MLton Guide (20180207)

MLton Guide (20180207)

MLton Guide (20180207)

Contents

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

MLton

AdamGoode

AdmitsEquality

Alice

AllocateRegisters

AndreiFormiga

ArrayLiteral

AST

BasisLibrary

Bug

Bugs20041109

Bugs20051202

Bugs20070826

Bugs20100608

Bugs20130715

Bugs20180207

CallGraph

CallingFromCToSML

CallingFromSMLToC

CallingFromSMLToCFunctionPointer

CCodegen

Changelog

ChrisClearwater

11

13

22

23

25

27

29

30

31

32

34

37

39

42

43

95

MLton Guide (20180207)

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chunkify

CKitLibrary

Closure

ClosureConvert

CMinusMinus

Codegen

CombineConversions

CommonArg

CommonBlock

CommonSubexp

CompilationManager

CompilerOverview

CompilerPassTemplate

CompileTimeOptions

CompilingWithSMLNJ

ConcurrentML

ConcurrentMLImplementation

ConstantPropagation

Contact

Contify

CoreML

CoreMLSimplify

Credits

CrossCompiling

CVS

96

97

98

929

100

101

102

103

108

110

111

112

113

114

118

119

120

124

125

126

127

128

129

131

132

MLton Guide (20180207)

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

DeadCode

DeepFlatten

DefineTypeBeforeUse

DefinitionOfStandardML

Defunctorize

Developers

Development

Documentation

Drawbacks

Eclipse

Elaborate

Emacs

EmacsBgBuildMode

EmacsDefUseMode

Enscript

EqualityType

EqualityTypeVariable

EtaExpansion

eXene

FAQ

Features

FirstClassPolymorphism

Fixpoints

Flatten

Fold

133

134

135

137

138

140

141

142

143

144

145

149

150

152

154

155

156

158

159

160

161

164

166

169

170

MLton Guide (20180207)

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Fold01IN

ForeignFunctionInterface

ForeignFunctionInterfaceSyntax

ForeignFunctionInterfaceTypes

ForLoops

FrontEnd

FSharp

FunctionalRecordUpdate

fxp

GarbageCollection

GenerativeDatatype

GenerativeException

Git

Glade

Globalize

GnuMP

Google Summer of Code (2013)

Google Summer of Code (2014)

Google Summer of Code (2015)

HaMLet

HenryCejtin

History

HowProfilingWorks

Identifier

Immutable

182

184

185

187

189

193

194

195

198

199

200

201

203

204

205

206

207

211

214

218

219

220

221

222

223

MLton Guide (20180207)

vi

99 ImperativeTypeVariable

100 ImplementExceptions

101 ImplementHandlers

102 ImplementProfiling

103 ImplementSuffix

104 InfixingOperators

105 Inline

106 InsertLimitChecks

107 InsertSignalChecks

108 Installation

109 IntermediateLanguage

110 IntroduceLoops

111 JesperLouisAndersen

112 JohnnyAndersen

113 KnownCase

114 LambdaCalculus

115 LambdaFree

116 LanguageChanges

117 Lazy

118 Libraries

119 LibrarySupport

120 License

121 LineDirective

122 LLVM

123 LLVMCodegen

224

225

226

227

228

229

232

233

234

235

237

238

239

240

241

243

244

245

246

247

249

252

253

254

255

MLton Guide (20180207)

Vii

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

LocalFlatten

LocalRef

Logo

LoopInvariant

LoopUnroll

LoopUnswitch

Machine

ManualPage

MatchCompilation

MatchCompile

MatthewFluet

mGTK

MichaelNorrish

MikeThomas

ML

MLAntlr

MLBasis

MLBasisAnnotationExamples

MLBasisAnnotations

MLBasisAvailableLibraries

MLBasisExamples

MLBasisPathMap

MLBasisSyntaxAndSemantics

ML;j

MLKit

256

257

258

259

260

261

262

263

264

265

267

269

270

271

272

273

274

275

276

278

280

283

284

285

286

MLton Guide (20180207)

viii

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

MLLex

MLLPTLibrary

MLmon

MLNLFFI

MLNLFFIGen

MLNLFFIImplementation

MLRISCLibrary

MLtonArray

MLtonBinIO

MLtonCont

MLtonContlsolatelImplementation

MLtonCross

MLtonExn

MLtonFinalizable

MLtonGC

MLtonIntInf

MLtonlO

MLtonlItimer

MLtonLibraryProject

MLtonMonoArray

MLtonMono Vector

MLtonPlatform

MLtonPointer

MLtonProcEnv

MULtonProcess

287

288

289

290

291

292

294

296

297

298

299

305

306

307

311

312

313

314

315

316

317

318

319

321

322

MLton Guide (20180207)

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

MLtonProfile

MLtonRandom

MLtonReal

MLtonRlimit

MLtonRusage

MLtonSignal

MLtonStructure

MLtonSyslog

MLtonTextIO

MLtonThread

MULtonVector

MLtonWeak

MLtonWord

MLtonWorld

MLULex

MLYacc

Monomorphise

MoscowML

Multi

Mutable

NeedsReview

NumericLiteral

ObjectOrientedProgramming

OCaml

OpenGL

327

330

331

332

333

334

337

341

342

343

348

349

350

351

352

353

354

356

357

358

359

360

362

367

368

MLton Guide (20180207)

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

OperatorPrecedence

Optional Arguments

Overloading

PackedRepresentation

ParallelMove

Performance

PhantomType

PlatformSpecificNotes

PolyEqual

PolyHash

PolyML

PolymorphicEquality

Polyvariance

Poplog

PortingMLton

PrecedenceParse

Printf

PrintfGentle

ProductType

Profiling

ProfilingAllocation

ProfilingCounts

ProfilingTheStack

ProfilingTime

Projects

369

370

373

374

375

376

380

381

382

383

384

385

388

389

390

393

394

396

401

402

403

404

406

407

409

MLton Guide (20180207) i

224 Pronounce 410
225 PropertyList 411
226 Pygments 413
227 RayRacine 414
228 Reachability 415
229 Redundant 416
230 RedundantTests 417
231 References 418
232 RefFlatten 426
233 Regions 427
234 Release20041109 429
235 Release20051202 430
236 Release20070826 432
237 Release20100608 434
238 Release20130715 437
239 Release20180207 439
240 ReleaseChecklist 441
241 Releases 444
242 RemoveUnused 445
243 Restore 446
244 ReturnStatement 447
245 RSSA 450
246 RSSAShrink 451
247 RSSASimplify 452

248 RunningOnAIX 453

MLton Guide (20180207)

Xii

249 RunningOnAlpha

250 RunningOnAMD64

251 RunningOnARM

252 RunningOnCygwin

253 RunningOnDarwin

254 RunningOnFreeBSD

255 RunningOnHPPA

256 RunningOnHPUX

257 RunningOnlA64

258 RunningOnLinux

259 RunningOnMinGW

260 RunningOnNetBSD

261 RunningOnOpenBSD

262 RunningOnPowerPC

263 RunningOnPowerPCo64

264 RunningOnS390

265 RunningOnSolaris

266 RunningOnSparc

267 RunningOnX86

268 RunTimeOptions

269 Scopelnference

270 SelfCompiling

271 Serialization

272 ShareZeroVec

273 ShowBasis

454

455

456

457

458

459

460

461

462

463

464

466

467

468

469

470

471

472

473

474

476

477

478

479

481

MLton Guide (20180207)

xiii

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

ShowBasisDirective

ShowProf

Shrink

SimplifyTypes

SML3d

SMLNET

SMLNJ

SMLNJDeviations

SMLNJLibrary

SMLofNJStructure

SMLSharp

Sources

SpaceSafety

SSA

SSA2

SSA2Simplify

SSASimplify

Stabilizers

StandardML

StandardMLBooks

StandardMLGotchas

StandardMLHistory

StandardMLImplementations

StandardMLPortability

StandardMLTutorials

483

484

485

486

487

488

489

490

495

497

499

500

501

502

503

504

505

507

509

511

512

515

516

517

518

MLton Guide (20180207)

Xiv

299 StaticSum

300 StephenWeeks

301 StyleGuide

302 Subversion

303 SuccessorML

304 SureshJagannathan

305 Swerve

306 SXML

307 SXMLShrink

308 SXMLSimplify

309 SyntacticConventions

310 Talk

311 TalkDiveln

312 TalkFolkLore

313 TalkFromSMLTo

314 TalkHowHigherOrder

315 TalkHowModules

316 TalkHowPolymorphism

317 TalkMLtonApproach

318 TalkMLtonFeatures

319 TalkMLtonHistory

320 TalkStandardML

321 TalkTemplate

322 TalkWholeProgram

323 TILT

519

523

524

525

526

530

531

532

533

534

535

542

543

544

545

546

547

548

549

550

551

552

553

554

555

MLton Guide (20180207)

XV

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

TipsFor WritingConciseSML

ToMachine

TomMurphy

ToRSSA

ToSSA2

TypeChecking

TypeConstructor

Typelndexed Values

TypeVariableScope

Unicode

UniversalType

UnresolvedBugs

UnsafeStructure

Useless

Users

Utilities

ValueRestriction

VariableArityPolymorphism

Variant

VesaKarvonen

WarnUnusedAnomalies

WesleyTerpstra

WholeProgramOptimization

WishList

XML

556

559

560

561

562

563

566

567

576

579

580

582

584

586

587

589

590

594

596

597

599

601

602

603

604

MLton Guide (20180207)

XVi

349

350

351

352

353

XMLShrink

XMLSimplify

XMLSimplifyTypes

Zone

7770rphanedPages

606

608

609

610

611

ML.ton Guide (20180207) XVii

Abstract

This is the guide for MLton, an open-source, whole-program, optimizing Standard ML compiler.

This guide was generated automatically from the MLton website, available online at http://mlton.org. It is up to date for MLton
20180207.

http://mlton.org

MLton Guide (20180207) 1/611

MLton

What is MLton?

MLton is an open-source, whole-program, optimizing Standard ML compiler.

What’s new?

* 20180207: Please try out our latest release, MLton 20180207.

* 20140730: Matthew Fluet and Lukasz Ziarek have been awarded an NSF CISE Research Infrastructure (CRI) grant titled
"Positioning MLton for Next-Generation Programming Languages Research;" read the award abstracts (Award #1405770 and
Award #1405614) for more details.

Next steps

* Read about MLton’s Features.

* Look at Documentation.

* See some Users of MLton.

* Download MLton.

* Meet the MLton Developers.

* Get involved with MLton Development.
¢ User-maintained FAQ.

¢ Contact us.

http://www.cs.rit.edu/%7emtf
http://www.cse.buffalo.edu/%7elziarek
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=12810
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1405770
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1405614
https://sourceforge.net/projects/mlton/files/mlton/20180207

MLton Guide (20180207) 2/611

AdamGoode

* I maintain the Fedora package of MLton, in Fedora.

* [have contributed some patches for Makefiles and PDF documentation building.

https://admin.fedoraproject.org/pkgdb/packages/name/mlton

MLton Guide (20180207) 3/611

AdmitsEquality

A TypeConstructor admits equality if whenever it is applied to equality types, the result is an EqualityType. This notion enables
one to determine whether a type constructor application yields an equality type solely from the application, without looking at
the definition of the type constructor. It helps to ensure that PolymorphicEquality is only applied to sensible values.

The definition of admits equality depends on whether the type constructor was declared by a type definition or a datatype
declaration.

Type definitions

For type definition

type ("al, ..., ’'an) t =

type constructor t admits equality if the right-hand side of the definition is an equality type after replacing ’ al, ..., " an by
equality types (it doesn’t matter which equality types are chosen).

For a nullary type definition, this amounts to the right-hand side being an equality type. For example, after the definition

type t = bool x int

type constructor t admits equality because bool * int is an equality type. On the other hand, after the definition

type t = bool % int * real

type constructor t does not admit equality, because real is not an equality type.
For another example, after the definition

type "a t = bool * 'a

type constructor t admits equality because bool = int is an equality type (we could have chosen any equality type other than
int).

On the other hand, after the definition

type 'a t = real * 'a

type constructor t does not admit equality because real * int is not equality type.
We can check that a type constructor admits equality using an eqt ype specification.

structure Ok: sig egtype 'a t end =
struct
type 'a t = bool x 'a
end

structure Bad: sig eqtype 'a t end =
struct
type "a t = real x int x 'a
end

On structure Bad, MLton reports the following error.

Error: z.sml 1.16-1.34.

Type in structure disagrees with signature (admits equality): t.
structure: type 'a t = [real] x _ «*
defn at: z.sml 3.15-3.15
signature: [egtype] 'a t
spec at: z.sml 1.30-1.30

The structure: section provides an explanation of why the type did not admit equality, highlighting the problematic compo-
nent (real).

MLton Guide (20180207) 4/611

Datatype declarations
For a type constructor declared by a datatype declaration to admit equality, every variant of the datatype must admit equality. For
example, the following datatype admits equality because bool and char * int are equality types.

datatype t = A of bool | B of char x int

Nullary constructors trivially admit equality, so that the following datatype admits equality.

datatype t = A | B | C

For a parameterized datatype constructor to admit equality, we consider each variant as a type definition, and require that the
definition admit equality. For example, for the datatype

datatype 'a t = A of bool » "a | B of "a

the type definitions

type "a tA = bool x 'a
type 'a tB = 'a

both admit equality. Thus, type constructor t admits equality.
On the other hand, the following datatype does not admit equality.

datatype 'a t = A of bool » "a | B of real x "a

As with type definitions, we can check using an egt ype specification.

structure Bad: sig eqgtype ’‘a t end =
struct
datatype 'a t = A of bool x "a | B of real x ’a
end

ML.ton reports the following error.

Error: z.sml 1.16-1.34.
Type in structure disagrees with signature (admits equality): t.
structure: datatype ‘'a t = B of [real] = _ |
defn at: z.sml 3.19-3.19
signature: [egtype] 'a t
spec at: z.sml 1.30-1.30

MLton indicates the problematic constructor (B), as well as the problematic component of the constructor’s argument.

Recursive datatypes

A recursive datatype like

datatype t = A | B of int » t

introduces a new problem, since in order to decide whether t admits equality, we need to know for the B variant whether t
admits equality. The Definition answers this question by requiring a type constructor to admit equality if it is consistent to do so.
So, in our above example, if we assume that t admits equality, then the variant B of int x t admits equality. Then, since
the A variant trivially admits equality, so does the type constructor t. Thus, it was consistent to assume that t admits equality,
and so, t does admit equality.

On the other hand, in the following declaration

datatype t = A | B of real x t

MLton Guide (20180207) 5/611

if we assume that t admits equality, then the B variant does not admit equality. Hence, the type constructor t does not admit
equality, and our assumption was inconsistent. Hence, t does not admit equality.

The same kind of reasoning applies to mutually recursive datatypes as well. For example, the following defines both t and u to
admit equality.

datatype t = A | B of u
and u = C | D of t

But the following defines neither t nor u to admit equality.

datatype t = A | B of u » real
and u = C | D of t

As always, we can check whether a type admits equality using an egt ype specification.

structure Bad: sig eqtype t eqgtype u end =
struct
datatype t = A | B of u * real
and u = C | D of t
end

MLton reports the following error.

Error: z.sml 1.16-1.40.
Type in structure disagrees with signature (admits equality): t.
structure: datatype t = B of [_str.u] * [real] |
defn at: z.sml 3.16-3.16
signature: [egtype] t
spec at: z.sml 1.27-1.27
Error: z.sml 1.16-1.40.
Type in structure disagrees with signature (admits equality): u.
structure: datatype u = D of [_str.t] |
defn at: z.sml 4.11-4.11
signature: [egtype] u
spec at: z.sml 1.36-1.36

MLton Guide (20180207) 6/611

Alice

Alice ML is an extension of SML with concurrency, dynamic typing, components, distribution, and constraint solving.

http://www.ps.uni-saarland.de/alice

MLton Guide (20180207) 7 /611

AllocateRegisters

AllocateRegisters is an analysis pass for the RSSA IntermediateLanguage, invoked from ToMachine.

Description

Computes an allocation of RSSA variables as Machine register or stack operands.

Implementation

* allocate-registers.sig

* allocate-registers.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/allocate-registers.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/allocate-registers.fun

MLton Guide (20180207) 8/611

AndreiFormiga

I’m a graduate student just back in academia. I study concurrent and parallel systems, with a great deal of interest in programming
languages (theory, design, implementation). I happen to like functional languages.

I use the nickname tautologico on #sml and my email is andrei DOT formiga AT gmail DOT com.

MLton Guide (20180207) 9/611

ArrayLiteral

Standard ML does not have a syntax for array literals or vector literals. The only way to write down an array is like

Array.fromList [w, x, y, z]

No SML compiler produces efficient code for the above expression. The generated code allocates a list and then converts it to
an array. To alleviate this, one could write down the same array using Array.tabulate, or even using Array.array and
Array.update, but that is syntactically unwieldy.

Fortunately, using Fold, it is possible to define constants A, and * so that one can write down an array like:

A ‘w ‘x ‘y ‘z $

This is as syntactically concise as the fromList expression. Furthermore, MLton, at least, will generate the efficient code as if

one had written down a use of Array.array followed by four uses of Array.update.

Along with A and °, one can define a constant V that makes it possible to define vector literals with the same syntax, e.g.,

Note that the same element indicator, ", serves for both array and vector literals. Of course, the $ is the end-of-arguments marker
always used with Fold. The only difference between an array literal and vector literal is the A or V at the beginning.

Here is the implementation of A, V, and ~. We place them in a structure and use signature abstraction to hide the type of the
accumulator. See Fold for more on this technique.

structure Literal:>

sig
type "a z
val A: ('a z, "a z, '"a array, ’'d) Fold.t
val V: ('a z, "a z, "a vector, ’'d) Fold.t
val Y : ('a, "@a z, '"a z, "b, 'c, 'd) Fold.stepl
end =
struct
type 'a z = int % ’"a option x (’'a array —-> unit)
val A =
fn z =>
Fold.fold

((0, NONE, ignore),
fn (n, opt, fill) =>
case opt of

NONE =>
Array.tabulate (0, fn _ => raise Fail "arrayQO")
| SOME x =>
let
val a = Array.array (n, Xx)
val () = fill a
in
a
end)

val V = fn z => Fold.post (A, Array.vector) z

val Y =
fn z =>
Fold.stepl
(fn (x, (i, opt, £fill)) =>
(1 + 1,
SOME x,

MLton Guide (20180207) 10/611

fn a => (Array.update (a, i, x); fill a)))

end

The idea of the code is for the fold to accumulate a count of the number of elements, a sample element, and a function that fills
in all the elements. When the fold is complete, the finishing function allocates the array, applies the fill function, and returns
the array. The only difference between A and V is at the very end; A just returns the array, while V converts it to a vector using
post-composition, which is further described on the Fold page.

MLton Guide (20180207) 11/611

AST

AST is the IntermediateLanguage produced by the FrontEnd and translated by Elaborate to CoreML.

Description

The abstract syntax tree produced by the FrontEnd.

Implementation

* ast-programs.sig
* ast—-programs.fun
* ast-modules.sig
* ast-modules. fun
* ast-core.sig

* ast—-core. fun

* ast

Type Checking

The AST IntermediateLanguage has no independent type checker. Type inference is performed on an AST program as part of
Elaborate.

Details and Notes

Source locations

MLton makes use of a relatively clean method for annotating the abstract syntax tree with source location information. Every
source program phrase is "wrapped" with the WRAPPED interface:

signature WRAPPED =

sig
type node’
type obj
val dest: obj —-> node’ x Region.t
val makeRegion’: node’ x SourcePos.t * SourcePos.t —-> obj
val makeRegion: node’ x Region.t —-> obj
val node: obj —-> node’
val region: obj —-> Region.t
end

The key idea is that node’ is the type of an unannotated syntax phrase and ob7j is the type of its annotated counterpart.
In the implementation, every node’ is annotated with a Region.t (region.sig, region.sml), which describes the
syntax phrase’s left source position and right source position, where SourcePos.t (source-pos.sig, source-pos.
sml) denotes a particular file, line, and column. A typical use of the WRAPPED interface is illustrated by the following code:

https://github.com/MLton/mlton/blob/master/mlton/ast/ast-programs.sig
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-programs.fun
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-modules.sig
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-modules.fun
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-core.sig
https://github.com/MLton/mlton/blob/master/mlton/ast/ast-core.fun
https://github.com/MLton/mlton/tree/master/mlton/ast
https://github.com/MLton/mlton/blob/master/mlton/control/region.sig
https://github.com/MLton/mlton/blob/master/mlton/control/region.sml
https://github.com/MLton/mlton/blob/master/mlton/control/source-pos.sig
https://github.com/MLton/mlton/blob/master/mlton/control/source-pos.sml
https://github.com/MLton/mlton/blob/master/mlton/control/source-pos.sml

MLton Guide (20180207) 12/611

datatype node =
App of Longcon.t * t
| Const of Const.t
| Constraint of t * Type.t
| FlatApp of t vector
| Layered of {constraint: Type.t option,
fixop: Fixop.t,
pat: t,
var: Var.t}
List of t vector
Paren of t
Or of t vector
Record of {flexible: bool,
items: (Record.Field.t % Region.t x Item.t) vector}
| Tuple of t vector
| Var of {fixop: Fixop.t,
name: Longvid.t}
| Vector of t vector
| wild

Thus, AST nodes are cleanly separated from source locations. By way of contrast, consider the approach taken by SML/NJ (and
also by the CKit Library). Each datatype denoting a syntax phrase dedicates a special constructor for annotating source locations:

datatype pat = WildPat (» empty pattern x)
| AppPat of {constr:pat,argument:pat} (x application x)
| MarkPat of pat * region (» mark a pattern x)

The main drawback of this approach is that static type checking is not sufficient to guarantee that the AST emitted from the
front-end is properly annotated.

MLton Guide (20180207) 13/611

BasisLibrary

The Standard ML Basis Library is a collection of modules dealing with basic types, input/output, OS interfaces, and simple
datatypes. It is intended as a portable library usable across all implementations of SML. For the official online version of the
Basis Library specification, see http://www.standardml.org/Basis. The Standard ML Basis Library is a book version that includes
all of the online version and more. For a reverse chronological list of changes to the specification, see http://www.standardml.org/-
Basis/history.html.

MLton implements all of the required portions of the Basis Library. MLton also implements many of the optional structures. You
can obtain a complete and current list of what’s available using ml1ton —-show-basis (see ShowBasis). By default, MLton
makes the Basis Library available to user programs. You can also access the Basis Library from ML Basis files.

Below is a complete list of what MLton implements.

Top-level types and constructors

egtype ’"a array

datatype bool =false | true

egtype char

type exn

egtype int

datatype ’'a list =nil | ::0f ('a » "a list)
datatype ’"a option =NONE | SOME of ’'a
datatype order =EQUAL | GREATER | LESS
type real

datatype 'a ref =ref of 'a

egtype string

type substring

egtype unit

egtype "a vector

egtype word

Top-level exception constructors

Bind

Chr

Div
Domain
Empty
Fail of string
Match
Option
Overflow
Size

Span
Subscript

http://www.standardml.org/Basis
http://www.standardml.org/Basis/history.html
http://www.standardml.org/Basis/history.html

MLton Guide (20180207) 14 /611

Top-level values

MLton does not implement the optional top-level value use: string -> unit, which conflicts with whole-program compi-
lation because it allows new code to be loaded dynamically.

MLton implements all other top-level values:

I, 1=, <>, =, @, 7, app, before, ceil, chr, concat, exnMessage, exnName, explode, floor, foldl, foldr,
getOpt, hd, ignore, implode, isSome, length, map, not, null, o, ord, print, real, rev, round, size, str,
substring, tl, trunc, valOf, vector

Overloaded identifiers

x, +,—, /,<,<=,>,>= ~, abs, div, mod

Top-level signatures

ARRAY
ARRAY?2
ARRAY_SLICE
BIN_IO

BIT_FLAGS

BOOL

BYTE

CHAR
COMMAND_LINE
DATE

GENERAL
GENERIC_SOCK
IEEE_REAL
IMPERATIVE_IO
INET_SOCK
INTEGER

INT_INF

10

LIST

LIST_PAIR

MATH

MONO_ARRAY
MONO_ARRAY?2
MONO_ARRAY_SLICE
MONO_VECTOR
MONO_VECTOR_SLICE

NET_HOST_DB

MLton Guide (20180207)

15/611

NET_PROT_DB
NET_SERV_DB
OPTION

0S
OS_FILE_SYS
OS_IO

OS_PATH
OS_PROCESS
PACK_REAL
PACK_WORD
POSIX
POSIX_ERROR
POSIX_FILE_SYS
POSIX_TIO
POSIX_PROCESS
POSIX_PROC_ENV
POSIX_SIGNAL
POSIX_SYS_DB
POSIX_TTY
PRIM_IO

REAL

SOCKET
STREAM_TIO
STRING
STRING_CVT
SUBSTRING
TEXT

TEXT_TIO
TEXT_STREAM IO
TIME

TIMER

UNIX
UNIX_SOCK
VECTOR
VECTOR_SLICE

WORD

MLton Guide (20180207)

Top-level structures

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

structure

Array:ARRAY

Array2:ARRAY2
ArraySlice:ARRAY_SLICE
BinIO:BIN_IO

BinPrimIO:PRIM_IO

Bool:BOOL

BoolArray:MONO_ARRAY

BoolArray?2 :MONO_ARRAY?2
BoolArraySlice:MONO_ARRAY_SLICE
BoolVector :MONO_VECTOR
BoolVectorSlice:MONO_VECTOR_SLICE
Byte:BYTE

Char:CHAR

* Char characters correspond to ISO-8859-1. The Char functions do not depend on locale.

structure
structure
structure
structure
structure
structure

structure

* Date.fromStringand Date. scan accept a space in addition to a zero for the first character of the day of the month. The

CharArray:MONO_ARRAY

CharArray2 :MONO_ARRAY?2
CharArraySlice:MONO_ARRAY_SLICE
CharVector :MONO_VECTOR
CharVectorSlice:MONO_VECTOR_SLICE
CommandLine: COMMAND_LINE

Date:DATE

Basis Library specification only allows a zero.

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

structure

structure

FixedInt :INTEGER
General : GENERAL
GenericSock:GENERIC_SOCK
IEEEReal : IEEE_REAL
INetSock:INET_SOCK

I0:IO

Int:INTEGER

Intl:INTEGER
Int2:INTEGER
Int3:INTEGER
Int4:INTEGER

Int31:INTEGER

MLton Guide (20180207)

17 /611

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

structure

Int32:INTEGER

Int64:INTEGER

IntArray:MONO_ARRAY
IntArray2:MONO_ARRAY2
IntArraySlice:MONO_ARRAY_SLICE
IntVector :MONO_VECTOR
IntVectorSlice:MONO_VECTOR_SLICE
Int8:INTEGER

Int8Array:MONO_ARRAY
Int8Array2:MONO_ARRAY2
Int8ArraySlice:MONO_ARRAY_ SLICE
Int8Vector :MONO_VECTOR
Int8VectorSlice:MONO_VECTOR_SLICE
Intl6:INTEGER
Intl16Array:MONO_ARRAY
Intl6Array2:MONO_ARRAY2
Intl6ArraySlice:MONO_ARRAY_ SLICE
Intl6Vector :MONO_VECTOR
Intl6VectorSlice:MONO_VECTOR_SLICE
Int32:INTEGER
Int32Array:MONO_ARRAY
Int32Array2:MONO_ARRAY2
Int32ArraySlice:MONO_ARRAY_ SLICE
Int32Vector :MONO_VECTOR
Int32VectorSlice:MONO_VECTOR_SLICE
Int64Array:MONO_ARRAY
Int64Array2:MONO_ARRAY2
Int64ArraySlice:MONO_ARRAY_SLICE
Int64Vector :MONO_VECTOR
Int64VectorSlice :MONO_VECTOR_SLICE
IntInf:INT_INF

LargeInt :INTEGER
LargeIntArray:MONO_ARRAY
LargeIntArray2:MONO_ARRAY2
LargeIntArraySlice:MONO_ARRAY_SLICE
LargeIntVector :MONO_VECTOR
LargeIntVectorSlice:MONO_VECTOR_SLICE
LargeReal :REAL

LargeRealArray:MONO_ARRAY

MLton Guide (20180207)

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

structure

LargeRealArray2 :MONO_ARRAY2

LargeRealArraySlice:MONO_ARRAY_SLICE

LargeRealVector :MONO_VECTOR

LargeRealVectorSlice:MONO_VECTOR_SLICE

LargeWord:WORD
LargeWordArray :MONO_ARRAY

LargeWordArray2 :MONO_ARRAY2

LargeWordArraySlice:MONO_ARRAY_SLICE

LargeWordVector :MONO_VECTOR

LargeWordVectorSlice:MONO_VECTOR_SLICE

List:LIST
ListPair:LIST_PAIR
Math:MATH
NetHostDB:NET_HOST_DB
NetProtDB:NET_PROT_DB
NetServDB:NET_SERV_DB
0S:0S

Option:OPTION
PackReal32Big:PACK_REAL
PackReal32Little:PACK_REAL
PackReal64Big:PACK_REAL
PackReal64Little:PACK_REAL
PackRealBig:PACK_REAL
PackRealLittle:PACK_REAL
PackWordl6Big:PACK_WORD
PackWordleLittle :PACK_WORD
PackWord32Big:PACK_WORD
PackWord32Little :PACK_WORD
PackWord64Big:PACK_WORD
PackWord64Little :PACK_WORD
Position:INTEGER
Posix:POSIX

Real:REAL
RealArray:MONO_ARRAY
RealArray2:MONO_ARRAY2
RealArraySlice:MONO_ARRAY_SLICE
RealVector :MONO_VECTOR
RealVectorSlice:MONO_VECTOR_SLICE

Real32:REAL

MLton Guide (20180207)

19/611

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

structure

Real32Array:MONO_ARRAY
Real32Array2:MONO_ARRAY2
Real32ArraySlice:MONO_ARRAY_ SLICE
Real32Vector:MONO_VECTOR
Real32VectorSlice:MONO_VECTOR_SLICE
Real64:REAL

Real64Array:MONO_ARRAY
Real64Array2:MONO_ARRAY2
Real64ArraySlice:MONO_ARRAY_SLICE
Real64Vector :MONO_VECTOR
Real6bd4VectorSlice:MONO_VECTOR_SLICE

Socket : SOCKET

» The Basis Library specification requires functions like Socket . sendVec to raise an exception if they fail. However, on
some platforms, sending to a socket that hasn’t yet been connected causes a SIGP IPE signal, which invokes the default signal
handler for STGPIPE and causes the program to terminate. If you want the exception to be raised, you can ignore SIGPIPE

by adding the following to your program.

let

open MLton.Signal

in

setHandler (Posix.Signal.pipe, Handler.ignore)

end

structure

String:STRING

* The St ring functions do not depend on locale.

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

structure

StringCvt :STRING_CVT
Substring:SUBSTRING
SysWord:WORD
Text : TEXT
TextIO:TEXT_TIO
TextPrimIO:PRIM_IO
Time:TIME
Timer:TIMER
Unix:UNIX
UnixSock:UNIX_SOCK
Vector:VECTOR
VectorSlice:VECTOR_SLICE
Word:WORD

Wordl : WORD

Word2 :WORD

Word3 :WORD

MLton Guide (20180207) 20 /611

structure Word4:WORD

structure Word31l:WORD

structure Word32:WORD

structure Word64:WORD

structure WordArray:MONO_ARRAY

structure WordArray2:MONO_ARRAY2

structure WordArraySlice:MONO_ARRAY_SLICE
structure WordVectorSlice:MONO_VECTOR_SLICE
structure WordVector:MONO_VECTOR

structure Word8Array:MONO_ARRAY

structure Word8Array2:MONO_ARRAYZ2

structure Word8ArraySlice:MONO_ARRAY_SLICE
structure Word8Vector:MONO_VECTOR

structure Word8VectorSlice:MONO_VECTOR_SLICE
structure Wordl6Array:MONO_ARRAY

structure Wordl6Array2:MONO_ARRAY?2

structure Wordl6ArraySlice:MONO_ARRAY_SLICE
structure Wordl6Vector:MONO_VECTOR

structure Wordlé6VectorSlice:MONO_VECTOR_SLICE
structure Word32Array:MONO_ARRAY

structure Word32Array2:MONO_ARRAY2

structure Word32ArraySlice:MONO_ARRAY_SLICE
structure Word32Vector:MONO_VECTOR

structure Word32VectorSlice:MONO_VECTOR_SLICE
structure Word64Array:MONO_ARRAY

structure Word64Array2:MONO_ARRAY?2

structure Word64ArraySlice:MONO_ARRAY_SLICE
structure Wordé64Vector:MONO_VECTOR

structure Word64VectorSlice:MONO_VECTOR_SLICE

Top-level functors

ImperativeIO
PrimIO

StreamIO

* MLton’s St reamIO functor takes structures ArraySlice and VectorSlice in addition to the arguments specified in the
Basis Library specification.

MLton Guide (20180207) 21/611

Type equivalences

The following types are equivalent.

FixedInt = Inté4.int
LargeInt = IntInf.int
LargeReal.real = Real64.real
LargeWord = Word64.word

The default int, real, and word types may be set by the ~default-type type compile-time option. By default, the
following types are equivalent:

int = Int.int = Int32.int
real = Real.real = Realb4.real
word = Word.word = Word32.word

Real and Math functions

The Real, Real32, and Real64 modules are implemented using the C math library, so the SML functions will reflect the
behavior of the underlying library function. We have made some effort to unify the differences between the math libraries on
different platforms, and in particular to handle exceptional cases according to the Basis Library specification. However, there will
be differences due to different numerical algorithms and cases we may have missed. Please submit a bug report if you encounter
an error in the handling of an exceptional case.

On x86, real arithmetic is implemented internally using 80 bits of precision. Using higher precision for intermediate results
in computations can lead to different results than if all the computation is done at 32 or 64 bits. If you require strict IEEE
compliance, you can compile with —ieee-fp true, which will cause intermediate results to be stored after each operation.
This may cause a substantial performance penalty.

MLton Guide (20180207) 22 /611

Bug

To report a bug, please send mail to mlton-devel@mlton.org. Please include the complete SML program that caused
the problem and a log of a compile of the program with ~verbose 2. For large programs (over 256K), please send an email
containing the discussion text and a link to any large files.

There are some UnresolvedBugs that we don’t plan to fix.

We also maintain a list of bugs found with each release.

Bugs20130715

Bugs20100608

Bugs20070826

Bugs20051202

Bugs20041109

mailto:mlton-devel@mlton.org

MLton Guide (20180207) 23 /611

Bugs20041109

Here are the known bugs in MLton 20041109, listed in reverse chronological order of date reported.

* MLton.Finalizable.touch doesn’t necessarily keep values alive long enough. Our SVN has a patch to the compiler.
You must rebuild the compiler in order for the patch to take effect.

Thanks to Florian Weimer for reporting this bug.
* A bug in an optimization pass may incorrectly transform a program to flatten ref cells into their containing data structure,

yielding a type-error in the transformed program. Our CVS has a patch to the compiler. You must rebuild the compiler in order
for the patch to take effect.

Thanks to VesaKarvonen for reporting this bug.
* A bug in the front end mistakenly allows unary constructors to be used without an argument in patterns. For example, the

following program is accepted, and triggers a large internal error.

fun £ x = case x of SOME => true | _ => false

We have fixed the problem in our CVS.
Thanks to William Lovas for reporting this bug.

e Abugin Posix.IO.{getlk, setlk, setlkw} causes a link-time error: undefined reference to Posix_IO
_FLock_typ Our CVS has a patch to the Basis Library implementation.
Thanks to Adam Chlipala for reporting this bug.

* A bug can cause programs compiled with —-profile alloc to segfault. Our CVS has a patch to the compiler. You must
rebuild the compiler in order for the patch to take effect.
Thanks to John Reppy for reporting this bug.

* A bug in an optimization pass may incorrectly flatten ref cells into their containing data structure, breaking the sharing between
the cells. Our CVS has a patch to the compiler. You must rebuild the compiler in order for the patch to take effect.
Thanks to Paul Govereau for reporting this bug.

* Some arrays or vectors, such as (char % char) vector, are incorrectly implemented, and will conflate the first and

second components of each element. Our CVS has a patch to the compiler. You must rebuild the compiler in order for the
patch to take effect.

Thanks to Scott Cruzen for reporting this bug.
* Socket.Ctl.getLINGER and Socket.Ctl.setLINGER mistakenly raise Subscript. Our CVS has a patch to the
Basis Library implementation.

Thanks to Ray Racine for reporting the bug.
e CML Mailbox.send makes a call in the wrong atomic context. Our CVS has a patch to the CML implementation.

* 0S.Path.JjoinDirFile and OS.Path.toString did not raise InvalidArc when they were supposed to. They now
do. Our CVS has a patch to the Basis Library implementation.
Thanks to Andreas Rossberg for reporting the bug.

* The front end incorrectly disallows sequences of expressions (separated by semicolons) after a topdec has already been pro-
cessed. For example, the following is incorrectly rejected.

val x = 0;
ignore x;
ignore x;

We have fixed the problem in our CVS.
Thanks to Andreas Rossberg for reporting the bug.

http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.35&r2=1.37
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/posix/primitive.sml.diff?r1=1.34&r2=1.35
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/ssa-to-rssa.fun.diff?r1=1.106&r2=1.107
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/packed-representation.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/socket.sml.diff?r1=1.14&r2=1.15
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/lib/cml/core-cml/mailbox.sml.diff?r1=1.3&r2=1.4
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/system/path.sml.diff?r1=1.8&r2=1.11

MLton Guide (20180207) 24 /611

* The front end incorrectly disallows expansive val declarations that bind a type variable that doesn’t occur in the type of the
value being bound. For example, the following is incorrectly rejected.

val 'a x = let exception E of 'a in () end

We have fixed the problem in our CVS.
Thanks to Andreas Rossberg for reporting this bug.

» The x86 codegen fails to account for the possibility that a 64-bit move could interfere with itself (as simulated by 32-bit moves).
We have fixed the problem in our CVS.
Thanks to Scott Cruzen for reporting this bug.

* NetHostDB.scan and NetHostDB. fromString incorrectly raise an exception on internet addresses whose last com-
ponent is a zero, e.g 0.0.0.0. Our CVS has a patch to the Basis Library implementation.
Thanks to Scott Cruzen for reporting this bug.

* StreamIO.inputLine has an off-by-one error causing it to drop the first character after a newline in some situations. Our
CVS has a patch. to the Basis Library implementation.
Thanks to Scott Cruzen for reporting this bug.

* BinIO.getInstream and TextIO.getInstream are implemented incorrectly. This also impacts the behavior of
BinIO.scanStream and TextIO.scanStream. If you (directly or indirectly) realize a TextIO.StreamIO.ins

tream and do not (directly or indirectly) call Text IO.set Instream with a derived stream, you may lose input data. We
have fixed the problem in our CVS.

Thanks to WesleyTerpstra for reporting this bug.

* Posix.ProcEnv.setpgid doesn’t work. If you compile a program that uses it, you will get a link time error
undefined reference to ‘Posix_ProcEnv_setpgid’
The bug is due to Posix_ProcEnv_setpgid being omitted from the MLton runtime. We fixed the problem in our CVS
by adding the following definition to runtime/Posix/ProcEnv/ProcEnv.c

Int Posix_ProcEnv_setpgid (Pid p, Gid g) {
return setpgid (p, 9);
}

Thanks to Tom Murphy for reporting this bug.

http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/net-host-db.sml.diff?r1=1.12&r2=1.13
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/io/stream-io.fun.diff?r1=text&tr1=1.29&r2=text&tr2=1.30&diff_format=h

MLton Guide (20180207) 25 /611

Bugs20051202

Here are the known bugs in MLton 20051202, listed in reverse chronological order of date reported.

* Buginthe Real <N>. fmt,Real<N>.fromString, Real<N>.scan,and Real<N>.toString functions of the Basis
Library implementation. These functions were using TO_NEAREST semantics, but should obey the current rounding mode.
(Only Real<N>.fmt StringCvt.EXACT, Real<N>.fromDecimal, and Real<N>.toDecimal are specified to
override the current rounding mode with TO_NEAREST semantics.)

Thanks to Sean McLaughlin for the bug report.
Fixed by revision r5827.

* Bug in the treatment of floating-point operations. Floating-point operations depend on the current rounding mode, but were
being treated as pure.
Thanks to Sean McLaughlin for the bug report.
Fixed by revision r5794.

* Bug in the Real32.toInt function of the Basis Library implementation could lead incorrect results when applied to a
Real32.real value numerically close to valOf (Int .maxInt).
Fixed by revision r5764.

e The Socket structure of the Basis Library implementation used andb rather than orb to unmarshal socket options (for
Socket.Ctl.get <OPT> functions).
Thanks to Anders Petersson for the bug report and patch.
Fixed by revision r5735.

* Bug in the Date structure of the Basis Library implementation yielded some functions that would erroneously raise Date
when applied to a year before 1900.
Thanks to Joe Hurd for the bug report.
Fixed by revision r5732.

* Bug in monomorphisation pass could exhibit the error Type error:type mismatch.
Thanks to Vesa Karvonen for the bug report.
Fixed by revision r5731.

e The PackReal <N>.toBytes function in the Basis Library implementation incorrectly shared (and mutated) the result
vector.
Thanks to Eric McCorkle for the bug report and patch.
Fixed by revision r5281.

* Bug in elaboration of FFI forms. Using a unary FFI types (e.g., array, ref, vector) in places where MLton.Pointer.
t was required would lead to an internal error TypeError.

Fixed by revision r4890.

* The MONO_VECTOR signature of the Basis Library implementation incorrectly omits the specification of £ind.
Fixed by revision r4707.

* The optimizer reports an internal error (TypeError) when an imported C function is called but not used.
Thanks to "jq" for the bug report.
Fixed by revision r4690.

* Bug in pass to flatten data structures.
Thanks to Joe Hurd for the bug report.
Fixed by revision r4662.

http://www.standardml.org/Basis/real.html#SIG:REAL.fmt:VAL
http://www.standardml.org/Basis/real.html#SIG:REAL.fromString:VAL
http://www.standardml.org/Basis/real.html#SIG:REAL.scan:VAL
http://www.standardml.org/Basis/real.html#SIG:REAL.toString:VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5827
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5794
http://www.standardml.org/Basis/real.html#SIG:REAL.toInt:VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5764
http://www.standardml.org/Basis/socket.html
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5735
http://www.standardml.org/Basis/date.html
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5732
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5731
http://www.standardml.org/Basis/pack-float.html#SIG:PACK_REAL.toBytes:VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5281
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4890
http://www.standardml.org/Basis/mono-vector.html
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4707
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4690
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4662

MLton Guide (20180207) 26 /611

* The native codegen’s implementation of the C-calling convention failed to widen 16-bit arguments to 32-bits.

Fixed by revision r4631.

e The PACK_REAL structures of the Basis Library implementation used byte, rather than element, indexing.

Fixed by revision r4411.

* MLton.share could cause a segmentation fault.

Fixed by revision r4400.

* The SSA simplifier could eliminate an irredundant test.
Fixed by revision r4370.

* A program with a very large number of functors could exhibit the error ElaborateEnv. functorClosure: firstTyc
ons.

Fixed by revision r4344.

https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4631
http://www.standardml.org/Basis/pack-float.html
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4411
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4400
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4370
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r4344

MLton Guide (20180207) 27/ 611

Bugs20070826

Here are the known bugs in MLton 20070826, listed in reverse chronological order of date reported.

* Bug in the mark-compact garbage collector where the C library’s memcpy was used to move objects during the compaction
phase; this could lead to heap corruption and segmentation faults with newer versions of gcc and/or glibc, which assume that
src and dst in a memcpy do not overlap.

Fixed by revision r7461.

* Bug in elaboration of datatype declarations with withtype bindings.
Fixed by revision r7434.

 Performance bug in RefFlatten optimization pass.
Thanks to Reactive Systems for the bug report.
Fixed by revision r7379.

* Performance bug in SimplifyTypes optimization pass.
Thanks to Reactive Systems for the bug report.
Fixed by revisions r 7377 and r7378.

* Bug in amd64 codegen register allocation of indirect C calls.
Thanks to David Hansel for the bug report.
Fixed by revision r7368.
e Bugin IntInf.scan and IntInf.fromString where leading spaces were only accepted if the stream had an explicit
sign character.
Thanks to David Hansel for the bug report.
Fixed by revisions r 7227 and x7230.

* Bugin IntInf.~>> that could cause a glibc assertion.

Fixed by revisions r7083, r7084, and r7085.

* Bug in the return type of MLton.Process.reap.
Thanks to Risto Saarelma for the bug report.
Fixed by revision r7029.

* BuginMLton.size and MLton. share when tracing the current stack.

Fixed by revisions r6978, r6981, r6988, r6989, and r6990.

* Buginnested _export/_import functions.

Fixed by revision r6919.

* Bug in the name mangling of _import-ed functions with the stdcall convention.
Thanks to Lars Bergstrom for the bug report.
Fixed by revision r6672.

* Bug in Windows code to page the heap to disk when unable to grow the heap to a desired size.
Thanks to Sami Evangelista for the bug report.
Fixed by revisions r 6600 and r6624.

* Bug in *NIX code to page the heap to disk when unable to grow the heap to a desired size.
Thanks to Nicolas Bertolotti for the bug report and patch.
Fixed by revisions r 6596 and r6600.

https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7461
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7434
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7379
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7377
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7378
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7368
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7227
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7230
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7083
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7084
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7085
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7029
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6978
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6981
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6988
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6989
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6990
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6919
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6672
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6600
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6624
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6596
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6600

MLton Guide (20180207) 28 /611

» Space-safety bug in pass to flatten refs into containing data structure.
Thanks to Daniel Spoonhower for the bug report and initial diagnosis and patch.

Fixed by revision r6395.

* Bug in the frontend that rejected op longvid patterns and expressions.
Thanks to Florian Weimer for the bug report.

Fixed by revision r6347.

* Buginthe IMPERATIVE_TIO.canInput function of the Basis Library implementation.
Thanks to Ville Laurikari for the bug report.
Fixed by revision r6261.

* Bug in algebraic simplification of real primitives. REAL<N>. <= (x, x) is false when x is NaN.
Fixed by revision r6242.
* Bug in the FFI visible representation of Int16.int ref (and references of other primitive types smaller than 32-bits) on
big-endian platforms.
Thanks to Dave Herman for the bug report.
Fixed by revision r6267.

* Bug in type inference of flexible records. This would later cause the compiler to raise the TypeError exception.
Thanks to Wesley Terpstra for the bug report.
Fixed by revision r6229.

* Bug in cross-compilation of gdtoa library.
Thanks to Wesley Terpstra for the bug report and patch.
Fixed by revision r6620.

* Bug in pass to flatten refs into containing data structure.
Thanks to Ruy Ley-Wild for the bug report.
Fixed by revision r6191.

* Bug in the handling of weak pointers by the mark-compact garbage collector.
Thanks to Sean McLaughlin for the bug report and Florian Weimer for the initial diagnosis.
Fixed by revision r6183.
* Bug in the elaboration of structures with signature constraints. This would later cause the compiler to raise the TypeError
exception.
Thanks to Vesa Karvonen for the bug report.

Fixed by revision r6046.

* Bug in the interaction of _export-ed functions and signal handlers.
Thanks to Sean McLaughlin for the bug report.
Fixed by revision r601 3.

* Bug in the implementation of _export-ed functions using the char type, leading to a linker error.
Thanks to Katsuhiro Ueno for the bug report.
Fixed by revision r5999.

https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6395
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6347
http://www.standardml.org/Basis/imperative-io.html#SIG:IMPERATIVE_IO.canInput:VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6261
http://www.standardml.org/Basis/real.html#SIG:REAL.\delimiter "026B30D @LTE\delimiter "026B30D :VAL
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6242
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6267
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6229
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6620
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6191
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6183
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6046
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6013
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r5999

MLton Guide (20180207) 29 /611

Bugs20100608

Here are the known bugs in MLton 20100608, listed in reverse chronological order of date reported.

* Bugsin REAL.signBit, REAL.copySign, and REAL.toDecimal/REAL. fromDecimal.
Thanks to Phil Clayton for the bug report and examples.
Fixed by revisions r 7571, r7572,and r7573.

* Bug in elaboration of type variables with and without equality status.
Thanks to Rob Simmons for the bug report and examples.

Fixed by revision r7565.

* Bug in redundant SSA optimization.
Thanks to Lars Magnusson for the bug report and example.
Fixed by revision r7561.
* Bug in SSA/SSA?2 shrinker that could erroneously turn a non-tail function call with a Bug transfer as its continuation into a
tail function call.
Thanks to Lars Bergstrom for the bug report.
Fixed by revision r 754 6.

* Bug in translation from SSA2 to RSSA with case expressions over non-primitive-sized words.

Fixed by revision r7544.

* Bug with SSA/SSA2 type checking of case expressions over words.
Fixed by revision r 754 2.

* Bug with treatment of as-patterns, which should not allow the redefinition of constructor status.
Thanks to Michael Norrish for the bug report.
Fixed by revision r7530.

* Bug with treatment of nan in common subexpression elimination SSA optimization.
Thanks to Alexandre Hamez for the bug report.
Fixed by revision r7503.

* Bug in translation from SSA2 to RSSA with weak pointers.
Thanks to Alexandre Hamez for the bug report.
Fixed by revision r7502.

* Bug in amd64 codegen calling convention for varargs C calls.
Thanks to HenryCejtin for the bug report and WesleyTerpstra for the initial diagnosis.
Fixed by revision r7501.

* Bug in comment-handling in lexer for MLYacc’s input language.
Thanks to Michael Norrish for the bug report and patch.
Fixed by revision r7500.

* Bug in elaboration of function clauses with different numbers of arguments that would raise an uncaught Subscript excep-
tion.

Fixed by revision r75497.

https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7571
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7572
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7573
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7565
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7561
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7546
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7544
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7542
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7530
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7503
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7502
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7501
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r7500
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r75497

MLton Guide (20180207) 30 /611

Bugs20130715

Here are the known bugs in MLton 20130715, listed in reverse chronological order of date reported.

* Bug with simultaneous sharing of multiple structures.
Fixed by commit 9cb5164f6.

* Minor bug with exception replication.
Fixed by commit 1c89c42f6.

* Minor bug erroneously accepting symbolic identifiers for strid, sigid, and fctid and erroneously accepting symbolic identifiers
before . in long identifiers.

Fixed by commit 9a56be647.

* Minor bug in precedence parsing of function clauses.

Fixed by commit 1a6d25ec9.

 Performance bug in creation of worker threads to service calls of _export-ed functions.
Thanks to Bernard Berthomieu for the bug report.
Fixed by commit 97c2bdf1d.

* BuginMLton.IntInf.fromRep that could yield values that violate the Int Inf representation invariants.
Thanks to Rob Simmons for the bug report.
Fixed by commit 3add91eda.

* Bug in equality status of some arrays, vectors, and slices in Basis Library implementation.

Fixed by commit a7ed9cbfl.

https://github.com/MLton/mlton/commit/9cb5164f6
https://github.com/MLton/mlton/commit/1c89c42f6
https://github.com/MLton/mlton/commit/9a56be647
https://github.com/MLton/mlton/commit/1a6d25ec9
https://github.com/MLton/mlton/commit/97c2bdf1d
https://github.com/MLton/mlton/commit/3add91eda
https://github.com/MLton/mlton/commit/a7ed9cbf1

MLton Guide (20180207) 31/611

Bugs20180207

Here are the known bugs in MLton 20180207, listed in reverse chronological order of date reported.

MLton Guide (20180207) 32/611

CallGraph

For easier visualization of profiling data, mlprof can create a call graph of the program in dot format, from which you can use
the graphviz software package to create a PostScript or PNG graph. For example,

mlprof -call-graph foo.dot foo mlmon.out

will create foo . dot with a complete call graph. For each source function, there will be one node in the graph that contains the
function name (and source position with —show—1ine true), as well as the percentage of ticks. If you want to create a call
graph for your program without any profiling data, you can simply call m1prof without any mlmon . out files, as in

mlprof —-call-graph foo.dot foo

Because SML has higher-order functions, the call graph is is dependent on MLton’s analysis of which functions call each
other. This analysis depends on many implementation details and might display spurious edges that a human could conclude are
impossible. However, in practice, the call graphs tend to be very accurate.

Because call graphs can get big, m1prof provides the —~keep option to specify the nodes that you would like to see. This option
also controls which functions appear in the table that m1prof prints. The argument to —keep is an expression describing a set
of source functions (i.e. graph nodes). The expression e should be of the following form.

e all
o Ngm
e (and e ...)

e (from e)

* (not e)
e (or e)
* (pred e)

* (succ e)

* (thresh x)

* (thresh-gc x)

e (thresh-stack x)

e (to e)

In the grammar, a1l denotes the set of all nodes. " s" is a regular expression denoting the set of functions whose name (followed
by a space and the source position) has a prefix matching the regexp. The and, not, and or expressions denote intersection,
complement, and union, respectively. The pred and succ expressions add the set of immediate predecessors or successors to
their argument, respectively. The from and to expressions denote the set of nodes that have paths from or to the set of nodes
denoted by their arguments, respectively. Finally, thresh, thresh-gc, and thresh-stack denote the set of nodes whose
percentage of ticks, gc ticks, or stack ticks, respectively, is greater than or equal to the real number x.

For example, if you want to see the entire call graph for a program, you can use ~keep all (this is the default). If you want
to see all nodes reachable from function foo in your program, you would use ~keep ’ (from "foo")’. Or, if you want to
see all the functions defined in subdirectory bar of your project that used at least 1% of the ticks, you would use

-keep ' (and ".x/bar/" (thresh 1.0))’

http://www.research.att.com/sw/tools/graphviz/

MLton Guide (20180207) 33/611

To see all functions with ticks above a threshold, you can alsouse —~thresh x, which is an abbreviation for ~keep ’ (thresh
x) ’. You can not use multiple ~keep arguments or both —keep and —thresh. When you use -keep to display a subset of
the functions, m1prof will add dashed edges to the call graph to indicate a path in the original call graph from one function to
another.

When compiling with -profile-stack true, youcan use mlprof -gray true to make the nodes darker or lighter
depending on whether their stack percentage is higher or lower.

MLton’s optimizer may duplicate source functions for any of a number of reasons (functor duplication, monomorphisation,
polyvariance, inlining). By default, all duplicates of a function are treated as one. If you would like to treat the duplicates
separately, you can use mlprof -split regexp, which will cause all duplicates of functions whose name has a prefix
matching the regular expression to be treated separately. This can be especially useful for higher-order utility functions like
General.o.

Caveats

Technically speaking, m1prof produces a call-stack graph rather than a call graph, because it describes the set of possible call
stacks. The difference is in how tail calls are displayed. For example if £ nontail calls g and g tail calls h, then the call-stack
graph has edges from f to g and £ to h, while the call graph has edges from £ to g and g to h. That is, a tail call from g to h
removes g from the call stack and replaces it with h.

MLton Guide (20180207) 34 /611

CallingFromCToSML

MLton’s ForeignFunctionInterface allows programs to export SML functions to be called from C. Suppose you would like
export from SML a function of type real * char —-> int as the C function foo. MLton extends the syntax of SML to
allow expressions like the following:

_export "foo": (real x char —-> int) -> unit;

The above expression exports a C function named foo, with prototype

Int32 foo (Real64 x0, Char x1);

The _export expression denotes a function of type (real * char —-> int) -> unit that when called with a function
£, arranges for the exported foo function to call £ when foo is called. So, for example, the following exports and defines foo.

val e = _export "foo": (real x char -> int) -> unit;
e (fn (x, c) => 13 + Real.floor x + Char.ord c)

val _

The general form of an _export expression is

_export "C function name" attr... : cFuncTy —-> unit;

The type and the semicolon are not optional. As with _import, a sequence of attributes may follow the function name.

MLton’s —export—-header option generates a C header file with prototypes for all of the functions exported from SML.
Include this header file in your C files to type check calls to functions exported from SML. This header file includes t ypedefs
for the types that can be passed between SML and C.

Example

Suppose that export.sml is

val e = _export "f": (int x real x char -> char) -> unit;
val _ = e (fn (i, r, _) =>

(print (concat ["i1 = ", Int.toString i,

" r =", Real.toString r, "\n"])

i #7g™)
val g = _import "g" public reentrant: unit -> unit;
val _ = g ()
val _ = g ()
val e = _export "f2": (Word8.word -> word array) —> unit;
val _ = e (fn w =>

Array.tabulate (10, fn _ => Word.fromLargeWord (Word8.toLargeWord w)))
val g2 = _import "g2" public reentrant: unit -> word array;
val a = g2 ()
val _ = print (concat ["Owx", Word.toString (Array.sub (a, 0)), "\n"])
val e = _export "f3": (unit -> unit) -> unit;
val _ = e (fn () => print "hello\n");
val g3 = _import "g3" public reentrant: unit -> unit;
val _ = g3 ()

(* This example demonstrates mutual recursion between C and SML. x)

val e = _export "f4": (int -> unit) -> unit;

val g4 = _import "g4" public reentrant: int -> unit;
val _ = e (fn 1 => 1if i = 0 then () else g4 (1 - 1))
val _ = g4 13

val (_, zzzSet) = _symbol "zzz" alloc: (unit —-> int) % (int -> unit);

MLton Guide (20180207) 35/611

val () = zzzSet 42

val g5 = _import "g5" public: unit -> unit;
val _ = g5 ()

val _ = print "success\n"

Note that the the reent rant attribute is used for _import-ing the C functions that will call the _export-ed SML functions.

Create the header file with —export—-header.

$ mlton -default-ann 'allowFFI true’ \
—export-header export.h \
-stop tc \

export.sml

export .h now contains the following C prototypes.

Int8 £ (Int32 x0, Realo6d x1, Int8 x2);
Pointer f2 (Word8 x0);

void £3 ();

void f4 (Int32 x0);

extern Int32 zzz;

Use export .hin a C program, £fi-export.c, as follows.

#include <stdio.h>
#include "export.h"

/* Functions in C are by default PUBLIC symbols x/
void g () {
Char8 c;

fprintf (stderr, "g starting\n");
c =f (13, 17.15, ’'a’);
fprintf (stderr, "g done char = %c\n", c);

Pointer g2 () {
Pointer res;
fprintf (stderr, "g2 starting\n");
res = f2 (0xFF);
fprintf (stderr, "g2 done\n");
return res;

void g3 () {
fprintf (stderr, "g3 starting\n");
£f3 () ;
fprintf (stderr, "g3 done\n");

void g4 (Int32 i) {
fprintf (stderr, "g4 (%d)\n", 1i);
f4 (1),

void g5 () {
fprintf (stderr, "g5 ()\n");
fprintf (stderr, "zzz = %$i\n", zzz);
fprintf (stderr, "g5 done\n");

MLton Guide (20180207) 36 /611

Compile ffi-export.c and export.sml.

oe

gcc -c ffi-export.c
mlton —-default-ann ’"allowFFI true’ \
export.sml ffi-export.o

o\

Finally, run export.

% ./export
g starting

g4 (0)
success

Download

* export.sml

e ffi-export.c

https://raw.github.com/MLton/mlton/master/doc/examples/ffi/export.sml
https://raw.github.com/MLton/mlton/master/doc/examples/ffi/ffi-export.c

MLton Guide (20180207) 37 /611

CallingFromSMLToC

MLton’s ForeignFunctionlnterface allows an SML program to import C functions. Suppose you would like to import from C a
function with the following prototype:

int foo (double d, char c);

MLton extends the syntax of SML to allow expressions like the following:

_import "foo": real * char -> int;

This expression denotes a function of type real % char -> int whose behavior is implemented by calling the C function
whose name is foo. Thinking in terms of C, imagine that there are C variables d of type double, c of type unsigned char,
and 1 of type int. Then, the C statement 1 =foo (d, c) isexecuted and 1 is returned.

The general form of an _import expression is:

_import "C function name" attr... : cFuncTy;

The type and the semicolon are not optional.

The function name is followed by a (possibly empty) sequence of attributes, analogous to C __attribute__ specifiers.

Example

import.sml imports the C function ££1 and the C variable FFI_INT as follows.
(* main.sml =*)
(» Declare ffi to be implemented by calling the C function ffi. x)

val ffi = _import "ffi" public: real array * int x int ref x char ref » int —-> char;
open Array

val size = 10

val a = tabulate (size, fn i => real 1)
val ri = ref 0

val rc = ref #"0"

val n = 17

(* Call the C function =*)
val ¢ = £ffi (a, Array.length a, ri, rc, n)

(FFI_INT is declared as public in ffi-import.c x)

val (nGet, nSet) = _symbol "FFI_INT" public: (unit -> int) % (int -> unit);
val _ = print (concat [Int.toString (nGet ()), "\n"])
val _ =

print (if ¢ = #"c" andalso !ri = 45 andalso !rc = c

then "success\n"
else "fail\n")

ffi-import.cis

#include "export.h"

Int32 FFI_INT = 13
Word32 FFI_WORD =
Bool FFI_BOOL = 1;
Real64 FFI_REAL = 3.14159;

2
OxFF;

MLton Guide (20180207)

38/611

Char8 ffi (Pointer al, Int32 allen, Pointer a2,

double *ds = (doublex)al;
int xpi = (intx)a2;

char xpc = (charx)a3;

int 1i;

double sum;

sum = 0.0;

for (i = 0; i < allen; ++1i) {
sum += ds[i];
ds[i] += n;

}

*pli = (int) sum;

*pc = "¢’

return ’'c’;

Compile and run the program.

mlton —-default-ann "allowFFI true’
./import

o° o

13
success

Download

* import.sml

e ffi—-import.c

Next Steps

 CallingFromSMLToCFunctionPointer

Pointer a3,

—export—header export.h

Int32 n) {

import.sml ffi-import.c

https://raw.github.com/MLton/mlton/master/doc/examples/ffi/import.sml
https://raw.github.com/MLton/mlton/master/doc/examples/ffi/ffi-import.c

MLton Guide (20180207) 39 /611

CallingFromSMLToCFunctionPointer

Just as MLton can directly call C functions, it is possible to make indirect function calls; that is, function calls through a function
pointer. MLton extends the syntax of SML to allow expressions like the following:

_import x : MLton.Pointer.t -> real x char -> int;

This expression denotes a function of type

MLton.Pointer.t -> real = char -> int

whose behavior is implemented by calling the C function at the address denoted by the MLton.Pointer.t argument, and
supplying the C function two arguments, a double and an int. The C function pointer may be obtained, for example, by the
dynamic linking loader (d1open, dlsym,...).

The general form of an indirect _import expression is:

_import x attr... : cPtrTy —-> cFuncTy;

The type and the semicolon are not optional.

Example

This example uses dlopen and friends (imported using normal _import) to dynamically load the math library (1ibm) and
call the cos function. Suppose iimport .sml contains the following.

signature DYN_LINK =
sig
type hndl
type mode
type fptr

val dlopen : string x mode -> hndl
val dlsym : hndl * string -> fptr
val dlclose : hndl -> unit

val RTLD_LAZY : mode
val RTLD_NOW : mode
end

structure DynLink :> DYN_LINK =
struct
type hndl = MLton.Pointer.t
type mode = Word32.word
type fptr MLton.Pointer.t

(x These symbols come from a system libray, so the default import scope
x of external is correct.
*)
val dlopen =
_import "dlopen" : string * mode -> hndl;
val dlerror =
_import "dlerror": unit -> MLton.Pointer.t;

val dlsym =

_import "dlsym" : hndl * string -> fptr;
val dlclose =

_import "dlclose" : hndl -> Int32.int;

val RTLD_LAZY Owx00001 (% Lazy function call binding. *)
val RTLD_NOW = 0wx00002 (% Immediate function call binding. *)

MLton Guide (20180207) 40/611

val dlerror = fn () =>
let
val addr = dlerror ()
in
if addr = MLton.Pointer.null
then NONE
else let
fun loop (index, cs) =
let
val w MLton.Pointer.getWord8 (addr, index)
val ¢ = Byte.byteToChar w
in

if ¢ = #"\000"
then SOME (implode (rev cs))
else loop (index + 1, c::cs)
end
in
loop (0, [1)
end
end

val dlopen = fn (filename, mode) =>
let
val filename = filename ~ "\000"
val hndl = dlopen (filename, mode)
in
if hndl = MLton.Pointer.null
then raise Fail (case dlerror () of
NONE => "?2?2°?2"
| SOME s => s)
else hndl
end

val dlsym = fn (hndl, symbol) =>
let
val symbol = symbol ~ "\000"
val fptr = dlsym (hndl, symbol)
in
case dlerror () of
NONE => fptr
| SOME s => raise Fail s
end

val dlclose = fn hndl =>
if MLton.Platform.O0S.host = MLton.Platform.OS.Darwin
then () (# Darwin reports the following error message if you
* try to close a dynamic library.
* "dynamic libraries cannot be closed"
* So, we disable dlclose on Darwin.

*)

else

let

val res = dlclose hndl
in

if res = 0

then ()
else raise Fail (case dlerror () of
NONE => "?2?2°?2"
| SOME s => s)

end

end

MLton Guide (20180207) 41/611

val dll =
let
open MLton.Platform.OS
in
case host of
Cygwin => "cygwinl.dl1l"
| Darwin => "libm.dylib"
| _ => "libm.so"
end

val hndl = DynLink.dlopen (dll, DynLink.RTLD_LAZY)

local
val double_to_double =
_import = : DynLink.fptr -> real -> real;
val cos_fptr = DynLink.dlsym (hndl, "cos")

in
val cos = double_to_double cos_fptr
end
val _ = print (concat [" Math.cos(2.0) = ", Real.toString (Math.cos 2.0), "\n",
"libm.so::cos(2.0) = ", Real.toString (cos 2.0), "\n"])
val _ = DynLink.dlclose hndl

Compile and run iimport.sml.

% mlton —-default-ann ’'allowFFI true’ \
—-target-link-opt linux -1dl1 \
-target-link-opt solaris -1dl \

iimport.sml

% iimport

Math.cos (2.0) ~0.416146836547
libm.so::cos(2.0) = ~0.416146836547

This example also shows the —target-1ink—opt option, which uses the switch when linking only when on the specified
platform. Compile with —~verbose 1 to see in more detail what’s being passed to gcc.

Download

¢ iimport.sml

https://raw.github.com/MLton/mlton/master/doc/examples/ffi/iimport.sml

MLton Guide (20180207) 42 /611

CCodegen

The CCodegen is a code generator that translates the Machine IntermediateLanguage to C, which is further optimized and
compiled to native object code by gcc (or another C compiler).

Implementation

* c-codegen.sig

* c—codegen. fun

Details and Notes

The CCodegen is the original code generator for MLton.

https://github.com/MLton/mlton/blob/master/mlton/codegen/c-codegen/c-codegen.sig
https://github.com/MLton/mlton/blob/master/mlton/codegen/c-codegen/c-codegen.fun

MLton Guide (20180207) 43 /611

Changelog
¢ CHANGELOG. adoc

= CHANGELOG

== Version 20180206

Here are the changes from version 20130715 to version 20180206.
=== Summary

* Compiler.
+% Added an experimental LLVM codegen (‘-codegen llvm‘); requires LLVM tools
(‘1llvm-as‘, ‘opt', ‘llc‘) version ≥ 3.7.
** Made many substantial cosmetic improvements to front-end diagnostic
messages, especially with respect to source location regions, type inference
for ‘“fun' and ‘val rec' declarations, signature constraints applied to a
structure, ‘sharing type' specifications and ‘where type' signature
expressions, type constructor or type variable escaping scope, and
nonexhaustive pattern matching.
*% Fixed minor bugs with exception replication, precedence parsing of function
clauses, and simultaneous ‘sharing‘ of multiple structures.
*% Made compilation deterministic (eliminate output executable name from
compile-time specified ‘@MLton‘ runtime arguments; deterministically generate
magic constant for executable).
*% Updated ‘-show-basis‘ (recursively expand structures in environments,
displaying components with long identifiers; append ‘(*x @ region «)°‘
annotations to items shown in environment) .
**% Forced amd64 codegen to generate PIC on amd64-linux targets.

* Runtime.
*% Added ‘gc-summary-file file‘ runtime option.
*% Reorganized runtime support for ‘IntInf‘' operations so that programs that
do not use ‘IntInf' compile to executables with no residual dependency on GMP.
+% Changed heap representation to store forwarding pointer for an object in
the object header (rather than in the object data and setting the header to a
sentinel value) .

* Language.
**x Added support for selected SuccessorML features; see
http://mlton.org/SuccessorML for details.

**% Added ‘ (*x#showBasis "file" x) ' directive; see

http://mlton.org/ShowBasisDirective for details.

*% FETI:
*%% Added ‘pure‘, ‘impure‘, and ‘reentrant‘ attributes to ‘_import‘'. An
unattributed ‘_import' is treated as ‘impure‘'. A ‘pure' ‘_import‘' may be
subject to more aggressive optimizations (common subexpression elimination,
dead-code elimination). An ‘_import‘-ed C function that (directly or
indirectly) calls an ‘_export ‘-ed SML function should be attributed
‘reentrant ‘.

*% ML Basis annotations.
***x Added ‘allowSuccessorML {false|true}' to enable all SuccessorML features
and other annotations to enable specific SuccessorML features; see
http://mlton.org/SuccessorML for details.
*%% Split ‘nonexhaustiveMatch {warn|error|igore}' and ‘redundantMatch

{warn|error|ignore}' into ‘nonexhaustiveMatch' and ‘redundantMatch®
(controls diagnostics for ‘case' expressions, ‘fn' expressions, and ‘fun®
declarations (which may raise ‘Match' on failure)) and ‘nonexhaustiveBind‘

and ‘redundantBind‘ (controls diagnostics for ‘val‘' declarations (which may
raise ‘Bind' on failure)).

*%% Added ‘valrecConstr {warn|error|ignore}‘' to report when a ‘val rec' (or
‘fun') declaration redefines an identifier that previously had constructor

https://github.com/MLton/mlton/blob/master/CHANGELOG.adoc

MLton Guide (20180207) 44 /611

status.
* Libraries.
** Basis Library.
% Improved performance of ‘Array.copy', ‘Array.copyVec', ‘Vector.append?,
‘String.”', ‘String.concat‘, ‘String.concatWith‘, and other related
functions by using ‘memmove‘ rather than element-by-element constructions.
*% ‘Unsafe' structure.
**x% Added unsafe operations for array uninitialization and raw arrays; see
https://github.com/MLton/mlton/pull/207 for details.
*% Other libraries.
x Updated: ckit library, MLLPT library, MLRISC library, SML/NJ library
* Tools.
% mlnlffigen
% Updated to warn and skip (rather than abort) when encountering functions
with ‘struct‘/‘union' argument or return type.

=== Details

* 2018-02-6
*% Remove ancient and unused ‘cmcat‘' tool.

* 2018-02-03
*x Upgrade ‘gdtoa.tgz’.

* 2018-02-02
** Remove docs from ‘all' target of ‘./Makefile‘'; this eliminates the
‘all-no-docs' target (which was frequently used in favor of ‘all?').

*+ 2018-01-31
*% Use C compiler with ‘-std=gnull‘ (rather than ‘-std=gnu99?').
** Revert rudimentary support for ‘./configure‘; the support was so minimal
that it seems unhelpful to pretend that there are exhaustive compatibility
checks being performed. All of the basic configuration can be accomplished
with simple ‘make‘ variable definitions.

x 2018-01-25
*% Remove (expert, undocumented) ‘-debug-format' option; the same effect can
be achieved with ‘-as-opt‘' and ‘-cc-opt‘.
*% Propagate C compiler from ‘./configure' to ‘mlton‘' script.

* 2018-01-24
** Extend ‘-target-x-opt' options to support ‘arch-os‘' pairs.
*x Remove ‘./package/rpm/x' and corresponding targets in ‘./Makefile‘;
upstream MLton has not produced RPMs for years.

\

* 2018-01-24
*% Slightly improve performance of ‘Vector.concat' and
‘String. {concat, concatWith, tokens, fields} ' by avoiding ‘List.map‘-s.

* 2018-01-23
** Restore, but deprecate, ‘-drop-pass' compile-time expert option.

* 2018-01-19
*x Update SML/NJ libraries to SML/NJ 110.82.

* 2017-12-29
+% Add support for ‘(x#showBasis "file" x)
meant to facilitate auto-completion via
https://github.com/MatthewFluet/company-mlton[‘company-mlton‘] and similar
tools.

\

directives. This feature is

* 2017-12-20

MLton Guide (20180207) 45/611

+% Update performance comparison on website. Thanks to Curtis Dunham for the
pull request.

x 2017-12-17
*% Updates to ‘-show-basis"‘:

*%% ‘—-show-basis-flat‘: Recursively expand structures in environments,
displaying components with long identifiers.
*%% ‘—show-basis-def‘': Appends ‘(x @ region =x) ‘' annotations to items shown
in environment.
*%% ‘—show-basis-compact‘: Tries to optimize vertical space (at the expense
of long lines).

* 2017-12-11
*% Drop ‘_BSD_SOURCE' and ‘_POSIX_C_SOURCE' feature macros in
‘./runtime/cenv.h‘.

* 2017-12-10
+*x Add a ‘Dockerfile’ to build/test MLton. Thanks to Richard Laughlin for the
pull request.

* 2017-12-06
** Remove ‘S$PREFIX' and ‘S$Sprefix' from top-level ‘Makefile.in‘; use
‘./configure —--prefix path‘. Thanks to Richard Laughlin for the pull
request.

* 2017-12-03
% Fix heap invariant predicates.

* 2017-11-15
% Eliminate the use of (some) global mutable state for signal handling.

* 2017-11-14
**% Store forwarding pointer for an object in the object header (rather than in
the object data and setting the header to a sentinel value).

* 2017-11-02
+% Updates to stack management in backend:
*%% Improve ‘Allocation.Stack.get'.
*%% Do not force ‘Cont‘ block arguments to stack.

* 2017-10-30
*% In ‘signature SSA_TO_RSSA_STRUCTS' share by ‘Rssa.Atoms = Ssa.Atoms‘'. This
is the idiom used elsewhere in the compiler, rather than sharing individual
sub-structures of ‘Atoms‘.
*% Minor updates to ‘DirectedGraph' and ‘Tree' in MLton library.

* 2017-10-23
*% Add ‘-seed-rand w' compile-time option, to seed the pseudo-random number
generator.
**% Add a new MachineShuffle pass (disabled by default) that shuffles the
collection of chunks within the program and shuffles the collection of blocks
within a chunk. With the ‘-seed-rand w' compile-time option, can be used to
generate executables with distinct code placements.

x 2017-10-23
*% Use a relative path in the 'mlton‘' script, rather than an absolute path.
The absolute path needed to be set to the intended installation directory,
which made it difficult to install a binary release in a local directory.
Undertaken by Maksim Yegorov at RIT supported by NSF CISE Research
Infrastructure (CRI) award.

* 2017-10-21

MLton Guide (20180207) 46 /611

+% Add unsafe operations for array uninitialization and raw arrays.
*%% Rename ‘Array_uninit: SeqgIndex.int -> ’"a array‘' primitive to
‘Array_alloc: SegIndex.int -> 'a array'.
*%x% Add ‘Array_uninit: ’"a array x SeqgIndex.int -> unit' primitive to set all
objptrs in the element at the given index to a bogus non-objptr value
(‘Owx1l'). One motivation for this primitive is to support space-efficient
polymorphic resizeable arrays. When shrinking a resizeable array, we would
like to "'NULL'" out the elements that are no longer part of the logical
array, in order to avoid a (logical) space leak.
+%x% Add ‘Array_uninitIsNop: ’'a array -> bool' primitive to answer if the
‘Array_uninit ' primitive applied to the same array would be a nop (i.e., if
the array has no objptrs in the elements). This can be used to skip a
bulk-‘Array_uninit‘ loop when it is known that the ‘Array_uninit‘ operations
would be nops.
*%x% Add ‘Array_allocRaw: SeqgIndex.int —-> ’'a array' primitive to allocate an
array, but with a header that indicates that the array has no objptrs. Add
‘Array_toArray: 'a array —-> ’'a array' primitive to update the header of an
‘Array_allocRaw' allocated array to reveal the objptrs. One motiviation for
this primitive is that, in a parallel setting, the uninitialization of an
array can be a sequential bottleneck. The ‘Array_allocRaw' is a constant
time operation and the subsequent ‘Array_uninit‘ operations can be performed
in parallel.
%x% Extend ‘structure Unsafe.Array' with additional operations. See
‘./basis-library/sml-nj/unsafe.sig’.

* 2017-10-20
*% Introduce ShareZeroVec SSA optimization to share zero-length vectors after
coercion-based optimizations. Undertaken by Maksim Yegorov at RIT supported
by NSF CISE Research Infrastructure (CRI) award.

* 2017-10-18
*% New canonicalization strategy for CommonSubexp SSA optimization.
Previously, the canonicalization of commutative arithmetic primitives was
sensitive to variable hashes (created by an unseeded pseudo-random number
generator); now, the canonicalization of commutative arithmetic primitives is
sensitive to relative definition order of variables.

* 2017-10-12
*% Fix bug in runtime argument option parsing.

* 2017-10-05
** Many updates and improvements to diagnostic messages. See
https://github.com/MLton/mlton/pull/195 for details.

* 2017-09-27
+% Add rudimentary support for ‘./configure‘'; in particular, support
‘——with-gmp-1lib‘' and ‘--with-gmp-include' to set location of GMP and
‘-—prefix' to specify an install prefix. Undertaken by Maksim Yegorov at RIT
supported by NSF CISE Research Infrastructure (CRI) award.

x 2017-08-21
«% Introduce ‘Array_copyArray: ’'a array * Seglndex.int * ’'a array =
SegIndex.int » SegIndex.int —-> unit‘' and ‘Array_copyVector: ’'a array x*
SegIndex.int % ’"a vector x SegIndex.int * SeqgIndex.int —-> unit' primitives
which are used to implement a number of array and vector construction
functions, particularly ‘append‘, ‘concat‘, and ‘concatWith'. The primitives
compile to ‘memmove‘ operations, which (significantly) outperforms MLton’s
element-by-element construction for large sequences. Undertaken by Bryan Camp
at RIT supported by NSF CISE Research Infrastructure (CRI) award.

* 2017-07-25
**% Force PIC generation on amd64-linux targets. Thanks to Kuen-Bang Hou

MLton Guide (20180207) 47 /611

(Favonia) for the pull request.

* 2017-07-11
+% Generalize the ‘subWord' primitives to

+
| WordArray_subWord of {segSize:WordSize.t, eleSize: WordSize.t}
| WordArray_updateWord of {segSize: WordSize.t, eleSize: WordSize.t}
| WordVector_subWord of {segSize: WordSize.t, eleSize: WordSize.t}

+

Undertaken by Bryan Camp at RIT supported by NSF CISE Research Infrastructure
(CRI) award.

* 2017-07-11
*% Add a parser combinator library (‘structure StreamParser‘) to the MLton
Library. Undertaken by Jason Carr at RIT supported by NSF CISE Research
Infrastructure (CRI) award.
*% Add a parser for the SXML IR (‘structure ParseSxml?‘). Undertaken by Jason
Carr at RIT supported by NSF CISE Research Infrastructure (CRI) award.
% Allow compilation to start with a ‘.sxml‘ file. Undertaken by Jason Carr
at RIT supported by NSF CISE Research Infrastructure (CRI) award.

* 2017-06-29
+% Replace ‘-drop-pass regex' compile-time option with ‘-disable-pass regex®
compile option and add ‘-enable-pass regex' compile option. Various XML,
SXML, SSA, SSA2, RSSA, and Machine IR optimization passes are initialized with
a default status, which can be overriden by ‘-{disable,enable}-pass’. In
particular, it is now easy to add a work-in-progress (and potentially buggy)
pass to the simplification pipeline with ‘execute = false' default status, to
be selectively executed with ‘-enable-pass‘'. Undertaken by Bryan Camp at RIT
supported by NSF CISE Research Infrastructure (CRI) award.
*% Add LoopUnswitch and LoopUnroll SSA optimizations (undertaken by Matthew
Surawski as an RIT CS MS Capstone Project). Initial evaluation demonstrates
some non-trivial performance gains, no non-trivial performance losses, and
only minor code size increases, but currently disabled pending a more thorough
evaluation.

\

x 2017-05-23

*% Expand the set of MLB annotations:
*%% ‘nonexhaustiveBind‘, ‘nonexhaustiveExnBind‘, ‘redundantBind‘': controls
diagnostics for ‘val‘' declarations (which may raise ‘Bind‘' on failure).
*** ‘nonexhaustiveMatch', ‘nonexhaustiveExnMatch‘, ‘redundantMatch:
controls diagnostics for ‘case' expressions, ‘fn' expressions, and ‘fun®
declarations (which may raise ‘Match' on failure).
*** ‘nonexhaustiveRaise‘, ‘nonexhaustiveExnRaise‘, ‘redundantRaise‘:
controls diagnostics for ‘handle‘ expressions (which implicitly re-raise on
failure). Note that ‘nonexhaustiveRaise' and ‘nonexhaustiveExnRaise‘
default to ‘ignore'. The combination of ‘nonexhaustiveRaise warn‘' and
‘nonexhaustiveExnRaise ignore' can be useful for finding handlers that
handle some, but not all, values of an exception variant.

*% Make a number of improvements to diagnostic messages:
*%x% Display nonexhaustive exception patterns as ° exn', rather than
‘e
*%% Normalize nonexhaustive patterns by sorting (e.g., by ‘ConApp‘' name) .
%% Report complete enumeration of unhandled constants, rather than a single
example.
*%% Report nonexhaustive patterns of record type as records, rather than as
tuples.

\

x 2017-04-20
*% Updates to SSA, SSA2, and RSSA IR support infrastructure

MLton Guide (20180207) 48 /611

+%x% Display more context when reporting SSA and SSA2 IR type errors.

*%% Add ‘-layout-width n‘ compile expert option to control the target width
for the pretty printer.

*%% Make cosmetic improvments to SSA and SSA2 IR display (uses of global
variables bound to small constants and conapps are commented with the
corresponding value; include loop forest for functions with ‘-keep dot?').
*%% Improve RSSA constant folding and copy propagation.

*%% Limit Machine IR ‘Globals‘ to variables used outside of the ‘main‘
function.

* 2017-04-15
*% Add ‘gc-summary-file file' runtime option.

* 2017-04-15
** Rename and add ‘smlnj-mlton-x{2,4,8,16}" top-level ‘Makefile‘' targets.
+x Update SML/NJ librarys to SML/NJ 110.80 (making use of supported
SuccessorML features) .
*% Not support for SML/NJ extensions via SuccessorML MLB annotations on
website.

* 2017-04-14
*% Add support for vector expressions (‘#[el, e2, ..., en]‘) and vector
patterns (‘#[pl, p2, ..., pn]') and add ‘Vector_vector' n-ary primitive.
Initial support for vector expressions and the ‘Vector_vector' primitive were
undertaken by Krishna Ravikumar as an RIT CS MS Capstone Project.

* 2017-03-29
+% Update DOS eol handling and tweak error messages in lexer.

* 2017-03-27
*% Correct off-by-one error in column numbers. Thanks to Jacob Zimmerman for
the error report and pull request.

* 2017-03-15
*x Updates to SuccessorML support:
*+x% Add an ‘allowSuccessorML {false|true}' MLB annotation to enable all
Successor ML features with a single annotation.
%% Fix parsing of numeric labels to only accept an INT token that does not
begin with 0, is not an extended literal, is not negative, and is decimal.
*%x% Drop the alternate word prefixes (‘0Oxw‘ and ‘Obw‘).
*%% Unconditionally allow line comments in MLB files.
**x%x Allow UTF-8 byte sequences in text constants.
**x% Refactor '‘ml.lex‘ and ‘mlb.lex' to be more maintainable.
*%% Rename ‘allowRecPunning' annotation to ‘allowRecordPunExps"‘.

* 2017-02-27
*% Update ML-Yacc examples (‘calc‘, ‘fol', ‘pascal') to comply with MLton
build process. Thanks to Hai Nguyen Van for the pull request.

* 2017-01-25
+* Update PortingMLton documentation and ‘./bin/add-cross‘' script. Thanks to
Daniel Moerner for the pull request.

* 2016-09-29
*% Constant fold ‘CPointer_equal (NULL, NULL) ‘' to ‘true‘.

* 2016-09-29
*% Introduce ‘NEEDS_SIGALTSTACK_EXEC' config in runtime system.

x 2016-09-27
*% Construct a devel build version string from last commit time and last
commit hash.

MLton Guide (20180207) 49/611

% Omit build date and build node from version banner; makes self-compiles
deterministic.

** Remove ‘upgrade-basis.sml‘' from build. The generated ‘upgrade-basis.sml‘
was introduced to handle incompatibilities in the Basis Library provided by an
old version of MLton and the Basis Library assumed by the current sources.
However, there are no incompatibilities with MLton 20130715, MLton 20100608,
or MLton 20070826. Nonetheless, the feature testing performed by
‘./bin/upgrade-basis' to generate ‘upgrade-basis.sml‘ is time consuming,
especially when trying to simply type check the compiler sources.

« 2016-06-20
% Do not ‘gzip' man pages on OpenBSD. Thanks to Alexander Abushkevich for
the pull request.

* 2016-06-20
*% Generate position independent code for OpenBSD. Thanks to Alexander
Abushkevich for the pull request.

x 2016-06-20
% Fix profiling for amd64-openbsd and x86-openbsd. Thanks to Alexander
Abushkevich for the pull request.

* 2016-04-06
*x Update SML/NJ librarys to SML/NJ 110.79.

* 2016-03-22
** Update LLVM codegen to support (and require) >= 1llvm-3.7. Thanks to Eugene
Akentyev for the pull request.

* 2016-02-26
+% Configure GMP location via ‘Makefile‘.

x 2016-01-10
% Fix typo in ‘mlb-formal.tex‘. Thanks to Jon Sterling for the pull request.

x 2015-11-10
+% Update SML/NJ librarys to SML/NJ 110.78. Use ‘allowOrPats' and
‘allowSigWithtype' to minimize diffs.

* 2015-10-20
**% Fix elaboration of ‘withtype' in signature.

x 2015-10-06
*% Add support for setting CM anchor bindings in ‘cm2mlb‘ tool.

x 2015-10-06
*% Fix non-exhaustive match warnings with or-patterns. Thanks to Rob Simmons
for the bug report.
*% Distinguish between partial and fully redundant matches.
*% Report partial redundancy in ‘val‘ declarations.
**% Lower precedence of or-patterns in parser.
*% Make a variety of cosmetic improvements to non-exhaustive and redundant
error/warning messages, primarily to be consistent in formatting between
quoted AST and generated messages.

* 2015-07-10
** Extend support for arm64 (aarch64). Thanks to Edmund Evans for the patch.

* 2015-06-22
+% Introduce ‘valrecConstr {warn|error|ignore}' MLB annotation to report when
a ‘val rec' (or ‘fun') declaration redefines an identifier that previously had
constructor status.

MLton Guide (20180207) 50/ 611

* 2015-06-19
*% Add support for selected SuccessorML features (undertaken by Kevin Bradley
as an RIT CS MS Capstone Project).
*x% ‘do‘'-declarations (‘allowDoDecls?')
x% extended literals (‘allowExtendedLiterals?')
x% line comments (‘allowLineComments?’)
*%% optional leading bar in matches, fun decls, and datatype decls
(*allowOptBar?')
*%x% optional trailing semicolon in sequence expressions (‘allowOptSemicolon?‘)
*%*x Or patterns (‘allowOrPats?t)
*%x% record expression punning (‘allowRecPunning?)
*%x% withtype in signatures (‘allowSigWithtype?‘)

* 2015-06-10
+% Hide equality status of poly (and mono) vector and array slices.
% Hide type equality of mono and poly ‘Word8.word' arrays and vectors.

* 2015-06-08
*% Added ‘reentrant' attribute to ‘_import‘'. An ‘_import‘-ed C function that
(directly or indirectly) calls an ‘_export‘-ed SML function should be
attributed ‘reentrant‘.

* 2015-06-08
*% Make compilation deterministic:
*%*x Eliminate output executable name from compile-time specified ‘@MLton‘
arguments.
*%x% Deterministically generate magic constant for executable.

* 2015-06-08
«% Add ‘-keep ast' compile option. Undertaken by Ross Bayer at RIT supported
by NSF CISE Research Infrastructure (CRI) award.

* 2015-06-02
** Updates to Debian packaging. Thanks to Christopher Cramer for the pull
request.

* 2015-03-30
**% Use ‘LANG=en_us' when computing version and build date. Thanks to Eugene
Akentyev for the pull request.

x 2015-02-17
+x Update '‘mlnlffigen' to warn and skip functions with ‘struct‘/‘union’
arguments. Thanks to Armando Doval for the pull request.

* 2014-12-22
** Move pervasive constructs from ‘./mlton/ast' to ‘./mlton/atoms‘, so that
‘./mlton/ast/sources.mlb' depends on ‘./mlton/atoms/sources.mlb‘ (and not the
other way around). Undertaken by Vedant Raiththa at RIT supported by NSF CISE
Research Infrastructure (CRI) award.

* 2014-12-17
**% Cache a worker thread to service calls of
to Bernard Berthomieu for the bug report.

\

_export ‘~ed functions. Thanks

* 2014-12-02
*x Post-process generated front-end files for compatibility with SML/NJ’s
recent ‘ml-lex‘ and ‘ml-yacc' tools that generate log identifiers rather than
unqualified (top-level environment) identifiers.
** Corrected documentation for SML/NJ ‘Makefile‘ target and fixed
‘bootstrap-nj' target. Thanks to Daniel Rosenwasser for the pull request.

MLton Guide (20180207) 51/611

x 2014-11-21
**% Reorganized runtime support for ‘IntInf' operations so that programs that
do not use ‘IntInf‘' compile to executables with no residual dependency on GMP.
% Fixed bug in ‘MLton.IntInf.fromRep' that could yield values that violate
the ‘IntInf' representation invariants. Thanks to Rob Simmons for the bug
report.

« 2014-10-24
*% Added ‘pure' and ‘impure‘ attributes to ‘_import‘. An unattributed
‘_import ' may be subject to more

‘_import' is treated as ‘impure‘. A ‘pure’
aggressive optimizations (common subexpression elimination, dead-code
elimination). Undertaken by Vedant Raiththa at RIT supported by NSF CISE

Research Infrastructure (CRI) award.

* 2014-10-22
*% Various updates to treatment of ‘IntInf‘ constants in the compiler.

*%x% Recognize both 'Big' and ‘Small‘ representations of ‘IntInf‘-s.
*%% Translate ‘IntInf‘ consts to ‘Big' and ‘Small‘ representations in
conversion from SSA to RSSA. This is consistent with the treatment of other
‘IntInf' operations in the conversion. After the conversion, ‘IntInf' is no
longer treated as a primitive.
*%% Remove ‘initIntInfs' from program initialization.
*%% Constant fold ‘IntInf_toVector' and ‘WordVector_toIntInf‘' primitives.

x 2014-10-20
*% Various updates to ‘structure WordXVector' in compiler proper.

**x*x Update the ‘WordXVector.layout'® function. If the ‘elementSize‘ is
‘WordX.word8' and more than 90% of the characters satisfy ‘Char.isGraph
orelse Char.isSpace', then display as an SML string constant (with
non-printable characters SML-escaped). Otherwise, display as an SML/NJ-style
“#[0x0, OxF]‘ vector literal.

*%% Update initialization of ‘static struct GC_vectorInit vectorInits[]®
constants in runtime. If the ‘WordXVector‘'s (primitive) ‘elementSize‘ is
‘WordSize.W8', then emit a C-escaped string constant. Otherwise, emit a
C-array initialization.

* 2014-08-15
*% More updates to benchmark infrastructure.

**x%x Make ‘update-counts.sh' script more robust.
*%x% Update ‘hamlet.sml‘ benchmark program to close input file after each
loop.
**x*% Update ‘fft.sml‘ benchmark program to only invoke ‘test‘' function with
power-of-2 arguments.
*%x% Update ‘model-elimination.sml‘ benchmark program to iterate ‘main ()
according to ‘doit‘ size parameter.

* 2014-08-11
**% Include ‘winsock2.h‘ before ‘windows.h' in MinGW port. Thanks to Shu-Hung
You for the pull request.

x 2014-07-31
+% Refactor array and vector implementation in Basis Library into a primitive
implementation (using ‘SeqgInt.int‘' for indexing) and a wrapper implementation

(using the default ‘Int.int‘' for indexing). Thanks to Rob Simmons for the
pull request.
*% Correct description of ‘MLton.{Vector,Array}.unfoldi' on website. Thanks

to Rob Simmons for the pull request.

* 2014-07-14
+% Updates to benchmark infrastructure.
*%x% Add ‘even-odd.sml‘ benchmark that exercises mutual tail recursion.
*%x% Add ‘update-counts.sh' script to calculate appropriate benchmark

MLton Guide (20180207)

52 /611

iteration counts and update benchmark iteration counts so that all
benchmarks run for at least 30 seconds.
*%x% Updates to benchmark driver program.

2014-07-07

** Change ‘./basis-library/integer/int—-inf.sml' to reduce dependency on
GMP-specific details of ‘./basis-library/integer/int-inf0O.sml‘. Thanks to Rob
Simmons for the pull request.

*% Correct type and description of ‘MLton.IntInf.fromRep' on website. Thanks
to Rob Simmons for the pull request.

2014-07-01
+% Add experimental LLVM codegen (undertaken by Brian Leibig as an RIT CS MS
Project) .

2014-06-09
*% Update ‘CallingFromSMLToC' page on website. Thanks to Bikal Gurung for the
pull request.

2014-03-18
** Updates for MinGW port.

2014-02-07
** Update AsciiDoc sources for website.

2013-10-31
*% Various updates to website. Thanks to Mauricio C Antunes for the pull
request.

*%% Add Tofte’s tutorial and Rossberg’s grammar.

**x%x Fix links to implementations.

2013-10-10
**% Update links from ‘References' page on website. Thanks to Mauricio C
Antunes for the pull request.

2013-09-02
% Fix example for ‘Lazy' page on website. Thanks to Daniel Rosenwasser for
the pull request.

== Version 20130715

Here are the changes from version 20100608 to version 20130715.

=== Summary

*

*

*

Compiler.

**% Cosmetic improvements to type-—-error messages.

** Removed features:
**x% Bytecode codegen: The bytecode codegen had not seen significant use and
it was not well understood by any of the active developers.
*%% Support for ‘.cm' files as input: The ML Basis system provides much
better infrastructure for "programming in the very large" than the (very)
limited support for CM. The ‘cm2mlb‘ tool (available in the source
distribution) can be used to convert CM projects to MLB projects, preserving
the CM scoping of module identifiers.

*% Bug fixes: see changelog

Runtime.

% Bug fixes: see changelog

Language.

+% Interpret ‘(x#line line:col "file" x)

file names.

% ML Basis annotations.

\

directives as relative

MLton Guide (20180207) 53/611

% Added: ‘resolveScope’
* Libraries.
** Basis Library.
*%x% Improved performance of ‘String.concatWith?®.
%% Use bit operations for ‘REAL.class‘ and other low-level operations.
*%% Support additional variables with ‘Posix.ProcEnv.sysconf’'.
*%x% Bug fixes: see changelog
*%x ‘MLton' structure.
%% Removed: ‘MLton.Socket®
*% Other libraries.
x Updated: ckit library, MLRISC library, SML/NJ library
*%% Added: MLLPT library
* Tools.
*%x mllex
**% Generate ‘(x#line line:col "file.lex" x) ' directives with simple
(relative) file names, rather than absolute paths.
** mlyacc
**% Generate ‘(x#line line:col "file.grm" x) directives with simple
(relative) file names, rather than absolute paths.
**x%x Fixed bug in comment-handling in lexer.

\

=== Details

* 2013-07-06
*x Update SML/NJ libraries to SML/NJ 110.76.

* 2013-06-19
*% Upgrade ‘gdtoa.tgz‘; fixed bug in ‘Real32.{fmt,toDecimal,toString}‘, which
in some cases produced too many digits

* 2013-06-18
** Removed ‘MLton.Socket' structure (deprecated in last release).

x 2013-06-10
*% Improved performance of ‘String.concatWith?®.

* 2013-05-22
*x Update SML/NJ libraries to SML/NJ 110.75.

* 2013-04-30
*x Detect PowerPC 64 architecture.

* 2012-10-09
** Fixed bug in elaboration that erroneously accepted the following:

signature S = sig structure A : sig type t end
and B : sig type t end where type t = A.t end

* 2012-09-04
**% Introduce an MLB annotation to control overload and flex record resolution
scope: ‘resolveScope {strdec|dec|topdec|program} .

* 2012-07-04
*% Simplify use of ‘getsockopt' and ‘setsockopt' in Basis Library.
+% Direct implementation of ‘Socket.Ctl.{getATMARK,getNREAD}'‘' in runtime
system, rather than indirect implementation in Basis Library wvia ‘ioctl‘.
+% Replace use of casting through a union with ‘memcpy‘ in runtime.

* 2012-06-11
*x Use bit operations for ‘REAL.class‘ and other low-level operations.
*% Fixed bugs in ‘REAL.copySign‘, ‘REAL.signBit‘, and ‘REAL.{to,from}Decimal‘.

MLton Guide (20180207) 54 /611

* 2012-06-01
*% Cosmetic improvements to type—-error messages.
** Fixed bug in elaboration that erroneously rejected the following:

datatype ('a, ''"a) t =T
type (a, ’’a) u = unit

and erroneously accepted the following:

fun £ (x: ’a) : '’Ta = x
fun g (x: ’'a) : '’'a = if x = x then x else x

x 2012-02-24
*% Fixed bug in redundant SSA optimization.

* 2011-06-20
*% Support additional variables with ‘Posix.ProcEnv.sysconf’'.

* 2011-06-17
% Change ‘mllex‘' and ‘mlyacc' to generate ‘#line‘ directives with simple file
names, rather than absolute paths.
*x Interpret ‘#line‘ directives as relative file names.

* 2011-06-14
*x Fixed bug in SSA/SSA2 shrinker that could erroneously turn a non-tail
function call with a ‘Bug' transfer as its continuation into a tail function
call.

* 2011-06-11
** Update SML/NJ libraries to SML/NJ 110.73 and add ML-LPT library.

* 2011-06-10
*% Fixed bug in translation from SSA2 to RSSA with case expressions over
non-primitive-sized words.
** Fixed bug in SSA/SSA2 type checking of case expressions over words.

* 2011-06-04
*x Upgrade ‘gdtoa.tgz’.
** Remove bytecode codegen.
*% Remove support for ‘.cm' files as input.

x 2011-05-03
% Fixed a bug with the treatment of ‘as‘-patterns, which should not allow the
redefinition of constructor status.

x 2011-02-18
*% Fixed bug with treatment of nan in common subexpression elimination SSA
optimization.

* 2011-02-18
*% Fixed bug in translation from SSA2 to RSSA with weak pointers.

* 2011-02-05
*% Fixed bug in amdé64 codegen calling convention for varargs C calls.

* 2011-01-17
% Fixed bug in comment-handling in lexer for ‘mlyacc‘’s input language.

* 2010-06-22
*x Fixed bug in elaboration of function clauses with different numbers of
arguments that would raise an uncaught ‘Subscript‘' exception.

MLton Guide (20180207)

55/611

== Version 20100608
Here are the changes from version 20070826 to version 20100608.
=== Summary

* New platforms.
*% la6d4-hpux
*x powerpc64-aix
* Compiler.
*% Command-line switches.
**xx Added: ‘-mlb-path-var ’<name> <value>’"'
*%** Removed: ‘-keep sml‘, ‘-stop sml‘
** Improved constant folding of floating-point operations.
«% Experimental: Support for compiling to a C library; see wiki documentation.
** Extended ‘-show-def-use' output to include types of variable definitions.
** Deprecated features (to be removed in a future release)
**x% Bytecode codegen: The bytecode codegen has not seen significant use and
it is not well understood by any of the active developers.
*%% Support for ‘.cm' files as input: The ML Basis system provides much
better infrastructure for "programming in the very large" than the (very)
limited support for CM. The ‘cm2mlb‘ tool (available in the source
distribution) can be used to convert CM projects to MLB projects, preserving
the CM scoping of module identifiers.
*% Bug fixes: see changelog
* Runtime.
*% ‘@MLton‘ switches.
*xx Added: ‘may-page-heap {false|true}®
** ‘may-page-heap‘: By default, MLton will not page the heap to disk when
unable to grow the heap to accomodate an allocation. (Previously, this
behavior was the default, with no means to disable, with security an
least-surprise issues.)
% Bug fixes: see changelog
* Language.

\

% Allow numeric characters in ML Basis path variables.
* Libraries.
*% Basis Library.
%% Bug fixes: see changelog.
*% ‘MLton‘ structure.
*%% Added: ‘MLton.equal‘, ‘MLton.hash‘, ‘MLton.Cont.isolate?,
‘MLton.GC.Statistics, ‘MLton.Pointer.sizeofPointer?,
‘MLton.Socket .Address.toVector®
*%*x Changed:
% Deprecated: ‘MLton.Socket?
*% ‘Unsafe‘ structure.
% Added versions of all of the monomorphic array and vector structures.
*% Other libraries.
*xx Updated: ckit library, MLRISC library, SML/NJ library.
* Tools.
% ‘mllex’
%% Eliminated top-level ‘type int = Int.int‘ in output.
**x% Include ‘(x#line line:col "file.lex" «)' directives in output.
%% Added ‘%posint‘' command, to set the ‘yypos' type and allow the lexing of
multi-gigabyte files.
*%x ‘mlnlffigen?®
*x% Added command-line switches ‘-linkage archive' and ‘-linkage shared‘.
*%% Deprecated command-line switch ‘-linkage static‘.
*%% Added support for ia64 and hppa targets.
*x ‘mlyacc’
%% Eliminated top-level ‘type int = Int.int‘ in output.
**% Include ‘(x#line line:col "file.grm" «) ' directives in output.

MLton Guide (20180207) 56 /611

=== Details

x 2010-05-12
**% Fixed bug in the mark-compact garbage collector where the C library’s
‘memcpy ‘' was used to move objects during the compaction phase; this could lead
to heap corruption and segmentation faults with newer versions of ‘gcc' and/or
‘glibc', which assume that src and dst in a ‘memcpy‘' do not overlap.

* 2010-03-12
**% Fixed bug in elaboration of ‘datatype' declarations with ‘withtype?®
bindings.

« 2009-12-11
*% Fixed performance bug in RefFlatten SSA2 optimization.

* 2009-12-09
**% Fixed performance bug in SimplifyTypes SSA optimization.

* 2009-12-02
*% Fixed bug in amdé64 codegen register allocation of indirect C calls.

* 2009-09-17
*% Fixed bug in ‘IntInf.scan' and ‘IntInf.fromString' where leading spaces
were only accepted if the stream had an explicit sign character.

* 2009-07-10
*% Added CombineConversions SSA optimization.

* 2009-06-09
*% Removed deprecated command line switch ‘-show-anns {false, true}‘.

x 2009-04-18
*% Removed command line switches ‘-keep sml‘' and ‘-stop sml‘'. Their meaning
was unclear with ‘.mlb‘ files; their effect with ‘.cm' files can be achieved
with ‘-stop f*'.

* 2009-04-16
*% Fixed bug in ‘IntInf.~>>' that could cause a ‘glibc' assertion failure.

« 2009-04-01
** Fixed exported type of ‘MLton.Process.reap’.

* 2009-01-27
**% Added ‘MLton.Socket.Address.toVector' to get the network-byte-order
representation of an IP address.

x 2008-11-10
*% Fixed bug in ‘MLton.size' and ‘MLton.share' when tracing the current stack.

* 2008-10-27
*% Fixed phantom typing of sockets by hiding the representation of socket
types. Previously the representation of sockets was revealed rendering the
phantom types useless.

* 2008-10-10
*x Fixed bug in nested

\

_export‘/'_import' functions.

* 2008-09-12
«% Improved constant folding of floating point operations.

* 2008-08-20

MLton Guide (20180207) 57 /611

+% Store the card/cross map at the end of the allocated ML heap; avoids
possible out of memory errors when resizing the ML heap cannot be followed by
a card/cross map allocation.

* 2008-07-24
*% Added support for compiling to a C library. The relevant new compiler
options are
‘-export-header' file. Libraries have two extra methods:
*%% ‘NAME_open (argc, argv) ‘' initializes the library and runs the SML code
until it reaches the end of the program. If the SML code exits or raises an
uncaught exception, the entire program will terminate.
*%% ‘NAME_close () ' will execute any registered atExit functions, any
outstanding finalizers, and frees the ML heap.

\

—ar" and ‘-format‘. Libraries are named based on the name of the

* 2008-07-16
% Fixed bug in the name mangling of
convention.

\

_import ‘~ed functions with the ‘stdcall?

* 2008-06-12
** Added ‘MLton.Pointer.sizeofPointer‘.

* 2008-06-06
*% Added expert command line switch ‘-emit-main {true|false} ‘.

* 2008-05-17
**% Fixed bug in Windows code to page the heap to disk when unable to grow the
heap to a desired size. Thanks to Sami Evangelista for the bug report.

* 2008-05-10
*% Implemented ‘MLton.Cont.isolate‘.

* 2008-04-20
** Fixed bug in *NIX code to page the heap to disk when unable to grow the
heap to a desired size. Thanks to Nicolas Bertolotti for the bug report and
patch.

* 2008-04-07
% More flexible active/paused stack resizing policy. +
Removed ‘thread-shrink-ratio‘ runtime option. + Added
‘stack-current-grow-ratio‘, ‘stack-current-max-reserved-ratio?,
‘stack-current-permit-ratio‘, ‘stack-current-shrink-ratio‘,
‘stack-max-reserved-ratio‘, and ‘stack-shrink-ratio' runtime options.

« 2008-04-07
*% Fixed bugs in Basis Library where the representations of ‘0S.IO.iodesc?,
‘Posix.IO0.file_desc', ‘Posix.Signal.signal‘, ‘Socket.sock?,
‘Socket .SOGK.sock_type' as integers were exposed.

* 2008-03-14
** Added unsafe versions of all of the monomorphic array and vector
structures.

* 2008-03-02
*% Fixed bug in Basis Library where the representation of 'OS.Process.status’
as an integer was exposed.

* 2008-02-13
*% Fixed space-safety bug in RefFlatten optimization (to flatten refs into
containing data structure). Thanks to Daniel Spoonhower for the bug report and
initial diagnosis and patch.

* 2008-01-25

MLton Guide (20180207) 58/611

+% Various updates to GC statistics gathering. Some basic GC statistics can
be accessed from SML by ‘MLton.GC.Statistics.x' functions.

* 2008-01-24
*% Added primitive (structural) polymorphic hash.

* 2008-01-21
**x Fixed frontend to accept ‘op _longvid_‘ patterns and expressions. Thanks to
Florian Weimer for the bug report.

* 2008-01-17
** Extended ‘-show-def-use' output to include types of variable definitions.

+ 2008-01-09
** Extended ‘MLton_equal' to be a structural equality on all types, including
‘real' and ‘->"' types.

* 2007-12-18
*% Changed ML-Yacc and ML-Lex to output line directives so that MLton’s
def-use information points to the source files (‘.grm‘ and ‘.lex‘) instead of
the generated implementations (‘.grm.sml‘' and ‘.lex.sml?‘).

« 2007-12-14
**% Added runtime option ‘may-page-heap {false|true}‘'. By default, MLton will
not page the heap to disk when unable to grow the heap to a desired size.
(Previously, this behavior was the default, with no means to disable, with
security and least-surprise concerns.) Thanks to Wesley Terpstra for the
patch.
*% Fixed bug the FFI visible representation of ‘Intl6.int ref' (and references
of other primitive types smaller than 32-bits) on big-endian platforms. Thanks
to Dave Herman for the bug report.

* 2007-12-13
% Fixed bug in ‘ImperativeIOExtra.canInput' (‘TextIO.canInput‘). Thanks to
Ville Laurikari for the bug report.

* 2007-12-09
*% Better constant folding of ‘IntInf‘ operations.

* 2007-12-07
*+ Fixed bug in algebraic simplification of ‘RealX‘ primitives. ‘Real.<= (x,
x) ' is ‘false' when is ‘NaN‘.

Vo, \

X

* 2007-11-29
% Fixed bug in type inference of flexible records. This would later cause
the compiler to raise the ‘TypeError‘ exception. Thanks to Wesley Terpstra for
the bug report.

* 2007-11-28
**% Fixed bug in cross-compilation of ‘gdtoa‘ library. Thanks to Wesley
Terpstra for the bug report and patch.

* 2007-11-20
*% Fixed bug in RefFlatten optimization (pass to flatten refs into containing
data structure). Thanks to Ruy LeyWild for the bug report.

* 2007-11-19
*% Fixed bug in the handling of weak pointers by the mark-compact garbage
collector. Thanks to Sean McLaughlin for the bug report and Florian Weimer for
the initial diagnosis.

* 2007-11-07

MLton Guide (20180207)

59/611

*% Added ‘$posint‘' command to ‘ml-lex‘, to set the ‘yypos' type and allow the
lexing of multi-gigabyte input files. Thanks to Florian Weimer for the feature

concept and original patch.

* 2007-11-07

*% Added command-line switch ‘-mlb-path-var ’<name> <value>’ "' for specifying

MLB path variables.

* 2007-11-06
% Allow numeric characters in MLB path variables.

* 2007-09-20
% Fixed bug in elaboration of structures with signature constraints.

would later cause the compiler to raise the ‘TypeError‘' exception. Thanks to

Vesa Karvonen for the bug report.

* 2007-09-11
*% Fixed bug in interaction of ‘_export‘-ed functions and signal
handlers. Thanks to Sean McLaughlin for the bug report.

\

* 2007-09-03
% Fixed bug in implementation of

\

_export ‘~ed functions using ‘char‘
type. Thanks to Katsuhiro Ueno for the bug report.

== Version 20070826
Here are the changes from version 20051202 to version 20070826.
=== Summary

* New platforms:
** amd64-linux, amdé64-freebsd
** hppa—hpux
*% powerpc-aix
** xX86—darwin (Mac OS X)
* Compiler.
** Support for 64-bit platforms.
**%*x Native amd64 codegen.
*% Command-line switches.

*%% Added: ‘-codegen amd64‘, ‘-codegen x86', ‘-default-type <type>?',
‘-profile-val {false|true} ‘.
*%% Changed: ‘-stop f' (file listing now includes ‘.mlb‘ files)

** Bytecode codegen.
*%x% Support for profiling.
*%% Support for exception history.
* Language.
*% ML Basis annotations.

*%% Removed: ‘allowExport‘, ‘allowImport‘, ‘sequenceUnit‘, ‘warnMatch®.

* Libraries.

*% Basis Library.
*%% Added: ‘PackWordl6Big, ‘PackWordléLittle‘, ‘PackWordé64Big?,
‘PackWordedLittle .
%% Bug Fixes: see changelog.

*%x ‘MLton' structure.
*%x% Added: ‘MLTON_MONO_ARRAY', ‘MLTON_MONO_VECTOR', ‘MLTON_REAL?®Y,
‘MLton.BinIO.tempPrefix‘, ‘MLton.CharArray‘, ‘MLton.CharVector?®,
‘MLton.IntInf.BigWord"', ‘MLton.IntInf.SmalllInt?t,
‘MLton.Exn.defaultTopLevelHandler', ‘MLton.Exn.getTopLevelHandler?,
‘MLton.Exn.setTopLevelHandler', ‘MLton.LargeReal‘, ‘MLton.LargeWord?,
‘MLton.Real', ‘MLton.Real32', ‘MLton.Real64‘, ‘MLton.Rlimit.Rlim?‘,
‘MLton.TextIO.tempPrefix', ‘MLton.Vector.create‘, ‘MLton.Word.bswap?',

MLton Guide (20180207) 60 /611

‘MLton.Word8.bswap', ‘MLton.Wordl6‘, ‘MLton.Word32', ‘MLton.Word64?l,
‘MLton.Word8Array', ‘MLton.Word8Vector"'.
% Changed: ‘MLton.Array.unfoldi‘, ‘MLton.IntInf.rep‘, ‘MLton.Rlimit?,
‘MLton.Vector.unfoldi‘.
*xx Deprecated: ‘MLton.Socket®
**% Other libraries.

*%% Added: MLRISC libary.
**+ Updated: ckit library, SML/NJ library.

* Tools.

=== Details

x 2007-08-12
*% Removed deprecated ML Basis annotations.

* 2007-08-06
**% Fixed bug in treatment of ‘Real<N>.{scan,fromString}‘ operations.
‘Real<N>. {scan, fromString} ‘' were using ‘TO_NEAREST' semantics, but should obey
current rounding mode. (Only ‘Real<N>.fromDecimal‘' is specified to always
have ‘TO_NEAREST' semantics.) Thanks to Sean McLaughlin for the bug report.

* 2007-07-27
**% Fixed bugs in constant-folding of floating-point operations with C codegen.

* 2007-07-26
**% Fixed bug in treatment of floating-point operations. Floating-point
operations depend on the current rounding mode, but were being treated as
pure. Thanks to Sean McLaughlin for the bug report.

* 2007-07-13
*% Added ‘MLton.Exn.{default,get,set}TopLevelHandler".

* 2007-07-12
*% Restored ‘native‘ option to ‘-codegen‘ flag.

* 2007-07-11
% Fixed bug in ‘Real32.toInt‘: conversion of real values close to
‘Int .maxInt ‘' could be incorrect.

* 2007-07-07
** Updates to bytecode code generator: support for amd64-x targets, support
for profiling (including exception history) .
+% Fixed bug in ‘Socket' module of Basis Library; unmarshalling of socket
options (for ‘getx' functions) used ‘andb‘ rather than ‘orb‘'. Thanks to Anders
Petersson for the bug report (and patch).

* 2007-07-06
**% Fixed bug in ‘Date‘ module of Basis Library; some functions would
erroneously raise ‘Date' when given a year <= 1900. Thanks to Joe Hurd for the
bug report.
% Fixed a long-standing bug in monomorphisation pass. Thanks to Vesa Karvonen
for the bug report.

* 2007-05-18
*% Native amd64 code generator for amd64-x targets.
*% Eliminate ‘native' option from ‘-codegen' flag.
*%x Add ‘x86' and ‘amdé64‘ options to ‘-codegen' flag.

* 2007-04-29
*x Improved type checking of RSSA and Machine ILs.

* 2007-04-14

MLton Guide (20180207) 61/611

+x Fixed aliasing issues with ‘basis/Real/x.c' files.
** Added real/word casts in ‘MLton‘ structure.

* 2007-04-12
*x Added primitives for bit cast of word to/from real.
*x Implement ‘PackReal<N>{Big,Little}" using ‘PackWord<N>{Big,Little}' and bit
casts.

* 2007-04-11
** Move all system header ‘#include‘-s to ‘platform/‘ os headers.
*x Use C99 ‘<assert.h>', rather than custom ‘"assert.{h,c}"‘.

* 2007-03-13
*% Implement ‘PackWord<N>{Big,Little}‘ entirely in ML, using an ML byte swap
function.

* 2007-02-25
** Change amd64-x target platforms from 32-bit compatibility mode (i.e.,
‘-m32') to 64-bit mode (i.e., ‘-m64‘'). Currently, only the C codegen is able
to generate 64-bit executables.

* 2007-02-23
*% Removed expert command line switch ‘-coalesce <n>"‘.
** Added expert command line switch ‘-chunkify {coalesce<n>|func|one} ‘.

* 2007-02-20
*x Fixed bug in ‘PackReal<N>.toBytes'. Thanks to Eric McCorkle for the bug
report (and patch).

* 2007-02-18
*% Added command line switch ‘-profile-val', to profile the evaluation of
‘val' bindings; this is particularly useful with exception history for
debugging uncaught exceptions at the top-level.

* 2006-12-29
**% Added command line switch ‘-show {anns|path-map}‘' and deprecated command
line switch ‘-show—-anns {false|true} ‘. Use ‘-show path-map' to see the
complete MLB path map as seen by the compiler.

\

* 2006-12-20
**% Changed the output of command line switch ‘-stop f' to include ‘.mlb‘
files. This is useful for generating Makefile dependencies. The old output
is easy to recover if necessary (e.g. ‘grep -v ’'\.mlb$’ ‘).

\

* 2006-12-08
*% Added command line switches ‘-{,target}-{as,cc,link}-opt-quote', which pass
their argument as a single argument to ‘gcc' (i.e., without tokenization at
spaces). These options support using headers and libraries (including the
MLton runtime headers and libraries) from a path with spaces.

* 2006-12-02
*% Extensive reorganization of garbage collector, runtime system, and Basis
Library implementation. (This is in preparation for future 64bit support.)
They should be more C standards compliant and easier to port to new systems.
% FFI revisions
*%% Disallow nested indirect types (e.g., ‘int array array‘).

* 2006-11-30
*% Fixed a bug in elaboration of FFI forms; unary FFI types (e.g., ‘array?',
‘ref', ‘vector‘) could be used in places where ‘MLton.Pointer.t' was required.
This would later cause the compiler to raise the ‘TypeError‘' exception, along
with a lot of XML IL.

MLton Guide (20180207) 62/611

* 2006-11-19
** On *-darwin, work with GnuMP installed via Fink or MacPorts.

* 2006-10-30
*x Ported to x86-darwin.

* 2006-09-23
*% Added missing specification of ‘find' to the ‘MONO_VECTOR' signature.

+ 2006-08-03
% Fixed a bug in Useless SSA optimization, caused by calling an imported C
function and then ignoring the result.

* 2006-06-24
% Fixed a bug in pass to flatten data structures. Thanks to Joe Hurd for the
bug report.

* 2006-06-08
**% Fixed a bug in the native codegen’s implementation of the C-calling
convention.

« 2006-05-11
*x Ported to PowerPC-AIX.
% Fixed a bug in the runtime for the cases where nonblocking IO with sockets
was implemented using ‘MSG_DONTWAIT'. This flag does not exist on AIX,
Cygwin, HPUX, and MinGW and was previously just ignored. Now the runtime
simulates the flag for these platforms (except MinGW, yet, where it’s still
ignored) .

* 2006-05-06
*% Added ‘-default-type ’'<ty><N>’"' for specifying the binding of default types
in the Basis Library (e.g., ‘Int.int?').

* 2006-04-25
**% Ported to HPPA-HPUX.
+% Fixed ‘PackReal{,32,64}{Big,Little}"' to follow the Basis Library
specification.

* 2006-04-19
*% Fixed a bug in ‘MLton.share‘ that could cause a segfault.

* 2006-03-30
**% Changed ‘MLton.Vector.unfoldi' to return the state in addition to the
result vector.

* 2006-03-30
*% Added ‘MLton.Vector.create', a more powerful vector-creation function than
is available in the basis library.

* 2006-03-04
*% Added MLRISC from SML/NJ 110.57 to standard distribution.

x 2006-03-03
% Fixed bug in SSA simplifier that could eliminate an irredundant test.

x 2006-03-02
+x Ported a bugfix from SML/NJ for a bug with the combination of ‘withNack®
and ‘never‘' in CML.

* 2006-02-09
*% Support compiler specific annotations in ML Basis files. If an annotation

MLton Guide (20180207) 63/611

contains ‘:', then the text preceding the ‘:' is meant to denote a compiler.
For MLton, if the text preceding the ‘:' is equal to ‘mlton‘, then the
remaining annotation is scanned as a normal annotation. If the text preceding

the ‘:' is not-equal to ‘mlton‘, then the annotation is ignored, and no
warning is issued.

* 2006-02-04
**% Fixed bug in elaboration of functors; a program with a very large number of
functors could exhibit the error ‘ElaborateEnv.functorClosure: firstTycons'.

== Version 20051202
Here are the changes from version 20041109 to version 20051202.
=== Summary

* New license: BSD-style instead of GPL.
* New platforms:
*% hppa: Debian Linux.
**% x86: MinGW.
* Compiler.
*+ improved exception history.
**% Command-line switches.
%% Added: ‘—-as-opt', ‘~-mlb-path-map‘, ‘-target—-as-opt‘, ‘-target-cc-opt’.
**x* Deprecated: none.
% Removed: ‘-native‘, ‘-sequence-unit‘', ‘-warn-match®‘, ‘-warn-unused‘.
* Language.
% FFI syntax changes and extensions.
*%% Added: ‘_symbol"‘.
*%% Changed: ‘_export‘, ‘_import‘.
*** Removed: ‘_ffi'.
% ML Basis annotations.
*+x*x Added: ‘allowFFI‘, ‘nonexhaustiveExnMatch‘, ‘nonexhaustiveMatch?,
‘redundantMatch‘, ‘sequenceNonUnit ‘.
*** Deprecated: ‘allowExport‘, ‘allowImport‘, ‘sequenceUnit‘, ‘warnMatch®.
* Libraries.
*% Basis Library.
*x%x Added: ‘Intl‘, ‘Wordl‘.
*% ‘MLton‘ structure.
*xx Added: ‘Process.create‘', ‘ProcEnv.setgroups‘, ‘Rusage.measureGC?,
‘Socket.fdToSock', ‘Socket.Ctl.getError"‘.
% Changed: ‘MLton.Platform.Arch®.
*% Other libraries.
**+ Added: ckit library, ML-NLFFI library, SML/NJ library.
* Tools.
+* updates of ‘mllex‘ and ‘mlyacc' from SML/NJ.
*% added ‘mlnlffigen‘.
+x profiling supports better inclusion/exclusion of code.

=== Details

* 2005-11-19
** Updated SML/NJ Library and CKit Library from SML/NJ 110.57.

* 2005-11-15
% Fixed a bug in ‘MLton.ProcEnv.setgroups"‘.

* 2005-11-11
*x Fixed a bug in the interleaving of lexing/parsing and elaborating of ML
Basis files, which would raise an unhandled ‘Force' exception on cyclic basis
references. Thanks to John Dias for the bug report.

MLton Guide (20180207) 64 /611

* 2005-11-10
*% Fixed two bugs in ‘Time.scan‘. One would raise ‘Time‘ on a string with a
large fractional component. Thanks to Carsten Varming for the bug report.
The other failed to scan strings with an explicit sign followed by a decimal
point.

* 2005-11-03
** Removed ‘MLton.GC.setRusage’‘.
*% Added ‘MLton.Rusage.measureGC’.

* 2005-09-11
% Fixed bug in display of types with large numbers of type variables, which
could cause unhandled exception ‘Chr‘.

x 2005-09-08
*% Fixed bug in type inference of flexible records that would show up as
‘"Type error: variable applied to wrong number of type args"‘.

* 2005-09-06
*% Fixed bug in ‘Real.signBit‘, which had assumed that the underlying C
signbit returned 0 or 1, when in fact any nonzero value is allowed to indicate
the signbit is set.

x 2005-09-05
*% Added ‘-mlb-path-map‘' switch.

* 2005-08-25
% Fixed bug in ‘MLton.Finalizable.touch', which was not keeping alive
finalizable values in all cases.

«+ 2005-08-18
*% Added SML/NJ Library and CKit Library from SML/NJ 110.55 to standard
distribution.
**% Fixed bug in ‘Socket.Ctl.x', which got the endianness wrong on big-endian
machines. Thanks to Wesley Terpstra for the bug report and fix.
**% Added ‘MLton.GC.setRusage‘.
**% Fixed bug in ‘mllex‘, which had file positions starting at 2. They now
start at zero.

* 2005-08-15
*% Fixed bug in ‘Largelnt.scan‘', which should skip leading '"0Ox"' and ‘"0X"‘.
Thanks to Wesley Terpstra for the bug report and fix.

* 2005-08-06
*% Additional revisions of FFI:
*%% Deprecated ‘_export' with incomplete annotation.
%% Added ‘_address' for address of C objects.
%% Eliminated address component of ‘_symbol?‘.
% Changed the type of the ‘_symbolx' expression.
*%x%x See documentation for more detail.

* 2005-08-06
*% Annotation changes:
*%x% Deprecated: ‘sequenceUnit‘
*%% Added: ‘sequenceNonUnit‘

* 2005-08-03
*% Annotation changes:
**xx Deprecated: ‘allowExport', ‘allowImport‘, ‘warnMatch®
*+*x Added: ‘allowFFI‘, ‘nonexhaustiveExnMatch‘, ‘nonexhaustiveMatch?,
‘redundantMatch®

MLton Guide (20180207) 65/611

«+ 2005-08-01
*x Update ‘mllex' and ‘mlyacc‘ with SML/NJ 110.55+ versions. This
incorporates a small number of minor bug fixes.

* 2005-07-23
% Fixed bug in pass to flatten refs into containing data structure.

* 2005-07-23
*x Overhaul of FFI:
*%% Deprecated ‘_import‘ of C base types.
*%% Added ‘_symbol‘' for address, getter, and setter of C base types.
*%% See documentation for more detail.

* 2005-07-21
*x Update ‘mllex' and ‘mlyacc‘ with SML/NJ 110.55 versions. This incorporates
a small number of minor bug fixes.

* 2005-07-20
% Fixed bug in front end that allowed unary constructors to be used without
an argument in patterns.

* 2005-07-19
% Eliminated ‘_ffi‘, which has been deprecated for some time.

* 2005-07-14
** Fixed bug in runtime that caused getrusage to be called on every GC, even
if timing info isn’t needed.

* 2005-07-13
% Fixed bug in closure conversion tickled by making a weak pointer to a
closure.

* 2005-07-12
*% Changed ‘{0S,Posix}.Process.sleep' to call ‘nanosleep() ‘' instead of
‘sleep () .
*% Added ‘MLton.ProcEnv.setgroups"’.

* 2005-07-11
*% ‘InetSock.{any,toAddr}‘ raise ‘SysErr‘ if port is not in [0, 2716").

* 2005-07-02
% Fixed bug in ‘Socket.recvVecFrom{,’,NB,NB’}‘'. The type was too polymorphic
and allowed the creation of a bogus ‘sock_addr‘.

* 2005-06-28
** The front end now reports errors on encountering undefined or cyclicly
defined MLB path wvariables.

* 2005-05-22
** Fixed bug in ‘Posix.IO.{getlk,setlk,setlkw} ' that caused a link-time error:
undefined reference to ‘Posix_IO_FLock_typ"'.
*% Improved exception history so that the first entry in the history is the
source position of the raise, and the rest is the call stack.

* 2005-05-19
*x Improved exception history for ‘Overflow' exceptions.

* 2005-04-20
*x Fixed a bug in pass to flatten refs into containing data structure.

* 2005-04-14

MLton Guide (20180207) 66 /611

% Fixed a front-end bug that could cause an internal bug message of the form
‘"missing flexInst"‘.

* 2005-04-13
++* Fixed a bug in the representation of flat arrays/vectors that caused
incorrect behavior when the element size was 2 or 4 bytes and there were
multiple components to the element (e.g. ‘(char % char) vector‘').

* 2005-04-01
% Fixed a bug in ‘GC_arrayAllocate' that could cause a segfault.

* 2005-03-22
*+ Added structures ‘Intl', ‘Wordl?‘'.

* 2005-03-19
% Fixed a bug that caused ‘Socket.Ctl.{get,set}LINGER' to raise ‘Subscript‘.
The problem was in the use of ‘PackWord32Little.update‘, which scales the
supplied index by ‘bytesPerElem’.

* 2005-03-13
*% Fixed a bug in CML mailboxes.

* 2005-02-26
** Fixed an off-by-one error in ‘mkstemp‘' defined in ‘mingw.c‘.

* 2005-02-13
** Added ‘mlnlffigen' tool (heavily adapted from SML/NJ) .

* 2005-02-12
% Added MLNLFFI Library (heavily adapted from SML/NJ) to standard
distribution.

x 2005-02-04
% Fixed a bug in ‘OS.path.toString‘, which did not raise ‘InvalidArc‘' when
needed.

* 2005-02-03
% Fixed a bug in ‘OS.Path.joinDirFile‘, which did not raise ‘InvalidArc‘ when
passed a file that was not an arc.

* 2005-01-26
% Fixed a front end bug that incorrectly rejected expansive __valbind__s with
useless bound type variables.

x 2005-01-22
% Fixed x86 codegen bug which failed to account for the possibility that a
64-bit move could interfere with itself (as simulated by 32-bit moves) .

x 2004-12-22
**% Fixed ‘Real32.fmt StringCvt.EXACT', which had been producing too many
digits of precision because it was converting to a ‘Real64.real‘.

* 2004-12-15
**% Replaced MLB path variable ‘MLTON_ROOT' with ‘SML_LIB', to use a more
compiler-independent name. We will keep ‘MLTON_ROOT' aliased to ‘SML_LIB‘
until after the next release.

x 2004-12-02
*% ‘Unix.create' now works on all platforms (including Cygwin and MinGW) .

* 2004-11-24
*% Added support for ‘MLton.Process.create', which works on all platforms

MLton Guide (20180207)

67 /611

(including Windows-based ones like Cygwin and MinGW) and allows better control
over ‘std{in,out,err}‘' for child process.

== Version 20041109
Here are the changes from version 20040227 to 20041109.

=== Summary

*

New platforms:

**% x86: FreeBSD 5.x, OpenBSD

** PowerPC: Darwin (MacOSX)
Support for MLBasis files.
Support for dynamic libraries.
Support for Concurrent ML (CML) .

* X o

*

*

A new form of profiling: ‘-profile count‘.
* A bytecode generator.
Data representation improvements.
* ‘MLton‘ structure changes.
*x Added: ‘share‘, ‘shareAll®
*% Changed: ‘Exn‘, ‘IntInf‘, ‘Signal‘, ‘Thread‘.
* Command-line switch changes.
** Deprecated:
*%% ‘-native‘ (use ‘-codegen‘)
*%% ‘—sequence-unit‘' (use ‘-default-ann?)
**xx ‘—warn-match' (use ‘-default—-ann?t)
**x ‘—warn—-unused' (use ‘-default—-ann?t)
*% Removed:
**x% ‘—detect-overflow®

*

*%% ‘—exn-history' (use ‘-const?‘)
*%x% ‘—-safe’
*%% ‘—show-basis-used®
*x Added:
*xx ‘—codegen®
*%x ‘—const’
**xx ‘—default-ann®
*%% ‘—disable—ann®
x*xx ‘-profile-branch®
*xx ‘—target-link-opt‘

=== Details

x 2004-09-22
+% Extended ‘_import‘ to support indirect function calls.

* 2004-09-13
*% Made ‘Date.{fromString,scan}' accept a space (treated as zero) in the first
character of the day of the month.

* 2004-09-12
% Fixed bug in ‘IntInf‘' that could cause a segfault.
*% Remove ‘MLton.IntInf.size‘.

* 2004-09-05
+% Made ‘-detect-overflow' and ‘-safe' expert options.

* 2004-08-30
+% Added ‘val MLton.share: 'a -> unit‘, which maximizes sharing in a heap
object.

New structures: ‘Int2‘, ‘Int3', ..., ‘Int31‘ and ‘Word2', ‘Word3', ..., ‘Word31l"‘.

MLton Guide (20180207) 68 /611

x 2004-08-27
**% Fixed bug in ‘Real.tolLargeInt‘. It would incorrectly raise ‘Option‘
instead of ‘Overflow' in the case when the real was not an ‘INF', but rounding
produced an ‘INF ‘.
** Fixed bugs in ‘Date.{fmt, fromString, scan,toString}‘'. They incorrectly
allowed a space for the first character in the day of the month.

* 2004-08-18
*% Changed ‘MLton.{Thread,Signal,World}"' to distinguish between implicitly and
explicitly paused threads.

* 2004-07-28
+% Added support for programming in the large using the ML Basis system.

* 2004-07-11
% Fixed bugs in ‘ListPair.*Eqg‘ functions, which incorrectly raised the
‘Unequallengths ' exception.

* 2004-07-01
*% Added ‘val MLton.Exn.addExnMessager: (exn —> string option) -> unit‘.

x 2004-06-23
**% Runtime system options that take memory sizes now accept a "‘g‘" suffix
indicating gigabytes. They also now take a real instead of an integer,
e.g. ‘fixed-heap 0.5g‘'. They also now accept uppercase, e.g. ‘150M‘.

* 2004-06-12
**% Added support for OpenBSD.

* 2004-06-10
*% Added support for FreeBSD 5.x.

x 2004-05-28
+% Deprecated the ‘-native' flag. Instead, use the new flag ‘-codegen
{native|bytecode|C}'. This is in anticipation of adding a bytecode compiler.

* 2004-05-26
** Fixed a front-end bug that could cause cascading error to print a very
large and unreadable internal bug message of the form ‘"datatype ... realized
with scheme Unknown" ‘.

x 2004-05-17
*% Automatically restart functions in the Basis Library that correspond
directly to interruptable system calls.

x 2004-05-13
*% Added ‘-profile count‘, for dynamic counts of function calls and branches.
*% Equate the types ‘Posix.Signal.signal‘ and ‘Unix.signal‘.

* 2004-05-11
**% Fixed a bug with ‘-basis 1997 that would cause type errors due to
differences between types in the MLton structure and types in the rest of the
basis library.

x 2004-05-01
*% Fixed a bug with sharing constraints in signatures that would sometimes
mistakenly treat two structures as identical when they shouldn’t have been.
This would cause some programs to be mistakenly rejected.

* 2004-04-30
*% Added ‘MLton.Signal.{handled,restart} ‘.

MLton Guide (20180207) 69 /611

2004-04-23

*% Added ‘Timer.checkCPUTimes‘, and updated the ‘Timer‘ structure to match the
latest basis spec. Also fixed ‘totalCPUTimer‘' and ‘totalRealTimer‘, which
were wrong.

2004-04-13
+% Added ‘MLton.Signal.Mask.{getBlocked, isMember} .

2004-04-12

% Fix bug that mistakenly generalized variable types containing unknown types
when matching against a signature.

** Reasonable front-end error message when unification causes recursive
(circular) type.

2004-04-03

% Fixed bug in sharing constraints so that ‘sharing A = B = C' means that all
pairs ‘A = B', ‘A =C', ‘B = C' are shared, not just ‘A = B and ‘B = C".

This matters in some situations.

2004-03-20
**% Fixed ‘Time.now' which was treating microseconds as nanoseconds.

2004-03-14
*% Fixed SSA optimizer bug that could cause the error ‘"<type> has no
tyconInfo property" ‘.

2004-03-11
% Fixed ‘Time.fromReal' to raise ‘Time‘, not ‘Overflow', on unrepresentable
times.

2004-03-04

** Added structures ‘Word2', ‘Word3‘, ..., ‘Word31l"‘.
2004-03-03

** Added structures ‘Int2‘, ‘Int3%', ..., ‘Int31‘.

** Fixed bug in elaboration of ‘and‘ with signatures, structures, and functors
so that it now evaluates all right-hand sides before binding any left-hand
sides.

Version 20040227

Here are the changes from version 20030716 to 20040227.

=== Summary

*

The front end now follows the Definition of SML and produces readable error

messages.

*

*

*

*

*

Added support for NetBSD.

Basis library changes tracking revisions to the specification.

Added structures: ‘Int64', ‘Real32', ‘Word64d‘.

File positions use ‘Int64°‘.

Major improvements to ‘-show-basis‘, which now displays the basis in a very

readable way with full type information.

*

*

Command-line switch changes.
** Deprecated: ‘-basis’.
*% Removed: ‘-lib-search‘, ‘-1link‘, ‘-may-load-world‘, ‘-static‘.
*% Added: ‘-link-opt‘, ‘-runtime‘, ‘-sequence-unit‘, ‘-show-def-use?,
‘-stop tc', ‘-warn-match?', ‘-warn-unused®.
*% Changed: ‘-export-header‘, ‘-show-basis‘, ‘-show-basis-used‘.
** Renamed: ‘-host' to ‘-target‘.
FFI changes.

MLton Guide (20180207)

70/611

*% Renamed ‘_ffi' as ‘_import‘'.
*% Added ‘cdecl' and ‘stdcall‘' attributes to ‘_import' and ‘_export®
expressions.
* MLton structure changes.
*% Added: Pointer.
** Removed: Ptrace.
*% Changed: ‘Finalizable‘, ‘IntInf‘, ‘Platform‘, ‘Random‘, ‘Signal‘, ‘Word®‘.

* 2004-02-16
*% Changed

\

—export-header', ‘-show-basis‘, ‘-show-basis-used' to take a file
name argument, and they no longer force compilation to halt.

** Added ‘-show-def-use' and ‘-warn-unused‘, which deal with def-use
information.

* 2004-02-13
*% Added flag ‘-sequence-unit‘', which imposes the constraint that in the
sequence expression ‘(el; e2)', ‘el must be of type ‘unit‘.

* 2004-02-10
+% Lots of changes to ‘MLton.Signal ‘: name changes, removal of superfluous
functions, additional functions.

* 2004-02-09
** Extended ‘-show-basis‘' so that when used with an input program, it shows
the basis defined by the input program.
*% Added ‘stop' runtime argument.
*% Made ‘-call-graph {false|true}' an option to ‘mlprof‘' that determines
whether or not a call graph file is written.

« 2004-01-20
*% Fixed a bug in ‘IEEEReal.{fromString, scan}‘, which would improperly return
‘INF' instead of ‘ZERO' for things like '"0.0000e123456789012345"".
*% Fixed a bug in ‘Real.{fromDecimal, fromString, scan}‘, which didn’t return an
appropriately signed zero for ‘~0.0°'.
% Fixed a bug in ‘Real.{toDecimal,fmt}‘, which didn’t correctly handle
V=0, 0%,
*% Report a compile-time error on unrepresentable real constants.

* 2004-01-05

*% Removed option ‘-may-load-world'. You can now use ‘-runtime no-load-world®
instead.
*% Removed option ‘-static‘. You can now use ‘-link-opt -static' instead.

**% Changed ‘MLton.IntInf.size' to return 0 instead of 1 on small ints.

* 2003-12-28
**% Fixed horrible bug in ‘MLton.Random.alphaNumString' that caused it to
return 0 for all characters beyond position 11.

x 2003-12-17
*% Removed ‘-basis' as a normal flag. It is still available as an expert
flag, but its use is deprecated. It will almost certainly disappear after the
next release.

*+ 2003-12-10
*% Allow multiple ‘@MLton --' runtime args in sequnce. This makes it easier
for scripts to prefix ‘@MLton‘' args without having to splice them with other
ones.

* 2003-12-04
*% Added support for files larger than 2G. This included changing

MLton Guide (20180207) 71/611

‘Position' from ‘Int32' to ‘Int64‘.

* 2003-12-01
*% Added ‘structure MLton.Pointer‘, which includes a ‘type t‘' for pointers
(memory addresses, not SML heap pointers) and operations for loading from and
storing to memory.

«+ 2003-11-03
**% Fixed ‘Timer.checkGCTime' so that only the GC user time is included, not GC
system time.

* 2003-10-13
*% Added ‘-warn-match‘ to control display nonexhaustive and redundant
match warnings.
*% Fixed space leak in ‘StreamIO‘ causing the entire stream to be retained.
Thanks to Jared Showalter for the bug report and fix.

* 2003-10-10
+% Added ‘-stop tc' switch to stop after type checking.

* 2003-09-25

% Fixed ‘Posix.IO.getfl‘, which had mistakenly called ‘fcntl' with ‘F_GETFD‘

instead of ‘F_GETFL‘.

** Tracking basis library changes:
*%x% ‘Socket ' module datagram functions no longer return amount written,
since they always write the entire amount or fail. So,
‘send{Arr,Vec}To{,’}" now return ‘unit‘' instead of ‘int‘'.
*%% Added nonblocking versions of all the send and recv functions, as well
as accept and connect. So, we now have: ‘acceptNB', ‘connectNB?Y,
‘recv{Arr,Vec}{,From}NB{,’}"', ‘send{Arr,Vec}{,To}NB{,’}" .

« 2003-09-24
*% Tracking basis library changes:
*%x% ‘TextIO.inputLine‘ now returns a ‘string option‘.
*%% Slices used in ‘Byte‘, ‘PRIM_IO‘, ‘PrimIO‘, ‘Posix.IO‘, ‘StreamIO‘.
*%% ‘Posix.IO.readVec' raises ‘Size‘, not ‘Subscript‘, with negative
argument.

* 2003-09-22
% Fixed ‘Real.toManExp‘' so that the mantissa is in [0.5, 1), not [1, 2). The
spec says that 1.0 <= man * radix < radix, which since radix is 2, implies
that the mantissa is in [0.5, 1).
**x Added ‘Time.{from,to}Nanoseconds".

* 2003-09-11
*x Added ‘Real.realRound’.
*% Added ‘Char{Array,Vector}Slice' to ‘Text‘.

* 2003-09-11
*% ‘0S.IO0.poll' and ‘Socket.select' now raise errors on negative timeouts.
*% ‘Time.time' is now implemented using ‘IntInf‘' instead of ‘Int‘, which means
that a much larger range of time values is representable.

* 2003-09-10
*% ‘Word64‘ is now there.

* 2003-09-09
*% Replaced ‘Pack32{Big,Little}‘ with ‘PackWord32{Big,Little} .
**% Fixed bug in ‘0S.FileSys.fullPath‘, which mistakenly stopped as soon as it
hit a symbolic link.

* 2003-09-08

MLton Guide (20180207)

72/611

+% Fixed ‘@MLton max-heap‘, which was mistakenly ignored. Cleaned up ‘@MLton
fixed-heap'. Both ‘fixed-heap' and ‘max-heap' can use copying or mark-compact
collection.
2003-09-06

*% ‘Int64' is completely there.
% Fixed ‘0OS.FileSys.tmpName' so that it creates the file, and doesn’t use
‘tmpnam'. This eliminates an annoying linker warning message.

2003-09-05

*% Added structures ‘{LargeInt,LargeReal,LargeWord,Word}{Array,Array2,ArraySlice,Vector, <+

VectorSlice}'®
% Fixed bug in ‘Real.toDecimal‘, which return class ‘NORMAL‘' for subnormals.
**% Fixed bug in ‘Real.tolargeInt‘, which didn’t return as precise an integer
as possible.

2003-09-03

«% Lots of fixes to ‘REAL' functions.
*%x% ‘Real32' is now completely in place, except for ‘Real32.nextAfter‘ on
SunOS.
**%*% Fixed ‘Real.Math.exp' on x86 to return the right value when applied to
‘posInf' and ‘negInf‘.
%% Changed ‘Real.Math.{cos,sin,tan}' on x86 to always use a call to the C
math library instead of using the x86 instruction. This eliminates some
anomalies between compiling ‘-native false' and ‘
*%% Change ‘Real.Math.pow' to handle exceptional cases in the SML code.
**x%x Fixed ‘Real.signBit‘' on Sparcs.

-native true‘.

2003-08-28

** Fixed ‘PackReal{,64}Little" to work correctly on Sparc.

*% Added ‘PackReal{,64}Big"‘, ‘PackReal32{Big,Little} .

*% Added ‘-runtime' switch, which passes arguments to the runtime via
‘@MLton'. These arguments are processed before command line switches.

*% Eliminated MLton switch ‘-may-load-world‘'. Can use ‘-runtime‘' combined
with new runtime switch ‘-no-load-world' to disable load world in an
executable.

2003-08-26
*% Changed ‘-host' to ‘-target‘.
% Split ‘MLton.Platform.{arch,os}' into ‘MLton.Platform.{Arch,O0S}.t".

2003-08-21
% Fixed bug in C codegen that would cause undefined references to
‘Real_{fetch,move, store} ' when compiling on Sparcs with ‘-align 4°‘.

2003-08-17

*% Eliminated ‘-link‘ and ‘-lib-search‘', which are no longer needed.
Eliminated support for passing ‘-1x', ‘-Lx', and ‘x.a‘' on the command line.
Use ‘-link-opt‘' instead.

2003-08-16
«% Added ‘-link-opt‘, for passing options to ‘gcc‘' when linking.

2003-07-19

*% Renamed ‘_ffi' as ‘_import‘'. The old ‘_ffi' will remain for a while, but
is deprecated and should be replaced with ‘_import‘.

+% Added attributes to ‘_export' and ‘_import‘'. For now, the only attributes
are ‘cdecl' and ‘stdcall‘.

Version 20030716

MLton Guide (20180207) 73 /611

Here are the changes from version 20030711 to 20030716.
== Summary
* Fixed several serious bugs with the 20030711 release.
== Details

* 2003-07-15
+% Fixed bug that caused a segfault when attempting to create an
array that was too large, e.g

1 + Array.sub (Array.tabulate (valOf Int.maxInt, fn i => i), 0)

% mlton now checks the command line arguments following the file to compile
that are passed to the linker to make sure they are reasonable.

* 2003-07-14
*% Fixed packaging for Cygwin and Sparc to include ‘libgmp.a‘.
% Eliminated bootstrap target. The ‘Makefile' automatically determines
whether to bootstrap or not.
+% Fixed XML type checker bug that could cause error: ‘"empty tyvars in
PolyVal dec" ‘.

x 2003-07-12
**% Turned off ‘FORCE_GENERATIONAL' in gc. It had been set, which caused the
gc to always use generational collection. This could seriously slow apps down
that don’t need it.

== Version 20030711
Here are the changes from version 20030312 to 20030711.
=== Summary

* Added support for Sparc/SunOS using the C code generator.

* Completed the basis library implementation. At this point, the only missing
basis library function is ‘use
* Added ‘_export', which allows one to call SML functions from C.

* Added weak pointers (via ‘MLton.Weak') and finalization (via
‘MLton.Finalizabled).

* Added new integer modules: ‘Int8°‘, ‘Intl6‘.

* Better profiling call graphs

* Fixed conversions between reals and their decimal representations to be
correct using the gdtoa library.

\

=== Details

* 2003-07-07

*% Profiling improvements:
%% Eliminated ‘mlton -profile-split‘'. Added ‘mlprof -split‘'. Now the
profiling infrastructure keeps track of the splits and allows one to decide
which splits to make (if any) when ‘mlprof' is run, which is much better
than having to decide at compile time.
%% Changed ‘mlprof —-graph' to ‘mlprof -keep‘, and changed the behavior so
that ‘-keep' also controls which functions are displayed in the table.
*%x% Eliminated ‘mlprof -ignore‘: it’s behavior is now subsumed by ‘-keep?,
whose meaning has changed to be more like -ignore on nodes that are not
kept.

*% When calling ‘gcc' for linking, put ‘-link‘ args in same order as they

appeared on the MLton command line (they used to be reversed).

MLton Guide (20180207) 74 /611

«+ 2003-07-03
**% Making ‘OS.Process.{atExit,exit} ' conform to the basis library spec in that
exceptions raised during cleaners are caught and ignored. Also, calls to
‘exit ' from cleaners cause the rest of cleaners to run.

x 2003-07-02
*% Fixed bug with negative ‘IntInf‘' constants that could cause compile time
error message: ‘"x86Translate.translateChunk ... strange Offset: base: ..."‘
*% Changed argument type of ‘MLton.IntInf.Small‘' from ‘word' to ‘int‘.
*% Added fix to profiling so that the ‘mlmon.out‘' file is written even when
the program terminates due to running out of memory.

* 2003-06-25
*% Added ‘{Int{8,16},Word8}{,Array,ArraySlice,Vector,VectorSlice,Array2}"®
structures.

* 2003-06-25
% Fixed bug in ‘IntInf.sign‘, which returned the wrong value for zero.

* 2003-06-24
*% Added ‘_export', for calling from C to SML.

* 2003-06-18
+% Regularization of options:
*%% ‘-diag‘ --> ‘-diag-pass’®
*%% ‘—drop-pass‘' takes a regexp

* 2003-06-06
*% Fixed bug in ‘0S.IO.poll‘' that caused it to return the input event types
polled for instead of what was actually available.

x 2003-06-04
% Fixed bug in KnownCase SSA optimization that could case incorrect results
in compiled programs.

x 2003-06-03
*% Fixed bug in SSA optimizer that could cause the error message:

Type error: Type.equals

{from = char vector, to = unit vector}

Type error: analyze raised exception loopStatement:
unhandled exception: TypeError

x 2003-06-02
% Fixed ‘Real.rem‘' to work correctly on ‘inf‘-s and ‘nan‘-s.
*% Fixed bug in profiling that caused the function name to be omitted on
functions defined by ‘val rec‘.

* 2003-05-31
**% ‘Fixed Real.{fmt, fromString,scan,toString}"' to match the basis library
spec.
**% Added ‘IEEEReal.{fromString,scan} ‘.
** Added ‘Real.{from,to}Decimal‘.

* 2003-05-25
*x Added ‘Real.nextAfter’.
*% Added ‘0OS.Path.{from,to}UnixPath‘, which are the identity function on Unix.

x 2003-05-20
*% Added type ‘MLton.pointer‘, the type of C pointers, for use with the FFI.

MLton Guide (20180207) 75/ 611

* 2003-05-18
**% Fixed two bugs in type inference that could cause the compiler to raise the
‘TypeError' exception, along with a lot of XML IL. The ‘type-check.sml®
regression contains simple examples of what failed.
** Fixed a bug in the simplifier that could cause the message: ‘"shrinker
raised Prim.apply raised assertion failure: SmallIntInf.fromWord"'.

+ 2003-05-15
**% Fixed bug in ‘Real.class‘' introduced on 04-28 that cause many regression
failures with reals when using newer ‘gcc'‘-s.
*% Replaced ‘MLton.Finalize' with ‘MLton.Finalizable‘, which has a more robust
approach to finalization.

«+ 2003-05-13
*% Fixed bug in ‘MLton.FFI' on Cygwin that caused ‘Thread_returnToC' to be
undefined.

* 2003-05-12
*% Added support for finalization with ‘MLton.Finalize‘.

* 2003-05-09
% Fixed a runtime system bug that could cause a segfault. This bug would
happen after a GC during heap resizing when copying a heap, if the heap was
allocated at a very low (<10M) address. The bug actually showed up on a
Cygwin system.

* 2003-05-08
% Fixed bug in ‘HashType' that raised ‘"Vector.forall2"' when the arity of a
type constructor is changed by ‘SimplifyTypes‘, but a newly constructed type
has the same hash value.

« 2003-05-02
**% Switched over to new layered IO implementation, which completes the
implementation of the ‘BinIO‘' and ‘TextIO‘ modules.

x 2003-04-28
+% Fixed bug that caused an assertion failure when generating a jump table for
a case dispatch on a non-word sized index with non-zero lower bound on the
range.

* 2003-04-24
*% Added ‘-align {48}, which controls alignment of objects. With ‘-align
8', memory accesses to doubles are guaranteed to be aligned mod 8, and so
don’t need special routines to load or store.

* 2003-04-22
**x Fixed bug that caused a total failure of time profiling with ‘-native
false'. The bug was introduced with the C codegen improvements that split the
C into multiple files. Now, the C codegen declares all profile labels used in
each file so that they are global symbols.

x 2003-04-18
*% Added ‘MLton.Weak‘, which supports weak pointers.

x 2003-04-10
*% Replaced the basis library’s ‘MLton.hostType' with ‘MLton.Platform.arch?

and ‘MLton.Platform.os‘.

* 2003-04
** Added support for SPARC/SunOS using the C codegen.

* 2003-03-25

MLton Guide (20180207)

76 /611

*x Added ‘MLton.FFI', which allows callbacks to SML from C.

* 2003-03-21
% Fixed ‘mlprof' so that the default ‘-graph arg‘ for data from
‘-profile-stack true' is ‘(thresh-stack x)‘, not ‘(thresh x) ‘.

== Version 20030312
Here are the changes from version 20020923 to 20030312.
=== Summary

* Added source-level profiling of both time and allocation.
* Updated basis library to 2002 specification. To obtain the old
library, compile with ‘-basis 1997‘.
* Added many modules to basis library:
%% ‘BinPrimIO‘, ‘GenericSock', ‘ImperativeIO‘, ‘INetSock', ‘NetHostDB?Y,
‘NetProtDB', ‘NetServDB', ‘Socket‘, ‘StreamIO‘, ‘TextPrimIO‘', ‘UnixSock?‘.
* Completed implementation of ‘IntInf‘' and ‘0S.IO‘.

=== Details

* 2003-02-23
+% Replaced ‘-profile-combine‘ wih

\

-profile-split®.

* 2003-02-11
+% Regularization of options:

x% ‘=1Y ——> ‘-1link®

*xx ‘-L' ——> ‘-lib-search®
*%x% ‘=o' —-=> ‘-output®

**x% ‘—v' ——> ‘-verbose®

* 2003-02-10
*% Added option to ‘mlton‘: ‘-profile-combine {falsel|true}®

* 2003-02-09
*% Added options to ‘mlprof‘: ‘-graph-title‘, ‘-gray‘, ‘-ignore‘, ‘-mlmon?,
‘-tolerant ‘.

* 2002-11 - 2003-01
**% Added source-level allocation and time profiling. This includes the new
options to mlton: ‘-profile' and ‘-profile-stack®.

* 2002-12-28
** Added ‘NetHostDB', ‘NetProtDB', ‘NetServDB' structures.
*x Added ‘Socket', ‘GenericSock', ‘INetSock‘, ‘UnixSock‘' structures.

x 2002-12-19
*% Fixed bug in signal check insertion that could cause some signals to be
missed. The fix was to add a signal check on entry to each function in
addition to at each loop header.

x 2002-12-10
% Fixed bug in runtime that might cause the message ‘"Unable to set
cardMapForMutator" ‘.

* 2002-11-23
*% Added support for the latest Basis Library specification.
+% Added option ‘-basis' to choose Basis Library version. Currently available
basis libraries are ‘2002, ‘2002-strict‘, ‘1997, and ‘none‘.
*%x Added ‘IntInf.{orb, xorb,andb,notb,<<,~>>}"' values.

MLton Guide (20180207)

77 /611

«% Added ‘0S.IO.{poll_desc,poll_info} "' types.

*% Added ‘0S.IO.{pollDesc,pollToIODesc,infoToPollDesc,Poll}" values.

*% Added ‘0S.IO.{pollIn,pollOut,pollPri,poll,isIn,isOut,isPri}"‘ values.
**x Added ‘BinPrimIO‘, ‘TextPrimIO‘' structures.

*% Added ‘StreamIO‘, ‘ImperativeIO‘ functors.

x 2002-11-22
*% Fixed bug that caused time profiling to fail (with a segfault) when
resuming a saved world.

« 2002-11-07
*% Fixed bug in ‘MLton.eqg‘' that could arise when using ‘eg‘' on functions.

* 2002-11-05
*% Improvements to polymorphic equality. Equality on IntInfs, vectors, and

dataypes all do an ‘eqg‘ test first before a more expensive comparison.

* 2002-11-01

*% Added allocation profiling. Now, can compile with either ‘-profile alloc‘
or ‘-profile time‘'. Renamed ‘MLton.Profile‘ as ‘MLton.ProfileTime‘. Added
‘MLton.ProfileAlloc'. Cleaned up and changed most ‘mlprof‘ option names.

* 2002-10-31
*% Eliminated ‘MLton.debug®.
% Fixed bug in the optimizer that affected ‘IntInf.fmt‘'. The optimizer had
been always using base 10, instead of the passed in radix.

* 2002-10-22
**% Fixed ‘Real.toManExp‘' so that the mantissa is in [1, 2), not [0.5, 1).
**% Added ‘Real.fromLargeInt‘, ‘Real.tolLargelnt‘.
% Fixed ‘Real.split‘, which would return an incorrect whole part due to the
underlying primitive, ‘Real_modf‘, being treated as functional instead of
side-effecting.

* 2002-09-30
*%x Fixed ‘rpath' problem with packaging. All executables in packages
previously made had included a setting for ‘RPATH'.

== Version 20020923
Here are the changes from version 20020410 to 20020923.
=== Summary

* MLton now runs on FreeBSD.

* Major runtime system improvements. The runtime now implements mark-compact
and generational collection, in addition to the copying collection that was
there before. It automatically switches between the the collection strategies
to improve performance and to try to avoid paging.

* Performance when compiling ‘-exn-history true' has been improved.

* Added ‘IntInf.log2‘', ‘MLton.GC.pack‘, ‘MLton.GC.unpack®.

* Fixed bug in load world that could cause "sread failed" on Cygwin.

* Fixed optimizer bug that could cause ‘"no analyze var value property"®
message.

=== Details

* 2002-09
*% Integrated Sam Rushing’s changes to port MLton to FreeBSD.

* 2002-08-25

MLton Guide (20180207)

78 /611

+% Changed the implementation of exception history to be completely
functional. Now, the extra field in exceptions (when compiling ‘-exn-history
true') is a ‘string list' instead of a ‘string list ref', and ‘raise‘ conses a
new exception with a new element in the list instead of assigning to the list.
This changes the semantics of exception history (for the better) on some
programs. See ‘regression/exnHistory3.sml‘' for an example. It also
significantly improves performance when compiling ‘-exn-history true‘.

* 2002-07 and 2002-08
*% Added generational GC, and code to the runtime that automatically turns it
on and off.

x 2002-08-20
*% Fixed SSA optimizer bug that could cause the following error message: ‘"x_0
has no analyze var value property"‘

* 2002-07-28
*% Added ‘MLton.GC. {pack,unpack} ‘. ‘pack' shrinks the heap so that other
processes can use the RAM, and its dual, ‘unpack', resizes the heap to the
desired size.

* 2002-06 and 2002-07
** Added mark compact GC.
** Changed array layout so that arrays have three, not two header words. The
new word is a counter word that preceeds the array length and header.
*% Changed all header words to be indices into an array of object descriptors.

* 2002-06-27
*% Added patches from Michael Neumann to port runtime to FreeBSD 4.5.

* 2002-06-05
% Output file and intermediate file are now saved in the current directory
instead of in the directory containing the input file.

* 2002-05-31
*x Fixed bug in overloading of ‘/' so that the following now type checks:

fun f (x, yv) =x+y /vy

* 2002-04-26
*% Added back ‘max-heap‘ runtime option.

x 2002-04-25
+*x Fixed load/save world so that they use binary mode. This should fix the
‘sread failed' problem that Byron Hale saw on Cygwin that caused ‘mlton' to
fail to start.
*% Added ‘IntInf.log2:‘.
**% Changed call to linker to use ‘libgmp.a‘' (if it exists) instead of
‘libgmp.so'. This is because the linker adds a dependency to a shared library
even if there are no references to it

x 2002-04-23
** Rewrote heap resizing code. This fixed bug that was triggered with large

heaps and could cause a spurious out of memory error.
*% Removed GnuMP from MLton sources (again :-).

== Version 20020410

Here are the changes from version 20011006 to version 20020410.

MLton Guide (20180207) 79/ 611

* 2002-03-28
**x Added BinIO.

* 2002-03-27
*% Regularization of options
%% ‘=g' —-—> ‘-deqgug {falsel|true}®
*%% ‘-h n‘ —--> ‘-fixed-heap n'
%% ‘-p‘' --> ‘-profile {false|true}®
* 2002-03-22
**% Set up the stubs so that MLton can be compiled in the standard basis
library, with no ‘MLton‘ structure. Thus it is now easy to compile MLton with
an older (or newer) version of itself that has a different ‘MLton‘ structure.

* 2002-03-17
** Added ‘MLton.Process.{spawn, spawne, spawnp} ‘', which use primitives when
running on Cygwin and fork/exec when running on Linux.

* 2002-02 - 2002-03
*x Added the ability to cross-compile to Cygwin/Windows.

* 2002-02-24
** Added GnuMP back for use with Cygwin.

* 2002-02-10
*% Reworked object header words so that ‘Array.maxLen = valOf Int.maxInt'.
Also fixed a long-standing minor bug in MLton, where ‘Array.array
(Array.maxLen, ...) "' would raise ‘Size‘ instead of attempting to allocate the
array. It was an off-by-one error in the meaning of ‘Array.maxLen‘.

« 2002-02-08
*% Modifications to runtime to behave better in situations where the amount of
live data is a signifant fraction of the amount of RAM, based on code from
PolySpace. MLton executables by default can now use more than the available
amount of RAM. Executables will still respect the ‘max—heap' runtime arg if
it is set.

x 2002-02-04
*% Improvements to runtime so that it fails to get space, it attempts to get
less space instead of failing. Based on PolySpace’s modifications.
**% Added ‘MLton.eqg’.

« 2002-02-03
*% Added ‘MLton.IntInf.gcd?.
+% Removed GnuMP from MLton sources. We now link with ‘/usr/lib/libgmp.a‘.
*%x Added ‘TextIO.getPosOut ‘.
*% Renamed type ‘MLton.Itimer.which' to ‘MLton.Itimer.t‘ and
‘MLton.Itimer.whichSignal' to ‘MLton.Itimer.signal‘.
*% Added ‘-coalesce' flag, for use with the C backend.

* 2002-01-26
*% Added ‘-show-basis-used', which prints out the parts of the basis library
that the input program uses.
*% Changed several other flags (‘-print-at-fun-entry‘, ‘-show-basis?,
‘-static') to follow the ‘{falsel|true}' convention.

* 2002-01-22
*% Improved ‘MLton.profile' so that multiple profile arrays can exist
simultaneously and so that the current one being used can be set from the SML
side.

MLton Guide (20180207) 80 /611

x 2002-01-18
*% The Machine IL has been replaced with an RSSA (representation explicit SSA)
IL and an improved Machine IL.

« 2002-01-16
*% Added KnownCase SSA optimization

« 2002-01-14
*% Added rudimentary profiling control from with a MLton compile program via
the ‘MLton.Profile' structure.

* 2002-01-09
% Fixed bug in match compiler that caused case expressions on datatypes with
redundant cases to be compiled incorrectly.

x 2002-01-08
*% Added redundant tuple construction elimination to SSA shrinker.
*% Improved Flatten SSA optimization.

« 2001-12-06
** Changed the interface for ‘MLton.Signal‘'. There is no longer a separate
‘Handler ' substructure. This was done so that programs that just use
‘default' and ‘ignore' signal handlers don’t bring in the entire thread
mechanism.

* 2001-12-05
** Added LocalRef elimination SSA optimization.

* 2001-11-19
** The CPS IL has been replaced with an SSA (static-single assignment) IL.
All of the optimizations have been ported from CPS to SSA.

x 2001-10-24
*% Fixed bug in ‘Thread_atomicEnd' -- ‘limit‘ was mistakenly set to ‘base’
instead of to 0. This caused assertion failures when for executables compiled
‘-g' because ‘GC_enter' didn’t reset ‘limit‘.
% Fixed bug in register allocation of byte registers.

x 2001-10-23
+% Added ‘-D‘ option to ‘cmcat‘' for preprocessor defines. Thanks to Anog for
sending the code.
**% Changed limit check insertion so that limit checks are only coalesced
within a single basic block -- not across blocks. This slows many benchmarks
down, but is needed to fix a bug in the way that limit checks were coalesced
across blocks. Hopefully we will figure out a better fix soon.

«+ 2001-10-18
**x Fixed type inference of flexrecord so that it now follows the Definition.
Many programs containing flexrecords were incorrectly rejected. Added many
new tests to regression/flexrecord.sml.
% Changed the behavior of ‘-keep dot‘' combined with ‘-keep pass' for SSA
passes. Dot files are now saved for the program before and after, instead of
just after.

* 2001-10-11
% Fixed a bug in the type inference that caused type variables to be
mistakenly generalized. The bug was exposed in Norman Ramsey’s ‘sled.sml‘.
Added a test to ‘regression/flexrecord.sml' to catch the problem.

== Version 20011006

MLton Guide (20180207)

81/611

Here are the changes from version 20010806 to version 20011006.

=== Summary

*

*

*

*

Added ‘MLton.Exn.history‘, which is similar to ‘SMLofNJ.exnHistory"'.
Support for ‘#line‘ directives of the form ‘(x#line line.col "file"x) ‘.
Performance improvements in native codegenerator.

Bug fixes in front-end, optimizer, register allocator,

‘Real. {maxFinite,minPos, toManExp} ', and in heap save and restore.

=== Details

*

2001-10-05
% Fixed a bug in polymorphic layered patterns, like

val "a a as b = []

\

These would always fail due to the variable ‘a‘ not being handled correctly.
+% Fixed the syntax of ‘val rec' so that a pattern is allowed on the left-hand

side of the '='. Thus, we used to reject, but now accept, the following.
val rec a as b as ¢c = fn _ => ()
val rec a : unit -> unit : unit -> unit = fn () => ()

Thanks again to Andreas Rossberg’s test files. This is now tested for in

‘valrec.sml"‘.

*% Fixed dynamic semantics of ‘val rec' so that if ‘val rec' is used to
override constructor status, then at run time, the '‘Bind‘ exception is raised
as per rule 126 of the Definition. So, for example, the following program
type checks and compiles, but raises ‘Bind‘' at run time.

val rec NONE = fn () => ()
val _ = NONE ()

Again, this is checked in ‘valrec.sml‘.
*x Added ‘\r\n' to ml.lex so that Windows style newlines are acceptable in
input files.

2001-10-04
% Fixed bug in the implementation of ‘open' declarations, which in the case
of ‘open A B' had opened ‘A‘ and then looked up ‘B' in the resulting

environment. The correct behaviour (see rule 22 of the Definition) is to
lookup each _longstrid_ in the current environment, and then open them all in
sequence. This is now checked for in the ‘open.sml‘ regression test. Thanks

to Andreas Rossberg for pointing this bug out.

*% Fixed bug that caused tyvars of length 1 (i.e. ‘') to be rejected. This
is now checked in the ‘id.sml‘ regression test. Again, thanks to Andreas
Rossberg for the test.

2001-10-02

*% Fixed bugs in ‘Real.toManExp‘' (which always returned the wrong result
because the call to ‘frexp' was not treated as side-effecting by the
optimizer) and in ‘Real.minPos‘, which was zero because of a mistake with
extra precision bits.

2001-10-01

*% Added ‘MLton.Exn.history?‘.

*% Fixed register allocation bug with ‘fucom' instruction. Was allowing
‘fucomp' when the first source was not removable.

+% Changed ‘Real.isFinite‘ to use the C ‘math.h‘ ‘finite‘ function. This
fixed the nontermination bug which occurred in any program that used
‘Real .maxFinite‘.

MLton Guide (20180207)

82/611

*

*

2001-09-22
*% Bug fixes found from Ramsey’s ‘lrtl' in ‘contify.fun' and
‘unused-args.fun', both of which caused compile-time exceptions to be raised.

2001-09-21
*x Fixed ‘MLton.World.{load,save}' so that the saved world does not store the
max heap size. Instead, the max heap size is computed upon load world in

exactly the same way as at program startup. This fixes a long-standing (but
only recently noticed) problem in which ‘mlton‘ (which uses a saved world)
would attempt to use as much memory as was on the machine used to build
‘world.mlton‘.

2001-08-29

*% Overlow checking is now on by default in the C backend. This is a huge
performance hit, but who cares, since we never use the C backend except for
testing anyways.

2001-08-22
*% Added support for #line directives of the form

(x#line line.col "file"x)

These directives only affect error messages produced by the parser and
elaborator.

2001-08-17
% Fixed bug in RemoveUnused optimzation that caused the following program to
fail to compile.

fun £ 1 = case 1 of [] => f£ 1 | _ :: 1 => f 1
val _ = £ [13]
2001-08-14

*% New x86-codegen infrastructure.
% support for tracking liveness of stack slots and carrying them in
registers across basic blocks
*%% more specific ‘Entry‘' and ‘Transfer‘' datatypes to make calling convention
distinctions more explicit
*%x% new heuristic for carrying values in registers across basic blocks (look
Ma, no Overflows!)
**x%x new "predict" model for generating register allocation hints
*%% additional bug fixes

2001-08-07
*% ‘MLton.Socket.shutdownWrite' flushes the outstream.

== Version 20010806

Here are the changes from version 20010706 to version 20010806.

=== Summary

*
*
*

*

*

‘Word.andb (w, OxFF) ‘' now works correctly
‘MLton.Rusage.rusage' has a patch to work around a linux kernel bug
are now accepted

\ \

Programs of the form ‘_exp_ ; _program_
Added the ‘MLton.Rlimit‘' structure
Added the ‘-keep dot' flag, which produces call graphs, intraprocedural

control-flow graphs, and dominator trees

MLton Guide (20180207) 83/611

* 2001-08-06
*% Added simple CommonBlock elimination CPS optimization.

+ 2001-08-02
**% Took out ‘-keep il‘.

+ 2001-07-31
** Performance improvements to ‘TextIO.{input, output, outputl} ‘.

* 2001-07-25
** Added RedundantTest elimination CPS optimization.

«+ 2001-07-21
*% Added CommonSubexp elimination CPS optimization.

* 2001-07-20
% Bug fix to x86 codegen. The ‘commuteBinALMD‘ peephole optimization would
rewrite ‘mov 2,Y; add Y,Y' as ‘mov Y,Y; add 2,Y'. Now the appropriate
interference checks are made.
** Added intraprocedural unused argument removal.

*% Added intraprocedural flattener. This avoids some stupid tuple allocations
in loops. Decent speedup on a few benchmarks (‘count-graphs‘', ‘psdes-random?,
‘wc—-scanStream') and no noticeable slowdowns.

**% Added ‘-keep dot‘' flag.

* 2001-07-17

*% Modified grammar to properly handle ‘val rec‘'. There were several problems.
**x*x MLton had accepted ‘val rec 'a ‘ instead of ‘val 'a rec ...°
%% MLton had not accepted ‘val x = 13 and rec £ = fn () => ()°
%% MLton had not accepted ‘val rec rec £ = fn () => ()"
**%x MLton had not accepted ‘val rec £ = fn () => () and rec g = fn () => ()"

* 2001-07-16
**% Workaround for Linux kernel bug that can cause ‘getrusage' to return a wrong
system time value (low by one second). See ‘fixedGetrusage') in ‘gc.c‘.
% Bug fix to x86 codegen. The register allocator could get confused when
doing comparisons of floating point numbers and use the wrong operand. The
bug seems to have never been detected because it only happens when both of the
operands are already on the floating point stack, which is rare, since one is
almost always in memory since we don’t carry floating point values in the
stack across basic blocks.
*% Added production to the grammar on page 58 of the Definition that had been
missing from MLton since day one.

program ::= exp ; <program>

Also updated docs to reflect change.
*% Modified grammar to accept the empty program.
*% Added ‘-type-check' expert flag to turn on type checking in ILs.

* 2001-07-15
% Bug fix to the algebraic simplifier. It had been rewriting
‘Word32.andb (w, OwxFF)' to ‘w' instead of
‘Word32.andb (w, OwxFFFFFFFF)' to ‘w'.

* 2001-07-13
*% Improved CPS shrinker so that ‘if‘-tests where the ‘then' and ‘else‘ branch
jump to the same label is turned into a direct Jjump.
+% Improved CPS shrinker (‘Prim.apply‘) to handle constructors
*xx ‘A = A' ——> ‘true’
*x%x ‘A = B' ——> ‘false’

MLton Guide (20180207) 84 /611

*%%x ‘A x' = ‘B y' ——> ‘false?
**% Rewrote a lot of loops in the basis library to use inequalities instead of
equality for the loop termination test so that the (forthcoming) overflow
detection elimination will work on the loop index variable.

* 2001-07-11
+% Fixed minor bugs in ‘Array2.{array,tabulate}‘, ‘Substring.{slice}‘ that
caused the ‘Overflow' exception to be raised instead of ‘Size‘ or ‘Subscript?®
*x Fixed bug in ‘Pack32Big.update‘ that caused the wrong location to be updated.
*x Fixed several bugs in ‘Pack32{Big,Little}.{subArr, subVec,update} ' that
caused ‘Overflow' to be raised instead of ‘Subscript'. Also, improved the
implementation so that bounds checking only occurs once per call (instead of
four times, which was sometimes happening.
**% Fixed bugs in ‘Time.{toMilliseconds,toMicroseconds} ' that could cause a
spurious ‘Overflow' exception.
% Fixed bugs in ‘Time.{fromMilliseconds, fromMicroseconds} ‘' that could cause a
spurious ‘Time‘ exception.
** Improved ‘Pack32.subx‘' by reordering the ‘orb‘-s.
*% Improved ‘{Int,IntInf}.mod‘ to increase chances of constant folding.
*% Switched many uses of ‘+', ‘=%, ‘%' in basis library to the non-overflow
checked versions. Modules changed were: ‘Array‘, ‘Array2', ‘Byte‘, ‘Char?,
‘Int', ‘IntInf‘, ‘List‘, ‘Pack32{Big,Little}‘, ‘Util‘, ‘String‘, ‘StringCvt?},
‘Substring', ‘TextIO‘, ‘Time‘, ‘Vector'.
** Added regression tests for ‘Array2', ‘Int‘ (overflow checking), ‘Pack32?',
‘Substring', ‘Time‘.
*% Changed CPS output so that it includes a dot graph for each CPS function.

* 2001-07-09
*% Change ‘OS.Process.exit' so that it raises an exception if the exit status
is not in [0, 256).
+% Added ‘MLton.Rlimit‘ to provide access to ‘getrlimit' and ‘setrlimit‘.

== Version 20010706
Here are the changes from the 20000906 version to the 20010706 version.
=== Summary

* Native X86 code generator (instead of using ‘gcc?t)

* Significantly improved compile times

* Significantly improved run times for generated executables

* Many bug fixes

* Correct raising of the ‘Overflow' exception for integer arithmetic
* New modules in the ‘MLton‘ structure

=== Details

* 2001-07-06
**% GC mods from Henry. Mostly adding ‘inline‘ declarations.

* 2001-07-05
**% Fixed several runtime bugs involving threads, critical sections, and
signals.

* 2001-06-29
+*x Fixed performance bug in ‘cps/two-point-lattice.fun' that caused quadratic
behavior. This affects the raise-to-jump and useless analayses. In
particular, the useless analysis was blowing up when compiling ‘fxp‘'.

x 2001-06-27
*% Henry improved ‘wordAlign' —-- this sped up GC by 27% (during a self

MLton Guide (20180207) 85/611

compile) .

* 2001-06-20
*x Moved ‘MLton.random' to ‘MLton.Random.rand‘' and added other stuff to
‘MLton.Random®
*% Added ‘MLton.TextIO.mkstemp‘.
*% Made ‘Int.{div,quot}‘ respect the ‘-detect-overflow' switch.

* 2001-06-20
**% Added ‘MLton.Syslog’.

* 2001-06-07
+% Fixed bug in ‘MLton.Socket.accept' that was in the runtime implementation
‘Socket_accept'. It did a ‘setsockopt SO_REUSEADDR' after the ‘accept‘'. It
should have been after the call to ‘socket' in ‘Socket_listen'. Thanks to
Doug Bagley for the fix.

* 2001-05-30
% Fixed bug in remove-unused that caused polymorphic equality to return
‘true' sometimes when constructors were never used in a pattern match. For
example, the following (in which ‘A‘' and ‘B' are not used as patterns):

datatype t = A | B
datatype u C of t
val _ = if C A = C B then raise Fail "bug" else ()

* 2001-03-27
+% Fixed bug that caused all of the following to fail:
‘{LargeWord, Word, SysWord}.{toLargeInt, toLargeIntX, fromLargeInt} ' The problem
was the basis library file ‘integer/patch.sml‘ which fixed ‘Word32‘ but not
the other structures that are the same.

x 2001-02-12
+% Fixed bug in match compiler that caused it to spend a lot of extra time in
deep patterns. It still could be exponential however. Hopefully this will
get fixed in the release after next. This bug could cause very slow compile
times in some cases. Anyways, this fix cut the ‘finish infer' time of a self
compile down from 22 to under 4 seconds. I.E. most of the time used to be
spent due to this bug.

* 2001-02-06
*%x Fixed bug in frontend that caused the wrong file and line number to be
reported with errors in functor bodys.

* 2001-01-03 - 2000-02-05
*% Changes to CoreML, XML, SXML, and CPS ILs to replace lists by vectors in
order to decrease space usage.

* 2001-01-16
% Fixed a bug in constant propagation where the length of vectors was not
propagated properly.

* 2000-12-11 - 2001-01-03
**% Major rewrite of elaborator to use a single hash table for each namespace
instead of a hash table for every environment.

x 2000-12-20
*x Fixed some bugs in the SML/NJ compatibility library,
‘src/lib/mlton-subs—in-smlnj®.

* 2000-12-08
**% More careful removal of tracing code when compiling ‘MLton_debug=0‘'. This

MLton Guide (20180207) 86 /611

cut down self compile data size by 100k and compile time by a few seconds.
*% Added built in character and word cases propagated throughout all ILs.

* 2000-12-06
*% Added max stack size information to ‘gc-summary‘.

* 2000-12-05
*% Added ‘src/benchmark‘, which contains an SML program that benchmarks all of
the SML compilers I have my hands on. The script has lots of hardwired paths
for now.

* 2000-12-04
*% Fixed bug in ‘Posix.ProcEnv.environ, ' which did not work correctly in a
saved world (the original ‘environ‘ was saved). In fact, it did not work at
all because the ML primitive expected a constant and the C was a nullary
function. This caused a segfault with any program using
‘Posix.ProcEnv.environ®'.
*% ‘Added MLton.ProcEnv.setenv', since there doesn’t seem to be any ‘setenv®
in the basis library.

* 2000-11-29
*% Changed backend so that it should no longer generate machine programs with
‘void' operands.
**% Added ‘-detect-overflow' and ‘-safe' flags.

* 2000-11-27 - 2000-11-28
** Changes in many places to use ‘List.revMap' instead of ‘List.map‘' to cut
down on allocation.

* 2000-11-21
*x Added ‘MLton.Word.~' and ‘MLton.Word8.~' to the 'MLton' structure.

* 2000-11-20
% Fixed a bug in the CPS shrinker that could cause a compile-time failure.
It was maintaining occurrence counts incorrectly.

* 2000-11-15
% Fixed a (performance) bug in constant propagation that caused the hashing
to be bad.
«% Improved translation to XML so that the match compiler isn’t called on
tuple or if expressions. This should speed up the translation and make the
output smaller.
% Fixed a bug in the match compiler that caused it to not generate integer
case statements. This should speed up the mlyacc benchmark and the MLton
front end.

* 2000-11-09
*% Added ‘IntInf_equal' and ‘IntInf_ compare' primitives.
+% Took out the automatic ‘-keep c¢' when compiling ‘-g‘.

x 2000-11-08
*% Added a whole bunch of algebraic laws to the CPS shrinker, including some
specifically targeted to ‘IntInf' primitives.

x 2000-11-03
*% Improved implementation of properties so that sets don’t allocate.
*% Improved implementation of type homomorphism in type inference. What was
there before appears to have been a bug —- it didn’t use the property on
types.

* 2000-11-02
*x Fixed timers used with

‘-v' option to use user + sys time.

MLton Guide (20180207) 87 /611

«+ 2000-10-27
*% Split the runtime basis library C files into many separate files so that
only the needed code would be included by the linker.
**% Fixed several bugs in the front end grammar and elaborator that caused type
specifications to be handled incorrectly. The following three programs used
to be handled incorrectly, but are now handled correctly.

signature S = sig type t and u = int end (x reject =)
signature S = sig type t = int and u = t end (x accept =)
signature S = sig egtype t and u = int end (x reject =)

* 2000-10-25
**% Changes to ‘main.sml‘ to run complete compiles with ‘-native‘ switch.

* 2000-10-24
** Removed defunctorizer.

x 2000-10-20
**% Fixed bug in ‘cps-tree.fun' with ‘PrimExp.maySideEffect'. This bug could
cause ‘"no operand"‘' failures in the backend.
% Fixed bug in the runtime implementation of ‘MLton.size‘'. The size for
stack objects was using the ‘used' instead of ‘reserved', and so was too low.

x 2000-10-19
*x Replaced automatically generated dependencies in ‘src/runtime/Makefile’
with hand generated ones. Took out ‘make depend‘ from ‘src/Makefile‘. ‘make
depend' was behaving really badly on RHAT 7.0.
** Tweaked compiler to shorten width of C output lines to work around bug in
RHAT 7.0 ‘cpp‘' which silently truncates (very) long lines.
% Fixed bug in grammar that didn’t allow ‘op‘' to occur in datatype and
exception bindings, causing the following to fail

datatype t = op T
exception op E = op Fail

*% Improved error messages in CM processor. Fixed bug in CM Alias handling.

x 2000-10-18
% Fixed two bugs in the gc that did comparisons with ‘(s->limit -
s—>frontier) ', which of course doesn’t work if ‘frontier‘' is beyond ‘limit?‘,
since these are unsigned. This could have caused segfaults, except that the

mutator checks the ‘frontier' upon return from the GC.

* 2000-10-17

% Fixed bug in backend in the calculation of ‘maxFrameSize‘. It could be
wrong (low) in some situations.

*% Improved CPS inliner’s estimate of function sizes. The size of a function
now takes into account other inlined functions that the function calls. This
also changed the meaning of the size argument to the ‘-inline‘ switch. It now
corresponds (roughly) to the product of the size of the function and the
number of calls. In general, it should be larger than before.

* 2000-10-13
*% Made some calls to ‘Array.sub‘' unsafe in the implementation of ‘Array2‘.
** Integrated Matthew’s new x86 backend with floating point support.

x 2000-10-09
% Fixed CM file processor so that MLton works if it is run from a different

directory than the main CM file.

* 2000-10-04

MLton Guide (20180207)

88 /611

*% Changed LimitCheck so it loops on the
a potential bug in threads caused when t

thread, ‘t', before switching to another
resumes. This could have caused a segfa
2000-10-03

*% More rewrites of ‘TextIO.StreamIO‘' to
** Changed ‘TextIO' so that only ‘TextIO
**% Changed ‘TextIO' so that FIFOs and so

2000-10-02
*x Combined remove-unused-constructors,
remove—unused-globals into a single pass

results at least as good as running the previous three in

2000-09-29
** Added ‘GC_FIRST_CHECK', which does a
it reached.

+% Reimplemented ‘TextIO.StreamIO‘ (from

This fixed
here is enough space available for a

thread but not enough space when it
ult.

‘frontier > limit‘ check.

improve speed.
.stdErr' is unbuffered.
ckets are buffered.

remove—-unused-functions, and
that runs to fixed-point and produces
(any) sequence.

gc at each limit check the first time

2000-09-12) to use lists of strings

instead of lists of characters so that the per char space overhead is small.

2000-09-21

*% Fixed bug in profiling labels in C co
block label instead of the cps function

*% Added ‘-b' switch to ‘mlprof‘ to gath
*% Improved performance of ‘TextIO.input

2000-09-15 - 2000-09-19

de. The label was always the basic
label.

er data at the basic block level.
1' by about 3X.

*% Added overflow exceptions to CPS and Machine ILs.

2000-09-12
**% Fixed ‘TextIO.scanStream'. It was ve
**% Added ‘TextIO.{getInstream,mkInstream

ry broken.
,setInstream} ‘' and

‘TextIO.StreamIO. {canInput,closeln,endOfStream, inputl, input, inputAll, inputlLine, inputN} ‘.

2000-09-11
% Fixed ‘Real_gequal' in ‘mlton-lib.h‘.
code using it to not even compile.

**% Noted that ‘Real_{equal,lt,le,gt,ge}’

since ANSI does not require IEEE compliance,

wrong results when nans are involved.

Version 20000906

It was missing a paren that caused

It was also semantically incorrect.

may not follow basis library spec,
and hence these could return

Here are the changes from the 20000712 version to the 20000906 version.

* Version 20000906 is mostly a bugfix release over 20000712.

ch

= Summary

anges are that

‘mllex' and ‘mlyacc' are now included and that

The other major
‘mlton' can now

process a limited subset of CM files as input.

*

= Details

2000-09-06

** Fixed ‘Socket_listen' in ‘mlton-1lib.c
‘bind', ‘listen‘, or ‘getsockname' fails
descriptor leak.

2000-09-05
*x Added ‘-static‘ commandline switch.

‘' so that it closes the socket if the
. This could have caused a file

MLton Guide (20180207) 89/611

+% Changed default max heap size to .85 RAM from .95 RAM.
**% Added ‘PackReallittle‘ structure to basis library.

* 2000-08-25
** Added cases on integers to ILs (instead of using sequences of tests) so
that backend can emit more efficient test (jump table, binary tree, ...).

«+ 2000-08-24
*% Fixed bug in ‘gc.c‘. ‘dfsInitializeStack' would ‘smummap‘' a ‘NULL' pointer
whenver ‘toSpace' was ‘NULL‘'. This could cause ‘MLton.size‘ to segfault.
** Fixed bug in ‘Popt‘ that caused ‘-k‘' to fail with no keeps.

* 2000-08-22 - 2000-08-23
*x Ported ‘mllex' and ‘mlyacc‘ from SML/NJ

x 2000-08-20 - 2000-08-21
*% Added ability to use a ‘.cm‘' file as input to MLton.

x 2000-08-16
** Ported ‘mlprof' to SML.
*x Fixed bug in ‘library/basic/assert.sml‘ that caused asserts to be run even
when ‘MLton.debug = false‘.

* 2000-08-15
% Fixed bug in backend -- computation of ‘maxFrameSize' was wrong. It didn’t
count slots in frames that didn’t make nontail calls. This could lead to the
stack being overwritten because a stack limit check didn’t guarantee enough
space, and lead to a segfault.
% Fixed bug in ‘gc.c' ‘newThreadOfSize‘'. TIf the thread allocation caused a
gc, then the stack wasn’t forwarded, leading to a segfault. The solution was
to ensure enough memory all at once, and then fill in both objects.

x 2000-08-14
+% Changed limit checks so that checks < 512 bytes are replaced by a check for
0 bytes. The runtime also moves the limit down by 512. This is done so that
the common case, a small limit check, has less code and is faster.
+x Fixed bug in ‘cps/cps-tree.fun‘. ‘Program.hasPrim‘ returned ‘true‘' for any
program that had xanyx primapp, not just programs satisfying the predicate.
This caused ‘cps/once.fun' to be overly conservative, since it thought that
every program used continuations.

x 2000-08-10
% Fixed bug in CPS typechecker. It didn’t enforce that handlers should be
defined before any reference to them -- including implicit references in
‘HandlerPops'. This caused an evil bug in the liveness analysis where a
variable that was only live in the handler was missed in a continuation
because the liveness for the handler wasn’t computed yet.
% Limited the size for moving up limit checks for arrays whose size is known
at compile time to avoid huge limit checks getting moved into loops.
*% added ‘-indent‘, ‘-kp‘, ‘-show-types' switches.
*% Put optimization in CPS IL suggested by Neal Glew. It determines for each
toplevel function if it can raise an exception to its caller. Also, it
removes ‘HanderPush' and ‘HandlerPop' for handlers that are not on top of the
stack for any nontail call.

«+ 2000-08-08
+% Changed register allocator so that continuation formals can be allocated in
pseudo registers —-- they aren’t necessarily forced to the stack.

x 2000-08-03
*% Fixed bug in constant folding. ‘Word8.>>"' had been used to implement
‘Word8.~>>".

MLton Guide (20180207)

90 /611

% Fixed bug in allocate registers that was not forcing the size argument to
‘Primitive.Array.array"' to be a stack slot. This could cause problems if
there was a thread switch in the limit check, since upon return the size
pseudo register would have a bogus value.

* 2000-08-01
+% Turned back on XML simplification after monomorphisation.

* 2000-07-31
% Fixed bug in ‘MLton.Itimer.set' that caused the time to be doubled.
**% Fixed bug in ‘MLton.Thread' that made it look like asynchronous exceptions
were allowed by ‘throw'-ing an exception raising thunk to an interrupted

thread obtained via a signal handler. Attempting asynchronous exceptions will

now cause process death, with a helpful error message.

* 2000-07-27
*% Updated docs to include ‘structure World: MLTON_WORLD' in ‘MLton‘
structure.
«% Added toplevel signatures ‘MLTON_{CONT, ..., WORLD}' to basis library.
**% Fixed broken link in docs to CM in ‘cmcat‘ section.

* 2000-07-26
*x Eliminated ‘GC_switchToThread' and ‘Thread_switchTol‘, since the inlined
version ‘Thread_switchTo' is all that’s needed, and Matt’s X86 backend now
handles it.
*% Added ‘MLton.Signal.vtalrm‘, needed for ‘Itimer.Set{which =
Itimer.Virtual, ...}"‘.

* 2000-07-25
**% Added ‘MLton.Socket.shutdownWrite’.

* 2000-07-21
**% Updated ‘mlton-lib.c' ‘MLton_bug' with new email (MLton@sourcelight.com).

* 2000-07-19
*x Fixed ‘Posix.Process.kill' to check for errors.

« 2000-07-18
*% Fixed the following ‘Posix.ProcEnv‘' functions to check for errors:
‘setgid', ‘setpgid‘, ‘setsid‘, ‘setuid?‘.
*x Fixed ‘doc/examples/callcc.sml’.

== Version 20000712
Here are the changes from the 1999-07-12 to the 20000712 version.
=== Details

* 2000-06-10 - 2000-07-12
** Too many changes to count: bug fixes, new basis library modules, optimizer
improvements.

* 2000-06-30
*% Fixed bug in monomorphiser that caused programs with non-value carrying
exception declarations in polymorphic functions to have a compile-time error
because of a duplicate label. The problem was that the exception constructor
wasn’t duplicated.

x 2000-05-22 - 2000-06-10
*% Finished the changes for the new CPS IL.

MLton Guide (20180207) 91/611

x 2000-01-01
**% Fixed some errors in the basis library:

%% ‘Real.copySign
*%% ‘Posix.FileSys.fpathconf®
*%% ‘Posix.IO.{lseek, getlk, setlk, setlkw}®
*%% ‘Posix.ProcEnv.setpgid?
*%x% ‘Posix.TTY.getattr®
*%% ‘System.FileSys.realPath?

x 1999-12-22
** Fixed bug in ‘src/closure-convert/abstract-value.fun' that caused a
compiler failure whenever a program had a vector where the element type
contained an ‘->1'.

* 1999-12-10
** Changed dead code elimination in ‘core-ml/dead-code.fun' so that wildcard
declarations (‘val _ = ..."') in the basis are kept. Changed places in the
basis library to take advantage of this.
«% Added ‘setToplLevelHander' primitive so that the basis library code can
define the toplevel handler.
** Changed ‘basis-library/misc/suffix.sml‘ to call ‘0OS.Process.exit‘. Took
out ‘Halt‘' transfer from CPS, since the program never should reach it.
«% Cleaned up ‘basis-library/system/{process.sml, unix.sml}‘ to use the new
signal handling stuff.

* 1999-11-28 - 1999-12-20
** Added support for threads and cleaned up signal handling. This involved a
number of changes:
%% The stack is now allocated as just another kind of heap object.
%% Limit checks are inserted at all loop headers, whether or not there is

any allocation. This is to ensure that the signal handler always has a
chance to get called.
%% The register allocator puts more variables in stack slots. The new rule

is that a variable goes in a stack slot if it is ever live across a nontail
call, in a handler, or (this is the new part) across a limit check.

*%x% Arguments are passed on the stack, with the convention determined by
argument types.

**+ The "locals" array of pointers that was copied to/from for GC is now
gone, because no registers (in particular no pointer valued registers) can
be live at a limit check point.

x 1999-11-21

% Runtime system
**%*% Fixed a bug introduced by the signal code (presumably on 1999-08-09)
that caused a gc to *notx be performed when doing a save world. This caused
the heaps created by save world to be the same size as the heap -- not the
live data. This was quite bad.
*%% Cleaned up the ‘Makefile‘'. Add make depend.
*%% Added max gc pause to ‘gc-summary‘' info.
%% Move heap translation variables that had been file statics into the
‘GC_state .

*% Made ‘structure Position' available at toplevel.

*% Basis Library
*%x% Added ‘MLton.loadWorld?

*% Added ‘Primitive.usesCallcc®

*% Added ‘Primitive.safe’

+* Removed special size functions from ‘cps/save-world' —-- they are no longer

necessary since size doesn’t do a gc.

*x Fixed another (sigh) bug in ‘cps/simplify-types.fun' that could cause it to

not terminate.

* 1999-11-16

MLton Guide (20180207) 92/611

+* Cleaned up ‘backend/machine.fun' a bit so that it spits out macros for
allocation of objects and bumping of frontier. Added macros ‘MLTON_object?
and ‘MLTON_incFrontier‘ to ‘include/mlton-lib.h‘.

+x Fixed a bug in ‘backend/limit-check.fun' that caused loops to not be
detected if they were only reached by a case branch. This could cause there
to be loop that allocates with no limit check. Needless to say, this could
cause a segfault if the loop ran for long enough.

* 1999-10-18
*x Added basis library function ‘Array2.copy'.

* 1999-08-15
+% Turned off globalization of ref cells (‘closure-convert/globalize.fun?)
because it interacts badly with serialization.

* 1999-08-13
% Fixed bug in ‘mlton-lib.h' in ‘MLTON_allocArrayNoPointers' that was
triggered when ‘bytesPerElt == 0‘'. The problem was that it wasn’t reserving
space for the forwarding pointer. This could cause a segfault.

* 1999-08-08 and 1999-08-09
«% Added support for signal handling.

* 1999-08-07
% Fixed bugs in ‘Array.tabulate‘ (and other ‘tabulate' variants) caused if
the function argument used ‘callcc‘.

* 1999-08-01
*x Added serialization, which was mostly code in ‘src/runtime/gc.c‘. +
‘GC_serialize' converts an object to a ‘Word8Vector.vector‘. +
‘GC_deserialize" undoes the conversion. + (de)Serialization should work for
all objects except for functions, because I haven’t yet added the support in
the flow analysis.

* 1999-07-31
**% Cleaned up the GC. Changed headers, by stealing a bit from the number of
non pointers and making it a mark bit (used in ‘GC_sized').
**% Rewrote ‘GC_size' so that it runs in time proportional to the number of
pointers in the object. It does a depth-first-search now, using toSpace to
hold the stack.

x 1999-07-30
*% Fixed bug in ‘SUBSTRING'. ‘getc' had the wrong type. This bug wasn’t
noticed because MLton doesn’t do enough type checking.
*%x Fixed bug (segfault) caused when a GC immediately followed a throw.

* 1999-07-29
*x Fixed bug in ‘Date.fmt‘ (‘basis-library/system/date.sml‘). It was not
setting ‘Tm.buf‘, and hence the time was always 0 unless there had been a
previous call to ‘setTmBuf‘.

x 1999-07-28
**% Fixed bugs in ‘Posix.IO.FLock.{getlk,setlk,setlkw}‘, which would cause
compilation to fail because ‘FLock.toInt' was defined as the C ‘castInt?,
which no longer exists. 1Instead, expand ‘FLock.toInt‘ to
*MLTON_pointerToInt ', which was added to ‘include/mlton-lib.h"‘.
*% Changed ‘Posix.Primitive.Flock' to ‘Posix.Primitive.FLock".
+% Added ‘MLTON_chown', ‘MLTON_ftruncate‘ to ‘include/mlton-posix.h‘. They
were missing. This would cause compilation of any program using
‘Posix.FileSys. {chown, ftruncate} ' to fail. Also made it so all of the
primitives in ‘basis-library/posix/primitive.sml‘ use ‘MLTON_‘' versions of
functions, even if a wrapper is unnecessary.

MLton Guide (20180207) 93 /611

* 1999-07-25
** Added some other missing signature definitions to toplevel.

* 1999-07-24
*% Added missing ‘OS_x' signature definitions to
‘basis-library/top-level/top-level.sml".

* 1999-07-19
+*x Fixed bug in ‘basis-library/arrays—and-vectors/mono-array.sml‘'. Used ‘:>‘
instead of ‘:' so that the monomorphic array types are abstract.

== Version 19990712

Here are the changes from the 1999-03-19 version to the 1999-07-12 version.

*

1999-07-12

** Changed ‘src/backend/machine.fun' so that the ’pointer locals’ array is
only as large as neccessary in order to copy all pointer-valued locals, not as
large as the number of pointer-valued locals.

* 1999-07-11
*x Rewrote ‘src/backend/allocate-registers.fun' so that it does a better job
of sharing "registers" (i.e. C local variables) and stack slots. This should
cut down on the amount of copying that has to happen before and after a gc.
It should also cut down on the size of stack slots.

* 1999-07-10
+*x Fixed a bug in ‘src/backend/parallel-move.fun' that should have been
triggered on most any parallel move. I guess parallel moves almost never
happened due to the old register allocation strategy -- but, with the new one
(see note for 1999-07-12) parallel moves will be frequent.

x 1999-06-27
+* Fixed ‘src/main.sml‘ so that when compiling
‘-g' and the ‘.o0' is linked ‘-p‘.
+% In ‘bakend/machine.fun‘, added profiling comments before chunkswitches and
put in an optimization to avoid printing repeated profiling comments. Also,
profiling comments are only output when compiling ‘-p

\

-p', the ‘.c' file is compiled

\

\

* 1999-06-17
*% Changed

\

‘-i' to ‘-inline‘, ‘-f' to ‘-flatten', ‘-np' to ‘-no-polyvariance?l,
-u' to ‘-unsafe’.

*% Added ‘-i‘, ‘-I', ‘-1%', ‘-L' flags for includes and libraries.

** Updated documentation for these options and for ffi.

* 1999-06-16
** Hardwired version number in ‘src/control/control.sml‘. As it stood, the
version number was computed when MLton was built after someone downloaded it,
which was clearly wrong.

* 1999-06-16
*x Fixed undefined variable ‘time‘ in ‘GC_done' in ‘src/runtime/gc.c‘.

x 19990-06-08
*% in ‘include/mlton-lib.h‘:
*xx removed ‘#include <huge_val.h>'
x added ‘#include <math.h>‘
*%x% and deleted all of the function signatures I had copied from ‘math.h?

MLton Guide (20180207) 94 /611

+% Changed ‘Real.{minNormalPos, minPos, maxFinite}‘ so that they are computed
in ‘real.sml‘ instead of appearing as constants in the C.

* 1999-06-07
‘IntInf.pow' added to basis library.

* 1999-06-04
*x ‘bin/mlton' changed to use ‘.arch-n-opsys' if it exists.

* 1999-06-03
*x ‘src/Makefile' changed to use ‘sml-cm‘ instead of ‘sml‘

* 1999-05-10
*x Patch to ‘src/atoms/small-int-inf.fun' to work around a bug in the SML/NJ
implementation of bignums. This bug was causing some hex bignum constants to
be lexed incorrectly.

* 1999-04-15
«% Comments emitted in C code for profiling. The comments identify the CPS
function responsible for each C statement.

* 1999-04-15
* % ‘callcc' and ‘throw' added.

x 1999-04-15
** Bug in ‘src/cps/simplify-types' fixed. The bug caused nontermination
whenever there was a circular datatype with a vector on the rhs.
E.g. ‘datatype t = T of t vector®

== Version 19990319
Here are the changes from the 1998-08-26 version to the 1999-03-19 version.
=== Summary

* Compile time and code size have decreased.

* Runtime performance of executables has improved.

* Large programs can now be compiled.

* MLton is self hosting.

* The basis library is mostly complete and many bugs have been fixed.
* The monomorphiser (‘'-m‘) is no longer available.

* The heap and stack are automatically resized.

* There are now facilities for heap checkpointing (‘MLton.saveWorld') and object
size computation (‘MLton.size?‘).

* MLton uses the GNU multiprecision (GnuMP) library to provide a fast
implementation of ‘IntInf'.

MLton Guide (20180207) 95 /611

ChrisClearwater

MLton Guide (20180207) 96 /611

Chunkify

Chunkify is an analysis pass for the RSSA IntermediateLanguage, invoked from ToMachine.

Description

It partitions all the labels (function and block) in an RSSA program into disjoint sets, referred to as chunks.

Implementation

* chunkify.sig

* chunkify. fun

Details and Notes

Breaking large RSSA functions into chunks is necessary for reasonable compile times with the CCodegen and the LLVMCode-
gen.

https://github.com/MLton/mlton/blob/master/mlton/backend/chunkify.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/chunkify.fun

MLton Guide (20180207) 97 /611

CKitLibrary

The ckit Library is a C front end written in SML that translates C source code (after preprocessing) into abstract syntax repre-
sented as a set of SML datatypes. The ckit Library is distributed with SML/NJ. Due to differences between SML/NJ and MLton,
this library will not work out-of-the box with MLton.

As of 20180119, MLton includes a port of the ckit Library synchronized with SML/NJ version 110.82.

Usage

* You can import the ckit Library into an MLB file with:

MLB file Description
$(SML_LIB) /ckit—-1lib/ckit-1ib.mlb

* If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following map is included by default:

ckit Library
Sckit-1lib.cm S (SML_LIB) /ckit-1ib
Sckit-lib.cm/ckit-1lib.cm $(SML_LIB) /ckit-1lib/ckit-1lib.mlb

This will automatically convert a $/ckit—-1ib.cm import in an input . cm file into a $ (SML_LIB) /ckit-1lib/ckit-
lib.mlb import in the output .m1b file.

Details

The following changes were made to the ckit Library, in addition to deriving the .m1b file from the . cm file:

* ast/pp/pp-ast—-adornment-sig.sml (modified): Rewrote use of signaturein local.

* ast/pp/pp-ast—-ext-sig.sml (modified): Rewrote use of signaturein local.

* ast/type-util-sig.sml (modified): Rewrote use of signaturein local.

* parser/parse—-tree—-sig.sml (modified): Rewrote use of (sequential) withtype in signature.

* parser/parse—tree.sml (modified): Rewrote use of (sequential) withtype.

Patch

e ckit.patch

http://www.smlnj.org/doc/ckit
https://github.com/MLton/mlton/blob/master/lib/ckit-lib/ckit.patch

MLton Guide (20180207) 98 /611

Closure

A closure is a data structure that is the run-time representation of a function.

Typical Implementation

In a typical implementation, a closure consists of a code pointer (indicating what the function does) and an environment contain-
ing the values of the free variables of the function. For example, in the expression

let

val x = 5
in

fny =>x +y
end

the closure for fn y => x + y contains a pointer to a piece of code that knows to take its argument and add the value of x to
it, plus the environment recording the value of x as 5.

To call a function, the code pointer is extracted and jumped to, passing in some agreed upon location the environment and the
argument.

MLton’s Implementation

MLton does not implement closures traditionally. Instead, based on whole-program higher-order control-flow analysis, MLton
represents a function as an element of a sum type, where the variant indicates which function it is and carries the free variables
as arguments. See ClosureConvert and CejtinEtAl00 for details.

MLton Guide (20180207) 99 /611

ClosureConvert

ClosureConvert is a translation pass from the SXML IntermediateL.anguage to the SSA IntermediateLanguage.

Description

It converts an SXML program into an SSA program.
Defunctionalization is the technique used to eliminate Closures (see CejtinEtAl00).

Uses Globalize and LambdaFree analyses.

Implementation

* closure-convert.sig

* closure—-convert.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/closure-convert/closure-convert.sig
https://github.com/MLton/mlton/blob/master/mlton/closure-convert/closure-convert.fun

MLton Guide (20180207) 100 /611

CMinusMinus

C-- is a portable assembly language intended to make it easy for compilers for different high-level languages to share the same
backend. An experimental version of MLton has been made to generate C--.

* http://www.mlton.org/pipermail/mlton/2005-March/026850.html

Also see

* LLVM

http://cminusminus.org
http://www.mlton.org/pipermail/mlton/2005-March/026850.html

MLton Guide (20180207) 101 /611

Codegen

Codegen is a translation pass from the Machine IntermediateL.anguage to one or more compilation units that can be compiled to
native object code by an external tool.

Implementation

* codegen

Details and Notes

The following codegens are implemented:

AMD64Codegen

e CCodegen

LLVMCodegen

X86Codegen

https://github.com/MLton/mlton/tree/master/mlton/codegen

MLton Guide (20180207) 102/ 611

CombineConversions

CombineConversions is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass looks for and simplifies nested calls to (signed) extension/truncation.

Implementation

e combine-conversions. fun

Details and Notes
It processes each block in dfs order (visiting definitions before uses):

* If the statement is not a PrimApp with Word_extdToWord, skip it.

* After processing a conversion, it tags the Var for subsequent use.

* When inspecting a conversion, check if the Var operand is also the result of a conversion. If it is, try to combine the two
operations. Repeatedly simplify until hitting either a non-conversion Var or a case where the conversion cannot be simplified.

The optimization rules are very simple:

x1l = ...
x2 = Word_extdToWord (Wl, W2, {signed=sl}) x1
x3 = Word_extdToWord (W2, W3, {signed=s2}) x2

e [f W1 =W2, then there is no conversions before x_ 1.

This is guaranteed because W2 =W3 will always trigger optimization.

e Case WL <=W3 <=W2:

x3 = Word_extdToWord (W1, W3, {signed=sl}) x1

e Case Wl < W2 < W3 AND ((NOT sl) OR s2):

x3 = Word_extdToWord (Wl, W3, {signed=sl}) x1

e Case Wl =W2 < W3:

unoptimized, because there are no conversions past W1 and x2 =x1

e Case W3 <=W2 <=W1l OR W3 <=W1 <=W2:

x_3 = Word_extdToWord (W1, W3, {signed=_}) x1

because W3 <=W1 && W3 <=W2,justclip x1

e Case W2 < W1 <=W3 OR W2 < W3 <=W1:

unoptimized, because W2 < W1 && W2 < W3, has truncation effect

e Case Wl < W2 < W3 AND (sl AND (NOT s2)):

unoptimized, because each conversion affects the result separately

https://github.com/MLton/mlton/blob/master/mlton/ssa/combine-conversions.fun

MLton Guide (20180207) 103 /611

CommonArg

CommonArg is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

It optimizes instances of Got o transfers that pass the same arguments to the same label; e.g.

L1 ()

L_1 ()

zl = 72

L_3 (zl)
L_2 ()

22 = %

L_3 (z2)
L_3 (c)

a = x

b =y

which saves a number of resources: time of setting up the arguments for the jump to L__3, space (either stack or pseudo-registers)
for the arguments of I._ 3, etc. It may also expose some other optimizations, if more information is known about x or y.

Implementation

e common—arg.fun

Details and Notes

Three analyses were originally proposed to drive the optimization transformation. Only the Dominator Analysis is currently
implemented. (Implementations of the other analyses are available in the repository history.)

Syntactic Analysis

The simplest analysis I could think of maintains

varInfo: Var.t —-> Var.t option list ref

initialized to [].

https://github.com/MLton/mlton/blob/master/mlton/ssa/common-arg.fun

MLton Guide (20180207) 104 /611

¢ For each variable v bound in a Statement .t orinthe Function.t args, then List .push (varInfo v, NONE).

e Foreach L. (x1, ..., xn) transfer where (al, ..., an) are the formals of L, then List .push (varInfo ai,
SOME x1i).

* For each block argument a used in an unknown context (e.g., arguments of blocks used as continuations, handlers, arith success,
runtime return, or case switch labels), then List .push (varInfo a, NONE).

Now, any block argument a such that varInfo a =xs, where all of the elements of xs are equal to SOME x, can be optimized
by setting a =x at the beginning of the block and dropping the argument from Got o transfers.

That takes care of the example above. We can clearly do slightly better, by changing the transformation criteria to the following:
any block argument a such that varInfo a =xs, where all of the elements of xs are equal to SOME x or are equal to SOME
a, can be optimized by setting a =x at the beginning of the block and dropping the argument from Goto transfers. This
optimizes a case like:

true => L_4 | false => L_5
L_4 ()

L_3 (a, b, w)
L5 ()

where a common argument is passed to a loop (and is invariant through the loop). Of course, the LoopInvariant optimization
pass would normally introduce a local loop and essentially reduce this to the first example, but I have seen this in practice, which
suggests that some optimizations after LoopInvariant do enough simplifications to introduce (new) loop invariant arguments.

Fixpoint Analysis
However, the above analysis and transformation doesn’t cover the cases where eliminating one common argument exposes the
opportunity to eliminate other common arguments. For example:

L_1 ()

One pass of analysis and transformation would eliminate the argument to I_ 3 and rewrite the L_5 (a) transferto L_5 (x),
thereby exposing the opportunity to eliminate the common argument to L_5.

The interdependency the arguments to L_3 and L_5 suggest performing some sort of fixed-point analysis. This analysis is
relatively simple; maintain

MLton Guide (20180207) 105 /611

varInfo: Var.t —-> VarLattice.t

where

VarLattice.t ~=~ Bot | Point of Var.t | Top
(but is implemented by the FlatLattice functor with a 1essThan list and value ref under the hood), initialized to Bot.

* For each variable v bound in a Statement .t orinthe Function.t args, then VarLattice.<=(Point v, varlIn
fo v)

e Foreachl. (x1, ..., xn) transfer where (al, ..., an) arethe formalsof L}, then VarLattice.<=(varInfo
xi, varInfo ai).

* For each block argument a used in an unknown context, then VarLattice.<=(Point a, varInfo a).

Now, any block argument a such that varInfo a =Point x can be optimized by setting a =x at the beginning of the block
and dropping the argument from Got o transfers.

Now, with the last example, we introduce the ordering constraints:

varInfo x <= varInfo a
varInfo a <= varInfo b
varInfo x <= varInfo b

Assuming that varInfo x =Point x,thenwe getvarInfo a =Point xand varInfo b =Point x,and we opti-
mize the example as desired.

But, that is a rather weak assumption. It’s quite possible for varInfo x =Top. For example, consider:

Now varInfo x =varInfo a =varInfo b =Top. What went wrong here? When varInfo x went to Top, it got
propagated all the way through to a and b, and prevented the elimination of any common arguments. What we’d like to do instead
iswhen varInfo x goesto Top, propagate on Point x— we have no hope of eliminating x, but if we hold x constant, then
we have a chance of eliminating arguments for which x is passed as an actual.

MLton Guide (20180207) 106 /611

Dominator Analysis

Does anyone see where this is going yet? Pausing for a little thought, MatthewFluet realized that he had once before tried
proposing this kind of "fix" to a fixed-point analysis— when we were first investigating the Contify optimization in light of
John Reppy’s CWS paper. Of course, that "fix" failed because it defined a non-monotonic function and one couldn’t take the
fixed point. But, StephenWeeks suggested a dominator based approach, and we were able to show that, indeed, the dominator
analysis subsumed both the previous call based analysis and the cont based analysis. And, a moment’s reflection reveals further
parallels: when varInfo:Var.t —-> Var.t option list ref, we have something analogous to the call analysis, and
when varInfo:Var.t —-> VarLattice.t, we have something analogous to the cont analysis. Maybe there is something
analogous to the dominator approach (and therefore superior to the previous analyses).

And this turns out to be the case. Construct the graph G as follows:

nodes (G) = {Root} U Var.t
edges (G) = {Root -> v | v bound in a Statement.t or
in the Function.t args} U
{xi -> ai | L(x1, ..., xn) transfer where (al, ..., an)

are the formals of L} U
{Root -> a | a is a block argument used in an unknown context}

Let idom (x) be the immediate dominator of x in G with root Root. Now, any block argument a such that idom (a) =x <>
Root can be optimized by setting a =x at the beginning of the block and dropping the argument from Got o transfers.

Furthermore, experimental evidence suggests (and we are confident that a formal presentation could prove) that the dominator
analysis subsumes the "syntactic" and "fixpoint" based analyses in this context as well and that the dominator analysis gets
"everything" in one go.

Final Thoughts

I must admit, I was rather surprised at this progression and final result. At the outset, I never would have thought of a connection
between Contify and CommonArg optimizations. They would seem to be two completely different optimizations. Although, this
may not really be the case. As one of the reviewers of the ICFP paper said:

I understand that such a form of CPS might be convenient in some cases, but when we’re talking about analyzing
code to detect that some continuation is constant, I think it makes a lot more sense to make all the continuation
arguments completely explicit.

I believe that making all the continuation arguments explicit will show that the optimization can be generalized to
eliminating constant arguments, whether continuations or not.

What I think the common argument optimization shows is that the dominator analysis does slightly better than the reviewer puts
it: we find more than just constant continuations, we find common continuations. And I think this is further justified by the fact
that I have observed common argument eliminate some env_X arguments which would appear to correspond to determining that
while the closure being executed isn’t constant it is at least the same as the closure being passed elsewhere.

At first, I was curious whether or not we had missed a bigger picture with the dominator analysis. When we wrote the contification
paper, I assumed that the dominator analysis was a specialized solution to a specialized problem; we never suggested that it was
a technique suited to a larger class of analyses. After initially finding a connection between Contify and CommonArg (and
thinking that the only connection was the technique), I wondered if the dominator technique really was applicable to a larger
class of analyses. That is still a question, but after writing up the above, I’'m suspecting that the "real story" is that the dominator
analysis is a solution to the common argument optimization, and that the Contify optimization is specializing CommonArg to the
case of continuation arguments (with a different transformation at the end). (Note, a whole-program, inter-procedural common
argument analysis doesn’t really make sense (in our SSA Intermediatelanguage), because the only way of passing values between
functions is as arguments. (Unless of course in the case that the common argument is also a constant argument, in which case
ConstantPropagation could lift it to a global.) The inter-procedural Contify optimization works out because there we move the
function to the argument.)

Anyways, it’s still unclear to me whether or not the dominator based approach solves other kinds of problems.

MLton Guide (20180207) 107 /611

Phase Ordering

On the downside, the optimization doesn’t have a huge impact on runtime, although it does predictably saved some code size. |
stuck it in the optimization sequence after Flatten and (the third round of) LocalFlatten, since it seems to me that we could have
cases where some components of a tuple used as an argument are common, but the whole tuple isn’t. I think it makes sense to
add it after IntroduceLoops and LoopInvariant (even though CommonArg get some things that LoopInvariant gets, it doesn’t get
all of them). I also think that it makes sense to add it before CommonSubexp, since identifying variables could expose more
common subexpressions. I would think a similar thought applies to RedundantTests.

MLton Guide (20180207) 108 /611

CommonBlock

CommonBlock is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

It eliminates equivalent blocks in a SSA function. The equivalence criteria requires blocks to have no arguments or statements
and transfer via Raise, Return, or Goto of a single global variable.

Implementation

e common-block. fun

Details and Notes

e Rewrites

L_X ()
raise (global_Y)

to

and adds

L_Y’' ()
raise (global_Y)

to the SSA function.

¢ Rewrites
L_X ()
return (global_Y)

to

and adds
L_Y" ()
return (global_Y)

to the SSA function.

e Rewrites

)

I_X (
L_Z (global_Y)

to

https://github.com/MLton/mlton/blob/master/mlton/ssa/common-block.fun

MLton Guide (20180207) 109 /611

and adds

L_Y" ()
L_Z (global_Y)

to the SSA function.

The Shrink pass rewrites all uses of I_X to L_Y’ and drops L_X.

For example, all uncaught Overflow exceptions in a SSA function share the same raising block.

MLton Guide (20180207) 110/611

CommonSubexp

CommonSubexp is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

It eliminates instances of common subexpressions.

Implementation

e common—-subexp.fun

Details and Notes

In addition to getting the usual sorts of things like

(w + Owxl) + (w + Owxl)

rewritten to

let val w = w + Owxl in w’ + w’ end

it also gets things like

val a = Array_uninit n
val b = Array_length a
rewritten to

val a = Array_uninit n
val b = n

Arith transfers are handled specially. The result of an Arith transfer can be used in common Arith transfers that it domi-
nates:

val 1 = (n + m) + (n + m)

val k = (1 + n) + ((1 + m) handle Overflow => ((1 + m)
handle Overflow => 1 + n))

is rewritten so that (n + m) is computed exactly once, asare (1 + n) and (1 + m).

https://github.com/MLton/mlton/blob/master/mlton/ssa/common-subexp.fun

MLton Guide (20180207) 111/611

CompilationManager

The Compilation Manager (CM) is SML/NJ’s mechanism for supporting programming-in-the-very-large.

Porting SML/NJ CM files to MLton

To help in porting CM files to MLton, the MLton source distribution includes the sources for a utility, cm2m1b, that will print an
ML Basis file with essentially the same semantics as the CM file — handling the full syntax of CM supported by your installed
SML/NIJ version and correctly handling export filters. When cm2mlb encounters a . cm import, it attempts to convert it to a
corresponding .mlb import. CM anchored paths are translated to paths according to a default configuration file (cm2mlb—
map). For example, the default configuration includes

Standard ML Basis Library

SSMLNJ-BASIS $ (SML_LIB) /basis
Sbasis.cm $ (SML_LIB) /basis
Sbasis.cm/basis.cm $ (SML_LIB) /basis/basis.mlb

to ensure that a $/basis.cmimport is translated to a $ (SML_LIB) /basis/basis.mlb import. See util/cm2mlb for
details. Building cm2m1b requires that you have already installed a recent version of SML/NJ.

http://www.smlnj.org/doc/CM/index.html
https://github.com/MLton/mlton/blob/master/util/cm2mlb/cm2mlb-map
https://github.com/MLton/mlton/blob/master/util/cm2mlb/cm2mlb-map

MLton Guide (20180207) 112/611

CompilerOverview

The following table shows the overall structure of the compiler. IntermediatelL.anguages are shown in the center column. The
names of compiler passes are listed in the left and right columns.

Compiler Overview
Translation Passes IntermediateLanguage Optimization Passes

Source

FrontEnd
AST
Elaborate
CoreML CoreMLSimplify
Defunctorize
XML XMLSimplify
Monomorphise
SXML SXMLSimplify
ClosureConvert
SSA SSASimplify

ToSSA2

SSA2 SSA2Simplity
ToRSSA

RSSA RSSASimplify

ToMachine
Machine

Codegen

The Compile functor (compile.sig, compile. fun), controls the high-level view of the compiler passes, from FrontEnd
to code generation.

https://github.com/MLton/mlton/blob/master/mlton/main/compile.sig
https://github.com/MLton/mlton/blob/master/mlton/main/compile.fun

MLton Guide (20180207) 113 /611

CompilerPassTemplate

An analysis pass for the ZZZ IntermediateLanguage, invoked from ZZZOtherPass. An implementation pass for the ZZZ In-
termediateLanguage, invoked from ZZZSimplify. An optimization pass for the ZZZ IntermediateLanguage, invoked from
277Simplify. A rewrite pass for the ZZZ Intermediatel.anguage, invoked from ZZZOtherPass. A translation pass from the
ZZA IntermediateLanguage to the ZZB IntermediateLanguage.

Description

A short description of the pass.

Implementation

* 7227 .fun

Details and Notes

Relevant details and notes.

https://github.com/MLton/mlton/blob/master/mlton/ZZZ.fun

MLton Guide (20180207) 114 /611

CompileTimeOptions

MLton’s compile-time options control the name of the output file, the verbosity of compile-time messages, and whether or not
certain optimizations are performed. They also can specify which intermediate files are saved and can stop the compilation
process early, at some intermediate pass, in which case compilation can be resumed by passing the generated files to MLton.
MLton uses the input file suffix to determine the type of input program. The possibilities are . c, .m1b, .o, . s, and . sml.

With no arguments, MLton prints the version number and exits. For a usage message, run MLton with an invalid switch, e.g.
mlton -z. Inthe explanation below and in the usage message, for flags that take a number of choices (e.g. {true|false}),
the first value listed is the default.

Options

e —align n

Aligns object in memory by the specified alignment (4 or 8). The default varies depending on architecture.

* —as-opt option
Pass option to gcc when compiling assembler code. If you wish to pass an option to the assembler, you must use gcc’s -Wa,
syntax.

* —cc-opt option

Pass option to gcc when compiling C code.

* —codegen {native|amdé64|c|llvm|x86}
Generate native object code via amd64 assembly, C code, LLVM code, or x86 code or C code. With —codegen native (-
codegen amd64 or —codegen x86), MLton typically compiles more quickly and generates better code.

e —const name value

Set the value of a compile-time constant. Here is a list of available constants, their default values, and what they control.

— Exn.keepHistory {false|true}
Enable MLton.Exn.history. See MLtonExn for details. There is a performance cost to setting this to t rue, both
in memory usage of exceptions and in run time, because of additional work that must be performed at each exception
construction, raise, and handle.

e —default-ann ann
Specify default ML Basis annotations. For example, ~default-ann ’warnUnused true’ causes unused variable
warnings to be enabled by default. A default is overridden by the corresponding annotation in an ML Basis file.

* —default-type type

Specify the default binding for a primitive type. For example, ~default-type word64 causes the top-level type word
and the top-level structure Word in the Basis Library to be equal to Word64 .word and Word64 : WORD, respectively. Sim-
ilarly, —-default-type intinf causes the top-level type int and the top-level structure Int in the Basis Library to be
equal to IntInf.int and IntInf: INTEGER, respectively.

* —disable-ann ann
Ignore the specified ML Basis annotation in every ML Basis file. For example, to see all match and unused warnings, compile
with

—default-ann ’'warnUnused true’
—disable-ann forceUsed
—disable—-ann nonexhaustiveMatch
—disable-ann redundantMatch
—disable—ann warnUnused

* —export—-header file

Write C prototypes to file for all of the functions in the program exported from SML to C.

MLton Guide (20180207) 115/611

* —ieee-fp {false|true}
Cause the x86 native code generator to be pedantic about following the IEEE floating point standard. By default, it is not,
because of the performance cost. This only has an effect with ~codegen x86.

* —inline n
Set the inlining threshold used in the optimizer. The threshold is an approximate measure of code size of a procedure. The
default is 320.

* —keep {glo}

Save intermediate files. If no —~keep argument is given, then only the output file is saved.

g generated . c and . s files passed to gcc and generated . 11 files passed to 11vm-as
o object (. o) files

e —link-opt option
Pass option to gcc when linking. You can use this to specify library search paths, e.g. ~1ink-opt -Lpath, and libraries
to link with, e.g., -1ink-opt -1foo, or even both at the same time, e.g. ~1ink-opt ’-Lpath -1foo’. If you wish
to pass an option to the linker, you must use gcc’s -Wl, syntax, e.g., —link-opt ’-Wl, -—export-dynamic’.

e —1llvm-as—-opt option

Pass option to 11vm-as when assembling (.11 to .bc) LLVM code.

e -1llvm-llc-opt option
Pass option to 11c when compiling (.bc to . o) LLVM code.

e —llvm-opt-opt option
Pass option to opt when optimizing (.bc to .bc) LLVM code.

¢ -mlb-path-map file
Use file as an ML Basis path map to define additional MLB path variables. Multiple uses of -mlb-path-map and -m1lb-
path-var are allowed, with variable definitions in later path maps taking precedence over earlier ones.

* —-mlb-path-var name value
Define an additional MLB path variable. Multiple uses of -mlb-path-map and -mlb-path-var are allowed, with
variable definitions in later path maps taking precedence over earlier ones.

e —output file
Specify the name of the final output file. The default name is the input file name with its suffix removed and an appropriate,
possibly empty, suffix added.

e —profile {nolalloc|count|time}

Produce an executable that gathers profiling data. When such an executable is run, it produces an m1lmon . out file.

e —profile-branch {false|true}
If true, the profiler will separately gather profiling data for each branch of a function definition, case expression, and if
expression.

e —profile-stack {falsel|true}
If t rue, the executable will gather profiling data for all functions on the stack, not just the currently executing function. See
ProfilingTheStack.

e —profile-val {false|true}

If t rue, the profiler will separately gather profiling data for each (expansive) val declaration.

MLton Guide (20180207) 116/611

* —runtime arg

Pass argument to the runtime system via @MLton. See RunTimeOptions. The argument will be processed before other @
MLt on command line switches. Multiple uses of —~runt ime are allowed, and will pass all the arguments in order. If the same
runtime switch occurs more than once, then the last setting will take effect. There is no need to supply the leading @MLt on or
the trailing ——; these will be supplied automatically.

An argument to —runt ime may contain spaces, which will cause the argument to be treated as a sequence of words by the
runtime. For example the command line:

mlton —-runtime ’'ram-slop 0.4’ foo.sml

will cause foo to run as if it had been called like:

foo @MLton ram-slop 0.4 —-

An executable created with —~-runtime stop doesn’t process any @MLt on arguments. This is useful to create an executable,
e.g., echo, that must treat @MLt on like any other command-line argument.

% mlton -runtime stop echo.sml
% echo @MLton —-—
@MLton --

e —show-basis file

Pretty print to file the basis defined by the input program. See ShowBasis.

* —show-def-use file
Output def-use information to file. Each identifier that is defined appears on a line, followed on subsequent lines by the position
of each use.

e —stop {flgloltc}
Specify when to stop.

f list of files on stdout (only makes sense when input is foo.mlb)
g generated . c and . s files

o object (. o) files
tc after type checking

If you compile with ~stop g or -stop o, you can resume compilation by running MLton on the generated . c and . s or
.o files.

¢ —target {self|...}
Generate an executable that runs on the specified platform. The default is se1f, which means to compile for the machine that
MLton is running on. To use any other target, you must first install a cross compiler.

* —target—-as-opt target option
Like —as-opt, this passes option to gcc when compliling assembler code, except it only passes option when the target
architecture, operating system, or arch-os pair is farget.

* —target-cc-opt target option
Like —cc-opt, this passes option to gcc when compiling C code, except it only passes option when the target architecture,
operating system, or arch-os pair is farget.

* —target-link-opt target option
Like -1 ink-opt, this passes option to gcc when linking, except it only passes option when the target architecture, operating
system, or arch-os pair is target.

e —verbose {0]1]2]|3}

How verbose to be about what passes are running. The default is 0.

MLton Guide (20180207) 117 /611
0 silent
1 calls to compiler, assembler, and linker
2 1, plus intermediate compiler passes
3 2, plus some data structure sizes

MLton Guide (20180207) 118 /611

CompilingWithSMLNJ

You can compile MLton with SML/NJ, however the resulting compiler will run much more slowly than MLton compiled by
itself. We don’t recommend using SML/NJ as a means of porting MLton to a new platform or bootstrapping on a new platform.

If you do want to build MLton with SML/NJ, it is best to have a binary MLton package installed. If you don’t, here are some
issues you may encounter when you run make smlnj-mlton.

You will get (many copies of) the error messages:

/bin/sh: mlton: command not found

and

make[2]: mlton: Command not found

The Makefile calls mlton to determine dependencies, and can proceed in spite of this error.
If you don’t have an m11ex executable, you will get the error message:

mllex: Command not found

Building MLton requires m1lex and mlyacc executables, which are distributed with a binary package of MLton. The easiest
solution is to copy the front-end lexer/parser files from a different machine (ml.grm.sml, ml.grm.sig, ml.lex.sml,
mlb.grm.sig,mlb.grm.sml).

MLton Guide (20180207) 119/611

ConcurrentML

Concurrent ML is an SML concurrency library based on synchronous message passing. MLton has an initial port of CML from
SML/NJ, but is missing a thread-safe wrapper around the Basis Library and event-based equivalents to IO and OS functions.

All of the core CML functionality is present.

structure CML: CML

structure SyncVar: SYNC_VAR
structure Mailbox: MAILBOX
structure Multicast: MULTICAST
structure SimpleRPC: SIMPLE_RPC
structure RunCML: RUN_CML

The RUN__CML signature is minimal.

signature RUN_CML =

sig
val isRunning: unit -> bool
val doit: (unit -> unit) % Time.time option —-> OS.Process.status
val shutdown: OS.Process.status -> 'a

end

MLton’s RunCML structure does not include all of the cleanup and logging operations of SML/NJ’s RunCML structure. However,
the implementation does include the CML.timeOutEvt and CML.atTimeEvt functions, and a preemptive scheduler that
knows to sleep when there are no ready threads and some threads blocked on time events.

Because MLton does not wrap the Basis Library for CML, the "right" way to call a Basis Library function that is stateful is to
wrap the call with MLton.Thread.atomically.

Usage

* You can import the CML Library into an MLB file with:

MLB file Description
S (SML_LIB) /cml/cml.mlb

* If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following map is included by default:

CML Library
$cml $ (SML_LIB) /cml
Scml/cml.cm S (SML_LIB) /cml/cml.mlb

This will automatically convert a $cml/cml . cm import in an input . cm file into a $ (SML_LIB) /cml/cml.mlb import
in the output .m1b file.

Also see

* ConcurrentMLImplementation

e eXene

http://cml.cs.uchicago.edu/

MLton Guide (20180207) 120 /611

ConcurrentMLImplementation

Here are some notes on MLton’s implementation of ConcurrentML.

Concurrent ML was originally implemented for SML/NJ. It was ported to MLton in the summer of 2004. The main difference
between the implementations is that SML/NJ uses continuations to implement CML threads, while MLton uses its underlying
thread package. Presently, MLton’s threads are a little more heavyweight than SML/NJ’s continuations, but it’s pretty clear that
there is some fat there that could be trimmed.

The implementation of CML in SML/NIJ is built upon the first-class continuations of the SMLo£fNJ.Cont module.

type ’a cont

val callcc: ("a cont -> "a) -> "a
val isolate: ('a -> unit) -> ’"a cont
val throw: "a cont -> 'a -> ’'b

The implementation of CML in MLton is built upon the first-class threads of the MLtonThread module.

type 'a t

val new: (‘a —-> unit) -> ’'a t

val prepare: 'a t x “a —> Runnable.t
val switch: (‘a t -> Runnable.t) -> ’a

The port is relatively straightforward, because CML always throws to a continuation at most once. Hence, an "abstract" imple-
mentation of CML could be built upon first-class one-shot continuations, which map equally well to SML/NJ’s continuations and
MLton’s threads.

The "essence" of the port is to transform:

callcc (fn k => ... throw k' v’)
to
switch (fn t => ... prepare (t’, v’))

which suffices for the vast majority of the CML implementation.

There was only one complicated transformation: blocking multiple base events. In SML/NJ CML, the representation of base
events is given by:

datatype ’"a event_status
= ENABLED of {prio: int, doFn: unit -> ’a}
| BLOCKED of {
transId: trans_id ref,
cleanUp: unit -> unit,
next: unit -> unit
} > 'a
type ’a base_evt = unit -> ’a event_status

When synchronizing on a set of base events, which are all blocked, we must invoke each BLOCKED function with the same
transIdand cleanUp (the transId is (checked and) set to CANCEL by the cleanUp function, which is invoked by the
first enabled event; this "fizzles" every other event in the synchronization group that later becomes enabled). However, each
BLOCKED function is implemented by a callcc, so that when the event is enabled, it throws back to the point of synchronization.
Hence, the next function (which doesn’t return) is invoked by the BLOCKED function to escape the callcc and continue in the
thread performing the synchronization. In SML/NIJ this is implemented as follows:

fun ext ([], blockFns) = callcc (fn k => let
val throw = throw k
val (transId, setFlg) = mkFlg()
fun log [] = S.atomicDispatch ()
| log (blockFn:: r) =
throw (blockFn ({

MLton Guide (20180207) 121 /611

transId = transId,
cleanUp = setFlg,
next = fn () => log r
})
in
log blockFns; error "[log]"
end)

(Note that S. atomicDispatch invokes the continuation of the next continuation on the ready queue.) This doesn’t map well
to the MLton thread model. Although it follows the

callcc (fn k => ... throw k v)

model, the fact that bl ockFn will also attempt to do

callcc (fn k'’ => ... next ())

means that the naive transformation will result in nested switch-es.

We need to think a little more about what this code is trying to do. Essentially, each b1 ockFn wants to capture this continuation,
hold on to it until the event is enabled, and continue with next; when the event is enabled, before invoking the continuation and
returning to the synchronization point, the c1eanUp and other event specific operations are performed.

To accomplish the same effect in the MLton thread implementation, we have the following:

datatype ’"a status =
ENABLED of {prio: int, doitFn: unit -> ’a}
| BLOCKED of {transId: trans_id,
cleanUp: unit -> unit,
next: unit -> rdy_thread} -> ’a

type ’a base = unit -> ’a status

fun ext ([], blockFns): "a =
S.atomicSwitch
(fn (t: "a S.thread) =>
let
val (transId, cleanUp) = TransID.mkFlg ()
fun log blockFns: S.rdy_thread =
case blockFns of
[] => S.next ()
| blockFn::blockFns =>
(S.prep o S.new)
(fn _ => fn () =>
let
val () = S.atomicBegin ()
val x = blockFn {transId = transId,
cleanUp = cleanUp,

next = fn () => log blockFns}
in S.switch(fn _ => S.prepval (t, x))
end)
in
log blockFns
end)

To avoid the nested switch-es, I run the blockFn in it’s own thread, whose only purpose is to return to the synchronization
point. This corresponds to the throw (blockFn {...}) inthe SML/NJ implementation. I'm worried that this implemen-
tation might be a little expensive, starting a new thread for each blocked event (when there are only multiple blocked events in a
synchronization group). But, I don’t see another way of implementing this behavior in the MLton thread model.

Note that another way of thinking about what is going on is to consider each blockFn as prepending a different set of actions
to the thread t. It might be possible to give a MLton.Thread.unsafePrepend.

MLton Guide (20180207) 122/ 611

fun unsafePrepend (T r: 'a t, f: 'b -> ’a): 'b t
let
val t =
case !r of
Dead => raise Fail "prepend to a Dead thread"
| New g => New (g o f)
| Paused (g, t) => Paused (fn h => g (f o h), t)
in (x r := Dead; =*)
T (ref t)
end

I have commented out the r :=Dead, which would allow multiple prepends to the same thread (i.e., not destroying the original
thread in the process). Of course, only one of the threads could be run: if the original thread were in the Paused state,
then multiple threads would share the underlying runtime/primitive thread. Now, this matches the "one-shot" nature of CML
continuations/threads, but I’'m not comfortable with extending MLt on . Thread with such an unsafe operation.

Other than this complication with blocking multiple base events, the port was quite routine. (As a very pleasant surprise, the
CML implementation in SML/NJ doesn’t use any SML/NJ-isms.) There is a slight difference in the way in which critical sections
are handled in SML/NJ and MLton; since MLt on. Thread. switch always leaves a critical section, it is sometimes necessary
to add additional at omicBegin-s/atomicEnd-s to ensure that we remain in a critical section after a thread switch.

While looking at virtually every file in the core CML implementation, I took the liberty of simplifying things where it seemed
possible; in terms of style, the implementation is about half-way between Reppy’s original and MLton’s.

Some changes of note:

e util/ contains all pertinent data-structures: (functional and imperative) queues, (functional) priority queues. Hence, it should
be easier to switch in more efficient or real-time implementations.

* core—cml/scheduler.sml: in both implementations, this is where most of the interesting action takes place. I’ve made
the connection between MLton . Thread.t-sand ThreadId.thread_id-s more abstract than it is in the SML/NJ imple-
mentation, and encapsulated all of the MLt on . Thread operations in this module.

* eliminated all of the "by hand" inlining

Future Extensions

The CML documentation says the following:

CML. joinEvt: thread_id -> unit event

* joinEvt tid
creates an event value for synchronizing on the termination of the thread with the ID tid. There are three ways
that a thread may terminate: the function that was passed to spawn (or spawnc) may return; it may call the exit
function, or it may have an uncaught exception. Note that joinEvt does not distinguish between these cases; it
also does not become enabled if the named thread deadlocks (even if it is garbage collected).

I believe that the MLton.Finalizable might be able to relax that last restriction. Upon the creation ofa a Scheduler.
thread, we could attach a finalizer to the underlying ' @ MLton.Thread.t that enables the joinEvt (in the associated
ThreadID.thread_id) whenthe 'a MLton.Thread.t becomes unreachable.

I don’t know why CML doesn’t have

CML.kill: thread_id -> unit

which has a fairly simple implementation — setting a kill flag in the thread_id and adjusting the scheduler to discard any
killed threads that it takes off the ready queue. The fairness of the scheduler ensures that a killed thread will eventually be
discarded. The semantics are little murky for blocked threads that are killed, though. For example, consider a thread blocked on

MLton Guide (20180207) 123 /611

SyncVar.mTake mv and a thread blocked on SyncVar.mGet mv. If the first thread is killed while blocked, and a third
thread does SyncVar.mPut (mv, x), then we might expect that we’ll enable the second thread, and never the first. But,
when only the ready queue is able to discard killed threads, then the SyncVar .mPut could enable the first thread (putting it
on the ready queue, from which it will be discarded) and leave the second thread blocked. We could solve this by adjusting the
TransID.trans_id types and the "cleaner" functions to look for both canceled transactions and transactions on killed
threads.

John Reppy says that MarlowEtAlO1 and FlattFindler04 explain why CML . k111 would be a bad idea.

Between CML.timeOutEvt and CML.kill, one could give an efficient solution to the recent comp.lang.ml post about
terminating a function that doesn’t complete in a given time.

fun timeOut (f: unit -> ’a, t: Time.time): ’"a option =
let
val iv = SyncVar.iVar ()
val tid = CML.spawn (fn () => SyncVar.iPut (iv, £ ()))
in
CML.select

[CML.wrap (CML.timeOutEvt t, fn () => (CML.kill tid; NONE)),
CML.wrap (SyncVar.iGetEvt iv, fn x => SOME x)]
end

Space Safety

There are some CML related posts on the MLton mailing list:
* http://www.mlton.org/pipermail/mlton/2004-May/

that discuss concerns that SML/NJ’s implementation is not space efficient, because multi-shot continuations can be held indefi-
nitely on event queues. MLton is better off because of the one-shot nature — when an event enables a thread, all other copies of
the thread waiting in other event queues get turned into dead threads (of zero size).

http://www.mlton.org/pipermail/mlton/2004-May/

MLton Guide (20180207) 124 /611

ConstantPropagation

ConstantPropagation is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This is whole-program constant propagation, even through data structures. It also performs globalization of (small) values
computed once.

Uses Multi.

Implementation

* constant-propagation.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/constant-propagation.fun

MLton Guide (20180207) 125 /611

Contact

Mailing lists
There are three mailing lists available.

e MLton-user@mlton.org

MLton user community discussion
— subscribe archive (SourceForge; current), archive (PiperMail; through 201110)

* MLton-devel@mlton.org

MLton developer community discussion
— subscribe archive (SourceForge; current), archive (PiperMail; through 201110)

* MLton-commit@mlton.org

MLton code commits

— subscribe

— archive (SourceForge; current), archive (PiperMail; through 201110)

Mailing list policies

* Both mailing lists are unmoderated. However, the mailing lists are configured to discard all spam, to hold all non-subscriber
posts for moderation, to accept all subscriber posts, and to admin approve subscription requests. Please contact Matthew Fluet
if it appears that your messages are being discarded as spam.

» Large messages (over 256K) should not be sent. Rather, please send an email containing the discussion text and a link to any
large files.
* Discussions started on the mailing lists should stay on the mailing lists. Private replies may be bounced to the mailing list for

the benefit of those following the discussion.

* Discussions started on MLton-user@mlton.org may be migrated to MLton-devel@mlton. org, particularly when
the discussion shifts from how to use MLton to how to modify MLton (e.g., to fix a bug identified by the initial discussion).

IRC

* Some MLton developers and users are in channel #sm1l on http://freenode.net.

mailto:MLton-user@mlton.org
https://lists.sourceforge.net/lists/listinfo/mlton-user
https://sourceforge.net/mailarchive/forum.php?forum_name=mlton-user
http://www.mlton.org/pipermail/mlton-user/
mailto:MLton-devel@mlton.org
https://lists.sourceforge.net/lists/listinfo/mlton-devel
https://sourceforge.net/mailarchive/forum.php?forum_name=mlton-devel
http://www.mlton.org/pipermail/mlton-devel/
mailto:MLton-commit@mlton.org
https://lists.sourceforge.net/lists/listinfo/mlton-commit
https://sourceforge.net/mailarchive/forum.php?forum_name=mlton-commit
http://www.mlton.org/pipermail/mlton-commit/
mailto:matthew.fluet@gmail.com
mailto:MLton-user@mlton.org
mailto:MLton-devel@mlton.org
http://freenode.net

MLton Guide (20180207) 126 /611

Contify

Contify is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

Contification is a compiler optimization that turns a function that always returns to the same place into a continuation. This
exposes control-flow information that is required by many optimizations, including traditional loop optimizations.

Implementation

e contify.fun

Details and Notes

See Contification Using Dominators. The intermediate language described in that paper has since evolved to the SSA Intermedi-
ateLanguage; hence, the complication described in Section 6.1 is no longer relevant.

https://github.com/MLton/mlton/blob/master/mlton/ssa/contify.fun

MLton Guide (20180207) 127 /611

CoreML

Core ML is an IntermediateLanguage, translated from AST by Elaborate, optimized by CoreMLSimplify, and translated by
Defunctorize to XML.

Description

CoreML is polymorphic, higher-order, and has nested patterns.

Implementation

* core-ml.sig

e core-ml.fun

Type Checking

The CoreML IntermediateLanguage has no independent type checker.

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/core-ml/core-ml.sig
https://github.com/MLton/mlton/blob/master/mlton/core-ml/core-ml.fun

MLton Guide (20180207) 128 /611

CoreMLSimplify

The single optimization pass for the CoreML IntermediateLanguage is controlled by the Compile functor (compile. fun).

The following optimization pass is implemented:

e DeadCode

https://github.com/MLton/mlton/blob/master/mlton/main/compile.fun

MLton Guide (20180207) 129/ 611

Credits

MLton was designed and implemented by HenryCejtin, MatthewFluet, SureshJagannathan, and StephenWeeks.

* HenryCejtin wrote the Int Inf implementation, the original profiler, the original man pages, the . spec files for the RPMs,
and lots of little hacks to speed stuff up.

* MatthewFluet implemented the X86 and AMD64 native code generators, ported m1prof to work with the native code gener-
ator, did a lot of work on the SSA optimizer, both adding new optimizations and improving or porting existing optimizations,
updated the Basis Library implementation, ported ConcurrentML and ML-NLFFI to MLton, implemented the ML Basis sys-
tem, ported MLton to 64-bit platforms, and currently leads the project.

* SureshJagannathan implemented some early inlining and uncurrying optimizations.

» StephenWeeks implemented most of the original version of MLton, and continues to keep his fingers in most every part.
Many people have helped us over the years. Here is an alphabetical list.

 JesperLouisAndersen sent several patches to improve the runtime on FreeBSD and ported MLton to run on NetBSD and
OpenBSD.

* JohnnyAndersen implemented BinIO, modified MLton so it could cross compile to MinGW, and provided useful discussion
about cross-compilation.

* Alexander Abushkevich extended support for OpenBSD.
* Ross Bayer added the —keep ast compile-time option and experimented with porting the build system to CMake.
» Kevin Bradley added initial support for SuccessorML features.

* Bryan Camp added ~disable-pass _regex_ and enable-pass _regex_ compile options to generalize —drop-—
pass _regex_ and added Array_copyArray and Array_copyVector primitives.

* Jason Carr added a parser combinator library and a parser for the SXML IR, extended compilation to start with a . sxm1 file,
and experimented with alternate control-flow analyses for closure conversion.

e Christopher Cramer contributed support for additional Posix.ProcEnv.sysconf variables, performance improvements
for String.concatWith, and Debian packaging.

e Alain Deutsch and PolySpace Technologies provided many bug fixes and runtime system improvements, code to help the
Sparc/Solaris port, and funded a number of improvements to MLton.

* Armando Doval updated m1nlffigen to warn and skip functions with st ruct/union arguments.
* Martin Elsman provided helpful discussions in the development of the ML Basis system.

* Brent Fulgham ported MLton most of the way to MinGW.

* AdamGoode provided a script to build the PDF MLton Guide and maintains the Fedora packages.

» Simon Helsen provided bug reports, suggestions, and helpful discussions.

* Joe Hurd provided useful discussion and feedback on source-level profiling.

* VesaKarvonen contributed esml-mode.el and esml-mlb-mode.el (see Emacs), contributed patches for improving
match warnings, contributed esml-du-mlton.el and extended def-use output to include types of variable definitions (see
EmacsDefUseMode), and improved constant folding of floating-point operations.

* Richard Kelsey provided helpful discussions.
* Ville Laurikari ported MLton to IA64/HPUX, HPPA/HPUX, PowerPC/AIX, PowerPC64/AIX.

* Brian Leibig implemented the LLVMCodegen.

http://www.polyspace.com/
https://admin.fedoraproject.org/pkgdb/acls/name/mlton

MLton Guide (20180207) 130 /611

* Geoffrey Mainland helped with FreeBSD packaging.
* Eric McCorkle ported MLton to Intel Mac.

* TomMurphy wrote the original version of MLton.Syslog as part of his m1ftpd project, and has sent many useful bug
reports and suggestions.

* Michael Neumann helped to patch the runtime to compile under FreeBSD.

* Barak Pearlmutter built the original Debian package for MLton, and helped us to take over the process.

* Filip Pizlo ported MLton to (PowerPC) Darwin.

* Vedant Raiththa extended the ForeignFunctionInterface with support for pure and impure attributes to _import.
 Krishna Ravikumar added initial support for vector expressions and the Vector_vector primitive.

 John Reppy assisted in porting MLton to Intel Mac.

* Sam Rushing ported MLton to FreeBSD.

* Rob Simmons refactored the array and vector implementation in the Basis Library: into a primitive implementation (using
SeqgInt.int for indexing) and a wrapper implementation (using the default Int . int for indexing).

* Jeffrey Mark Siskind provided helpful discussions and inspiration with his Stalin Scheme compiler.
* Matthew Surawski added LoopUnroll and LoopUnswitch SSA optimizations.

* WesleyTerpstra added support for MLton.Process.create, made a number of contributions to the ForeignFunctionInter-
face, contributed a number of runtime system patches, added support for compiling to a C library, ported MLton to MinGW
and all Debian supported architectures with cross-compiling support, and maintains the Debian and MinGW packages.

e Maksim Yegorov added rudimentary support for . /configure and other improvements to the build system and implemented
the ShareZeroVec SSA optimization.

* Luke Ziarek assisted in porting MLton to (PowerPC) Darwin.
We have also benefited from other software development tools and used code from other sources.

* MLton was developed using Standard ML of New Jersey and the Compilation Manager (CM)

* MLton’s lexer (mlton/frontend/ml.lex), parser (mlton/frontend/ml.grm), and precedence-parser (mlton/
elaborate/precedence-parse. fun) are modified versions of code from SML/NJ.

* The MLton Basis Library implementation of conversions between binary and decimal representations of reals uses David Gay’s
gdtoa library.

* The MLton Basis Library implementation uses modified versions of portions of the the SML/NJ Basis Library implementation
modules 0S. IO, Posix.IO, Process, and Unix.

* The MLton Basis Library implementation uses modified versions of portions of the ML Kit Version 4.1.4 Basis Library imple-
mentation modules Path, Time, and Date.

* Many of the benchmarks come from the SML/NJ benchmark suite.

* Many of the regression tests come from the ML Kit Version 4.1.4 distribution, which borrowed them from the Moscow ML
distribution.

* MLton uses the GNU multiprecision library for its implementation of Int Inf.

* MLton’s implementation of mllex, mlyacc, the ckit Library, the ML-LPT Library, the MLRISC Library, the SML/NIJ Library,
Concurrent ML, minlffigen and ML-NLFFI are modified versions of code from SML/NJ.

http://packages.debian.org/mlton
http://mingw.org
http://packages.debian.org/search?keywords=mlton&searchon=names&suite=all§ion=all
http://packages.debian.org/search?keywords=mlton&searchon=names&suite=all§ion=all
http://mingw.org
http://www.netlib.org/fp/
http://www.dina.kvl.dk/%7Esestoft/mosml.html
http://www.gnu.org/software/gmp/gmp.html

MLton Guide (20180207) 131/611

CrossCompiling

MLton’s ~target flag directs MLton to cross compile an application for another platform. By default, MLton is only able to
compile for the machine it is running on. In order to use MLton as a cross compiler, you need to do two things.

1. Install the GCC cross-compiler tools on the host so that GCC can compile to the target.

2. Cross compile the MLton runtime system to build the runtime libraries for the target.

To make the terminology clear, we refer to the host as the machine MLton is running on and the target as the machine that MLton
is compiling for.

To build a GCC cross-compiler toolset on the host, you can use the script bin/build-cross—gcc, available in the MLton
sources, as a template. The value of the target variable in that script is important, since that is what you will pass to MLton’s
-target flag. Once you have the toolset built, you should be able to test it by cross compiling a simple hello world program
on your host machine.

)

% gcc -b i1386-pc-cygwin -o hello-world hello-world.c

You should now be able to run hello-world on the target machine, in this case, a Cygwin machine.

Next, you must cross compile the MLton runtime system and inform MLton of the availability of the new target. The script
bin/add-cross from the MLton sources will help you do this. Please read the comments at the top of the script. Here is a
sample run adding a Solaris cross compiler.

% add-cross sparc-sun-solaris sun blade
Making runtime.
Building print-constants executable.

Running print-constants on blade.

Running add-cross uses ssh to compile the runtime on the target machine and to create print-constants, which prints
out all of the constants that MLton needs in order to implement the Basis Library. The script runs print—-constants on the
target machine (blade in this case), and saves the output.

Once you have done all this, you should be able to cross compile SML applications. For example,

mlton -target i386-pc-cygwin hello-world.sml

will create hello-world, which you should be able to run from a Cygwin shell on your Windows machine.

Cross-compiling alternatives

Building and maintaining cross-compiling gcc’s is complex. You may find it simpler to use mlton -keep g to generate the
files on the host, then copy the files to the target, and then use gcc or m1ton on the target to compile the files.

MLton Guide (20180207) 132/ 611

CVS

CVS (Concurrent Versions System) is a version control system. The MLton project used CVS to maintain its source code, but
switched to Subversion on 20050730.

Here are some online CVS resources.

* Open Source Development with CVS

http://www.gnu.org/software/cvs/
http://cvsbook.red-bean.com/

MLton Guide (20180207) 133 /611

DeadCode

DeadCode is an optimization pass for the CoreML IntermediateLanguage, invoked from CoreMLSimplify.

Description

This pass eliminates declarations from the Basis Library not needed by the user program.

Implementation

* dead-code.sig

* dead-code. fun

Details and Notes

In order to compile small programs rapidly, a pass of dead code elimination is run in order to eliminate as much of the Basis
Library as possible. The dead code elimination algorithm used is not safe in general, and only works because the Basis Library
implementation has special properties:

* it terminates

* it performs no I/O

The dead code elimination includes the minimal set of declarations from the Basis Library so that there are no free variables in
the user program (or remaining Basis Library implementation). It has a special hack to include all bindings of the form:

val _ = ...

There is an ML Basis annotation, deadCode true, that governs which code is subject to this unsafe dead-code elimination.

https://github.com/MLton/mlton/blob/master/mlton/core-ml/dead-code.sig
https://github.com/MLton/mlton/blob/master/mlton/core-ml/dead-code.fun

MLton Guide (20180207) 134 /611

DeepFlatten

DeepFlatten is an optimization pass for the SSA2 IntermediateLanguage, invoked from SSA2Simplify.

Description

This pass flattens into mutable fields of objects and into vectors.

For example, an (int * int) ref is represented by a 2 word object, and an (int % int) array contains pairs of
int-s, rather than pointers to pairs of int-s.

Implementation

* deep—flatten. fun

Details and Notes
There are some performance issues with the deep flatten pass, where it consumes an excessive amount of memory.
* http://www.mlton.org/pipermail/mlton/2005-April/026990.html

* http://www.mlton.org/pipermail/mlton-user/2010-June/001626.html
¢ http://www.mlton.org/pipermail/mlton/2010-December/030876.html

A number of applications require compilation with ~disable-pass deepFlatten to avoid exceeding available memory.
It is often asked whether the deep flatten pass usually has a significant impact on performance. The standard benchmark suite
was run with and without the deep flatten pass enabled when the pass was first introduced:

* http://www.mlton.org/pipermail/mlton/2004-August/025760.html

The conclusion is that it does not have a significant impact. However, these are micro benchmarks; other applications may derive
greater benefit from the pass.

https://github.com/MLton/mlton/blob/master/mlton/ssa/deep-flatten.fun
http://www.mlton.org/pipermail/mlton/2005-April/026990.html
http://www.mlton.org/pipermail/mlton-user/2010-June/001626.html
http://www.mlton.org/pipermail/mlton/2010-December/030876.html
http://www.mlton.org/pipermail/mlton/2004-August/025760.html

MLton Guide (20180207) 135 /611

DefineTypeBeforeUse

Standard ML requires types to be defined before they are used. Because of type inference, the use of a type can be implicit;
hence, this requirement is more subtle than it might appear. For example, the following program is not type correct, because the
typeof rist option ref, butt is defined after r.

val r = ref NONE
datatype t = A | B
val () = r := SOME A

ML.ton reports the following error, indicating that the type defined on line 2 is used on line 1.

Error: z.sml 3.10-3.20.
Function applied to incorrect argument.

expects: _ x [?2??] option
but got: _ % [t] option
in: := (r, SOME A)

note: type would escape its scope: t
escape from: z.sml 2.10-2.10
escape to: z.sml 1.1-1.16
Warning: z.sml 1.5-1.5.
Type of variable was not inferred and could not be generalized: r.
type: ??? option ref
in: val r = ref NONE

While the above example is benign, the following example shows how to cast an integer to a function by (implicitly) using a
type before it is defined. In the example, the ref cell r is of type t option ref, where t is defined after r, as a parameter to
functor F.

val r = ref NONE
functor F (type t

val x: t) =
struct
val () = r := SOME x
fun get () = valOf (!r)
end
structure S1 = F (type t = unit -> unit
val x = fn () => ())

structure S2 = F (type t = int
val x = 13)
val () = Sl.get () ()

MLton reports the following error.

Warning: z.sml 1.5-1.5.
Type of variable was not inferred and could not be generalized: r.
type: ??? option ref
in: val r = ref NONE
Error: z.sml 5.16-5.26.
Function applied to incorrect argument.

expects: _ x [???] option
but got: _ % [t] option
in: := (r, SOME x)

note: type would escape its scope: t
escape from: z.sml 2.17-2.17
escape to: z.sml 1.1-1.16
Warning: z.sml 6.11-6.13.
Type of variable was not inferred and could not be generalized: get.
type: unit -> ?2?2°?
in: fun get () = (valOf (! r))
Error: z.sml 12.10-12.18.

ML.ton Guide (20180207) 136 /611

Function not of arrow type.
function: [unit]
in: (Sl.get ()) ()

MLton Guide (20180207) 137 /611

DefinitionOfStandardML

The Definition of Standard ML (Revised) is a terse and formal specification of Standard ML’s syntax and semantics. The
language specified by this book is often referred to as SML 97. You can check its syntax grammar online (thanks to Andreas
Rossberg).

The Definition of Standard ML is an older version of the definition, published in 1990. The accompanying Commentary intro-
duces and explains the notation and approach. The same notation is used in the SML 97 definition, so it is worth keeping the
older definition and its commentary at hand if you intend a close study of the definition.

http://www.mpi-sws.org/~rossberg/sml.html

MLton Guide (20180207) 138 /611

Defunctorize

Defunctorize is a translation pass from the CoreML IntermediateLanguage to the XML IntermediateLanguage.

Description

This pass converts a CoreML program to an XML program by performing:

* linearization
* MatchCompile
* polymorphic val dec expansion

* datatype lifting (to the top-level)

Implementation

* defunctorize.sig

e defunctorize.fun

Details and Notes

This pass is grossly misnamed and does not perform defunctorization.

Datatype Lifting

This pass moves all datatype declarations to the top level.

Standard ML datatype declarations can contain type variables that are not bound in the declaration itself. For example, the
following program is valid.

fun 'a £ (x: 'a) =
let
datatype 'b t =T of "a » 'b
val y: int t = T (x, 1)
in
13
end

Unfortunately, the datatype declaration can not be immediately moved to the top level, because that would leave ’ a free.

datatype "b t =T of "a 'b
fun 'a £ (x: 'a) =
let
val y: int t = T (x, 1)
in
13
end

In order to safely move “datatype’s, this pass must close them, as well as add any free type variables as extra arguments to the
type constructor. For example, the above program would be translated to the following.

https://github.com/MLton/mlton/blob/master/mlton/defunctorize/defunctorize.sig
https://github.com/MLton/mlton/blob/master/mlton/defunctorize/defunctorize.fun

MLton Guide (20180207) 139/ 611

datatype (‘a, 'b) t =T of "a * Db
fun 'a £ (x: 'a) =
let
val y: (Ya % int) t = T (x, 1)
in
13
end

Historical Notes

The Defunctorize pass originally eliminated Standard ML functors by duplicating their body at each application. These duties
have been adopted by the Elaborate pass.

ML.ton Guide (20180207) 140/ 611

Developers

Here is a picture of the MLton team at a meeting in Chicago in August 2003. From left to right we have:

StephenWeeks — MatthewFluet — HenryCejtin — SureshJagannathan

it AN oy Mfcisue v s
& weter
[,_Ew.-a;__ qu)-'n-rrs ‘m,.' s ek g’,..l.rle it L, g B
{ﬂ'}[[l o T
J’ — | I:A"Il‘ BT (O 'f | ;’;,ir-;;"n- sl ‘ ek

(:.;; Lwﬁu..crm.:s @ e d-u#km[’o-- 1 [Aenthik P MY

/‘Fﬁ'p. gl
[prebile-direrled o

Also see the Credits for a list of specific contributions.

Developers list

A number of people read the developers mailing list, MLt on-devel@mlton. org, and make contributions there. Here’s a list
of those who have a page here.

* AndreiFormiga

* JesperLouisAndersen
* JohnnyAndersen

* MichaelNorrish

* MikeThomas

* RayRacine

* WesleyTerpstra

¢ VesaKarvonen

mailto:MLton-devel@mlton.org

MLton Guide (20180207)

141 /611

Development

This page is the central point for MLton development.

¢ Access the Sources.

¢ Check the current CHANGELOG . adoc or recent commits.

* Open Issues.
* Ideas for Projects to improve MLton.

* Developers that are or have been involved in the project.

Notes

* CompilerOverview

* CompilingWithSMLNJ
* CrossCompiling

* License

* NeedsReview

* PortingMLton

* ReleaseChecklist

* SelfCompiling

https://github.com/MLton/mlton/blob/master/CHANGELOG.adoc
https://github.com/MLton/mlton/commits/master
https://github.com/MLton/mlton/issues

MLton Guide (20180207)

142 /611

Documentation

Documentation is available on the following topics.

e Standard ML

— Basis Library

— Additional libraries
¢ Installing MLton
* Using MLton

— Foreign function interface (FFI)

— Manual page (compile-time options run-time options)
— ML Basis system

— MLton structure

— Platform-specific notes

— Profiling

— Type checking

— Help for porting from SML/NJ to MLton.

¢ About MLton

Credits

Drawbacks

Features

History

License
Talk
WishList

e Tools

— MLLex (mllex.pdf)
— MLYacc (mlyacc.pdf)
— MLNLFFIGen (mlyacc.pdf)

e References

MLton Guide (20180207) 143 /611

Drawbacks

MLton has several drawbacks due to its use of whole-program compilation.

* Large compile-time memory requirement.
Because MLton performs whole-program analysis and optimization, compilation requires a large amount of memory. For
example, compiling MLton (over 140K lines) requires at least 512M RAM.

* Long compile times.
Whole-program compilation can take a long time. For example, compiling MLton (over 140K lines) on a 1.6GHz machine
takes five to ten minutes.

* No interactive top level.

Because of whole-program compilation, MLton does not provide an interactive top level. In particular, it does not implement
the optional Basis Library function use.

MLton Guide (20180207) 144 /611

Eclipse

Eclipse is an open, extensible IDE.
ML-Dev is a plug-in for Eclipse, based on SML/NJ.

There has been some talk on the MLton mailing list about adding support to Eclipse for MLton/SML, and in particular, using
http://eclipsefp.sourceforge.net/. We are unaware of any progress along those lines.

http://eclipse.org/
http://www.cse.iitd.ernet.in/%7Ecsu02132/mldev/
http://eclipsefp.sourceforge.net/

MLton Guide (20180207) 145/611

Elaborate

Elaborate is a translation pass from the AST IntermediateLanguage to the CoreML IntermediateLanguage.

Description

This pass performs type inference and type checking according to the Definition. It also defunctorizes the program, eliminating
all module-level constructs.

Implementation

* elaborate.sig

* elaborate. fun

* elaborate-env.sig

* elaborate—env.fun

* elaborate-modules.sig
* elaborate-modules. fun
* elaborate-core.sig

* elaborate—-core. fun

e elaborate

Details and Notes

At the modules level, the Elaborate pass:

* elaborates signatures with interfaces (see interface.sigand interface. fun)

The main trick is to use disjoint sets to efficiently handle sharing of tycons and of structures and then to copy signatures as
dags rather than as trees.

* checks functors at the point of definition, using functor summaries to speed up checking of functor applications.

When a functor is first type checked, we keep track of the dummy argument structure and the dummy result structure, as well
as all the tycons that were created while elaborating the body. Then, if we later need to type check an application of the functor
(as opposed to defunctorize an application), we pair up tycons in the dummy argument structure with the actual argument
structure and then replace the dummy tycons with the actual tycons in the dummy result structure, yielding the actual result
structure. We also generate new tycons for all the tycons that we created while originally elaborating the body.

* handles opaque signature constraints.

This is implemented by building a dummy structure realized from the signature, just as we would for a functor argument when
type checking a functor. The dummy structure contains exactly the type information that is in the signature, which is what
opacity requires. We then replace the variables (and constructors) in the dummy structure with the corresponding variables
(and constructors) from the actual structure so that the translation to CoreML uses the right stuff. For each tycon in the dummy
structure, we keep track of the corresponding type structure in the actual structure. This is used when producing the CoreML
types (see expandOpaque in type-env.sigand type-env. fun).

Then, within each st ructure or functor body, for each declaration (<dec> in the Standard ML grammar), the Elaborate
pass does three steps:
1. Scopelnference

2. — PrecedenceParse

https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate.fun
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-env.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-env.fun
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-modules.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-modules.fun
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-core.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/elaborate-core.fun
https://github.com/MLton/mlton/tree/master/mlton/elaborate
https://github.com/MLton/mlton/blob/master/mlton/elaborate/interface.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/interface.fun
https://github.com/MLton/mlton/blob/master/mlton/elaborate/type-env.sig
https://github.com/MLton/mlton/blob/master/mlton/elaborate/type-env.fun

MLton Guide (20180207) 146 /611

— _{ex,im}port expansion
— profiling insertion
— unification

3. Overloaded {constant, function, record pattern} resolution

Defunctorization

The Elaborate pass performs a number of duties historically assigned to the Defunctorize pass.

As part of the Elaborate pass, all module level constructs (open, signature, structure, functor, long identifiers) are
removed. This works because the Elaborate pass assigns a unique name to every type and variable in the program. This also
allows the Elaborate pass to eliminate 1ocal declarations, which are purely for namespace management.

Examples

Here are a number of examples of elaboration.

¢ All variables bound in val declarations are renamed.

val x = 13
val y = x

val x_0 13
val yv_0 = x_0

¢ All variables in fun declarations are renamed.

fun £ x = g x
and gy = fy
fun £ .0 x 0 = g_0 x_0
and g_ 0 y_0 = £ 0 y_0

» Type abbreviations are removed, and the abbreviation is expanded wherever it is used.

type 'a u = int * ’a

type 'b t = b u x real

fun £ (x : bool t) = x

fun £_.0 (x_0 : (int x bool) * real) = x_0

» Exception declarations create a new constructor and rename the type.
type t = int

exception E of t % real

exception E_0 of int * real

* The type and value constructors in datatype declarations are renamed.

datatype t = A of int | B of real * t

datatype t_0 = A_0 of int | B_0 of real * t_0

* Local declarations are moved to the top-level. The environment keeps track of the variables in scope.

MLton Guide (20180207) 147 /611

val x = 13

local val x = 14
in val y = x
end

val z = x

val x_ 0 = 13

val x_1 = 14

val yv_0 = x_1
val z_0 = x_0

* Structure declarations are eliminated, with all declarations moved to the top level. Long identifiers are renamed.

structure S =
struct
type t = int
val x : t = 13
end
val y : S.t

Il
0
X

val x_0 : int = 13
val y_0 : int = x_0

* Open declarations are eliminated.

val x = 13
val y = 14
structure S =
struct
val x = 15
end
open S
val z = x + y
val x_0 = 13
val y_0 = 14
val x_1 = 15
val z_0 = x_1 + y_O

* Functor declarations are eliminated, and the body of a functor is duplicated wherever the functor is applied.

functor F(val x : int) =
struct
val vy = x
end
structure Fl1l = F(val x = 13)
structure F2 = F(val x = 14)
val z = Fl.y + F2.y

val x_0 = 13

val yv_0 = x_0

val x_1 = 14

val yv_1 = x_1

val z_0 y_ 0 + vy 1

* Signature constraints are eliminated. Note that signatures do affect how subsequent variables are renamed.

ML.ton Guide (20180207) 148/ 611

val y = 13
structure S : sig
val x int
end =
struct
val x = 14
val vy = x
end
open S
val z = x + vy

val y_0 = 13

val x_0 = 14

val y_1 x_0

val z_0 x 0+ y_0

MLton Guide (20180207) 149/611

Emacs

SML modes
There are a few Emacs modes for SML.

* sml-mode

— http://www.xemacs.org/Documentation/packages/html/sml-mode_3.html
— http://www.smlnj.org/doc/Emacs/sml-mode.html

— http://www.iro.umontreal.ca/%7Emonnier/elisp/
* mlton.el contains the Emacs lisp that StephenWeeks uses to interact with MLton (in addition to using sm1-mode).

* http://primate.net/%7Eitz/mindent.tar, developed by Ian Zimmerman, who writes:

Unlike the widespread sm1-mode . el it doesn’t try to indent code based on ML syntax. I gradually got skeptical
about this approach after writing the initial indentation support for caml mode and watching it bloat insanely as the
language added new features. Also, any such attempts that I know of impose a particular coding style, or at best a
choice among a limited set of styles, which I now oppose. Instead my mode is based on a generic package which
provides manual bindable commands for common indentation operations (example: indent the current line under
the n-th occurrence of a particular character in the previous non-blank line).

MLB modes
There is a mode for editing ML Basis files.

e esml-mlb-mode.el (plus other files)

Definitions and uses

There is a mode that supports the precise def-use information that MLton can output. It highlights definitions and uses and
provides commands for navigation (e.g., jump-to-def, jump-to-next, list-all-refs). It can be handy, for example,
for navigating in the MLton compiler source code. See EmacsDefUseMode for further information.

Building on the background

Tired of manually starting/stopping/restarting builds after editing files? Now you don’t have to. See EmacsBgBuildMode for
further information.

Error messages

MLton’s error messages are not among those that the Emacs next—error parser natively understands. The easiest way to fix
this is to add the following to your . emacs to teach Emacs to recognize MLton’s error messages.

(require ’compile)
(add-to-list ’'compilation-error-regexp-alist ’‘mlton)
(add-to-list ’compilation-error-regexp-alist-alist
" (mlton
"Allspace: 11\ (A (2:\\ (Error\\) \\ [\\ (Warning\\) \\ [N\ (\\ (2:\\ (?:defn\\|spec <
\\) at\\)\\[\\ (?:escape \\ (?:from\\ [to\\)\\)\\|\\(?:scoped at\\)\\)\\): <«
AN CHNN) AN CLO=9T+N\) NN AN CLO=9T+\\) NN (2:=ANN ([O=9T+\\)NNAN([0=-9]T+\\)\\) <«
2ANL2\\) s
5 (6 . 8) (7 .9 (3 . 4) 1))

http://www.xemacs.org/Documentation/packages/html/sml-mode_3.html
http://www.smlnj.org/doc/Emacs/sml-mode.html
http://www.iro.umontreal.ca/%7Emonnier/elisp/
https://github.com/MLton/mlton/blob/master/ide/emacs/mlton.el
http://primate.net/%7Eitz/mindent.tar
https://github.com/MLton/mlton/blob/master/ide/emacs/esml-mlb-mode.el

MLton Guide (20180207) 150 /611

EmacsBgBuildMode

Do you really want to think about starting a build of you project? What if you had a personal slave that would restart a build
of your project whenever you save any file belonging to that project? The bg-build mode does just that. Just save the file, a
compile is started (silently!), you can continue working without even thinking about starting a build, and if there are errors, you
are notified (with a message), and can then jump to errors.

This mode is not specific to MLton per se, but is particularly useful for working with MLton due to the longer compile times. By
the time you start wondering about possible errors, the build is already on the way.

Functionality and Features

* Each time a file is saved, and after a user configurable delay period has been exhausted, a build is started silently in the
background.

* When the build is finished, a status indicator (message) is displayed non-intrusively.
* At any time, you can switch to a build process buffer where all the messages from the build are shown.
* Optionally highlights (error/warning) message locations in (source code) buffers after a finished build.

* After a build has finished, you can jump to locations of warnings and errors from the build process buffer or by using the
first-error and next-error commands.

* When a build fails, bg-build mode can optionally execute a user specified command. By default, bg-build mode executes
first-error.

* When starting a build of a particular project, a possible previous live build of the same project is interrupted first.
* A project configuration file specifies the commands required to build a project.

* Multiple projects can be loaded into bg-build mode and bg-build mode can build a given maximum number of projects concur-
rently.

 Supports both Gnu Emacs and XEmacs.

Download

There is no package for the mode at the moment. To install the mode you need to fetch the Emacs Lisp, . el, files from the
MLton repository: emacs.

Setup

The easiest way to load the mode is to first tell Emacs where to find the files. For example, add

(add-to-1list ’load-path (file-truename "path-to-the-el-files"))

to your ~/.emacs or ~/.xemacs/init.el. You'll probably also want to start the mode automatically by adding

(require ’bg-build-mode)
(bg-build-mode)

to your Emacs init file. Once the mode is activated, you should see the BGB indicator on the mode line.

http://www.gnu.org/software/emacs/
http://www.xemacs.org
https://github.com/MLton/mlton/tree/master/ide/emacs

MLton Guide (20180207) 151 /611

MLton and Compilation-Mode

At the time of writing, neither Gnu Emacs nor XEmacs contain an error regexp that would match MLton’s messages.
If you use Gnu Emacs, insert the following code into your . emacs file:

(require ’compile)

(add-to-1list

"compilation-error-regexp-alist

("N (Warning\\ [Error\\) : A\ (.+\\) A\ ([0=9T+\\)\\N.AN ([0=9T+\\)\\.S"
2 3 4))

If you use XEmacs, insert the following code into your init . el file:

(require ’compile)

(add-to-1list

"compilation-error-regexp-alist-alist

" (mlton
(""\\ (Warning\\ |[Error\\) : \\ (.+\\) N\ ([0=97+\\)\\.\\([0=97+\\)\\.$"
2 3 4)))

(compilation-build-compilation-error-regexp-alist)

Usage

Typically projects are built (or compiled) using a tool like make, but the details vary. The bg-build mode needs a project
configuration file to know how to build your project. A project configuration file basically contains an Emacs Lisp expression
calling a function named bg—build that returns a project object. A simple example of a project configuration file would be the
(Build.bgb) file used with smlbot:

(bg-build
:name "SML-Bot"
:shell "nice -n5 make all")

The bg-build function takes a number of keyword arguments:

* :name specifies the name of the project. This can be any expression that evaluates to a string or to a nullary function that
returns a string.

* :shell specifies a shell command to execute. This can be any expression that evaluates to a string, a list of strings, or to a
nullary function returning a list of strings.

e :build? specifies a predicate to determine whether the project should be built after some files have been modified. The
predicate is given a list of filenames and should return a non-nil value when the project should be built and nil otherwise.

All of the keyword arguments, except : shell, are optional and can be left out.

Note the use of the nice command above. It means that background build process is given a lower priority by the system
process scheduler. Assuming your machine has enough memory, using nice ensures that your computer remains responsive.
(You probably won’t even notice when a build is started.)

Once you have written a project file for bg-build mode. Use the bg-build-add-project command to load the project file
for bg-build mode. The bg-build mode can also optionally load recent project files automatically at startup.

After the project file has been loaded and bg-build mode activated, each time you save a file in Emacs, the bg-build mode tries to
build your project.

The bg-build-status command creates a buffer that displays some status information on builds and allows you to manage
projects (start builds explicitly, remove a project from bg-build, . ..) as well as visit buffers created by bg-build. Notice the count
of started builds. At the end of the day it can be in the hundreds or thousands. Imagine the number of times you’ve been relieved
of starting a build explicitly!

http://www.gnu.org/software/make/
https://github.com/MLton/mltonlib/blob/master/com/ssh/async/unstable/example/smlbot/Build.bgb

ML.ton Guide (20180207) 152/ 611

EmacsDefUseMode

MLton provides an option, —show—def-use f1ile,to output precise (giving exact source locations) and accurate (including
all uses and no false data) whole-program def-use information to a file. Unlike typical tags facilities, the information includes
local variables and distinguishes between different definitions even when they have the same name. The def-use Emacs mode
uses the information to provide navigation support, which can be particularly useful while reading SML programs compiled with
MLton (such as the MLton compiler itself).

Screen Capture

Note the highlighting and the type displayed in the minibuffer.

Y emacsPlocalhost.localdomain

File Edit Options Buffers Tools SML Help

t# First a plain old type rep for our dataf #=2
wal tl1 = iso Crecord CR' Vid" int
¥ R' "name" stringd
cfrn fid = a, name = b% => a & b,
frn a & b =% £id = a, name = bi

L Theh we assigh wersion 1% to the Ltypei #
wal £ = wersioned $ 1 1

wal pickleVl = pickle L

L# Then a plain old type rep for our new datai
wal L2 = iso (record (R' "id" int
' R' "ewbrs" kool
¥ R' "name" stringd
Cfn #id = a, extra = b, name = ¥ =x a & b & o,
fna % b & o= £iid = a, extra = b, name = ci

L Theh we assigh wersion i2% to the new type, kesping the
yersion 1% for the old typel =2
wal £t = wersioned (wersion 1 t1
Lfn £id, name: =i
iid = id, extra = false, name = namekrl
$ 2 t2

Mote that the original wersioned it} i= no longer needed,
In an actual program, gou would have just edited the
original definition instead of introducing a new one,
Howewer . the old type rep i= reguired if you wish to be
akble to unpickle old wersions,

thatEg t fexpect iid = 1, extra = false, name = "whatever"3,
actual unpickle t
Ccpickilevd fid = 1, name = "whatever":):
¥ thatEg t fexpect iid = 3, extra = true, name = "uhenever"},
f actual unpickle t (pickle L {id = 3, extra = true,

T ickle,sml 28R 099,410 SWHie3®1 CSHML EGE DX
PR {id: int, namet string® - =tring

Features

 Highlights definitions and uses. Different colors for definitions, unused definitions, and uses.

» Shows types (with highlighting) of variable definitions in the minibuffer.

MLton Guide (20180207) 153 /611

e Navigation: jump-to-def, jump-to-next, and jump-to-prev. These work precisely (no searching involved).
* Can list, visit and mark all references to a definition (within a program).

* Automatically reloads updated def-use files.

* Automatically loads previously used def-use files at startup.

 Supports both Gnu Emacs and XEmacs.

Download

There is no separate package for the def-use mode although the mode has been relatively stable for some time already. To install
the mode you need to get the Emacs Lisp, * . e1, files from MLton’s repository: emacs. The easiest way to get the files is to
use Git to access MLton’s sources.

Setup

The easiest way to load def-use mode is to first tell Emacs where to find the files. For example, add

(add-to-1list ’load-path (file-truename "path-to-the-el-files"))

to your ~/ .emacs or ~/ .xemacs/init.el. You’ll probably also want to start de f—use-mode automatically by adding

(require "esml-du-mlton)
(def-use—-mode)

to your Emacs init file. Once the def-use mode is activated, you should see the DU indicator on the mode line.

Usage

To use def-use mode one typically first sets up the program’s makefile or build script so that the def-use information is saved each
time the program is compiled. In addition to the ~show-def-use file option, the -prefer-abs-paths true expert
option is required. Note that the time it takes to save the information is small (compared to type-checking), so it is recommended
to simply add the options to the MLton invocation that compiles the program. However, it is only necessary to type check the
program (or library), so one can specify the —stop tc option. For example, suppose you have a program defined by an MLB
file named my-prg.mlb, you can save the def-use information to the file my-prg.du by invoking MLton as:

mlton -prefer-abs-paths true -show-def-use my-prg.du -stop tc my-prg.mlb

Finally, one needs to tell the mode where to find the def-use information. This is done with the esml-du-mlton command.
For example, to load the my—-prg. du file, one would type:

M-x esml-du-mlton my-prg.du

After doing all of the above, find an SML file covered by the previously saved and loaded def-use information, and place the cursor
at some variable (definition or use, it doesn’t matter). You should see the variable being highlighted. (Note that specifications in
signatures do not define variables.)

You might also want to setup and use the Bg-Build mode to start builds automatically.

Types

—-show—def—-use output was extended to include types of variable definitions in revision r6333. To get good type names,
the types must be in scope at the end of the program. If you are using the ML Basis system, this means that the root MLB-file
for your application should not wrap the libraries used in the application inside 1ocal ...in ...end, because that would
remove them from the scope before the end of the program.

http://www.gnu.org/software/emacs/
http://www.xemacs.org
https://github.com/MLton/mlton/tree/master/ide/emacs
https://github.com/MLton/mlton/commit/%3A%2FSVN%20r6333

MLton Guide (20180207) 154 /611

Enscript

GNU Enscript converts ASCII files to PostScript, HTML, and other output languages, applying language sensitive highlighting
(similar to Emacs’s font lock mode). Here are a few states files for highlighting Standard ML.

* sml_simple.st —Provides highlighting of keywords, string and character constants, and (nested) comments.

e sml_verbose.st — Supersedes the above, adding highlighting of numeric constants. Due to the limited parsing available,
numeric record labels are highlighted as numeric constants, in all contexts. Likewise, a binding precedence separated from
infix or infixr by anewline is highlighted as a numeric constant and a numeric record label selector separated from # by
a newline is highlighted as a numeric constant.

* sml_fancy.st — Supersedes the above, adding highlighting of type and constructor bindings, highlighting of explicit bind-
ing of type variables at val and fun declarations, and separate highlighting of core and modules level keywords. Due to the
limited parsing available, it is assumed that the input is a syntactically correct, top-level declaration.

e sml_gaudy.st —Supersedes the above, adding highlighting of type annotations, in both expressions and signatures. Due
to the limited parsing available, it is assumed that the input is a syntactically correct, top-level declaration.

Install and use

* Version 1.6.3 of GNU Enscript

— Copy all files to /usr/share/enscript/hl/ or .enscript/ in your home directory.

— Invoke enscript with ——highlight=sml_simple (or ——highlight=sml_verbose or ——highlight=sml
_fancy or ——highlight=sml_gaudy).

¢ Version 1.6.1 of GNU Enscript

— Append sml_all.st to /usr/share/enscript/enscript.st

— Invoke enscript with ——pretty-print=sml_simple (or ——pretty-print=sml_verbose or ——pretty-
print=sml_fancy or ——pretty-print=sml_gaudy).

Feedback

Comments and suggestions should be directed to MatthewFluet.

http://www.gnu.org/s/enscript/
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_simple.st
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_verbose.st
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_fancy.st
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_gaudy.st
http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
https://github.com/MLton/mlton/blob/master/ide/enscript/sml_all.st

MLton Guide (20180207) 155 /611

EqualityType

An equality type is a type to which PolymorphicEquality can be applied. The Definition and the Basis Library precisely spell out
which types are equality types.

* bool, char, IntInf.int, Int<N>.int, string, and Word<N>.word are equality types.

e forany t,botht arrayandt ref areequality types.

 if t is an equality type, then t 1list,and t vector are equality types.

e iftl,..., tn are equality types,thentl » ...+ tnand {11:t1, ..., 1ln:tn} areequality types.

e if t1,..., tn are equality types and t AdmitsEquality, then (t1, ..., tn) t isan equality type.

To check that a type t is an equality type, use the following idiom.

structure S: sig eqgtype t end =
struct
type t = ...
end

Notably, exn and real are not equality types. Neitheris t1 -> t2,forany t1 and t2.

Equality on arrays and ref cells is by identity, not structure. For example, ref 13 =ref 13 is false. On the other hand,
equality for lists, strings, and vectors is by structure, not identity. For example, the following equalities hold.

val _ = [1, 2, 3] =1 :: [2, 3]
Val _ . "fOO" = concat ["f", "O", "O"]
val _ = Vector.fromList [1, 2, 3] = Vector.tabulate (3, fn i => i + 1)

MLton Guide (20180207) 156 /611

EqualityTypeVariable

An equality type variable is a type variable that starts with two or more primes, as in ”a or “b. The canonical use of equality
type variables is in specifying the type of the PolymorphicEquality function, which is “a = ’’a —-> bool. Equality type
variables ensure that polymorphic equality is only used on equality types, by requiring that at every use of a polymorphic value,
equality type variables are instantiated by equality types.

For example, the following program is type correct because polymorphic equality is applied to variables of type ” a.

fun £ (x: "’a, y: '"a): bool = x =y

On the other hand, the following program is not type correct, because polymorphic equality is applied to variables of type ’ a,
which is not an equality type.

fun £ (x: ’"a, y: 'a): bool = x =y

MLton reports the following error, indicating that polymorphic equality expects equality types, but didn’t get them.

Error: z.sml 1.30-1.34.

Function applied to incorrect argument.
expects: [<equality>] * [<equality>]
but got: ["a] x ["a]
in: = (x, y)

As an example of using such a function that requires equality types, suppose that £ has polymorphic type “a —> unit. Then,
f 13istype correct because int is an equality type. On the other hand, £ 13.0and £ (fn x => x) are not type correct,
because real and arrow types are not equality types. We can test these facts with the following short programs. First, we verify
that such an f can be applied to integers.

functor Ok (val f: ""a -> unit): sig end =
struct
val () = £ 13
val () = £ 14
end

We can do better, and verify that such an £ can be applied to any integer.

functor Ok (val f: ’’a —-> unit): sig end =
struct
fun g (x: int) = f x
end

Even better, we don’t need to introduce a dummy function name; we can use a type constraint.

functor Ok (val f: "’"a -> unit): sig end =
struct
val _ = f: int -> unit
end

Even better, we can use a signature constraint.
functor Ok (S: sig val f: ’’a —-> unit end):

sig val f: int —-> unit end = S

This functor concisely verifies that a function of polymorphic type “a —> unit can be safely used as a function of type int
—-> unit.

As above, we can verify that such an £ can not be used at non-equality types.

MLton Guide (20180207) 157 /611

functor Bad (S: sig val f: ’’a —-> unit end):
sig val f: real -> unit end = S

functor Bad (S: sig val f: ’'’a —-> unit end):
sig val f: (a -> "a) —-> unit end = S

MLton reports the following errors.

Error: z.sml 2.4-2.30.

Variable in structure disagrees with signature (type): f.
structure: val f: [<equality>] -> _
defn at: z.sml 1.25-1.25
signature: val f: [real] -> _

spec at: z.sml 2.12-2.12
Error: z.sml 5.4-5.36.

Variable in structure disagrees with signature (type): f.
structure: val f: [<equality>] —-> _
defn at: z.sml 4.25-4.25
signature: val f: [_ -> _] -> _

spec at: z.sml 5.12-5.12

Equality type variables in type and datatype declarations

Equality type variables can be used in type and datatype declarations; however they play no special role. For example,

type 'a t = "a % int

is completely identical to

type ''a t = "’a *x int

In particular, such a definition does not require that t only be applied to equality types.
Similarly,

datatype 'a t = A | B of 'a

is completely identical to

datatype "'a t = A | B of ""a

MLton Guide (20180207) 158 /611

EtaExpansion

Eta expansion is a simple syntactic change used to work around the ValueRestriction in Standard ML.

The eta expansion of an expression e is the expression fn z => e z, where z does not occur in e. This only makes sense
if e denotes a function, i.e. is of arrow type. Eta expansion delays the evaluation of e until the function is applied, and will
re-evaluate e each time the function is applied.

The name "eta expansion" comes from the eta-conversion rule of the lambda calculus. Expansion refers to the directionality of
the equivalence being used, namely taking e to fn z => e zratherthan fn z => e z to e (eta contraction).

MLton Guide (20180207) 159 /611

eXene

eXene is a multi-threaded X Window System toolkit written in ConcurrentML.

There is a group at K-State working toward eXene 2.0.

http://people.cs.uchicago.edu/%7Ejhr/eXene/index.html
http://www.cis.ksu.edu/%7Estough/eXene/

MLton Guide (20180207) 160 /611

FAQ

Feel free to ask questions and to update answers by editing this page. Since we try to make as much information as possible
available on the web site and we like to avoid duplication, many of the answers are simply links to a web page that answers the
question.

How do you pronounce MLton?

Pronounce

What SML software has been ported to MLton?

Libraries

What graphical libraries are available for MLton?

Libraries

How does MLton’s performance compare to other SML compilers and to other languages?

MLton has excellent performance.

Does MLton treat monomorphic arrays and vectors specially?
MLton implements monomorphic arrays and vectors (e.g. BoolArray, Word8Vector) exactly as instantiations of their

polymorphic counterpart (e.g. bool array, Word8.word vector). Thus, there is no need to use the monomorphic
versions except when required to interface with the Basis Library or for portability with other SML implementations.

Why do | get a Segfault/Bus error in a program that uses IntInf/LargeInt to calculate numbers
with several hundred thousand digits?

GnuMP

How can | decrease compile-time memory usage?

* Compile with —~verbose 3 to find out if the problem is due to an SSA optimization pass. If so, compile with ~disable-
pass pass to skip that pass.

* Compile with @MLton hash-cons 0.5 --, which will instruct the runtime to hash cons the heap every other GC.

* Compile with -polyvariance false, which is an undocumented option that causes less code duplication.

Also, please Contact us to let us know the problem to help us better understand MLton’s limitations.

How portable is SML code across SML compilers?

StandardMLPortability

MLton Guide (20180207)

161 /611

Features

MLton has the following features.

Portability

* Runs on a variety of platforms.

ARM:

*k

Linux (Debian)

Alpha:

*k

Linux (Debian)

AMDG64:

k

*

*

*

*

Darwin (Mac OS X)
FreeBSD

Linux (Debian, Fedora, Ubuntu, ...

OpenBSD
Solaris (10 and above)

HPPA:

*k

*k

HPUX (11.11 and above)
Linux (Debian)

1A64:

*k

*k

HPUX (11.11 and above)
Linux (Debian)

PowerPC:

*

*

*

AIX (5.2 and above)
Darwin (Mac OS X)
Linux (Debian, Fedora, ...)

PowerPCo64:

k

AIX (5.2 and above)

S390

k

Linux (Debian)

Sparc

*

k

Linux (Debian)
Solaris (8 and above)

X86:

Cygwin/Windows
Darwin (Mac OS X)
FreeBSD

Linux (Debian, Fedora, Ubuntu, ...

MinGW/Windows
NetBSD

OpenBSD

Solaris (10 and above)

MLton Guide (20180207) 162/ 611

Robustness

 Supports the full SML 97 language as given in The Definition of Standard ML (Revised).

If there is a program that is valid according to the Definition that is rejected by MLton, or a program that is invalid according
to the Definition that is accepted by MLton, it is a bug. For a list of known bugs, see UnresolvedBugs.

* A complete implementation of the Basis Library.

MLton’s implementation matches latest Basis Library specification, and includes a complete implementation of all the required
modules, as well as many of the optional modules.

¢ Generates standalone executables.

No additional code or libraries are necessary in order to run an executable, except for the standard shared libraries. MLton can
also generate statically linked executables.

* Compiles large programs.

MLton is sufficiently efficient and robust that it can compile large programs, including itself (over 190K lines). The distributed
version of MLton was compiled by MLton.

* Support for large amounts of memory (up to 4G on 32-bit systems; more on 64-bit systems).
« Support for large array lengths (up to 23'-1 on 32-bit systems; up to 2%3-1 on 64-bit systems).

* Support for large files, using 64-bit file positions.

Performance

» Executables have excellent running times.

¢ Generates small executables.

MLton takes advantage of whole-program compilation to perform very aggressive dead-code elimination, which often leads to
smaller executables than with other SML compilers.

» Untagged and unboxed native integers, reals, and words.

In MLton, integers and words are 8 bits, 16 bits, 32 bits, and 64 bits and arithmetic does not have any overhead due to tagging
or boxing. Also, reals (32-bit and 64-bit) are stored unboxed, avoiding any overhead due to boxing.

* Unboxed native arrays.

In MLton, an array (or vector) of integers, reals, or words uses the natural C-like representation. This is fast and supports
easy exchange of data with C. Monomorphic arrays (and vectors) use the same C-like representations as their polymorphic
counterparts.

* Multiple garbage collection strategies.

* Fast arbitrary precision arithmetic (Int Inf) based on GnuMP.

For Int Inf intensive programs, MLton can be an order of magnitude or more faster than Poly/ML or SML/NJ.

Tools

* Source-level Profiling of both time and allocation.
* MLLex lexer generator
* MLYacc parser generator

* MLNLFFIGen foreign-function-interface generator

http://www.standardml.org/Basis

MLton Guide (20180207) 163 /611

Extensions

* A simple and fast C ForeignFunctionInterface that supports calling from SML to C and from C to SML.

The ML Basis system for programming in the very large, separate delivery of library sources, and more.

A number of extension libraries that provide useful functionality that cannot be implemented with the Basis Library. See below
for an overview and MLtonStructure for details.

continuations
MLton supports continuations via callcc and throw.

finalization
MLton supports finalizable values of arbitrary type.

interval timers
MLton supports the functionality of the C set it imer function.

random numbers

MLton has functions similar to the C rand and srand functions, as well as support for access to /dev/random and /
dev/urandom.

resource limits

MLton has functions similar to the C getrlimit and setrlimit functions.

resource usage
ML.ton supports a subset of the functionality of the C get rusage function.

signal handlers

MLton supports signal handlers written in SML. Signal handlers run in a separate MLton thread, and have access to the
thread that was interrupted by the signal. Signal handlers can be used in conjunction with threads to implement preemptive
multitasking.

size primitive

MLton includes a primitive that returns the size (in bytes) of any object. This can be useful in understanding the space
behavior of a program.

system logging

MLton has a complete interface to the C syslog function.

threads

MLton has support for its own threads, upon which either preemptive or non-preemptive multitasking can be implemented.
MLton also has support for Concurrent ML (CML).

weak pointers

MLton supports weak pointers, which allow the garbage collector to reclaim objects that it would otherwise be forced to
keep. Weak pointers are also used to provide finalization.

world save and restore

MLton has a facility for saving the entire state of a computation to a file and restarting it later. This facility can be used
for staging and for checkpointing computations. It can even be used from within signal handlers, allowing interrupt driven
checkpointing.

MLton Guide (20180207) 164 /611

FirstClassPolymorphism

First-class polymorphism is the ability to treat polymorphic functions just like other values: pass them as arguments, store them
in data structures, etc. Although Standard ML does have polymorphic functions, it does not support first-class polymorphism.

For example, the following declares and uses the polymorphic function id.

If SML supported first-class polymorphism, we could write the following.

fun uselId id = (id 13; id "foo")

However, this does not type check. MLton reports the following error.

Error: z.sml 1.24-1.31.
Function applied to incorrect argument.
expects: [int]
but got: [string]
in: id "foo"

The error message arises because MLton infers from id 13 that 1d accepts an integer argument, but that id "foo" is passing
a string.
Using explicit types sheds some light on the problem.

fun uselId (id: 'a -> ’'a) = (id 13; id "foo")

On this, MLton reports the following errors.

Error: z.sml 1.29-1.33.
Function applied to incorrect argument.

expects: ['a]
but got: [int]
in: id 13

Error: z.sml 1.36-1.43.
Function applied to incorrect argument.
expects: ['al]
but got: [string]
in: id "foo"

The errors arise because the argument id is not polymorphic; rather, it is monomorphic, with type *a -> ’ a. It is perfectly

valid to apply id to a value of type ’ a, as in the following

fun useId (id: 'a -> ’a, x: 'a) = id x (* type correct x)

So, what is the difference between the type specification on id in the following two declarations?

val id: 'a -> 'a = fn x => x
fun uselId (id: 'a -> ’'a) = (id 13; id "foo")

While the type specifications on id look identical, they mean different things. The difference can be made clearer by explicitly
scoping the type variables.

val 'a id: 'a —> "a = fn x => x
fun ’"a uselId (id: 'a -> "a) = (id 13; id "foo") (» type error x)

MLton Guide (20180207) 165 /611

In val ’a id, the type variable scoping means that for any ’a, id has type “a —-> ’"a. Hence, id can be applied to
arguments of type int, real, etc. Similarly, in fun ’a useId, the scoping means that useId is a polymorphic function

that for any ’ a takes a function of type *a —> ' a and does something. Thus, useId could be applied to a function of type
int -> int,real —-> real,etc.

One could imagine an extension of SML that allowed scoping of type variables at places other than fun or val declarations, as
in the following.

fun useId (id: ('a).’a -> ’'a) = (id 13; id "foo") (x not SML =)

Such an extension would need to be thought through very carefully, as it could cause significant complications with Typelnfer-
ence, possible even undecidability.

ML.ton Guide (20180207) 166 /611

Fixpoints
This page discusses a framework that makes it possible to compute fixpoints over arbitrary products of abstract types. The code
is from an Extended Basis library (README).

First the signature of the framework (tie.sig):

(

*

A framework for computing fixpoints.

In a strict language you sometimes want to provide a fixpoint
combinator for an abstract type {t} to make it possible to write
recursive definitions. Unfortunately, a single combinator {fix} of the
type {(t -> t) —-> t} does not support mutual recursion. To support
mutual recursion, you would need to provide a family of fixpoint
combinators having types of the form {(u -> u) -> u} where {u} is a
type of the form {t ... % t}. Unfortunately, even such a family of
fixpoint combinators does not support mutual recursion over different
abstract types.

L I T T R

*)
signature TIE = sig
include ETAEXP’
type 'a t = "a etaexp
(#+* The type of fixpoint witnesses. x)

val fix : "a t -> ’'a Fix.t
(**
* Produces a fixpoint combinator from the given witness. For example,

* one can make a mutually recursive definition of functions:

*

*> val isEven & is0Odd =

*> let open Tie in fix (function %' function) end
*> (fn isEven & is0dd =>

*> (fn 0 => true

*> | 1 => false

*> | n => isOdd (n-1)) &

*> (fn 0 => false

*> | 1 => true

*> | n => isEven (n-1)))

*)

(#+* == Making New Witnesses == x)
val pure : (‘a * 'a UnOp.t) Thunk.t -> ’"a t
(**
* {pure} is a more general version of {tier}. It is mostly useful for

* computing fixpoints in a non-imperative manner.

*)

val tier : ('a * "a Effect.t) Thunk.t -> ’'a t

(**

* {tier} is used to define fixpoint witnesses for new abstract types
* by providing a thunk whose instantiation allocates a mutable proxy
* and a procedure for updating it with the result.

*)

val id : 'a -> 'a t
(% {id x} is equivalent to {pure (const (x, 1id))}. x)

(x*x == Combining Existing Witnesses == x)

val iso : 'b t -> ('a, ’'b) Iso.t —> 'a t

https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/README
https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/public/generic/tie.sig

MLton Guide (20180207) 167 /611

(**

* Given an isomorphism between {’a} and {’b} and a witness for {’b},
* produces a witness for {’a}. This is useful when you have a new

* type that is isomorphic to some old type for which you already have
* a witness.

*)

val product : "a t x ("a —> 'b t) -> ('a, ’'b) Product.t t

(**

x Dependent product combinator. Given a witness for {’a} and a

* constructor from a {’a} to witness for {’b}, produces a witness for
* the product {("a, ’'b) Product.t}. The constructor for {’b} should
* not access the (proxy) value {’a} before it has been fixed.

val Y : 'at x 'bt —> ("a, "b) Product.t t
(xx {a "' b} is equivalent to {product (a, const b)}. x)

val tuple2 : "a t » 'b t > (a » 'b) t

(**

* Given witnesses for {’a} and {’b} produces a witness for the product
* {"a * "b}.

*)

(x+* == Particular Witnesses == x*)

val function : (Ya -> 'b) t
(x* Witness for functions. =*)
end

fix is a type-indexed function. The type-index parameter to £ix is called a "witness". To compute fixpoints over products,
one uses the = * operator to combine witnesses. To provide a fixpoint combinator for an abstract type, one implements a witness
providing a thunk whose instantiation allocates a fresh, mutable proxy and a procedure for updating the proxy with the solution.
Naturally this means that not all possible ways of computing a fixpoint of a particular type are possible under the framework.
The pure combinator is a generalization of t ier. The iso combinator is provided for reusing existing witnesses.

Note that instead of using an infix operator, we could alternatively employ an interface using Fold. Also, witnesses are eta-
expanded to work around the value restriction, while maintaining abstraction.

Here is the implementation (tie . sml):

structure Tie :> TIE = struct
open Product
infix &
type 'a etaexp_dom = Unit.t
type 'a etaexp_cod = ("a x*x "a UnOp.t) Thunk.t
type 'a etaexp = 'a etaexp_dom -> 'a etaexp_cod
type 'a t = "a etaexp
fun fix aT £ = let val (a, ta) = aT () () in ta (f a) end
val pure = Thunk.mk
fun iso bT (iso as (_, b2a)) () () = let
val (b, £fB) = bT () ()
in

(b2a b, Fn.map iso £B)
end
fun product (aT, a2bT) () () = let
val (a, fA) = aT () ()
val (b, fB) = a2bT a () ()
in
(a & b, Product.map (fA, £B))
end
(* The rest are not primitive operations. x)

https://github.com/MLton/mltonlib/blob/master/com/ssh/extended-basis/unstable/detail/generic/tie.sml

MLton Guide (20180207)

168 /611

fun op ' (aT, bT) = product (aT, Fn.const bT)

fun tuple2 ab = iso (op *°
fun tier th = pure ((fn (a,

ab) Product.isoTuple2
ua) => (a, Fn.const a o ua)) o th)

fun id x = pure (Fn.const (x, Fn.id))
fun function ? =
pure (fn () => let
val r = ref (Basic.raising Fix.Fix)
in
(fn x => !'r x, fn £ => (r := £ ; £f))
end) °?
end

Let’s then take a look at a couple of additional examples.

Here is a naive implementation of lazy promises:

structure Promise :> sig
type 'a t

val lazy : "a Thunk.t -> "a t

val force : 'a t —-> 'a
val Y : "a t Tie.t
end = struct
datatype 'a t’ =
EXN of exn

| THUNK of "a Thunk.t

| VALUE of 'a
type 'a t = "a t’ Ref.t
fun lazy f = ref (THUNK f)
fun force t =

case !t
of EXN e => raise e
| THUNK f => (t := VALUE (f ()) handle e => t := EXN e ;
| VALUE v => v
fun Y ? = Tie.tier (fn () => let
val r = lazy (raising Fix.Fix)
in
(r, r <\ op := o !)
end) °?

end

An example use of our naive lazy promises is to implement equally naive lazy streams:

structure Stream :> sig

type 'a t
val cons : 'a x 'a t -> 'a
val get : "a t —> ('a x 'a

val Y : "a t Tie.t
end = struct
datatype 'a t = IN of ('a x*

fun cons (x, xs) = IN (Prom
fun get (IN p) = Promise.fo
fun Y ? = Tie.iso Promise.Y

end

Note that above we make use of the 1 so combinator. Here is a finite representation of an infinite stream of ones:

val ones = let

open Tie Stream
in

fix Y (fn ones => cons (1,
end

t
t) Option.t

"a t) Option.t Promise.t

ise.lazy (fn () => SOME (x, xs)))
rce p
(fn IN p => p, IN) 2

ones))

MLton Guide (20180207)

169 /611

Flatten

Flatten is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass flattens arguments to SSA constructors, blocks, and functions.

If a tuple is explicitly available at all uses of a function (resp. block), then:

* The formals and call sites are changed so that the components of the tuple are passed.

* The tuple is reconstructed at the beginning of the body of the function (resp. block).
Similarly, if a tuple is explicitly available at all uses of a constructor, then:

* The constructor argument datatype is changed to flatten the tuple type.
* The tuple is passed flat at each ConApp.

* The tuple is reconstructed at each Case transfer target.

Implementation

e flatten.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/flatten.fun

MLton Guide (20180207) 170/ 611

Fold

This page describes a technique that enables convenient syntax for a number of language features that are not explicitly supported
by Standard ML, including: variable number of arguments, optional arguments and labeled arguments, array and vector literals,
functional record update, and (seemingly) dependently typed functions like printf and scanf.

The key idea to fold is to define functions fold, step0, and $ such that the following equation holds.

fold (a, f) (stepO hl) (stepO h2) ... (stepO hn) $
= f (hn (... (h2 (hl a))))

The name fold comes because this is like a traditional list fold, where a is the base element, and each step function, step0
hi, corresponds to one element of the list and does one step of the fold. The name $ is chosen to mean "end of arguments" from
its common use in regular-expression syntax.

Unlike the usual list fold in which the same function is used to step over each element in the list, this fold allows the step functions
to be different from each other, and even to be of different types. Also unlike the usual list fold, this fold includes a "finishing
function", £, that is applied to the result of the fold. The presence of the finishing function may seem odd because there is no
analogy in list fold. However, the finishing function is essential; without it, there would be no way for the folder to perform an
arbitrary computation after processing all the arguments. The examples below will make this clear.

The functions fold, step0, and $ are easy to define.

fun $ (a, f) = f a
fun id x = x
structure Fold =
struct
fun fold (a, f) g =g (a, f)
fun step0 h (a, f) = fold (h a, f)
end

We’ve placed fold and stepO in the Fold structure but left $ at the toplevel because it is convenient in code to always have
$ in scope. We’ve also defined the identity function, id, at the toplevel since we use it so frequently.

Plugging in the definitions, it is easy to verify the equation from above.

fold (a, f) (stepO hl) (stepO h2) ... (stepO hn) $
= step0 hl (a, f) (stepO h2) ... (stepO hn) $

= fold (hl a, f) (stepO0 h2) ... (stepO hn) $

= step0 h2 (hl a, f) ... (stepO0 hn) $

= fold (h2 (hl a), f) ... (stepO hn) $

= fold (hn (... (h2 (hl a))), f) $

=$ (hn (... (h2 (hl a))), f)

=f (hn (... (h2 (hl a))))

Example: variable number of arguments

The simplest example of fold is accepting a variable number of (curried) arguments. We’ll define a function £ and argument a
such that all of the following expressions are valid.

Fho Hh o Fh b
QO Y Y N
[V RS UREE 63
QO

0

aaas$ (+» as many a’s as we want =)

Off-hand it may appear impossible that all of the above expressions are type correct SML —how can a function £ accept a
variable number of curried arguments? What could the type of £ be? We’ll have more to say later on how type checking works.

MLton Guide (20180207) 171 /611

For now, once we have supplied the definitions below, you can check that the expressions are type correct by feeding them to
your favorite SML implementation.

It is simple to define £ and a. We define f as a folder whose base element is () and whose finish function does nothing. We
define a as the step function that does nothing. The only trickiness is that we must eta expand the definition of £ and a to work
around the ValueRestriction; we frequently use eta expansion for this purpose without mention.

val base = ()

fun finish () = ()
fun step () = ()
val £ = fn z => Fold.fold (base, finish) z
val a = fn z => Fold.step0O step z

One can easily apply the fold equation to verify by hand that £ applied to any number of a’s evaluates to ().

fa...as

= finish (step (... (step base)))
= finish (step (... ()))

= finish ()

= ()

Example: variable-argument sum

Let’s look at an example that computes something: a variable-argument function sum and a stepper a such that

sum (a il) (a 1i2) ... (a im) $ = 11 + 12 + ... + im

The idea is simple — the folder starts with a base accumulator of 0 and the stepper adds each element to the accumulator, s,
which the folder simply returns at the end.

val sum = fn z => Fold.fold (0, fn s => s) z
fun a i = Fold.stepO (fn s => i + s)

Using the fold equation, one can verify the following.

sum (a 1) (a 2) (a 3) $ =6

Step1

It is sometimes syntactically convenient to omit the parentheses around the steps in a fold. This is easily done by defining a new
function, stepl, as follows.

structure Fold =

struct

open Fold

fun stepl h (a, f) b = fold (h (b, a), f)
end

From the definition of step1, we have the following equivalence.

fold (a, f) (stepl h) b
= stepl h (a, f) b
= fold (h (b, a), f)

Using the above equivalence, we can compute the following equation for stepl.

MLton Guide (20180207) 172/ 611

fold (a, f) (stepl hl) bl (stepl h2) b2 ... (stepl hn) bn $
= fold (hl (bl, a), f) (stepl h2) b2 ... (stepl hn) bn $

= fold (h2 (b2, hl (bl, a)), f) ... (stepl hn) bn $

= fold (hn (bn, ... (h2 (b2, hl (bl, a)))), f) $

= f (hn (bn, ... (h2 (b2, hl (bl, a)))))

Here is an example using stepl to define a variable-argument product function, prod, with a convenient syntax.

val prod = fn z => Fold.fold (1, fn p => p) z
val ' = fn z => Fold.stepl (fn (i, p) => i » p) z

The functions prod and ° satisfy the following equation.

prod ‘il ‘i2 ... 'im $ = il * i2 % ... % im

Note that in SML, " i1 is two different tokens, * and i1. We often use * for an instance of a stepl function because of its
syntactic unobtrusiveness and because no space is required to separate it from an alphanumeric token.

Also note that there are no parenthesis around the steps. That is, the following expression is not the same as the above one (in
fact, it is not type correct).

prod (‘'il) (‘i2) ... (‘im) $

Example: list literals

SML already has a syntax for list literals, e.g. [w, x, vy, z].However, using fold, we can define our own syntax.

val list = fn z => Fold.fold ([], rev) z
val ' = fn z => Fold.stepl (op ::) z

The idea is that the folder starts out with the empty list, the steps accumulate the elements into a list, and then the finishing
function reverses the list at the end.

With these definitions one can write a list like:

\ \

list ‘w ‘x 'y ‘z $
While the example is not practically useful, it does demonstrate the need for the finishing function to be incorporated in fold.
Without a finishing function, every use of 1ist would need to be wrapped in rev, as follows.

rev (list ‘w ‘x ‘y ‘z 9)

The finishing function allows us to incorporate the reversal into the definition of 1ist, and to treat 1ist as a truly variable
argument function, performing an arbitrary computation after receiving all of its arguments.

See ArrayLiteral for a similar use of £o1d that provides a syntax for array and vector literals, which are not built in to SML.

Fold right

Just as fold is analogous to a fold left, in which the functions are applied to the accumulator left-to-right, we can define a
variant of fo1d that is analogous to a fold right, in which the functions are applied to the accumulator right-to-left. That is, we
can define functions foldr and stepO0 such that the following equation holds.

foldr (a, f) (stepO hl) (stepO0 h2) ... (stepO hn) $
= f (hl (h2 (... (hn a))))

The implementation of fold right is easy, using fold. The idea is for the fold to start with £ and for each step to precompose the
next hi. Then, the finisher applies the composed function to the base value, a. Here is the code.

MLton Guide (20180207) 173 /611

structure Foldr =
struct
fun foldr (a, f) = Fold.fold (f, fn g => g a)
fun step0 h = Fold.stepO (fn g => g o h)
end

Verifying the fold-right equation is straightforward, using the fold-left equation.

foldr (a, f) (Foldr.stepO hl) (Foldr.stepO h2) ... (Foldr.stepO hn) $
= fold (£, fn g => g a)

(Fold.stepO (fn g => g o hl))

(Fold.stepO (fn g => g o h2))

(Fold.step0O (fn g => g o hn)) $
fn g => g a)

(
((fn g => g o hn) (... ((fn g => g o h2) ((fn g => g o hl) f))))
= (fn g => g a)
((fn g => g o hn) (... ((fn g => g o h2) (f o hl))))
= (fn g => g a) ((fn g => g o hn) (... (£ o hl o h2)))
= (fn g => g a) (f o hl o h2 o ... o hn)
= (f o hl o h2 o ... o hn) a
= f (hl (h2 (... (hn a))))

One can also define the fold-right analogue of stepl.

structure Foldr =
struct
open Foldr
fun stepl h = Fold.stepl (fn (b, g) => g o (fn a => h (b, a)))
end

Example: list literals via fold right

Revisiting the list literal example from earlier, we can use fold right to define a syntax for list literals that doesn’t do a reversal.

val list = fn z => Foldr.foldr ([], fn 1 => 1) z
val ' = fn z => Foldr.stepl (op ::) z

As before, with these definitions, one can write a list like:
list ‘w 'x ‘y ‘z $
The difference between the fold-left and fold-right approaches is that the fold-right approach does not have to reverse the list

at the end, since it accumulates the elements in the correct order. In practice, MLton will simplify away all of the intermediate
function composition, so the the fold-right approach will be more efficient.

Mixing steppers

All of the examples so far have used the same step function throughout a fold. This need not be the case. For example, consider
the following.

val n = fn z => Fold.fold (0, fn i => 1) z
val I = fn z => Fold.stepO (fn 1 => i % 2) z
val O = fn z => Fold.stepO (fn i => 1 *« 2 + 1) z

Here we have one folder, n, that can be used with two different steppers, I and O. By using the fold equation, one can verify the
following equations.

MLton Guide (20180207) 174 /611

noOS$ =0

nIlI S$S-=1
nIOSs$-=2
nIOIS$=>5
nITITIOS$ =14

That is, we’ve defined a syntax for writing binary integer constants.

Not only can one use different instances of step0 in the same fold, one can also intermix uses of step0O and stepl. For
example, consider the following.

val n = fn z => Fold.fold (0, fn i => i) z
val O = fn z => Fold.stepO (fn i => n * 8) z
val ' = fn z => Fold.stepl (fn (i, n) => n = 8 + i) z

Using the straightforward generalization of the fold equation to mixed steppers, one can verify the following equations.
noOS$=20

n ‘30 $ =24

n ‘10 ‘7 $=71

That is, we’ve defined a syntax for writing octal integer constants, with a special syntax, O, for the zero digit (admittedly contrived,

since one could just write * 0 instead of O).

See NumericLiteral for a practical extension of this approach that supports numeric constants in any base and of any type.

(Seemingly) dependent types

A normal list fold always returns the same type no matter what elements are in the list or how long the list is. Variable-argument
fold is more powerful, because the result type can vary based both on the arguments that are passed and on their number. This
can provide the illusion of dependent types.

For example, consider the following.

val £ = fn z => Fold.fold ((), id) =z

val a = fn z => Fold.step0 (fn () => "hello") =z
val b = fn z => Fold.stepO0 (fn () => 13) z

val ¢ = fn z => Fold.stepO (fn () => (1, 2)) =z

Using the fold equation, one can verify the following equations.
= "hello": string

= 13: int

= (1, 2): int * int

o Fh Fh
Q O W
O 0

That is, £ returns a value of a different type depending on whether it is applied to argument a, argument b, or argument c.
The following example shows how the type of a fold can depend on the number of arguments.
val grow = fn z => Fold.fold ([], fn 1 => 1) z

val a = fn z => Fold.step0 (fn x => [x]) z

Using the fold equation, one can verify the following equations.

grow $ = []: 'a list
grow a $ = [[]]: "a list list
grow a a $ = [[[]]1]: "a list list list

Clearly, the result type of a call to the variable argument grow function depends on the number of arguments that are passed.

As a reminder, this is well-typed SML. You can check it out in any implementation.

MLton Guide (20180207) 175/ 611

(Seemingly) dependently-typed functional results

Fold is especially useful when it returns a curried function whose arity depends on the number of arguments. For example,
consider the following.

val makeSum = fn z => Fold.fold (id, fn £ => f 0) =z
val I = fn z => Fold.stepO (fn f => fn i => fn x => f (x + 1)) z

The makeSum folder constructs a function whose arity depends on the number of I arguments and that adds together all of its
arguments. For example, makeSum I $isoftype int —> int andmakeSum I I S$isoftype int —-> int —-> int.

One can use the fold equation to verify that the makeSum works correctly. For example, one can easily check by hand the
following equations.

makeSum I $ 1 =
makeSum I I $ 1
makeSum I I I $

N e
Nl
w w

Returning a function becomes especially interesting when there are steppers of different types. For example, the following
makeSum folder constructs functions that sum integers and reals.

val makeSum = fn z => Foldr.foldr (id, fn £ => £ 0.0) =z
val I = fn z => Foldr.step0 (fn f => fn x => fn i => f (x + real 1)) z
val R = fn z => Foldr.step0 (fn f => fn x: real => fn r => £ (x + 1)) z

With these definitions, makeSum I R $isoftype int —-> real -> real andmakeSum R I I $isoftype real -
> int -> int -> real. One can use the foldr equation to check the following equations.

makeSum I $ 1
makeSum I R $
I

1.
2.
makeSum R I 1.

o o1 O
ol
w W
I o

1
$
We used foldr instead of fold for this so that the order in which the specifiers I and R appear is the same as the order in

which the arguments appear. Had we used fold, things would have been reversed.

An extension of this idea is sufficient to define Printf-like functions in SML.

An idiom for combining steps
It is sometimes useful to combine a number of steps together and name them as a single step. As a simple example, suppose that
one often sees an integer follower by a real in the make Sum example above. One can define a new compound step IR as follows.

val IR = fn u => Fold.fold u I R

With this definition in place, one can verify the following.

makeSum IR IR $ 1 2.2 3 4.4 = 10.6

In general, one can combine steps s1, s2,... sn as

fn u => Fold.fold u sl s2 ... sn

The following calculation shows why a compound step behaves as the composition of its constituent steps.

fold u (fn u => fold u sl s2 ... sn)
= (fn u => fold u sl s2 ... sn) u
= fold u sl s2 ... sn

MLton Guide (20180207) 176 /611

Post composition

Suppose we already have a function defined via fold, w =fold (a, £f), and we would like to construct a new fold function
that is like w, but applies g to the result produced by w. This is similar to function composition, but we can’t justdo g o w,
because we don’t want to use g until w has been applied to all of its arguments and received the end-of-arguments terminator $.

More precisely, we want to define a post-composition function post that satisfies the following equation.

post (w, g) sl ... sn $ =g (w sl ... sn $)

Here is the definition of post.

structure Fold =

struct

open Fold

fun post (w, g) s =w (fn (a, h) => s (a, g o h))
end

The following calculations show that post satisfies the desired equation, where w =fold (a, f).

post (w, g) s
=w (fn (a, h)
= fold (a, f)
= (fn (a, h) =
= s (a, g o £f)
= fold (a, g o f) s

=> s (a, g o h))
(fn (a, h) => s (a, g o h))
> s (a, g o h)) (a, f)

Now, suppose s1 =step0 hi for i from 1 to n.

post (w, g) sl s2 ... sn §

= fold (a, g o f) sl s2 ... sn $
(g o £f) (hn (... (hl a)))

=g (f (hn (... (hl a))))

=g (fold (a, f) sl ... sn 9)

=g (wsl ... sn $)

For a practical example of post composition, see ArrayLiteral.

Lift
We now define a peculiar-looking function, 11 £t 0, that is, equationally speaking, equivalent to the identity function on a step
function.

fun 1ift0 s (a, f) = fold (fold (a, id) s $, f)

Using the definitions, we can prove the following equation.

fold (a, f) (1ift0 (stepO h)) = fold (a, f) (stepO0 h)

Here is the proof.

fold (a, f) (1ift0 (stepO h))
= 1ift0 (stepO0 h) (a, f)

= fold (fold (a, id) (stepO h) $, f)
= fold (stepO h (a, id) $, f)

= fold (fold (h a, id) $, f)

= fold ($ (h a, id), f)

= fold (id (h a), f)

= fold (h a, f)

= step0 h (a, f)
= fold (a, f) (stepO h)

If 1i£t0 is the identity, then why even define it? The answer lies in the typing of fold expressions, which we have, until now,
left unexplained.

MLton Guide (20180207) 177 1 611

Typing

Perhaps the most surprising aspect of fold is that it can be checked by the SML type system. The types involved in fold
expressions are complex; fortunately type inference is able to deduce them. Nevertheless, it is instructive to study the types of
fold functions and steppers. More importantly, it is essential to understand the typing aspects of fold in order to write down
signatures of functions defined using fold and step.

Here is the FOLD signature, and a recapitulation of the entire Fold structure, with additional type annotations.

signature FOLD =
sig
type "b, 'c, 'd) step ='a x (b > '¢c) —> 'd
type 'b, 'c, 'd) t = ("a, 'b, 'c, 'd) step -> ’d
type (al, "a2, ’'b, 'c, 'd) stepO =
("al, 'b, 'c, (a2, 'b, 'c, 'd) t) step
type (’all, 'al2, a2, 'b, 'c, ’'d) stepl =
("al2, ’'b, 'c, 'all -> (a2, '"b, 'c, ’'d) t) step

("a,
("a,

val fold: "a x (b —> '¢c) —> ('a, 'b, 'c, 'd) t
val 1ift0: ("al, ’'a2, '"a2, 'a2, '"a2) stepl
-> ('al, ’'a2, 'b, 'c, ’'d) stepl
val post: ("a, 'b, 'cl, 'd) t x (‘cl —> ’c2)
-> ('a, 'b, ’'c2, 'd) t
val stepO: (‘al -> ’"a2) -> ('al, 'a2, 'b, 'c, ’'d) stepO
val stepl: ('all = "al2 -> ’'a2)
-> ('all, ’'al2, "a2, ’'b, 'c, ’'d) stepl
end

structure Fold:> FOLD =
struct
type ('a, 'b, 'c, 'd) step ='a x (b > 'c) -> 'd

type ("a, 'b, 'c, 'd) t = ("a, 'b, 'c, 'd) step —> 'd

type (al, "a2, ’'b, 'c, 'd) stepO =
("al, 'b, 'c, (a2, 'b, 'c, 'd) t) step

type ("all, ’"al2, ’'a2, '"b, ’'c, ’'d) stepl =
("al2, 'b, 'c, ’'all -> (a2, 'b, 'c, ’'d) t) step

fun fold (a: ’'a, f: b —> 'c)
(g: ("a, '"b, 'c, 'd) step): 'd =
g (a, f)

fun stepO0 (h: "al -> "a2)
(al: 'al, f: "b -> '¢c): ("a2, "b, 'c, 'd) t =
fold (h al, f)

fun stepl (h: "all = "al2 -> ’"a2)
(al2: 'al2, f: '"b -> 'c)
(all: "all): (a2, 'b, 'c, ’'d) t =
fold (h (all, al2), f)

fun 1ift0 (s: ('al, 'a2, a2, ’'az, "a2) stepl)
(a: "al, f: '"b —> '¢c): (a2, 'b, 'c, 'd) t =
fold (fold (a, id) s $, f)

fun post (w: ('a, 'b, 'cl, ’d) t,
g: 'cl => 'c2)
(s: ("a, "b, "c2, 'd) step): 'd =
w (fn (a, h) => s (a, g o h))
end

MLton Guide (20180207) 178 /611

That’s a lot to swallow, so let’s walk through it one step at a time. First, we have the definition of type Fold. step.

type ('a, 'b, 'c, 'd) step ='a x (b -> 'c) -> 'd

As a fold proceeds over its arguments, it maintains two things: the accumulator, of type ’ a, and the finishing function, of type
b -> ’c. Each step in the fold is a function that takes those two pieces (i.e. “a * (‘b -> ’c) and does something to
them (i.e. produces ’ d). The result type of the step is completely left open to be filled in by type inference, as it is an arrow type
that is capable of consuming the rest of the arguments to the fold.

A folder, of type Fold. t, is a function that consumes a single step.

type ("a, 'b, 'c, 'd) t = ("a, 'b, 'c, 'd) step —> 'd

Expanding out the type, we have:

type ('a, 'b, 'c, ’'d) t = ("a x (b > 'c) —> 'd) > ’d

This shows that the only thing a folder does is to hand its accumulator (a) and finisher (b —> ' c) to the next step (" a *
("b => 'c) —> ’d). If SML had first-class polymorphism, we would write the fold type as follows.

type ("a, 'b, ’'c) t = Forall ’'d . ("a, "b, ’'c, 'd) step -> 'd

This type definition shows that a folder had nothing to do with the rest of the fold, it only deals with the next step.

We now can understand the type of fold, which takes the initial value of the accumulator and the finishing function, and
constructs a folder, i.e. a function awaiting the next step.

val fold: "a ('b —> '¢c) -> ('a, "b, 'c, 'd) t
fun fold (a: 'a, f: "b -> 'c)
(g: ("a, '"b, 'c, 'd) step): 'd =
g (a, f)

Continuing on, we have the type of step functions.
type ('al, 'a2, ’'"b, ’'c, 'd) step0 =
("al, 'b, "¢, ("a2, 'b, ’'c, ’'d) t) step
Expanding out the type a bit gives:
type ('al, 'a2, ’'"b, ’'c, 'd) step0 =
'al » ("b => 'c) -> (a2, 'b, 'c, ’'d) t
So, a step function takes the accumulator (” a1) and finishing function (‘b —> ' c), which will be passed to it by the previous
folder, and transforms them to a new folder. This new folder has a new accumulator (” a2) and the same finishing function.
Again, imagining that SML had first-class polymorphism makes the type clearer.

type ("al, "a2) stepO =
Forall (b, 'c) . ('al, "b, 'c, (a2, "b, ’'c) t) step

Thus, in essence, a stepO function is a wrapper around a function of type * al —> ‘a2, which is exactly what the definition
of stepO does.

val stepO: (al -> "a2) -> ('al, "a2, ’'b, ’'c, "d) stepO
fun stepO0 (h: "al -> "a2)
(al: 'al, f: 'b —> ’'c): ("a2, 'b, 'c, ’'d) t =
fold (h al, f)

It is not much beyond stepO to understand stepl.

type ('all, 'al2, "a2, 'b, ’'c, 'd) stepl =
("al2, 'b, ’'c, 'all -> (a2, 'b, 'c, 'd) t) step

MLton Guide (20180207) 179 /611

A stepl function takes the accumulator (* a12) and finisher (b —> ' c) passed to it by the previous folder and transforms
them into a function that consumes the next argument (a11) and produces a folder that will continue the fold with a new
accumulator (” a2) and the same finisher.

fun stepl (h: "all x "al2 -> ’'a2)
(al2: "al2, f: b -> 'c¢)
(all: 'all): ("a2, 'b, 'c, 'd) t =
fold (h (all, al2), f)

With first-class polymorphism, a stepl function is more clearly seen as a wrapper around a binary function of type “all =«
ral2 -> "a2.

type ('all, "al2, "a2) stepl =
Forall (b, 'c) . ('al2, '"b, ’'c, 'all -> (a2, '"b, ’'c) t) step

The type of post is clear: it takes a folder with a finishing function that produces type ' c1, and a function of type ' c1 —->
" c2 to postcompose onto the folder. It returns a new folder with a finishing function that produces type ’ c2.

val post: ("a, "b, ’'cl, 'd) t x (‘cl —-> "c2)
-> ('a, 'b, 'c2, ’'d)
fun post (w: (‘a, 'b, ’'cl, ’'d)
g: 'cl —> 'c2)
(s: ("a, "b, 'c2, ’d) step): 'd =
w (fn (a, h) => s (a, g o h))

t
t

’

We will return to 1i £t 0 after an example.

An example typing

Let’s type check our simplest example, a variable-argument fold. Recall that we have a folder f and a stepper a defined as
follows.

val £ = fn z => Fold.fold ((), fn () => ()) z
val a fn z => Fold.stepO (fn () => ()) z

Since the accumulator and finisher are uninteresting, we’ll use some abbreviations to simplify things.
type ’'d step = (unit, unit, unit, ’'d) Fold.step

type 'd fold = ’d step —> ’d

With these abbreviations, £ and a have the following polymorphic types.

f: 'd fold
a: 'd step

Suppose we want to type check

f aaa $: unit

As a reminder, the fully parenthesized expression is

((((f a) a) a) a) $

The observation that we will use repeatedly is that for any type z,if f:z foldand s:z step,then £ s:z. So,if we want

(f a a a) $: unit

then we must have

f a a a: unit fold
$: unit step

MLton Guide (20180207) 180 /611

Applying the observation again, we must have

f a a: unit fold fold
a: unit fold step

Applying the observation two more times leads to the following type derivation.

f: unit fold fold fold fold a: unit fold fold fold step
f a: unit fold fold fold a: unit fold fold step

f a a: unit fold fold a: unit fold step

f a a a: unit fold $: unit step

f aaa $: unit

So, each application is a fold that consumes the next step, producing a fold of one smaller type.

One can expand some of the type definitions in £ to see that it is indeed a function that takes four curried arguments, each one a
step function.

f: unit fold fold fold step
—-> unit fold fold step
-> unit fold step
-> unit step
-> unit

This example shows why we must eta expand uses of fold and stepO to work around the value restriction and make folders
and steppers polymorphic. The type of a fold function like £ depends on the number of arguments, and so will vary from use to
use. Similarly, each occurrence of an argument like a has a different type, depending on the number of remaining arguments.

This example also shows that the type of a folder, when fully expanded, is exponential in the number of arguments: there are as
many nested occurrences of the fold type constructor as there are arguments, and each occurrence duplicates its type argument.
One can observe this exponential behavior in a type checker that doesn’t share enough of the representation of types (e.g. one
that represents types as trees rather than directed acyclic graphs).

Generalizing this type derivation to uses of fold where the accumulator and finisher are more interesting is straightforward. One
simply includes the type of the accumulator, which may change, for each step, and the type of the finisher, which doesn’t change
from step to step.

Typing lift

The lack of first-class polymorphism in SML causes problems if one wants to use a step in a first-class way. Consider the
following double function, which takes a step, s, and produces a composite step that does s twice.

fun double s = fn u => Fold.fold u s s

The definition of double is not type correct. The problem is that the type of a step depends on the number of remaining
arguments but that the parameter s is not polymorphic, and so can not be used in two different positions.

Fortunately, we can define a function, 11 £t 0, that takes a monotyped step function and /ifts it into a polymorphic step function.
This is apparent in the type of 11 £t 0.

val 1ift0: ('al, 'az2, '"a2, ’'a2, '"a2) stepO
-> ('al, 'a2, 'b, ’'c, ’'d) stepOl
fun 1ift0 (s: ('al, '"a2, ’'a2, 'a2, "a2) stepl)
(a: 'al, £f: '"b -> '¢c): (a2, '"b, 'c, 'd) t =
fold (fold (a, id) s $, f)

The following definition of double uses 11 £t 0, appropriately eta wrapped, to fix the problem.

fun double s =
let
val s = fn z => Fold.lift0 s z
in
fn u => Fold.fold u s s
end

MLton Guide (20180207) 181/611

With that definition of double in place, we can use it as in the following example.

val £ = fn z => Fold.fold ((), fn () => ()) z
val a = fn z => Fold.step0 (fn () => ()) z
val a2 = fn z => double a z

val () = f a a2 a a2 $

Of course, we must eta wrap the call double in order to use its result, which is a step function, polymorphically.

Hiding the type of the accumulator

For clarity and to avoid mistakes, it can be useful to hide the type of the accumulator in a fold. Reworking the simple variable-
argument example to do this leads to the following.

structure S:>

sig
type ac
val f: (ac, ac, unit, ’'d) Fold.t
val s: (ac, ac, 'b, 'c, ’d) Fold.step0
end =
struct
type ac = unit
val £ = fn z => Fold.fold ((), fn () => ()) z
val s = fn z => Fold.step0 (fn () => ()) z
end

The idea is to name the accumulator type and use opaque signature matching to make it abstract. This can prevent improper
manipulation of the accumulator by client code and ensure invariants that the folder and stepper would like to maintain.

For a practical example of this technique, see ArrayLiteral.

Also see

Fold has a number of practical applications. Here are some of them.

* ArrayLiteral

FoldO1N

* FunctionalRecordUpdate
* NumericLiteral

* Optional Arguments

* Printf

* VariableArityPolymorphism
There are a number of related techniques. Here are some of them.

e StaticSum

* TypelndexedValues

MLton Guide (20180207) 182/ 611

FoldO1N

A common use pattern of Fold is to define a variable-arity function that combines multiple arguments together using a binary
function. It is slightly tricky to do this directly using fold, because of the special treatment required for the case of zero or one
argument. Here is a structure, Fo1d01N, that solves the problem once and for all, and eases the definition of such functions.

structure FoldOlN =
struct
fun fold {finish, start, zero} =
Fold.fold ((id, finish, fn () => zero, start),
fn (finish, _, p, _) => finish (p ()))

fun stepO0 {combine, input} =
Fold.stepO (fn (_, finish, _, f) =>
(finish,
finish,
fn () => f input,
fn x’ => combine (f input, x’)))

fun stepl {combine} z input =
step0 {combine = combine, input = input} z
end

If one has a value zero, and functions start, c, and £inish, then one can define a variable-arity function £ and stepper * as
follows.

val £ = fn z => FoldO1IN.fold {finish = finish, start = start, zero = zero} z
val ‘' = fn z => FoldOlN.stepl {combine = c} z

One can then use the fold equation to prove the following equations.

f $ = zero

f ‘al $ = finish (start al)

f ‘al ‘a2 $ = finish (c (start al, a2))

f ‘al ‘a2 ‘a3 $ = finish (¢ (c (start al, a2), a3))

For an example of Fo1d01N, see VariableArityPolymorphism.

Typing FoldO1N

Here is the signature for Fo1d01N. We use a trick to avoid having to duplicate the definition of some rather complex types in
both the signature and the structure. We first define the types in a structure. Then, we define them via type re-definitions in the
signature, and via open in the full structure.

structure FoldOlN =
struct
type (’input, ’accuml, ’"accum2, ’‘answer, ’zero,
"a, 'b, 'c, 'd, ’'e) t =
(("zero —> ’zero)
* ("accum2 -> "answer)
* (unit —-> ’zero)
* ("input -> ’"accuml),
("a => 'b) * 'c x (unit -> "a) =+ ’'d,
Ib,
'e) Fold.t
type (/inputl, ’'accuml, ’input2, ’"accum2,
"a, 'b, 'c, 'd, 'e, 'f) steplO =
("a * 'b » "c * (/inputl -> ’"accuml),

MLton Guide (20180207) 183 /611

b » b % (unit -> ’accuml) * (’input2 -> "accum2),
'd, 'e, "f) Fold.stepOl

type (’accuml, ’input, ’'accum2,
a, '"b, 'c, 'd, 'e, 'f, '"g) stepl =
("a,
b x 'c x 'd x ("a —> "accuml),
¢ * 'c x (unit -> 'accuml) * (’input -> ’accum?),
e, 'f, "g) Fold.stepl
end

signature FOLD_01N =
sig

type (‘a, 'b, ’'c, ’'d, 'e, 'f, 'g, "h, "i, '3) t =
("a, 'b, 'c, 'd, 'e, "f, 'g, "h, 1, ’j) FoldOIN.t

type (‘a, 'b, 'c, ’'d, 'e, 'f, "g, 'h, "i, "3j) stepO =
("a, '"b, 'c, 'd, 'e, "f, "g, 'h, i, "3j) FoldOlN.stepO

type ('a, 'b, ’'c, 'd, 'e, "£, 'g, "h, "1, ’'3J) stepl =
("a, '"b, 'c, 'd, 'e, "f, 'g, "h, i, ’3j) FoldOlN.stepl

val fold:
{finish: "accum2 -> ’answer,
start: ’"input -> "accuml,
zero: 'zero}
-> (’input, ’'accuml, ’'accum2, ’'answer, ’zero,
"a, "b, 'c, 'd, "e) t

val stepO:
{combine: ’"accuml * ’input2 -> ’accum2,
input: ’‘inputl}
-> (’inputl, ’accuml, ’input2, ’accum2,
"a, "b, 'c, 'd, "e, '"f) stepO

val stepl:
{combine: ’"accuml * ’input -> ’accum2}
-> ("accuml, ’'input, ’accum2,
"a, '"b, 'c, 'd, "e, '"f, 'g) stepl
end

structure FoldO1N: FOLD_O0OIN =
struct
open FoldO1lN

fun fold {finish, start, zero} =
Fold.fold ((id, finish, fn () => zero, start),
fn (finish, _, p, _) => finish (p ()))

fun stepO0 {combine, input} =
Fold.stepO (fn (_, finish, _, f) =>
(finish,
finish,
fn () => f input,
fn x’ => combine (f input, x’)))

fun stepl {combine} z input =
step0 {combine = combine, input = input} z
end

MLton Guide (20180207) 184 /611

ForeignFunctioninterface

MLton’s foreign function interface (FFI) extends Standard ML and makes it easy to take the address of C global objects, access
C global variables, call from SML to C, and call from C to SML. MLton also provides ML-NLFFI, which is a higher-level FFI
for calling C functions and manipulating C data from SML.

Overview

* Foreign Function Interface Types

* Foreign Function Interface Syntax

Importing Code into SML

¢ Calling From SML To C

* Calling From SML To C Function Pointer

Exporting Code from SML

* Calling From C To SML

Building System Libraries

* Library Support

MLton Guide (20180207) 185 /611

ForeignFunctioninterfaceSyntax

MLton extends the syntax of SML with expressions that enable a ForeignFunctionInterface to C. The following description of
the syntax uses some abbreviations.

C base type cBaseTy Foreign Function Interface types
C argument type cArgTy cBaseTy; x ... = cBaseTy, or unit
C return type cRetTy cBaseTy or unit

C function type cFuncTy cArgTy —> cRetTy

C pointer type cPtrTy MLton.Pointer.t

The type annotation and the semicolon are not optional in the syntax of ForeignFunctionlInterface expressions. However, the type
is lexed, parsed, and elaborated as an SML type, so any type (including type abbreviations) may be used, so long as it elaborates
to a type of the correct form.

Address

_address "CFunctionOrVariableName" attr... : cPtrTy;

Denotes the address of the C function or variable.

attr... denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

* external : import with external symbol scope (see LibrarySupport) (default).
* private : import with private symbol scope (see LibrarySupport).

* public : import with public symbol scope (see LibrarySupport).

See MLtonPointer for functions that manipulate C pointers.

Symbol

_symbol "CVariableName" attr... : (unit -> cBaseTy) * (cBaseTy -> unit);

Denotes the getter and setter for a C variable. The cBaseTys must be identical.

attr. .. denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

* alloc: allocate storage (and export a symbol) for the C variable.
* external : import or export with external symbol scope (see LibrarySupport) (default if not alloc).
* private : import or export with private symbol scope (see LibrarySupport).

e public : import or export with public symbol scope (see LibrarySupport) (defaultif alloc).

_symbol x : cPtrTy -> (unit —-> cBaseTy) * (cBaseTy -> unit);

Denotes the getter and setter for a C pointer to a variable. The cBaseTys must be identical.

MLton Guide (20180207) 186 /611

Import

_import "CFunctionName" attr... : cFuncTy;

Denotes an SML function whose behavior is implemented by calling the C function. See Calling from SML to C for more details.

attr... denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

e cdecl : call with the cdec] calling convention (default).

* external : import with external symbol scope (see LibrarySupport) (default).

e impure: assert that the function depends upon state and/or performs side effects (default).
* private : import with private symbol scope (see LibrarySupport).

* public : import with public symbol scope (see LibrarySupport).

* pure: assert that the function does not depend upon state or perform any side effects; such functions are subject to various
optimizations (e.g., CommonSubexp, RemoveUnused)

* reentrant: assert that the function (directly or indirectly) calls an _export-ed SML function.

e stdcall : call with the stdcall calling convention (ignored except on Cygwin and MinGW).

_import x attr... : cPtrTy —-> cFuncTy;

Denotes an SML function whose behavior is implemented by calling a C function through a C function pointer.

attr. .. denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

* cdecl : call with the cdecl calling convention (default).
e impure: assert that the function depends upon state and/or performs side effects (default).

* pure: assert that the function does not depend upon state or perform any side effects; such functions are subject to various
optimizations (e.g., CommonSubexp, RemoveUnused)

* reentrant: assert that the function (directly or indirectly) calls an _export-ed SML function.

* stdcall: call with the stdcall calling convention (ignored except on Cygwin and MinGW).

See Calling from SML to C function pointer for more details.

Export

_export "CFunctionName" attr... : cFuncTy -> unit;

Exports a C function with the name CFunctionName that can be used to call an SML function of the type cFuncTy. When the
function denoted by the export expression is applied to an SML function £, subsequent C calls to CFunct ionName will call
f. It is an error to call CFunct ionName before the export has been applied. The export may be applied more than once, with
each application replacing any previous definition of CFunctionName.

attr... denotes a (possibly empty) sequence of attributes. The following attributes are recognized:

e cdecl : call with the cdecl calling convention (default).
* private : export with private symbol scope (see LibrarySupport).
e public : export with public symbol scope (see LibrarySupport) (default).

* stdcall : call with the stdcall calling convention (ignored except on Cygwin and MinGW).

See Calling from C to SML for more details.

MLton Guide (20180207) 187 /611

ForeignFunctioninterfaceTypes

MLton’s ForeignFunctionInterface only allows values of certain SML types to be passed between SML and C. The following
types are allowed: bool, char, int, real, word. All of the different sizes of (fixed-sized) integers, reals, and words are
supported as well: Int8.int, Int16.int, Int32.int, Int64.1int, Real32.real, Real64.real, Word8.word,
Wordl6.word, Word32.word, Word64 .word. There is a special type, MLton.Pointer.t, for passing C pointers —
see MLtonPointer for details.

Arrays, refs, and vectors of the above types are also allowed. Because in MLton monomorphic arrays and vectors are exactly the
same as their polymorphic counterpart, these are also allowed. Hence, st ring, char vector, and CharVector.vector
are also allowed. Strings are not null terminated, unless you manually do so from the SML side.

Unfortunately, passing tuples or datatypes is not allowed because that would interfere with representation optimizations.

The C header file that —export—header generates includes t ypedefs for the C types corresponding to the SML types. Here
is the mapping between SML types and C types.

SML type C typedef C type Note
array Pointer unsigned char =«

bool Bool int32_t

char Chars8 uint8_t

Int8.int Int8 int8_t

Intl6.int Intl6 intleé_t

Int32.int Int32 int32_t

Int64.int Int64 int64_t

int Int32 int32_t (default)
MLton.Pointer.t Pointer unsigned char =
Real32.real Real32 float

Real64d.real Realoc4 double

real Real64 double (default)
ref Pointer unsigned char =

string Pointer unsigned char = (read only)
vector Pointer unsigned char =« (read only)
Word8.word Word8 uint8_t

Wordl6.word Wordlo6 uintlé6_t

Word32.word Word32 uint32_t

Word64 .word Word64 uinto64d_t

word Word32 uint32_t (default)

Note (default): The default int, real, and word types may be set by the ~default-type type compiler option. The
given C typedef and C types correspond to the default behavior.

Note (read only): Because MLton assumes that vectors and strings are read-only (and will perform optimizations that, for
instance, cause them to share space), you must not modify the data pointed to by the unsigned char =« in C code.

Although the C type of an array, ref, or vector is always Pointer, in reality, the object has the natural C representation. Your C
code should cast to the appropriate C type if you want to keep the C compiler from complaining.

When calling an imported C function from SML that returns an array, ref, or vector result or when calling an exported SML
function from C that takes an array, ref, or string argument, then the object must be an ML object allocated on the ML heap.
(Although an array, ref, or vector object has the natural C representation, the object also has an additional header used by the
SML runtime system.)

In addition, there is an MLBasis file, $ (SML_LIB) /basis/c-types.mlb, which provides structure aliases for various C
types:

C type Structure Signature
char C_Char INTEGER
signed char C_SChar INTEGER

MLton Guide (20180207)

188 /611

unsigned char C_UChar WORD
short C_Short INTEGER
signed short C_SShort INTEGER
unsigned short C_UShort WORD
int C_Int INTEGER
signed int C_SInt INTEGER
unsigned int C_UInt WORD
long C_Long INTEGER
signed long C_SLong INTEGER
unsigned long C_ULong WORD
long long C_LongLong INTEGER
signed long long C_SLongLong INTEGER
unsigned long long C_ULongLong WORD
float C_Float REAL
double C_Double REAL
size_t C_Size WORD
ptrdiff_ t C_Ptrdiff INTEGER
intmax_t C_Intmax INTEGER
ulintmax_t C_UIntmax WORD
intptr_t C_Intptr INTEGER
uintptr_t C_UlIntptr WORD
void = C_Pointer WORD

These aliases depend on the configuration of the C compiler for the target architecture, and are independent of the configuration
of MLton (including the ~default-type type compiler option).

MLton Guide (20180207) 189 /611

ForLoops

A for-loop is typically used to iterate over a range of consecutive integers that denote indices of some sort. For example, in
OCaml a for-loop takes either the form

for <name> = <lower> to <upper> do <body> done
or the form
for <name> = <upper> downto <lower> do <body> done

Some languages provide considerably more flexible for-loop or foreach-constructs.

A bit surprisingly, Standard ML provides special syntax for whi 1e-loops, but not for for-loops. Indeed, in SML, many uses of
for-loops are better expressed using app, foldl/foldr, map and many other higher-order functions provided by the Basis
Library for manipulating lists, vectors and arrays. However, the Basis Library does not provide a function for iterating over a
range of integer values. Fortunately, it is very easy to write one.

A fairly simple design

The following implementation imitates both the syntax and semantics of the OCaml for-loop.

datatype for = to of int *x int
| downto of int = int

infix to downto

val for =
fn lo to up =>
(fn £ => let fun loop lo = if lo > up then ()
else (f lo; loop (lo+l))
in loop lo end)
| up downto lo =>
(fn £ => let fun loop up = if up < lo then ()
else (f up; loop (up-1))
in loop up end)

For example,

for (1 to 9)
(fn 1 => print (Int.toString 1))

would print 123456789 and

for (9 downto 1)
(fn 1 => print (Int.toString 1i))

would print 987654321.
Straightforward formatting of nested loops

for (a to b)
(fn 1 =>

for (c to d)

(fn j =>

2))

is fairly readable, but tends to cause the body of the loop to be indented quite deeply.

MLton Guide (20180207) 190 /611

Off-by-one
The above design has an annoying feature. In practice, the upper bound of the iterated range is almost always excluded and most
loops would subtract one from the upper bound:

for (0 to n-1)
for (n-1 downto 0)

It is probably better to break convention and exclude the upper bound by default, because it leads to more concise code and
becomes idiomatic with very little practice. The iterator combinators described below exclude the upper bound by default.

lterator combinators

While the simple for-function described in the previous section is probably good enough for many uses, it is a bit cumbersome
when one needs to iterate over a Cartesian product. One might also want to iterate over more than just consecutive integers. It
turns out that one can provide a library of iterator combinators that allow one to implement iterators more flexibly.

Since the types of the combinators may be a bit difficult to infer from their implementations, let’s first take a look at a signature
of the iterator combinator library:

signature ITER =

sig
type 'a t = ("a -> unit) -> unit
val return : 'a -> ’'a t
val >>= : 'a t x ("a -> b t) => '"b t
val none : ’'a t
val to : int % int -> int t
val downto : int x= int -> int t
val inList : ’'a list -> ’'a t
val inVector : ’'a vector -> ’'a t
val inArray : 'a array —> ’'a t
val using : ('a, ’'b) StringCvt.reader -> 'b -> ’"a t
val when : "a t * ("a -> bool) -> 'a t
val by : "a t x ("a -=> 'b) —> 'b t
val @@ : "a t x 'at -> Ta t
val »x ¢ "a t x 'b t -> ('a, ’'b) product t
val for : 'a -> 'a
end

Several of the above combinators are meant to be used as infix operators. Here is a set of suitable infix declarations:

infix 2 to downto
infix 1 @@ when by
infix 0 >>= x%*

A few notes are in order:

* The " a t type constructor with the return and >>= operators forms a monad.
* The to and downto combinators will omit the upper bound of the range.
* for is the identity function. It is purely for syntactic sugar and is not strictly required.

* The @@ combinator produces an iterator for the concatenation of the given iterators.

MLton Guide (20180207) 191/611

* The ~* combinator produces an iterator for the Cartesian product of the given iterators.
— See ProductType for the type constructor (’a, ’b) product used in the type of the iterator produced by **.

* The using combinator allows one to iterate over slices, streams and many other kinds of sequences.
* when is the filtering combinator. The name when is inspired by OCaml’s guard clauses.

* by is the mapping combinator.

The below implementation of the I TER-signature makes use of the following basic combinators:

fun const x _ = x

fun flip f x v = £ y x

fun id x = x

fun opt fno fso = fn NONE => fno () | SOME ? => fso ?
fun pass x £ = £ x

Here is an implementation the I TER-signature:

structure Iter :> ITER =
struct
type 'a t = (Ya -> unit) -> unit

val return = pass
fun (iA >>= a2iB) f = iA (flip a2iB f£)

val none = ignore
fun (1 to u) £ = let fun ‘1 = if 1l<u then (f 1; ‘(1+1)) else () in ‘1 end
fun (u downto 1) f = let fun ‘u = 1if u>1 then (f (u-1); ‘(u-1)) else () in ‘u end

fun inList ? = flip List.app ?
fun inVector ? = flip Vector.app ?
fun inArray ? = flip Array.app ?

fun using get s £ = let fun ‘s = opt (const ()) (fn (x, s) => (f x; ‘s)) (get s) in ‘s <«
end

fun (iA when p) £ = iA (fn a => if p a then f a else ())
fun (iA by g) £ = iA (f o g)

fun (iA @@ iB) f = (iA £ : unit; iB f)

fun (iA *x iB) £ = 1A (fn a => iB (fn b => f (a & b)))

val for = id
end

Note that some of the above combinators (e.g. * =) could be expressed in terms of the other combinators, most notably return
and >>=. Another implementation issue worth mentioning is that downt o is written specifically to avoid computing 1-1, which
could cause an Overflow.

To use the above combinators the Iter-structure needs to be opened

open Iter

and one usually also wants to declare the infix status of the operators as shown earlier.
Here is an example that illustrates some of the features:

for (0 to 10 when (fn x => x mod 3 <> 0) #*x inList ["a", "b"] xx 2 downto 1 by real)
(fn x & v & z =>
print (" ("~Int.toString x", \""Ay~"\" "AReal.toString z*")\n"))

MLton Guide (20180207) 192/ 611

Using the Iter combinators one can easily produce more complicated iterators. For example, here is an iterator over a "triangle":

fun triangle (1, u) = 1 to u >>= (fn i => i to u >>= (fn j => return (i, 7Jj)))

MLton Guide (20180207) 193 /611

FrontEnd

FrontEnd is a translation pass from source to the AST IntermediateLanguage.

Description

This pass performs lexing and parsing to produce an abstract syntax tree.

Implementation

e front-end.sig

s front—-end. fun

Details and Notes

The lexer is produced by MLLex fromm1. lex.
The parser is produced by MLYacc from m1 . grm.

The specifications for the lexer and parser were originally taken from SML/NJ (version 109.32), but have been heavily modified
since then.

https://github.com/MLton/mlton/blob/master/mlton/front-end/front-end.sig
https://github.com/MLton/mlton/blob/master/mlton/front-end/front-end.fun
https://github.com/MLton/mlton/blob/master/mlton/front-end/ml.lex
https://github.com/MLton/mlton/blob/master/mlton/front-end/ml.grm

MLton Guide (20180207) 194 /611

FSharp

F# is a functional programming language developed at Microsoft Research. F# was partly inspired by the OCaml language and
shares some common core constructs with it. F# is integrated with Visual Studio 2010 as a first-class language.

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

MLton Guide (20180207) 195 /611

FunctionalRecordUpdate

Functional record update is the copying of a record while replacing the values of some of the fields. Standard ML does not have
explicit syntax for functional record update. We will show below how to implement functional record update in SML, with a
little boilerplate code.

As an example, the functional update of the record

{a =13, b = 14, c = 15}

with ¢ =16 yields a new record

{a =13, b = 14, c = 16}

Functional record update also makes sense with multiple simultaneous updates. For example, the functional update of the record
above witha =18, c¢ =19 yields a new record

{a =18, b = 14, c = 19}

One could easily imagine an extension of the SML that supports functional record update. For example

e with {a = 16, b = 17}

would create a copy of the record denoted by e with field a replaced with 16 and b replaced with 17.

Since there is no such syntax in SML, we now show how to implement functional record update directly. We first give a simple
implementation that has a number of problems. We then give an advanced implementation, that, while complex underneath, is a
reusable library that admits simple use.

Simple implementation

To support functional record update on the record type

{a: "a, b: "b, c: 'c}

first, define an update function for each component.

fun withA ({a = _, b, ¢}, a) = {a =a, b =Db, ¢ c}
fun withB ({a, b = _, ¢}, b) = {a = a, b =Db, ¢ = c}
fun withC ({a, b, ¢ =_}, ¢) = {a =a, b=Db, ¢ = c}

Then, one can express e with {a =16, b =17} as

withB (withA (e, 16), 17)

With infix notation

infix withA withB withC

the syntax is almost as concise as a language extension.

e withA 16 withB 17

This approach suffers from the fact that the amount of boilerplate code is quadratic in the number of record fields. Furthermore,
changing, adding, or deleting a field requires time proportional to the number of fields (because each with <L> function must
be changed). It is also annoying to have to define a with <L> function, possibly with a fixity declaration, for each field.

Fortunately, there is a solution to these problems.

MLton Guide (20180207) 196 /611

Advanced implementation

Using Fold one can define a family of makeUpdate<N> functions and single update operator U so that one can define a
functional record update function for any record type simply by specifying a (trivial) isomorphism between that type and function
argument list. For example, suppose that we would like to do functional record update on records with fields a and b. Then one
defines a function updateAB as follows.

val updateAB =

fn z =>
let
fun from vl v2 = {a = vl, b = v2}
fun to £ {a = vl, b = v2} = £ vl v2
in

makeUpdate2 (from, from, to)
end
Z

The functions from (think from function arguments) and to (think to function arguements) specify an isomorphism between
a,b records and function arguments. There is a second use of £ rom to work around the lack of first-class polymorphism in SML.

With the definition of updateAB in place, the following expressions are valid.

updateAB {a = 13, b = "hello"} (set#b "goodbye") $
updateAB {a = 13.5, b = true} (set#b false) (set#a 12.5) $

As another example, suppose that we would like to do functional record update on records with fields b, ¢, and d. Then one
defines a function updateBCD as follows.

val updateBCD =

fn z =>

let
fun from vl v2 v3 = {b = vl, ¢c = v2, d = v3}
fun to £ {b = vl, ¢ =v2, d=v3} = f vl v2 v3

in
makeUpdate3 (from, from, to)

end

7

With the definition of updateBCD in place, the following expression is valid.

updateBCD {b = 1, ¢ = 2, d = 3} (set#c 4) (set#c 5) $

Note that not all fields need be updated and that the same field may be updated multiple times. Further note that the same set
operator is used for all update functions (in the above, for both updateAB and updateBCD).

In general, to define a functional-record-update function on records with fields £1, £2, ..., £N, use the following template.

val update =

fn z =>
let
fun from vl v2 ... vn = {fl = vl, f2 = v2, ..., fn = vn}
fun to £ {fl1 = vl, f2 =v2, ..., fn = vn} = vl v2 ... vn
in

makeUpdateN (from, from, to)
end
Z

With this, one can update a record as follows.

update {fl = vl, ..., fn = vn} (set#fil vil) ... (set#fim vim) $

MLton Guide (20180207) 197 /611

The FunctionalRecordUpdate structure

Here is the implementation of functional record update.

structure FunctionalRecordUpdate =
struct
local
fun next g (£, z) x =g (f x, z)
fun f1 (£, z) x = £ (z x)
fun f2 =z = next fl =z
fun £f3 z = next f2 =z

fun c0 from = from

fun ¢l from = c0 from f1l
fun c2 from = ¢l from f2
fun ¢3 from = c2 from £3

fun makeUpdate cX (from, from’, to) record =

let
fun ops () = cX from’
fun vars £ = to £ record
in
Fold.fold ((vars, ops), fn (vars, _) => vars from)
end
in
fun makeUpdateO0 =z = makeUpdate cO0 =z
fun makeUpdatel =z = makeUpdate cl =z
fun makeUpdate2 =z = makeUpdate c2 z
fun makeUpdate3 =z = makeUpdate c3 =z
fun upd z = Fold.step2 (fn (s, £, (vars, ops)) => (fn out => vars (s (ops ()) (out ¢
, £)), ops)) z
fun set z = Fold.step2 (fn (s, v, (vars, ops)) => (fn out => vars (s (ops ()) (out ¢
, In _ =>wv)), ops)) z
end
end

The idea of makeUpdate is to build a record of functions which can replace the contents of one argument out of a list of
arguments. The functions f <X> replace the Oth, 1st, ... argument with their argument z. The c <X> functions pass the first X £
functions to the record constructor.

The #field notation of Standard ML allows us to select the map function which replaces the corresponding argument. By
converting the record to an argument list, feeding that list through the selected map function and piping the list into the record
constructor, functional record update is achieved.

Efficiency

With MLton, the efficiency of this approach is as good as one would expect with the special syntax. Namely a sequence of
updates will be optimized into a single record construction that copies the unchanged fields and fills in the changed fields with
their new values.

Before Sep 14, 2009, this page advocated an alternative implementation of FunctionalRecordUpdate. However, the old structure
caused exponentially increasing compile times. We advise you to switch to the newer version.

Applications

Functional record update can be used to implement labelled optional arguments.

MLton Guide (20180207) 198 /611

fxp

fxp is an XML parser written in Standard ML.

It has a patch to compile with MLton.

http://atseidl2.informatik.tu-muenchen.de/%7Eberlea/Fxp/
http://atseidl2.informatik.tu-muenchen.de/%7Eberlea/Fxp/mlton.html

MLton Guide (20180207) 199 /611

GarbageCollection

For a good introduction and overview to garbage collection, see Jones99.

MLton’s garbage collector uses copying, mark-compact, and generational collection, automatically switching between them at
run time based on the amount of live data relative to the amount of RAM. The runtime system tries to keep the heap within RAM
if at all possible.

MLton’s copying collector is a simple, two-space, breadth-first, Cheney-style collector. The design for the generational and
mark-compact GC is based on Sansom91.

Design notes

* http://www.mlton.org/pipermail/mlton/2002-May/012420.html
object layout and header word design

Also see

* Regions

http://www.mlton.org/pipermail/mlton/2002-May/012420.html

MLton Guide (20180207) 200/ 611

GenerativeDatatype

In Standard ML, datatype declarations are said to be generative, because each time a datatype declaration is evaluated, it yields
a new type. Thus, any attempt to mix the types will lead to a type error at compile-time. The following program, which does not
type check, demonstrates this.

functor F () =
struct
datatype t = T
end
structure S1 = F ()
structure S2 = F ()
val _: S1.t -> S2.t = fn x => x

Generativity also means that two different datatype declarations define different types, even if they define identical constructors.
The following program does not type check due to this.

datatype t = A | B

val al = A

datatype t = A | B

val a2 = A

val _ = 1f true then al else a2

Also see

* GenerativeException

MLton Guide (20180207) 201 /611

GenerativeException

In Standard ML, exception declarations are said to be generative, because each time an exception declaration is evaluated, it
yields a new exception.

The following program demonstrates the generativity of exceptions.

exception E
val el = E
fun 1isEl (e: exn): bool
case e of
E => true
| _ => false
exception E
val e2 = E
fun 1sE2 (e: exn): bool
case e of
E => true
| _ => false
fun pb (b: bool): unit =
print (concat [Bool.toString b, "\n"])
val () = (pb (isEl el)
;pb (isEl e2)
; pb (isE2 el)
; pb (isE2 e2))

In the above program, two different exception declarations declare an exception E and a corresponding function that returns t rue
only on that exception. Although declared by syntactically identical exception declarations, e1 and e2 are different exceptions.
The program, when run, prints true, false, false, true.

A slight modification of the above program shows that even a single exception declaration yields a new exception each time it is
evaluated.

fun £ (): exn * (exn —-> bool) =
let
exception E
in
(E, fn E => true | _ => false)
end
val (el, isgl) = £ ()
val (e2, iskE2) = £ ()

fun pb (b: bool): unit =
print (concat [Bool.toString b, "\n"])
val () = (pb (isEl el)
; pb (isEl e2)
; pb (isE2 el)
; pb (isE2 e2))

Each call to £ yields a new exception and a function that returns t rue only on that exception. The program, when run, prints
true, false, false, true.

Type Safety

Exception generativity is required for type safety. Consider the following valid SML program.

fun £ (): ("a —> exn) *x (exn —> 'a) =
let
exception E of ’a
in
(E, fn E x => x | _ => raise Fail "f")

MLton Guide (20180207)

202 /611

end
fun cast (a: ’'a): 'b =
let
val (make: "a —-> exn, _) = f ()
val (_, get: exn -> 'b) = £ ()
in

get (make a)
end
val _ = ((cast 13): int -> int) 14

If exceptions weren’t generative, then each call £

() would yield the same exception constructor E. Then, our cast function

could use make:"a —> exn toconvert any value into an exception and then get :exn —> ' b to convert that exception to a
value of arbitrary type. If cast worked, then we could cast an integer as a function and apply. Of course, because of generative

exceptions, this program raises Fail "f".

Applications

The exn type is effectively a universal type.

Also see

* GenerativeDatatype

MLton Guide (20180207) 203 /611

Git
Git is a distributed version control system. The MLton project currently uses Git to maintain its source code.

Here are some online Git resources.

e Reference Manual

* ProGit, by Scott Chacon

http://git-scm.com/
http://git-scm.com/docs
http://git-scm.com/book

MLton Guide (20180207) 204 /611

Glade

Glade is a tool for generating Gtk user interfaces.

WesleyTerpstra is working on a Glade—mGTK converter.

* http://www.mlton.org/pipermail/mlton/2004-December/016865.html

http://glade.gnome.org/features.html
http://www.mlton.org/pipermail/mlton/2004-December/016865.html

MLton Guide (20180207) 205 /611

Globalize

Globalize is an analysis pass for the SXML IntermediateLanguage, invoked from ClosureConvert.

Description

This pass marks values that are constant, allowing ClosureConvert to move them out to the top level so they are only evaluated
once and do not appear in closures.

Implementation

* globalize.sig

* globalize. fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/closure-convert/globalize.sig
https://github.com/MLton/mlton/blob/master/mlton/closure-convert/globalize.fun

MLton Guide (20180207) 206 /611

GnuMP

The GnuMP library (GNU Multiple Precision arithmetic library) is a library for arbitrary precision integer arithmetic. MLton
uses the GnuMP library to implement the Basis Library Int Inf module.

Known issues

* There is a known problem with the GnuMP library (prior to version 4.2.x), where it requires a lot of stack space for some
computations, e.g. IntInf.toString of a million digit number. If you run with stack size limited, you may see a segfault
in such programs. This problem is mentioned in the GnuMP FAQ, where they describe two solutions.

— Increase (or unlimit) your stack space. From your program, use setrlimit, or from the shell, use ulimit.

— Configure and rebuild 1ibgmp with ——disable-alloca, which will cause it to allocate temporaries using malloc
instead of on the stack.

* On some platforms, the GnuMP library may be configured to use one of multiple ABIs (Application Binary Interfaces). For
example, on some 32-bit architectures, GnuMP may be configured to represent a limb as either a 32-bit 1ong or as a 64-bit
long long. Similarly, GhuMP may be configured to use specific CPU features.

In order to efficiently use the GnuMP library, MLton represents an IntInf.int value in a manner compatible with the
GnuMP library’s representation of a limb. Hence, it is important that MLton and the GnuMP library agree upon the represen-
tation of a limb.

— When using a source package of MLton, building will detect the GnuMP library’s representation of a limb.

— When using a binary package of MLton that is dynamically linked against the GnuMP library, the build machine and the
install machine must have the GnuMP library configured with the same representation of a limb. (On the other hand, the
build machine need not have the GnuMP library configured with CPU features compatible with the install machine.)

— When using a binary package of MLton that is statically linked against the GnuMP library, the build machine and the install
machine need not have the GnuMP library configured with the same representation of a limb. (On the other hand, the build
machine must have the GnuMP library configured with CPU features compatible with the install machine.)

However, MLton will be configured with the representation of a limb from the GnuMP library of the build machine. Ex-
ecutables produced by MLton will be incompatible with the GnuMP library of the install machine. To reconfigure MLton
with the representation of a limb from the GnuMP library of the install machine, one must edit:

/usr/lib/mlton/self/sizes

changing the

mplimb = 27

entry so that ?? corresponds to the bytes in a limb; and, one must edit:
/usr/lib/mlton/sml/basis/config/c/arch-os/c-types.sml
changing the

(x from "gmp.h" x)

structure C_MPLimb = struct open Word?? type t = word end
functor C_MPLimb_ChooseWordN (A: CHOOSE_WORDN_ARG) = ChooseWordN_Word?? (A)

entries so that ?? corresponds to the bits in a limb.

http://gmplib.org
http://gmplib.org/#FAQ

MLton Guide (20180207) 207 / 611

Google Summer of Code (2013)

Mentors
The following developers have agreed to serve as mentors for the 2013 Google Summer of Code:

e Matthew Fluet
e Lukasz (Luke) Ziarek

* Suresh Jagannathan

Ideas List
Implement a Partial Redundancy Elimination (PRE) Optimization

Partial redundancy elimination (PRE) is a program transformation that removes operations that are redundant on some, but not
necessarily all paths, through the program. PRE can subsume both common subexpression elimination and loop-invariant code
motion, and is therefore a potentially powerful optimization. However, a naive implementation of PRE on a program in static
single assignment (SSA) form is unlikely to be effective. This project aims to adapt and implement the SSAPRE algorithm(s) of
Thomas VanDrunen in MLton’s SSA intermediate language.

Background:

* Anticipation-based partial redundancy elimination for static single assignment form; Thomas VanDrunen and Antony L. Hosk-
ing

* Partial Redundancy Elimination for Global Value Numbering; Thomas VanDrunen
* Value-Based Partial Redundancy Elimination; Thomas VanDrunen and Antony L. Hosking

e Partial redundancy elimination in SSA form; Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred
Chow

Recommended Skills: SML programming experience; some middle-end compiler experience

Design and Implement a Heap Profiler

A heap profile is a description of the space usage of a program. A heap profile is concerned with the allocation, retention, and
deallocation (via garbage collection) of heap data during the execution of a program. A heap profile can be used to diagnose
performance problems in a functional program that arise from space leaks. This project aims to design and implement a heap
profiler for MLton compiled programs.

Background:

* GCspy: an adaptable heap visualisation framework; Tony Printezis and Richard Jones
* New dimensions in heap profiling; Colin Runciman and Niklas Réjemo
» Heap profiling for space efficiency; Colin Runciman and Niklas Réjemo

* Heap profiling of lazy functional programs; Colin Runciman and David Wakeling

Recommended Skills: C and SML programming experience; some experience with UI and visualization

http://www.cs.rit.edu/%7Emtf
http://www.cse.buffalo.edu/%7Elziarek/
http://www.cs.purdue.edu/homes/suresh/
http://onlinelibrary.wiley.com/doi/10.1002/spe.618/abstract
http://cs.wheaton.edu/%7Etvandrun/writings/thesis.pdf
http://www.springerlink.com/content/w06m3cw453nphm1u/
http://portal.acm.org/citation.cfm?doid=319301.319348
http://portal.acm.org/citation.cfm?doid=583854.582451
http://journals.cambridge.org/action/displayAbstract?aid=1349892
http://www.springerlink.com/content/710501660722gw37/
http://journals.cambridge.org/action/displayAbstract?aid=1323096

MLton Guide (20180207) 208 /611

Garbage Collector Improvements

The garbage collector plays a significant role in the performance of functional languages. Garbage collect too often, and program
performance suffers due to the excessive time spent in the garbage collector. Garbage collect not often enough, and program
performance suffers due to the excessive space used by the uncollected garbage. One particular issue is ensuring that a program
utilizing a garbage collector "plays nice" with other processes on the system, by not using too much or too little physical mem-
ory. While there are some reasonable theoretical results about garbage collections with heaps of fixed size, there seems to be
insufficient work that really looks carefully at the question of dynamically resizing the heap in response to the live data demands
of the application and, similarly, in response to the behavior of the operating system and other processes. This project aims to
investigate improvements to the memory behavior of MLton compiled programs through better tuning of the garbage collector.

Background:

* Automated Heap Sizing in the Poly/ML Runtime (Position Paper); David White, Jeremy Singer, Jonathan Aitken, and David
Matthews

* Isla Vista Heap Sizing: Using Feedback to Avoid Paging; Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski

* Controlling garbage collection and heap growth to reduce the execution time of Java applications; Tim Brecht, Eshrat Arjo-
mandi, Chang Li, and Hang Pham

* Garbage collection without paging; Matthew Hertz, Yi Feng, and Emery D. Berger
* Automatic heap sizing: taking real memory into account; Ting Yang, Matthew Hertz, Emery D. Berger, Scott F. Kaplan, and J.

Eliot B. Moss

Recommended Skills: C programming experience; some operating systems and/or systems programming experience; some
compiler and garbage collector experience

Implement Successor ML Language Features

Any programming language, including Standard ML, can be improved. The community has identified a number of modest
extensions and revisions to the Standard ML programming language that would likely prove useful in practice. This project aims
to implement these language features in the MLton compiler.

Background:

¢ Successor ML
e HaMLet (Successor ML)

A critique of Standard ML; Andrew W. Appel

Recommended Skills: SML programming experience; some front-end compiler experience (i.e., scanners and parsers)

Implement Source-level Debugging

Debugging is a fact of programming life. Unfortunately, most SML implementations (including MLton) provide little to no
source-level debugging support. This project aims to add basic to intermediate source-level debugging support to the MLton
compiler. MLton already supports source-level profiling, which can be used to attribute bytes allocated or time spent in source
functions. It should be relatively straightforward to leverage this source-level information into basic source-level debugging
support, with the ability to set/unset breakpoints and step through declarations and functions. It may be possible to also provide
intermediate source-level debugging support, with the ability to inspect in-scope variables of basic types (e.g., types compatible
with MLton’s foreign function interface).

Background:

* MLton— How Profiling Works

http://www.dcs.gla.ac.uk/%7Ewhited/papers/automated_heap_sizing.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4145125
http://portal.acm.org/citation.cfm?doid=1152649.1152652
http://portal.acm.org/citation.cfm?doid=1065010.1065028
http://portal.acm.org/citation.cfm?doid=1029873.1029881
http://successor-ml.org/index.php?title=Main_Page
http://www.mpi-sws.org/%7Erossberg/hamlet/index.html#successor-ml
http://journals.cambridge.org/action/displayAbstract?aid=1322628
http://mlton.org/HowProfilingWorks

MLton Guide (20180207) 209 /611

* MLton — Foreign Function Interface Types
* DWARF Debugging Standard

* STABS Debugging Format

Recommended Skills: SML programming experience; some compiler experience

SIMD Primitives

Most modern processors offer some direct support for SIMD (Single Instruction, Multiple Data) operations, such as Intel’s
MMX/SSE instructions, AMD’s 3DNow! instructions, and IBM’s AltiVec. Such instructions are particularly useful for multime-
dia, scientific, and cryptographic applications. This project aims to add preliminary support for vector data and vector operations
to the MLton compiler. Ideally, after surveying SIMD instruction sets and SIMD support in other compilers, a core set of SIMD
primitives with broad architecture and compiler support can be identified. After adding SIMD primitives to the core compiler and
carrying them through to the various backends, there will be opportunities to design and implement an SML library that exposes
the primitives to the SML programmer as well as opportunities to design and implement auto-vectorization optimizations.

Background:

e SIMD
¢ Auto-vectorization in GCC

¢ Auto-vectorization in LLVM

Recommended Skills: SML programming experience; some compiler experience; some computer architecture experience

RTOS Support

This project entails porting the MLton compiler to RTOSs such as: RTEMS, RT Linux, and FreeRTOS. The project will include
modifications to the MLton build and configuration process. Students will need to extend the MLton configuration process for
each of the RTOSs. The MLton compilation process will need to be extended to invoke the C cross compilers the RTOSs provide
for embedded support. Test scripts for validation will be necessary and these will need to be run in emulators for supported
architectures.

Recommended Skills: C programming experience; some scripting experience

Region Based Memory Management

Region based memory management is an alternative automatic memory management scheme to garbage collection. Regions can
be inferred by the compiler (e.g., Cyclone and MLKit) or provided to the programmer through a library. Since many students do
not have extensive experience with compilers we plan on adopting the later approach. Creating a viable region based memory
solution requires the removal of the GC and changes to the allocator. Additionally, write barriers will be necessary to ensure
references between two ML objects is never established if the left hand side of the assignment has a longer lifetime than the
right hand side. Students will need to come up with an appropriate interface for creating, entering, and exiting regions (examples
include RTSJ scoped memory and SCJ scoped memory).

Background:

* Cyclone
* MLKit
* RTSJ + SCJ scopes

Recommended Skills: SML programming experience; C programming experience; some compiler and garbage collector experi-
ence

http://mlton.org/ForeignFunctionInterfaceTypes
http://dwarfstd.org/
http://sourceware.org/gdb/current/onlinedocs/stabs/index.html
http://en.wikipedia.org/wiki/SIMD
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://llvm.org/docs/Vectorizers.html

MLton Guide (20180207) 210/ 611

Integration of Multi-MLton

MultiMLton is a compiler and runtime environment that targets scalable multicore platforms. It is an extension of MLton. It
combines new language abstractions and associated compiler analyses for expressing and implementing various kinds of fine-
grained parallelism (safe futures, speculation, transactions, etc.), along with a sophisticated runtime system tuned to efficiently
handle large numbers of lightweight threads. The core stable features of MultiMLton will need to be integrated with the latest
MLton public release. Certain experimental features, such as support for the Intel SCC and distributed runtime will be omitted.
This project requires students to understand the delta between the MultiMLton code base and the MLton code base. Students
will need to create build and configuration scripts for MLton to enable MultiMLton features.

Background
¢ MultiMLton — Publications

Recommended Skills: SML programming experience; C programming experience; some compiler experience

http://multimlton.cs.purdue.edu
http://multimlton.cs.purdue.edu/mML/Publications.html

MLton Guide (20180207) 211 /611

Google Summer of Code (2014)

Mentors

The following developers have agreed to serve as mentors for the 2014 Google Summer of Code:

Matthew Fluet

Lukasz (Luke) Ziarek
* John Reppy

¢ KC Sivaramakrishnan

Ideas List

Implement a Partial Redundancy Elimination (PRE) Optimization

Partial redundancy elimination (PRE) is a program transformation that removes operations that are redundant on some, but not
necessarily all paths, through the program. PRE can subsume both common subexpression elimination and loop-invariant code
motion, and is therefore a potentially powerful optimization. However, a naive implementation of PRE on a program in static
single assignment (SSA) form is unlikely to be effective. This project aims to adapt and implement the SSAPRE algorithm(s) of
Thomas VanDrunen in MLton’s SSA intermediate language.

Background:

* Anticipation-based partial redundancy elimination for static single assignment form; Thomas VanDrunen and Antony L. Hosk-
ing

e Partial Redundancy Elimination for Global Value Numbering; Thomas VanDrunen
* Value-Based Partial Redundancy Elimination; Thomas VanDrunen and Antony L. Hosking

e Partial redundancy elimination in SSA form; Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred
Chow

Recommended Skills: SML programming experience; some middle-end compiler experience

Design and Implement a Heap Profiler

A heap profile is a description of the space usage of a program. A heap profile is concerned with the allocation, retention, and
deallocation (via garbage collection) of heap data during the execution of a program. A heap profile can be used to diagnose
performance problems in a functional program that arise from space leaks. This project aims to design and implement a heap
profiler for MLton compiled programs.

Background:

* GCspy: an adaptable heap visualisation framework; Tony Printezis and Richard Jones
* New dimensions in heap profiling; Colin Runciman and Niklas Réjemo
» Heap profiling for space efficiency; Colin Runciman and Niklas Réjemo

* Heap profiling of lazy functional programs; Colin Runciman and David Wakeling

Recommended Skills: C and SML programming experience; some experience with Ul and visualization

http://www.cs.rit.edu/%7Emtf
http://www.cse.buffalo.edu/%7Elziarek/
http://people.cs.uchicago.edu/~jhr/
http://www.cs.purdue.edu/homes/chandras
http://onlinelibrary.wiley.com/doi/10.1002/spe.618/abstract
http://cs.wheaton.edu/%7Etvandrun/writings/thesis.pdf
http://www.springerlink.com/content/w06m3cw453nphm1u/
http://portal.acm.org/citation.cfm?doid=319301.319348
http://portal.acm.org/citation.cfm?doid=583854.582451
http://journals.cambridge.org/action/displayAbstract?aid=1349892
http://www.springerlink.com/content/710501660722gw37/
http://journals.cambridge.org/action/displayAbstract?aid=1323096

MLton Guide (20180207) 212 /611

Garbage Collector Improvements

The garbage collector plays a significant role in the performance of functional languages. Garbage collect too often, and program
performance suffers due to the excessive time spent in the garbage collector. Garbage collect not often enough, and program
performance suffers due to the excessive space used by the uncollected garbage. One particular issue is ensuring that a program
utilizing a garbage collector "plays nice" with other processes on the system, by not using too much or too little physical mem-
ory. While there are some reasonable theoretical results about garbage collections with heaps of fixed size, there seems to be
insufficient work that really looks carefully at the question of dynamically resizing the heap in response to the live data demands
of the application and, similarly, in response to the behavior of the operating system and other processes. This project aims to
investigate improvements to the memory behavior of MLton compiled programs through better tuning of the garbage collector.

Background:

* Automated Heap Sizing in the Poly/ML Runtime (Position Paper); David White, Jeremy Singer, Jonathan Aitken, and David
Matthews

* Isla Vista Heap Sizing: Using Feedback to Avoid Paging; Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski

* Controlling garbage collection and heap growth to reduce the execution time of Java applications; Tim Brecht, Eshrat Arjo-
mandi, Chang Li, and Hang Pham

* Garbage collection without paging; Matthew Hertz, Yi Feng, and Emery D. Berger
* Automatic heap sizing: taking real memory into account; Ting Yang, Matthew Hertz, Emery D. Berger, Scott F. Kaplan, and J.

Eliot B. Moss

Recommended Skills: C programming experience; some operating systems and/or systems programming experience; some
compiler and garbage collector experience

Implement Successor ML Language Features

Any programming language, including Standard ML, can be improved. The community has identified a number of modest
extensions and revisions to the Standard ML programming language that would likely prove useful in practice. This project aims
to implement these language features in the MLton compiler.

Background:

¢ Successor ML
e HaMLet (Successor ML)

A critique of Standard ML; Andrew W. Appel

Recommended Skills: SML programming experience; some front-end compiler experience (i.e., scanners and parsers)

Implement Source-level Debugging

Debugging is a fact of programming life. Unfortunately, most SML implementations (including MLton) provide little to no
source-level debugging support. This project aims to add basic to intermediate source-level debugging support to the MLton
compiler. MLton already supports source-level profiling, which can be used to attribute bytes allocated or time spent in source
functions. It should be relatively straightforward to leverage this source-level information into basic source-level debugging
support, with the ability to set/unset breakpoints and step through declarations and functions. It may be possible to also provide
intermediate source-level debugging support, with the ability to inspect in-scope variables of basic types (e.g., types compatible
with MLton’s foreign function interface).

Background:

* MLton— How Profiling Works

http://www.dcs.gla.ac.uk/%7Ewhited/papers/automated_heap_sizing.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4145125
http://portal.acm.org/citation.cfm?doid=1152649.1152652
http://portal.acm.org/citation.cfm?doid=1065010.1065028
http://portal.acm.org/citation.cfm?doid=1029873.1029881
http://successor-ml.org/index.php?title=Main_Page
http://www.mpi-sws.org/%7Erossberg/hamlet/index.html#successor-ml
http://journals.cambridge.org/action/displayAbstract?aid=1322628
http://mlton.org/HowProfilingWorks

MLton Guide (20180207) 213 /611

* MLton — Foreign Function Interface Types
* DWARF Debugging Standard
¢ STABS Debugging Format

Recommended Skills: SML programming experience; some compiler experience

Region Based Memory Management

Region based memory management is an alternative automatic memory management scheme to garbage collection. Regions can
be inferred by the compiler (e.g., Cyclone and MLKit) or provided to the programmer through a library. Since many students do
not have extensive experience with compilers we plan on adopting the later approach. Creating a viable region based memory
solution requires the removal of the GC and changes to the allocator. Additionally, write barriers will be necessary to ensure
references between two ML objects is never established if the left hand side of the assignment has a longer lifetime than the
right hand side. Students will need to come up with an appropriate interface for creating, entering, and exiting regions (examples
include RTSJ scoped memory and SCJ scoped memory).

Background:

* Cyclone
* MLK:it
e RTSJ + SCJ scopes

Recommended Skills: SML programming experience; C programming experience; some compiler and garbage collector experi-
ence

Integration of Multi-MLton

MultiMLton is a compiler and runtime environment that targets scalable multicore platforms. It is an extension of MLton. It
combines new language abstractions and associated compiler analyses for expressing and implementing various kinds of fine-
grained parallelism (safe futures, speculation, transactions, etc.), along with a sophisticated runtime system tuned to efficiently
handle large numbers of lightweight threads. The core stable features of MultiMLton will need to be integrated with the latest
MLton public release. Certain experimental features, such as support for the Intel SCC and distributed runtime will be omitted.
This project requires students to understand the delta between the MultiMLton code base and the MLton code base. Students
will need to create build and configuration scripts for MLton to enable MultiMLton features.

Background
e MultiMLton — Publications

Recommended Skills: SML programming experience; C programming experience; some compiler experience

Concurrent ML Improvements

Concurrent ML is an SML concurrency library based on synchronous message passing. MLton has a partial implementation of
the CML message-passing primitives, but its use in real-world applications has been stymied by the lack of completeness and
thread-safe 1/O libraries. This project would aim to flesh out the CML implementation in MLton to be fully compatible with the
"official" version distributed as part of SML/NIJ. Furthermore, time permitting, runtime system support could be added to allow
use of modern OS features, such as asynchronous I/O, in the implementation of CML’s system interfaces.

Background
* http://cml.cs.uchicago.edu/
* http://mlton.org/ConcurrentML

¢ http://mlton.org/ConcurrentMLImplementation

Recommended Skills: SML programming experience; knowledge of concurrent programming; some operating systems and/or
systems programming experience

http://mlton.org/ForeignFunctionInterfaceTypes
http://dwarfstd.org/
http://sourceware.org/gdb/current/onlinedocs/stabs/index.html
http://multimlton.cs.purdue.edu
http://multimlton.cs.purdue.edu/mML/Publications.html
http://cml.cs.uchicago.edu/
http://cml.cs.uchicago.edu/
http://mlton.org/ConcurrentML
http://mlton.org/ConcurrentMLImplementation

MLton Guide (20180207) 214 /611

Google Summer of Code (2015)

Mentors

The following developers have agreed to serve as mentors for the 2015 Google Summer of Code:

¢ Matthew Fluet

e Lukasz (Luke) Ziarek

Ideas List

Design and Implement a Heap Profiler

A heap profile is a description of the space usage of a program. A heap profile is concerned with the allocation, retention, and
deallocation (via garbage collection) of heap data during the execution of a program. A heap profile can be used to diagnose
performance problems in a functional program that arise from space leaks. This project aims to design and implement a heap
profiler for MLton compiled programs.

Background:

* GCspy: an adaptable heap visualisation framework; Tony Printezis and Richard Jones
* New dimensions in heap profiling; Colin Runciman and Niklas Réjemo
* Heap profiling for space efficiency; Colin Runciman and Niklas Réjemo

* Heap profiling of lazy functional programs; Colin Runciman and David Wakeling

Recommended Skills: C and SML programming experience; some experience with Ul and visualization

Garbage Collector Improvements

The garbage collector plays a significant role in the performance of functional languages. Garbage collect too often, and program
performance suffers due to the excessive time spent in the garbage collector. Garbage collect not often enough, and program
performance suffers due to the excessive space used by the uncollected garbage. One particular issue is ensuring that a program
utilizing a garbage collector "plays nice" with other processes on the system, by not using too much or too little physical mem-
ory. While there are some reasonable theoretical results about garbage collections with heaps of fixed size, there seems to be
insufficient work that really looks carefully at the question of dynamically resizing the heap in response to the live data demands
of the application and, similarly, in response to the behavior of the operating system and other processes. This project aims to
investigate improvements to the memory behavior of MLton compiled programs through better tuning of the garbage collector.

Background:

* The Garbage Collection Handbook: The Art of Automatic Memory Management; Richard Jones, Antony Hosking, Eliot Moss
* Dual-Mode Garbage Collection; Patrick Sansom

e Automatic Heap Sizing: Taking Real Memory into Account; Ting Yang, Matthew Hertz, Emery D. Berger, Scott F. Kaplan,
and J. Eliot B. Moss

* Controlling Garbage Collection and Heap Growth to Reduce the Execution Time of Java Applications; Tim Brecht, Eshrat
Arjomandi, Chang Li, and Hang Pham

* Isla Vista Heap Sizing: Using Feedback to Avoid Paging; Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski

* The Economics of Garbage Collection; Jeremy Singer, Richard E. Jones, Gavin Brown, and Mikel Lujan

http://www.cs.rit.edu/%7Emtf
http://www.cse.buffalo.edu/%7Elziarek/
http://portal.acm.org/citation.cfm?doid=583854.582451
http://journals.cambridge.org/action/displayAbstract?aid=1349892
http://www.springerlink.com/content/710501660722gw37/
http://journals.cambridge.org/action/displayAbstract?aid=1323096
http://gchandbook.org/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.1020
http://portal.acm.org/citation.cfm?doid=1029873.1029881
http://portal.acm.org/citation.cfm?doid=1152649.1152652
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4145125
http://portal.acm.org/citation.cfm?doid=1806651.1806669

MLton Guide (20180207) 215/ 611

* Automated Heap Sizing in the Poly/ML Runtime (Position Paper); David White, Jeremy Singer, Jonathan Aitken, and David
Matthews

 Control Theory for Principled Heap Sizing; David R. White, Jeremy Singer, Jonathan M. Aitken, and Richard E. Jones

Recommended Skills: C programming experience; some operating systems and/or systems programming experience; some
compiler and garbage collector experience

Heap-allocated Activation Records

Activation records (a.k.a., stack frames) are traditionally allocated on a stack. This naturally corresponds to the call-return
pattern of function invocation. However, there are some disadvantages to stack-allocated activation records. In a functional
programming language, functions may be deeply recursive, resulting in call stacks that are much larger than typically supported
by the operating system; hence, a functional programming language implementation will typically store its stack in its heap.
Furthermore, a functional programming language implementation must handle and recover from stack overflow, by allocating a
larger stack (again, in its heap) and copying activation records from the old stack to the new stack. In the presence of threads,
stacks must be allocated in a heap and, in the presence of a garbage collector, should be garbage collected when unreachable.
While heap-allocated activation records avoid many of these disadvantages, they have not been widely implemented. This project
aims to implement and evaluate heap-allocated activation records in the MLton compiler.

Background:

e Empirical and Analytic Study of Stack Versus Heap Cost for Languages with Closures; Andrew W. Appel and Zhong Shao
» Space-efficient closure representations; Zhong Shao and Andrew W. Appel

* Representing control in the presence of first-class continuations; R. Hieb, R. Kent Dybvig, and Carl Bruggeman

Recommended Skills: SML programming experience; some middle- and back-end compiler experience

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is the de facto representation for floating-point computation.
However, it is a binary (base 2) representation of floating-point values, while many applications call for input and output of
floating-point values in decimal (base 10) representation. The decimal-to-binary conversion problem takes a decimal floating-
point representation (e.g., a string like "0.1") and returns the best binary floating-point representation of that number. The
binary-to-decimal conversion problem takes a binary floating-point representation and returns a decimal floating-point repre-
sentation using the smallest number of digits that allow the decimal floating-point representation to be converted to the original
binary floating-point representation. For both conversion routines, "best" is dependent upon the current floating-point rounding
mode.

MLton uses David Gay’s gdtoa library for floating-point conversions. While this is an exellent library, it generalizes the decimal-
to-binary and binary-to-decimal conversion routines beyond what is required by the Standard ML Basis Library and induces
an external dependency on the compiler. Native implementations of these conversion routines in Standard ML would obviate
the dependency on the gdtoa library, while also being able to take advantage of Standard ML features in the implementation
(e.g., the published algorithms often require use of infinite precision arithmetic, which is provided by the Int Inf structure in
Standard ML, but is provided in an ad hoc fasion in the gdtoa library).

This project aims to develop a native implementation of the conversion routines in Standard ML.

Background:

* What every computer scientist should know about floating-point arithmetic; David Goldberg
* How to print floating-point numbers accurately; Guy L. Steele, Jr. and Jon L. White
* How to read floating point numbers accurately; William D. Clinger

* Correctly Rounded Binary-Decimal and Decimal-Binary Conversions; David Gay

http://www.dcs.gla.ac.uk/%7Ejsinger/pdfs/tfp12.pdf
http://portal.acm.org/citation.cfm?doid=2555670.2466481
http://journals.cambridge.org/action/displayAbstract?aid=1295104
http://portal.acm.org/citation.cfm?doid=182590.156783
http://portal.acm.org/citation.cfm?doid=93548.93554
http://en.wikipedia.org/wiki/IEEE_754-2008
http://www.netlib.org/fp/gdtoa.tgz
http://standardml.org/Basis/
http://dl.acm.org/citation.cfm?doid=103162.103163
http://dl.acm.org/citation.cfm?doid=93542.93559
http://dl.acm.org/citation.cfm?doid=93542.93557
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz

MLton Guide (20180207) 216/ 611

e Printing floating-point numbers quickly and accurately; Robert G. Burger and R. Kent Dybvig

* Printing floating-point numbers quickly and accurately with integers; Florian Loitsch

Recommended Skills: SML programming experience; algorithm design and implementation

Implement Source-level Debugging

Debugging is a fact of programming life. Unfortunately, most SML implementations (including MLton) provide little to no
source-level debugging support. This project aims to add basic to intermediate source-level debugging support to the MLton
compiler. MLton already supports source-level profiling, which can be used to attribute bytes allocated or time spent in source
functions. It should be relatively straightforward to leverage this source-level information into basic source-level debugging
support, with the ability to set/unset breakpoints and step through declarations and functions. It may be possible to also provide
intermediate source-level debugging support, with the ability to inspect in-scope variables of basic types (e.g., types compatible
with MLton’s foreign function interface).

Background:

e MLton— How Profiling Works

* MLton — Foreign Function Interface Types

DWARF Debugging Standard

STABS Debugging Format

Recommended Skills: SML programming experience; some compiler experience

Region Based Memory Management

Region based memory management is an alternative automatic memory management scheme to garbage collection. Regions can
be inferred by the compiler (e.g., Cyclone and MLK:it) or provided to the programmer through a library. Since many students do
not have extensive experience with compilers we plan on adopting the later approach. Creating a viable region based memory
solution requires the removal of the GC and changes to the allocator. Additionally, write barriers will be necessary to ensure
references between two ML objects is never established if the left hand side of the assignment has a longer lifetime than the
right hand side. Students will need to come up with an appropriate interface for creating, entering, and exiting regions (examples
include RTSJ scoped memory and SCJ scoped memory).

Background:

* Cyclone
* MLKit
e RTSJ + SCJ scopes

Recommended Skills: SML programming experience; C programming experience; some compiler and garbage collector experi-
ence

Adding Real-Time Capabilities

This project focuses on exposing real-time APIs from a real-time OS kernel at the SML level. This will require mapping the
current MLton (or MultiMLton) threading framework to real-time threads that the RTOS provides. This will include associating
priorities with MLton threads and building priority based scheduling algorithms. Additionally, support for perdioc, aperiodic,
and sporadic tasks should be supported. A real-time SML library will need to be created to provide a forward facing interface for
programmers. Stretch goals include reworking the MLton at omic statement and associated synchronization primitives built on
top of the MLton at omic statement.

Recommended Skills: SML programming experience; C programming experience; real-time experience a plus but not required

http://dl.acm.org/citation.cfm?doid=249069.231397
http://dl.acm.org/citation.cfm?doid=1806596.1806623
http://mlton.org/HowProfilingWorks
http://mlton.org/ForeignFunctionInterfaceTypes
http://dwarfstd.org/
http://sourceware.org/gdb/current/onlinedocs/stabs/index.html
http://multimlton.cs.purdue.edu

MLton Guide (20180207) 217/ 611

Real-Time Garbage Collection

This project focuses on modifications to the MLton GC to support real-time garbage collection. We will model the real-time
GC on the Schism RTGC. The first task will be to create a fixed size runtime object representation. Large structures will need
to be represented as a linked lists of fixed sized objects. Arrays and vectors will be transferred into dense trees. Compaction
and copying can therefore be removed from the GC algorithms that MLton currently supports. Lastly, the GC will be made
concurrent, allowing for the execution of the GC threads as the lowest priority task in the system. Stretch goals include a priority
aware mechanism for the GC to signal to real-time ML threads that it needs to scan their stack and identification of places where
the stack is shallow to bound priority inversion during this procedure.

Recommended Skills: C programming experience; garbage collector experience a plus but not required

MLton Guide (20180207) 218/ 611

HaMLet

HaMLet is a Standard ML implementation. It is intended as reference implementation of The Definition of Standard ML (Re-
vised) and not for serious practical work.

http://www.mpi-sws.org/~rossberg/hamlet/

MLton Guide (20180207) 219/ 611

HenryCejtin

I was one of the original developers of Mathematica (actually employee #1). My background is a combination of mathematics
and computer science. Currently I am doing various things in Chicago.

MLton Guide (20180207) 220/ 611

History

In April 1997, Stephen Weeks wrote a defunctorizer for Standard ML and integrated it with SML/NJ. The defunctorizer used
SML/NJ’s visible compiler and operated on the Ast intermediate representation produced by the SML/NJ front end. Experi-
ments showed that defunctorization gave a speedup of up to six times over separate compilation and up to two times over batch
compilation without functor expansion.

In August 1997, we began development of an independent compiler for SML. At the time the compiler was called smlc. By
October, we had a working monomorphiser. By November, we added a polyvariant higher-order control-flow analysis. At that
point, MLton was about 10,000 lines of code.

Over the next year and half, sm1c morphed into a full-fledged compiler for SML. It was renamed MLton, and first released in
March 1999.

From the start, MLton has been driven by whole-program optimization and an emphasis on performance. Also from the start,
MLton has had a fast C FFI and Int Inf based on the GNU multiprecision library. At its first release, MLton was 48,006 lines.

Between the March 1999 and January 2002, MLton grew to 102,541 lines, as we added a native code generator, mllex, mlyacc,
a profiler, many optimizations, and many libraries including threads and signal handling.

During 2002, MLton grew to 112,204 lines and we had releases in April and September. We added support for cross compilation
and used this to enable MLton to run on Cygwin/Windows and FreeBSD. We also made improvements to the garbage collector,
so that it now works with large arrays and up to 4G of memory and so that it automatically uses copying, mark-compact, or
generational collection depending on heap usage and RAM size. We also continued improvements to the optimizer and libraries.

During 2003, MLton grew to 122,299 lines and we had releases in March and July. We extended the profiler to support source-
level profiling of time and allocation and to display call graphs. We completed the Basis Library implementation, and added new
MLton-specific libraries for weak pointers and finalization. We extended the FFI to allow callbacks from C to SML. We added
support for the Sparc/Solaris platform, and made many improvements to the C code generator.

MLton Guide (20180207) 221 /611

HowProfilingWorks

Here’s how Profiling works. If profiling is on, the front end (elaborator) inserts Enter and Leave statements into the source
program for function entry and exit. For example,

fun £f n = if n = 0 then 0 else 1 + £ (n - 1)

becomes
fun £ n =
let
val () = Enter "f"
val res = (if n = 0 then 0 else 1 + £ (n - 1))
handle e => (Leave "f"; raise e)
val () = Leave "f"
in
res
end

Actually there is a bit more information than just the source function name; there is also lexical nesting and file position.

Most of the middle of the compiler ignores, but preserves, Enter and Leave. However, so that profiling preserves tail calls,
the SSA shrinker has an optimization that notices when the only operations that cause a call to be a nontail call are profiling
operations, and if so, moves them before the call, turning it into a tail call. If you observe a program that has a tail call that
appears to be turned into a nontail when compiled with profiling, please report a bug.

There is the checkProf function in t ype—-check . fun, which checks that the Enter/Leave statements match up.

In the backend, just before translating to the Machine IL, the profiler uses the Enter/Leave statements to infer the "local”
portion of the control stack at each program point. The profiler then removes the Enters/Leaves and inserts different infor-
mation depending on which kind of profiling is happening. For time profiling (with the AMD64Codegen and X86Codegen), the
profiler inserts labels that cover the code (i.e. each statement has a unique label in its basic block that prefixes it) and associates
each label with the local control stack. For time profiling (with the CCodegen and LLVMCodegen), the profiler inserts code that
sets a global field that records the local control stack. For allocation profiling, the profiler inserts calls to a C function that will
maintain byte counts. With stack profiling, the profiler also inserts a call to a C function at each nontail call in order to maintain
information at runtime about what SML functions are on the stack.

At run time, the profiler associates counters (either clock ticks or byte counts) with source functions. When the program finishes,
the profiler writes the counts out to the mlmon. out file. Then, ml1prof uses source information stored in the executable to
associate the counts in the mlmon . out file with source functions.

For time profiling, the profiler catches the STGPROF signal 100 times per second and increments the appropriate counter, deter-
mined by looking at the label prefixing the current program counter and mapping that to the current source function.

Caveats

There may be a few missed clock ticks or bytes allocated at the very end of the program after the data is written.

Profiling has not been tested with signals or threads. In particular, stack profiling may behave strangely.

https://github.com/MLton/mlton/blob/master/mlton/ssa/type-check.fun

MLton Guide (20180207) 222 /611

Identifier

In Standard ML, there are syntactically two kinds of identifiers.

* Alphanumeric: starts with a letter or prime (”) and is followed by letters, digits, primes and underbars (_).
Examples: abc, ABC123, Abc_123, " a.

» Symbolic: a sequence of the following

s &S+ -/ i <=>2]|~ " *
Examples: +=, <=, >>, $.

With the exception of =, reserved words can not be identifiers.

There are a number of different classes of identifiers, some of which have additional syntactic rules.

* Identifiers not starting with a prime.

value identifier (includes variables and constructors)

type constructor

structure identifier

signature identifier

functor identifier

* Identifiers starting with a prime.
— type variable
* Identifiers not starting with a prime and numeric labels (1, 2, ...).

— record label

MLton Guide (20180207) 223 /611

Immutable

Immutable means not mutable and is an adjective meaning "can not be modified". Most values in Standard ML are immutable.
For example, constants, tuples, records, lists, and vectors are all immutable.

MLton Guide (20180207) 224 /611

ImperativeTypeVariable

In Standard ML, an imperative type variable is a type variable whose second character is a digit, as in ’ 1a or ’ 2b. Imperative
type variables were used as an alternative to the ValueRestriction in an earlier version of SML, but no longer play a role. They
are treated exactly as other type variables.

MLton Guide (20180207) 225/ 611

ImplementExceptions

ImplementExceptions is a pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass implements exceptions.

Implementation

* implement-exceptions.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/xml/implement-exceptions.fun

MLton Guide (20180207) 226/ 611

ImplementHandlers

ImplementHandlers is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass implements the (threaded) exception handler stack.

Implementation

* implement-handlers. fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/implement-handlers.fun

MLton Guide (20180207) 227/ 611

ImplementProfiling

ImplementProfiling is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass implements profiling.

Implementation

* implement-profiling.fun

Details and Notes

See HowProfilingWorks.

https://github.com/MLton/mlton/blob/master/mlton/backend/implement-profiling.fun

MLton Guide (20180207) 228/ 611

ImplementSuffix

ImplementSuffix is a pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass implements the TopLevel_set Suffix primitive, which installs a function to exit the program.

Implementation

e implement-suffix.fun

Details and Notes

ImplementSuffix works by introducing a new ref cell to contain the function of type unit -> unit that should be called on
program exit.

* The following code (appropriately alpha-converted) is appended to the beginning of the SXML program:

val z_0 =
fn a_0 =>
let
val x_0 =

"toplevel suffix not installed"
val x_1 =
MLton_bug (x_0)
in
x_1
end
val topLevelSuffixCell =
Ref_ref (z_0)

* Any occurrence of

val x_ 0 =
TopLevel_setSuffix (£_0)

is rewritten to

val x_0 =
Ref_assign (topLlevelSuffixCell, £_0)

* The following code (appropriately alpha-converted) is appended to the end of the SXML program:

val £ 0 =

Ref_deref (topLevelSuffixCell)
val z_0 =

0)
val x_0 =

f 0 z_

(@]

https://github.com/MLton/mlton/blob/master/mlton/xml/implement-suffix.fun

MLton Guide (20180207) 229/ 611

InfixingOperators

Fixity specifications are not part of signatures in Standard ML. When one wants to use a module that provides functions designed
to be used as infix operators there are several obvious alternatives:

» Use only prefix applications. Unfortunately there are situations where infix applications lead to considerably more readable
code.

* Make the fixity declarations at the top-level. This may lead to collisions and may be unsustainable in a large project. Pollution
of the top-level should be avoided.

* Make the fixity declarations at each scope where you want to use infix applications. The duplication becomes inconvenient if
the operators are widely used. Duplication of code should be avoided.

» Use non-standard extensions, such as the ML Basis system to control the scope of fixity declarations. This has the obvious
drawback of reduced portability.

* Reuse existing infix operator symbols (~, +, —, ...). This can be convenient when the standard operators aren’t needed in
the same scope with the new operators. On the other hand, one is limited to the standard operator symbols and the code may
appear confusing.

None of the obvious alternatives is best in every case. The following describes a slightly less obvious alternative that can
sometimes be useful. The idea is to approximate Haskell’s special syntax for treating any identifier enclosed in grave accents
(backquotes) as an infix operator. In Haskell, instead of writing the prefix application £ x y one can write the infix application
x £ y.

Infixing operators

Let’s first take a look at the definitions of the operators:

infix 3 <\ fun x <\ £ = fn y => f (x, y) (* Left section %)
infix 3 \> fun £ \> y = f y (» Left application x)
infixr 3 /> fun £ /> y = fn x => f (x, y) (» Right section *)
infixr 3 </ fun x </ £ = £ x (» Right application =)
infix 2 o (x See motivation below =)

infix 0 :=

The left and right sectioning operators, <\ and />, are useful in SML for partial application of infix operators. ML For the
Working Programmer describes curried functions secl and secr for the same purpose on pages 179-181. For example,

List.map (op- /> y)

is a function for subtracting y from a list of integers and

List.exists (x <\ op=)

is a function for testing whether a list contains an x.

Together with the left and right application operators, \> and </, the sectioning operators provide a way to treat any binary
function (i.e. a function whose domain is a pair) as an infix operator. In general,

x0 <\fI1\> x1 <\f2\> x2 ... <\fN\> xN = fN (... f2 (fl1 (x0, x1), x2) ..., =xN)

and

xN </fN/> ... x2 </f2/> x1 </fl1/> x0 = fN (xN, ... f2 (x2, fl1 (x1, x0)) ...)

MLton Guide (20180207) 230/ 611

Examples

As a fairly realistic example, consider providing a function for sequencing comparisons:

structure Order (* ... *) =
struct
(x» ... %)
val orWhenEqg = fn (EQUAL, th) => th ()
| (other, _) => other
(+ *)
end

Using orWhenEq and the infixing operators, one can write a compare function for triples as
fun compare (fad, fbe, fcf) ((a, b, ¢), (d, e, £f)) =

fad (a, d) <\Order.orWhenEq\> ‘fbe (b, e) <\Order.orWhenkEg\> ‘fcf (c, f)
where ° is defined as

fun ‘f x = fn () => f x

Although orWhenEqg can be convenient (try rewriting the above without it), it is probably not useful enough to be defined at the
top level as an infix operator. Fortunately we can use the infixing operators and don’t have to.

Another fairly realistic example would be to use the infixing operators with the technique described on the Printf page. Assuming
that you would have a Print f module binding print £, *, and formatting combinators named int and string, you could
write

let open Printf in
printf (‘"Here’s an int "<\int\>" and a string "<\string\>".") 13 "foo" end

without having to duplicate the fixity declarations. Alternatively, you could write

P.printf (P.‘"Here’s an int "<\P.int\>" and a string "<\P.string\>".") 13 "foo"

assuming you have the made the binding

structure P = Printf

Application and piping operators

The left and right application operators may also provide some notational convenience on their own. In general,

£f\>x1 \> ... \> xN = f x1 ... xN
and
XN </ ... </ x1 </ £ =f x1 ... xN

If nothing else, both of them can eliminate parentheses. For example,

foo (1 + 2) = foo \> 1 + 2

The left and right application operators are related to operators that could be described as the right and left piping operators:

infix 1 >| val op>| = op</ (» Left pipe =)
infixr 1 |< val opl< = op\> (x Right pipe x*)

As you can see, the left and right piping operators, > | and | <, are the same as the right and left application operators, respectively,
except the associativities are reversed and the binding strength is lower. They are useful for piping data through a sequence of
operations. In general,

MLton Guide (20180207) 231 /611

x > f1 >| ... >| fN = fN (... (f1l x) ...) = (fN o ... o fl) x
and
fN |[< ... < fl |[< x = fN (... (fl1 x) ...) = (fN o ... o fl) x

The right piping operator, | <, is provided by the Haskell prelude as $. It can be convenient in CPS or continuation passing style.

A use for the left piping operator is with parsing combinators. In a strict language, like SML, eta-reduction is generally unsafe.
Using the left piping operator, parsing functions can be formatted conveniently as

fun parsingFunc input =

input >| (x ... *)
[G .)
[+ oo %)

where | | is supposed to be a combinator provided by the parsing combinator library.

About precedences

You probably noticed that we redefined the precedences of the function composition operator o and the assignment operator :
=. Doing so is not strictly necessary, but can be convenient and should be relatively safe. Consider the following motivating
examples from Wesley W. Terpstra relying on the redefined precedences:

Word8.fromInt o Char.ord o s <\String.sub
(* Combining sectioning and composition =)

x := s <\String.sub\> i
(x Assigning the result of an infixed application x)

In imperative languages, assignment usually has the lowest precedence (ignoring statement separators). The precedence of :=in
the Basis Library is perhaps unnecessarily high, because an expression of the form r :=x always returns a unit, which makes
little sense to combine with anything. Dropping : = to the lowest precedence level makes it behave more like in other imperative
languages.

The case for o is different. With the exception of before and :=, it doesn’t seem to make much sense to use o with any of
the operators defined by the Basis Library in an unparenthesized expression. This is simply because none of the other operators
deal with functions. It would seem that the precedence of o could be chosen completely arbitrarily from the set {1, ..., 9}
without having any adverse effects with respect to other infix operators defined by the Basis Library.

Design of the symbols

The closest approximation of Haskell’s x * £ y syntax achievable in Standard ML would probably be something like x £~
y, but ~ is already used for string concatenation by the Basis Library. Other combinations of the characters * and ~ would be
possible, but none seems clearly the best visually. The symbols <\, \>, </, and /> are reasonably concise and have a certain
self-documenting appearance and symmetry, which can help to remember them. As the names suggest, the symbols of the piping
operators > | and | < are inspired by Unix shell pipelines.

Also see

e Utilities

MLton Guide (20180207) 232/ 611

Inline

Inline is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass inlines SSA functions using a size-based metric.

Implementation

* inline.sig

e inline.fun

Details and Notes

The Inline pass can be invoked to use one of three metrics:

* NonRecursive (product, small) —inline any function satisfying (numCalls -1) * (size -small) <=pr
oduct, where numCalls is the static number of calls to the function and size is the size of the function.

* Leaf (size) —inline any leaf function smaller than size

* LeafNoLoop (size) —inline any leaf function without loops smaller than size

https://github.com/MLton/mlton/blob/master/mlton/ssa/inline.sig
https://github.com/MLton/mlton/blob/master/mlton/ssa/inline.fun

MLton Guide (20180207) 233 /611

InsertLimitChecks

InsertLimitChecks is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass inserts limit checks.

Implementation

e limit—-check. fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/limit-check.fun

MLton Guide (20180207) 234 /611

InsertSignalChecks

InsertSignalChecks is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass inserts signal checks.

Implementation

e limit—-check. fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/backend/limit-check.fun

MLton Guide (20180207) 235/ 611

Installation

MLton runs on a variety of platforms and is distributed in both source and binary form.

A .tgz or .tbz binary package can be extracted at any location, yielding README . adoc (this file), CHANGELOG. adoc,
LICENSE, Makefile,bin/, 1ib/, and share/. The compiler and tools can be executed in-place (e.g., . /bin/mlton).

A small set of Make file variables can be used to customize the binary package viamake update:

» CC: Specify C compiler. Can be used for alternative tools (e.g., CC=clang or CC=gcc—7).

e WITH_GMP_DIR,WITH_GMP_INC_DIR,WITH_GMP_LIB_DIR: Specify GMP include and library paths, if not on default
search paths. (If WITH_GMP_DIR is set, then WITH_GMP_INC_DIR defaults to $ (WITH_GMP_DIR) /include and
WITH_GMP_LIB_DIRdefaultsto $ (WITH_GMP_DIR) /1ib.)

For example:

$ make CC=clang WITH_GMP_DIR=/opt/gmp update

On typical platforms, installing MLton (after optionally performing make update) to /usr/local can be accomplished
via:

$ make install

A small set of Makefile variables can be used to customize the installation:

* PREFIX: Specify the installation prefix.
* CC: Specify C compiler. Can be used for alternative tools (e.g., CC=clang or CC=gcc-7).

e WITH_GMP_DIR,WITH_GMP_INC_DIR,WITH_GMP_LIB_DIR: Specify GMP include and library paths, if not on default
search paths. (If WITH_GMP_DIR is set, then WITH_GMP_INC_DIR defaults to $ (WITH_GMP_DIR) /include and
WITH_GMP_LIB_DIR defaultsto $ (WITH_GMP_DIR) /1ib.)

For example:

$ make PREFIX=/opt/mlton install

Installation of MLton creates the following files and directories.

* prefix/bin/mllex
The MLLex lexer generator.

e prefix/bin/mlnlffigen
The ML-NLFFI tool.
e prefix/bin/mlprof
A Profiling tool.
* prefix/bin/mlton
A script to call the compiler. This script may be moved anywhere, however, it makes use of files in prefix/lib/mlton.
* prefix/bin/mlyacc
The MLYacc parser generator.
* prefix/lib/mlton
Directory containing libraries and include files needed during compilation.
e prefix/share/man/manl/{mllex, mlnlffigen,mlprof,mlton,mlyacc}.1l
Man pages.
* prefix/share/doc/mlton

Directory containing the user guide for MLton, mllex, and mlyacc, as well as example SML programs (in the examples
directory), and license information.

MLton Guide (20180207) 236 /611

Hello, World!

Once you have installed MLton, create a file called hello-world. sml with the following contents.

print "Hello, world!\n";

Now create an executable, hello-world, with the following command.

mlton hello-world.sml

You can now run hello-world to verify that it works. There are more small examples in prefix/share/doc/mlton/
examples.

Installation on Cygwin

When installing the Cygwin tgz, you should use Cygwin’s bash and tar. The use of an archiving tool that is not aware of
Cygwin’s mounts will put the files in the wrong place.

MLton Guide (20180207) 237/ 611

IntermediateLanguage

MLton uses a number of intermediate languages in translating from the input source program to low-level code. Here is a list in
the order which they are translated to.

» AST. Pretty close to the source.

» CoreML. Explicitly typed, no module constructs.
* XML. Polymorphic, HigherOrder.

* SXML. SimplyTyped, HigherOrder.

* SSA. SimplyTyped, FirstOrder.

* SSA2. SimplyTyped, FirstOrder.

* RSSA. Explicit data representations.

e Machine. Untyped register transfer language.

MLton Guide (20180207) 238 /611

IntroducelLoops

IntroduceLoops is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass rewrites any SSA function that calls itself in tail position into one with a local loop and no self tail calls.
A SSA function like

fun F (arg_0, arg_1l) = 1L_0 ()
L_16 (x_0)

F (z_0, z_1) Tail

becomes

fun F (arg_0’, arg_1l") = loopS_0 ()
loopS_0 ()
loop_0 (arg_0’, arg_1l’)
loop_0 (arg_0, arg_1l)
L_0 ()
L_16 (x_0)

loop_0 (z_0, z_1)

Implementation

* introduce-loops.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/introduce-loops.fun

MLton Guide (20180207) 239/ 611

JesperLouisAndersen

Jesper Louis Andersen is an undergraduate student at DIKU, the department of computer science, Copenhagen university. His
contributions to MLton are few, though he has made the port of MLton to the NetBSD and OpenBSD platforms.

His general interests in computer science are compiler theory, language theory, algorithms and datastructures and programming.
His assets are his general knowledge of UNIX systems, knowledge of system administration, knowledge of operating system
kernels; NetBSD in particular.

He was employed by the university as a system administrator for 2 years, which has set him back somewhat in his studies.
Currently he is trying to learn mathematics (real analysis, general topology, complex functional analysis and algebra).

Projects using MLton

A register allocator

For internal use at a compiler course at DIKU. It is written in the literate programming style and implements the Iterated Register
Coalescing algorithm by Lal George and Andrew Appel http://citeseer.ist.psu.edu/george96iterated.html. The status of the project
is that it is unfinished. Most of the basic parts of the algorithm is done, but the interface to the students (simple) datatype takes
some conversion.

A configuration management system in SML

At this time, only loose plans exists for this. The plan is to build a Configuration Management system on the principles of the
OpenCM system, see http://www.opencm.org/docs.html. The basic idea is to unify "naming" and "identity" into one by uniquely
identifying all objects managed in the repository by the use of cryptographic checksums. This mantra guides the rest of the
system, providing integrity, accessibility and confidentiality.

http://citeseer.ist.psu.edu/george96iterated.html
http://www.opencm.org/docs.html

ML.ton Guide (20180207) 240/ 611

JohnnyAndersen

Johnny Andersen (aka Anoq of the Sun)

Here is a picture in front of the academy building at the University of Athens, Greece, taken in September 2003.

MLton Guide (20180207) 241 /611

KnownCase

KnownCase is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass duplicates and simplifies Case transfers when the constructor of the scrutinee is known.
Uses Restore.
For example, the program

val rec last =
fn [] => 0
| [x] => x
| :: 1 => last 1

Il
i
4L

val _ last [2, 3, 4, 5, 6, 7]

gives rise to the SSA function

fun last_0 (x_142) = loopS_1 ()

loopS_1 ()

loop_11 (x_142)
loop_11 (x_143)

case x_143 of

nil_1 => L_73 | ::_0 => 1L_74

L_73 ()

return global_5
L_74 (x_145, x_144)

case x_145 of

nil 1 =>1_75 | _ => L_76
L_75 ()
return x_144
L_76 ()

loop_11 (x_145)

which is simplified to

fun last_0 (x_142) = loopS_1 ()

loopS_1 ()
case x_142 of
nil 1 =>1L_73 | ::_0 => L_118
L_73 ()

return global_ 5
1_118 (x_230, x_229)

L_74 (x_230, x_229, x_142)
L_74 (x_145, x_144, x_232)

case x_145 of

nil 1 => L_75 | ::_0 => 1_114

L_75 ()

return x_144
L_114 (x_227, x_226)

L_74 (x_227, x_226, x_145)

Implementation

* known—-case.fun

https://github.com/MLton/mlton/blob/master/mlton/ssa/known-case.fun

MLton Guide (20180207) 242/ 611

Details and Notes

One interesting aspect of KnownCase, is that it often has the effect of unrolling list traversals by one iteration, moving the ni1/:
: check to the end of the loop, rather than the beginning.

MLton Guide (20180207) 243 /611

LambdaCalculus

The lambda calculus is the formal system underlying Standard ML.

http://en.wikipedia.org/wiki/Lambda_calculus

MLton Guide (20180207) 244 /611

LambdaFree

LambdaFree is an analysis pass for the SXML IntermediateLanguage, invoked from ClosureConvert.

Description

This pass descends the entire SXML program and attaches a property to each Lambda PrimExp .t in the program. Then, you
canuse lambdaFree and lambdaRec to get free variables of that Lambda.

Implementation

e lambda-free.sig

e lambda—-free.fun

Details and Notes

For Lambda-s bound in a Fun dec, lambdaF ree gives the union of the frees of the entire group of mutually recursive functions.
Hence, lambdaFree for every Lambda in a single Fun dec is the same. Furthermore, for a Lambda bound in a Fun dec,
lambdaRec gives the list of other functions bound in the same dec defining that Lambda.

For example:

val rec f = fnx=> ... vy ... g ... £ ...
and g = fn z => ... £ ... w ...
lambdaFree (fn x =>) = [y, w]
lambdaFree (fn z =>) = [y, w]

lambdaRec (fn x =>) = [g, f]

lambdaRec (fn z =>) = [f]

https://github.com/MLton/mlton/blob/master/mlton/closure-convert/lambda-free.sig
https://github.com/MLton/mlton/blob/master/mlton/closure-convert/lambda-free.fun

MLton Guide (20180207) 245 / 611

LanguageChanges

We are sometimes asked to modify MLton to change the language it compiles. In short, we are conservative about making such
changes. There are a number of reasons for this.

* The Definition of Standard ML is an extremely high standard of specification. The value of the Definition would be significantly
diluted by changes that are not specified at an equally high level, and the dilution increases with the complexity of the language
change and its interaction with other language features.

e The SML community is small and there are a number of SML implementations. Without an agreed-upon standard, it becomes
very difficult to port programs between compilers, and the community would be balkanized.

* Our main goal is to enable programmers to be as effective as possible with MLton/SML. There are a number of improvements
other than language changes that we could spend our time on that would provide more benefit to programmers.

* The more the language that MLton compiles changes over time, the more difficult it is to use MLton as a stable platform for
serious program development.

Despite these drawbacks, we have extended SML in a couple of cases.

* Foreign function interface
* ML Basis system

¢ Successor ML features

We allow these language extensions because they provide functionality that is impossible to achieve without them or have non-
trivial community support. The Definition does not define a foreign function interface. So, we must either extend the language or
greatly restrict the class of programs that can be written. Similarly, the Definition does not provide a mechanism for namespace
control at the module level, making it impossible to deliver packaged libraries and have a hope of users using them without name
clashes. The ML Basis system addresses this problem. We have also provided a formal specification of the ML Basis system at
the level of the Definition.

Also see

¢ http://www.mlton.org/pipermail/mlton/2004-August/016165.html

* http://www.mlton.org/pipermail/mlton-user/2004-December/000320.html

http://www.mlton.org/pipermail/mlton/2004-August/016165.html
http://www.mlton.org/pipermail/mlton-user/2004-December/000320.html

MLton Guide (20180207)

Lazy

In alazy (or non-strict) language, the arguments to a function are not evaluated before calling the function. Instead, the arguments

are suspended and only evaluated by the function if needed.

Standard ML is an eager (or strict) language, not a lazy language. However, it is easy to delay evaluation of an expression in
SML by creating a thunk, which is a nullary function. In SML, a thunk is written fn ()
laziness is memoization, meaning that once a suspended argument is evaluated, subsequent references look up the value. We can

express this in SML with a function that maps a thunk to a memoized thunk.

signature LAZY =
sig
val lazy:
end

(unit -> ’a)

This is easy to implement in SML.

structure Lazy: LAZY =

-> unit -> 'a

struct
fun lazy (th: unit -> ’a): unit -> ’'a =
let
datatype ’"a lazy_result = Unevaluated of
| Evaluated of ’a
| Failed of exn
val r = ref (Unevaluated th)
in
fn () =>
case !r of
Unevaluated => let
val a = th ()
handle x => (r
val () = r
in
a
end
| Evaluated a => a
| Failed x raise x
end

end

(unit -> ’a)

Failed x; raise x)
Evaluated a

=> e. Another essential feature of

MLton Guide (20180207) 247 / 611

Libraries

In theory every strictly conforming Standard ML program should run on MLton. However, often large SML projects use imple-
mentation specific features so some "porting" is required. Here is a partial list of software that is known to run on MLton.

« Utility libraries:

SMLNJLibrary - distributed with MLton

MLtonLibraryProject - various libraries located on the MLton subversion repository

mlton - the internal MLton utility library, which we hope to cleanup and make more accessible someday

sml-ext, a grab bag of libraries for MLton and other SML implementations (by Sean McLaughlin)

sml-lib, a grab bag of libraries for MLton and other SML implementations (by TomMurphy)
* Scanner generators:

— MLLPTLibrary - distributed with MLton
— MLLex - distributed with MLton
— MLULex -

* Parser generators:

— MLAntlr -
— MLLPTLibrary - distributed with MLton
— MLYacc - distributed with MLton

Concurrency: ConcurrentML - distributed with MLton

Graphics

- SML3d
- mGTK

e Misc. libraries:

CKitLibrary - distributed with MLton
MLRISCLibrary - distributed with MLton
ML-NLFFI - distributed with MLton

Swerve, an HTTP server

fxp, an XML parser

Ports in progress

Contact us for details on any of these.

* MLDoc http://people.cs.uchicago.edu/%7Ejhr/tools/ml-doc.html

e Unicode

More

More projects using MLton can be seen on the Users page.

https://github.com/MLton/mlton/tree/master/lib/mlton
http://github.com/seanmcl/sml-ext
http://tom7misc.cvs.sourceforge.net/tom7misc/sml-lib/
http://people.cs.uchicago.edu/%7Ejhr/tools/ml-doc.html

MLton Guide (20180207)

248 /611

Software for SML implementations other than MLton

* PostgreSQL

— Moscow ML.: http://www.dina.kvl.dk/%7Esestoft/mosmllib/Postgres.html
— SML/NJ NLFFI: http://smlweb.sourceforge.net/smlsql/

e Web:

— ML Kit: SMLserver (a plugin for AOLserver)
— Moscow ML: ML Server Pages (support for PHP-style CGI scripting)
— SML/NIJ: smlweb

http://www.dina.kvl.dk/%7Esestoft/mosmllib/Postgres.html
http://smlweb.sourceforge.net/smlsql/
http://www.smlserver.org
http://ellemose.dina.kvl.dk/%7Esestoft/msp/index.msp
http://smlweb.sourceforge.net/

MLton Guide (20180207) 249/ 611

LibrarySupport

MLton supports both linking to and creating system-level libraries. While Standard ML libraries should be designed with the
MLBasis system to work with other Standard ML programs, system-level library support allows MLton to create libraries for use
by other programming languages. Even more importantly, system-level library support allows MLton to access libraries from
other languages. This article will explain how to use libraries portably with MLton.

The Basics

A Dynamic Shared Object (DSO) is a piece of executable code written in a format understood by the operating system. Executable
programs and dynamic libraries are the two most common examples of a DSO. They are called shared because if they are used
more than once, they are only loaded once into main memory. For example, if you start two instances of your web browser (an
executable), there may be two processes running, but the program code of the executable is only loaded once. A dynamic library,
for example a graphical toolkit, might be used by several different executable programs, each possibly running multiple times.
Nevertheless, the dynamic library is only loaded once and it’s program code is shared between all of the processes.

In addition to program code, DSOs contain a table of textual strings called symbols. These are used in order to make the DSO
do something useful, like execute. For example, on linux the symbol _start refers to the point in the program code where
the operating system should start executing the program. Dynamic libraries generally provide many symbols, corresponding to
functions which can be called and variables which can be read or written. Symbols can be used by the DSO itself, or by other
DSOs which require services.

When a DSO creates a symbol, this is called exporting. If a DSO needs to use a symbol, this is called importing. A DSO might
need to use symbols defined within itself or perhaps from another DSO. In both cases, it is importing that symbol, but the scope
of the import differs. Similarly, a DSO might export a symbol for use only within itself, or it might export a symbol for use by
other DSOs. Some symbols are resolved at compile time by the linker (those used within the DSO) and some are resolved at
runtime by the dynamic link loader (symbols accessed between DSOs).

Symbols in MLton

Symbols in MLton are both imported and exported via the ForeignFunctionInterface. The notation _import "symbolname"
imports functions, _symbol "symbolname" imports variables, and _address "symbolname" imports an address.
To create and export a symbol, _export "symbolname" creates a function symbol and _symbol "symbolname"
"alloc’ creates and exports a variable. For details of the syntax and restrictions on the supported FFI types, read the For-
eignFunctionInterface page. In this discussion it only matters that every FFI use is either an import or an export.

When exporting a symbol, MLton supports controlling the export scope. If the symbol should only be used within the same DSO,
that symbol has private scope. Conversely, if the symbol should also be available to other DSOs the symbol has public
scope. Generally, one should have as few public exports as possible. Since they are public, other DSOs will come to depend on
them, limiting your ability to change them. You specify the export scope in MLton by putting private or public after the
symbol’s name in an FFI directive. eg: _export "foo" private:int->int; or _export "bar" public:int-
>int; .

For technical reasons, the linker and loader on various platforms need to know the scope of a symbol being imported. If the
symbol is exported by the same DSO, use public or private as appropriate. If the symbol is exported by a different
DSO, then the scope external should be used to import it. Within a DSO, all references to a symbol must use the same
scope. MLton will check this at compile time, reporting: symbol "foo" redeclared as public (previously
external). This may cause linker errors. However, MLton can only check usage within Standard ML. All objects being
linked into a resulting DSO must agree, and it is the programmer’s responsibility to ensure this.

Summary of symbol scopes:

* private: used for symbols exported within a DSO only for use within that DSO
* public: used for symbols exported within a DSO that may also be used outside that DSO
* external: used for importing symbols from another DSO

* All uses of a symbol within a DSO (both imports and exports) must agree on the symbol scope

MLton Guide (20180207) 250/ 611

Output Formats
MLton can create executables (—-format executable) and dynamic shared libraries (-format library). To link a
shared library, use —~1ink-opt -1<dso_name>. The default output format is executable.

MLton can also create archives. An archive is not a DSO, but it does have a collection of symbols. When an archive is linked into
a DSO, it is completely absorbed. Other objects being compiled into the DSO should refer to the public symbols in the archive
as public, since they are still in the same DSO. However, in the interest of modular programming, private symbols in an archive
cannot be used outside of that archive, even within the same DSO.

Although both executables and libraries are DSOs, some implementation details differ on some platforms. For this reason,
MLton can create two types or archives. A normal archive (-format archive) is appropriate for linking into an executable.
Conversely, a libarchive (-format libarchive) should be used if it will be linked into a dynamic library.

When MLton does not create an executable, it creates two special symbols. The symbol 1ibname_open is a function which
must be called before any other symbols are accessed. The 1 ibname is controlled by the —1 ibname compile option and defaults
to the name of the output, with any prefixing lib stripped (eg: foo — foo, 1ibfoo — foo0). The symbol 1ibname_close
is a function which should be called to clean up memory once done.

Summary of —~format options:

e executable: create an executable (a DSO)
* library: create a dynamic shared library (a DSO)
* archive: create an archive of symbols (not a DSO) that can be linked into an executable

* libarchive: create an archive of symbols (not a DSO) that can be linked into a library
Related options:

* —libname x: controls the name of the special _open and _close functions.

Interfacing with C

MLton can generate a C header file. When the output format is not an executable, it creates one by default named 1ibname.h.
This can be overridden with ~export-header foo.h. This header file should be included by any C files using the exported
Standard ML symbols.

If C is being linked with Standard ML into the same output archive or DSO, then the C code should #define PART_OF_L
IBNAME before it includes the header file. This ensures that the C code is using the symbols with correct scope. Any symbols
exported from C should also be marked using the PRIVATE/PUBLIC/EXTERNAL macros defined in the Standard ML export
header. The declared C scope on exported C symbols should match the import scope used in Standard ML.

An example:

#define PART_OF_FO0O
#include "foo.h"

PUBLIC int cFoo() {
return smlFoo () ;

}

val () = _export "smlFoo" private: unit -> int; (fn () => 5)
val cFoo = _import "cFoo" public: unit -> int;

MLton Guide (20180207) 251 /611

Operating-system specific details

On Windows, 1ibarchive and archive are the same. However, depending on this will lead to portability problems. Win-
dows is also especially sensitive to mixups of public and external. If an archive is linked, make sure it’s symbols are
imported as public. If a DLL is linked, make sure it’s symbols are imported as external. Using external instead of
public will result in link errors that __imp__ foo is undefined. Using public instead of external will result in
inconsistent function pointer addresses and failure to update the imported variables.

On Linux, libarchive and archive are different. Libarchives are quite rare, but necessary if creating a library from an
archive. It is common for a library to provide both an archive and a dynamic library on this platform. The linker will pick one or
the other, usually preferring the dynamic library. While a quirk of the operating system allows external import to work for both
archives and libraries, portable projects should not depend on this behaviour. On other systems it can matter how the library is
linked (static or dynamic).

MLton Guide (20180207) 252/ 611

License

Web Site

In order to allow the maximum freedom for the future use of the content in this web site, we require that contributions to the web
site be dedicated to the public domain. That means that you can only add works that are already in the public domain, or that you
must hold the copyright on the work that you agree to dedicate the work to the public domain.

By contributing to this web site, you agree to dedicate your contribution to the public domain.

Software

As of 20050812, MLton software is licensed under the BSD-style license below. By contributing code to the project, you agree
to release the code under this license. Contributors can retain copyright to their contributions by asserting copyright in their code.
Contributors may also add to the list of copyright holders in doc/1license/MLton-LICENSE, which appears below.

../../LICENSE

MLton Guide (20180207) 253 /611

LineDirective

To aid in the debugging of code produced by program generators such as Noweb, MLton supports comments with line directives
of the form

(x#1line l.c "f"x)

Here, ! and ¢ are sequences of decimal digits and f is the source file. The first character of a source file has the position 1.1. A
line directive causes the front end to believe that the character following the right parenthesis is at the line and column of the
specified file. A line directive only affects the reporting of error messages and does not affect program semantics (except for
functions like MLton.Exn.history that report source file positions). Syntactically invalid line directives are ignored. To
prevent incompatibilities with SML, the file name may not contain the character sequence) .

http://www.eecs.harvard.edu/%7Enr/noweb/

MLton Guide (20180207) 254 / 611

LLVM

The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.

ML.ton supports code generation via LLVM (-codegen 11wvm); see LLVMCodegen.

Also see

¢ CMinusMinus

http://www.llvm.org/

MLton Guide (20180207) 255/ 611

LLVMCodegen

The LLVMCodegen is a code generator that translates the Machine IntermediateLanguage to LLVM assembly, which is further
optimized and compiled to native object code by the LLVM toolchain.

It requires LLVM version 3.7 or greater to be installed.

In benchmarks performed on the AMDG64 architecture, code size with this generator is usually slightly smaller than either the
native or the C code generators. Compile time is worse than native, but slightly better than C. Run time is often better than either
native or C.

Implementation

e llvm-codegen.sig

e 1lvm-codegen. fun

Details and Notes

The LLVMCodegen was initially developed by Brian Leibig (see An LLVM Back-end for MLton).

https://github.com/MLton/mlton/blob/master/mlton/codegen/llvm-codegen/llvm-codegen.sig
https://github.com/MLton/mlton/blob/master/mlton/codegen/llvm-codegen/llvm-codegen.fun

MLton Guide (20180207) 256 / 611

LocalFlatten

LocalFlatten is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass flattens arguments to SSA blocks.

A block argument is flattened as long as it only flows to selects and there is some tuple constructed in this function that flows to
it.

Implementation

* local-flatten.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/local-flatten.fun

MLton Guide (20180207) 257 / 611

LocalRef

LocalRef is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description
This pass optimizes ref cells local to a SSA function:

* global ref-s only used in one function are moved to the function

e ref-s only created, read from, and written to (i.e., don’t escape) are converted into function local variables

Uses Multi and Restore.

Implementation

* Jocal-ref.fun

Details and Notes

Moving a global ref requires the Multi analysis, because a global ref can only be moved into a function that is executed at
most once.

Conversion of non-escaping re f-s is structured in three phases:

 analysis—a variable r =Ref_ref x escapes if

— ris used in any context besides Ref_assign (r, _) orRef_deref r

— all uses r reachable from a (direct or indirect) call to Thread_copyCurrent are of the same flavor (either Ref_assign
or Ref_deref); this also requires the Multi analysis.

¢ transformation

— rewrites r =Ref_ref xtor =x
— rewrites _ =Ref_assign (r, y)tor =y
— rewrites z =Ref_deref rtoz =r

Note that the resulting program violates the SSA condition.

¢ Restore —restore the SSA condition.

https://github.com/MLton/mlton/blob/master/mlton/ssa/local-ref.fun

MLton Guide (20180207)

258 /611

Logo

Files

mlton.svg
mlton-1024.png
mlton-512.png
mlton-256.png
mlton-128.png
mlton—-64.png

mlton-32.png

guide/Logo.attachments/mlton.svg
guide/Logo.attachments/mlton-1024.png
guide/Logo.attachments/mlton-512.png
guide/Logo.attachments/mlton-256.png
guide/Logo.attachments/mlton-128.png
guide/Logo.attachments/mlton-64.png
guide/Logo.attachments/mlton-32.png

MLton Guide (20180207) 259 / 611

Looplnvariant

Looplnvariant is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass removes loop invariant arguments to local loops.

loop (x, y)

loop (x, z)

becomes

loop’ (%, V)

loop (y)
loop (y)
loop (z)

Implementation

* loop-invariant.fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/loop-invariant.fun

MLton Guide (20180207) 260 /611

LoopUnroll

LoopUnroll is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

A simple loop unrolling optimization.

Implementation

* loop—unroll. fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/loop-unroll.fun

MLton Guide (20180207) 261 /611

LoopUnswitch

LoopUnswitch is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

A simple loop unswitching optimization.

Implementation

¢ loop-unswitch. fun

Details and Notes

https://github.com/MLton/mlton/blob/master/mlton/ssa/loop-unswitch.fun

MLton Guide (20180207) 262 /611

Machine

Machine is an IntermediateLanguage, translated from RSSA by ToMachine and used as input by the Codegen.

Description

Machine is an Untyped IntermediateLanguage, corresponding to a abstract register machine.

Implementation

* machine.sig

e machine. fun

Type Checking

The Machine IntermediateLanguage has a primitive type checker (nachine.sig, machine. fun), which only checks some
liveness properties.

Details and Notes

The runtime structure sets some constants according to the configuration files on the target architecture and OS.

https://github.com/MLton/mlton/blob/master/mlton/backend/machine.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/machine.fun
https://github.com/MLton/mlton/blob/master/mlton/backend/machine.sig
https://github.com/MLton/mlton/blob/master/mlton/backend/machine.fun

MLton Guide (20180207) 263 /611

ManualPage

MLton is run from the command line with a collection of options followed by a file name and a list of files to compile, assemble,
and link with.

mlton [option ...] file.{c|mlb|o|sml} [file.{c|ols|S} ...]

The simplest case istorunmlton foo.sml, where foo.sml contains a valid SML program, in which case MLton compiles
the program to produce an executable foo. Since MLton does not support separate compilation, the program must be the entire
program you wish to compile. However, the program may refer to signatures and structures defined in the Basis Library.

Larger programs, spanning many files, can be compiled with the ML Basis system. In this case, m1ton foo.mlb will compile
the complete SML program described by the basis foo .m1b, which may specify both SML files and additional bases.

Next Steps

* CompileTimeOptions

* RunTimeOptions

MLton Guide (20180207) 264 /611

MatchCompilation

Match compilation is the process of translating an SML match into a nested tree (or dag) of simple case expressions and tests.

MLton’s match compiler is described here.

Match compilation in other compilers

¢ BaudinetMacQueen85
* Leroy90, pages 60-69.
¢ Sestoft96

¢ ScottRamsey00

MLton Guide (20180207) 265 /611

MatchCompile

MatchCompile is a translation pass, agnostic in the IntermediateLanguages between which it translates.

Description

Match compilation converts a case expression with nested patterns into a case expression with flat patterns.

Implementation

* match-compile.sig

* match-compile.fun

Details and Notes

val matchCompile:

{caseType: Type.t, (*x type of entire expression x)

cases: (NestedPat.t x ((Var.t -> Var.t) -> Exp.t)) vector,
conTycon: Con.t -> Tycon.t,

region: Region.t,

test: Var.t,

testType: Type.t,

tyconCons: Tycon.t —-> {con: Con.t, hasArg: bool} vector}
-> Exp.t * (unit -> ((Layout.t % {isOnlyExns: bool}) vector) vector)

matchCompile is complicated by the desire for modularity between the match compiler and its caller. Its caller is responsible
for building the right hand side of a rule p => e. On the other hand, the match compiler is responsible for destructing the
test and binding new variables to the components. In order to connect the new variables created by the match compiler with
the variables in the pattern p, the match compiler passes an environment back to its caller that maps each variable in p to the
corresponding variable introduced by the match compiler.

The match compiler builds a tree of n-way case expressions by working from outside to inside and left to right in the patterns.
For example,

case x of
(L, Cl a) => el
| (C2 b, C3 c) => e2

is translated to

let
fun f1 a = el
fun £f2 (b, c) = e2
in
case x of
(x1, x2) =>
(case x1 of
C2 b’ => (case x2 of
Cl a" => f1 a’
| C3 ¢’ => f2(b",c’)
| _ => raise Match)
_ => (case x2 of
Cl a_ => f1 a_
| _ => raise Match))
end

https://github.com/MLton/mlton/blob/master/mlton/match-compile/match-compile.sig
https://github.com/MLton/mlton/blob/master/mlton/match-compile/match-compile.fun

MLton Guide (20180207) 266 /611

Here you can see the necessity of abstracting out the ride hand sides of the cases in order to avoid code duplication. Right hand
sides are always abstracted. The simplifier cleans things up. You can also see the new (primed) variables introduced by the match
compiler and how the renaming works. Finally, you can see how the match compiler introduces the necessary default clauses in
order to make a match exhaustive, i.e. cover all the cases.

The match compiler uses numCons and tyconCons to determine the exhaustivity of matches against constructors.

ML.ton Guide (20180207) 267 /611

MatthewFluet

Matthew Fluet (matthew.fluet@ gmail.com , http://www.cs.rit.edu/%7Emtf) is an Assistant Professor at the Rochester Institute
of Technology.

Current MLton projects:

* general maintenance

¢ release new version

Misc. and underspecified TODOs:

* understand RefFlatten and DeepFlatten

http://www.mlton.org/pipermail/mlton/2005-April/026990.html

http://www.mlton.org/pipermail/mlton/2007-November/030056.html
http://www.mlton.org/pipermail/mlton/2008-April/030250.html
http://www.mlton.org/pipermail/mlton/2008-July/030279.html

http://www.mlton.org/pipermail/mlton/2008-August/030312.html

http://www.mlton.org/pipermail/mlton/2008-September/030360.html

http://www.mlton.org/pipermail/mlton-user/2009-June/001542.html

* MSG_DONTWAIT isn’t Posix

* coordinate w/ Dan Spoonhower and Lukasz Ziarek and Armand Navabi on multi-threaded
- http://www.mlton.org/pipermail/mlton/2008-March/030214.html

* Intel Research bug: no tyconRep property (company won’t release sample code)
— http://www.mlton.org/pipermail/mlton-user/2008-March/001358.html

* treatment of real constants

— http://www.mlton.org/pipermail/mlton/2008-May/030262.html
— http://www.mlton.org/pipermail/mlton/2008-June/030271.html

* representation of bool and _bool in ForeignFunctionInterface
— http://www.mlton.org/pipermail/mlton/2008-May/030264.html
* http://www.icfpcontest.org

— John Reppy claims that "It looks like the card-marking overhead that one incurs when using generational collection swamps
the benefits of generational collection."

* page to disk policy / single heap

— http://www.mlton.org/pipermail/mlton/2008-June/030278.html
— http://www.mlton.org/pipermail/mlton/2008-August/030318.html

* MLton.GC.pack doesn’t keep a small heap if a garbage collection occurs before MLt on . GC . unpack.

mailto:matthew.fluet@gmail.com
http://www.cs.rit.edu/%7Emtf
http://www.rit.edu
http://www.rit.edu
http://www.mlton.org/pipermail/mlton/2005-April/026990.html
http://www.mlton.org/pipermail/mlton/2007-November/030056.html
http://www.mlton.org/pipermail/mlton/2008-April/030250.html
http://www.mlton.org/pipermail/mlton/2008-July/030279.html
http://www.mlton.org/pipermail/mlton/2008-August/030312.html
http://www.mlton.org/pipermail/mlton/2008-September/030360.html
http://www.mlton.org/pipermail/mlton-user/2009-June/001542.html
http://www.mlton.org/pipermail/mlton/2008-March/030214.html
http://www.mlton.org/pipermail/mlton-user/2008-March/001358.html
http://www.mlton.org/pipermail/mlton/2008-May/030262.html
http://www.mlton.org/pipermail/mlton/2008-June/030271.html
http://www.mlton.org/pipermail/mlton/2008-May/030264.html
http://www.icfpcontest.org
http://www.mlton.org/pipermail/mlton/2008-June/030278.html
http://www.mlton.org/pipermail/mlton/2008-August/030318.html

MLton Guide (20180207)

— It might be preferable for MLton.GC.pack to be implemented as a (new) MLton.GC.Ratios.setLive 1.1 fol-
lowed by MLton.GC.collect () andfor MLton.GC.unpack to be implemented as MLt on.GC.Ratios.setLi

ve 8.0 followed by MLton.GC.collect ().

e The static struct GC_objectType objectTypes[] =arrayincludes many duplicates. Objects of distinct source
type, but equivalent representations (in terms of size, bytes non-pointers, number pointers) can share the objectType index.

* PolySpace bug: Redundant optimization (company won’t release sample code)

— http://www.mlton.org/pipermail/mlton/2008-September/030355.html
* treatment of exception raised during BasisLibrary evaluation

— http://www.mlton.org/pipermail/mlton/2008-December/030501.html
— http://www.mlton.org/pipermail/mlton/2008-December/030502.html
— http://www.mlton.org/pipermail/mlton/2008-December/030503.html

e Use memcpy

— http://www.mlton.org/pipermail/mlton-user/2009-January/001506.html
— http://www.mlton.org/pipermail/mlton/2009-January/030506.html

* Implement more 64bit primops in x86 codegen
— http://www.mlton.org/pipermail/mlton/2009-January/030507.html
* Enrich path-map file syntax:

— http://www.mlton.org/pipermail/mlton/2008-September/030348.html
— http://www.mlton.org/pipermail/mlton-user/2009-January/001507.html

* PolySpace bug: crash during Cheney-copy collection
— http://www.mlton.org/pipermail/mlton/2009-February/030513.html

e eliminate ~-build-constants

— all _const-s are known by runtime/gen/basis-ffi.def

generate gen—constants.c frombasis-ffi.def

generate constants from gen-constants.cand libmlton.a

similar to gen-sizes.c and sizes
* eliminate "Windows hacks" for Cygwin from Path module
- http://www.mlton.org/pipermail/mlton/2009-July/030606.html
* extend IL type checkers to check for empty property lists
* make (unsafe) Int Inf conversions into primitives

— http://www.mlton.org/pipermail/mlton/2009-July/030622.html

http://www.mlton.org/pipermail/mlton/2008-September/030355.html
http://www.mlton.org/pipermail/mlton/2008-December/030501.html
http://www.mlton.org/pipermail/mlton/2008-December/030502.html
http://www.mlton.org/pipermail/mlton/2008-December/030503.html
http://www.mlton.org/pipermail/mlton-user/2009-January/001506.html
http://www.mlton.org/pipermail/mlton/2009-January/030506.html
http://www.mlton.org/pipermail/mlton/2009-January/030507.html
http://www.mlton.org/pipermail/mlton/2008-September/030348.html
http://www.mlton.org/pipermail/mlton-user/2009-January/001507.html
http://www.mlton.org/pipermail/mlton/2009-February/030513.html
http://www.mlton.org/pipermail/mlton/2009-July/030606.html
http://www.mlton.org/pipermail/mlton/2009-July/030622.html

MLton Guide (20180207) 269 /611

mGTK

mGTK is a wrapper for GTK+, a GUI toolkit.

We recommend using mGTK 0.93, which is not listed on their home page, but is available at the file release page. To test it, after
unpacking, do cd examples;make mlton, after which you should be able to run the many examples (signup-mlton,
listview—-mlton,...).

Also see

e Glade

http://mgtk.sourceforge.net/
http://www.gtk.org/
http://sourceforge.net/project/showfiles.php?group_id=23226&package_id=16523

MLton Guide (20180207) 270/ 611

MichaelNorrish

I am a researcher at NICTA, with a web-page here.

I’'m interested in MLton because of the chance that it might be a good vehicle for future implementations of the HOL theorem-
proving system. It’s beginning to look as if one route forward will be to embed an SML interpreter into a MLton-compiled
executable. I don’t know if an extensible interpreter of the kind we’re looking for already exists.

http://nicta.com.au
http://web.rsise.anu.edu.au/%7Emichaeln/
http://hol.sf.net

ML.ton Guide (20180207) 271/ 611

MikeThomas

Here is a picture at home in Brisbane, Queensland, Australia, taken in January 2004.

MLton Guide (20180207) 272/ 611

ML

ML stands for meta language. ML was originally designed in the 1970s as a programming language to assist theorem proving in
the logic LCF. In the 1980s, ML split into two variants, Standard ML and OCaml, both of which are still used today.

MLton Guide (20180207)

273 /611

MLAnNtIr

MLAntlr is a parser generator for Standard ML.

Also see

e MLULex

* MLLPTLibrary

http://smlnj-gforge.cs.uchicago.edu/projects/ml-lpt/

MLton Guide (20180207) 274/ 611

MLBasis

The ML Basis system extends Standard ML to support programming-in-the-very-large, namespace management at the module
level, separate delivery of library sources, and more. While Standard ML modules are a sophisticated language for programming-
in-the-large, it is difficult, if not impossible, to accomplish a number of routine namespace management operations when a
program draws upon multiple libraries provided by different vendors.

The ML Basis system is a simple, yet powerful, approach that builds upon the programmer’s intuitive notion (and The Definition
of Standard ML (Revised)’s formal notion) of the top-level environment (a basis). The system is designed as a natural extension
of Standard ML; the formal specification of the ML Basis system (m1b-formal.pdf) is given in the style of the Definition.

Here are some of the key features of the ML Basis system:

1. Explicit file order: The order of files (and, hence, the order of evaluation) in the program is explicit. The ML Basis system’s
semantics are structured in such a way that for any well-formed project, there will be exactly one possible interpretation of
the project’s syntax, static semantics, and dynamic semantics.

2. Implicit dependencies: A source file (corresponding to an SML top-level declaration) is elaborated in the environment
described by preceding declarations. It is not necessary to explicitly list the dependencies of a file.

3. Scoping and renaming: The ML Basis system provides mechanisms for limiting the scope of (i.e, hiding) and renaming
identifiers.

4. No naming convention for finding the file that defines a module. To import a module, its defining file must appear in some
ML Basis file.

Next steps

* MLBasisSyntaxAndSemantics

* MLBasisExamples

MLBasisPathMap
e MLBasisAnnotations

e MLBasisAvailableLibraries

MLton Guide (20180207) 275/ 611

MLBasisAnnotationExamples

Here are some example uses of MLBasisAnnotations.

Eliminate spurious warnings in automatically generated code

Programs that automatically generate source code can often produce nonexhaustive patterns, relying on invariants of the generated
code to ensure that the pattern matchings never fail. A programmer may wish to elide the nonexhaustive warnings from this code,
in order that legitimate warnings are not missed in a flurry of false positives. To do so, the programmer simply annotates the
generated code with the nonexhaustiveBind ignore and nonexhaustiveMatch ignore annotations:

local
$ (GEN_ROOT) /gen-1ib.mlb

ann
"nonexhaustiveBind ignore"
"nonexhaustiveMatch ignore"
in
foo.gen.sml
end
in
signature FOO
structure Foo
end

Deliver a library

Standard ML libraries can be delivered via .mlb files. Authors of such libraries should strive to be mindful of the ways in
which programmers may choose to compile their programs. For example, although the defaults for sequenceNonUnit and
warnUnused are ignore and false, periodically compiling with these annotations defaulted to warn and t rue can help
uncover likely bugs. However, a programmer is unlikely to be interested in unused modules from an imported library, and the
behavior of sequenceNonUnit error may be incompatible with some libraries. Hence, a library author may choose to
deliver a library as follows:

ann
"nonexhaustiveBind warn" "nonexhaustiveMatch warn"
"redundantBind warn" "redundantMatch warn"
"sequenceNonUnit warn"
"warnUnused true" "forceUsed"

in
local

filel.sml

filen.sml
in
functor F1

signature S1
structure SN

end
end

The annotations nonexhaustiveBind warn, redundantBind warn, nonexhaustiveMatch warn, redundan
tMatch warn, and sequenceNonUnit warn have the obvious effect on elaboration. The annotations warnUnused
true and forceUsed work in conjunction — warning on any identifiers that do not contribute to the exported modules, and
preventing warnings on exported modules that are not used in the remainder of the program. Many of the available libraries are
delivered with these annotations.

MLton Guide (20180207) 276/ 611

MLBasisAnnotations

ML Basis annotations control options that affect the elaboration of SML source files. Conceptually, a basis file is elaborated in a
default annotation environment (just as it is elaborated in an empty basis). The declaration ann "ann" in basdec end merges
the annotation ann with the "current" annotation environment for the elaboration of basdec. To allow for future expansion, "ann"
is lexed as a single SML string constant. To conveniently specify multiple annotations, the following derived form is provided:

ann "ann" ("ann")* in basdec end = ann "ann" in ann ("ann")* in basdec end end I

Here are the available annotations. In the explanation below, for annotations that take an argument, the first value listed is the
default.

e allowFFI {false]|true}
If true, allow _address, _export, _import, and _symbol expressions to appear in source files. See ForeignFunc-
tionInterface.

* allowSuccessorML {falsel|true}

Allow or disallow all of the SuccessorML features. This is a proxy for all of the following annotations.

allowDoDecls {false|true}
If t rue, allow a do exp declaration form.

— allowExtendedConsts {false|true}
Allow or disallow all of the extended constants features. This is a proxy for all of the following annotations.
* allowExtendedNumConsts {false|true}
If t rue, allow extended numeric constants.
¥ allowExtendedTextConsts {false]|true}
If t rue, allow extended text constants.
— allowLineComments {false|true}
If t rue, allow line comments beginning with the token ().

— allowOptBar {false|true}
If true, allow a bar to appear before the first match rule of a case, £n, or handle expression, allow a bar to appear
before the first function-value binding of a fun declaration, and allow a bar to appear before the first constructor binding or
description of a datatype declaration or specification.
— allowOptSemicolon {false|true}
If t rue, allows a semicolon to appear after the last expression in a sequence expression or let body.
— allowOrPats {falseltrue}
If t rue, allows disjunctive (a.k.a., "or") patterns of the form pat | pat.
— allowRecordPunExps {false|true}
If t rue, allows record punning expressions.
— allowSigWithtype {falsel|true}
If true, allows withtype to modify a datatype specification in a signature.
— allowVectorExpsAndPats {falsel|true}
Allow or disallow vector expressions and vector patterns. This is a proxy for all of the following annotations.

*+ allowVectorExps {falsel|true}
If t rue, allow vector expressions.

¥ allowVectorPats {false|true}
If t rue, allow vector patterns.
e forceUsed

Force all identifiers in the basis denoted by the body of the ann to be considered used; use in conjunction with warnUnused
true.

MLton Guide (20180207) 277/ 611

* nonexhaustiveBind {warn|error|ignore}
If error or warn, report nonexhaustive patterns in val declarations (i.e., pattern-match failures that raise the Bind excep-
tion). An error will abort a compile, while a warning will not.

* nonexhaustiveExnBind {default|ignore}
If ignore, suppress errors and warnings about nonexhaustive matches in val declarations that arise solely from unmatched
exceptions. If default, follow the behavior of nonexhaustiveBind.

* nonexhaustiveExnMatch {default|ignore}
If ignore, suppress errors and warnings about nonexhaustive matches in £n expressions, case expressions, and fun decla-
rations that arise solely from unmatched exceptions. If default, follow the behavior of nonexhaustiveMatch.

* nonexhaustiveExnRaise {ignore|default}
If ignore, suppress errors and warnings about nonexhaustive matches in handle expressions that arise solely from un-
matched exceptions. If default, follow the behavior of nonexhaustiveRaise.

* nonexhaustiveMatch {warn|error|ignore}
If error or warn, report nonexhaustive patterns in £n expressions, case expressions, and fun declarations (i.e., pattern-
match failures that raise the Mat ch exception). An error will abort a compile, while a warning will not.

* nonexhaustiveRaise {ignore|warn|error}
If error or warn, report nonexhaustive patterns in handle expressions (i.e., pattern-match failures that implicitly (re)raise
the unmatched exception). An error will abort a compile, while a warning will not.

* redundantBind {warn|error|ignore}

If error or warn, report redundant patterns in val declarations. An error will abort a compile, while a warning will not.

* redundantMatch {warn|error|ignore}
If error or warn, report redundant patterns in £n expressions, case expressions, and fun declarations. An error will abort
a compile, while a warning will not.

* redundantRaise {warn|error|ignore}

If error or warn, report redundant patterns in handle expressions. An error will abort a compile, while a warning will not.

* resolveScope {strdec|dec|topdec|program}

Used to control the scope at which overload constraints are resolved to default types (if not otherwise resolved by type infer-
ence) and the scope at which unresolved flexible record constraints are reported.

The syntactic-class argument means to perform resolution checks at the smallest enclosing syntactic form of the given class.
The default behavior is to resolve at the smallest enclosing strdec (which is equivalent to the largest enclosing dec). Other
useful behaviors are to resolve at the smallest enclosing topdec (which is equivalent to the largest enclosing strdec) and at the
smallest enclosing program (which corresponds to a single . sm1 file and does not correspond to the whole .m1b program).

* sequenceNonUnit {ignore|error|warn}
If error or warn, report when el is not of type unit in the sequence expression (el;e2). This can be helpful in detecting
curried applications that are mistakenly not fully applied. To silence spurious messages, you can use ignore el.

* valrecConstr {warn|error|ignore}
If error or warn, report when a val rec (or fun) declaration redefines an identifier that previously had constructor status.
An error will abort a compile, while a warning will not.

* warnUnused {false|true}

Report unused identifiers.

Next Steps

* MLBasisAnnotationExamples

¢ WarnUnusedAnomalies

MLton Guide (20180207) 278/ 611

MLBasisAvailableLibraries

MLton comes with the following ML Basis files available.

* $(SML_LIB) /basis/basis.mlb
The Basis Library.

e S(SML_LIB) /basis/basis—-1997.mlb
The (deprecated) 1997 version of the Basis Library.

e $(SML_LIB) /basis/mlton.mlb

The MLton structure and signatures.

* $(SML_LIB) /basis/c-types.mlb

Various structure aliases useful as ForeignFunctionInterfaceTypes.

e $(SML_LIB) /basis/unsafe.mlb

The Unsafe structure and signature.

* $(SML_LIB) /basis/sml-nj.mlb
The SMLofNJ structure and signature.

* $(SML_LIB) /mlyacc-lib/mlyacc-1lib.mlb
Modules used by parsers built with MLYacc.

¢ S(SML_LIB)/cml/cml.mlb

ConcurrentML, a library for message-passing concurrency.

* $(SML_LIB) /mlnlffi-1ib/mlnlffi-lib.mlb
ML-NLFFI, a library for foreign function interfaces.

e $(SML_LIB) /mlrisc-1ib/...
MLRISCLibrary, a library for retargetable and optimizing compiler back ends.

* $(SML_LIB) /smlnj-1lib/...
SMLNIJLibrary, a collection of libraries distributed with SML/NJ.

e $(SML_LIB) /ckit-1lib/ckit-1lib.mlb
CKitLibrary, a library for C source code.

* $(SML_LIB)/mllpt-1lib/mllpt-lib.mlb
MLLPTLibrary, a support library for the MLULex scanner generator and the MLAntlr parser generator.

Basis fragments

There are a number of specialized ML Basis files for importing fragments of the Basis Library that can not be expressed within
SML.

* $(SML_LIB) /basis/pervasive-types.mlb
The top-level types and constructors of the Basis Library.

* $(SML_LIB) /basis/pervasive—-exns.mlb

The top-level exception constructors of the Basis Library.

MLton Guide (20180207) 279/ 611

* $(SML_LIB) /basis/pervasive-vals.mlb

The top-level values of the Basis Library, without infix status.

e $(SML_LIB) /basis/overloads.mlb

The top-level overloaded values of the Basis Library, without infix status.

e $(SML_LIB) /basis/equal.mlb

The polymorphic equality = and inequality <> values, without infix status.

e $(SML_LIB) /basis/infixes.mlb

The infix declarations of the Basis Library.

* $(SML_LIB) /basis/pervasive.mlb

The entire top-level value and type environment of the Basis Library, with infix status. This is the same as importing the above
six MLB files.

MLton Guide (20180207) 280/ 611

MLBasisExamples

Here are some example uses of ML Basis files.

Complete program

Suppose your complete program consists of the files filel.sml, ..., filen.sml, which depend upon libraries 1ib1l.mlb,
..., 1libm.mlb.

(» import libraries x)
libl.mlb

libm.mlb

(x program files x)
filel.sml

filen.sml

The bases denoted by 1ibl.mlb, ..., 1ibm.mlb are merged (bindings of names in later bases take precedence over bindings
of the same name in earlier bases), producing a basis in which filel.sml,..., filen. sml are elaborated, adding additional
bindings to the basis.

Export filter

Suppose you only want to export certain structures, signatures, and functors from a collection of files.

local
filel.sml

filen.sml
in
(x export filter here x)
functor F
structure S
end

While filel.sml,..., filen.sml may declare top-level identifiers in addition to F and S, such names are not accessible to
programs and libraries that import this .m1b.

Export filter with renaming

Suppose you want an export filter, but want to rename one of the modules.

local
filel.sml

filen.sml
in
(x» export filter, with renaming, here x)
functor F
structure S’ = S
end

Note that functor F is an abbreviation for functor F =F, which simply exports an identifier under the same name.

MLton Guide (20180207) 281 /611

Import filter

Suppose you only want to import a functor F from one library and a structure S from another library.

local
1ibl.mlb

in
(x» import filter here x)
functor F

end

local
1ib2.mlb

in
(* import filter here x)
structure S

end

filel.sml

filen.sml

Import filter with renaming

Suppose you want to import a structure S from one library and another structure S from another library.

local
1libl.mlb

in
(x» import filter, with renaming, here x)
structure S1 = S

end

local
1ib2.mlb

in
(x» import filter, with renaming, here x)
structure S2 = S

end

filel.sml

filen.sml

Full Basis

Since the Modules level of SML is the natural means for organizing program and library components, MLB files provide con-
venient syntax for renaming Modules level identifiers (in fact, renaming of functor identifiers provides a mechanism that is not
available in SML). However, please note that .m1b files elaborate to full bases including top-level types and values (including
infix status), in addition to structures, signatures, and functors. For example, suppose you wished to extend the Basis Library
withan (’a, ’b) either datatype corresponding to a disjoint sum; the type and some operations should be available at the
top-level; additionally, a signature and structure provide the complete interface.

We could use the following files.
either-sigs.sml

signature EITHER_GLOBAL =

sig
datatype (“a, ’'b) either = Left of ’a | Right of 'b
val & : ("a —>'¢c) x ("b -=> 'c) -=> ('a, "b) either -> ’'c
val && : ("a —> 'c) » (b —> ’'d) -> ('a, ’'b) either -> ('c, ’'d) either

end

MLton Guide (20180207) 282/ 611

signature EITHER =

sig
include EITHER_GLOBAL
val isLeft : ("a, "b) either -> bool
val isRight : (’a, ’'b) either -> bool
end

either-strs.sml

structure Either : EITHER =
struct
datatype ("a, ’'b) either = Left of ’a | Right of 'b
fun £ & g = fn x =>
case x of Left z => f z | Right z => g z
fun £ && g = (Left o f) & (Right o g)
fun isLeft x = ((fn _ => true) & (fn _ => false)) x
fun isRight x = (not o isLeft) x

end
structure EitherGlobal : EITHER_GLOBAL = Either

either-infixes.sml

infixr 3 & &&

either-open.sml

open EitherGlobal

either.mlb

either-infixes.sml

local
(x» import Basis Library =)
S (SML_LIB) /basis/basis.mlb
either-sigs.sml
either-strs.sml

in
signature EITHER
structure Either
either-open.sml

end

A client that imports either.mlb will have access to neither EITHER_GLOBAL nor EitherGlobal, but will have access
to the type either and the values & and && (with infix status) in the top-level environment. Note that either—-infixes.
sml is outside the scope of the local, because we want the infixes available in the implementation of the library and to clients of
the library.

MLton Guide (20180207)

MLBasisPathMap

An ML Basis path map describes a map from ML Basis path variables (of the form $ (VAR)) to file system paths. ML Basis
path variables provide a flexible way to refer to libraries while allowing them to be moved without changing their clients.

The format of an m1b-path-map file is a sequence of lines; each line consists of two, white-space delimited tokens. The
first token is a path variable VAR and the second token is the path to which the variable is mapped. The path may include path

variables, which are recursively expanded.

The mapping from path variables to paths is initialized by the compiler. Additional path maps can be specified with ~m1b-
path-map and individual path variable mappings can be specified with -m1b-path-var (see CompileTimeOptions). Con-
figuration files are processed from first to last and from top to bottom, later mappings take precedence over earlier mappings.

The compiler and system-wide configuration file makes the following path variables available.

MLB path variable Description
SML_LIB path to system-wide libraries, usually /usr/lib/mlton/sml
TARGET_ARCH string representation of target architecture
TARGET_OS string representation of target operating system

DEFAULT_TINT

binding for default int, usually int 32

DEFAULT_WORD

binding for default word, usually word32

DEFAULT_REAL

binding for default real, usually real64

MLton Guide (20180207) 284 /611

MLBasisSyntaxAndSemantics

An ML Basis (MLB) file should have the .m1b suffix and should contain a basis declaration.

Syntax
A basis declaration (basdec) must be one of the following forms.

* basis basid = basexp (and basid = basexp)”

e open basid; ... basid,

* local basdec in basdec end

e basdec [;] basdec

» structure strid [= strid] (and strid[= strid])"

* signature sigid [= sigid] (and sigid [= sigid])*
* functor funid [= funid] (and funid [=funid])*

e path.sml, path.sig, or path. fun

e path.mlb

* ann "ann" in basdec end
A basis expression (basexp) must be of one the following forms.

e bas basdec end
e basid

e let basdec in basexp end

Nested SML-style comments (enclosed with (* and =)) are ignored (but LineDirectives are recognized).

Paths can be relative or absolute. Relative paths are relative to the directory containing the MLB file. Paths may include path
variables and are expanded according to a path map. Unquoted paths may include alpha-numeric characters and the symbols "~
"and "_", along with the arc separator "/" and extension separator ".". More complicated paths, including paths with spaces,
may be included by quoting the path with ". A quoted path is lexed as an SML string constant.

Annotations allow a library author to control options that affect the elaboration of SML source files.

Semantics

There is a formal semantics for ML Basis files in the style of the Definition. Here, we give an informal explanation.

An SML structure is a collection of types, values, and other structures. Similarly, a basis is a collection, but of more kinds of
objects: types, values, structures, fixities, signatures, functors, and other bases.

A basis declaration denotes a basis. A structure, signature, or functor declaration denotes a basis containing the corresponding
module. Sequencing of basis declarations merges bases, with later definitions taking precedence over earlier ones, just like
sequencing of SML declarations. Local declarations provide name hiding, just like SML local declarations. A reference to an
SML source file causes the file to be elaborated in the basis extant at the point of reference. A reference to an MLB file causes
the basis denoted by that MLB file to be imported — the basis at the point of reference does not affect the imported basis.

Basis expressions and basis identifiers allow binding a basis to a name.

An MLB file is elaborated starting in an empty basis. Each MLB file is elaborated and evaluated only once, with the result being
cached. Subsequent references use the cached value. Thus, any observable effects due to evaluation are not duplicated if the
MLB file is referred to multiple times.

MLton Guide (20180207) 285/ 611

ML

ML} is a Standard ML implementation that targets Java bytecode. It is no longer maintained. It has morphed into SML.NET.

Also see

¢ BentonEtAl98

* BentonKennedy99

http://www.dcs.ed.ac.uk/home/mlj/

MLton Guide (20180207)

286 /611

MLKit

The ML Kit is a Standard ML implementation.
MLK:it supports:

e SML'97

— including most of the latest Basis Library specification,

ML Baisis files
— and separate compilation,

* Region-Based Memory Management
— and garbage collection,

* Multiple backends, including

— native x86,
- bytecode, and
— JavaScript (see SMLtoJs).

At the time of writing, MLKit does not support:

* concurrent programming / threads,

e calling from C to SML.

http://sourceforge.net/apps/mediawiki/mlkit
http://www.standardml.org/Basis
http://www.itu.dk/people/mael/smltojs/

MLton Guide (20180207) 287/ 611

MLLex

MLLex is a lexical analyzer generator for Standard ML modeled after the Lex lexical analyzer generator.

A version of MLLex, ported from the SML/NJ sources, is distributed with MLton.

Description

MLLex takes as input the lex language as defined in the ML-Lex manual, and outputs a lexical analyzer in SML.

Implementation

* lexgen.sml
* main.sml

* call-main.sml

Details and Notes

There are 3 main passes in the MLLex tool:

* Source parsing. In this pass, lex source program are parsed into internal representations. The core part of this pass is a hand-
written lexer and an LL(1) parser. The output of this pass is a record of user code, rules (along with start states) and actions.
(MLLex definitions are wiped off.)

* DFA construction. In this pass, a DFA is constructed by the algorithm of H. Yamada et. al.

* Output. In this pass, the generated DFA is written out as a transition table, along with a table-driven algorithm, to an SML file.

Also see

e mllex.pdf

¢ MLYacc

AppelEtA194

¢ Price09

https://github.com/MLton/mlton/blob/master/mllex/lexgen.sml
https://github.com/MLton/mlton/blob/master/mllex/main.sml
https://github.com/MLton/mlton/blob/master/mllex/call-main.sml

MLton Guide (20180207) 288 /611

MLLPTLibrary

The ML-LPT Library is a support library for the MLULex scanner generator and the MLAntlr parser generator. The ML-LPT
Library is distributed with SML/NJ.

As of 20180119, MLton includes the ML-LPT Library synchronized with SML/NJ version 110.82.

Usage

* You can import the ML-LPT Library into an MLB file with:

MLB file Description
$(SML_LIB) /mllpt-lib/mllpt-1lib.mlb

* If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2m1b, note that the
following map is included by default:

MLLPT Library
Sml-1lpt-lib.cm $(SML_LIB) /mllpt-1ib
Sml-1lpt—-lib.cm/ml-1pt-1lib.cm $(SML_LIB) /mllpt-lib/mllpt-1lib.mlb

This will automatically convert a $/mllpt-1ib.cm import in an input .cm file into a $ (SML_LIB) /mllpt-1ib/
mllpt—-1ib.mlb import in the output .m1b file.

Details

Patch

* ml-lpt.patch

http://smlnj-gforge.cs.uchicago.edu/projects/ml-lpt/
https://github.com/MLton/mlton/blob/master/lib/mllpt-lib/ml-lpt.patch

MLton Guide (20180207) 289 /611

MLmon

An mlmon.out file records dynamic profiling counts.

File format

Anmlmon.out fileis a text file with a sequence of lines.

* The string "MLton prof".

non

* Thestring "alloc", "count"”, or "t ime", depending on the kind of profiling information, corresponding to the command-line
argument supplied tomlton -profile.

e The string "current" or "stack" depending on whether profiling data was gathered for only the current function (the top
of the stack) or for all functions on the stack. This corresponds to whether the executable was compiled with ~-profile-
stack falseor-profile-stack true.

¢ The magic number of the executable.
¢ The number of non-gc ticks, followed by a space, then the number of GC ticks.
e The number of (split) functions for which data is recorded.

* A line for each (split) function with counts. Each line contains an integer count of the number of ticks while the function was
current. In addition, if stack data was gathered (—profile—stack true), then the line contains two additional tick counts:

— the number of ticks while the function was on the stack.

— the number of ticks while the function was on the stack and a GC was performed.

¢ The number of (master) functions for which data is recorded.

* A line for each (master) function with counts. The lines have the same format and meaning as with split-function counts.

MLton Guide (20180207) 290/ 611

MLNLFFI

ML-NLFFI is the no-longer-foreign-function interface library for SML.
As 0f 20050212, MLton has an initial port of ML-NLFFI from SML/NJ to MLton. All of the ML-NLFFI functionality is present.

Additionally, MLton has an initial port of the minlffigen tool from SML/NJ to MLton. Due to low-level details, the code
generated by SML/NJ’s m1-nlffigen is not compatible with MLton, and vice-versa. However, the generated code has the
same interface, so portable client code can be written. MLton’s m1lnlffigen does not currently support C functions with
struct or union arguments.

Usage

* You can import the ML-NLFFI Library into an MLB file with

MLB file Description
$(SML_LIB) /mlnlffi-lib/mlnlffi-1lib.mlb

* If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following maps are included by default:

MLNLFFI Library
Sc $(SML_LIB) /mlnlffi-1ib
Sc/c.cm S (SML_LIB) /mlnlffi-lib/mlnlffi-lib.mlb

This will automatically convert a $/c.cm import in an input . cm file into a $ (SML_LIB) /mlnlffi-lib/mlnlffi-
lib.mlb import in the output .ml1b file.

Also see

* BlumeOl
* MLNLFFIImplementation
* MLNLFFIGen

MLton Guide (20180207) 291 /611

MLNLFFIGen

mlnlffigen generates a MLNLFFI binding from a collection of . c files. It is based on the CKitLibrary, which is primarily
designed to handle standardized C and thus does not understand many (any?) compiler extensions; however, it attempts to recover
from errors when seeing unrecognized definitions.

In order to work around common gcc extensions, it may be useful to add —cppopt options to the command line; for example
—-cppopt ’-D__extension__’ may be occasionally useful. Fortunately, most portable libraries largely avoid the use of
these types of extensions in header files.

mlnlffigen will normally not generate bindings for #included files; see -match and —al1SU if this is desirable.

MLton Guide (20180207) 292/ 611

MLNLFFlimplementation

MLton’s implementation(s) of the MLNLFFI library differs from the SML/NJ implementation in two important ways:

* MLton cannot utilize the Unsafe.cast "cheat" described in Section 3.7 of BlumeOl. (MLton’s representation of closures
and aggressive representation optimizations make an Unsafe.cast even more "unsafe" than in other implementations.)

We have considered two solutions:

— One solution is to utilize an additional type parameter (as described in Section 3.7 of BlumeO1):

signature C = sig
type ('t, "f, ’'c) obj
eqtype ('t, 'f, ’'c) obj’

type ("o, "f) ptr
eqtype ('o, 'f) ptr’

type 'f fptr
type 'f ptr’

structure T : sig
type (“t, "f) typ

end
end

The rule for (‘t, 'f, ’'c) obj,('t, 'f, 'c) ptr,andalso ('t, ’f) T.typ is that whenever F
fptr occurs within the instantiation of ’ t, then ’ £ must be instantiated to F. In all other cases, ’ £ will be
instantiated to unit.

(In the actual MLton implementation, an abstract type naf (not-a-function) is used instead of unit.)

While this means that type-annotated programs may not type-check under both the SML/NJ implementation and the MLton
implementation, this should not be a problem in practice. Tools, like m1-n1f figen, which are necessarily implementation
dependent (in order to make calls through a C function pointer), may be easily extended to emit the additional type parameter.
Client code which uses such generated glue-code (e.g., Section 1 of BlumeO1) need rarely write type-annotations, thanks to
the magic of type inference.

— The above implementation suffers from two disadvantages.

First, it changes the MLNLFFI Library interface, meaning that the same program may not type-check under both the SML/NJ
implementation and the MLton implementation (though, in light of type inference and the richer MLRep structure provided
by MLton, this point is mostly moot).

Second, it appears to unnecessarily duplicate type information. For example, an external C variable of type int (=
£[3]) (int) (thatis, an array of three function pointers), would be represented by the SML type (((sint -> sint)
fptr, dec dg3) arr, sint -> sint, rw) obj. One might well ask why the ’ £ instantiation (sint ->
sint in this case) cannot be extracted from the ’ t instantiation (((sint —-> sint) fptr, dec dg3) arr in
this case), obviating the need for a separate function-type type argument. There are a number of components to an complete
answer to this question. Foremost is the fact that Standard ML supports neither (general) type-level functions nor intensional
polymorphism.

A more direct answer for MLNLFFI is that in the SML/NJ implemention, the definition of the types (‘t, ’c¢) objand
("t, ’'c) ptr are made in such a way that the type variables ’ t and ’ c are phantom (not contributing to the run-time
representation of an (‘t, ‘c) objor ('t, ’c) ptr value), despite the fact that the types ((sint -> sint)
fptr, rw) ptrand ((double -> double) fptr, rw) ptr necessarily carry distinct (and type incompatible)
run-time (C-)type information (RTTI), corresponding to the different calling conventions of the two C functions. The
Unsafe.cast "cheat" overcomes the type incompatibility without introducing a new type variable (as in the first solution
above).

Hence, the reason that function-type type cannot be extracted from the ’ t type variable instantiation is that the type of the
representation of RTTI doesn’t even see the (phantom) ’ t type variable. The solution which presents itself is to give up on
the phantomness of the ’ t type variable, making it available to the representation of RTTIL.

MLton Guide (20180207)

293 /611

This is not without some small drawbacks. Because many of the types used to instantiate ’ t carry more structure than
is strictly necessary for ’ t’s RTTI, it is sometimes necessary to wrap and unwrap RTTI to accommodate the additional
structure. (In the other implementations, the corresponding operations can pass along the RTTI unchanged.) However, these
coercions contribute minuscule overhead; in fact, in a majority of cases, MLton’s optimizations will completely eliminate

the RTTI from the final program.

The implementation distributed with MLton uses the second solution.

Bonus question: Why can’t one use a universal type to eliminate the use of Unsafe.cast?

— Answer: 7?7?

* MLton (in both of the above implementations) provides a richer MLRep structure, utilizing Int <N>and Word <N> structures.

structure MLRep = struct
structure Char =
struct
structure Signed =
structure Unsigned

Int8
= Word8

(» word-style bit-operations

structure <:SignedBitops:>

end
structure Short =
struct
structure Signed =
structure Unsigned

Intlé6
= Wordlé6

(» word-style bit-operations
structure <:SignedBitops:> =

end
structure Int =
struct
structure Signed =
structure Unsigned

Int32
= Word32

(» word-style bit-operations
structure <:SignedBitops:> =

end
structure Long =
struct
structure Signed =
structure Unsigned

Int32
= Word32

(» word-style bit-operations
structure <:SignedBitops:> =

end

structure <:LonglLong:>
struct

structure Signed =

structure Unsigned

Int64
= Wordo64

(» word-style bit-operations
structure <:SignedBitops:> =

end
structure Float = Real32
structure Double = Realb4

end

on integers...
IntBitOps (structure
structure W =

*)

on integers... x)
IntBitOps (structure
structure W =

on integers... x)
IntBitOps (structure

structure W =

on integers...
IntBitOps (structure
structure W =

*)

on integers...
IntBitOps (structure
structure W =

%)

I = Signed
Unsigned)

I = Signed
Unsigned)

I = Signed
Unsigned)

I = Signed
Unsigned)

I = Signed
Unsigned)

This would appear to be a better interface, even when an implementation must choose Int 32 and Word32 as the representa-

tion for smaller C-types.

MLton Guide (20180207) 294/ 611

MLRISCLibrary

The MLRISC Library is a framework for retargetable and optimizing compiler back ends. The MLRISC Library is distributed
with SML/NJ. Due to differences between SML/NJ and MLton, this library will not work out-of-the box with MLton.

As of 20180119, MLton includes a port of the MLRISC Library synchronized with SML/NJ version 110.82.

Usage

* You can import a sub-library of the MLRISC Library into an MLB file with:

MLB file Description

S (SML_LIB) /mlrisc—-1ib/mlb/ALPHA.mlb The ALPHA backend

$ (SML_LIB) /mlrisc-1ib/mlb/AMD64 .mlb The AMD64 backend
$(SML_LIB) /mlrisc-1lib/mlb/AMD64- The AMD64 peephole optimizer

Peephole.mlb

S (SML_LIB) /mlrisc—1ib/mlb/CCall.mlb
$(SML_LIB) /mlrisc-lib/mlb/CCall-sparc.
mlb

S (SML_LIB)/mlrisc—-1lib/mlb/CCall-x86-
64 .mlb

$(SML_LIB) /mlrisc-lib/mlb/CCall-x86.
mlb

S (SML_LIB)/mlrisc—-1lib/mlb/Control.mlb
$(SML_LIB) /mlrisc-lib/mlb/Graphs.mlb
)
)

S (SML_LIB) /mlrisc-1ib/mlb/HPPA.mlb The HPPA backend
$(SML_LIB) /mlrisc-lib/mlb/IA32.mlb The IA32 backend
S (SML_LIB) /mlrisc—1ib/mlb/IA32- The TA32 peephole optimizer

Peephole.mlb
S (SML_LIB) /mlrisc—1lib/mlb/Lib.mlb
$(SML_LIB)/mlrisc—1ib/mlb/MLRISC.mlb
$(SML_LIB) /mlrisc-1ib/mlb/MLTREE.mlb
$(SML_LIB) /mlrisc-lib/mlb/Peephole.mlb
S (SML_LIB) /mlrisc—-1ib/mlb/PPC.mlb The PPC backend
S (SML_LIB)/mlrisc—-1lib/mlb/RA.mlb
S)
S)
1
(

SML_LIB) /mlrisc—1ib/mlb/SPARC.mlb The Sparc backend
SML_LIB) /mlrisc-1ib/mlb/StagedAlloc.
b

S (SML_LIB)/mlrisc—-1lib/mlb/Visual.mlb

3

* If you are porting a project from SML/NJ’s CompilationManager to MLton’s ML Basis system using cm2mlb, note that the
following map is included by default:

MLRISC Library
$SMLNJ-MLRISC $(SML_LIB) /mlrisc-1ib/mlb

This will automatically convert a $SMLNJ-MLRISC/MLRISC.cm import in an input .cm file into a $ (SML_LIB) /mlr
isc-1ib/mlb/MLRISC.mlb import in the output .mlb file.

Details
The following changes were made to the MLRISC Library, in addition to deriving the .m1b files from the . cm files:

* eliminate sequential withtype expansions: Most could be rewritten as a sequence of type definitions and datatype definitions.

* eliminate higher-order functors: Every higher-order functor definition and application could be uncurried in the obvious way.

http://www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html

MLton Guide (20180207) 295 / 611

e eliminate where <str> =<str>: Quite painful to expand out all the flexible types in the respective structures. Further-
more, many of the implied type equalities aren’t needed, but it’s too hard to pick out the right ones.

e library/array-noneq.sml (added, not exported): Implements signature ARRAY_NONEQ, similarto signature
ARRAY from the Basis Library, but replacing the latter’s eqtype ’'a array =’a array and type ’'a vector =
"a Vector.vector with type ’a array and type ’a vector. Thus, array-like containers may match ARRAY
_NONEQ, whereas only the pervasive ' a array container may math ARRAY. (SML/NJ’s implementation of signature
ARRAY omits the type realizations.)

* library/dynamic—-array.sml and library/hash-array.sml (modifed): Replace include ARRAY with inc
lude ARRAY_ NONEQ; see above.

Patch

* MLRISC.patch

https://github.com/MLton/mlton/blob/master/lib/mlrisc-lib/MLRISC.patch

MLton Guide (20180207) 296 / 611

MLtonArray

signature MLTON_ARRAY =
sig
val unfoldi: int = b x (int » 'b -> "a * 'b) -> ’"a array x 'b
end

e unfoldi (n, b, f)

constructs an array a of length n, whose elements @; are determined by the equations by = b and (a;, b;+1) = f (i, b;).

MLton Guide (20180207) 297 / 611

MLtonBinlO

signature MLTON_BIN_IO = MLTON_IO

See MLtonlO.

MLton Guide (20180207) 298 /611

MLtonCont
signature MLTON_CONT =
sig
type 'a t
val callcc: (a t -> "a) —> 'a
val isolate: ("a —-> unit) -> ’"a t

val prepend: 'a t x (b -> "a) -> 'b t

val throw: "a t » "a -=> 'b

val throw’: "a t * (unit -> 'a) -> 'b
end

s type "a t
the type of continuations that expect a value of type ’ a.

e callcc £
applies f to the current continuation. This copies the entire stack; hence, callcc takes time proportional to the size of the
current stack.

* isolate £

creates a continuation that evaluates £ in an empty context. This is a constant time operation, and yields a constant size stack.

* prepend (k, f)

composes a function £ with a continuation k to create a continuation that first does £ and then does k. This is a constant time
operation.

e throw (k, V)

throws value v to continuation k. This copies the entire stack of k; hence, throw takes time proportional to the size of this
stack.

e throw’ (k, th)

a generalization of throw that evaluates th () in the context of k. Thus, for example, if th () raises an exception or captures
another continuation, it will see k, not the current continuation.

Also see

* MLtonContIsolateImplementation

MLton Guide (20180207) 299/ 611

MLtonContlsolatelmplementation

As noted before, it is fairly easy to get the operational behavior of 1 solate with just callcc and throw, but establishing the
right space behavior is trickier. Here, we show how to start from the obvious, but inefficient, implementation of isolate using
only callcc and throw, and derive an equivalent, but more efficient, implementation of isolate using MLton’s primitive
stack capture and copy operations. This isn’t a formal derivation, as we are not formally showing the equivalence of the programs
(though I believe that they are all equivalent, modulo the space behavior).

Here is a direct implementation of isolate using only callcc and throw:

val isolate: ('a -> unit) -> ’'a t =
fn (f: "a -> unit) =>
callcc
(fn k1 =>
let
val x = callcc (fn k2 => throw (k1l, k2))

val _ = (f x ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn
in
raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end)

We use the standard nested callcc trick to return a continuation that is ready to receive an argument, execute the isolated
function, and exit the program. Both Exit.topLevelSuffix and MLtonExn.topLevelHandler will terminate the
program.

Throwing to an isolated function will execute the function in a semantically empty context, in the sense that we never re-execute
the original continuation of the call to isolate (i.e., the context that was in place at the time i solate was called). However, we
assume that the compiler isn’t able to recognize that the original continuation is unused; for example, while we (the programmer)
know that Exit .topLevelSuffix and MLtonExn.topLevelHandler will terminate the program, the compiler may
only see opaque calls to unknown foreign-functions. So, that original continuation (in its entirety) is part of the continuation
returned by isolate and throwing to the continuation returned by isolate will execute £ x (with the exit wrapper) in the
context of that original continuation. Thus, the garbage collector will retain everything reachable from that original continuation
during the evaluation of £ x, even though it is semantically garbage.

Note that this space-leak is independent of the implementation of continuations (it arises in both MLton’s stack copying im-
plementation of continuations and would arise in SML/NJ’s CPS-translation implementation); we are only assuming that the
implementation can’t see the program termination, and so must retain the original continuation (and anything reachable from it).

So, we need an empty continuation in which to execute £ x. (No surprise there, as that is the written description of isolate.)
To do this, we capture a top-level continuation and throw to that in order to execute £ x:

local
val base: (unit -> unit) t =
callcc
(fn k1 =>
let
val th = callcc (fn k2 => throw (kl1, k2))
val _ = (th () ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn
in
raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end)
in
val isolate: ('a -> unit) -> ’'a t =
fn (f: "a -> unit) =>
callcc
(fn k1 =>
let
val x = callcc (fn k2 => throw (k1, k2))
in

throw (base, fn () => f x)

MLton Guide (20180207) 300/ 611

end)
end

We presume that base is evaluated early in the program. There is a subtlety here, because one needs to believe that this base
continuation (which technically corresponds to the entire rest of the program evaluation) works as an empty context; in particular,
we want it to be the case that executing £ x in the base context retains less space than executing £ x in the context in place
at the call to isolate (as occurred in the previous implementation of isolate). This isn’t particularly easy to believe if
one takes a normal substitution-based operational semantics, because it seems that the context captured and bound to base is
arbitrarily large. However, this context is mostly unevaluated code; the only heap-allocated values that are reachable from it are
those that were evaluated before the evaluation of base (and used in the program after the evaluation of base). Assuming that
base is evaluated early in the program, we conclude that there are few heap-allocated values reachable from its continuation.
In contrast, the previous implementation of isolate could capture a context that has many heap-allocated values reachable
from it (because we could evaluate isolate £ late in the program and deep in a call stack), which would all remain reachable
during the evaluation of £ x. [We’ll return to this point later, as it is taking a slightly MLton-esque view of the evaluation of a
program, and may not apply as strongly to other implementations (e.g., SML/NJ).]

Now, once we throw to base and begin executing £ x, only the heap-allocated values reachable from f and x and the few
heap-allocated values reachable from base are retained by the garbage collector. So, it seems that base works as an empty
context.

But, what about the continuation returned from isolate f£? Note that the continuation returned by isolate is one that
receives an argument x and then throws to base to evaluate £ x. If we used a CPS-translation implementation (and assume
sufficient beta-contractions to eliminate administrative redexes), then the original continuation passed to isolate (i.e., the
continuation bound to k1) will not be free in the continuation returned by isolate f£. Rather, the only free variables in the
continuation returned by isolate f will be base and £, so the only heap-allocated values reachable from the continuation
returned by isolate £ will be those values reachable from base (assumed to be few) and those values reachable from £
(necessary in order to execute £ at some later point).

But, MLton doesn’t use a CPS-translation implementation. Rather, at each call to callcc in the body of isolate, MLton will
copy the current execution stack. Thus, k2 (the continuation returned by isolate f) will include execution stack at the time
of thecallto isolate f—thatis, it will include the original continuation of the call to isolate f£. Thus, the heap-allocated
values reachable from the continuation returned by isolate f will include those values reachable from base, those values
reachable from f, and those values reachable from the original continuation of the call to isolate £f. So, just holding on to
the continuation returned by isolate £ will retain all of the heap-allocated values live at the time isolate £ was called.
This leaks space, since, semantically, the continuation returned by isolate f only needs the heap-allocated values reachable
from f (and base).

In practice, this probably isn’t a significant issue. A common use of isolate is implement abort:

fun abort th = throw (isolate th, ())

The continuation returned by isolate th is dead immediately after being thrown to —the continuation isn’t retained, so
neither is the semantic garbage it would have retained.

But, it is easy enough to move onto the empty context base the capturing of the context that we want to be returned by isolate
f:

local
val base: (unit -> unit) t =
callcc
(fn k1 =>
let
val th = callcc (fn k2 => throw (k1l, k2))
val _ = (th () ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn
in
raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end)
in
val isolate: ('a -> unit) -> ’'a t =

fn (f: "a —-> unit) =>

MLton Guide (20180207) 301 /611

callcc
(fn k1 =>
throw (base, fn () =>
let
val x = callcc (fn k2 => throw (k1l, k2))
in
throw (base, fn () => f x)
end))
end

This implementation now has the right space behavior; the continuation returned by isolate f will only retain the heap-
allocated values reachable from f and from base. (Technically, the continuation will retain two copies of the stack that was in
place at the time base was evaluated, but we are assuming that that stack small.)

One minor inefficiency of this implementation (given MLton’s implementation of continuations) is that every callcc and
throw entails copying a stack (albeit, some of them are small). We can avoid this in the evaluation of base by using a reference
cell, because base is evaluated at the top-level:

local
val base: (unit -> unit) option t =
let
val baseRef: (unit -> unit) option t option ref = ref NONE
val th = callcc (fn k => (base := SOME k; NONE))
in

case th of
NONE => (case !baseRef of
NONE => raise Fail "MLton.Cont.isolate: missing base"
| SOME base => base)
| SOME th => let
val _ = (th () ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn
in
raise Fail "MLton.Cont.isolate: return from (wrapped)

func"
end
end
in
val isolate: ("a —> unit) -> 'a t =
fn (f: "a —-> unit) =>
callcc
(fn k1 =>
throw (base, SOME (fn () =>
let
val x = callcc (fn k2 => throw (k1l, k2))
in
throw (base, SOME (fn () => f x))
end)))
end

Now, to evaluate base, we only copy the stack once (instead of 3 times). Because we don’t have a dummy continuation around
to initialize the reference cell, the reference cell holds a continuation opt ion. To distinguish between the original evaluation of
base (when we want to return the continuation) and the subsequent evaluations of base (when we want to evaluate a thunk),
we capture a (unit -> unit) option continuation.

This seems to be as far as we can go without exploiting the concrete implementation of continuations in MLtonCont. Examining
the implementation, we note that the type of continuations is given by

type 'a t = (unit -> 'a) —-> unit

and the implementation of throw is given by

fun ("a, ’'b) throw’ (k: "a t, v: unit -> "a): b

MLton Guide (20180207) 302 /611

(k v; raise Fail "MLton.Cont.throw’: return from continuation")

fun ("a, ’"b) throw (k: 'a t, v: "a): b = throw’ (k, fn () => v)

Suffice to say, a continuation is simply a function that accepts a thunk to yield the thrown value and the body of the function
performs the actual throw. Using this knowledge, we can create a dummy continuation to initialize baseRef and greatly
simplify the body of isolate:

local
val base: (unit -> unit) option t =
let
val baseRef: (unit -> unit) option t ref =
ref (fn _ => raise Fail "MLton.Cont.isolate: missing base")
val th = callcc (fn k => (baseRef := k; NONE))
in

case th of
NONE => !baseRef
| SOME th => let
val _ = (th () ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn
in
raise Fail "MLton.Cont.isolate: return from (wrapped)

func"
end
end
in
val isolate: ('a -> unit) -> ’'a t =
fn (f: "a -> unit) =>
fn (v: unit -> ’"a) =>
throw (base, SOME (f o v))
end

Note that this implementation of i solate makes it clear that the continuation returned by isolate f only retains the heap-
allocated values reachable from f and base. It also retains only one copy of the stack that was in place at the time base was
evaluated. Finally, it completely avoids making any copies of the stack that is in place at the time isolate f is evaluated;
indeed, isolate f is a constant-time operation.

Next, suppose we limited ourselves to capturing unit continuations with callcc. We can’t pass the thunk to be evaluated in
the empty context directly, but we can use a reference cell.

local
val thRef: (unit -> unit) option ref = ref NONE
val base: unit t =

let
val baseRef: unit t ref =
ref (fn _ => raise Fail "MLton.Cont.isolate: missing base")
val () = callcc (fn k => baseRef := k)
in

case !thRef of
NONE => !baseRef

| SOME th =>
let
val _ = thRef := NONE
val _ = (th () ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn
in

raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end
end
in
val isolate: ('a -> unit) -> ’'a t =
fn (f: "a —-> unit) =>

MLton Guide (20180207) 303 /611

fn (v: unit —-> ’'a) =>
let
val () = thRef := SOME (f o V)
in
throw (base, ())
end
end

Note that it is important to set thRef to NONE before evaluating the thunk, so that the garbage collector doesn’t retain all the
heap-allocated values reachable from f and v during the evaluation of £ (v ()). This is because thRef is still live during
the evaluation of the thunk; in particular, it was allocated before the evaluation of base (and used after), and so is retained by
continuation on which the thunk is evaluated.

This implementation can be easily adapted to use MLton’s primitive stack copying operations.

local
val thRef: (unit -> unit) option ref = ref NONE
val base: Thread.preThread =
let
val () = Thread.copyCurrent ()
in
case !thRef of
NONE => Thread.savedPre ()

| SOME th =>
let
val () = thRef := NONE
val _ = (th () ; Exit.toplevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn
in

raise Fail "MLton.Cont.isolate: return from (wrapped) func"

end
end
in
val isolate: ('a -> unit) -> ’'a t =
fn (£f: "a -> unit) =>
fn (v: unit -> ’"a) =>
let
val () = thRef := SOME (f o Wv)
val new = Thread.copy base
in
Thread.switchTo new
end
end

In essence, Thread.copyCurrent copies the current execution stack and stores it in an implicit reference cell in the runtime
system, which is fetchable with Thread.savedPre. When we are ready to throw to the isolated function, Thread. copy
copies the saved execution stack (because the stack is modified in place during execution, we need to retain a pristine copy in
case the isolated function itself throws to other isolated functions) and Thread.switchTo abandons the current execution
stack, installing the newly copied execution stack.

The actual implementation of MLton.Cont.isolate simply adds some Thread.atomicBegin and Thread.atomi
cEnd commands, which effectively protect the global thRef and accommodate the fact that Thread.switchTo does an
implicit Thread. atomicEnd (used for leaving a signal handler thread).

local
val thRef: (unit -> unit) option ref = ref NONE
val base: Thread.preThread =
let
val () = Thread.copyCurrent ()
in
case !thRef of
NONE => Thread.savedPre ()

MLton Guide (20180207) 304 /611

| SOME th =>
let
val () = thRef := NONE
val _ = MLton.atomicEnd (* Match 1 =)
val _ = (th () ; Exit.topLevelSuffix ())
handle exn => MLtonExn.topLevelHandler exn
in
raise Fail "MLton.Cont.isolate: return from (wrapped) func"
end
end
in
val isolate: ('a -> unit) -> ’'a t =
fn (f: "a —-> unit) =>
fn (v: unit -> ’"a) =>
let
val _ = MLton.atomicBegin (% Match 1 «x)
val () = thRef := SOME (f o v)
val new = Thread.copy base
val _ = MLton.atomicBegin (% Match 2 «x)
in
Thread.switchTo new (* Match 2 «*)
end
end

It is perhaps interesting to note that the above implementation was originally derived by specializing implementations of the
MLtonThread new, prepare, and switch functions as if their only use was in the following implementation of isolate:

val isolate: ('a —-> unit) -> 'a t =
fn (f: 'a —-> unit) =>
fn (v: unit -> "a) =>
let
val th = (£ (v ()) ; Exit.topLevelSuffix ())

handle exn => MLtonExn.topLevelHandler exn
val t = MLton.Thread.prepare (MLton.Thread.new th, ())
in
MLton.Thread.switch (fn _ => t)
end

It was pleasant to discover that it could equally well be derived starting from the callcc and throw implementation.

As a final comment, we noted that the degree to which the context of base could be considered empty (i.e., retaining few heap-
allocated values) depended upon a slightly MLton-esque view. In particular, MLton does not heap allocate executable code. So,
although the base context keeps a lot of unevaluated code live, such code is not heap allocated. In a system like SML/NJ,
that does heap allocate executable code, one might want it to be the case that after throwing to an isolated function, the garbage
collector retains only the code necessary to evaluate the function, and not any code that was necessary to evaluate the base
context.

MLton Guide (20180207) 305 /611

MLtonCross

The debian package MLton-Cross adds various targets to MLton. In combination with the emdebian project, this allows a debian
system to compile SML files to other architectures.

Currently, these targets are supported:

e Windows (MinGW)

— -target i586-mingw32msvc (mlton-target-i586-mingw32msvc)

— -target amd64-mingw32msvc(mlton-target-amd64-mingw32msvc)

e Linux (Debian)

-target alpha-linux-gnu (mlton-target-alpha-linux-gnu)

-target arm-linux-gnueabi (mlton-target-arm-linux-gnueabi)

-target hppa-linux-gnu (mlton-target-hppa-linux-gnu)

-target 1486-linux-gnu (mlton-target-i486-linux-gnu)

-target ia64-linux-gnu (mlton-target-ia64-linux-gnu)

-target mips-linux-gnu (mlton-target-mips-linux-gnu)

-target mipsel-linux-gnu (mlton-target-mipsel-linux-gnu)

-target powerpc-linux-gnu (mlton-target-powerpc-linux-gnu)

-target s390-linux-gnu (mlton-target-s390-linux-gnu)

-target sparc-linux-gnu (mlton-target-sparc-linux-gnu)

-target x86-64-linux-gnu (mlton-target-x86-64-linux-gnu)

Download

ML.ton-Cross is kept in-sync with the current MLton release.

* mlton-cross_20100608.0orig.tar.gz

guide/MLtonCross.attachments/mlton-cross_20100608.orig.tar.gz

MLton Guide (20180207) 306 /611

MLtonExn

signature MLTON_EXN =
sig
val addExnMessager: (exn —> string option) -> unit
val history: exn -> string list

val defaultTopLevelHandler: exn -> ’'a
val getTopLevelHandler: unit -> (exn —-> unit)
val setTopLevelHandler: (exn —> unit) -> unit
val topLevelHandler: exn —> 'a

end

* addExnMessager £
adds f as a pretty-printer to be used by General .exnMessage for converting exceptions to strings. Messagers are tried in
order from most recently added to least recently added.

* history e

returns call stack at the point that e was first raised. Each element of the list is a file position. The elements are in reverse
chronological order, i.e. the function called last is at the front of the list.

history e will return [] unless the program is compiled with ~const ’Exn.keepHistory true’.

* defaultToplevelHandler e

function that behaves as the default top level handler; that is, print out the unhandled exception message for e and exit.

s getTopLevelHandler ()
get the top level handler.

* setTopLevelHandler f

set the top level handler to the function £. The function £ should not raise an exception or return normally.

* topLevelHandler e

behaves as if the top level handler received the exception e.

MLton Guide (20180207) 307 /611

MLtonFinalizable

signature MLTON_FINALIZABLE =
sig
type 'a t

val addFinalizer: "a t * ('a —> unit) —-> unit
val finalizeBefore: "a t * b t —-> unit
val new: 'a —> 'a t
val touch: "a t -> unit
val withValue: "a t » (a -—> "b) —> b
end

A finalizable value is a container to which finalizers can be attached. A container holds a value, which is reachable as long as the
container itself is reachable. A finalizer is a function that runs at some point after garbage collection determines that the container
to which it is attached has become unreachable. A finalizer is treated like a signal handler, in that it runs asynchronously in a
separate thread, with signals blocked, and will not interrupt a critical section (see MLtonThread).

e addFinalizer (v, f)

adds f as a finalizer to v. This means that sometime after the last call to withValue on v completes and v becomes
unreachable, £ will be called with the value of v.

e finalizeBefore (vl1l, v2)

ensures that v1 will be finalized before v2. A cycle of values v=v1, ..., vn=v with finalizeBefore (vi, vi+l)
will result in none of the vi being finalized.

* new X

creates a new finalizable value, v, with value x. The finalizers of v will run sometime after the last call to withvValue on v
when the garbage collector determines that v is unreachable.

e touch v

ensures that v’s finalizers will not run before the call to t ouch.

e withValue (v, f)

returns the result of applying £ to the value of v and ensures that v’s finalizers will not run before £ completes. The call to £
is a nontail call.

Example

Suppose that finalizable. sml contains the following:

signature CLIST =
sig
type t

val cons: int « t —-> t
val sing: int -> t
val sum: t -> int

end

functor CList (structure F: MLTON_FINALIZABLE
structure P: MLTON_POINTER
structure Prim:
sig
val cons: int x P.t -> P.t
val free: P.t -> unit
val sing: int -> P.t

MLton Guide (20180207)

308 /611

end) : CLIST

struct

val sum: P.t —>

type t = P.t F.t

fun cons (n: int, 1: t)

F.withValue
(1, fn w’ =>

let

val ¢ =

val _
val
in

e
end)

fun sing n =
let

val ¢ =

val _

in
@
end

1
o

fun sum c
end

functor Test (structure CList:

F.new (Prim.cons
F.addFinalizer (
F.finalizeBefore

F.new (Prim.sing
F.addFinalizer (c

int
(n, w’"))

c, Prim.free)
(c, 1)

n)

’

Prim.free)

.withValue (c, Prim.sum)

CLIST

structure MLton: sig

structure GC:
sig

val collect: unit
end
end) =
struct
fun £ n =
ifn=1
then ()
else
let
val a = Array.tabulate (n, fn i => i)
val _ = Array.sub (a, 0) + Array.sub (a, 1)
in
f (n - 1)
end
val 1 = CList.sing 2
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val _ = MLton.GC.collect ()
val _ = f 100
val _ = print (concat ["listSum(l) =",
Int.toString (CList.sum 1),
"\n"])
val _ = MLton.GC.collect ()
val = f 100

end

-> unit

MLton Guide (20180207)

309 /611

structure CList =

CList (structure F = MLton.Finalizable
structure P = MLton.Pointer

structure Prim =

struct
val cons = _import "listCons":
val free = _import "listFree":
val sing = _import "listSing":
val sum = _import "listSum": P.
end)
structure S = Test (structure CList = CList
structure MLton = MLton)
Suppose that cons . ¢ contains the following.
#include <stdio.h>
typedef unsigned int uint;
typedef struct Cons {
struct Cons #*next;
int value;
} *«Cons;
Cons listCons (int n, Cons c) {
Cons res;
res = (Cons) malloc (sizeof (*res));
fprintf (stderr, "O0x%08x = listCons (%d
res—->next = c;
res—->value = n;
return res;
}
Cons listSing (int n) {
Cons res;
res = (Cons) malloc (sizeof (xres));
fprintf (stderr, "0x%08x = listSing

res—>next = NULL;
res->value = n;
return res;

void listFree (Cons p) {
fprintf (stderr, "listFree
free (p);

int listSum (Cons c) {
int res;

(0x%08x)\n",

fprintf (stderr, "listSum\n");

res = 0;

for (; ¢ != NULL; c = c->next)

res += c->value;
return res;

We can compile these to create an executable with

int » P.t -> P.t;
P.t —> unit;

int -> P.t;

t -> int;

y\n", (uint)res,

(%d) \n", (uint)res,

(uint)p);

MLton Guide (20180207) 310/ 611

% mlton —-default-ann "allowFFI true’ finalizable.sml cons.c

Running this executable will create output like the following.

% finalizable

0x08072890 = 1listSing (2)
0x080728a0 = listCons (2)
0x080728b0 = listCons (2)
0x080728c0 = listCons (2)
0x080728d0 = listCons (2)
0x080728e0 = listCons (2)
0x080728f0 = listCons (2)

listSum

listSum(l) = 14
listFree (0x080728f0)
listFree (0x080728e0)
listFree (0x080728d0)
listFree (0x080728c0)
listFree (0x080728b0)
listFree (0x080728a0)
listFree (0x08072890)

Synchronous Finalizers
Finalizers in MLton are asynchronous. That is, they run at an unspecified time, interrupting the user program. It is also possible,
and sometimes useful, to have synchronous finalizers, where the user program explicitly decides when to run enabled finalizers.

We have considered this in MLton, and it seems possible, but there are some unresolved design issues. See the thread at

¢ http://www.mlton.org/pipermail/mlton/2004-September/016570.html

Also see

¢ BoehmO03

http://www.mlton.org/pipermail/mlton/2004-September/016570.html

MLton Guide (20180207) 311 /611

MLtonGC

signature MLTON_GC =
sig
val collect: unit -> unit
val pack: unit -> unit
val setMessages: bool —-> unit
val setSummary: bool —-> unit
val unpack: unit -> unit
structure Statistics
sig
val bytesAllocated: unit -> IntInf.int
val lastBytesLive: unit -> IntInf.int
val numCopyingGCs: unit -> IntInf.int
val numMarkCompactGCs: unit -> IntInf.int
val numMinorGCs: unit -> IntInf.int
val maxBytesLive: unit -> IntInf.int
end
end

e collect ()

causes a garbage collection to occur.

* pack ()

shrinks the heap as much as possible so that other processes can use available RAM.

* setMessages b
controls whether diagnostic messages are printed at the beginning and end of each garbage collection. It is the same as the
gc-messages runtime system option.

* setSummary b
controls whether a summary of garbage collection statistics is printed upon termination of the program. It is the same as the
gc-summary runtime system option.

* unpack ()

resizes a packed heap to the size desired by the runtime.

* Statistics.bytesAllocated ()

returns bytes allocated (as of the most recent garbage collection).

* Statistics.lastBytesLive ()

returns bytes live (as of the most recent garbage collection).

e Statistics.numCopyingGCs ()

returns number of (major) copying garbage collections performed (as of the most recent garbage collection).

* Statistics.numMarkCompactGCs ()

returns number of (major) mark-compact garbage collections performed (as of the most recent garbage collection).

e Statistics.numMinorGCs ()

returns number of minor garbage collections performed (as of the most recent garbage collection).

e Statistics.maxBytesLive ()

returns maximum bytes live (as of the most recent garbage collection).

MLton Guide (20180207) 312/ 611

MLtonintInf

signature MLTON_INT_INF =
sig
type t = IntInf.int
val areSmall: t » t —-> bool

val gcd: t « t —> t
val isSmall: t -> bool

structure BigWord : WORD
structure SmallInt : INTEGER
datatype rep =
Big of BigWord.word vector

| Small of SmallInt.int
val rep: t —-> rep
val fromRep : rep -> t option

end

MLton represents an arbitrary precision integer either as an unboxed word with the bottom bit set to 1 and the top bits representing
a small signed integer, or as a pointer to a vector of words, where the first word indicates the sign and the rest are the limbs of a
GnuMP big integer.

* type t
the same as type IntInf.int.

e areSmall (a, b)

returns true iff both a and b are small.
* gcd (a, b)
uses the GnuMP’s fast gcd implementation.

e isSmall a

returns true iff a is small.

* BigWord :WORD

representation of a big IntInf.int as a vector of words; on 32-bit platforms, BigWord is likely to be equivalent to
Word32, and on 64-bit platforms, BigWord is likely to be equivalent to Word64.

* SmallInt :INTEGER
representation of a small IntInf.int as a signed integer; on 32-bit platforms, SmallInt is likely to be equivalent to
Int 32, and on 64-bit platforms, SmallInt is likely to be equivalent to Int 64.
* datatype rep
the underlying representation of an IntInf.int.
* rep 1
returns the underlying representation of 1.
e fromRep r

converts from the underlying representation back to an IntInf.int. If fromRep r is given anything besides the valid
result of rep 1 for some i, this function call will return NONE.

MLton Guide (20180207) 313 /611

MLtonlO

signature MLTON_IO =
sig

type instream

type outstream

val inFd: instream -> Posix.IO.file_desc
val mkstemp: string —-> string x outstream
val mkstemps: {prefix: string, suffix: string} -> string * outstream
val newIn: Posix.IO.file_desc *x string -> instream
val newOut: Posix.IO.file_desc *» string —-> outstream
val outFd: outstream —-> Posix.IO.file_desc
val tempPrefix: string -> string
end

* inFd ins
returns the file descriptor corresponding to ins.

* mkstemp s

like the C mk stemp function, generates and open a temporary file with prefix s.

* mkstemps {prefix, suffix}

like mk st emp, except it has both a prefix and suffix.

* newIn (fd, name)

creates a new instream from file descriptor £d, with name used in any Io exceptions later raised.

* newOut (fd, name)

creates a new outstream from file descriptor £d, with name used in any T o exceptions later raised.

* outFd out

returns the file descriptor corresponding to out.

* tempPrefix s

adds a suitable system or user specific prefix (directory) for temp files.

MLton Guide (20180207) 314 /611

MLtonltimer

signature MLTON_ITIMER =
sig
datatype t =
Prof
| Real
| Virtual

val set: t * {interval: Time.time, value: Time.time} -> unit
val signal: t -> Posix.Signal.signal

end

e set (t, {interval, value})
sets the interval timer (using set it imer) specified by t to the given interval and value.

* signal t

returns the signal corresponding to t.

MLton Guide (20180207) 315 /611

MLtonLibraryProject

We have a MLton Library repository that is intended to collect libraries.

https://github.com/MLton/mltonlib

Libraries are kept in the master branch, and are grouped according to domain name, in the Java package style. For example,
VesaKarvonen, who works at ssh. com, has been putting code at:

https://github.com/MLton/mltonlib/tree/master/com/ssh

StephenWeeks, owning sweeks . com, has been putting code at:

https://github.com/MLton/mltonlib/tree/master/com/sweeks

A "library" is a subdirectory of some such directory. For example, Stephen’s basis-library replacement library is at

https://github.com/MLton/mltonlib/tree/master/com/sweeks/basic

We use "transparent per-library branching" to handle library versioning. Each library has an "unstable" subdirectory in which
work happens. When one is happy with a library, one tags it by copying it to a stable version directory. Stable libraries are
immutable — when one refers to a stable library, one always gets exactly the same code. No one has actually made a stable
library yet, but, when I’m ready to tag my library, I was thinking that I would do something like copying

https://github.com/MLton/mltonlib/tree/master/com/sweeks/basic/unstable

to

https://github.com/MLton/mltonlib/tree/master/com/sweeks/basic/vl

So far, libraries in the MLton repository have been licensed under MLton’s License. We haven’t decided on whether that will
be a requirement to be in the repository or not. For the sake of simplicity (a single license) and encouraging widest use of code,
contributors are encouraged to use that license. But it may be too strict to require it.

If someone wants to contribute a new library to our repository or to work on an old one, they can make a pull request. If people
want to work in their own repository, they can do so—that’s the point of using domain names to prevent clashes. The idea is
that a user should be able to bring library collections in from many different repositories without problems. And those libraries
could even work with each other.

At some point we may want to settle on an MLBasisPathMap variable for the root of the library project. Or, we could reuse
SML_LIB, and migrate what we currently keep there into the library infrastructure.

https://github.com/MLton/mltonlib

MLton Guide (20180207) 316 /611

MLtonMonoArray

signature MLTON_MONO_ARRAY =
sig
type t
type elem
val fromPoly: elem array —> t
val toPoly: t —-> elem array
end

* type t
type of monomorphic array

* type elem

type of array elements

e fromPoly a

type cast a polymorphic array to its monomorphic counterpart; the argument and result arrays share the same identity

* toPoly a

type cast a monomorphic array to its polymorphic counterpart; the argument and result arrays share the same identity

MLton Guide (20180207) 317 /611

MLtonMonoVector

signature MLTON_MONO_VECTOR =
sig
type t
type elem
val fromPoly: elem vector —> t
val toPoly: t —-> elem vector
end

* type t
type of monomorphic vector

* type elem

type of vector elements

e fromPoly v

type cast a polymorphic vector to its monomorphic counterpart; in MLton, this is a constant-time operation

* toPoly v

type cast a monomorphic vector to its polymorphic counterpart; in MLton, this is a constant-time operation

MLton Guide (20180207) 318 /611

MLtonPlatform

signature MLTON_PLATFORM
sig
structure Arch:

sig
datatype t = Alpha | AMD64 | ARM | ARM64 | HPPA | IA64 | m68k
| MIPS | PowerPC | PowerPC64 | S390 | Sparc | X86

val fromString: string -> t option
val host: t
val toString: t —-> string

end

structure OS:
sig
datatype t = AIX | Cygwin | Darwin | FreeBSD | Hurd | HPUX
| Linux | MinGW | NetBSD | OpenBSD | Solaris

val fromString: string -> t option
val host: t
val toString: t -> string
end
end

* datatype Arch.t

processor architectures

e Arch.fromString a

converts from string to architecture. Case insensitive.

e Arch.host

the architecture for which the program is compiled.

e Arch.toString

string for architecture.

* datatype 0OS.t
operating systems
* OS.fromString

converts from string to operating system. Case insensitive.

* OS.host

the operating system for which the program is compiled.

* OS.toString

string for operating system.

MLton Guide (20180207) 319/ 611

MLtonPointer

signature MLTON_POINTER =
sig
egtype t

val add: t x word -> t
val compare: t * t —> order
val diff: t * t -> word
val getInt8: t * int —> Int8.int
val getIntl6: t * int -> Intl6.int
val getInt32: t * int -> Int32.int
val getInt64: t % int —-> Inté64.int
val getPointer: t % int -> t
val getReal32: t * int -> Real32.real
val getReal64: t * int —-> Realé64.real
val getWord8: t * int —-> Word8.word
val getWordl6: t * int -> Wordl6.word
val getWord32: t * int —-> Word32.word
val getWord64: t * int —-> Word64.word
val null: t
val setInt8: t * int x Int8.int -> unit
val setIntl6: t * int = Intl6.int —-> unit
val setInt32: t * int » Int32.int —-> unit
val setInt64: t * int » Int64.int -> unit
val setPointer: t x int * t -> unit
val setReal32: t * int % Real32.real -> unit
val setReal64: t int x Real64.real —-> unit
val setWord8: t * int x Word8.word —-> unit
val setWordl6: t * int % Wordlé6.word —> unit
val setWord32: t * int x Word32.word —-> unit
val setWord64d: t * int * Wordé64.word —> unit
val sizeofPointer: word
val sub: t x* word —> t

end

* egtype t
the type of pointers, i.e. machine addresses.
e add (p, w)

returns the pointer w bytes after than p. Does not check for overflow.

* compare (pl, p2)

compares the pointer p1 to the pointer p2 (as addresses).

e diff (pl, p2)

returns the number of bytes w such that add (p2, w) =pl. Does not check for overflow.

s get<x> (p, 1)
returns the object stored at index i of the array of X objects pointed to by p. For example, getWord32 (p, 7) returns the
32-bit word stored 28 bytes beyond p.

e null

the null pointer, i.e. 0.

s set<xX> (p, 1, V)

assigns v to the object stored at index i of the array of X objects pointed to by p. For example, setWord32 (p, 7, w)
stores the 32-bit word w at the address 28 bytes beyond p.

MLton Guide (20180207) 320/ 611

e sizeofPointer

size, in bytes, of a pointer.

* sub (p, w)
returns the pointer w bytes before p. Does not check for overflow.

MLton Guide (20180207) 321 /611

MLtonProcEnv

signature MLTON_PROC_ENV
sig
type gid
val setenv: {name: string, value: string} -> unit
val setgroups: gid list —-> unit
end

e setenv {name, value}
like the C setenv function. Does not require name or value to be null terminated.
* setgroups grps

like the C setgroups function.

MLton Guide (20180207)

322 /611

MLtonProcess

signature MLTON_PROCESS =
sig
type pid

val spawn: {args: string list, path: string} -> pid
val spawne: {args: string list, env: string list, path: string} -> pid
val spawnp: {args: string list, file: string} -> pid

type (’stdin, ’stdout, ’stderr) t

type input
type output

type none
type chain

type any

exception MisuseOfForget
exception DoublyRedirected

structure Child:
sig

type ('use, ’'dir) t

val binIn: (BinIO.instream, input)

t —-> BinIO.instream

val binOut: (BinIO.outstream, output) t —-> BinIO.outstream

val fd: (Posix.FileSys.file_desc, '
val remember: (any, ’‘dir) t -> ('us
val textIn: (TextIO.instream, input

dir) t —-> Posix.FileSys.file_desc
e, ’'dir) t
) t —> TextIO.instream

val textOut: (TextIO.outstream, output) t —-> TextIO.outstream

end

structure Param:
sig
type ('use, ’'dir) t

val child: (chain, ’'dir) Child.t ->
val fd: Posix.FileSys.file_desc ->

val file: string -> (none, ’dir) t

val forget: (’'use, ’'dir) t -> (any,
val null: (none, ’'dir) t

val pipe: (’'use, ’'dir) t

val self: (none, ’'dir) t

end

val create:
{args: string list,
env: string list option,
path: string,
stderr: (’stderr, output) Param.t,
stdin: (’stdin, input) Param.t,
stdout: (’stdout, output) Param.t}
-> (’stdin, ’stdout, ’stderr) t

(none, ’'dir) t
(none, ’dir) t

dir) t

val getStderr: (’stdin, ’stdout, ’stderr) t -> (’stderr, input) Child.t

val getStdin:

("stdin, ’stdout, ’'stderr) t -> (’stdin, output) Child.t

val getStdout: (’stdin, ’'stdout, ’'stderr) t -> (’stdout, input) Child.t
val kill: (’stdin, ’'stdout, ’stderr) t % Posix.Signal.signal -> unit

val reap: (’stdin, ’'stdout, ’stderr) t
end

-> Posix.Process.exit_status

MLton Guide (20180207) 323 /611

Spawn

The spawn functions provide an alternative to the fork/exec idiom that is typically used to create a new process. On most
platforms, the spawn functions are simple wrappers around fork/exec. However, under Windows, the spawn functions are
primitive. All spawn functions return the process id of the spawned process. They differ in how the executable is found and the
environment that it uses.

* spawn {args, path}

starts a new process running the executable specified by path with the arguments args. Like Posix.Process.exec.

* spawne {args, env, path}
starts a new process running the executable specified by path with the arguments args and environment env. Like Posix.
Process.exece.

* spawnp {args, file}

search the PATH environment variable for an executable named file, and start a new process running that executable with
the arguments args. Like Posix.Process.execp.

Create

MLton.Process.create provides functionality similar to Unix .executeInEnv, but provides more control control over
the input, output, and error streams. In addition, create works on all platforms, including Cygwin and MinGW (Windows)
where Posix. fork is unavailable. For greatest portability programs should still use the standard Unix.execute, Unix.
executeInEnv, and OS.Process.system.

The following types and sub-structures are used by the create function. They provide static type checking of correct stream
usage.

Child

e ("use, ’'dir) Child.t
This represents a handle to one of a child’s standard streams. The ’ dir is viewed with respect to the parent. Thusa (’ a,
input) Child.t handle means that the parent may input the output from the child.

* Child.{bin, text}{In,Out} h
These functions take a handle and bind it to a stream of the named type. The type system will detect attempts to reverse the
direction of a stream or to use the same stream in multiple, incompatible ways.

* Child.fd h
This function behaves like the other Child. » functions; it opens a stream. However, it does not enforce that you read or write
from the handle. If you use the descriptor in an inappropriate direction, the behavior is undefined. Furthermore, this function
may potentially be unavailable on future MLton host platforms.

* Child.remember h

This function takes a stream of use any and resets the use of the stream so that the stream may be used by Ch