, as the text constant "α" denotes
a sequence of two 8-bit values.

• Line Comments: allowLineComments {false|true}

Allow line comments beginning with the token (*). The following example uses a line comment:

(*) This is a line comment

Line comments properly nest within block comments. The following example uses line comments nested within block com-
ments:

(*
val x = 4 (*) This is a line comment

*)

(*
val y = 5 (*) This is a line comment *)

*)

• Optional Pattern Bars: allowOptBar {false|true}

Allow a bar to appear before the first match rule of a case, fn, or handle expression, allow a bar to appear before the
first function-value binding of a fun declaration, and allow a bar to appear before the first constructor binding or description
of a datatype declaration or specification. The following example uses leading bars in a datatype declaration, a fun
declaration, and a case expression:

datatype t =
| C
| B
| A

fun
| f NONE = 0
| f (SOME t) =

(case t of
| A => 1
| B => 2
| C => 3)

By eliminating the special case of the first element, this feature allows for simpler refactoring (e.g., sorting the lines of the
datatype declaration’s constructor bindings to put the constructors in alphabetical order).

• Optional Semicolons: allowOptSemicolon {false|true}

Allow a semicolon to appear after the last expression in a sequence or let-body expression. The following example uses a
trailing semicolon in the body of a let expression:

fun h z =
let

val x = 3 * z
in

f x ;
g x ;

end

MLton Guide (20180207) 528 / 611

By eliminating the special case of the last element, this feature allows for simpler refactoring.

• Disjunctive (Or) Patterns: allowOrPats {false|true}

Allow disjunctive (a.k.a., "or") patterns of the form pat1 | pat2, which matches a value that matches either pat1 or pat2.
Disjunctive patterns have lower precedence than as patterns and constraint patterns, much as orelse expressions have lower
precedence than andalso expressions and constraint expressions. Both sub-patterns of a disjunctive pattern must bind the
same variables with the same types. The following example uses disjunctive patterns:

datatype t = A of int | B of int | C of int | D of int * int | E of int * int

fun f t =
case t of

A x | B x | C x => x + 1
| D (x, _) | E (_, x) => x * 2

• Record Punning Expressions: allowRecordPunExps {false|true}

Allow record punning expressions, whereby an identifier vid as an expression row in a record expression denotes the expres-
sion row vid =vid (i.e., treating a label as a variable). The following example uses record punning expressions (and also
record punning patterns):

fun incB r =
case r of {a, b, c} => {a, b = b + 1, c}

and is equivalent to:

fun incB r =
case r of {a = a, b = b, c = c} => {a = a, b = b + 1, c = c}

• withtype in Signatures: allowSigWithtype {false|true}

Allow withtype to modify a datatype specification in a signature. The following example uses withtype in a signature
(and also withtype in a declaration):

signature STREAM =
sig

datatype ’a u = Nil | Cons of ’a * ’a t
withtype ’a t = unit -> ’a u

end
structure Stream : STREAM =
struct

datatype ’a u = Nil | Cons of ’a * ’a t
withtype ’a t = unit -> ’a u

end

and is equivalent to:

signature STREAM =
sig

datatype ’a u = Nil | Cons of ’a * (unit -> ’a u)
type ’a t = unit -> ’a u

end
structure Stream : STREAM =
struct

datatype ’a u = Nil | Cons of ’a * (unit -> ’a u)
type ’a t = unit -> ’a u

end

• Vector Expressions and Patterns: allowVectorExpsAndPats {false|true}

Allow or disallow vector expressions and vector patterns. This is a proxy for all of the following annotations.

MLton Guide (20180207) 529 / 611

– Vector Expressions: allowVectorExps {false|true}

Allow vector expressions of the form #[exp0, exp1, ..., expn-1] (where n ≥ 0). The expression has type τ

vector when each expression expi has type τ .

– Vector Patterns: allowVectorPats {false|true}

Allow vector patterns of the form #[pat0, pat1, ..., patn-1] (where n ≥ 0). The pattern matches values of type
τ vector when each pattern pati matches values of type τ .

MLton Guide (20180207) 530 / 611

SureshJagannathan

I am an Associate Professor at the Department of Computer Science at Purdue University. My research focus is in programming
language design and implementation, concurrency, and distributed systems. I am interested in various aspects of MLton, mostly
related to (in no particular order): (1) control-flow analysis (2) representation strategies (e.g., flattening), (3) IR formats, and (4)
extensions for distributed programming.

Please see my Home page for more details.

http://www.cs.purdue.edu/
http://www.cs.purdue.edu/homes/suresh/index.html

MLton Guide (20180207) 531 / 611

Swerve

Swerve is an HTTP server written in SML, originally developed with SML/NJ. RayRacine ported Swerve to MLton in January
2005.

Download the port.

Excerpt from the included README:

Total testing of this port consisted of a successful compile, startup, and serving one html page with one gif image.
Given that the original code was throughly designed and implemented in a thoughtful manner and I expect it is quite
usable modulo a few minor bugs introduced by my porting effort.

Swerve is described in Shipman02.

http://ftp.sun.ac.za/ftp/mirrorsites/ocaml/Systems_programming/book/c3253.html
guide/Swerve.attachments/swerve.tar.bz2

MLton Guide (20180207) 532 / 611

SXML

SXML is an IntermediateLanguage, translated from XML by Monomorphise, optimized by SXMLSimplify, and translated by
ClosureConvert to SSA.

Description

SXML is a simply-typed version of XML.

Implementation

• sxml.sig

• sxml.fun

• sxml-tree.sig

Type Checking

SXML shares the type checker for XML.

Details and Notes

There are only two differences between XML and SXML. First, SXML val, fun, and datatype declarations always have an
empty list of type variables. Second, SXML variable references always have an empty list of type arguments. Constructors uses
can only have a nonempty list of type arguments if the constructor is a primitive.

Although we could rely on the type system to enforce these constraints by parameterizing the XML signature, StephenWeeks did
so in a previous version of the compiler, and the software engineering gains were not worth the effort.

https://github.com/MLton/mlton/blob/master/mlton/xml/sxml.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/sxml.fun
https://github.com/MLton/mlton/blob/master/mlton/xml/sxml-tree.sig

MLton Guide (20180207) 533 / 611

SXMLShrink

SXMLShrink is an optimization pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass performs optimizations based on a reduction system.

Implementation

• shrink.sig

• shrink.fun

Details and Notes

SXML shares the XMLShrink simplifier.

https://github.com/MLton/mlton/blob/master/mlton/xml/shrink.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/shrink.fun

MLton Guide (20180207) 534 / 611

SXMLSimplify

The optimization passes for the SXML IntermediateLanguage are collected and controlled by the SxmlSimplify functor
(sxml-simplify.sig, sxml-simplify.fun).

The following optimization passes are implemented:

• Polyvariance

• SXMLShrink

The following implementation passes are implemented:

• ImplementExceptions

• ImplementSuffix

The following optimization passes are not implemented, but might prove useful:

• Uncurry

• LambdaLift

The optimization passes can be controlled from the command-line by the options

• -diag-pass <pass>— keep diagnostic info for pass

• -disable-pass <pass>— skip optimization pass (if normally performed)

• -enable-pass <pass>— perform optimization pass (if normally skipped)

• -keep-pass <pass>— keep the results of pass

• -sxml-passes <passes>— sxml optimization passes

https://github.com/MLton/mlton/blob/master/mlton/xml/sxml-simplify.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/sxml-simplify.fun

MLton Guide (20180207) 535 / 611

SyntacticConventions

Here are a number of syntactic conventions useful for programming in SML.

General

• A line of code never exceeds 80 columns.

• Only split a syntactic entity across multiple lines if it doesn’t fit on one line within 80 columns.

• Use alphabetical order wherever possible.

• Avoid redundant parentheses.

• When using :, there is no space before the colon, and a single space after it.

Identifiers

• Variables, record labels and type constructors begin with and use small letters, using capital letters to separate words.

cost
maxValue

• Variables that represent collections of objects (lists, arrays, vectors, . . .) are often suffixed with an s.

xs
employees

• Constructors, structure identifiers, and functor identifiers begin with a capital letter.

Queue
LinkedList

• Signature identifiers are in all capitals, using _ to separate words.

LIST
BINARY_HEAP

Types

• Alphabetize record labels. In a record type, there are spaces after colons and commas, but not before colons or commas, or at
the delimiters { and }.

{bar: int, foo: int}

• Only split a record type across multiple lines if it doesn’t fit on one line. If a record type must be split over multiple lines, put
one field per line.

{bar: int,
foo: real * real,
zoo: bool}

• In a tuple type, there are spaces before and after each *.

int * bool * real

MLton Guide (20180207) 536 / 611

• Only split a tuple type across multiple lines if it doesn’t fit on one line. In a tuple type split over multiple lines, there is one
type per line, and the *-s go at the beginning of the lines.

int

* bool

* real

It may also be useful to parenthesize to make the grouping more apparent.

(int

* bool

* real)

• In an arrow type split over multiple lines, put the arrow at the beginning of its line.

int * real
-> bool

It may also be useful to parenthesize to make the grouping more apparent.

(int * real
-> bool)

• Avoid redundant parentheses.

• Arrow types associate to the right, so write

a -> b -> c

not

a -> (b -> c)

• Type constructor application associates to the left, so write

int ref list

not

(int ref) list

• Type constructor application binds more tightly than a tuple type, so write

int list * bool list

not

(int list) * (bool list)

• Tuple types bind more tightly than arrow types, so write

int * bool -> real

not

(int * bool) -> real

MLton Guide (20180207) 537 / 611

Core

• A core expression or declaration split over multiple lines does not contain any blank lines.

• A record field selector has no space between the # and the record label. So, write

#foo

not

foo

• A tuple has a space after each comma, but not before, and not at the delimiters (and).

(e1, e2, e3)

• A tuple split over multiple lines has one element per line, and the commas go at the end of the lines.

(e1,
e2,
e3)

• A list has a space after each comma, but not before, and not at the delimiters [and].

[e1, e2, e3]

• A list split over multiple lines has one element per line, and the commas at the end of the lines.

[e1,
e2,
e3]

• A record has spaces before and after =, a space after each comma, but not before, and not at the delimiters { and }. Field
names appear in alphabetical order.

{bar = 13, foo = true}

• A sequence expression has a space after each semicolon, but not before.

(e1; e2; e3)

• A sequence expression split over multiple lines has one expression per line, and the semicolons at the beginning of lines. Lisp
and Scheme programmers may find this hard to read at first.

(e1
; e2
; e3)

Rationale: this makes it easy to visually spot the beginning of each expression, which becomes more valuable as the expressions
themselves are split across multiple lines.

• An application expression has a space between the function and the argument. There are no parens unless the argument is a
tuple (in which case the parens are really part of the tuple, not the application).

f a
f (a1, a2, a3)

• Avoid redundant parentheses. Application associates to left, so write

f a1 a2 a3

MLton Guide (20180207) 538 / 611

not

((f a1) a2) a3

• Infix operators have a space before and after the operator.

x + y
x * y - z

• Avoid redundant parentheses. Use OperatorPrecedence. So, write

x + y * z

not

x + (y * z)

• An andalso expression split over multiple lines has the andalso at the beginning of subsequent lines.

e1
andalso e2
andalso e3

• A case expression is indented as follows

case e1 of
p1 => e1

| p2 => e2
| p3 => e3

• A datatype’s constructors are alphabetized.

datatype t = A | B | C

• A datatype declaration has a space before and after each |.

datatype t = A | B of int | C

• A datatype split over multiple lines has one constructor per line, with the | at the beginning of lines and the constructors
beginning 3 columns to the right of the datatype.

datatype t =
A

| B
| C

• A fun declaration may start its body on the subsequent line, indented 3 spaces.

fun f x y =
let

val z = x + y + z
in

z
end

• An if expression is indented as follows.

if e1
then e2

else e3

MLton Guide (20180207) 539 / 611

• A sequence of if-then-else-s is indented as follows.

if e1
then e2

else if e3
then e4

else if e5
then e6

else e7

• A let expression has the let, in, and end on their own lines, starting in the same column. Declarations and the body are
indented 3 spaces.

let
val x = 13
val y = 14

in
x + y

end

• A local declaration has the local, in, and end on their own lines, starting in the same column. Declarations are indented
3 spaces.

local
val x = 13

in
val y = x

end

• An orelse expression split over multiple lines has the orelse at the beginning of subsequent lines.

e1
orelse e2
orelse e3

• A val declaration has a space before and after the =.

val p = e

• A val declaration can start the expression on the subsequent line, indented 3 spaces.

val p =
if e1 then e2 else e3

Signatures

• A signature declaration is indented as follows.

signature FOO =
sig

val x: int
end

Exception: a signature declaration in a file to itself can omit the indentation to save horizontal space.

signature FOO =
sig

val x: int

end

MLton Guide (20180207) 540 / 611

In this case, there should be a blank line after the sig and before the end.

• A val specification has a space after the colon, but not before.

val x: int

Exception: in the case of operators (like +), there is a space before the colon to avoid lexing the colon as part of the operator.

val + : t * t -> t

• Alphabetize specifications in signatures.

sig
val x: int
val y: bool

end

Structures

• A structure declaration has a space on both sides of the =.

structure Foo = Bar

• A structure declaration split over multiple lines is indented as follows.

structure S =
struct

val x = 13
end

Exception: a structure declaration in a file to itself can omit the indentation to save horizontal space.

structure S =
struct

val x = 13

end

In this case, there should be a blank line after the struct and before the end.

• Declarations in a struct are separated by blank lines.

struct
val x =

let
y = 13

in
y + 1

end

val z = 14
end

MLton Guide (20180207) 541 / 611

Functors

• A functor declaration has spaces after each : (or :>) but not before, and a space before and after the =. It is indented as
follows.

functor Foo (S: FOO_ARG): FOO =
struct

val x = S.x
end

Exception: a functor declaration in a file to itself can omit the indentation to save horizontal space.

functor Foo (S: FOO_ARG): FOO =
struct

val x = S.x

end

In this case, there should be a blank line after the struct and before the end.

MLton Guide (20180207) 542 / 611

Talk

The MLton Standard ML Compiler

Henry Cejtin, Matthew Fluet, Suresh Jagannathan, Stephen Weeks

Next

MLton Guide (20180207) 543 / 611

TalkDiveIn

Dive In

• to Development

• to Documentation

• to Download

Prev

MLton Guide (20180207) 544 / 611

TalkFolkLore

Folk Lore

• Defunctorization and monomorphisation are feasible

• Global control-flow analysis is feasible

• Early closure conversion is feasible

Prev Next

MLton Guide (20180207) 545 / 611

TalkFromSMLTo

From Standard ML to S-T F-O IL

• What issues arise when translating from Standard ML into an intermediate language?

Prev Next

MLton Guide (20180207) 546 / 611

TalkHowHigherOrder

Higher-order Functions

• How does one represent SML’s higher-order functions?

• MLton’s answer: defunctionalize

See ClosureConvert.

Prev Next

MLton Guide (20180207) 547 / 611

TalkHowModules

Modules

• How does one represent SML’s modules?

• MLton’s answer: defunctorize

See Elaborate.

Prev Next

MLton Guide (20180207) 548 / 611

TalkHowPolymorphism

Polymorphism

• How does one represent SML’s polymorphism?

• MLton’s answer: monomorphise

See Monomorphise.

Prev Next

MLton Guide (20180207) 549 / 611

TalkMLtonApproach

MLton’s Approach

• whole-program optimization using a simply-typed, first-order intermediate language

• ensures programs are not penalized for exploiting abstraction and modularity

Prev Next

MLton Guide (20180207) 550 / 611

TalkMLtonFeatures

MLton Features

• Supports full Standard ML language and Basis Library

• Generates standalone executables

• Extensions

– Foreign function interface (SML to C, C to SML)

– ML Basis system for programming in the very large

– Extension libraries

See Features.

Prev Next

MLton Guide (20180207) 551 / 611

TalkMLtonHistory

MLton History

April 1997 Stephen Weeks wrote a defunctorizer for SML/NJ
Aug. 1997 Begin independent compiler (smlc)
Oct. 1997 Monomorphiser
Nov. 1997 Polyvariant higher-order control-flow analysis (10,000 lines)
March 1999 First release of MLton (48,006 lines)
Jan. 2002 MLton at 102,541 lines
Jan. 2003 MLton at 112,204 lines
Jan. 2004 MLton at 122,299 lines
Nov. 2004 MLton at 141,311 lines

See History.

Prev Next

MLton Guide (20180207) 552 / 611

TalkStandardML

Standard ML

• a high-level language makes

– a programmer’s life easier

– a compiler writer’s life harder

• perceived overheads of features discourage their use

– higher-order functions

– polymorphic datatypes

– separate modules

Also see Standard ML.

Prev Next

MLton Guide (20180207) 553 / 611

TalkTemplate

Title

• Bullet

• Bullet

Prev Next

MLton Guide (20180207) 554 / 611

TalkWholeProgram

Whole Program Compiler

• Each of these techniques requires whole-program analysis

• But, additional benefits:

– eliminate (some) variability in programming styles

– specialize representations

– simplifies and improves runtime system

Prev Next

MLton Guide (20180207) 555 / 611

TILT

TILT is a Standard ML implementation.

http://www.cs.cornell.edu/home/jgm/tilt.html

MLton Guide (20180207) 556 / 611

TipsForWritingConciseSML

SML is a rich enough language that there are often several ways to express things. This page contains miscellaneous tips (ideas
not rules) for writing concise SML. The metric that we are interested in here is the number of tokens or words (rather than the
number of lines, for example).

Datatypes in Signatures

A seemingly frequent source of repetition in SML is that of datatype definitions in signatures and structures. Actually, it isn’t
repetition at all. A datatype specification in a signature, such as,

signature EXP = sig
datatype exp = Fn of id * exp | App of exp * exp | Var of id

end

is just a specification of a datatype that may be matched by multiple (albeit identical) datatype declarations. For example, in

structure AnExp : EXP = struct
datatype exp = Fn of id * exp | App of exp * exp | Var of id

end

structure AnotherExp : EXP = struct
datatype exp = Fn of id * exp | App of exp * exp | Var of id

end

the types AnExp.exp and AnotherExp.exp are two distinct types. If such generativity isn’t desired or needed, you can
avoid the repetition:

structure Exp = struct
datatype exp = Fn of id * exp | App of exp * exp | Var of id

end

signature EXP = sig
datatype exp = datatype Exp.exp

end

structure Exp : EXP = struct
open Exp

end

Keep in mind that this isn’t semantically equivalent to the original.

Clausal Function Definitions

The syntax of clausal function definitions is rather repetitive. For example,

fun isSome NONE = false
| isSome (SOME _) = true

is more verbose than

val isSome =
fn NONE => false
| SOME _ => true

For recursive functions the break-even point is one clause higher. For example,

MLton Guide (20180207) 557 / 611

fun fib 0 = 0
| fib 1 = 1
| fib n = fib (n-1) + fib (n-2)

isn’t less verbose than

val rec fib =
fn 0 => 0
| 1 => 1
| n => fib (n-1) + fib (n-2)

It is quite often the case that a curried function primarily examines just one of its arguments. Such functions can be written
particularly concisely by making the examined argument last. For example, instead of

fun eval (Fn (v, b)) env => ...
| eval (App (f, a) env => ...
| eval (Var v) env => ...

consider writing

fun eval env =
fn Fn (v, b) => ...
| App (f, a) => ...
| Var v => ...

Parentheses

It is a good idea to avoid using lots of irritating superfluous parentheses. An important rule to know is that prefix function
application in SML has higher precedence than any infix operator. For example, the outer parentheses in

(square (5 + 1)) + (square (5 * 2))

are superfluous.

People trained in other languages often use superfluous parentheses in a number of places. In particular, the parentheses in the
following examples are practically always superfluous and are best avoided:

if (condition) then ... else ...
while (condition) do ...

The same basically applies to case expressions:

case (expression) of ...

It is not uncommon to match a tuple of two or more values:

case (a, b) of
(A1, B1) => ...

| (A2, B2) => ...

Such case expressions can be written more concisely with an infix product constructor:

case a & b of
A1 & B1 => ...

| A2 & B2 => ...

MLton Guide (20180207) 558 / 611

Conditionals

Repeated sequences of conditionals such as

if x < y then ...
else if x = y then ...
else ...

can often be written more concisely as case expressions such as

case Int.compare (x, y) of
LESS => ...

| EQUAL => ...
| GREATER => ...

For a custom comparison, you would then define an appropriate datatype and a reification function. An alternative to using
datatypes is to use dispatch functions

comparing (x, y)
{lt = fn () => ...,
eq = fn () => ...,
gt = fn () => ...}

where

fun comparing (x, y) {lt, eq, gt} =
(case Int.compare (x, y) of

LESS => lt
| EQUAL => eq
| GREATER => gt) ()

An advantage is that no datatype definition is needed. A disadvantage is that you can’t combine multiple dispatch results easily.

Command-Query Fusion

Many are familiar with the Command-Query Separation Principle. Adhering to the principle, a signature for an imperative stack
might contain specifications

val isEmpty : ’a t -> bool
val pop : ’a t -> ’a

and use of a stack would look like

if isEmpty stack
then ... pop stack ...
else ...

or, when the element needs to be named,

if isEmpty stack
then let val elem = pop stack in ... end
else ...

For efficiency, correctness, and conciseness, it is often better to combine the query and command and return the result as an
option:

val pop : ’a t -> ’a option

A use of a stack would then look like this:

case pop stack of
NONE => ...

| SOME elem => ...

http://en.wikipedia.org/wiki/Command-Query_Separation

MLton Guide (20180207) 559 / 611

ToMachine

ToMachine is a translation pass from the RSSA IntermediateLanguage to the Machine IntermediateLanguage.

Description

This pass converts from a RSSA program into a Machine program.

It uses AllocateRegisters, Chunkify, and ParallelMove.

Implementation

• backend.sig

• backend.fun

Details and Notes

Because the MLton runtime system is shared by all codegens, it is most convenient to decide on stack layout before any codegen
takes over. In particular, we compute all the stack frame info for each RSSA function, including stack size, garbage collector
masks for each frame, etc. To do so, the Machine IntermediateLanguage imagines an abstract machine with an infinite number of
(pseudo-)registers of every size. A liveness analysis determines, for each variable, whether or not it is live across a point where
the runtime system might take over (for example, any garbage collection point) or a non-tail call to another RSSA function.
Those that are live go on the stack, while those that aren’t live go into psuedo-registers. From this information, we know all we
need to about each stack frame. On the downside, nothing further on is allowed to change this stack info; it is set in stone.

https://github.com/MLton/mlton/blob/master/mlton/backend/backend.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/backend.fun

MLton Guide (20180207) 560 / 611

TomMurphy

Tom Murphy VII is a long time MLton user and occasional contributor. He works on programming languages for his PhD work
at Carnegie Mellon in Pittsburgh, USA. AdamGoode lives on the same floor of Wean Hall.

Home page

http://tom7.org

MLton Guide (20180207) 561 / 611

ToRSSA

ToRSSA is a translation pass from the SSA2 IntermediateLanguage to the RSSA IntermediateLanguage.

Description

This pass converts a SSA2 program into a RSSA program.

It uses PackedRepresentation.

Implementation

• ssa-to-rssa.sig

• ssa-to-rssa.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/ssa-to-rssa.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/ssa-to-rssa.fun

MLton Guide (20180207) 562 / 611

ToSSA2

ToSSA2 is a translation pass from the SSA IntermediateLanguage to the SSA2 IntermediateLanguage.

Description

This pass is a simple conversion from a SSA program into a SSA2 program.

The only interesting portions of the translation are:

• an SSA ref type becomes an object with a single mutable field

• array, vector, and ref are eliminated in favor of select and updates

• Case transfers separate discrimination and constructor argument selects

Implementation

• ssa-to-ssa2.sig

• ssa-to-ssa2.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa-to-ssa2.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/ssa-to-ssa2.fun

MLton Guide (20180207) 563 / 611

TypeChecking

MLton’s type checker follows the Definition closely, so you may find differences between MLton and other SML compilers that
do not follow the Definition so closely. In particular, SML/NJ has many deviations from the Definition — please see SMLNJDe-
viations for those that we are aware of.

In some respects MLton’s type checker is more powerful than other SML compilers, so there are programs that MLton accepts
that are rejected by some other SML compilers. These kinds of programs fall into a few simple categories.

• MLton resolves flexible record patterns using a larger context than many other SML compilers. For example, MLton accepts
the following.

fun f {x, ...} = x
val _ = f {x = 13, y = "foo"}

• MLton uses as large a context as possible to resolve the type of variables constrained by the value restriction to be monotypes.
For example, MLton accepts the following.

structure S:
sig

val f: int -> int
end =
struct

val f = (fn x => x) (fn y => y)
end

Type error messages

To aid in the understanding of type errors, MLton’s type checker displays type errors differently than other SML compilers. In
particular, when two types are different, it is important for the programmer to easily understand why they are different. So, MLton
displays only the differences between two types that don’t match, using underscores for the parts that match. For example, if a
function expects real * int but gets real * real, the type error message would look like

expects: _ * [int]
but got: _ * [real]

As another aid to spotting differences, MLton places brackets [] around the parts of the types that don’t match. A common
situation is when a function receives a different number of arguments than it expects, in which case you might see an error like

expects: [int * real]
but got: [int * real * string]

The brackets make it easy to see that the problem is that the tuples have different numbers of components — not that the compo-
nents don’t match. Contrast that with a case where a function receives the right number of arguments, but in the wrong order, in
which case you might see an error like

expects: [int] * [real]
but got: [real] * [int]

Here the brackets make it easy to see that the components do not match.

We appreciate feedback on any type error messages that you find confusing, or suggestions you may have for improvements to
error messages.

MLton Guide (20180207) 564 / 611

The shortest/most-recent rule for type names

In a type error message, MLton often has a number of choices in deciding what name to use for a type. For example, in the
following type-incorrect program

type t = int
fun f (x: t) = x
val _ = f "foo"

MLton reports the error message

Error: z.sml 3.9-3.15.
Function applied to incorrect argument.
expects: [t]
but got: [string]
in: f "foo"

MLton could have reported expects:[int] instead of expects:[t]. However, MLton uses the shortest/most-recent rule
in order to decide what type name to display. This rule means that, at the point of the error, MLton first looks for the shortest
name for a type in terms of number of structure identifiers (e.g. foobar is shorter than A.t). Next, if there are multiple names
of the same length, then MLton uses the most recently defined name. It is this tiebreaker that causes MLton to prefer t to int
in the above example.

In signature matching, most recently defined is not taken to include all of the definitions introduced by the structure (since the
matching takes place outside the structure and before it is defined). For example, in the following type-incorrect program

structure S:
sig

val x: int
end =
struct

type t = int
val x = "foo"

end

MLton reports the error message

Error: z.sml 2.4-4.6.
Variable in structure disagrees with signature (type): x.
structure: val x: [string]
defn at: z.sml 7.11-7.11
signature: val x: [int]
spec at: z.sml 3.11-3.11

If there is a type that only exists inside the structure being matched, then the prefix _str. is used. For example, in the following
type-incorrect program

structure S:
sig

val x: int
end =
struct

datatype t = T
val x = T

end

MLton reports the error message

Error: z.sml 2.4-4.6.
Variable in structure disagrees with signature (type): x.
structure: val x: [_str.t]
defn at: z.sml 7.11-7.11

MLton Guide (20180207) 565 / 611

signature: val x: [int]
spec at: z.sml 3.11-3.11

in which the [_str.t] refers to the type defined in the structure.

MLton Guide (20180207) 566 / 611

TypeConstructor

In Standard ML, a type constructor is a function from types to types. Type constructors can be nullary, meaning that they take
no arguments, as in char, int, and real. Type constructors can be unary, meaning that they take one argument, as in array,
list, and vector. A program can define a new type constructor in two ways: a type definition or a datatype declaration.
User-defined type constructors can can take any number of arguments.

datatype t = T of int * real (* 0 arguments *)
type ’a t = ’a * int (* 1 argument *)
datatype (’a, ’b) t = A | B of ’a * ’b (* 2 arguments *)
type (’a, ’b, ’c) t = ’a * (’b -> ’c) (* 3 arguments *)

Here are the syntax rules for type constructor application.

• Type constructor application is written in postfix. So, one writes int list, not list int.

• Unary type constructors drop the parens, so one writes int list, not (int) list.

• Nullary type constructors drop the argument entirely, so one writes int, not () int.

• N-ary type constructors use tuple notation; for example, (int, real) t.

• Type constructor application associates to the left. So, int ref list is the same as (int ref) list.

MLton Guide (20180207) 567 / 611

TypeIndexedValues

Standard ML does not support ad hoc polymorphism. This presents a challenge to programmers. The problem is that at first
glance there seems to be no practical way to implement something like a function for converting a value of any type to a string
or a function for computing a hash value for a value of any type. Fortunately there are ways to implement type-indexed values in
SML as discussed in Yang98. Various articles such as Danvy98, Ramsey11, Elsman04, Kennedy04, and Benton05 also contain
examples of type-indexed values.

NOTE: The technique used in the following example uses an early (and somewhat broken) variation of the basic technique
used in an experimental generic programming library (see README) that can be found from the MLton repository. The generic
programming library also includes a more advanced generic pretty printing function (see pretty.sig).

Example: Converting any SML value to (roughly) SML syntax

Consider the problem of converting any SML value to a textual presentation that matches the syntax of SML as closely as
possible. One solution is a type-indexed function that maps a given type to a function that maps any value (of the type) to its
textual presentation. A type-indexed function like this can be useful for a variety of purposes. For example, one could use it to
show debugging information. We’ll call this function "show".

We’ll do a fairly complete implementation of show. We do not distinguish infix and nonfix constructors, but that is not an
intrinsic property of SML datatypes. We also don’t reconstruct a type name for the value, although it would be particularly useful
for functional values. To reconstruct type names, some changes would be needed and the reader is encouraged to consider how
to do that. A more realistic implementation would use some pretty printing combinators to compute a layout for the result. This
should be a relatively easy change (given a suitable pretty printing library). Cyclic values (through references and arrays) do
not have a standard textual presentation and it is impossible to convert arbitrary functional values (within SML) to a meaningful
textual presentation. Finally, it would also make sense to show sharing of references and arrays. We’ll leave these improvements
to an actual library implementation.

The following code uses the fixpoint framework and other utilities from an Extended Basis library (see README).

Signature

Let’s consider the design of the SHOW signature:

infixr -->

signature SHOW = sig
type ’a t (* complete type-index *)
type ’a s (* incomplete sum *)
type (’a, ’k) p (* incomplete product *)
type u (* tuple or unlabelled product *)
type l (* record or labelled product *)

val show : ’a t -> ’a -> string

(* user-defined types *)
val inj : (’a -> ’b) -> ’b t -> ’a t

(* tuples and records *)
val * : (’a, ’k) p * (’b, ’k) p -> ((’a, ’b) product, ’k) p

val U : ’a t -> (’a, u) p
val L : string -> ’a t -> (’a, l) p

val tuple : (’a, u) p -> ’a t
val record : (’a, l) p -> ’a t

(* datatypes *)
val + : ’a s * ’b s -> ((’a, ’b) sum) s

https://github.com/MLton/mltonlib/blob/master/com/ssh/generic/unstable/README
https://github.com/MLton/mltonlib/blob/master/com/ssh/generic/unstable/public/value/pretty.sig
https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/README

MLton Guide (20180207) 568 / 611

val C0 : string -> unit s
val C1 : string -> ’a t -> ’a s

val data : ’a s -> ’a t

val Y : ’a t Tie.t

(* exceptions *)
val exn : exn t
val regExn : (exn -> (’a * ’a s) option) -> unit

(* some built-in type constructors *)
val refc : ’a t -> ’a ref t
val array : ’a t -> ’a array t
val list : ’a t -> ’a list t
val vector : ’a t -> ’a vector t
val --> : ’a t * ’b t -> (’a -> ’b) t

(* some built-in base types *)
val string : string t
val unit : unit t
val bool : bool t
val char : char t
val int : int t
val word : word t
val real : real t

end

While some details are shaped by the specific requirements of show, there are a number of (design) patterns that translate to
other type-indexed values. The former kind of details are mostly shaped by the syntax of SML values that show is designed to
produce. To this end, abstract types and phantom types are used to distinguish incomplete record, tuple, and datatype type-indices
from each other and from complete type-indices. Also, names of record labels and datatype constructors need to be provided by
the user.

Arbitrary user-defined datatypes

Perhaps the most important pattern is how the design supports arbitrary user-defined datatypes. A number of combinators together
conspire to provide the functionality. First of all, to support new user-defined types, a combinator taking a conversion function
to a previously supported type is provided:

val inj : (’a -> ’b) -> ’b t -> ’a t

An injection function is sufficient in this case, but in the general case, an embedding with injection and projection functions may
be needed.

To support products (tuples and records) a product combinator is provided:

val * : (’a, ’k) p * (’b, ’k) p -> ((’a, ’b) product, ’k) p

The second (phantom) type variable ’k is there to distinguish between labelled and unlabelled products and the type p dis-
tinguishes incomplete products from complete type-indices of type t. Most type-indexed values do not need to make such
distinctions.

To support sums (datatypes) a sum combinator is provided:

val + : ’a s * ’b s -> ((’a, ’b) sum) s

Again, the purpose of the type s is to distinguish incomplete sums from complete type-indices of type t, which usually isn’t
necessary.

Finally, to support recursive datatypes, including sets of mutually recursive datatypes, a fixpoint tier is provided:

MLton Guide (20180207) 569 / 611

val Y : ’a t Tie.t

Together these combinators (with the more domain specific combinators U, L, tuple, record, C0, C1, and data) enable one
to encode a type-index for any user-defined datatype.

Exceptions

The exn type in SML is a universal type into which all types can be embedded. SML also allows a program to generate new
exception variants at run-time. Thus a mechanism is required to register handlers for particular variants:

val exn : exn t
val regExn : (exn -> (’a * ’a s) option) -> unit

The universal exn type-index then makes use of the registered handlers. The above particular form of handler, which converts
an exception value to a value of some type and a type-index for that type (essentially an existential type) is designed to make it
convenient to write handlers. To write a handler, one can conveniently reuse existing type-indices:

exception Int of int

local
open Show

in
val () = regExn (fn Int v => SOME (v, C1"Int" int)

| _ => NONE)
end

Note that a single handler may actually handle an arbitrary number of different exceptions.

Other types

Some built-in and standard types typically require special treatment due to their special nature. The most important of these are
arrays and references, because cyclic data (ignoring closures) and observable sharing can only be constructed through them.

When arrow types are really supported, unlike in this case, they usually need special treatment due to the contravariance of
arguments.

Lists and vectors require special treatment in the case of show, because of their special syntax. This isn’t usually the case.

The set of base types to support also needs to be considered unless one exports an interface for constructing type-indices for
entirely new base types.

Usage

Before going to the implementation, let’s look at some examples. For the following examples, we’ll assume a structure binding
Show :> SHOW. If you want to try the examples immediately, just skip forward to the implementation.

To use show, one first needs a type-index, which is then given to show. To show a list of integers, one would use the type-index
list int, which has the type int list Show.t:

val "[3, 1, 4]" =
let open Show in show (list int) end

[3, 1, 4]

Likewise, to show a list of lists of characters, one would use the type-index list (list char), which has the type char
list list Show.t:

val "[[#\"a\", #\"b\", #\"c\"], []]" =
let open Show in show (list (list char)) end

[[#"a", #"b", #"c"], []]

MLton Guide (20180207) 570 / 611

Handling standard types is not particularly interesting. It is more interesting to see how user-defined types can be handled.
Although the option datatype is a standard type, it requires no special support, so we can treat it as a user-defined type.
Options can be encoded easily using a sum:

fun option t = let
open Show

in
inj (fn NONE => INL ()

| SOME v => INR v)
(data (C0"NONE" + C1"SOME" t))

end

val "SOME 5" =
let open Show in show (option int) end

(SOME 5)

Readers new to type-indexed values might want to type annotate each subexpression of the above example as an exercise. (Use
a compiler to check your annotations.)

Using a product, user specified records can be also be encoded easily:

val abc = let
open Show

in
inj (fn {a, b, c} => a & b & c)

(record (L"a" (option int) *
L"b" real *
L"c" bool))

end

val "{a = SOME 1, b = 3.0, c = false}" =
let open Show in show abc end

{a = SOME 1, b = 3.0, c = false}

As you can see, both of the above use inj to inject user-defined types to the general purpose sum and product types.

Of particular interest is whether recursive datatypes and cyclic data can be handled. For example, how does one write a type-index
for a recursive datatype such as a cyclic graph?

datatype ’a graph = VTX of ’a * ’a graph list ref
fun arcs (VTX (_, r)) = r

Using the Show combinators, we could first write a new type-index combinator for graph:

fun graph a = let
open Tie Show

in
fix Y (fn graph_a =>

inj (fn VTX (x, y) => x & y)
(data (C1"VTX"

(tuple (U a *
U (refc (list graph_a)))))))

end

To show a graph with integer labels

val a_graph = let
val a = VTX (1, ref [])
val b = VTX (2, ref [])
val c = VTX (3, ref [])
val d = VTX (4, ref [])
val e = VTX (5, ref [])
val f = VTX (6, ref [])

MLton Guide (20180207) 571 / 611

in
arcs a := [b, d]

; arcs b := [c, e]
; arcs c := [a, f]
; arcs d := [f]
; arcs e := [d]
; arcs f := [e]
; a

end

we could then simply write

val "VTX (1, ref [VTX (2, ref [VTX (3, ref [VTX (1, %0), \
\VTX (6, ref [VTX (5, ref [VTX (4, ref [VTX (6, %3)])])] as %3)]), \
\VTX (5, ref [VTX (4, ref [VTX (6, ref [VTX (5, %2)])])] as %2)]), \
\VTX (4, ref [VTX (6, ref [VTX (5, ref [VTX (4, %1)])])] as %1)] as %0)" =
let open Show in show (graph int) end

a_graph

There is a subtle gotcha with cyclic data. Consider the following code:

exception ExnArray of exn array

val () = let
open Show

in
regExn (fn ExnArray a =>

SOME (a, C1"ExnArray" (array exn))
| _ => NONE)

end

val a_cycle = let
val a = Array.fromList [Empty]

in
Array.update (a, 0, ExnArray a) ; a

end

Although the above looks innocent enough, the evaluation of

val "[|ExnArray %0|] as %0" =
let open Show in show (array exn) end

a_cycle

goes into an infinite loop. To avoid this problem, the type-index array exn must be evaluated only once, as in the following:

val array_exn = let open Show in array exn end

exception ExnArray of exn array

val () = let
open Show

in
regExn (fn ExnArray a =>

SOME (a, C1"ExnArray" array_exn)
| _ => NONE)

end

val a_cycle = let
val a = Array.fromList [Empty]

in
Array.update (a, 0, ExnArray a) ; a

end

MLton Guide (20180207) 572 / 611

val "[|ExnArray %0|] as %0" =
let open Show in show array_exn end

a_cycle

Cyclic data (excluding closures) in Standard ML can only be constructed imperatively through arrays and references (combined
with exceptions or recursive datatypes). Before recursing to a reference or an array, one needs to check whether that reference or
array has already been seen before. When ref or array is called with a type-index, a new cyclicity checker is instantiated.

Implementation

structure SmlSyntax = struct
local

structure CV = CharVector and C = Char
in

val isSym = Char.contains "!%&$#+-/:<=>?@\\~‘^|*"

fun isSymId s = 0 < size s andalso CV.all isSym s

fun isAlphaNumId s =
0 < size s
andalso C.isAlpha (CV.sub (s, 0))
andalso CV.all (fn c => C.isAlphaNum c

orelse #"’" = c
orelse #"_" = c) s

fun isNumLabel s =
0 < size s
andalso #"0" <> CV.sub (s, 0)
andalso CV.all C.isDigit s

fun isId s = isAlphaNumId s orelse isSymId s

fun isLongId s = List.all isId (String.fields (#"." <\ op =) s)

fun isLabel s = isId s orelse isNumLabel s
end

end

structure Show :> SHOW = struct
datatype ’a t = IN of exn list * ’a -> bool * string
type ’a s = ’a t
type (’a, ’k) p = ’a t
type u = unit
type l = unit

fun show (IN t) x = #2 (t ([], x))

(* user-defined types *)
fun inj inj (IN b) = IN (b o Pair.map (id, inj))

local
fun surround pre suf (_, s) = (false, concat [pre, s, suf])
fun parenthesize x = if #1 x then surround "(" ")" x else x
fun construct tag =

(fn (_, s) => (true, concat [tag, " ", s])) o parenthesize
fun check p m s = if p s then () else raise Fail (m^s)

in
(* tuples and records *)
fun (IN l) * (IN r) =

MLton Guide (20180207) 573 / 611

IN (fn (rs, a & b) =>
(false, concat [#2 (l (rs, a)),

", ",
#2 (r (rs, b))]))

val U = id
fun L l = (check SmlSyntax.isLabel "Invalid label: " l

; fn IN t => IN (surround (l^" = ") "" o t))

fun tuple (IN t) = IN (surround "(" ")" o t)
fun record (IN t) = IN (surround "{" "}" o t)

(* datatypes *)
fun (IN l) + (IN r) = IN (fn (rs, INL a) => l (rs, a)

| (rs, INR b) => r (rs, b))

fun C0 c = (check SmlSyntax.isId "Invalid constructor: " c
; IN (const (false, c)))

fun C1 c (IN t) = (check SmlSyntax.isId "Invalid constructor: " c
; IN (construct c o t))

val data = id

fun Y ? = Tie.iso Tie.function (fn IN x => x, IN) ?

(* exceptions *)
local

val handlers = ref ([] : (exn -> unit t option) list)
in

val exn = IN (fn (rs, e) => let
fun lp [] =

C0(concat ["<exn:",
General.exnName e,
">"])

| lp (f::fs) =
case f e
of NONE => lp fs
| SOME t => t

val IN f = lp (!handlers)
in

f (rs, ())
end)

fun regExn f =
handlers := (Option.map

(fn (x, IN f) =>
IN (fn (rs, ()) =>

f (rs, x))) o f)
:: !handlers

end

(* some built-in type constructors *)
local

fun cyclic (IN t) = let
exception E of ’’a * bool ref

in
IN (fn (rs, v : ’’a) => let

val idx = Int.toString o length
fun lp (E (v’, c)::rs) =

if v’ <> v then lp rs
else (c := false ; (false, "%"^idx rs))

| lp (_::rs) = lp rs
| lp [] = let

MLton Guide (20180207) 574 / 611

val c = ref true
val r = t (E (v, c)::rs, v)

in
if !c then r
else surround "" (" as %"^idx rs) r

end
in

lp rs
end)

end

fun aggregate pre suf toList (IN t) =
IN (surround pre suf o

(fn (rs, a) =>
(false,
String.concatWith

", "
(map (#2 o curry t rs)

(toList a)))))
in

fun refc ? = (cyclic o inj ! o C1"ref") ?
fun array ? = (cyclic o aggregate "[|" "|]" (Array.foldr op:: [])) ?
fun list ? = aggregate "[" "]" id ?
fun vector ? = aggregate "#[" "]" (Vector.foldr op:: []) ?

end

fun (IN _) --> (IN _) = IN (const (false, "<fn>"))

(* some built-in base types *)
local

fun mk toS = (fn x => (false, x)) o toS o (fn (_, x) => x)
in

val string =
IN (surround "\"" "\"" o mk (String.translate Char.toString))

val unit = IN (mk (fn () => "()"))
val bool = IN (mk Bool.toString)
val char = IN (surround "#\"" "\"" o mk Char.toString)
val int = IN (mk Int.toString)
val word = IN (surround "0wx" "" o mk Word.toString)
val real = IN (mk Real.toString)

end
end

end

(* Handlers for standard top-level exceptions *)
val () = let

open Show
fun E0 name = SOME ((), C0 name)

in
regExn (fn Bind => E0"Bind"

| Chr => E0"Chr"
| Div => E0"Div"
| Domain => E0"Domain"
| Empty => E0"Empty"
| Match => E0"Match"
| Option => E0"Option"
| Overflow => E0"Overflow"
| Size => E0"Size"
| Span => E0"Span"
| Subscript => E0"Subscript"
| _ => NONE)

; regExn (fn Fail s => SOME (s, C1"Fail" string)

MLton Guide (20180207) 575 / 611

| _ => NONE)
end

Also see

There are a number of related techniques. Here are some of them.

• Fold

• StaticSum

MLton Guide (20180207) 576 / 611

TypeVariableScope

In Standard ML, every type variable is scoped (or bound) at a particular point in the program. A type variable can be either
implicitly scoped or explicitly scoped. For example, ’a is implicitly scoped in

val id: ’a -> ’a = fn x => x

and is implicitly scoped in

val id = fn x: ’a => x

On the other hand, ’a is explicitly scoped in

val ’a id: ’a -> ’a = fn x => x

and is explicitly scoped in

val ’a id = fn x: ’a => x

A type variable can be scoped at a val or fun declaration. An SML type checker performs scope inference on each top-level
declaration to determine the scope of each implicitly scoped type variable. After scope inference, every type variable is scoped
at exactly one enclosing val or fun declaration. Scope inference shows that the first and second example above are equivalent
to the third and fourth example, respectively.

Section 4.6 of the Definition specifies precisely the scope of an implicitly scoped type variable. A free occurrence of a type
variable ’a in a declaration d is said to be unguarded in d if ’a is not part of a smaller declaration. A type variable ’a is
implicitly scoped at d if ’a is unguarded in d and ’a does not occur unguarded in any declaration containing d.

Scope inference examples

• In this example,

val id: ’a -> ’a = fn x => x

’a is unguarded in val id and does not occur unguarded in any containing declaration. Hence, ’a is scoped at val id
and the declaration is equivalent to the following.

val ’a id: ’a -> ’a = fn x => x

• In this example,

val f = fn x => let exception E of ’a in E x end

’a is unguarded in val f and does not occur unguarded in any containing declaration. Hence, ’a is scoped at val f and
the declaration is equivalent to the following.

val ’a f = fn x => let exception E of ’a in E x end

• In this example (taken from the Definition),

val x: int -> int = let val id: ’a -> ’a = fn z => z in id id end

’a occurs unguarded in val id, but not in val x. Hence, ’a is implicitly scoped at val id, and the declaration is
equivalent to the following.

val x: int -> int = let val ’a id: ’a -> ’a = fn z => z in id id end

• In this example,

MLton Guide (20180207) 577 / 611

val f = (fn x: ’a => x) (fn y => y)

’a occurs unguarded in val f and does not occur unguarded in any containing declaration. Hence, ’a is implicitly scoped
at val f, and the declaration is equivalent to the following.

val ’a f = (fn x: ’a => x) (fn y => y)

This does not type check due to the ValueRestriction.

• In this example,

fun f x =
let

fun g (y: ’a) = if true then x else y
in

g x
end

’a occurs unguarded in fun g, not in fun f. Hence, ’a is implicitly scoped at fun g, and the declaration is equivalent to

fun f x =
let

fun ’a g (y: ’a) = if true then x else y
in

g x
end

This fails to type check because x and y must have the same type, but the x occurs outside the scope of the type variable ’a.
MLton reports the following error.

Error: z.sml 3.21-3.41.
Then and else branches disagree.

then: [???]
else: [’a]
in: if true then x else y
note: type would escape its scope: ’a
escape to: z.sml 1.1-6.5

This problem could be fixed either by adding an explicit type constraint, as in fun f (x:’a), or by explicitly scoping ’a,
as in fun ’a f x =....

Restrictions on type variable scope

It is not allowed to scope a type variable within a declaration in which it is already in scope (see the last restriction listed on page
9 of the Definition). For example, the following program is invalid.

fun ’a f (x: ’a) =
let

fun ’a g (y: ’a) = y
in

()
end

MLton reports the following error.

Error: z.sml 3.11-3.12.
Type variable scoped at an outer declaration: ’a.
scoped at: z.sml 1.1-6.6

This is an error even if the scoping is implicit. That is, the following program is invalid as well.

MLton Guide (20180207) 578 / 611

fun f (x: ’a) =
let

fun ’a g (y: ’a) = y
in

()
end

MLton Guide (20180207) 579 / 611

Unicode

Support in The Definition of Standard ML

There is no real support for Unicode in the Definition; there are only a few throw-away sentences along the lines of "the characters
with numbers 0 to 127 coincide with the ASCII character set."

Support in The Standard ML Basis Library

Neither is there real support for Unicode in the Basis Library. The general consensus (which includes the opinions of the editors
of the Basis Library) is that the WideChar and WideString structures are insufficient for the purposes of Unicode. There
is no LargeChar structure, which in itself is a deficiency, since a programmer can not program against the largest supported
character size.

Current Support in MLton

MLton, as a minor extension over the Definition, supports UTF-8 byte sequences in text constants. This feature enables "UTF-8
convenience" (but not comprehensive Unicode support); in particular, it allows one to copy text from a browser and paste it into
a string constant in an editor and, furthermore, if the string is printed to a terminal, then will (typically) appear as the original
text. See the extended text constants feature of Successor ML for more details.

MLton, also as a minor extension over the Definition, supports \Uxxxxxxxx numeric escapes in text constants and has prelim-
inary internal support for 16- and 32-bit characters and strings.

MLton provides WideChar and WideString structures, corresponding to 32-bit characters and strings, respectively.

Questions and Discussions

There are periodic flurries of questions and discussion about Unicode in MLton/SML. In December 2004, there was a discussion
that led to some seemingly sound design decisions. The discussion started at:

• http://www.mlton.org/pipermail/mlton/2004-December/026396.html

There is a good summary of points at:

• http://www.mlton.org/pipermail/mlton/2004-December/026440.html

In November 2005, there was a followup discussion and the beginning of some coding.

• http://www.mlton.org/pipermail/mlton/2005-November/028300.html

Also see

The fxp XML parser has some support for dealing with Unicode documents.

http://www.mlton.org/pipermail/mlton/2004-December/026396.html
http://www.mlton.org/pipermail/mlton/2004-December/026440.html
http://www.mlton.org/pipermail/mlton/2005-November/028300.html

MLton Guide (20180207) 580 / 611

UniversalType

A universal type is a type into which all other types can be embedded. Here’s a Standard ML signature for a universal type.

signature UNIVERSAL_TYPE =
sig

type t

val embed: unit -> (’a -> t) * (t -> ’a option)
end

The idea is that type t is the universal type and that each call to embed returns a new pair of functions (inject, pro
ject), where inject embeds a value into the universal type and project extracts the value from the universal type. A
pair (inject, project) returned by embed works together in that project u will return SOME v if and only if u was
created by inject v. If u was created by a different function inject’, then project returns NONE.

Here’s an example embedding integers and reals into a universal type.

functor Test (U: UNIVERSAL_TYPE): sig end =
struct

val (intIn: int -> U.t, intOut) = U.embed ()
val r: U.t ref = ref (intIn 13)
val s1 =

case intOut (!r) of
NONE => "NONE"

| SOME i => Int.toString i
val (realIn: real -> U.t, realOut) = U.embed ()
val () = r := realIn 13.0
val s2 =

case intOut (!r) of
NONE => "NONE"

| SOME i => Int.toString i
val s3 =

case realOut (!r) of
NONE => "NONE"

| SOME x => Real.toString x
val () = print (concat [s1, " ", s2, " ", s3, "\n"])

end

Applying Test to an appropriate implementation will print

13 NONE 13.0

Note that two different calls to embed on the same type return different embeddings.

Standard ML does not have explicit support for universal types; however, there are at least two ways to implement them.

Implementation Using Exceptions

While the intended use of SML exceptions is for exception handling, an accidental feature of their design is that the exn type is a
universal type. The implementation relies on being able to declare exceptions locally to a function and on the fact that exceptions
are generative.

structure U:> UNIVERSAL_TYPE =
struct

type t = exn

fun ’a embed () =
let

exception E of ’a

MLton Guide (20180207) 581 / 611

fun project (e: t): ’a option =
case e of

E a => SOME a
| _ => NONE

in
(E, project)

end
end

Implementation Using Functions and References

structure U:> UNIVERSAL_TYPE =
struct

datatype t = T of {clear: unit -> unit,
store: unit -> unit}

fun ’a embed () =
let

val r: ’a option ref = ref NONE
fun inject (a: ’a): t =

T {clear = fn () => r := NONE,
store = fn () => r := SOME a}

fun project (T {clear, store}): ’a option =
let

val () = store ()
val res = !r
val () = clear ()

in
res

end
in

(inject, project)
end

end

Note that due to the use of a shared ref cell, the above implementation is not thread safe.

One could try to simplify the above implementation by eliminating the clear function, making type t =unit -> unit.

structure U:> UNIVERSAL_TYPE =
struct

type t = unit -> unit

fun ’a embed () =
let

val r: ’a option ref = ref NONE
fun inject (a: ’a): t = fn () => r := SOME a
fun project (f: t): ’a option = (r := NONE; f (); !r)

in
(inject, project)

end
end

While correct, this approach keeps the contents of the ref cell alive longer than necessary, which could cause a space leak. The
problem is in project, where the call to f stores some value in some ref cell r’. Perhaps r’ is the same ref cell as r, but
perhaps not. If we do not clear r’ before returning from project, then r’ will keep the value alive, even though it is useless.

Also see

• PropertyList: Lisp-style property lists implemented with a universal type

MLton Guide (20180207) 582 / 611

UnresolvedBugs

Here are the places where MLton deviates from The Definition of Standard ML (Revised) and the Basis Library. In general,
MLton complies with the Definition quite closely, typically much more closely than other SML compilers (see, e.g., our list of
SML/NJ’s deviations). In fact, the four deviations listed here are the only known deviations, and we have no immediate plans to
fix them. If you find a deviation not listed here, please report a Bug.

We don’t plan to fix these bugs because the first (parsing nested cases) has historically never been accepted by any SML compiler,
the second clearly indicates a problem in the Definition, and the remaining are difficult to resolve in the context of MLton’s
implementaton of Standard ML (and unlikely to be problematic in practice).

• MLton does not correctly parse case expressions nested within other matches. For example, the following fails.

fun f 0 y =
case x of

1 => 2
| _ => 3

| f _ y = 4

To do this in a program, simply parenthesize the case expression.

Allowing such expressions, although compliant with the Definition, would be a mistake, since using parentheses is clearer
and no SML compiler has ever allowed them. Furthermore, implementing this would require serious yacc grammar rewriting
followed by postprocessing.

• MLton does not raise the Bind exception at run time when evaluating val rec (and fun) declarations that redefine iden-
tifiers that previously had constructor status. (By default, MLton does warn at compile time about val rec (and fun)
declarations that redefine identifiers that previously had constructors status; see the valrecConstr ML Basis annotation.)
For example, the Definition requires the following program to type check, but also (bizarelly) requires it to raise the Bind
exception

val rec NONE = fn () => ()

The Definition’s behavior is obviously an error, a mismatch between the static semantics (rule 26) and the dynamic semantics
(rule 126). Given the comments on rule 26 in the Definition, it seems clear that the authors meant for val rec to allow an
identifier’s constructor status to be overridden both statically and dynamically. Hence, MLton and most SML compilers follow
rule 26, but do not follow rule 126.

• MLton does not hide the equality aspect of types declared in abstype declarations. So, MLton accepts programs like the
following, while the Definition rejects them.

abstype t = T with end
val _ = fn (t1, t2 : t) => t1 = t2

abstype t = T with val a = T end
val _ = a = a

One consequence of this choice is that MLton accepts the following program, in accordance with the Definition.

abstype t = T with val eq = op = end
val _ = fn (t1, t2 : t) => eq (t1, t2)

Other implementations will typically reject this program, because they make an early choice for the type of eq to be ”a

* ’’a -> bool instead of t * t -> bool. The choice is understandable, since the Definition accepts the following
program.

abstype t = T with val eq = op = end
val _ = eq (1, 2)

• MLton (re-)type checks each functor definition at every corresponding functor application (the compilation technique of de-
functorization). One consequence of this implementation is that MLton accepts the following program, while the Definition
rejects it.

MLton Guide (20180207) 583 / 611

functor F (X: sig type t end) = struct
val f = id id

end
structure A = F (struct type t = int end)
structure B = F (struct type t = bool end)
val _ = A.f 10
val _ = B.f "dude"

On the other hand, other implementations will typically reject the following program, while MLton and the Definition accept
it.

functor F (X: sig type t end) = struct
val f = id id

end
structure A = F (struct type t = int end)
structure B = F (struct type t = bool end)
val _ = A.f 10
val _ = B.f false

See DreyerBlume07 for more details.

MLton Guide (20180207) 584 / 611

UnsafeStructure

This module is a subset of the Unsafe module provided by SML/NJ, with a few extract operations for PackWord and PackR
eal.

signature UNSAFE_MONO_ARRAY =
sig

type array
type elem

val create: int -> array
val sub: array * int -> elem
val update: array * int * elem -> unit

end

signature UNSAFE_MONO_VECTOR =
sig

type elem
type vector

val sub: vector * int -> elem
end

signature UNSAFE =
sig

structure Array:
sig

val create: int * ’a -> ’a array
val sub: ’a array * int -> ’a
val update: ’a array * int * ’a -> unit

end
structure CharArray: UNSAFE_MONO_ARRAY
structure CharVector: UNSAFE_MONO_VECTOR
structure IntArray: UNSAFE_MONO_ARRAY
structure IntVector: UNSAFE_MONO_VECTOR
structure Int8Array: UNSAFE_MONO_ARRAY
structure Int8Vector: UNSAFE_MONO_VECTOR
structure Int16Array: UNSAFE_MONO_ARRAY
structure Int16Vector: UNSAFE_MONO_VECTOR
structure Int32Array: UNSAFE_MONO_ARRAY
structure Int32Vector: UNSAFE_MONO_VECTOR
structure Int64Array: UNSAFE_MONO_ARRAY
structure Int64Vector: UNSAFE_MONO_VECTOR
structure IntInfArray: UNSAFE_MONO_ARRAY
structure IntInfVector: UNSAFE_MONO_VECTOR
structure LargeIntArray: UNSAFE_MONO_ARRAY
structure LargeIntVector: UNSAFE_MONO_VECTOR
structure LargeRealArray: UNSAFE_MONO_ARRAY
structure LargeRealVector: UNSAFE_MONO_VECTOR
structure LargeWordArray: UNSAFE_MONO_ARRAY
structure LargeWordVector: UNSAFE_MONO_VECTOR
structure RealArray: UNSAFE_MONO_ARRAY
structure RealVector: UNSAFE_MONO_VECTOR
structure Real32Array: UNSAFE_MONO_ARRAY
structure Real32Vector: UNSAFE_MONO_VECTOR
structure Real64Array: UNSAFE_MONO_ARRAY
structure Vector:

sig
val sub: ’a vector * int -> ’a

end
structure Word8Array: UNSAFE_MONO_ARRAY

MLton Guide (20180207) 585 / 611

structure Word8Vector: UNSAFE_MONO_VECTOR
structure Word16Array: UNSAFE_MONO_ARRAY
structure Word16Vector: UNSAFE_MONO_VECTOR
structure Word32Array: UNSAFE_MONO_ARRAY
structure Word32Vector: UNSAFE_MONO_VECTOR
structure Word64Array: UNSAFE_MONO_ARRAY
structure Word64Vector: UNSAFE_MONO_VECTOR

structure PackReal32Big : PACK_REAL
structure PackReal32Little : PACK_REAL
structure PackReal64Big : PACK_REAL
structure PackReal64Little : PACK_REAL
structure PackRealBig : PACK_REAL
structure PackRealLittle : PACK_REAL
structure PackWord16Big : PACK_WORD
structure PackWord16Little : PACK_WORD
structure PackWord32Big : PACK_WORD
structure PackWord32Little : PACK_WORD
structure PackWord64Big : PACK_WORD
structure PackWord64Little : PACK_WORD

end

MLton Guide (20180207) 586 / 611

Useless

Useless is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass:

• removes components of tuples that are constants (use unification)

• removes function arguments that are constants

• builds some kind of dependence graph where

– a value of ground type is useful if it is an arg to a primitive

– a tuple is useful if it contains a useful component

– a constructor is useful if it contains a useful component or is used in a Case transfer

If a useful tuple is coerced to another useful tuple, then all of their components must agree (exactly). It is trivial to convert a
useful value to a useless one.

Implementation

• useless.fun

Details and Notes

It is also trivial to convert a useful tuple to one of its useful components — but this seems hard.

Suppose that you have a ref/array/vector that is useful, but the components aren’t — then the components are converted to
type unit, and any primitive args must be as well.

Unify all handler arguments so that raise/handle has a consistent calling convention.

https://github.com/MLton/mlton/blob/master/mlton/ssa/useless.fun

MLton Guide (20180207) 587 / 611

Users

Here is a list of companies, projects, and courses that use or have used MLton. If you use MLton and are not here, please add
your project with a brief description and a link. Thanks.

Companies

• Hardcore Processing uses MLton as a crosscompiler from Linux to Windows for graphics and game software.

– CEX3D Converter, a conversion program for 3D objects.
– Interactive Showreel, which contains a crossplatform GUI-toolkit and a realtime renderer for a subset of RenderMan written

in Standard ML.
– various games

• MathWorks/PolySpace Technologies builds their product that detects runtime errors in embedded systems based on abstract
interpretation.

• Reactive Systems uses MLton to build Reactis, a model-based testing and validation package used in the automotive and
aerospace industries.

Projects

• ADATE, Automatic Design of Algorithms Through Evolution, a system for automatic programming i.e., inductive inference
of algorithms. ADATE can automatically generate non-trivial and novel algorithms written in Standard ML.

• CIL, a compiler for SML based on intersection and union types.

• ConCert, a project investigating certified code for grid computing.

• Cooperative Internet hosting tools

• Guugelhupf, a simple search engine.

• HaMLet, a model implementation of Standard ML.

• KeplerCode, independent verification of the computational aspects of proofs of the Kepler conjecture and the Dodecahedral
conjecture.

• Metis, a first-order prover (used in the HOL4 theorem prover and the Isabelle theorem prover).

• mlftpd, an ftp daemon written in SML. TomMurphy is also working on replacements for standard network services in SML.
He also uses MLton to build his entries (2001, 2002, 2004, 2005) in the annual ICFP programming contest.

• MLOPE, an offline partial evaluator for Standard ML.

• RML, a system for developing, compiling and debugging and teaching structural operational semantics (SOS) and natural
semantics specifications.

• Skalpel, a type-error slicer for SML

• SSA PRE, an implementation of Partial Redundancy Elimination for MLton.

• Stabilizers, a modular checkpointing abstraction for concurrent functional programs.

• Self-Adjusting SML, self-adjusting computation, a model of computing where programs can automatically adjust to changes
to their data.

• TL System, providing general-purpose support for rewrite-based transformation over elements belonging to a (user-defined)
domain language.

• Tina (Time Petri net Analyzer)

• Twelf an implementation of the LF logical framework.

• WaveScript/WaveScript, a sensor network project; the WaveScript compiler can generate SML (MLton) code.

http://www.hardcoreprocessing.com/
http://www.hardcoreprocessing.com/Freeware/MLTonWin32.html
http://www.cex3d.net/
http://www.hardcoreprocessing.com/company/showreel/index.html
http://www.hardcoreprocessing.com/entertainment/index.html
http://www.mathworks.com/products/polyspace/
http://www.reactive-systems.com/
http://www-ia.hiof.no/%7Erolando/adate_intro.html
http://types.bu.edu/reports/Dim+Wes+Mul+Tur+Wel+Con:TIC-2000-LNCS.html
http://www.cs.cmu.edu/%7Econcert/
http://hcoop.sourceforge.net/
http://www.fantasy-coders.de/projects/gh/
http://www.mpi-sws.org/%7Erossberg/hamlet/
http://code.google.com/p/kepler-code/
http://www.gilith.com/research/metis/
http://hol.sourceforge.net/
http://isabelle.in.tum.de/
http://tom7misc.cvs.sourceforge.net/viewvc/tom7misc/net/mlftpd/
http://tom7misc.cvs.sourceforge.net/viewvc/tom7misc/net/
http://www.cs.cmu.edu/%7Etom7/icfp2001/
http://www.cs.cmu.edu/%7Etom7/icfp2002/
http://www.cs.cmu.edu/%7Etom7/icfp2004/
http://www.cs.cmu.edu/%7Etom7/icfp2005/
http://www.informatik.uni-freiburg.de/proglang/research/software/mlope/
http://www.ida.liu.se/%7Epelab/rml/
http://www.macs.hw.ac.uk/ultra/skalpel/index.html
http://www.cs.cmu.edu/%7Etom7/ssapre/
http://ttic.uchicago.edu/%7Epl/sa-sml/
http://faculty.ist.unomaha.edu/winter/ShiftLab/TL_web/TL_index.html
http://projects.laas.fr/tina/
http://www.twelf.org/
http://www.cs.indiana.edu/%7Errnewton/wavescope/

MLton Guide (20180207) 588 / 611

Courses

• Harvard CS-152, undergraduate programming languages.

• Høgskolen i Østfold IAI30202, programming languages.

http://www.eecs.harvard.edu/%7Enr/cs152/
http://www.ia-stud.hiof.no/%7Erolando/PL/

MLton Guide (20180207) 589 / 611

Utilities

This page is a collection of basic utilities used in the examples on various pages. See

• InfixingOperators, and

• ProductType

for longer discussions on some of these utilities.

(* Operator precedence table *)
infix 8 * / div mod (* +1 from Basis Library *)
infix 7 + - ^ (* +1 from Basis Library *)
infixr 6 :: @ (* +1 from Basis Library *)
infix 5 = <> > >= < <= (* +1 from Basis Library *)
infix 4 <\ \>
infixr 4 </ />
infix 3 o
infix 2 >|
infixr 2 |<
infix 1 := (* -2 from Basis Library *)
infix 0 before &

(* Some basic combinators *)
fun const x _ = x
fun cross (f, g) (x, y) = (f x, g y)
fun curry f x y = f (x, y)
fun fail e _ = raise e
fun id x = x

(* Product type *)
datatype (’a, ’b) product = & of ’a * ’b

(* Sum type *)
datatype (’a, ’b) sum = INL of ’a | INR of ’b

(* Some type shorthands *)
type ’a uop = ’a -> ’a
type ’a fix = ’a uop -> ’a
type ’a thunk = unit -> ’a
type ’a effect = ’a -> unit
type (’a, ’b) emb = (’a -> ’b) * (’b -> ’a)

(* Infixing, sectioning, and application operators *)
fun x <\ f = fn y => f (x, y)
fun f \> y = f y
fun f /> y = fn x => f (x, y)
fun x </ f = f x

(* Piping operators *)
val op>| = op</
val op|< = op\>

MLton Guide (20180207) 590 / 611

ValueRestriction

The value restriction is a rule that governs when type inference is allowed to polymorphically generalize a value declaration. In
short, the value restriction says that generalization can only occur if the right-hand side of an expression is syntactically a value.
For example, in

val f = fn x => x
val _ = (f "foo"; f 13)

the expression fn x => x is syntactically a value, so f has polymorphic type ’a -> ’a and both calls to f type check. On
the other hand, in

val f = let in fn x => x end
val _ = (f "foo"; f 13)

the expression let in fn x => end end is not syntactically a value and so f can either have type int -> int or
string -> string, but not ’a -> ’a. Hence, the program does not type check.

The Definition of Standard ML spells out precisely which expressions are syntactic values (it refers to such expressions as
non-expansive). An expression is a value if it is of one of the following forms.

• a constant (13, "foo", 13.0, . . .)

• a variable (x, y, . . .)

• a function (fn x => e)

• the application of a constructor other than ref to a value (Foo v)

• a type constrained value (v:t)

• a tuple in which each field is a value (v1, v2, ...)

• a record in which each field is a value {l1 =v1, l2 =v2, ...}

• a list in which each element is a value [v1, v2, ...]

Why the value restriction exists

The value restriction prevents a ref cell (or an array) from holding values of different types, which would allow a value of one
type to be cast to another and hence would break type safety. If the restriction were not in place, the following program would
type check.

val r: ’a option ref = ref NONE
val r1: string option ref = r
val r2: int option ref = r
val () = r1 := SOME "foo"
val v: int = valOf (!r2)

The first line violates the value restriction because ref NONE is not a value. All other lines are type correct. By its last line, the
program has cast the string "foo" to an integer. This breaks type safety, because now we can add a string to an integer with an
expression like v + 13. We could even be more devious, by adding the following two lines, which allow us to threat the string
"foo" as a function.

val r3: (int -> int) option ref = r
val v: int -> int = valOf (!r3)

Eliminating the explicit ref does nothing to fix the problem. For example, we could replace the declaration of r with the
following.

val f: unit -> ’a option ref = fn () => ref NONE
val r: ’a option ref = f ()

The declaration of f is well typed, while the declaration of r violates the value restriction because f () is not a value.

MLton Guide (20180207) 591 / 611

Unnecessarily rejected programs

Unfortunately, the value restriction rejects some programs that could be accepted.

val id: ’a -> ’a = fn x => x
val f: ’a -> ’a = id id

The type constraint on f requires f to be polymorphic, which is disallowed because id id is not a value. MLton reports the
following type error.

Error: z.sml 2.5-2.5.
Type of variable cannot be generalized in expansive declaration: f.
type: [’a] -> [’a]
in: val ’a f: (’a -> ’a) = id id

MLton indicates the inability to make f polymorphic by saying that the type of f cannot be generalized (made polymorphic) its
declaration is expansive (not a value). MLton doesn’t explicitly mention the value restriction, but that is the reason. If we leave
the type constraint off of f

val id: ’a -> ’a = fn x => x
val f = id id

then the program succeeds; however, MLton gives us the following warning.

Warning: z.sml 2.5-2.5.
Type of variable was not inferred and could not be generalized: f.
type: ??? -> ???
in: val f = id id

This warning indicates that MLton couldn’t polymorphically generalize f, nor was there enough context using f to determine
its type. This in itself is not a type error, but it it is a hint that something is wrong with our program. Using f provides enough
context to eliminate the warning.

val id: ’a -> ’a = fn x => x
val f = id id
val _ = f 13

But attempting to use f as a polymorphic function will fail.

val id: ’a -> ’a = fn x => x
val f = id id
val _ = f 13
val _ = f "foo"

Error: z.sml 4.9-4.15.
Function applied to incorrect argument.
expects: [int]
but got: [string]
in: f "foo"

Alternatives to the value restriction

There would be nothing wrong with treating f as polymorphic in

val id: ’a -> ’a = fn x => x
val f = id id

One might think that the value restriction could be relaxed, and that only types involving ref should be disallowed. Unfortu-
nately, the following example shows that even the type ’a -> ’a can cause problems. If this program were allowed, then we
could cast an integer to a string (or any other type).

MLton Guide (20180207) 592 / 611

val f: ’a -> ’a =
let

val r: ’a option ref = ref NONE
in

fn x =>
let

val y = !r
val () = r := SOME x

in
case y of

NONE => x
| SOME y => y

end
end

val _ = f 13
val _ = f "foo"

The previous version of Standard ML took a different approach (MilnerEtAl90, Tofte90, ImperativeTypeVariable) than the value
restriction. It encoded information in the type system about when ref cells would be created, and used this to prevent a ref cell
from holding multiple types. Although it allowed more programs to be type checked, this approach had significant drawbacks.
First, it was significantly more complex, both for implementers and for programmers. Second, it had an unfortunate interaction
with the modularity, because information about ref usage was exposed in module signatures. This either prevented the use of
references for implementing a signature, or required information that one would like to keep hidden to propagate across modules.

In the early nineties, Andrew Wright studied about 250,000 lines of existing SML code and discovered that it did not make
significant use of the extended typing ability, and proposed the value restriction as a simpler alternative (Wright95). This was
adopted in the revised Definition.

Working with the value restriction

One technique that works with the value restriction is EtaExpansion. We can use eta expansion to make our id id example
type check follows.

val id: ’a -> ’a = fn x => x
val f: ’a -> ’a = fn z => (id id) z

This solution means that the computation (in this case id id) will be performed each time f is applied, instead of just once
when f is declared. In this case, that is not a problem, but it could be if the declaration of f performs substantial computation or
creates a shared data structure.

Another technique that sometimes works is to move a monomorphic computation prior to a (would-be) polymorphic declaration
so that the expression is a value. Consider the following program, which fails due to the value restriction.

datatype ’a t = A of string | B of ’a
val x: ’a t = A (if true then "yes" else "no")

It is easy to rewrite this program as

datatype ’a t = A of string | B of ’a
local

val s = if true then "yes" else "no"
in

val x: ’a t = A s
end

The following example (taken from Wright95) creates a ref cell to count the number of times a function is called.

val count: (’a -> ’a) -> (’a -> ’a) * (unit -> int) =
fn f =>
let

MLton Guide (20180207) 593 / 611

val r = ref 0
in

(fn x => (r := 1 + !r; f x), fn () => !r)
end

val id: ’a -> ’a = fn x => x
val (countId: ’a -> ’a, numCalls) = count id

The example does not type check, due to the value restriction. However, it is easy to rewrite the program, staging the ref cell
creation before the polymorphic code.

datatype t = T of int ref
val count1: unit -> t = fn () => T (ref 0)
val count2: t * (’a -> ’a) -> (unit -> int) * (’a -> ’a) =

fn (T r, f) => (fn () => !r, fn x => (r := 1 + !r; f x))
val id: ’a -> ’a = fn x => x
val t = count1 ()
val countId: ’a -> ’a = fn z => #2 (count2 (t, id)) z
val numCalls = #1 (count2 (t, id))

Of course, one can hide the constructor T inside a local or behind a signature.

Also see

• ImperativeTypeVariable

MLton Guide (20180207) 594 / 611

VariableArityPolymorphism

Standard ML programmers often face the problem of how to provide a variable-arity polymorphic function. For example, suppose
one is defining a combinator library, e.g. for parsing or pickling. The signature for such a library might look something like the
following.

signature COMBINATOR =
sig

type ’a t

val int: int t
val real: real t
val string: string t
val unit: unit t
val tuple2: ’a1 t * ’a2 t -> (’a1 * ’a2) t
val tuple3: ’a1 t * ’a2 t * ’a3 t -> (’a1 * ’a2 * ’a3) t
val tuple4: ’a1 t * ’a2 t * ’a3 t * ’a4 t

-> (’a1 * ’a2 * ’a3 * ’a4) t
...

end

The question is how to define a variable-arity tuple combinator. Traditionally, the only way to take a variable number of arguments
in SML is to put the arguments in a list (or vector) and pass that. So, one might define a tuple combinator with the following
signature.

val tupleN: ’a list -> ’a list t

The problem with this approach is that as soon as one places values in a list, they must all have the same type. So, programmers
often take an alternative approach, and define a family of tuple<N> functions, as we see in the COMBINATOR signature above.

The family-of-functions approach is ugly for many reasons. First, it clutters the signature with a number of functions when there
should really only be one. Second, it is closed, in that there are a fixed number of tuple combinators in the interface, and should
a client need a combinator for a large tuple, he is out of luck. Third, this approach often requires a lot of duplicate code in the
implementation of the combinators.

Fortunately, using Fold01N and products, one can provide an interface and implementation that solves all these problems. Here
is a simple pickling module that converts values to strings.

structure Pickler =
struct

type ’a t = ’a -> string

val unit = fn () => ""

val int = Int.toString

val real = Real.toString

val string = id

type ’a accum = ’a * string list -> string list

val tuple =
fn z =>
Fold01N.fold
{finish = fn ps => fn x => concat (rev (ps (x, []))),
start = fn p => fn (x, l) => p x :: l,
zero = unit}

z

val ‘ =

MLton Guide (20180207) 595 / 611

fn z =>
Fold01N.step1
{combine = (fn (p, p’) => fn (x & x’, l) => p’ x’ :: "," :: p (x, l))}
z

end

If one has n picklers of types

val p1: a1 Pickler.t
val p2: a2 Pickler.t
...
val pn: an Pickler.t

then one can construct a pickler for n-ary products as follows.

tuple ‘p1 ‘p2 ... ‘pn $: (a1 & a2 & ... & an) Pickler.t

For example, with Pickler in scope, one can prove the following equations.

"" = tuple $ ()
"1" = tuple ‘int $ 1
"1,2.0" = tuple ‘int ‘real $ (1 & 2.0)
"1,2.0,three" = tuple ‘int ‘real ‘string $ (1 & 2.0 & "three")

Here is the signature for Pickler. It shows why the accum type is useful.

signature PICKLER =
sig

type ’a t

val int: int t
val real: real t
val string: string t
val unit: unit t

type ’a accum
val ‘ : (’a accum, ’b t, (’a, ’b) prod accum,

’z1, ’z2, ’z3, ’z4, ’z5, ’z6, ’z7) Fold01N.step1
val tuple: (’a t, ’a accum, ’b accum, ’b t, unit t,

’z1, ’z2, ’z3, ’z4, ’z5) Fold01N.t
end

structure Pickler: PICKLER = Pickler

MLton Guide (20180207) 596 / 611

Variant

A variant is an arm of a datatype declaration. For example, the datatype

datatype t = A | B of int | C of real

has three variants: A, B, and C.

MLton Guide (20180207) 597 / 611

VesaKarvonen

Vesa Karvonen is a student at the University of Helsinki. His interests lie in programming techniques that allow complex
programs to be expressed clearly and concisely and the design and implementation of programming languages.

Things he’d like to see for SML and hopes to be able to contribute towards:

• A practical tool for documenting libraries. Preferably one that is based on extracting the documentation from source code
comments.

• A good IDE. Possibly an enhanced SML mode (esml-mode) for Emacs. Google for SLIME video to get an idea of what
he’d like to see. Some specific notes:

– show type at point

– robust, consistent indentation

– show documentation

– jump to definition (see EmacsDefUseMode)

EmacsBgBuildMode has also been written for working with MLton.

• Documented and cataloged libraries. Perhaps something like Boost, but for SML libraries. Here is a partial list of libraries,
tools, and frameworks Vesa is or has been working on:

– Asynchronous Programming Library (README)

– Extended Basis Library (README)

http://www.cs.helsinki.fi/index.en.html
http://www.google.com/search?&q=SLIME+video
http://www.boost.org
https://github.com/MLton/mltonlib/blob/master/com/ssh/async/unstable/README
https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/README

MLton Guide (20180207) 598 / 611

– Generic Programming Library (README)

– Pretty Printing Library (README)

– Random Generator Library (README)

– RPC (Remote Procedure Call) Library (README)

– SDL Binding (README)

– Unit Testing Library (README)

– Use Library (README)

– Windows Library (README)

Note that most of these libraries have been ported to several SML implementations.

https://github.com/MLton/mltonlib/blob/master/com/ssh/generic/unstable/README
https://github.com/MLton/mltonlib/blob/master/com/ssh/prettier/unstable/README
https://github.com/MLton/mltonlib/blob/master/com/ssh/random/unstable/README
https://github.com/MLton/mltonlib/blob/master/org/mlton/vesak/rpc-lib/unstable/README
http://www.libsdl.org/
https://github.com/MLton/mltonlib/blob/master/org/mlton/vesak/sdl/unstable/README
https://github.com/MLton/mltonlib/blob/master/com/ssh/unit-test/unstable/README
https://github.com/MLton/mltonlib/blob/master/org/mlton/vesak/use-lib/unstable/README
https://github.com/MLton/mltonlib/blob/master/com/ssh/windows/unstable/README

MLton Guide (20180207) 599 / 611

WarnUnusedAnomalies

The warnUnused MLBasis annotation can be used to report unused identifiers. This can be useful for catching bugs and
for code maintenance (e.g., eliminating dead code). However, the warnUnused annotation can sometimes behave in counter-
intuitive ways. This page gives some of the anomalies that have been reported.

• Functions whose only uses are recursive uses within their bodies are not warned as unused:

local
fun foo () = foo () : unit
val bar = let fun baz () = baz () : unit in baz end
in
end

Warning: z.sml 3.5.
Unused variable: bar.

• Components of actual functor argument that are necessary to match the functor argument signature but are unused in the body
of the functor are warned as unused:

functor Warning (type t val x : t) = struct
val y = x

end
structure X = Warning (type t = int val x = 1)

Warning: z.sml 4.29.
Unused type: t.

• No component of a functor result is warned as unused. In the following, the only uses of f2 are to match the functor argument
signatures of functor G and functor H and there are no uses of z:

functor F(structure X : sig type t end) = struct
type t = X.t
fun f1 (_ : X.t) = ()
fun f2 (_ : X.t) = ()
val z = ()

end
functor G(structure Y : sig

type t
val f1 : t -> unit
val f2 : t -> unit
val z : unit

end) = struct
fun g (x : Y.t) = Y.f1 x

end
functor H(structure Y : sig

type t
val f1 : t -> unit
val f2 : t -> unit
val z : unit

end) = struct
fun h (x : Y.t) = Y.f1 x

end
functor Z() = struct

structure S = F(structure X = struct type t = unit end)
structure SG = G(structure Y = S)
structure SH = H(structure Y = S)

end
structure U = Z()
val _ = U.SG.g ()
val _ = U.SH.h ()

MLton Guide (20180207) 600 / 611

MLton Guide (20180207) 601 / 611

WesleyTerpstra

Wesley W. Terpstra is a PhD student at the Technische Universitat Darmstadt (Germany).

Research interests

• Distributed systems (P2P)

• Number theory (Error-correcting codes)

My interest in SML is centered on the fact the the language is able to directly express ideas from number theory which are
important for my work. Modules and Functors seem to be a very natural basis for implementing many algebraic structures.
MLton provides an ideal platform for actual implementation as it is fast and has unboxed words.

Things I would like from MLton in the future:

• Some better optimization of mathematical expressions

• IPv6 and multicast support

• A complete GUI toolkit like mGTK

• More supported platforms so that applications written under MLton have a wider audience

MLton Guide (20180207) 602 / 611

WholeProgramOptimization

Whole-program optimization is a compilation technique in which optimizations operate over the entire program. This allows the
compiler many optimization opportunities that are not available when analyzing modules separately (as with separate compila-
tion).

Most of MLton’s optimizations are whole-program optimizations. Because MLton compiles the whole program at once, it can
perform optimization across module boundaries. As a consequence, MLton often reduces or eliminates the run-time penalty
that arises with separate compilation of SML features such as functors, modules, polymorphism, and higher-order functions.
MLton takes advantage of having the entire program to perform transformations such as: defunctorization, monomorphisation,
higher-order control-flow analysis, inlining, unboxing, argument flattening, redundant-argument removal, constant folding, and
representation selection. Whole-program compilation is an integral part of the design of MLton and is not likely to change.

MLton Guide (20180207) 603 / 611

WishList

This page is mainly for recording recurring feature requests. If you have a new feature request, you probably want to query
interest on one of the mailing lists first.

Please be aware of MLton’s policy on language changes. Nonetheless, we hope to provide support for some of the "immediate"
SuccessorML proposals in a future release.

Support for link options in ML Basis files

Introduce a mechanism to specify link options in ML Basis files. For example, generalizing a bit, a ML Basis declaration of the
form

option "option"

could be introduced whose semantics would be the same (as closely as possible) as if the option string were specified on the
compiler command line.

The main motivation for this is that a MLton library that would introduce bindings (through FFI) to an external library could be
packaged conveniently as a single MLB file. For example, to link with library foo the MLB file would simply contain:

option "-link-opt -lfoo"

Similar feature requests have been discussed previously on the mailing lists:

• http://www.mlton.org/pipermail/mlton/2004-July/025553.html

• http://www.mlton.org/pipermail/mlton/2005-January/026648.html

http://www.mlton.org/pipermail/mlton/2004-July/025553.html
http://www.mlton.org/pipermail/mlton/2005-January/026648.html

MLton Guide (20180207) 604 / 611

XML

XML is an IntermediateLanguage, translated from CoreML by Defunctorize, optimized by XMLSimplify, and translated by
Monomorphise to SXML.

Description

XML is polymorphic, higher-order, with flat patterns. Every XML expression is annotated with its type. Polymorphic general-
ization is made explicit through type variables annotating val and fun declarations. Polymorphic instantiation is made explicit
by specifying type arguments at variable references. XML patterns can not be nested and can not contain wildcards, constraints,
flexible records, or layering.

Implementation

• xml.sig

• xml.fun

• xml-tree.sig

• xml-tree.fun

Type Checking

XML also has a type checker, used for debugging. At present, the type checker is also the best specification of the type system
of XML. If you need more details, the type checker (type-check.sig, type-check.fun), is pretty short.

Since the type checker does not affect the output of the compiler (unless it reports an error), it can be turned off. The type checker
recursively descends the program, checking that the type annotating each node is the same as the type synthesized from the types
of the expressions subnodes.

Details and Notes

XML uses the same atoms as CoreML, hence all identifiers (constructors, variables, etc.) are unique and can have properties
attached to them. Finally, XML has a simplifier (XMLShrink), which implements a reduction system.

Types

XML types are either type variables or applications of n-ary type constructors. There are many utility functions for constructing
and destructing types involving built-in type constructors.

A type scheme binds list of type variables in a type. The only interesting operation on type schemes is the application of a type
scheme to a list of types, which performs a simultaneous substitution of the type arguments for the bound type variables of the
scheme. For the purposes of type checking, it is necessary to know the type scheme of variables, constructors, and primitives.
This is done by associating the scheme with the identifier using its property list. This approach is used instead of the more
traditional environment approach for reasons of speed.

XmlTree

Before defining XML, the signature for language XML, we need to define an auxiliary signature XML_TREE, that contains the
datatype declarations for the expression trees of XML. This is done solely for the purpose of modularity — it allows the simplifier
and type checker to be defined by separate functors (which take a structure matching XML_TREE). Then, Xml is defined as the
signature for a module containing the expression trees, the simplifier, and the type checker.

https://github.com/MLton/mlton/blob/master/mlton/xml/xml.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/xml.fun
https://github.com/MLton/mlton/blob/master/mlton/xml/xml-tree.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/xml-tree.fun
https://github.com/MLton/mlton/blob/master/mlton/xml/type-check.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/type-check.fun

MLton Guide (20180207) 605 / 611

Both constructors and variables can have type schemes, hence both constructor and variable references specify the instance of
the scheme at the point of references. An instance is specified with a vector of types, which corresponds to the type variables in
the scheme.

XML patterns are flat (i.e. not nested). A pattern is a constructor with an optional argument variable. Patterns only occur in
case expressions. To evaluate a case expression, compare the test value sequentially against each pattern. For the first pattern
that matches, destruct the value if necessary to bind the pattern variables and evaluate the corresponding expression. If no pattern
matches, evaluate the default. All patterns of a case statement are of the same variant of Pat.t, although this is not enforced by
ML’s type system. The type checker, however, does enforce this. Because tuple patterns are irrefutable, there will only ever be
one tuple pattern in a case expression and there will be no default.

XML contains value, exception, and mutually recursive function declarations. There are no free type variables in XML. All type
variables are explicitly bound at either a value or function declaration. At some point in the future, exception declarations may
go away, and exceptions may be represented with a single datatype containing a unit ref component to implement genericity.

XML expressions are like those of CoreML, with the following exceptions. There are no records expressions. After type
inference, all records (some of which may have originally been tuples in the source) are converted to tuples, because once
flexible record patterns have been resolved, tuple labels are superfluous. Tuple components are ordered based on the field
ordering relation. XML eta expands primitives and constructors so that there are always fully applied. Hence, the only kind of
value of arrow type is a lambda. This property is useful for flow analysis and later in code generation.

An XML program is a list of toplevel datatype declarations and a body expression. Because datatype declarations are not
generative, the defunctorizer can safely move them to toplevel.

MLton Guide (20180207) 606 / 611

XMLShrink

XMLShrink is an optimization pass for the XML IntermediateLanguage, invoked from XMLSimplify.

Description

This pass performs optimizations based on a reduction system.

Implementation

• shrink.sig

• shrink.fun

Details and Notes

The simplifier is based on Shrinking Lambda Expressions in Linear Time.

The source program may contain functions that are only called once, or not even called at all. Match compilation introduces
many such functions. In order to reduce the program size, speed up later phases, and improve the flow analysis, a source to
source simplifier is run on XML after type inference and match compilation.

The simplifier implements the reductions shown below. The reductions eliminate unnecessary declarations (see the side constraint
in the figure), applications where the function is immediate, and case statements where the test is immediate. Declarations can
be eliminated only when the expression is nonexpansive (see Section 4.7 of the Definition), which is a syntactic condition that
ensures that the expression has no effects (assignments, raises, or nontermination). The reductions on case statements do not
show the other irrelevant cases that may exist. The reductions were chosen so that they were strongly normalizing and so that
they never increased tree size.

•
let x = e1 in e2

reduces to

e2 [x -> e1]

if e1 is a constant or variable or if e1 is nonexpansive and x occurs zero or one time in e2
•
(fn x => e1) e2

reduces to

let x = e2 in e1

•
e1 handle e2

reduces to

e1

if e1 is nonexpansive
•
case let d in e end of p1 => e1 ...

reduces to

let d in case e of p1 => e1 ... end

https://github.com/MLton/mlton/blob/master/mlton/xml/shrink.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/shrink.fun

MLton Guide (20180207) 607 / 611

•
case C e1 of C x => e2

reduces to

let x = e1 in e2

MLton Guide (20180207) 608 / 611

XMLSimplify

The optimization passes for the XML IntermediateLanguage are collected and controlled by the XmlSimplify functor (xml-
simplify.sig, xml-simplify.fun).

The following optimization passes are implemented:

• XMLSimplifyTypes

• XMLShrink

The optimization passes can be controlled from the command-line by the options

• -diag-pass <pass>— keep diagnostic info for pass

• -disable-pass <pass>— skip optimization pass (if normally performed)

• -enable-pass <pass>— perform optimization pass (if normally skipped)

• -keep-pass <pass>— keep the results of pass

• -xml-passes <passes>— xml optimization passes

https://github.com/MLton/mlton/blob/master/mlton/xml/xml-simplify.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/xml-simplify.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/xml-simplify.fun

MLton Guide (20180207) 609 / 611

XMLSimplifyTypes

XMLSimplifyTypes is an optimization pass for the XML IntermediateLanguage, invoked from XMLSimplify.

Description

This pass simplifies types in an XML program, eliminating all unused type arguments.

Implementation

• simplify-types.sig

• simplify-types.fun

Details and Notes

It first computes a simple fixpoint on all the datatype declarations to determine which datatype tycon args are actually
used. Then it does a single pass over the program to determine which polymorphic declaration type variables are used, and
rewrites types to eliminate unused type arguments.

This pass should eliminate any spurious duplication that the Monomorphise pass might perform due to phantom types.

https://github.com/MLton/mlton/blob/master/mlton/xml/simplify-types.sig
https://github.com/MLton/mlton/blob/master/mlton/xml/simplify-types.fun

MLton Guide (20180207) 610 / 611

Zone

Zone is an optimization pass for the SSA2 IntermediateLanguage, invoked from SSA2Simplify.

Description

This pass breaks large SSA2 functions into zones, which are connected subgraphs of the dominator tree. For each zone, at the
node that dominates the zone (the "zone root"), it places a tuple collecting all of the live variables at that node. It replaces any
variables used in that zone with offsets from the tuple. The goal is to decrease the liveness information in large SSA functions.

Implementation

• zone.fun

Details and Notes

Compute strongly-connected components to avoid put tuple constructions in loops.

There are two (expert) flags that govern the use of this pass

• -max-function-size <n>

• -zone-cut-depth <n>

Zone splitting only works when the number of basic blocks in a function is greater than n. The n used to cut the dominator tree
is set by -zone-cut-depth.

There is currently no attempt to be safe-for-space. That is, the tuples are not restricted to containing only "small" values.

In the HOL program, the particular problem is the main function, which has 161,783 blocks and 257,519 variables — the product
of those two numbers being about 41 billion. Now, we’re not likely going to need that much space since we use a sparse
representation. But even 1/100th would really hurt. And of course this rules out bit vectors.

https://github.com/MLton/mlton/blob/master/mlton/ssa/zone.fun

MLton Guide (20180207) 611 / 611

ZZZOrphanedPages

The contents of these pages have been moved to other pages.

These templates are used by other pages.

• CompilerPassTemplate

• TalkTemplate

	MLton
	AdamGoode
	AdmitsEquality
	Alice
	AllocateRegisters
	AndreiFormiga
	ArrayLiteral
	AST
	BasisLibrary
	Bug
	Bugs20041109
	Bugs20051202
	Bugs20070826
	Bugs20100608
	Bugs20130715
	Bugs20180207
	CallGraph
	CallingFromCToSML
	CallingFromSMLToC
	CallingFromSMLToCFunctionPointer
	CCodegen
	Changelog
	ChrisClearwater
	Chunkify
	CKitLibrary
	Closure
	ClosureConvert
	CMinusMinus
	Codegen
	CombineConversions
	CommonArg
	CommonBlock
	CommonSubexp
	CompilationManager
	CompilerOverview
	CompilerPassTemplate
	CompileTimeOptions
	CompilingWithSMLNJ
	ConcurrentML
	ConcurrentMLImplementation
	ConstantPropagation
	Contact
	Contify
	CoreML
	CoreMLSimplify
	Credits
	CrossCompiling
	CVS
	DeadCode
	DeepFlatten
	DefineTypeBeforeUse
	DefinitionOfStandardML
	Defunctorize
	Developers
	Development
	Documentation
	Drawbacks
	Eclipse
	Elaborate
	Emacs
	EmacsBgBuildMode
	EmacsDefUseMode
	Enscript
	EqualityType
	EqualityTypeVariable
	EtaExpansion
	eXene
	FAQ
	Features
	FirstClassPolymorphism
	Fixpoints
	Flatten
	Fold
	Fold01N
	ForeignFunctionInterface
	ForeignFunctionInterfaceSyntax
	ForeignFunctionInterfaceTypes
	ForLoops
	FrontEnd
	FSharp
	FunctionalRecordUpdate
	fxp
	GarbageCollection
	GenerativeDatatype
	GenerativeException
	Git
	Glade
	Globalize
	GnuMP
	Google Summer of Code (2013)
	Google Summer of Code (2014)
	Google Summer of Code (2015)
	HaMLet
	HenryCejtin
	History
	HowProfilingWorks
	Identifier
	Immutable
	ImperativeTypeVariable
	ImplementExceptions
	ImplementHandlers
	ImplementProfiling
	ImplementSuffix
	InfixingOperators
	Inline
	InsertLimitChecks
	InsertSignalChecks
	Installation
	IntermediateLanguage
	IntroduceLoops
	JesperLouisAndersen
	JohnnyAndersen
	KnownCase
	LambdaCalculus
	LambdaFree
	LanguageChanges
	Lazy
	Libraries
	LibrarySupport
	License
	LineDirective
	LLVM
	LLVMCodegen
	LocalFlatten
	LocalRef
	Logo
	LoopInvariant
	LoopUnroll
	LoopUnswitch
	Machine
	ManualPage
	MatchCompilation
	MatchCompile
	MatthewFluet
	mGTK
	MichaelNorrish
	MikeThomas
	ML
	MLAntlr
	MLBasis
	MLBasisAnnotationExamples
	MLBasisAnnotations
	MLBasisAvailableLibraries
	MLBasisExamples
	MLBasisPathMap
	MLBasisSyntaxAndSemantics
	MLj
	MLKit
	MLLex
	MLLPTLibrary
	MLmon
	MLNLFFI
	MLNLFFIGen
	MLNLFFIImplementation
	MLRISCLibrary
	MLtonArray
	MLtonBinIO
	MLtonCont
	MLtonContIsolateImplementation
	MLtonCross
	MLtonExn
	MLtonFinalizable
	MLtonGC
	MLtonIntInf
	MLtonIO
	MLtonItimer
	MLtonLibraryProject
	MLtonMonoArray
	MLtonMonoVector
	MLtonPlatform
	MLtonPointer
	MLtonProcEnv
	MLtonProcess
	MLtonProfile
	MLtonRandom
	MLtonReal
	MLtonRlimit
	MLtonRusage
	MLtonSignal
	MLtonStructure
	MLtonSyslog
	MLtonTextIO
	MLtonThread
	MLtonVector
	MLtonWeak
	MLtonWord
	MLtonWorld
	MLULex
	MLYacc
	Monomorphise
	MoscowML
	Multi
	Mutable
	NeedsReview
	NumericLiteral
	ObjectOrientedProgramming
	OCaml
	OpenGL
	OperatorPrecedence
	OptionalArguments
	Overloading
	PackedRepresentation
	ParallelMove
	Performance
	PhantomType
	PlatformSpecificNotes
	PolyEqual
	PolyHash
	PolyML
	PolymorphicEquality
	Polyvariance
	Poplog
	PortingMLton
	PrecedenceParse
	Printf
	PrintfGentle
	ProductType
	Profiling
	ProfilingAllocation
	ProfilingCounts
	ProfilingTheStack
	ProfilingTime
	Projects
	Pronounce
	PropertyList
	Pygments
	RayRacine
	Reachability
	Redundant
	RedundantTests
	References
	RefFlatten
	Regions
	Release20041109
	Release20051202
	Release20070826
	Release20100608
	Release20130715
	Release20180207
	ReleaseChecklist
	Releases
	RemoveUnused
	Restore
	ReturnStatement
	RSSA
	RSSAShrink
	RSSASimplify
	RunningOnAIX
	RunningOnAlpha
	RunningOnAMD64
	RunningOnARM
	RunningOnCygwin
	RunningOnDarwin
	RunningOnFreeBSD
	RunningOnHPPA
	RunningOnHPUX
	RunningOnIA64
	RunningOnLinux
	RunningOnMinGW
	RunningOnNetBSD
	RunningOnOpenBSD
	RunningOnPowerPC
	RunningOnPowerPC64
	RunningOnS390
	RunningOnSolaris
	RunningOnSparc
	RunningOnX86
	RunTimeOptions
	ScopeInference
	SelfCompiling
	Serialization
	ShareZeroVec
	ShowBasis
	ShowBasisDirective
	ShowProf
	Shrink
	SimplifyTypes
	SML3d
	SMLNET
	SMLNJ
	SMLNJDeviations
	SMLNJLibrary
	SMLofNJStructure
	SMLSharp
	Sources
	SpaceSafety
	SSA
	SSA2
	SSA2Simplify
	SSASimplify
	Stabilizers
	StandardML
	StandardMLBooks
	StandardMLGotchas
	StandardMLHistory
	StandardMLImplementations
	StandardMLPortability
	StandardMLTutorials
	StaticSum
	StephenWeeks
	StyleGuide
	Subversion
	SuccessorML
	SureshJagannathan
	Swerve
	SXML
	SXMLShrink
	SXMLSimplify
	SyntacticConventions
	Talk
	TalkDiveIn
	TalkFolkLore
	TalkFromSMLTo
	TalkHowHigherOrder
	TalkHowModules
	TalkHowPolymorphism
	TalkMLtonApproach
	TalkMLtonFeatures
	TalkMLtonHistory
	TalkStandardML
	TalkTemplate
	TalkWholeProgram
	TILT
	TipsForWritingConciseSML
	ToMachine
	TomMurphy
	ToRSSA
	ToSSA2
	TypeChecking
	TypeConstructor
	TypeIndexedValues
	TypeVariableScope
	Unicode
	UniversalType
	UnresolvedBugs
	UnsafeStructure
	Useless
	Users
	Utilities
	ValueRestriction
	VariableArityPolymorphism
	Variant
	VesaKarvonen
	WarnUnusedAnomalies
	WesleyTerpstra
	WholeProgramOptimization
	WishList
	XML
	XMLShrink
	XMLSimplify
	XMLSimplifyTypes
	Zone
	ZZZOrphanedPages

